《图形的旋转》教学设计(20200623210726)

合集下载

《图形的旋转》教案

《图形的旋转》教案
2.在案例分析环节,我观察到学生们对实际问题的解决策略有所不同。这说明他们在思考问题时,能够从不同角度出发,这很有价值。为了鼓励学生们的创新思维,我尝试让他们在小组讨论中分享自己的观点,取得了不错的效果。在后续教学中,我会继续关注学生的思考过程,引导他们发现和总结规律。
3.实践活动中的分组讨论和实验操作,让学生们充分参与到课堂中来。他们通过合作交流,加深了对图形旋转的理解。不过,我也注意到部分学生在操作过程中遇到了困难,这可能是因为他们对旋转角度的判断不够准确。在以后的教学中,我会加强对这一难点的讲解和指导。
3.增强学生的问题解决能力,运用旋转知识解决实际问题,激发创新思维和策略运用。
4.培养学生的数学表达和交流能力,学会用准确的语言描述旋转过程,进行有效沟通。
5.培养学生的逻辑推理能力,通过探索旋转的性质和规律,形成严密的逻辑思维。
三、教学难点与重点
1.教学重点
-理解旋转的定义及要素:旋转中心、旋转方向、旋转角度。通过实例演示和练习,使学生掌握图形旋转的基本概念。
五、教学反思
在今天的教学中,我发现学生们对图形旋转的概念和操作表现出很大的兴趣。他们通过观察和动手实践,逐渐理解了旋转中心、旋转方向和旋转角度的重要性。在讲授过程中,我注意到以下几点值得反思和改进:
1.学生们在理解旋转中心时,起初有些困惑。为了帮助他们更好地把握这个概念,我采用了直观教具进行演示,让学生亲眼看到旋转中心并不是图形的一部分,而是固定点。在今后的教学中,我还可以增加更多实际生活中的例子,让学生感受旋转中心在日常物体运动中的应用。
《图形的旋转》教案
一、教学内容
《图形的旋转》教案,本章节内容基于人教版小学数学四年级下册第五章《几何图形的认识》第三节《旋转》。
教学内容如下:

《图形的旋转》(一)(教案)

《图形的旋转》(一)(教案)

《图形的旋转》(一)(教案)小学数学《图形的旋转》(一)(教案)一、教学目标1、知识目标(1)了解图形的旋转概念。

(2)学会使用器具画出图形的旋转。

(3)掌握图形旋转的基本方法。

2、能力目标(1)能够观察图形并预测旋转后的位置。

(2)能够灵活运用图形旋转知识解决问题。

3、情感目标(1)培养学生观察问题的能力。

(2)发展学生归纳、概括和创造的能力。

二、教学重点、难点1、教学重点:图形的旋转概念、基本方法。

2、教学难点:正规多边形的旋转。

三、教学方法1、教师引导学生自主学习。

2、教师提问,激发学生思考。

3、教师演示,让学生感性理解。

4、合作学习,促进学生协作。

四、教学过程1、引入(1)让一名学生在黑板上画一个图形,笔尖向上。

然后请同学们看看如何将这个图形轻轻地翻过来?(2)老师解释,这就是一个简单的平面图形的“翻转”了。

今天我们要学习的是图形的“旋转”。

2、学习(1)教师拿出一个运动时钟,讲解钟面及时针的含义,让学生理解旋转的概念。

(2)教师张贴不同形状的正规多边形,并让学生在同样形状的纸上抄写下来,再通过教师操作演示将形状旋转角度后画出来。

(3)教师让学生画出正三角形、正方形、正五边形、正六边形,再通过旋转操作,发现旋转后的图形与原来的图形相等。

3、操练(1)教师出示旋转后的图形,让学生观察,然后再结合时针的旋转方向,看是否能预测原图形的位置。

(2)教师出题,要求学生自己画出旋转后图形的位置。

4、巩固(1)教师随机挑选确定旋转角度的正规多边形让学生完成旋转,并用字母表示旋转角度和旋转后的坐标。

(2)教师出示两个相同的正三角形,并让学生用一个正三角形组成正方形。

五、总结通过本次教学,大家对图形的旋转有了更深入的了解。

应用于实际生活时,如建筑、车辆设计、舞蹈中,旋转也起了巨大作用。

六、拓展(1)教师引导学生通过在生活中寻找旋转的物体,如旋转门、风扇、陀螺等。

加深学生对旋转的理解。

(2)教师提供拼图、图形变换等游戏,锻炼学生的空间想象力和图形变换运算能力。

《图形的旋转》教案14篇

《图形的旋转》教案14篇

《图形的旋转》教案14篇《图形的旋转》教案篇1一、游戏创设情景,导入新课。

幸运大转盘:转一转转盘上的指针,你想玩哪一种,看看你幸运吗?师:盼望每个同学都能拥有健康的身体,学会聪慧地思索,在学习数学的过程中体验胜利的欢乐。

转盘上指针的运动方式,在三班级我们已经有肯定了解,叫旋转。

请看大屏幕〔转杆的关和合〕,在小区门口看过这个转杆吗?转杆的运动方式是〔同学一起说〕师:对了,转杆的打开和关闭也是旋转。

今日我们一起来讨论旋转。

〔揭示课题:旋转〕二、探究线段旋转,体会旋转三要素1、对比讨论转杆的运动〔1〕用手势来比划转杆的运动转杆的打开、关闭是旋转运动,今日我们就以这个为例来讨论。

举起右手,用手臂来表示转杆,一起来做做打开、关闭的运动。

〔2〕争论:转杆的打开与关闭这两次旋转运动的相同点与不同点。

你们觉的打开、关闭的运动完全一样吗?想想有哪些地方是相同的。

哪些地方是不同的?同桌沟通。

不同点:这两次旋转的方向不同。

你们知道转杆关闭的方向叫〔顺时针方向〕为什么叫顺时针方向呢?〔显示钟面是时针的运动〕那和钟面上相反呢?叫逆时针方向,这里转杆的打开是什么方向啊?伸出手一起来表示这两个方向。

相同点:都围着一个点在旋转,这个点就是旋转的中心点。

都旋转了90度。

〔3〕小结刚才我们学了旋转重要的三个特点:中心、方向、角度。

其实全部的物体的旋转都是这样围绕中心不是顺时针就是逆时针旋转的,都转有肯定的角度,角度有大有小〔显示旋转的图片时钟、折扇、风车〕2.巩固练习刚才我们认识了顺时针或逆时针旋转90度,你们能利用这些知识解决下面的问题吗?a、:多重的物品可以使台称上的指针按顺时针方向旋转90度。

〔演示将一袋盐放入盘中〕取出物品指针又是怎样旋转的呢?b、请看,老师这里还有一个转盘呢!谁情愿和老师合作玩“我说你转”的游戏:〔老师提要求,同学转动转盘〕请把指针从A点顺时针旋转90,转到〔〕,再把指针从B点逆时针旋转90,转到〔〕。

要想清晰地知道一个物体是怎样旋转的,就得把这三方面说清晰。

《图形的旋转》教学设计(7篇)

《图形的旋转》教学设计(7篇)

《图形的旋转》教学设计(精选7篇)《图形的旋转》教学设计篇一教学目标:1、经历欣赏图案、综合运用图形的变换知识在方格纸上设计图案的过程。

2、能灵活运用图形的平移、对称和旋转等在方格纸上设计图案。

3、认识到许多图案都可以借助图形变换来设计,感受图形变换的美,获得数学活动的积极体验。

教学准备:图案制作过程的课件、方格纸。

教学方案:一、欣赏图案教师谈话,并用课件出示书中的两幅图案,学生观察、交流这些图案有什么特点。

然后进行激励性对话。

通过启发性谈话,引导学生观察、交流图案的特点,激发学生的学习兴趣,为设计图案作铺垫。

师:同学们,我们分别认识了图形的对称、平移、旋转这三种图形变换方式。

其实,在许多图案中,经常同时有2种或3种图形变换方式。

请看两个图案。

课件呈现教材上的两个图案。

师:观察一下这两个图案,你发现它们各有什么特点?学生可能回答。

第一幅都是用梯形组成的。

第一幅图是轴对称图形。

第一幅图也可以通过旋转得到了。

第二幅图是三角形旋转得到的。

……师:同学们观察得真仔细。

你喜欢这样的图案吗?生:喜欢。

师:想不想学会设计这样的图案?生:想学。

二、设计图案1.说明设计图案的奥秘,学生利用课件动态地展示第一个图案的制作过程。

先完成第①、②两步。

2.讨论:下面怎么办?让学生充分发表自己的意见,完成③、④两步。

通过动态展示一个梯形是怎样一步步变换成漂亮的图案的过程,使学生认识到许多图案都可以借助图形变换来设计,感受图形变换的美。

通过讨论,使学生了解设计图案方法的多样化,丰富学生的实践活动经验。

师:同学们观察得真仔细。

你喜欢这样的图案吗?生:喜欢。

师:想不想学会设计这样的图案?生:想学。

师:老师告诉你们,用一个简单的图形,巧妙地利用对称、平移和旋转就可以设计出这些精美的图案。

让我们一起来设计第一个图案。

教师用课件呈现了方格图。

师:在方格纸上先画一个梯形。

课件展示画的过程和结果。

师:然后画出这个梯形的对称图形。

课件展示画的过程和结果。

2023年《图形的旋转》教案(15篇)

2023年《图形的旋转》教案(15篇)

2023年《图形的旋转》教案(15篇)《图形的旋转》教案1一、教学目标1、知道图形旋转的概念,能找出旋转图形中的旋转中心、旋转角度和对应关系。

2、通过观察、操作、交流、归纳等过程,培养学生探究问题的能力、观察能力,以及与人合作交流的能力。

3、经历对生活中旋转图形的观察、讨论、实践操作,使学生充分感知数学美,培养学生学习数学的兴趣和热爱生活的情感。

二、教学重点掌握旋转的有关概念,探索和发现旋转后图形的形状和大小都没有发生变化;会准确找出对应点、对应线段、对应角,旋转中心、旋转角。

三、教学难点对图形旋转过程中旋转角相等的理解,会准确找出旋转角。

旋转中心不在三角形顶点时旋转角的确定。

四、教学准备: 课件?五、课时安排:一课时六、教学过程一、出示学习目标1、板书课题同学们,本节课我们一同来学习“图形的旋转”。

本节课的学习目标是(投影)2、出示学习目标(1)、通过实例观察,认识并描述图形的旋转。

(2)、了解一个简单的图形经过旋转制作复杂图形的过程,知道图形旋转的三要素(点、方向、度数)。

(3)、欣赏图形的旋转变换所创造出的美,感受旋转在生活中的应用,体会数学的价值。

二、出示生活图片(一)图形的旋转,旋转中心,旋转角,方向1、[演示]:演示生活中常见的转动,观察转动时各点的运动情况得到图形在转动时,位置始终不变的那一点叫做旋转中心。

图形转动的角度叫做旋转角。

区分顺时针旋转和逆时针旋转,以及旋转的三要素。

2、由钟表的旋转,得到线段转动的旋转角,学生描述钟表的旋转,加深旋转三要素的.记忆,同时培养学生的语言表达能力。

再由线段的旋转引申到几何图形的旋转,进一步得到:旋转前后的两个图形形状和大小不变,只是位置发生变化。

(二)感受生活中的旋转在日常生活中,我们可以看到,一些图形绕着某一个点旋转一定角度时,能与自身重合。

你能举出这样的例子吗?(三)、全课,巩固方法今天我们学习了图形的一种运动----旋转。

通过学习你有什么收获?(四)、布置作业:1、课本习题2、32、动手操作:请设计一个绕一点旋转一定角度后能与自身重合的图形。

图形的旋转教学设计(5篇范例)

图形的旋转教学设计(5篇范例)

图形的旋转教学设计(5篇范例)第一篇:图形的旋转教学设计《图形的旋转》教学设计教学目标:(1)知识与技能:进一步认识图形的旋转,明确含义,感悟特征及性质。

能够运用数学语言清楚描述旋转运动的过程。

会在方格纸上画出线段旋转90度后的图形。

(2)过程与方法:经历观察实例、操作想象、语言描述、绘制图形等活动,积累几何活动经验,发展空间观念。

(3)情感态度价值观:欣赏图形旋转变换所创造的美,学会用数学的眼光观察、思考生活,体会数学的价值。

教学重点:通过多种学习活动沟通联系,理解旋转含义,感悟特征及性质。

教学难点:用数学语言描述物体的旋转过程及会在方格纸上画出线段旋转90度后的图形。

教学过程设计一、认识旋转要素 1.温故引新①学生举例。

问题:在二年级的时候我们初步学习了生活中的旋转现象,能举几个例子吗?说说主题图中是什么在旋转?课件展示主题图的旋转现象。

(动态)出示课题:看来同学们已经初步认识了生活中的旋转现象,今天我们进一步学习图形的旋转,从数学的角度研究图形旋转到底有哪些特征。

【设计意图:通过课前调研,教师从学生的问题入手,选取学生熟悉的但又有争议的实例作为研究旋转现象的素材,特别是教师注意选取旋转角度不是360°的实例作为教材补充实例,如道闸等,丰富学生的认知,引发探究的欲望。

】2.借助游戏,明确旋转三要素(1)认识旋转要素——旋转方向。

游戏:我说你猜猜出我喜欢的水果圆盘中的水果你喜欢哪一种?用一句话描述出指针应该怎样走就能转到你喜欢的水果。

①向顺时针方向旋转②旋转90度③指针绕O点顺时针方向旋转90度哪一种描述最容易猜出来,为什么另外两种描述猜不出来?引出旋转三要素小结:一定要说清“指针是绕哪个点旋转”“是向什么方向旋转”“转动了多少度”这几点。

【设计意图:顺时针和逆时针方向是学生第一次正式了解,教师以风车为例,通过让学生观察对比两层风车叶片旋转的区别与联系,使学生感受到现实生活中物体旋转是有方向的,认识顺时针和逆时针方向。

《图形的旋转》教学教案

《图形的旋转》教学教案

《图形的旋转》教学教案《图形的旋转》教学教案(8篇)《图形的旋转》教学教案1教学目标:1.进一步认识图形的旋转,探索图形旋转的特征和性质。

2.通过观察、想象、分析和推理等过程,独立探究、增强空间观念。

3.让学生体会图形变换在生活中的应用,利用图形变换进行图案设计,感受图案带来的美感和数学的应用价值。

教学重点:理解、掌握旋转现象的特征和性质。

教学难点:理解、掌握旋转现象的特征和性质。

教学过程:一、情景导入教师用课件演示:(1)钟表的转动;(2)风车的转动。

提问:观察课件的演示,你看到了什么?学生在交流汇报时可能会说出(1)钟表上的指针和风车都在转动;(2)钟表上的指针和风车都是绕着一点转动;(3)钟表上的指针沿着顺时针方向转动,风车沿着逆时针方向转动。

教师:像钟表上指针和风车都绕着一个点或一个轴转动的这种现象就是旋转。

(板书课题:图形的旋转变换)2.提问:旋转现象有几种情况?生回答后板书。

3.师:在日常生活中你在哪些地方见到过旋转现象?学生自己举例说一说。

二、新课讲授出示课本第83页例题1的钟面。

(1)观察,描述旋转现象。

观察:出示动画(指针从12指向1),请同学们仔细观察指针的旋转过程。

提问:谁能用一句话完整地描述一下刚才的这个旋转过程?(教师引导学生叙述完整)观察:出示动画(指针从1指向3)。

提问:这次指针又是如何旋转的?观察:出示动画(指针从3指向6)。

同桌互相说一说指针又是如何旋转的?提问:如果指针从“6”继续绕点O顺时针旋转180°会指向几呢?(2)教师:根据我们刚才描述的旋转现象,想想看,要想把一个旋转现象描述清楚,应该从哪些方面去说明?小结:要把一个旋转现象描述清楚,不仅要说清楚是什么在旋转,运动起止位置,更重要的是要说清楚旋转围绕的点,方向以及角度。

三、课堂练习完成课本第85页练习二十一的.第1~3题。

四、课堂小结同学们,通过今天这节课的学习活动,我们知道要把一个旋转现象描述清楚,不仅要说清楚是什么在旋转,运动起止位置,更重要的是要说清楚旋转围绕的点,方向以及角度。

《图形的旋转》教案(精选16篇)

《图形的旋转》教案(精选16篇)

《图形的旋转》教案(精选16篇)《图形的旋转》教案篇1平移、旋转和轴对称是最基本的三种变换,一个图形不转变它的外形和大小,从一个位置变换到另一个位置,不外乎经过这三种变换。

这三种变换只要教会同学每一种变换的要素即可。

平移的要素要有三个:1、基本图形——是什么图形发生了平移?2、方向:向什么方向发生了平移;3、距离:平移了多远?旋转的要素要有四个:1、基本图形——是什么图形发生了旋转?2、旋转中心——是绕哪个点旋转的;3、方向:向什么方向发生了旋转,是顺时针还是逆时针?4、角度:旋转了多大的角度?(一般旋转90度和180度)如下图中的图形是绕点O,顺时针依次旋转了90度。

轴对称的要素要有二个:1、基本图形——是以什么图形为基本图形进行变换?2、对称轴——以哪条线为对称轴作变换?无论平移还是旋转运动,我们关注的是其运动过程,也就是说要看这个图形是经过一个什么样的过程变换到另一个位置的。

因此,在教学中要让同学充分体会到变换中的要素,一是要借助于操作将思索与操作结合起来,如:多让同学思索,操作并记录学习过程,然后汇报沟通总结阅历。

在操作时给同学充分的时间,让同学根据“想一想、做一做、折一折、画一画、剪一剪,在想一想”的过程进行讨论,在进行小组沟通活动,老师进行随堂观看指导有困难的同学,最终听同学自己小结的时候,留意同学用语言来表达时的完整性,准时订正错误的说法。

从而使同学的空间想象力和思维力量得到充分的熬炼。

二要借助于方格纸进行操作和学习。

方格纸呈现了平行和垂直的网络线,即可以看出变换的方向,又可以看出变换的角度和距离,直观便利,便于同学理解图中的各种关系。

《图形的旋转》教案篇2各位领导、老师:大家午安,今日我所说课的内容是《图形的旋转》。

这一课我将从三个方面说起,首先是教材,其次是教法与学法,最终是重要的教学过程。

首先我来说教材,教材我分了两个环节,第一个环节是:教材分析与教学目标。

图形的旋转:选自北师大版学校数学四班级上册,第四单元《图形的变换》。

《图形的旋转》教案(15篇)

《图形的旋转》教案(15篇)

《图形的旋转》教案(15篇)《图形的旋转》教案1[课时]:1节课[教学内容]:复制粘贴和旋转功能的使用[教学目标]:1、使同学熟练掌握复制粘贴和旋转功能的使用方法。

2、使同学养成在实际操作中的动手动脑和小组合作的学习习惯。

3、培养同学对电脑绘图的兴趣。

[教学重点]:复制、旋转的操作使用[教学难点]:在实际绘图中的复制的多种用法[教学准备]:多媒体教室、远志多媒体教室广播软件[教学过程]:一、导入播放《欢乐的小鸡》图师:在这图里你看到了什么?生回答师:同学们,观察得真仔细啊!这幅图里的小鸡小花不是都要我们一笔一笔的画呢?其实我们只要画好其中的一朵花,一只鸡就可以利用绘图软件中的一个新功能来实现这幅画了,今天老师就来和大家一起学习新知识。

二、复制功能的学习。

师:要完成那么多的小花的绘制,我们得先画出一朵花。

活动一:下面请大家选好前景色,用工具栏中的'“椭圆”、“刷子”等来花小花。

1、教师先示范,同学动手一起画一朵花。

(可参考课本第20页的方法,画出一朵花)2、单击“图像”菜单,检查菜单中“不透明处置”前是否有打钩,有的话把钩去掉。

3、单击工具箱中“选定”工具,在小花周围拖动鼠标把要复制的小花围出。

4、选“编辑”菜单的“复制”,再点“粘贴”。

5、在出现新的小花选区上按住鼠标左键就可以把小花拖到其他位置,这样就复制了一朵小花了。

6、教学新的复制方法:选择要复制的图像后按CTRL键同时用鼠标脱动也可以复制。

让同学动手,教师指导,让好的同学进行演示。

三、画小鸡大家庭师:在草地上有许多的小鸡,大家能用刚才学习的知识进行绘制吗?但是如何绘制有大有小的呢?活动二:1、请同学们先用学的知识进行操作,画出1只小鸡。

2、然后复制一只小鸡后用选定工具再将一只小鸡选中,将鼠标指针移到“选定”框四周图像大小调整柄上,拖动鼠标后你发现什么?(变大变小)3你们试一试。

完成练习后,老师根据实际中出现的问题进行讲解并请一些操作较好的同学进行讲解。

《图形的旋转》教案设计

《图形的旋转》教案设计

《图形的旋转》教案设计《图形的旋转》教案设计「篇一」【教学内容】义务教育课程标准北师大版试验教材六年级上册第三单元第34页“图形的变换”。

【教学目标】1、通过观察、操作、想象,经历一个简单图形经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。

2、借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的变换过程。

3、利用七巧板在方格纸上变换各种图形,进一步提高学生的想象能力。

【教学重、难点】通过观察、操作活动,说出图形的平移或旋转的变换过程。

【教具、学具准备】三角尺、直尺、彩笔、圆规、每人准备一张方格纸,4张大小相等的等腰直角三角形(硬纸)、一副七巧板【个性化修改】难点:1、在于学生对轴对称的理解。

轴对称是图形变换的一种方法。

2、学生对于旋转的度数的把握。

【教学设计】教学过程一、创设情境师:在以前的学习中我们已初步认识了平移和旋转,下面请同学们用一个三角形在方格纸上边摆边说,说说什么是平移、什么是旋转。

学生在自己的方格纸上操作交流,然后请几位学生展示。

师:同学们我们在分析图形的变换时,不仅要说出它的平移或旋转情况,还要说清楚是怎样平移或旋转的,这样就能清楚地知道它的变换过程。

师:同学们的交流很好,下面请同桌的两个同学互相合作,用两个三角形自己设计一个图形,然后进行变换,并说一说它的变换过程。

(学生进行自己的设计与操作,师巡视指导)师:同学们做得很好。

下面请几个同学上来演示他们设计的图形,并说一说它是怎样变换图形的。

如果是经过旋转组成的图案,每旋转一次,都应说一说是什么图形绕者哪一点旋转的?二、尝试练习:师:接下来,请同学们观察下图,边观察边思考,并拿出课前准备好的方格纸和三角形,分别给四个三角形标上A、B、C、D,自己摆一摆,移一移,转一转,进行图形的变换,然后按照下面老师提出的四个问题,与同桌同学进行交流。

(1)四个三角形A、B、C、D如何变换得到“风车”图形?(2)“风车”图形中的四个三角形如何变换得到长方形?(3)长方形中的四个三角形如何变换得到正方形?(4)正方形中的四个三角形如何变换回到最初的图形?学生自己操作,同桌交流图形变换的方法,教师巡视指导。

图形的旋转教案(详案)

图形的旋转教案(详案)

图形的旋转教案(详案)第一章:图形的旋转概念1.1 图形旋转的定义引导学生理解图形旋转的概念,即图形绕着某一点转动一定角度的图形变换。

举例说明生活中的旋转现象,如旋转门、风车等。

1.2 旋转中心、旋转方向和旋转角度介绍旋转中心的概念,即图形旋转的轴心。

讲解旋转方向的概念,如顺时针旋转和逆时针旋转。

引导学生理解旋转角度的意义,即图形旋转的大小。

第二章:图形旋转的性质2.1 旋转不改变图形的大小和形状通过实例演示,让学生理解旋转不会改变图形的大小和形状。

引导学生观察旋转前后的图形,发现它们的边长和角度保持不变。

2.2 旋转后图形对应点的关系讲解旋转后图形对应点的关系,即旋转前后对应点与旋转中心连线的夹角相等,且长度不变。

引导学生通过实际操作,验证对应点的关系。

第三章:图形旋转的计算3.1 旋转角度的计算介绍如何计算图形旋转的角度,如通过旋转前后对应点的位置关系来确定旋转角度。

举例讲解旋转角度的计算方法。

3.2 旋转变换矩阵引入旋转变换矩阵的概念,讲解旋转变换矩阵的构成和作用。

通过实例,让学生理解如何利用旋转变换矩阵进行图形的旋转。

第四章:图形旋转的应用4.1 二维图形的旋转讲解如何在二维平面上进行图形的旋转,如旋转直线、矩形、三角形等。

引导学生通过实际操作,掌握二维图形旋转的方法。

4.2 三维图形的旋转介绍如何在三维空间中进行图形的旋转,如旋转立方体、球体等。

讲解三维图形旋转的原理和方法。

第五章:旋转在实际应用中的举例5.1 旋转在几何绘制中的应用举例说明旋转在几何绘制中的应用,如通过旋转来绘制特定角度的三角形、平行四边形等。

引导学生掌握旋转在几何绘制中的技巧。

5.2 旋转在艺术设计中的应用讲解旋转在艺术设计中的应用,如旋转对称、旋转排列等。

引导学生欣赏和分析具有旋转对称性的艺术作品。

第六章:旋转与坐标系6.1 坐标系中的旋转讲解在直角坐标系中进行图形旋转的方法,包括绕x轴、y轴和原点的旋转。

引导学生理解坐标系中旋转对点的影响,如坐标点的变化规律。

图形的旋转教案(详案)

图形的旋转教案(详案)

图形的旋转教案(详案)第一章:图形的旋转概念介绍1.1 图形旋转的定义解释图形旋转的概念,即图形在平面上绕着一个固定点进行旋转。

强调旋转中心的重要性,即图形绕其旋转的点。

1.2 旋转方向和角度介绍旋转的方向,如顺时针和逆时针。

解释旋转角度的概念,即图形旋转的大小。

1.3 旋转对图形的影响说明旋转对图形的大小、形状和位置的影响。

强调旋转不改变图形的大小和形状,只改变位置。

第二章:图形的旋转规律2.1 旋转角度的计算介绍如何计算图形旋转的角度,如360度、90度等。

强调旋转角度与图形大小和形状的关系。

2.2 旋转的倍数规律解释图形旋转的倍数规律,即图形每旋转一定的角度,其形状和位置会发生重复。

强调旋转倍数与图形大小和形状的关系。

2.3 旋转对称性介绍旋转对称性的概念,即图形在旋转一定角度后,能够与原图形重合。

强调旋转对称性与图形大小和形状的关系。

第三章:图形的旋转实践3.1 旋转图形的绘制指导学生如何绘制旋转后的图形,如将一个正方形绕其中心旋转90度。

强调绘制旋转图形时注意旋转中心和旋转角度。

3.2 旋转图形的变换介绍如何将一个图形通过旋转进行变换,如将一个矩形绕其顶点旋转45度。

强调变换过程中图形的大小和形状保持不变。

3.3 旋转图形的组合指导学生如何将多个图形通过旋转进行组合,如将两个圆形和一个小正方形组合成一个旋转后的图形。

强调组合过程中图形的大小和形状保持不变。

第四章:图形的旋转应用4.1 旋转在设计中的应用介绍图形旋转在设计中的应用,如旋转文字、图案等。

强调旋转在设计中创造动态感和视觉效果的作用。

4.2 旋转在建筑中的应用介绍图形旋转在建筑中的应用,如旋转楼梯、门等。

强调旋转在建筑中创造独特形态和空间感的作用。

4.3 旋转在其他领域的应用介绍图形旋转在其他领域的应用,如旋转机械部件、艺术作品等。

强调旋转在不同领域中的多样性和创造性。

第五章:图形的旋转拓展5.1 旋转与反射的比较比较旋转和反射的概念和效果,如旋转是将图形绕一个点旋转,而反射是将图形沿一条线反射。

图形的旋转(优质课教案)

图形的旋转(优质课教案)

图形的旋转(优质课教案)一、教学目标1.了解图形的旋转操作及其基本概念;2.能够应用所学知识,解决与图形旋转相关的问题;3.提高学生观察、思考和推理能力。

二、教学准备1.教师准备:–讲义和教学材料;–计算器、白板和彩色粉笔。

2.学生准备:–学习材料;–计算器。

三、教学过程1. 输入引导•引入:通过展示一个图形的变换前后的图片,引出本节课要学的内容,即图形的旋转操作。

2. 知识讲解•讲解:通过示意图和实际操作,向学生讲解关于图形旋转的基本概念及其相关知识:–旋转中心:确定旋转中心的作用;–旋转角度:解释旋转角度的含义;–旋转方向:说明旋转方向的规律。

3. 案例分析•分组讨论:将学生分为小组,给予学生一些具体的案例,要求学生在小组内进行讨论并提出解决方案。

•展示结果:每个小组选择代表性的解决方案进行展示,让学生互相学习和交流。

4. 练习探究•个人练习:让学生进行一些基本的练习题,巩固所学的知识点。

•探究任务:设置一些探究任务,要求学生在实际问题中应用图形的旋转操作,解决问题。

5. 总结归纳•总结概念:让学生回顾所学的内容,总结图形的旋转操作的基本概念及其应用。

•归纳方法:帮助学生归纳不同旋转中心、角度和方向对图形的影响。

6. 拓展应用•拓展任务:设置一些拓展任务,要求学生在实际问题中运用图形的旋转操作,拓宽应用范围。

四、教学反思本节课以图形的旋转操作为主题,通过引导学生分析图形的变换前后的关系,让学生理解图形的旋转概念。

通过案例分析和练习探究,提高学生解决问题的能力和思维灵活性。

通过总结归纳和拓展应用,帮助学生深化对图形旋转操作的理解,并推动学生应用所学知识解决实际问题。

同时,教师应注意引导学生形成良好的解题思路和方法,帮助学生培养观察和推理能力。

《图形的旋转》教案

《图形的旋转》教案

《图形的旋转》教案1教学目标:1、了解旋转及其旋转中心和旋转角等相关概念.2、理解旋转的基本性质并利用性质解决相关问题.教学重难点:重点:旋转及对应点的有关概念及其应用.难点:从活生生的数学中抽象出概念.教学过程:(一)学生预习教师导学观察下列图片:(1)由平面图形转动而产生的奇妙图案;(2)汽车上的雨刮器.●这些情景中的转动现象,有什么共同特征?(二)学生探究教师引领1、建立旋转的概念:试一试,请同学们尝试用自己的语言来描述以下旋转.问题:单摆上小球的转动由位置A 转到B ,它绕着哪一个点转动?沿着什么方向(顺时针或逆时针)?转动了多少角度?抽象出点的旋转B (图1)图1:在同一平面内,点A 绕着定点O 旋转某一角度得到点B ;图2:在同一平面内,线段AB 绕着定点O 旋转某一角度得到线段CD ;图3:在同一平面内,△ABC 绕着定点O 旋转某一角度得到△DEF .旋转定义:在平面内,将一个图形绕一个定点按某个方向转动一个角度,图形的这种变化称为旋转,这个定点称为旋转中心,转动的角度称为旋转角.对应点到旋转中心的距离相等.旋转的三个要素:旋转中心、旋转角、旋转方向. 思考:①同学们观察图3,点A ,线段AB ,∠ABC 分别转到了什么位置?②请找出图3中其他的对应点、对应线段、对应角,并指出旋转中心和旋转角度. (三)学生展示教师激励:例1如图4-20,如果把钟表的指针看做四边形AOBC ,它绕O 点按顺时针方向旋转得到四边形DOEF .在这个旋转过程中:(1)写出它的旋转中心和旋转角;(2)经过旋转,点A 、C ,B 分别到达什么位置?抽象出三角形的旋转 ·O AB C O F DE(图3) · O AB CD(图2)抽象出线的旋转(3)AO与DO的长有什么关系?你还能在图4-20中找出相等的线段吗?说明理由;(4)∠AOD与∠BOE有什么大小关系?你还能在图4-20中找出相等的角吗?说明理由.解:(1)旋转中心是点O,旋转角是∠AOD.(2)点A,C,B分别旋转到点D,F,E.(3)AO=DO,BO=EO,AC=DF,CB=FE.(4)∠AOD=∠BOE,∠A=∠D,∠C=∠F,∠B=∠E,∠AOB=∠DOE.(四)学生归纳教师提炼:1、从我们看到的旋转现象,你认为旋转的主要决定因素是什么?2、在图形的旋转过程中,哪些发生了改变?哪些没有发生改变?3、在图形的旋转过程中,图形上各个点旋转的角度有什么关系吗?旋转的基本性质:一般地,我们可以得到:一个图形和它经过旋转所得到的图形中,(1)旋转不改变图形的大小,对应边相等,对应角相等.(2)图形上的每一点都绕旋转中心沿相同方向转动了旋转角;(3)任意一对对应点与旋转中心的连线所成的角度都等于旋转角.《图形的旋转》教案2教学目标:知识与技能:1.简单平面图形旋转后的图形的作法.2.确定一个三角形旋转后的位置的条件.过程与方法:1.经历对具有旋转特征的图形进行观察、分析、画图和动手操作等过程,掌握画图技能.2.能够按要求作出简单平面图形旋转后的图形.情感、态度与价值观:1.通过画图,进一步培养学生的动手操作能力.2.在对具有旋转特征的图形进行观察、分析、画图过程中,进一步发展学生的审美观念.教学重、难点:教学重点:简单平面图形旋转后的图形的作法.教学难点:简单平面图形旋转后的图形的作法.教学过程:Ⅰ.巧设情景问题,引入课题[师]上节课我们探讨了生活中的旋转,那什么样的运动是旋转呢?[生]在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.旋转不改变图形的大小和形状.[师]很好,旋转有什么性质呢?[生]旋转前后两个图形对应点到旋转中心的距离相等;任意一对对应点与旋转中心的连线所组成的角都是旋转角,旋转角彼此相等.[师]很好,大家来看一面小旗子(出示小旗子,然后一边演示一边叙述),把这面小旗子绕旗杆底端旋转90°后,这时小旗子的位置发生了变化,形成了新的图案,你能把这时的图案画出来吗?如下图,在方格纸上作出“小旗子”绕O点按顺时针方向旋转90°后的图案,并简述理由.然后在教师发的纸上画图(教师给每位同学发一张如上图所示的方格纸)(学生观察、分析、动手画图).[师]同学们画好了吗?哪位同学给大家说说你如何画出来的?[生]我在原图上找了四个点,即O点、A点、B点、C点,如图(教师把该生所画的图在投影上放影)这四个点可以是能表示这面小旗子的关键点.因为旋转前后两个图形的对应点到旋转中心的距离相等,对应点与旋转中心的连线所组成的旋转角彼此相等,所以根据已知:要把这面小旗绕O点按顺时针旋转90°.我在方格中找到点A、B、C的对应点A′、B′、C′,然后连接,就得到了所求作的图形.[师]这位同学描述得很好,作出的图案也很漂亮.同学们在作图过程中,基本掌握了作图的一个要点:找图形的关键点,这很让老师为大家高兴.这面小旗子是结构简单的平面图形,在方格纸上大家能画出它绕点旋转后的图形,那么在没有方格纸或旋转角不是特殊角的情况下,能否也画出简单平面图形旋转后的图形呢?这节课我们就来研究:简单的旋转作图.Ⅱ.讲授新课[师]我们通过一例题来说明简单图形旋转后的图形的作法如图,△ABC绕O点旋转后,顶点A的对应点为点D,试确定顶点B、C对应点的位置,以及旋转后的三角形.分析:一般作图题,在分析如何求作时,都要先假设已经把所求作的图形作出来,然后再根据性质,确定如何操作.假设顶点B、C的对应点分别为点E、点F,则∠BOE、∠COF、∠AOD都是旋转角.△DEF就是△ABC绕点O旋转后的三角形.根据旋转的性质知道:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,即旋转角相等,对应点到旋转中心的距离相等,则∠BOE=∠COF=∠AOD,OE=OB,OF=OC,这样即可求作出旋转后的图形.[师]通过分析知道如何作出△DEF,现在大家拿出直尺和圆规,我们共同来把这一旋转后的图形作出来,要注意把痕迹保留下来.(教师一边叙述,板书作法,一边强调正确使用直尺、圆规,同时作图;学生作图)解:(1)连接OA、OD、OB、OC.(2)如下图,分别以OB、OC为一边作∠BOE、∠COF,使得∠BOE=∠COF=∠AOD.(3)分别在射线OE、OF上截取OE=OB、OF=OC.(4)连接EF、ED、FD.△DEF,就是△ABC绕O点旋转后的图形.[师]同学们画得很好,大家想一想,分组讨论:本题还有没有其他作法,可以作出△ABC绕O点旋转后的图形△DEF吗?(同学们讨论、归纳).[生甲]可以先作出点B的对应点E,连结DE,然后以点D、E为圆心,分别以AC、BC 为半径画弧,两弧交于点F,连结DF、EF,则△DEF就是△ABC绕点O旋转后的图形.[生乙]也可以先作出点C的对应点F,然后连结DF.因为△ABC与△DEF全等,所以既可以用两边夹角,也可以用两角夹边,找到点B的对应点E,即△DEF.[师]同学们讨论得非常精彩.方法多种多样,很好.接下来,大家来想一想在旋转过程中,确定一个三角形旋转后的位置,除需要此三角形原来的位置外,还需要什么条件?[生丙]还需要知道绕哪个点旋转,旋转的角度是多少?[生丁]就是要知道旋转中心和旋转角.[师]很好,由此我们可以知道,要确定一个三角形旋转后的位置的条件为:(1)三角形原来的位置.(2)旋转中心.(3)旋转角.这三个条件缺一不可.只有这三个条件都具备,我们才能准确地找到一个三角形绕点旋转后的位置,进而作出它旋转后的图形.下面我们来进行更多例题进一步熟悉简单平面图形旋转后的图形的作法.例2 如图4-21,已知线段AB和线段AB所在直线外的一点O,画出线段AB绕点O按逆时针方向旋转45°后的线段.解:(1)连接OA,OB;(2)以OA为一边在OA边的下方画∠AOC=45°,并在OC上截取OM=OA;(3)以OB为一边在OB边的左侧画∠BOD=45°,并在OD上截取ON=OB;(4)连接MN.(如图4-22)线段MN就是线段AB绕点O按逆时针方向旋转45°后的线段.例3 如图4-23△ABC绕C点旋转后,顶点A的对应点为点D.试画出顶点B的对应位置,以及旋转后的三角形.分析:因为点C为旋转中心,点A与点D是对应点,所以∠ACD是旋转角;.假设顶点B的对应点为E,则∠BCE=∠ACD,且CE=CB.解:(1)连接CD;(2)以CB为一边作∠BCF,使得∠BCF=∠ACD;(3)在射线CF上截取CE=CB;(4)连接DE.(如图4-24)△DEC就是△ABC绕O点旋转后的图形.你还能用其它方法作出例3中的△DEC吗?Ⅲ.课堂练习在下图中,将大写字母N绕它右下侧的顶点按顺时针方向旋转90°,作出旋转后的图案.解:如下图,先确定字母N的四个端点绕它右下侧的顶点按顺时针方向旋转90°后的位置,然后连线.Ⅳ.课时小结本节课我们通过作平面图形旋转后的图形,进一步理解了旋转的性质,并且还知道要确定一个三角形旋转后的位置,需要有:①此三角形原来的位置.②旋转中心.③旋转角等三个条件.在作图时,要正确运用直尺和圆规,进而准确作出旋转后的图形.要注意语言的表达.《图形的旋转》教案3教学目标:1、能够按照要求做出简单的图形旋转后的图形.2、继续利用旋转的性质解决相关问题.教学重难点:1、旋转及对应点的有关概念及其应用.2、利用旋转的性质解决相关问题.教学过程:一.新课引入1.如图,把一块砖ABCD直立于地面上,然后将其轻轻推倒,在这个过程中A点保持不动,四边形ABCD旋转到AD′C′B′位置.(1)指出在这个过程中的旋转中心,并说出旋转角度是多大?(2)指出图中的对应线段.C’’分析:因为四边形AD′C′B′是由四边形ABCD旋转得到的,A保持不动,因此A是旋转中心,又因为AB、AD′在同一平面上,且AD垂直于地面,对应线段AB与AB′成90°,因此旋转角度是90°;(2)中由于点A、B、C、D的对应点分别是A、B′、C′、D′,找出了对应点,对应线段也就不难找了.答案:(1)旋转中心是A,旋转角度是90°.(2)对应线段分别是:CD与C′D′,AB与AB′,AD与AB′,BC与B′C′.方法提炼:解答这类题目,应该看哪个点不动,在旋转过程中,图形中的点都动,哪个点不动,哪个点就是旋转中心,只要找出了对应点,对应线段自然可得,抓住“动”与“不动”.难点:运用旋转的特征解决一些实际问题,培养分析问题和解决问题的能力,突破难点的途径应多动手操作,充分认识“图形在旋转过程中每一点与该对应点到旋转中心的距离都相等”这一性质去理解和运用旋转的其它性质.2.如图,正方形ABCD中,E是正方形内一点,把△ADE绕点A按逆时针方向旋转90°,得到旋转后的三角形并回答:(1)图中有哪些相等的线段和相等的角;(2)哪两个三角形的形状、大小都一样.在这个运动'BE =.相等的角有:'''BAE DAE BA E EDA E E ∠=∠∠=∠∠=∠,,(除直角外).(2) △ADE 与△ABE ′的形状和大小都一样.方法提炼:解答这类题目,应考虑旋转的特征,是绕什么点旋转的,图形中的每个点都旋转相同的角度,对应线段相等,对应角相等,关键是是否旋转.二.例题解析例4 画一个腰长等于3的等腰直角三角形ABC ,取一个锐角为45°的三角尺,把三角尺的直角顶点放在Rt △ABC 的斜边BC 的中点O 处,并使三角尺的一条直角边经过点A ,另一条直角边经过点B (图4-27(1)).将三角尺绕点O 按顺时针方向旋转一个角度,记三角尺的两腰A B ,AC 的交点分别为E ,F (图4-27(2)).在三角尺按图4-27所示的方式绕点O旋转的过程中,线段AE 与CF 的长度有什么关系?OE 与OF 的长度有什么关系?证明你的结论.解:AE =CF ,OE =OF .证明如下:连接AO ,在△AEO 和△CFO 中,∵△ABC 是等腰直角三角形,AO ⊥BC ,垂足为点O ,∴∠EAO =∠C =45°,AO =OC ,∠EOA =∠COF =90°-∠AOF ,∴△AEO ≌△CFO (ASA )∴AE =CF ,OE =OF .在例4中,△COF 能否由△AOE 旋转得到?其旋转中心是哪个点?旋转角是多少度? 解:△COF 能由△AOE 旋转得到,其旋转中心是点O ,旋转角是90°.三.课堂小结本节课旨在解决有关旋转的问题,学会应用旋转知识解决问题.。

《图形的旋转》教案(9篇)

《图形的旋转》教案(9篇)

《图形的旋转》教案(9篇)一、教学目标1、感知图形的旋转,知道什么是图形的旋转、旋转中心和旋转角,会指出实例中的旋转中心和旋转角。

2、经受用硬纸板画旋转后图形的过程,加深对图形旋转的感知,进展空间观念。

二、教学重点和难点1、重点:图形的旋转概念。

2、难点:图形的旋转概念。

三、教学过程师:在日常生活中我们常常能看到各种漂亮的图案,这些漂亮的图案是怎么设计出来的?让我们认真来看一看。

(师出示下面的图案)(图在七年级下册P27)师:(指图案)大家认真看一看,这个图案是怎么设计的?生:……(让几名同学发表看法)师:(指准图案)这是一个鸽子,把这个鸽子向右平移,得到这个鸽子,再向右平移得到这个鸽子,再向右平移得到这个鸽子,这样就得到了这一排鸽子;同样,我们把这个鸽子向下平移,得到这个鸽子,再向右平移得到这个鸽子,这样平移下去,又得到了这一排鸽子;同样方法可以得到第三排鸽子。

可见这个图案是用一个鸽子经过平移得到的(边讲边板书:平移)。

师:我们再来看一个图案。

(师出示下面的图案)(图在八年级上册P48)师:(指图案)大家看一看,这个图案又是怎么设计的?生:……(让几名同学发表看法)师:这个图案可以看成是把(指准)这个图平移到这里,再平移到这里,再平移到这里,最终形成了这个图案。

这是同学们都看到的,但这个图案的形成还可以换一种方式来看,怎么换一种方式来看?(稍停)师:(指准)作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形;再作这个图关于这条直线的轴对称图形,(指准)得到这个图形。

这样作下去,就形成了这个图案。

可见这个图案是(指准)这个图经过反复作轴对称图形而形成的(边讲边板书:轴对称)。

师:下面我们再来看一个图案。

四、总结《图形的旋转》教案篇二教学分析:在生活中,有各种漂亮的图案,其中有许多图案是由简洁的图形经过平移或旋转得到的。

本活动所展现的正是简洁图形经过旋转形成简单图案的过程。

2023年《图形的旋转》教学设计(精选11篇)

2023年《图形的旋转》教学设计(精选11篇)

2023年《图形的旋转》教学设计(精选11篇)《图形的旋转》教学设计篇1教学目标1、使学生通过观察、操作等活动,认识图形的旋转,能在方格纸上将简单的图形旋转90°。

2、使学生经历从旋转的角度欣赏和设计图案的过程,体验旋转的应用价值,发展初步的推理能力和空间观念。

3、使学生在认识旋转的过程中,感受与他人合作的乐趣,获得学习成功的愉悦体验,增强对图形变换的兴趣。

课时安排1课时教学重点使学生通过观察、操作等活动,认识图形的旋转,能在方格纸上将简单的图形旋转90°。

教学难点使学生通过观察、操作等活动,认识图形的旋转,能在方格纸上将简单的图形旋转90°。

教学过程1、导入新课出示例2:下面中的转杆的打开和关闭分别是怎样运动的?它们的运动有什么相同点和不同点?你从中能读出哪些数学信息?讲授新课师生交流数学信息:①转杆的打开和关闭都是绕着一个点旋转。

②转杆的打开和关闭旋转的方向正好相反。

教师强调:与时针旋转方向相同的是顺时针旋转,相反的逆时针旋转。

提问:转杆的打开和关闭,分别是绕哪个点按什么方向旋转的?旋转了多少度?生观察图并交流观察结果。

师生交流后小结:①转杆的打开是绕o顺时针旋转90°。

②转杆的打开是绕o逆时针旋转90°2、重难点精讲出示例3:你会把方格纸上的三角形绕点A逆时针旋转90°吗?你能在方格图上画出旋转后的图形吗?先画一画,再与同学交流。

生尝试观察后师生交流:旋转直角三角形时,先把直角的两条边分别逆时针旋转90°再连接两条边的顶点,得到旋转后的三角形。

旋转前后的三角形,只是位置发生了变化,性质和大小都没有改变。

归纳小结通过刚才的探究,你能说说如何旋转直角三角形,和旋转图形时要注意的问题?师生交流后小结:旋转直角三角形时,①先把直角的两条边分别逆时针旋转90°再连接两条边的顶点,得到旋转后的三角形。

②旋转前后的三角形,只是位置发生了变化,性质和大小都没有改变。

《图形的旋转》数学教案设计

《图形的旋转》数学教案设计

《图形的旋转》數學教案設計标题:《图形的旋转》数学教案设计一、教学目标:1. 知识与技能:- 了解并掌握图形旋转的概念。

- 学会根据指定的角度和中心点进行图形的旋转。

2. 过程与方法:- 通过观察、比较和操作,体验图形旋转的过程。

- 培养学生的空间想象能力和逻辑思维能力。

3. 情感态度价值观:- 提高学生对几何知识的兴趣,增强学习的积极性和主动性。

二、教学重难点:重点:理解图形旋转的基本概念,掌握图形旋转的方法。

难点:理解和掌握旋转中心、旋转方向和旋转角度这三个要素在图形旋转中的作用。

三、教学过程:1. 导入新课教师可以利用多媒体展示一些动态的旋转动画,如风车转动、摩天轮旋转等,引导学生观察这些现象的特点,从而引出本节课的主题——图形的旋转。

2. 新课讲解(1) 定义:教师解释图形旋转的概念,即一个图形绕着某个点旋转一定的角度,这个点就叫做旋转中心。

(2) 公式:图形旋转后的坐标可以通过原坐标乘以对应的旋转矩阵来得到。

(3) 实例:教师选取一些简单的图形(如正方形、三角形等),让学生尝试按照指定的旋转中心和旋转角度进行旋转,并验证其正确性。

3. 练习与应用设计一些练习题,包括基础题和提高题,让学生独立完成。

基础题主要是让同学们熟练掌握图形旋转的基本操作,提高题则需要他们运用所学的知识解决一些实际问题。

4. 小结与反馈教师和学生一起回顾本节课的内容,强调图形旋转的关键要点,并解答学生在课堂上提出的问题。

四、作业布置:布置一些相关的家庭作业,例如设计一个简单的图案,然后让它围绕一个固定的点进行旋转,观察并记录旋转前后的变化。

五、教学反思:在教学过程中,教师要关注学生的反应,及时调整教学策略,确保每一个学生都能理解和掌握图形旋转的知识。

同时,也要注重培养学生的自主学习能力和团队协作能力,让他们在解决问题的过程中不断提升自己的综合素质。

图形的旋转教案(详案)

图形的旋转教案(详案)

图形的旋转教案(详案)章节一:引言教学目标:1. 让学生了解图形的旋转概念。

2. 培养学生对图形旋转的兴趣。

教学内容:1. 介绍图形旋转的定义。

2. 通过实际操作,让学生感受图形旋转的过程。

教学方法:1. 讲授法:讲解图形旋转的定义和特点。

2. 演示法:通过实物演示,让学生直观地了解图形旋转的过程。

教学步骤:1. 引入新课:提问学生对图形的认识,引导学生思考图形可以发生哪些变化。

2. 讲解图形旋转的定义:讲解图形旋转的概念,让学生理解图形旋转的意义。

3. 演示图形旋转:通过实物演示,让学生直观地感受图形旋转的过程。

4. 学生实践:让学生自己动手操作,尝试旋转图形。

5. 总结:回顾本节课的内容,强调图形旋转的特点。

章节二:图形旋转的规律教学目标:1. 让学生了解图形旋转的规律。

2. 培养学生运用规律解决问题的能力。

教学内容:1. 介绍图形旋转的规律。

2. 通过实际操作,让学生感受图形旋转规律的应用。

教学方法:1. 讲授法:讲解图形旋转的规律。

2. 演示法:通过实物演示,让学生直观地了解图形旋转规律的应用。

教学步骤:1. 复习导入:回顾上一节课的内容,引导学生思考图形旋转的规律。

2. 讲解图形旋转的规律:讲解图形旋转的规律,让学生理解并掌握。

3. 演示图形旋转规律的应用:通过实物演示,让学生直观地感受图形旋转规律的应用。

4. 学生实践:让学生自己动手操作,尝试运用图形旋转规律解决问题。

5. 总结:回顾本节课的内容,强调图形旋转规律的重要性。

章节三:图形旋转的计算教学目标:1. 让学生了解图形旋转的计算方法。

2. 培养学生运用计算方法解决问题的能力。

教学内容:1. 介绍图形旋转的计算方法。

2. 通过实际操作,让学生感受图形旋转计算的过程。

教学方法:1. 讲授法:讲解图形旋转的计算方法。

2. 演示法:通过实物演示,让学生直观地了解图形旋转计算的过程。

教学步骤:1. 复习导入:回顾前两节课的内容,引导学生思考图形旋转的计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《图形的旋转》教学设计
一、中考中的地位和作用图形变换是初中阶段数学知识体系的重要组成部分,在中考中占有重要地位。

图形的平移、翻折、旋转经常出现在选择题、画图题和综合题中,在选择题中考察学生对于性质的掌握,在综合题中,考察学生对于知识的应用能力;因此,我设计了本节中考复习专题,主要目标是帮学生夯实基础知识并结合中考题型进行训练,提高灵活解决问题的能力。

二、教学目标:根据本节课教学内容的特点及学生的实际情况,将本节课教学目标确定如下:
1、知识与技能:掌握利用图形旋转定义和性质,并能有效利用图形旋转变换构建等量关系解决较复杂的数学问题。

2、过程与方法:通过探索发现,掌握几何证明题的解题技巧。

对所学的数学方法的归纳总结,养成复习归纳的好习惯。

3、情感态度:学生在经历了探究归纳等数学活动中,体验数学的具体、生动、灵活,调动学生学习数学的主动性。

三、教学重点、难点
在中考复习中,为了使学生掌握一定的解题技巧,所以设计以下的重点难点
重点:掌握图形旋转定义和性质,探索并掌握图形旋转变换的条件难点:运用图形的旋转变换解决问题。

四、学情分析
现在已经进入了初三阶段,在前面的学习中,学生对基础知识已经掌握,基本技能也得到了提高,并形成了一定的知识体系。

现阶
段,要将学生掌握的知识转化整理,重新组织,帮学生掌握解题技能,形成一定的解题能力。

所以在设计本节课时,考虑要贴近中
考,指导学生的解题技巧。

在学习过程中,可能有一部分学生探究活动受阻,教师要适时加以点拨和指导。

要引起学生的兴趣,经过练习、总结形成能力,需要学生主动参与,勤于动手,动脑。

教师应该激发学生的学习积极性,向学生提供充分的从事数学活动的机会,让他们在自主学习和合作的过程中真正理解和掌握基本的数学知识与技能以及数学思想和方法,获得广泛的数学活动经验,真正的做到寓教于乐。

所以我设计由学生代替教师到黑板上讲解,使学生充分的参与到课堂教学中,学生成为课堂的主导者。

五、教学方法根据学生的特点,我把本节课的教法设计为七个环节,命名为“七环节教学法”
六.教学过程
(一)导学定向由于本节课是要探究旋转的定义和性质,为了承上启下,所以我设计这样的导言,使学生明确本节所要讲的内容,创设情景,旨在引出课题。

(二)新课引领因为本节课是新授课,基础知识要梳理清楚,所以我设计了通过列举许多旋转的实例,然后把实际问题转化为数学问题,即把实际问题抽象成为点的旋转,线段的旋转以及三角形的旋转。

通过多媒体的演示,形象直观地揭示了旋转的本质特征,学生很自然地得出旋转的概念,接着我对概念又进行了再认识,总结出旋转的三要素,这样对旋转的定义的认识更一步加深了。

(三)探索质疑在这一环节上,我设计了探究,主要借助多媒体,反复演示图形的旋转,让学生观察、分析、探讨,然后通过解决我设置的三个问题,加之学生已掌握旋转的定义的基础上,总结出旋转的三条性质,对性质在解题中的应用,又进一步强调性质一是两个三角形全等,性质二、三是证明线段的相等,角相等以及计算的一种常用方法。

学生通过观察,比较,分析,综合,猜想等活动,运用已有的数学知识
与方法,经过推理与计算,得到结论。

体现学生自主探究,发现质疑的
教学理念。

由三位学生代替教师到黑板上讲解,使学生的能力得到提
高。

(四)精讲点拨
在本环节中,引导学生在已得到的结论中进一步的提炼,升华,
概括。

使得学生深层次的理解。

(五)练习巩固
巩固,消化规律,加深理解。

设计的练习题有一定的梯度,学生在
解决时会有一定的难度,教师及时给点拨指导,借助几何画板,使学
生更好的掌握规律并学会应用。

(请学生在黑板上讲解)
(六)拓展提高为了贴近中考,使学生尽快适应中考题型。

本题的
难度进一步提高,考察学生的能力,也使学生了解中考的题型,尽快的
适应,并应用规律去解决问题。

教师在本过程中对学生有针对性的讲解,以帮助较差的学生进一步理解。

在本环节应用规律,使学生形成一种思维方式,便于学生在解决这类问题时,有一定的解题技巧。

(七)评改小结
点明本节课的主要内容,加深学生的理解掌握。

使学生对本节课有一个全面的回顾与思考,从中抓住本节课的主旨
与重点,即充分调动学生的积极性,从而达到培养学生归纳概括能力和
语言表达能力。

教师加以提炼总结。

通过七个环节,使学生的能力一步一步的提高,逐步加深对知识的
理解和掌握.
七、板书设计:
结合本节课的具体内容,我做下面的板书设计
把本节课的重点知识在黑板上得以体现。

相关文档
最新文档