立体几何体表面积与体积
高考复习数学立体几何初步第7章 第2节 空间几何体的表面积与体积
第二节空间几何体的表面积与体积————————————————————————————————[考纲传真]了解球、棱柱、棱锥、台的表面积和体积的计算公式.1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)锥体的体积等于底面面积与高之积.()(2)球的体积之比等于半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O 的半径为R ,其内接正方体的边长为a ,则R =32a .( ) [答案] (1)× (2)× (3)√ (4)√2.(教材改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( )A .1 cmB .2 cmC .3 cmD.32 cmB [S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,∴r 2=4,∴r =2(cm).] 3.(2015·全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图7-2-1,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )图7-2-1A .14斛B .22斛C .36斛D .66斛B [设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π·r 2·5=π12×⎝ ⎛⎭⎪⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B.]4.(2016·全国卷Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A .12π B.323π C .8πD .4πA [设正方体棱长为a ,则a 3=8,所以a =2.所以正方体的体对角线长为23,所以正方体外接球的半径为3,所以球的表面积为4π·(3)2=12π,故选A.]5.(2017·郑州质检)某几何体的三视图如图7-2-2所示(单位:cm),则该几何体的体积是________cm 3.图7-2-2323 [由三视图可知该几何体是由棱长为 2 cm 的正方体与底面为边长为 2 cm 的正方形、高为2 cm 的四棱锥组成,V =V 正方体+V 四棱锥=8 cm 3+83 cm 3=323cm 3.](1)某几何体的三视图如图7-2-3所示,则该几何体的表面积等于( )图7-2-3A .8+22B .11+2 2C .14+2 2D .15(2)(2016·全国卷Ⅰ)如图7-2-4,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是( )图7-2-4A .17πB .18πC .20πD .28π(1)B (2)A [(1)由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为4+22+2+2=8+22,两底面的面积和为2×12×1×(1+2)=3.所以该几何体的表面积为8+22+3=11+2 2.(2)由几何体的三视图可知,该几何体是一个球体去掉上半球的14,得到的几何体如图.设球的半径为R ,则43πR 3-18×43πR 3=283π,解得R =2.因此它的表面积为78×4πR 2+34πR 2=17π.故选A.][规律方法] 1.(1)多面体与旋转体的表面积等于侧面面积与底面面积之和.(2)简单组合体:应搞清各构成部分,并注意重合部分的处理.2.若以三视图的形式给出,解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.[变式训练1] (2016·全国卷Ⅲ)如图7-2-5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )【导学号:31222245】图7-2-5A .18+36 5B .54+18 5C .90D .81B [由三视图可知该几何体是底面为正方形的斜四棱柱,其中有两个侧面为矩形,另两个侧面为平行四边形,则表面积为(3×3+3×6+3×35)×2=54+18 5.故选B.](1)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π(2)(2016·天津高考)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图7-2-6所示(单位:m),则该四棱锥的体积为________m 3.图7-2-6(1)C (2)2 [(1)过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示.由于V 圆柱=π·AB 2·BC =π×12×2=2π, V 圆锥=13π·CE 2·DE =13π·12×(2-1)=π3,所以该几何体的体积V =V 圆柱-V 圆锥=2π-π3=5π3.(2)由三视图知,四棱锥的高为3,底面平行四边形的一边长为2,对应高为1,所以其体积V =13Sh =13×2×1×3=2.][规律方法] 1.若所给定的几何体是柱体、锥体或台体,则可直接利用公式进行求解.2.若所给定的几何体的体积不能直接利用公式得出,则常用转换法(转换的原则是使底面面积和高易求)、分割法、补形法等方法进行求解.3.若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.[变式训练2] 一个几何体的三视图如图7-2-7所示(单位:m),则该几何体的体积为________m 3.图7-2-783π [由几何体的三视图可知该几何体由两个圆锥和一个圆柱构成,其中圆锥的底面半径和高均为1,圆柱的底面半径为1且其高为2,故所求几何体的体积为V =13π×12×1×2+π×12×2=83π.]111V 的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()A.4π B.9π2C.6π D.32π3B[由AB⊥BC,AB=6,BC=8,得AC=10,要使球的体积V最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC的内切圆的半径为r.则12×6×8=12×(6+8+10)·r,则r=2.此时2r=4>3,不合题意.因此球与三棱柱的上、下底面相切时,球的半径R最大.由2R=3,即R=3 2.故球的最大体积V=43πR3=92π.][迁移探究1]若本例中的条件变为“直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上”,若AB=3,AC=4,AB⊥AC,AA1=12,求球O的表面积.[解]将直三棱柱补形为长方体ABEC-A′B′E′C′,则球O是长方体ABEC-A′B′E′C′的外接球,∴体对角线BC′的长为球O的直径.因此2R=32+42+122=13,故S球=4πR2=169π.[迁移探究2]若本例中的条件变为“正四棱锥的顶点都在球O的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积.[解]如图,设球心为O,半径为r,则在Rt △AOF 中,(4-r )2+(2)2=r 2, 解得r =94,则球O 的体积V 球=43πr 3=43π×⎝ ⎛⎭⎪⎫943=243π16.[规律方法] 1.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.2.若球面上四点P ,A ,B ,C 中P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.[变式训练3] (2015·全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256πC [如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O -ABC =V C -AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O -ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O -ABC 最大为13×12R2×R=36,∴R=6,∴球O的表面积为4πR2=4π×62=144π.故选C.][思想与方法]1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高.[易错与防范]1.求组合体的表面积时,要注意各几何体重叠部分的处理,防止重复计算.2.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.课时分层训练(三十九)空间几何体的表面积与体积A组基础达标(建议用时:30分钟)一、选择题1.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.22π3 B.42π3C.22πD.42πB[依题意知,该几何体是以2为底面半径,2为高的两个同底圆锥组成的组合体,则其体积V=13π(2)2×22=423π.]2.已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为()【导学号:31222246】A.32π3B.4πC.2π D.4π3D[依题意可知正四棱柱体对角线的长度等于球的直径,可设球半径为R,则2R=12+12+(2)2=2,解得R=1,所以V=4π3R3=4π3.]3.(2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图7-2-8所示,则该几何体的体积为()图7-2-8A.13+23πB.13+23πC.13+26πD .1+26πC [由三视图知,该四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×43π×⎝ ⎛⎭⎪⎫223=13+26π.故选C.]4.某几何体的三视图如图7-2-9所示,且该几何体的体积是3,则正视图中的x 的值是( )【导学号:31222247】图7-2-9A .2 B.92 C.32D .3D [由三视图知,该几何体是四棱锥,底面是直角梯形,且S底=12×(1+2)×2=3,∴V=13x·3=3,解得x=3.]5.(2016·江南名校联考)一个四面体的三视图如图7-2-10所示,则该四面体的表面积是()图7-2-10A.1+ 3 B.2+ 3C.1+2 2 D.2 2B[四面体的直观图如图所示.侧面SAC⊥底面ABC,且△SAC与△ABC均为腰长是2的等腰直角三角形,SA=SC=AB=BC=2,AC=2.设AC的中点为O,连接SO,BO,则SO⊥AC,∴SO⊥平面ABC,∴SO⊥BO.又OS=OB=1,∴SB=2,故△SAB与△SBC均是边长为2的正三角形,故该四面体的表面积为2×1 2×2×2+2×34×(2)2=2+ 3.]二、填空题6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为______.【导学号:31222248】7 [设新的底面半径为r ,由题意得13×π×52×4+π×22×8=13×π×r 2×4+π×r 2×8, ∴r 2=7,∴r =7.]7.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.12 [设正六棱锥的高为h ,棱锥的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1,∴斜高h ′=12+(3)2=2,∴S 侧=6×12×2×2=12.]8.某几何体的三视图如图7-2-11所示,则该几何体的体积为________.图7-2-11136π [由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=136π.]三、解答题9.如图7-2-12,在三棱锥D -ABC 中,已知BC ⊥AD ,BC =2,AD =6,AB +BD =AC +CD =10,求三棱锥D -ABC 的体积的最大值.图7-2-12[解] 由题意知,线段AB +BD 与线段AC +CD 的长度是定值,∵棱AD 与棱BC 相互垂直,设d 为AD 到BC 的距离,4分则V D -ABC=AD ·BC ×d ×12×13=2d , 当d 最大时,V D -ABC 体积最大.8分 ∵AB +BD =AC +CD =10, ∴当AB =BD =AC =CD =5时, d 有最大值42-1=15.此时V =215.12分10.四面体ABCD 及其三视图如图7-2-13所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H .图7-2-13(1)求四面体ABCD 的体积; (2)证明:四边形EFGH 是矩形.[解] (1)由该四面体的三视图可知,BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1,∴AD ⊥平面BDC ,3分∴四面体ABCD 的体积V =13×12×2×2×1=23.5分(2)证明:∵BC ∥平面EFGH ,平面EFGH ∩平面BDC =FG ,平面EFGH ∩平面ABC =EH ,8分∴BC ∥FG ,BC ∥EH ,∴FG ∥EH . 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形. 又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG . ∴四边形EFGH 是矩形.12分B 组 能力提升 (建议用时:15分钟)1.(2015·全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图7-2-14所示.若该几何体的表面积为16+20π,则r =( )图7-2-14A .1B .2C .4D .8B [如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.]2.三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.14 [设点A 到平面PBC 的距离为h .∵D ,E 分别为PB ,PC 的中点,∴S △BDE =14S △PBC , ∴V 1V 2=V A -DBEV A -PBC=13S △BDE ·h 13S △PBC ·h=14.] 3.(2016·全国卷Ⅰ)如图7-2-15,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G.图7-2-15(1)证明:G 是AB 的中点;(2)在图中作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.[解] (1)证明:因为P 在平面ABC 内的正投影为D , 所以AB ⊥PD.因为D在平面P AB内的正投影为E,所以AB⊥DE.3分因为PD∩DE=D,所以AB⊥平面PED,故AB⊥PG.又由已知可得,P A=PB,所以G是AB的中点.5分(2)在平面P AB内,过点E作PB的平行线交P A于点F,F即为E在平面P AC内的正投影.7分理由如下:由已知可得PB⊥P A,PB⊥PC,又EF∥PB,所以EF⊥P A,EF⊥PC.又P A∩PC=P,因此EF⊥平面P AC,即点F为E在平面P AC内的正投影.连接CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(1)知,G是AB的中点,所以D在CG上,故CD=23CG.10分由题设可得PC⊥平面P AB,DE⊥平面P AB,所以DE∥PC,因此PE=23PG,DE=13PC.由已知,正三棱锥的侧面是直角三角形且P A=6,可得DE=2,PE=2 2. 在等腰直角三角形EFP中,可得EF=PF=2,所以四面体PDEF的体积V=13×12×2×2×2=43.12分。
《立体几何初步》复习
4.(2019·全国Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形, 平面ECD⊥平面ABCD,M是线段ED的中点,则 A.BM=EN,且直线BM,EN是相交直线
√B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线
5 5.
即
AO
与平面
ABCD
所成角的正切值为
5 5.
(3)平面AOB与平面AOC所成角的大小.
解 由(1)可知OC⊥平面AOB. 又∵OC⊂平面AOC,∴平面AOB⊥平面AOC. 即平面AOB与平面AOC所成的角为90°.
反思 感悟
(1)求异面直线所成的角常用平移转化法(转化为相交直线的 夹角). (2)求直线与平面所成的角常用射影转化法(即作垂线、找射影). (3)二面角的平面角的作法常有三种:①定义法;②三垂线法; ③垂面法.
(2)BE∥平面PAD;
证明 因为AB∥CD,CD=2AB,E为CD的中点, 所以AB∥DE,且AB=DE. 所以四边形ABED为平行四边形,所以BE∥AD. 又因为BE⊄平面PAD,AD⊂平面PAD, 所以BE∥平面PAD.
(3)平面BEF⊥平面PCD.
证明 因为AB⊥AD,且四边形ABED为平行四边形, 所以BE⊥CD,AD⊥CD. 由(1)知PA⊥底面ABCD,所以AP⊥CD. 又因为AP∩AD=A,AP,AD⊂平面PAD, 所以CD⊥平面PAD,所以CD⊥PD. 因为E和F分别是CD和PC的中点, 所以PD∥EF,所以CD⊥EF. 又因为CD⊥BE,EF∩BE=E,EF,BE⊂平面BEF, 所以CD⊥平面BEF.又CD⊂平面PCD, 所以平面BEF⊥平面PCD.
高考数学一轮复习 第八章 立体几何 第5讲 简单几何体的再认识(表面积与体积)教学案 理
第5讲 简单几何体的再认识(表面积与体积)一、知识梳理1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrlS 圆台侧=π(r +r ′)l名称几何体表面积体积柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底h 锥 体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13S 底h台 体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 31.正方体的外接球、内切球及与各条棱相切球的半径 (1)外接球:球心是正方体的中心;半径r =32a (a 为正方体的棱长).(2)内切球:球心是正方体的中心;半径r =a2(a 为正方体的棱长).(3)与各条棱都相切的球:球心是正方体的中心;半径r =22a (a 为正方体的棱长).2.正四面体的外接球、内切球的球心和半径(1)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分).(2)外接球:球心是正四面体的中心;半径r =64a (a 为正四面体的棱长).(3)内切球:球心是正四面体的中心;半径r =612a (a 为正四面体的棱长).二、教材衍化1.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________.解析:S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, 所以r 2=4,所以r =2. 答案:2 cm 2.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.解析:设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ×12b ×12c =148abc ,剩下的几何体的体积V 2=abc -148abc =4748abc ,所以V 1∶V 2=1∶47.答案:1∶47 一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( )(3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( )(5)长方体既有外接球又有内切球.( )答案:(1)√(2)×(3)×(4)√(5)×二、易错纠偏常见误区|K(1)不能把三视图正确还原为几何体而错解表面积或体积;(2)考虑不周忽视分类讨论;(3)几何体的截面性质理解有误;(4)混淆球的表面积公式和体积公式.1.已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m3.解析:根据三视图可知该四棱锥的底面是底边长为2 m,高为1 m的平行四边形,四棱锥的高为 3 m.故该四棱锥的体积V=1 3×2×1×3=2(m3).答案:22.将一个相邻边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是________.解析:当底面周长为4π时,底面圆的半径为2,两个底面的面积之和是8π;当底面周长为8π时,底面圆的半径为4,两个底面的面积之和为32π.无论哪种方式,侧面积都是矩形的面积32π2,故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π3.已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为________.解析:因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+22π×22=12π.答案:12π4.一个球的表面积是16π,那么这个球的体积为________. 解析:设球的半径为R ,则由4πR 2=16π,解得R =2,所以这个球的体积为43πR 3=323π.答案:323π空间几何体的表面积(师生共研)(1)(2020·河南周口模拟)如图,在三棱柱ABC A 1B 1C 1中,AA 1⊥底面ABC ,AB ⊥BC ,AA 1=AC =2,直线A 1C 与侧面AA 1B 1B 所成的角为30°,则该三棱柱的侧面积为( )A .4+4 2B .4+43C .12D .8+42(2)(2020·四川泸州一诊)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的表面积为( )A .(5+2)πB .(4+2)πC .(5+22)πD .(3+2)π【解析】 (1)连接A 1B .因为AA 1⊥底面ABC ,则AA 1⊥BC ,又AB ⊥BC ,AA 1∩AB =A ,所以BC ⊥平面AA 1B 1B ,所以直线A 1C 与侧面AA 1B 1B 所成的角为∠CA 1B=30°.又AA 1=AC =2,所以A 1C =22,BC = 2.又AB ⊥BC ,则AB =2,则该三棱柱的侧面积为22×2+2×2=4+42,故选A.(2)因为在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2,所以将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是一个底面半径为AB =1,高为BC -AD =2-1=1的圆锥,所以该几何体的表面积S =π×12+2π×1×2+π×1×12+12=(5+2)π.故选A.【答案】 (1)A (2)A空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用. 1.在如图所示的斜截圆柱中,已知圆柱底面的直径为40 cm ,母线长最短50 cm ,最长80 cm ,则斜截圆柱的侧面面积S =________cm 2.解析:将题图所示的相同的两个几何体对接为圆柱,则圆柱的侧面展开图为矩形.由题意得所求侧面展开图的面积S=12×(50+80)×(π×40)=2 600π(cm2).答案:2 600π2.已知一几何体的三视图如图所示,它的主视图与左视图相同,则该几何体的表面积为________.解析:由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S=1 2×4π×22+π×22+22×2×4=12π+16.答案:12π+16空间几何体的体积(多维探究)角度一直接利用公式求体积(2020·山东省实验中学模拟)我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈,上底宽3丈,长4丈,高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为( )A.13.25立方丈B.26.5立方丈C.53立方丈D.106立方丈【解析】 由题意知,刍童的体积为[(4×2+3)×3+(3×2+4)×2]×3÷6=26.5(立方丈),故选B.【答案】 B角度二 割补法求体积《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何?刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1),那么该刍甍的体积为( )A .4B .5C .6D .12【解析】 如图所示,由三视图可还原得到几何体ABCDEF ,过E ,F 分别作垂直于底面的截面EGH 和FMN ,可将原几何体切割成三棱柱EHG FNM ,四棱锥E ADHG 和四棱锥F MBCN ,易知三棱柱的体积为12×3×1×2=3,两个四棱锥的体积相同,都为13×1×3×1=1,则原几何体的体积为3+1+1=5.故选B.【答案】 B角度三 等体积法求体积(2020·贵州部分重点中学联考)如图,在直四棱柱ABCD A 1B 1C 1D 1中,底面ABCD 是平行四边形,点E 是棱BB 1的中点,点F 是棱CC 1上靠近C 1的三等分点,且三棱锥A 1AEF 的体积为2,则四棱柱ABCD A 1B 1C 1D 1的体积为( )A .12B .8C .20D .18【解析】 设点F 到平面ABB 1A 1的距离为h ,由题意得V A 1AEF=V F A 1AE .又V F A 1AE =13S △A 1AE ·h =13×⎝ ⎛⎭⎪⎫12AA 1·AB ·h =16(AA 1·AB )·h =16S 四边形ABB 1A 1·h =16V ABCD A 1B 1C 1D 1,所以V ABCD A 1B 1C 1D 1=6V A 1AEF =6×2=12.所以四棱柱ABCD A 1B 1C 1D 1的体积为12.故选A.【答案】 A(1)处理体积问题的思路①“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高;②“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算;③“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法.(2)求空间几何体的体积的常用方法①公式法:对于规则几何体的体积问题,可以直接利用公式进行求解;②割补法:把不规则的图形分割成规则的图形,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积;③等体积法:一个几何体无论怎样转化,其体积总是不变的.如果一个几何体的底面面积和高较难求解时,我们可以采用等体积法进行求解.等体积法也称等积转化或等积变形,它是通过选择合适的底面来求几何体体积的一种方法,多用来解决有关锥体的体积,特别是三棱锥的体积.1.(2020·江西上饶二模)已知下图为某几何体的三视图,则其体积为( )A .π+23B .π+13C .π+43D .π+34解析:选C.几何体为半圆柱与四棱锥的组合体(如图),半圆柱的底面半径为1,高为2,四棱锥的底面为边长为2的正方形,高为1,故几何体的体积V =12×π×12×2+13×22×1=π+43.故选C.2.(2019·高考全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD A 1B 1C 1D 1挖去四棱锥O EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为________g.解析:由题易得长方体ABCD A 1B 1C 1D 1的体积为6×6×4=144(cm 3),四边形EFGH 为平行四边形,如图所示,连接GE ,HF ,易知四边形EFGH 的面积为矩形BCC 1B 1面积的一半,即12×6×4=12(cm 2),所以V四棱锥O EFGH =13×3×12=12(cm 3),所以该模型的体积为144-12=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8球与空间几何体的接、切问题(多维探究) 角度一 外接球(1)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C.π2D .π4(2)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC的体积为9,则球O 的表面积为________.【解析】 (1)设圆柱的底面圆半径为r ,则r 2=12-⎝ ⎛⎭⎪⎫122=34,所以,圆柱的体积V =34π×1=3π4,故选B.(2)设球O 的半径为R ,因为SC 为球O 的直径,所以点O 为SC 的中点,连接AO ,OB ,因为SA =AC ,SB =BC ,所以AO ⊥SC ,BO ⊥SC ,因为平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,所以AO ⊥平面SCB ,所以V S ABC =V A SBC =13×S △SBC ×AO =13×(12×SC ×OB )×AO ,即9=13×(12×2R ×R )×R ,解得R =3,所以球O 的表面积为S =4πR2=4π×32=36π.【答案】 (1)B (2)36π角度二 内切球(1)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,表面积为S 1,球O 的体积为V 2,表面积为S 2,则V 1V 2的值是__________,S 1S 2=________. (2)已知棱长为a 的正四面体,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为________.【解析】 (1)设圆柱内切球的半径为R ,则由题设可得圆柱O 1O 2的底面圆的半径为R ,高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.S 1S 2=2πR ·2R +2πR 24πR 2=32. (2)正四面体的表面积为S 1=4×34×a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 【答案】 (1)32 32 (2)63π解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:1.(2020·四川成都一诊)如图,在矩形ABCD 中,EF ∥AD ,GH ∥BC ,BC =2,AF =FG =BG =1.现分别沿EF ,GH 将矩形折叠使得AD 与BC 重合,则折叠后的几何体的外接球的表面积为( )A .24πB .6π C.163π D .83π 解析:选C.由题意可知,折叠后的几何体是底面为等边三角形的三棱柱,底面等边三角形外接圆的半径为23× 12-⎝ ⎛⎭⎪⎫122=33.因为三棱柱的高为BC =2,所以其外接球的球心与底面外接圆圆心的距离为1,则三棱柱外接球的半径为R =⎝ ⎛⎭⎪⎪⎫332+12=233,所以三棱柱外接球的表面积S =4πR 2=16π3.故选C.2.(2020·黑龙江哈尔滨师范大学附属中学模拟)在底面是边长为2的正方形的四棱锥P ABCD 中,点P 在底面的射影H 为正方形ABCD 的中心,异面直线PB 与AD 所成角的正切值为2.若四棱锥P ABCD 的内切球半径为r ,外接球的半径为R ,则r R=( ) A.23B .25 C.12D .13解析:选B.如图,取E ,F 分别为AB ,CD 的中点,连接EF ,PE ,PF .由题意知,P ABCD 为正四棱锥,底面边长为2.因为BC ∥AD ,所以∠PBC 即为异面直线PB 与AD 所成的角.因为∠PBC 的正切值为2,所以四棱锥的斜高为2,所以△PEF 为等边三角形,则正四棱锥P ABCD 的内切球的半径r 即为△PEF 的内切圆的半径,为33. 设O 为正四棱锥外接球的球心,连接OA ,AH .由题可得AH =2,PH = 3.在Rt △OHA 中,R 2=(2)2+(3-R )2,解得R =536, 所以r R =25. 确定球心位置的三种方法决定球的几何要素是球心的位置和球的半径,在球与其他几何体的结合问题中,通过位置关系的分析,找出球心所在的位置是解题的关键,不妨称这个方法为球心位置分析法.方法一 由球的定义确定球心若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.也就是说如果一个定点到一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体外接球的球心.(1)长方体或正方体的外接球的球心是其体对角线的中点;(2)正三棱柱的外接球的球心是上、下底面中心连线的中点;(3)直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)正棱锥的外接球球心在其高上,具体位置可通过建立直角三角形运用勾股定理计算得到;(5)若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( )A.16π B.20πC.24πD.32π【解析】已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,可求得底面边长为2,故球的直径为22+22+42=26,则半径为6,故球的表面积为24π,故选C.【答案】C方法二构造长方体或正方体确定球心(1)正四面体、三条侧棱两两垂直的正三棱锥、四个面都是直角三角形的三棱锥,可将三棱锥补形成长方体或正方体;(2)同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥,可将三棱锥补形成长方体或正方体;(3)若已知棱锥含有线面垂直关系,则可将棱锥补形成长方体或正方体;(4)若三棱锥的三个侧面两两垂直,则可将三棱锥补形成长方体或正方体.如图,边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,将△AED,△EBF,△FCD分别沿DE,EF,FD折起,使A,B,C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的半径为( )A. 2 B.6 2C.112D.52【解析】易知四面体A′EFD的三条侧棱A′E,A′F,A′D 两两垂直,且A′E=1,A′F=1,A′D=2,把四面体A′EFD补成从顶点A′出发的三条棱长分别为1,1,2的一个长方体,则长方体的外接球即为四面体A′EFD的外接球,球的半径为r=1 212+12+22=62.故选B.【答案】B方法三由性质确定球心利用球心O与截面圆圆心O′的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.正三棱锥ABCD内接于球O,且底面边长为3,侧棱长为2,则球O的表面积为________.【解析】如图,M为底面△BCD的中心,易知AM⊥MD,DM=1,AM= 3.在Rt△DOM中,OD2=OM2+MD2,即OD2=(3-OD)2+1,解得OD=23 3,故球O的表面积为4π×⎝⎛⎭⎪⎪⎫2332=163π.【答案】163π[基础题组练]1.圆柱的底面积为S ,侧面展开图是一个正方形,那么圆柱的侧面积是( )A .4πSB .2πSC .πSD .233πS 解析:选A.由πr 2=S 得圆柱的底面半径是S π,故侧面展开图的边长为2π·S π=2πS ,所以圆柱的侧面积是4πS ,故选A. 2.已知圆锥的高为3,底面半径长为4,若一球的表面积与此圆锥的侧面积相等,则该球的半径长为( ) A .5B .5C .9D .3解析:选B.因为圆锥的底面半径R =4,高h =3,所以圆锥的母线l =5,所以圆锥的侧面积S =πRl =20π.设球的半径为r ,则4πr 2=20π,所以r =5,故选B.3.(2020·安徽黄山一模)如图所示为某几何体的三视图,则几何体的体积为( )A.12B .1 C.32D .3 解析:选B.由主视图可得如图的四棱锥P ABCD ,其中平面ABCD ⊥平面PCD .由主视图和俯视图可知AD =1,CD =2,P 到平面ABCD 的距离为32. 所以四棱锥P ABCD 的体积为V =13×S 长方形ABCD ×h =13×1×2×32=1.故选B.4.(2020·河南郑州三模)某几何体的三视图如图所示,则该几何体的体积为( )A.5π3B .4π3 C.π3D .2π3 解析:选D.几何体是半个圆柱挖去半个圆锥所形成的,如图,由题意可知几何体的体积为:12×12·π×2-13×12×12·π×2=2π3.故选D. 5.(2020·广东茂名一模)在长方体ABCD A 1B 1C 1D 1中,四边形ABCD 是边长为2的正方形,D 1B 与DC 所成的角是60°,则长方体的外接球的表面积是( )A .16πB .8πC .4πD .42π解析:选A.如图,在长方体ABCD A 1B 1C 1D 1中,因为DC ∥AB ,所以相交直线D 1B 与AB 所成的角是异面直线D 1B 与DC 所成的角.连接AD 1,由AB ⊥平面ADD 1A 1,得AB ⊥AD 1,所以在Rt △ABD 1中,∠ABD 1就是D 1B 与DC 所成的角,即∠ABD 1=60°,又AB =2,AB =BD 1cos 60°,所以BD 1=AB cos 60°=4,设长方体ABCD A 1B 1C 1D 1外接球的半径为R ,则由长方体的体对角线就是长方体外接球的直径得4R 2=D 1B 2=16,则R =2,所以长方体外接球的表面积是4πR 2=16π.故选A.6.一个四棱锥的侧棱长都相等,底面是正方形,其主视图如图所示,则该四棱锥的侧面积是________.解析:因为四棱锥的侧棱长都相等,底面是正方形,所以该四棱锥为正四棱锥,如图,由题意知底面正方形的边长为2,正四棱锥的高为2, 取正方形的中心O ,AD 的中点E ,连接PO ,OE ,PE ,可知PO 为正四棱锥的高,△PEO 为直角三角形,则正四棱锥的斜高PE =22+12= 5.所以该四棱锥的侧面积S =4×12×2×5=4 5. 答案:457.已知圆锥SO ,过SO 的中点P 作平行于圆锥底面的截面,以截面为上底面作圆柱PO ,圆柱的下底面落在圆锥的底面上(如图),则圆柱PO 的体积与圆锥SO 的体积的比值为________.解析:设圆锥SO 的底面半径为r ,高为h ,则圆柱PO 的底面半径是r 2,高为h 2, 所以V 圆锥SO =13πr 2h ,V 圆柱PO =π⎝ ⎛⎭⎪⎫r 22·h 2=πr 2h 8,所以V 圆柱PO V 圆锥SO =38. 答案:388.已知正三棱锥的高为1,底面边长为23,内有一个球与四个面都相切,则棱锥的内切球的半径为________.解析:如图,过点P 作PD ⊥平面ABC 于点D ,连接AD 并延长交BC 于点E ,连接PE ,因为△ABC 是正三角形,所以AE 是BC 边上的高和中线,D 为△ABC 的中心.因为AB =BC =23,所以S △ABC =33,DE =1,PE = 2.所以S 表=3×12×23×2+33=36+3 3. 因为PD =1,所以三棱锥的体积V =13×33×1= 3. 设球的半径为r ,以球心O 为顶点,三棱锥的四个面为底面,把正三棱锥分割为四个小棱锥,则r =3336+33=2-1. 答案:2-19.已知一个几何体的三视图如图所示.(1)求此几何体的表面积;(2)如果点P ,Q 在正视图中所示位置,P 为所在线段的中点,Q 为顶点,求在几何体表面上,从P 点到Q 点的最短路径的长.解:(1)由三视图知该几何体是由一个圆锥与一个圆柱组成的组合体,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=12(2πa )·(2a )=2πa 2, S 圆柱侧=(2πa )·(2a )=4πa 2,S 圆柱底=πa 2,所以S 表=2πa 2+4πa 2+πa 2=(2+5)πa 2.(2)沿P 点与Q 点所在母线剪开圆柱侧面,如图.则PQ =AP 2+AQ 2=a 2+(πa )2=a 1+π2,所以从P 点到Q 点在侧面上的最短路径的长为a 1+π2.10.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E ACD 的体积为63,求该三棱锥的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED .又AC 平面AEC , 所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC=32x ,GB =GD =x 2.因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x .由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x .由已知得,三棱锥E ACD 的体积V 三棱锥E ACD =13×12·AC ·GD ·BE=624x 3=63,故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥E ACD 的侧面积为3+2 5.[综合题组练])1.如图,以棱长为1的正方体的顶点A 为球心,以2为半径作一个球面,则该正方体的表面被球面所截得的所有弧长之和为( )A.3π4 B .2π C.3π2D .9π4解析:选C.正方体的表面被该球面所截得的弧长是相等的三部分,如图,上底面被球面截得的弧长是以A 1为圆心,1为半径的圆周长的14,所以所有弧长之和为3×2π4=3π2.故选C.2.(2020·江西萍乡一模)如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则该几何体的体积为( )A.236 B .72C.76D .4解析:选A.由三视图可得,该几何体是如图所示的三棱柱ABB 1DCC 1,挖去一个三棱锥E FCG 所形成的,故所求几何体的体积为12×(2×2)×2-13×⎝ ⎛⎭⎪⎫12×1×1×1=236. 故选A.3.(2020·福建厦门外国语学校模拟)已知等腰直角三角形ABC 中,∠ACB =90°,斜边AB =2,点D 是斜边AB 上一点(不同于点A ,B ).沿线段CD 折起形成一个三棱锥A CDB ,则三棱锥A CDB 体积的最大值是( )A .1B .12C.13D .16解析:选D.设AD =x ,将△ACD 折起使得平面ACD ⊥平面BCD .在△ACD 中,由面积公式得12CD ·h 1=12AD ·1(h 1为点A 到直线CD 的距离),则h 1=x1+(x -1)2.由题易知h 1为点A 到平面BCD 的距离,故三棱锥A CDB 体积为V =13S △BCD ·h 1=13×⎝ ⎛⎭⎪⎫12BD ·1·h 1=16·2x -x 2x 2-2x +2,x ∈(0,2).令t =x 2-2x +2,则t ∈[1,2),故V =16·2-t 2t =16·⎝ ⎛⎭⎪⎫2t -t .由于2t -t 是减函数,故当t =1时,V取得最大值为16×(2-1)=16.故选D.4.设A ,B ,C ,D 是同一个半径为4的球的球面上的四点,△ABC 为等边三角形且其面积为93,则三棱锥D ABC 体积的最大值为( )A .12 3B .183C .24 3D .543解析:选B.如图,E 是AC 的中点,M 是△ABC 的重心,O 为球心,连接BE ,OM ,OD ,BO .因为S △ABC =34AB 2=93,所以AB =6,BM =23BE=23AB 2-AE 2=2 3.易知OM ⊥平面ABC ,所以在Rt △OBM 中,OM =OB 2-BM 2=2,所以当D ,O ,M 三点共线且DM =OD +OM 时,三棱锥D ABC 的体积取得最大值,且最大值V max =13S △ABC ×(4+OM )=13×93×6=18 3.故选B. 5.如图所示,已知三棱柱ABC A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1ABC 1的体积为________.解析:三棱锥B 1ABC 1的体积等于三棱锥A B 1BC 1的体积,三棱锥A B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312.答案:3126.已知半球O 的半径r =2,正三棱柱ABC A 1B 1C 1内接于半球O ,其中底面ABC 在半球O 的大圆面内,点A 1,B 1,C 1在半球O 的球面上.若正三棱柱ABC A 1B 1C 1的侧面积为63,则其侧棱的长是________.解析:依题意O 是正三角形ABC 的中心,设AB =a ,分析计算易得0<a <23,AO =33a ,在Rt △AOA 1中,A ′O =r =2,则AA 1=r 2-AO 2=4-a 23,所以正三棱柱ABC A 1B 1C 1的侧面积S =3a ·AA 1=3a4-a 23=3-a 43+4a 2=63,整理得a 4-12a 2+36=0,解得a 2=6,即a =6,此时侧棱AA 1= 2.答案:27.如图,正方体ABCD A 1B 1C 1D 1的棱长为1,P 为BC 边的中点,Q 为线段CC 1上的动点,过点A ,P ,Q 的平面截正方体所得的截面为S ,当CQ =1时,S 的面积为________.解析:当CQ =1时,Q 与C 1重合.如图,取A 1D 1,AD 的中点分别为F ,G .连接AF ,AP ,PC 1,C 1F ,PG ,D 1G ,AC 1,PF .因为F 为A 1D 1的中点,P 为BC 的中点,G 为AD 的中点, 所以AF =FC 1=AP =PC 1=52,PG 綊CD ,AF 綊D 1G .由题意易知CD 綊C 1D 1,所以PG 綊C 1D 1,所以四边形C 1D 1GP 为平行四边形, 所以PC 1綊D 1G ,所以PC 1綊AF , 所以A ,P ,C 1,F 四点共面, 所以四边形APC 1F 为菱形.因为AC 1=3,PF =2,过点A ,P ,Q 的平面截正方体所得的截面S 为菱形APC 1F ,所以其面积为12AC 1·PF =12×3×2=62.答案:628.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图所示,设S 在底面的射影为S ′,连接AS ′,SS ′.△SAB 的面积为12·SA ·SB ·sin ∠ASB =12·SA 2·1-cos 2∠ASB =1516·SA 2=515,所以SA 2=80,SA =4 5.因为SA 与底面所成的角为45°,所以∠SAS ′=45°,AS ′=SA ·cos 45°=45×22=210.所以底面周长l =2π·AS ′=410π,所以圆锥的侧面积为12×45×410π=402π.答案:402π。
解题技巧如何巧妙解决立体几何中的体积与表面积问题
解题技巧如何巧妙解决立体几何中的体积与表面积问题立体几何是数学中一个重要的分支,它研究物体的形状、体积、表面积等性质。
在解决立体几何中的体积与表面积问题时,我们需要掌握一些解题技巧,以便更加高效地解决这类问题。
本文以此为出发点,介绍一些巧妙的解题技巧,帮助读者在解决立体几何中的体积与表面积问题时更加得心应手。
一、立体几何基础知识回顾在介绍解题技巧之前,我们先来回顾一些立体几何的基础知识。
在三维空间中,我们常见的几何体包括立方体、圆柱体、锥体、球体等。
这些几何体的体积和表面积是解题的关键。
二、体积问题的解题技巧1. 立方体的体积首先来看立方体的体积计算。
立方体的体积等于边长的立方,即V = a³。
当只给出边长的一半或者三分之一时,可以通过平方或者立方计算,再乘以相应的系数得到体积。
2. 圆柱体的体积圆柱体的体积计算公式为V = πr²h,其中π取近似值3.14,r为底面圆的半径,h为圆柱体的高。
当只给出直径或者底面周长时,可以通过相关公式计算得到半径,再代入体积公式求解。
3. 锥体的体积锥体的体积计算公式为V = (1/3)πr²h,其中r为底面圆的半径,h为锥体的高。
当只给出锥体的半径或者底面周长时,同样可以通过相关公式计算得到半径,再代入体积公式求解。
4. 球体的体积球体的体积计算公式为V = (4/3)πr³,其中r为球体的半径。
当只给出球体的直径时,可以通过直径与半径的关系计算得到半径,再代入体积公式求解。
三、表面积问题的解题技巧1. 立方体的表面积立方体的表面积等于6倍的边长的平方,即S = 6a²。
当只给出边长的一半或者三分之一时,可以通过平方或者立方计算,再乘以相应的系数得到表面积。
2. 圆柱体的表面积圆柱体的表面积计算公式为S = 2πrh + 2πr²,其中r为底面圆的半径,h为圆柱体的高。
当只给出直径或者底面周长时,可以通过相关公式计算得到半径,再代入表面积公式求解。
立体几何的表面积与体积
学生: 管笑澜 科目: 数学 第 1 阶段第 3 次课 教师: 于利 时间:20 13 年 9 月 13 日 4-6 时段课题空间几何体的表面积与体积公式教学目标1、理解并掌握几何体的表面积与体积公式2、能解决三视图中几何体的表面积与体积重点、难点几何体的表面积与体积公式的运用 考点及考试要求1、理解并掌握几何体的表面积与体积公式2、能解决三视图中几何体的表面积与体积教学内容知识框架柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积 rh S π2=圆柱侧'21ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表(3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥''1()3V S S S S h =++台 ''2211()()33V S S S S h r rR R h π=++=++圆台(4)球体的表面积和体积公式:V 球=343R π; S 球面=24R π知识点一: 几何体的体积与表面积例1.已知两个球的表面积之比为1∶9,则这两个球的半径之比为( ).A .1∶3B .1∶3C .1∶9D .1∶81例2.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的体对角线的长分别是9和15,则这个棱柱的侧面积是 .例3.圆柱内有一个四棱柱,四棱柱的底面是圆柱底面的内接正方形.已知圆柱表面积为6 ,且底面圆直径与母线长相等,求四棱柱的体积.例4.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕直线AD 旋转一周所成几何体的表面积及体积.例5.已知正方体、球、底面直径与母线相等的圆柱,它们的表面积相等,试比较它们的体积V 正方体,V 球,V 圆柱的大小针对性练习一、选择题:1.过正三棱柱底面一边的截面是( )A .三角形B .三角形或梯形C .不是梯形的四边形D .梯形 2.若正棱锥底面边长与侧棱长相等,则该棱锥一定不是 ( ) A .三棱锥 B .四棱锥 C .五棱锥 D .六棱锥 3.球的体积与其表面积的数值相等,则球的半径等于( )A .21B .1C .2D .34.将一个边长为a 的正方体,切成27个全等的小正方体,则表面积增加了 ( )A .26aB .12a 2C .18a 2D .24a 25.直三棱柱各侧棱和底面边长均为a ,点D 是CC ′上任意一点,连结A ′B ,BD ,A ′D ,AD ,则三棱锥A —A ′BD 的体积( )A .361a B .363a C .3123aD .3121a6.两个球体积之和为12π,且这两个球大圆周长之和为6π,那么这两球半径之差是( )A .21 B .1 C .2 D .37.一个球与它的外切圆柱、外切等边圆锥(圆锥的轴截面为正三角形)的体积之比( )A .2:3:5B .2:3:4C .3:5:8D .4:6:98.直径为10cm 的一个大金属球,熔化后铸成若干个直径为2cm 的削球,如果不计损耗,可铸成这样的小球的个数为 ( )A .5B .15C .25D .125 9.与正方体各面都相切的球,它的表面积与正方体的表面积之比为( )A .2π B .6πC .4πD .3π 10.中心角为135°的扇形,其面积为B ,其围成的圆锥的全面积为A ,则A :B 为( ) A .11:8 B .3:8 C .8:3 D .13:8知识点二:三视图与直观图的表面积体积例1.已知正三棱锥V -ABC 的正视图、侧视图和俯视图如图所示.(1)画出该三棱锥的直观图; (2)求出侧视图的面积.例2.等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.针对性练习基础热身1.已知几何体的三视图如图K36-1所示,则该几何体的表面积为( ) A .80+7π B .96+7π C .96+8π D .96+9π图K36-1图K36-22.一个空间几何体的三视图及其尺寸如图K36-2所示,则该空间几何体的体积是( )A.143B.73C .14D .7 3K36-3所示(单位:m),则该几何体的体积为( )-3A .4 m 3 B.92 m 3 C .3 m 3 D.94m 34.某品牌香水瓶的三视图如图K36-4(单位:cm),则该几何体的表面积为( )A.⎝⎛⎭⎫95-π2 cm 2B.⎝⎛⎭⎫94-π2 cm 2C.⎝⎛⎭⎫94+π2 cm 2D.⎝⎛⎭⎫95+π2 cm 2 能力提升5.已知一个四棱锥的底面为正方形,其三视图如图K36-5所示,则这个四棱锥的体积是( ) A .1 B .2 C .3图K36-图K36-66.一个棱锥的三视图如图K36-6,则该棱锥的全面积为( ) A .48+12 2 B .48+242 C .36+12 2 D .36+24 2 7.[2010·安徽卷] 一个几何体的三视图如图K36-7,该几何体的表面积为( )-8图K36-7A .280B .292C .360D .3728.某三棱锥的侧视图和俯视图如图K36-8所示,则该三棱锥的体积为( )A .4 3B .8 3C .12 3D .24 3 9.如图K36-9(单位:cm),(单位:cm 3)( )A .40π B.140π3 C .50π D.160π310.一个底面半径为1,高为6的圆柱被一个平面截下一部分,如图K36-10,截下部分的母线最大长度为2,最小长度为1,则截下部分的体积是________.课后练习1.若某几何体的三视图(单位:11所示,则此几何体的体积是________ cm 3.2.在三棱柱ABC -A ′B ′C BB ′,CC ′上,且BP =2PB ′,CQ =3QC ′,若三棱柱的体积为V ,则四棱锥A -BPQC 的体积是________.3.(10分)如图K36-12所示的△OAB 绕x 轴和y 轴各旋转一周,分别求出所得几何体的表面积.4、已知某几何体的俯视图是如图K36-13所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.5.正三棱锥的高为1,底面边长为26作业答案【基础热身】1.C [解析] 这个空间几何体上半部分是底面半径为1,高为4的圆柱,下半部分是棱长为4的正方体,故其全面积是2π×1×4+π×12+6×4×4-π×12=96+8π.故选C.2.A [解析] 这个空间几何体是一个一条侧棱垂直于底面的四棱台,这个四棱台的高是2,上底面是边长为1的正方形,下底面是边长为2的正方形,故其体积V =13(12+12×22+22)×2=143.3.C [解析] 根据视图还原几何体.这个空间几何体的直观图如下,其体积是3 m 3.4.C [解析] 这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、下面是一个四棱柱.上面四棱柱的表面积为2×3×3+12×1-π4=30-π4;中间部分的表面积为2π×12×1=π,下面部分的表面积为2×4×4+16×2-π4=64-π4.故其表面积是94+π2.5.B [解析] 这个四棱锥的高是13-4=3,底面积是2×2=2,故其体积为13×2×3=2.故选B.6.A [解析] 根据给出的三视图,这个三棱锥是一个底面为等腰直角三角形、一个侧面垂直于底面的三棱锥,其直观图如图所示,其中PD ⊥平面ABC ,D 为BC 中点,AB ⊥AC ,过D 作ED ⊥AB 于E ,连接PE ,由于AB ⊥PD ,AB ⊥DE ,故AB ⊥PE ,PE 即为△P AB 的底边AB 上的高.在Rt △PDE 中,PE =5,侧面P AB ,P AC 面积相等,故这个三棱锥的全面积是2×12×6×5+12×6×6+12×62×4=48+12 2.7.C [解析] 由题中的三视图知,该几何体是由两个长方体组成的简单组合体,下面是一个长、宽、高分别是8,10,2的长方体,上面竖着的是一个长、宽、高分别为6、2、8的长方体,那么其表面积等于下面长方体的表面积与上面长方体的侧面积之和,即S =2(8×10+8×2+10×2)+2(6×8+2×8)=360.8.A 根据三视图可知,在这个三棱锥中其侧视图的高就是三棱锥的高、俯视图的面积就是三棱锥的底面积,其中俯视图的宽度和侧视图的宽度相等,所以侧视图的底边长是2,由此得侧视图的高为23,此即为三棱锥的高;俯视图的面积为6,此即为三棱锥的底面积.所以所求的三棱锥的体积是13×6×23=4 3.9.B 由图中数据,根据圆台和球的体积公式得V 圆台=43×[π×22+(π×22)×(π×52)+π×52]=52π,V 半球=43π×23×12=163π.所以,旋转体的体积为V 圆台-V 半球=52π-163π=1403π(cm 3). 10.3π2 [解析] 这样的几何体我们没有可以直接应用的体积计算公式,根据对称性可以把它补成如图所示的圆柱,这个圆柱的高是3,这个圆柱的体积是所求的几何体体积的2倍,故所求的几何体的体积是12×π×12×3=3π2.1.144该空间几何体为一四棱柱和一四棱台组成的,四棱柱的长宽都为4,高为2,体积为4×4×2=32,四棱台的上下底面分别为边长为4和8的正方形,高为3,所以体积为13×3×(42+42×82+82)=112,所以该几何体的体积为32+112=144. 2.1736V [解析] 四棱锥A -BPQC 与四棱锥A -BB ′C ′C 具有相同的高,故其体积之比等于其底面积之比,由BP =2PB ′,CQ =3QC ′得BP =23BB ′,CQ =34CC ′,设平行四边形BB ′C ′C 的高为h ,则其面积S=CC ′·h ,则梯形BPQC 的面积等于12⎝⎛⎭⎫23BB ′+34CC ′·h =1724CC ′·h =1724S ,故V A -BPQC =1724V A -BB ′C ′C. 而V A -BB ′C ′C =V -V A -A ′B ′C ′=V -13V =23V ,故V A -BPQC =1724×23V =1736V .3.[解答] 绕x 轴旋转一周形成的空间几何体是一个上下底面半径分别为2,3,高为3的圆台,挖去了一个底面半径为3,高为3的圆锥,如图(1),其表面积是圆台的半径为2的底面积、圆台的侧面积、圆锥的侧面积之和.圆台的母线长是10,圆锥的母线长是32,故其表面积S 1=π·22+π(2+3)·10+π·3·32=(4+510+92)π.绕y 轴旋转一周所形成的空间几何体是一个大圆锥挖去了一个小圆锥,如图(2),此时大圆锥的底面半径为3,母线长为32,小圆锥的底面半径为3,母线长为10,这个空间几何体的表面积是这两个圆锥的侧面积之和,故S 2=π·3·32+π·3·10=(92+310)π.4.[解答] 由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥. (1)V =13×(8×6)×4=64.(2)该四棱锥有两个侧面P AD 、PBC 是全等的等腰三角形,且BC 边上的高为h 1=42+⎝⎛⎭⎫822=42,另两个侧面P AB 、PCD 也是全等的等腰三角形,且AB 边上的高为h 2=42+⎝⎛⎭⎫622=5,因此S =2⎝⎛⎭⎫12×6×42+12×8×5=40+24 2. 5.[解答] 过P A 与球心O 作截面P AE 与平面PCB 交于PE ,与平面ABC 交于AE .因△ABC 是正三角形,易知AE 即是△ABC 中BC 边上的高,又是BC 边上的中线,作为正三棱锥的高PD 通过球心,且D 是三角形△ABC 的重心,据此及底面边长为26,即可算出DE =13AE =13×32×26=2,PE =1+(2)2=3,由△POF ∽△PED ,知r DE =1-r PE ,∴r 2=1-r3,∴r =6-2.∴S 表=S 侧+S 底=3×12×26×3+34×(26)2=92+6 3.。
第8讲立体几何计算(几何体的表面积与体积)
第8讲立体几何计算(几何体的表面积与体积)一.基础知识回顾1.多面体的表面积:(1)设直棱柱高为h ,底面多边形的周长为c ,则S 直棱柱侧=______.(2)设正n 棱锥底面边长为a ,底面周长为c ,斜高为h ′,则S 正棱锥侧=____________(3)设正n 棱台下底面边长为a ,周长为c ,上底面边长为a ′,周长为c ′,斜高为h ′,则 S 正棱台侧=__________(4)设圆柱的母线长为l ,底面圆的半径为r,则S 圆柱侧= (5)设圆锥的母线长为l ,底面圆的半径为r,则S 圆锥侧= (6)设圆台的母线长为l ,上底面圆的半径为r 1, 下底面圆半径为r 2 则S 圆台侧=(4)设球的半径为R ,则S 球=____________.2.几何体的体积公式(1)柱体的体积V 柱体=______(其中S 为柱体的底面面积,h 为高). 特别地,底面半径是r ,高是h 的圆柱体的体积V 圆柱=πr 2h.(2)锥体的体积V 锥体=________(其中S 为锥体的底面面积,h 为高).特别地,底面半径是r ,高是h 的圆锥的体积V 圆锥=13πr 2h. (3)台体的体积V 台体=______________(其中S ′,S 分别是台体上、下底面的面积,h 为高).特别地,上、下底面的半径分别是r ′、r ,高是h 的圆台的体积V 圆台=13πh(r 2+rr ′+r ′2). (4)球的体积V 球=__________(其中R 为球的半径).二.典例精析探究点一:空间中的平行与体积计算例1:如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积.变式迁移1:如图四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心,A 1O ⊥底面ABCD ,AB =AA 1= 2.(1)证明:平面A 1BD ∥平面CD 1B 1;(2)求三棱柱ABD -A 1B 1D 1的体积.探究点二:空间中的垂直与体积计算例2:如图四棱锥P -ABCD 的底面ABCD 是边长为2的菱形,∠BAD =60°,已知PB =PD =2,PA = 6.(1)证明:PC ⊥BD ;(2)若E 为PA 的中点,求三棱锥P -BCE 的体积.变式迁移2:如图所示,四棱锥P -ABCD 中,PA ⊥底面ABCD ,PA =2 3,BC =CD =2,∠ACB =∠ACD =π3. (1)求证:BD ⊥平面PAC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积.探究点三:空间几何体证明计算其他问题例3:如图所示,直四棱柱ABCD -A 1B 1C 1D 1中,AB ∥CD ,AD ⊥AB ,AB =2,AD =2,AA1=3,E 为CD 上一点,DE =1,EC =3.(1)证明:BE ⊥平面BB 1C 1C ;(2)求点B 1到平面EA 1C 1的距离.变式迁移3:如图所示,四棱锥P —ABCD 中,∠ABC =∠BAD =90°,BC =2AD ,△PAB 和△PAD 都是边长为2的等边三角形.(1)证明:PB ⊥CD ;(2)求点A 到平面PCD 的距离.三.课后作业练习1.长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为( )A.72πB. 56πC. 14πD.64π2.已知两平行平面α,β间的距离为3,P∈α,边长为1的正三角形ABC 在平面β内,则三棱锥P —ABC 的体积为( )A .14B .12C .36D .343.从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥A —BCD ,则它的表面积与正方体表面积的比为( ) A .3∶3 B .2∶2 C .3∶6 D .6∶64.若两个球的表面积之比为1:4,则这两个球的体积之比为( )A .1:2B .1:4C .1:8D .1:165.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) A .9π B .10π C .11π D .12π6.某几何体的三视图如下,则它的体积是( )A .8-2π3B .8-π3C .8-2πD .2π37.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为________.9.一个立方体的棱长为a ,则该立方体的外接球表面积为 ,内切球体积为 。
【精品复习】立体几何篇-第2讲 空间几何体的表面积与体积
第2讲空间几何体的表面积与体积【2014年高考会这样考】考查柱、锥、台、球的体积和表面积,由原来的简单公式套用渐渐变为与三视图及柱、锥与球的接切问题相结合,难度有所增大.【复习指导】本讲复习时,熟记棱柱、棱锥、圆柱、圆锥的表面积和体积公式,运用这些公式解决一些简单的问题.基础梳理1.柱、锥、台和球的侧面积和体积面积体积圆柱S侧=2πrh V=Sh=πr2h圆锥S侧=πrlV=13Sh=13πr2h=13πr2l2-r2圆台S侧=π(r1+r2)lV=13(S上+S下+S上S下)h=13π(r21+r22+r1r2)h直棱柱S侧=Ch V=Sh正棱锥S侧=12Ch′V=13Sh正棱台S侧=12(C+C′)h′V=13(S上+S下+S上S下)h球S球面=4πR2V=43πR32.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各面面积之和.(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形;它们的表面积等于侧面积与底面面积之和.两种方法(1)解与球有关的组合体问题的方法,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面进行解题,球与多面体的组合,通过多面体的一条侧棱和球心或“切点”、“接点”作出截面图.(2)等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高.这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.双基自测1.(人教A版教材习题改编)圆柱的一个底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是().A.4πS B.2πSC.πS D.23 3πS解析设圆柱底面圆的半径为r,高为h,则r=S π,又h=2πr=2πS,∴S圆柱侧=(2πS)2=4πS.答案 A2.(2012·东北三校联考)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为().A.3πa2B.6πa2C.12πa2D.24πa2解析由于长方体的长、宽、高分别为2a、a、a,则长方体的体对角线长为(2a)2+a2+a2=6a.又长方体外接球的直径2R等于长方体的体对角线,∴2R=6a.∴S球=4πR2=6πa2.答案 B3.(2011·北京)某四面体的三视图如图所示,该四面体四个面的面积中最大的是( ).A .8B .6 2C .10D .8 2解析 由三视图可知,该几何体的四个面都是直角三角形,面积分别为6,62,8,10,所以面积最大的是10,故选择C. 答案 C 4.(2011·湖南)设右图是某几何体的三视图,则该几何体的体积为( ). A.92π+12 B.92π+18 C .9π+42 D .36π+18解析 该几何体是由一个球与一个长方体组成的组合体,球的直径为3,长方体的底面是边长为3的正方形,高为2,故所求体积为2×32+43π⎝ ⎛⎭⎪⎫323=92π+18.答案 B5.若一个球的体积为43π,则它的表面积为________. 解析 V =4π3R 3=43π,∴R =3,S =4πR 2=4π·3=12π. 答案 12π考向一几何体的表面积【例1】►(2011·安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为().A.48 B.32+817C.48+817 D.80[审题视点] 由三视图还原几何体,把图中的数据转化为几何体的尺寸计算表面积.解析换个视角看问题,该几何体可以看成是底面为等腰梯形,高为4的直棱柱,且等腰梯形的两底分别为2,4,高为4,故腰长为17,所以该几何体的表面积为48+817.答案 C以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.【训练1】若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于().A. 3 B.2C.2 3 D.6解析由正视图可知此三棱柱是一个底面边长为2的正三角形、侧棱为1的直三棱柱,则此三棱柱的侧面积为2×1×3=6.答案 D考向二 几何体的体积【例2】►(2011·广东)如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( ).A .18 3B .12 3C .9 3D .6 3[审题视点] 根据三视图还原几何体的形状,根据图中的数据和几何体的体积公式求解.解析 该几何体为一个斜棱柱,其直观图如图所示,由题知该几何体的底面是边长为3的正方形,高为3,故V =3×3×3=9 3. 答案 C以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.【训练2】 (2012·东莞模拟)某几何体的三视图如图所示,则该几何体的体积等于( ).A.283πB.163π C.43π+8 D .12 π解析 由三视图可知,该几何体是底面半径为2,高为2的圆柱和半径为1的球的组合体,则该几何体的体积为π×22×2+43π=283π.答案 A考向三 几何体的展开与折叠【例3】►(2012·广州模拟)如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体DABC ,如图2所示.(1)求证:BC ⊥平面ACD ; (2)求几何体DABC 的体积.[审题视点] (1)利用线面垂直的判定定理,证明BC 垂直于平面ACD 内的两条相交线即可;(2)利用体积公式及等体积法证明. (1)证明 在图中,可得AC =BC =22,从而AC 2+BC 2=AB 2,故AC ⊥BC , 取AC 的中点O ,连接DO ,则DO ⊥AC ,又平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,DO ⊂平面ADC ,从而DO ⊥平面ABC ,∴DO ⊥BC , 又AC ⊥BC ,AC ∩DO =O ,∴BC ⊥平面ACD .(2)解 由(1)可知,BC 为三棱锥BACD 的高,BC =22,S △ACD =2,∴V BACD = 13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体DABC 的体积为423.(1)有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.(2)研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.【训练3】已知在直三棱柱ABCA1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=2,P是BC1上一动点,如图所示,则CP+P A1的最小值为________.解析P A1在平面A1BC1内,PC在平面BCC1内,将其铺平后转化为平面上的问题解决.计算A1B=AB1=40,BC1=2,又A1C1=6,故△A1BC1是∠A1C1B=90°的直角三角形.铺平平面A1BC1、平面BCC1,如图所示.CP+P A1≥A1C.在△AC1C中,由余弦定理得A1C=62+(2)2-2·6·2·cos 135°=50=52,故(CP+P A1)min=5 2.答案5 2难点突破17——空间几何体的表面积和体积的求解空间几何体的表面积和体积计算是高考的一个常见考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧、把一个空间几何体纳入一个更大的几何体中的补形技巧、对旋转体作其轴截面的技巧、通过方程或方程组求解的技巧等,这是化解空间几何体面积和体积计算难点的关键.【示例1】►(2010·安徽)一个几何体的三视图如图,该几何体的表面积为().A .280B .292C .360D .372【示例2】► (2011·全国新课标)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为________.。
高中数学的几何体表面积和体积公式是哪些
高中数学的几何体表面积和体积公式是哪些高中数学的几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)数学基础差的学生如何提高数学成绩基础薄弱的同学提高数学成绩的方法数学基础打牢,是个非常重要的事,很多及格成绩不到的同学,基本是连计算和公式都不是很过关。
对于这一类学生有以下几点建议。
高中数学立体几何图形体积与表面积总结与应用
高中数学立体几何图形体积与表面积总结与应用立体几何是数学中的一个重要分支,研究三维空间中各种图形的性质和关系。
其中,体积和表面积是立体图形最基本的属性之一,它们在实际生活和工程应用中有着广泛的应用。
本文将对高中数学中常见的几何图形的体积和表面积进行总结,并探讨其在实际中的应用。
一、直线、平面和空间的关系在立体几何中,直线、平面和空间是最基本的概念。
直线是由两个点确定的,平面是由三个非共线的点确定的,而空间则是由四个非共面的点确定的。
直线、平面和空间之间存在着密切的关系,它们相互交叉、相互平行或相互垂直,这些关系在解决实际问题中起到了重要的作用。
二、立体图形的体积和表面积1. 立方体立方体是最简单的立体图形之一,它的六个面都是正方形。
立方体的体积公式是边长的立方,表面积公式是边长的平方乘以6。
立方体在日常生活中有着广泛的应用,如盒子、冰箱等。
2. 正方体正方体是一种特殊的立方体,它的六个面都是正方形且边长相等。
正方体的体积和表面积公式与立方体相同。
正方体在建筑设计和立体几何中经常出现。
3. 圆柱体圆柱体由两个平行的圆面和一个侧面组成。
圆柱体的体积公式是底面积乘以高,表面积公式是底面积加上侧面积。
圆柱体在工程测量和容器设计中有着广泛的应用。
4. 圆锥体圆锥体由一个圆锥面和一个底面组成。
圆锥体的体积公式是底面积乘以高再除以3,表面积公式是底面积加上锥面积。
圆锥体在建筑设计和锥形容器的制作中常见。
5. 球体球体是由所有与球心的距离相等的点组成的。
球体的体积公式是4/3乘以π乘以半径的立方,表面积公式是4乘以π乘以半径的平方。
球体在天文学、体育器材制作等领域有广泛的应用。
三、立体图形的应用1. 建筑设计在建筑设计中,立体图形的体积和表面积的计算是十分重要的。
工程师需要根据建筑物的形状和尺寸来计算材料的用量和成本,以及确定建筑物的承重能力。
2. 容器设计在容器设计中,立体图形的体积和表面积的计算是必不可少的。
空间几何体的表面积和体积公式大全
空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)①棱柱、②圆柱.2・锥体①棱锥:S^ = ^h [②圆锥:= /3、台体①棱台• S梭台侧=空(6?上底+c下底)方'» S全= s±+s『s下②圆台:S杭台側=*(6底+cQZ -4、球体①球:S球=勿/②球冠:略③球缺:略二、体积1、柱体①棱柱} V,=S h②圆柱S S 2、锥体①棱锥} v.=\sh②圆锥S S3、 台体V 台肓//(S 匕+ JS 上S F + S 下)台=齐方(厂上+Jr 上厂下+厂下) 4、 球体①球:V 球② 球冠:略VyT/③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高力计算;而圆锥、圆台的 侧面积计算时使用母线/计算。
三、拓展提高1、 祖眶原理:(祖璀:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。
最早推导出球体体积的祖冲之父子便是运用这个原理实现的。
2、 阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2厂的圆柱形容器内装一个最大 的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的?。
①棱台 ②圆台丿分析:圆柱体积:V H1 = s h =(^r)x2r = 2^/圆柱侧面积:S叭削= c/z = (2岔)X2广=4兀/2 彳4 彳因lit :球体体积:|/厅=—x2/r^ =_龙厂球体表面积:S球=4兀厂通过上述分析,我们可以得到一个很重要的关系(如图)即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、台体体积公式公式:几冷〃(S上+、恳瓦+ S』证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD。
延长两侧棱相交于一点P 0设台体上底面积为Si,下底面积为S下高为// °易知:\PDCs 型AB,设卩£ =人,则Pf+h由相似三角形的性质得:孚=袋AB PF即:(相似比等于面积比的算术平方根)、用hi整理得:人=尺刃又因为台体的体积二大锥体体积一小锥体体积u台=§s下(九+力r s上人人(S下-S上)+§s下方即:(、瓦+丫瓦)+扣下力=|/z $ + 应7+S卜)4、球体体积公式推导分析:将半球平行分成相同高度的若干层(兀层),〃越大,每一层越近似于圆柱'"T -HZ)时»每一层都可以看作是一个圆柱。
高中数学立体几何面积体积公式
高中数学立体几何面积体积公式高中数学里,立体几何的面积体积公式那可是相当重要啊!就像我们生活中的各种工具,用对了就能解决大问题。
先来说说棱柱的体积公式,V = Sh ,其中 S 是底面积,h 是高。
想象一下,一个长长的棱柱,就像我们盖房子用的水泥柱子,底面积就是柱子底部那一块的面积,高就是柱子的长度。
棱锥的体积公式是 V = 1/3Sh ,这就好比是一个尖尖的金字塔,体积只有同底面积同高棱柱的三分之一。
圆柱的体积公式V = πr²h ,r 是底面半径,h 是高。
这个公式让我想起之前去蛋糕店,看到那种圆柱形的蛋糕模具,要算出能做多大的蛋糕,就得靠这个公式。
圆锥的体积公式V = 1/3πr²h ,就像甜筒冰激凌的形状,体积也只有同底同高圆柱的三分之一。
球的体积公式V = 4/3πr³ ,表面积公式S = 4πr² 。
球嘛,就像我们踢的足球,通过这个公式就能知道它内部能装多少气,或者外面的皮料有多大面积。
还记得有一次,学校组织我们去工厂参观。
看到工人们在制作一些金属零件,有圆柱形的,也有圆锥形的。
当时师傅就问我们,如果要做一个特定体积的圆柱零件,已知材料的底面积,那应该做多高呢?大家都面面相觑,我心里默默想着这些体积公式,试着算了算,还真算出了答案。
师傅听了直夸我,那一刻,我真切感受到了掌握这些公式的用处和乐趣。
在做数学题的时候,这些公式可不能记错。
有时候一个小数字的错误,就能让整个答案跑偏。
而且,在实际生活中,像装修房子计算用料、设计物品的形状和大小,都离不开这些公式。
学习立体几何的面积体积公式,就像是掌握了一把打开神秘空间大门的钥匙。
我们可以用它去探索未知,解决难题,感受数学在现实世界中的奇妙应用。
所以,同学们可一定要把这些公式牢记于心,灵活运用,让数学成为我们的得力助手!。
2023年高考数学二轮复习第一部分专题攻略专题四立体几何第一讲空间几何体的表面积与体积
专题四 立体几何第一讲 空间几何体的表面积与体积——小题备考微专题1 空间几何体的表面积和体积常考常用结论1.柱体、锥体、台体、球的表面积公式: ①圆柱的表面积S =2πr (r +l ); ②圆锥的表面积 S =πr (r +l );③圆台的表面积S =π(r ′2+r 2+r ′l +rl ); ④球的表面积S =4πR 2.2.柱体、锥体和球的体积公式: ①V 柱体=Sh (S 为底面面积,h 为高); ②V 锥体=13Sh (S 为底面面积,h 为高);③V 球=43πR 3.保 分 题1.[2022·山东枣庄三模]若圆锥的母线长为2,侧面积为2π,则其体积为( ) A .√6π B .√3π C .√63π D .√33π2.[2022·河北保定一模]圆柱的底面直径与高都等于球的直径,则球的表面积与圆柱的侧面积的比值为( )A .1∶1B .1∶2C .2∶1D .2∶33.[2022·湖北武汉二模]如图,在棱长为2的正方体中,以其各面中心为顶点构成的多面体为正八面体,则该正八面体的体积为( )A .2√23B .43 C .4√23D .83提分题例1 (1)[2022·河北张家口三模]如图,在三棱柱ABC A1B1C1中,过A1B1的截面与AC交于点D,与BC交于点E,该截面将三棱柱分成体积相等的两部分,则CDAC=()A.13B.12C.2−√32D.√3−12(2)[2022·湖南雅礼中学二模]某圆锥高为1,底面半径为√3,则过该圆锥顶点的平面截此圆锥所得截面面积的最大值为()A.2 B.√3C.√2D.1听课笔记:【技法领悟】1.求几何体的表面积及体积问题,可以多角度、多方位地考虑,熟记公式是关键.求三棱锥的体积,等体积转化是常用的方法,转化原则是其高易求,底面放在已知几何体的某一面上.2.求不规则几何体的体积,常用分割或补形的方法,将不规则几何体转化为规则几何体,易于求解.巩固训练11.[2022·山东菏泽一模]如图1,在高为h的直三棱柱容器ABC A1B1C1中,AB=AC=2,AB⊥AC.现往该容器内灌进一些水,水深为2,然后固定容器底面的一边AB于地面上,再将容器倾斜,当倾斜到某一位置时,水面恰好为A 1B 1C (如图2),则容器的高h 为( )A .3B .4C .4√2D .62.[2022·福建福州三模]已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB ⊥CD ,O 1,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A BCD 的体积为18,则该圆柱的侧面积为( )A .9πB .12πC .16πD .18π微专题2 与球有关的切、接问题常考常用结论1.球的表面积S =4πR 2,体积V =43πR 3.2.长方体、正方体的体对角线等于其外接球的直径. 3.n 面体的表面积为S ,体积为V ,则内切球的半径r =3VS .4.直三棱柱的外接球半径:R =√r 2+(L2)2,其中r 为底面三角形的外接圆半径,L 为侧棱长,如果直三棱柱有内切球,则内切球半径R ′=L2.5.正四面体中,外接球和内切球的球心重合,且球心在高对应的线段上,它是高的四等分点,球心到顶点的距离为外接球的半径R =√64a (a 为正四面体的棱长),球心到底面的距离为内切球的半径r =√612a ,因此R ∶r =3∶1.保 分 题1.[2022·广东深圳二模]已知一个球的表面积在数值上是它的体积的√3倍,则这个球的半径是( )A .2B .√2C .3D .√32.已知正四棱锥P ABCD 中,AB =√6,P A =2√3,则该棱锥外接球的体积为( )A.4π B.32π3C.16π D.16π33.[2022·天津红桥一模]一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1、√2、3,则此球的体积为________.提分题例2 (1)[2022·江苏苏州三模]《九章算术》卷第五《商功》中,有“贾令刍童,上广一尺,袤二尺,下广三尺,袤四尺,高一尺.”,意思是:“假设一个刍童,上底面宽1尺,长2尺;下底面宽3尺,长4尺,高1尺.”(注:刍童为上下底面为相互平行的不相似长方形,两底面的中心连线与底面垂直的几何体),若该几何体所有顶点在一球体的表面上,则该球体的体积为()立方尺A.√41πB.41π3D.3√41πC.41√41π6(2)[2022·山东泰安三模]如图,已知三棱柱ABC A1B1C1的底面是等腰直角三角形,AA1⊥底面ABC,AC=BC=2,AA1=4,点D在上底面A1B1C1(包括边界)上运动,则三棱锥D ABC 的外接球表面积的最大值为()π B.24πA.814C.243π D.8√6π16听课笔记:【技法领悟】1.确定球心的位置,弄清球的半径(直径)与几何体的位置和数量关系.2.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.3.补成正方体、长方体、正四面体、正棱柱、圆柱等规则几何体.巩固训练21.已知圆柱的轴截面为正方形,其外接球为球O,球O的表面积为8π,则该圆柱的体积为()A.√22π B.√2πC.2π D.2√2π2.[2022·广东潮州二模]已知△ABC是边长为3的等边三角形,三棱锥P ABC全部顶点都在表面积为16π的球O的球面上,则三棱锥P ABC的体积的最大值为()A.√3B.3√32C.9√34D.√32专题四 立体几何第一讲 空间几何体的表面积与体积微专题1 空间几何体的表面积和体积保分题1.解析:设圆锥的底面半径为r ,高为h ,则πr ×2=2π,可得r =1,则h =√22−r 2=√3,因此,该圆锥的体积为V =13πr 2h =13π×12×√3=√33π. 答案:D2.解析:设球的半径为r ,依题意圆柱的底面半径也是r ,高是2r , 圆柱的侧面积=2πr ·2r =4πr 2 ,球的表面积为4πr 2 , 其比例为1∶1. 答案:A3.解析:该正八面体是由两个同底的正四棱锥组成,且正四棱锥的底面是边长为√2的正方形,棱锥的高为1,所以该正八面体的体积为2×13×√2×√2×1=43.答案:B提分题[例1] 解析:(1)由题可知平面A 1B 1ED 与棱柱上、下底面分别交于A 1B 1,ED , 则A 1B 1∥ED ,ED ∥AB , 显然CDE - C 1A 1B 1是三棱台,设△ABC 的面积为1,△CDE 的面积为S ,三棱柱的高为h , ∴12·1·h =13h (1+S +√S ), 解得√S =√3−12,由△CDE ∽△CAB ,可得CD AC =√S√1=√3−12. (2)如图,截面为△P AB ,设C 为AB 中点,设OC =x ,x ∈[0,√3),则AB =2√3−x 2,PC =√x 2+1,则截面面积S =12×2√3−x 2×√x 2+1=√−(x 2−1)2+4,则当x 2=1时,截面面积取得最大值为2. 答案:(1)D (2)A[巩固训练1]1.解析:在图1中V 水=12×2×2×2=4,在图2中,V 水=V ABC − A 1B 1C 1− V C − A 1B 1C 1=12×2×2×h -13×12×2×2×h =43h , ∴43h =4,∴h =3.答案:A2.解析:分别过A ,B 作圆柱的母线AE ,BF ,连接CE ,DE ,CF ,DF ,设圆柱的底面半径为r ,则三棱锥A - BCD 的体积为两个全等四棱锥C - ABFE 减去两个全等三棱锥A - CDE , 即2×13×r ×2r ×r -2×13×r ×12×2r ×r =23r 3=18,则r =3,圆柱的侧面积为2πr ×r =18π答案:D微专题2 与球有关的切、接问题保分题1.解析:设球的半径为R ,则根据球的表面积公式和体积公式, 可得,4πR 2=43πR 3×√3,化简得R =√3. 答案:D2.解析:正方形ABCD 的对角线长√6+6=2√3,正四棱锥的高为 √(2√3)2−(2√32)2=3,设外接球的半径为R ,则(3-R )2+(2√32)2=R 2⇒R =2, 所以外接球的体积为4π3×23=32π3.答案:B3.解析:长方体外接球的直径为√12+(√2)2+32=2√3,所以外接球半径为√3,所以球的体积为4π3×(√3)3=4√3π.答案:4√3π提分题[例2] 解析:(1)作出图象如图所示:由已知得球心在几何体的外部, 设球心到几何体下底面的距离为x , 则R 2=x 2+(52)2=(x +1)2+(√52)2,解得x =2,∴R 2=414, ∴该球体的体积V =4π3×(√412)3=41√41π6.(2)因为△ABC 为等腰直角三角形,AC =BC =2,所以△ABC 的外接圆的圆心为AB 的中点O 1, 且AO 1=√2,连接O 1与A 1B 1的中点E ,则O 1E ∥AA 1,所以O 1E ⊥平面ABC , 设球的球心为O ,由球的截面性质可得O 在O 1E 上, 设OO 1=x ,DE =t (0≤t ≤√2),半径为R , 因为OA =OD =R ,所以√2+x 2=√(4−x )2+t 2, 所以t 2=8x -14,又0≤t ≤√2, 所以74≤x ≤2,因为R 2=2+x 2,所以8116≤R 2≤6,所以三棱锥D -ABC 的外接球表面积的最大值为24π. 答案:(1)C (2)B [巩固训练2]1.解析:设外接球的半径为R ,圆柱底面圆的半径为r ,因为圆柱的轴截面为正方形,所以圆柱的高h =2r ,由球O 的表面积S =4πR 2=8π,得R =√2,又R = √(h2)2+r 2=√2r ,得r =1,所以圆柱的体积V =πr 2·2r =2πr 3=2π.答案:C2.解析:球O 的半径为R ,则4πR 2=16π,解得:R =2,由已知可得:S △ABC =√34×32=9√34,其中AE =23AD =√3,球心O 到平面ABC 的距离为√R 2−(√3)2=1, 故三棱锥P - ABC 的高的最大值为3, 体积最大值为13S △ABC ·3=9√34.答案:C。
立体几何中的体积公式计算与推导
立体几何中的体积公式计算与推导立体几何是数学中的一个重要分支,研究的是三维空间中的图形和体积。
其中,计算和推导体积公式是立体几何中的关键问题之一。
本文将探讨几个常见的立体体积公式,并介绍它们的计算方法和推导过程。
一、长方体的体积公式长方体是最简单的立体图形,它的体积公式为:体积 = 长 ×宽 ×高。
这个公式可以通过将长方体切割成小立方体来推导得到。
我们可以将长方体切割成n个小立方体,每个小立方体的体积为单位体积,即1。
所以,整个长方体的体积就是n个单位体积的总和,即n × 1 = n。
而n就是长方体的长、宽、高的乘积,即长 ×宽 ×高。
二、正方体的体积公式正方体是一种特殊的长方体,它的长、宽和高相等。
正方体的体积公式可以通过长方体的体积公式推导得到。
因为正方体的长、宽和高相等,所以它的体积公式可以简化为:体积 = 边长 ×边长 ×边长,即体积 = 边长的立方。
这个公式可以通过将正方体切割成小立方体来推导得到,与长方体的推导过程类似。
三、圆柱的体积公式圆柱是一个常见的立体图形,它的体积公式为:体积 = 底面积 ×高。
底面积可以通过圆的面积公式计算得到,即底面积= π ×半径的平方。
将这个公式代入圆柱的体积公式中,即可得到圆柱的体积公式:体积= π × 半径的平方 ×高。
这个公式可以通过将圆柱切割成无数个薄片,然后将这些薄片展开成一个长方体来推导得到。
四、球体的体积公式球体是一个特殊的立体图形,它的体积公式可以通过球的表面积公式推导得到。
球的表面积公式为:表面积= 4π × 半径的平方。
将球体切割成无数个薄片,然后将这些薄片展开成一个圆柱体,可以得到球体的体积公式:体积= 4/3 × π × 半径的立方。
五、锥体的体积公式锥体是一个常见的立体图形,它的体积公式为:体积 = 1/3 ×底面积 ×高。
高中数学中的立体几何体积与表面积解题技巧
高中数学中的立体几何体积与表面积解题技巧立体几何是高中数学中的一个重要部分,它涉及到体积和表面积的计算。
在解题过程中,掌握一些技巧可以帮助我们更轻松地解决问题。
本文将探讨在高中数学中解决立体几何体积和表面积问题的一些技巧。
一、计算立体几何体积的技巧1. 确定基本单位体积:在计算复杂立体的体积时,可以将其分解为较简单的立体体积进行计算,然后再进行求和。
这个简单立体可以视为基本单位体积,比如长方体、正方体等。
将复杂立体按照基本单位体积进行分解,可以简化计算过程。
2. 运用基本立体体积的公式:掌握各种基本立体的体积公式是解决立体几何体积问题的基础。
比如,长方体的体积公式为V = lwh,其中l、w、h分别表示长、宽和高。
同时,正方体的体积公式为V = a³,其中a表示边长。
3. 利用立体几何相似性质:当两个立体形状相似时,它们的体积之比等于边长之比的立方。
这个性质在解决一些复杂立体体积的问题时非常有用。
4. 十进制与立体几何的转化:在实际问题中,有时需要将立体几何的体积转化为十进制数或分数进行计算。
在这种情况下,需要注意单位的转换,并运用基本运算法则进行计算。
二、计算立体几何表面积的技巧1. 运用基本立体表面积的公式:和体积计算类似,掌握各种基本立体的表面积公式是解决立体几何表面积问题的基础。
比如,长方体的表面积公式为S = 2lw + 2lh + 2wh,其中l、w、h分别表示长、宽和高。
同时,正方体的表面积公式为S = 6a²,其中a表示边长。
2. 利用立体几何的展开图:对于某些复杂立体,可以根据其展开图来计算表面积。
展开图是将立体展开成一个平面图形,然后计算各个图形的面积再求和。
这个技巧在解决某些多面体和圆柱体表面积的问题时非常实用。
3. 利用立体几何的旋转对称性质:当立体具有旋转对称性时,可以只计算一部分表面积,然后再进行乘法运算得到整个表面积。
这个技巧可以简化计算步骤。
4. 注意单位的转换:在计算表面积时,要注意单位的转换。
立体几何体的体积与表面积知识点总结
立体几何体的体积与表面积知识点总结立体几何体是我们生活中常见的三维物体,了解其体积与表面积的计算方法对于各种实际问题的解决非常重要。
下面对立体几何体的体积与表面积的知识点进行总结,希望能对读者有所帮助。
一、点、线、面与立体几何体的定义在开始探讨立体几何体的体积与表面积之前,我们先了解一下几何学中的基本概念。
1. 点:几何学中最基本的概念,没有长度、宽度和高度,只有位置。
2. 线:由无限多个点组成,具有长度和方向的一维几何图形。
3. 面:由无数条线段组成,具有长度和宽度,是一个二维几何图形。
4. 立体几何体:由无数个面组成,具有长度、宽度和高度,是一个三维几何图形。
二、立体几何体的体积计算方法体积是用来衡量立体几何体空间容积大小的指标,下面介绍几种常见立体几何体的体积计算方法。
1. 立方体的体积计算:立方体是一个六个相等的正方形面构成的立体几何体。
其体积计算方法是边长的立方,即体积 = 边长 ×边长 ×边长长方体是一个由矩形面构成的立体几何体。
其体积计算方法是底面积乘以高,即体积 = 长 ×宽 ×高3. 圆柱体的体积计算:圆柱体是一个由两个平行圆面和一个矩形面构成的立体几何体。
其体积计算方法是底面积乘以高,即体积= π × 半径² ×高4. 圆锥体的体积计算:圆锥体是一个由一个圆锥面和一个扇形面构成的立体几何体。
其体积计算方法是底面积乘以高再除以3,即体积= 1/3 × π × 半径² ×高5. 球体的体积计算:球体是一个由无数个半径相等的曲面组成的立体几何体。
其体积计算方法是4/3乘以π乘以半径的立方,即体积= 4/3 × π × 半径³三、立体几何体的表面积计算方法表面积是用来衡量立体几何体外部各个面的总面积的指标,下面介绍几种常见立体几何体的表面积计算方法。
空间几何体的表面积与体积公式大全
外接球的半径
4
(3)规律:
:u 正四而体
=3 品 兀:2
① 正四面体的内切球与外接球的球心为同一点;
② 正四面体的内切球与外接球的球心在高线上;
③ 正四面体的内切球与外接球的的半径之和等于高;
④ 正四面体的内切球与外接球的半径之比等于 1: 3
⑤ 正四面体内切球与外接球体积之比为:1: 27
(2)外接球
正方体与其体内最大的正四而体有相同的外接球。(理由:过不共面的
四点确定一个球。)正方体与其体内最大的正面体有四个公共顶点。所 以它们共球。
回顾:①两点定线②三点定面③三点定圆④四点定球
如图:
(a) 正方体的体对角线=球直径 (b) 正四面体的外接球半径二?高
4
(C)正四面体的棱长=正方体棱长 X 72 (d) 正方体体积:正四面体体积=3: 1 (e) 正方体外接球半径与
1
方法 1:展平分析:(最重要的方法) 如图:取立体图形中的关键平面图形进行分析!
/ Ft''、、 /』)''、、、
连接 DO 并延长交平面 ABC 于点 G,连接 GO, /
X:;盖]
连接 DO,并延长交 BC 于点 E,则 A、G、E B 笔共线< J A —c 在平面 AED 中,由相似
知识可得:
成正方体进行分析。如图:
1 文档来源为:从网络收集整理.word 版本可编借.
文档收集于互联网,已重新整理排版 word 版本可编辑•欢迎下载支持. 此时,正四面体与正方体有共同的外接球。
正四面体的棱长为“,则正方体棱长
正方体的外接球直径为其体对角线 D 亠嗨号
•••正四面体的外接球半径为: 2=也
2022复习立体几何----空间几何体及其表面积与体积(学
空间几何体的表面积和体积知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.1.正方体与球的切、接常用结论正方体的棱长为a,球的半径为R(1)若球为正方体的外接球,则2R=3a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=2a.2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2.3.正四面体的外接球的半径R=64a,内切球的半径r=612a,其半径R∶r=3∶1(a为该正四面体的棱长).诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)锥体的体积等于底面面积与高之积.()(2)两个球的体积之比等于它们的半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=32a.()2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1 cmB.2 cmC.3 cmD.32cm3.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.4.(2020·天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.24πC.36πD.144π5.(2020·全国Ⅲ卷)如图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+236.(2020·浙江卷)已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是__________.考点一空间几何体的表面积与侧面积1.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π2.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3B.6+23C.12+ 3D.12+233.(2021·成都诊断)如图,四面体各个面都是边长为1的正三角形,其三个顶点在一个圆柱的下底面圆周上,另一个顶点是上底面圆心,圆柱的侧面积是()A.23π B.324πC.223π D.22π考点二空间几何体的体积角度1简单几何体的体积【例1】(1)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是()A.158B.162C.182D.324(2)(2019·天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为________.【训练1】(1)(2019·江苏卷)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是________.(2)已知某几何体的三视图如图所示,则该几何体的体积为________.角度2不规则几何体的体积【例2】如图,在多面体ABCDEF中,已知四边形ABCD是边长为1的正方形,且△ADE,△BCF 均为正三角形,EF∥AB,EF=2,则该多面体的体积为________.【训练2】(2020·浙江卷)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73 B.143C.3D.6考点三多面体与球的切、接问题【例3】(经典母题)(2021·长沙检测)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是________.【迁移】本例中若将“直三棱柱”改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?【训练3】(1)(2020·全国Ⅲ卷)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________.(2)(2021·济南质检)已知球O是三棱锥P-ABC的外接球,P A=AB=PB=AC=2,CP=22,点D是PB的中点,且CD=7,则球O的表面积为()A.28π3 B.14π3C.2821π27 D.16π3空间几何体的实际应用“强调应用”也是高考卷命题的指导思想,体现了新课标的“在玩中学,在学中思,在思中得”的崭新理念,既有利于培养考生的探究意识和创新精神,又能够很好地提升考生的数学综合素养,因而成为高考试卷中的一道亮丽的风景线.如全国Ⅲ卷第16题是以学生到工厂劳动实践,利用3D打印技术制作模型为背景创设的与空间几何体的体积有关的问题.考查运用空间几何求解实际问题的能力.【典例】(2019·全国Ⅲ卷)学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体.其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6 cm,AA1=4 cm.3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为______g.【训练】(2021·潍坊联考)如图所示,直三棱柱ABC-A1B1C1是一块石材,测量得∠ABC=90°,AB=6,BC=8,AA1=13.若将该石材切削、打磨,加工成几个大小相同的健身手球,则一个加工所得的健身手球的最大体积及此时加工成的健身手球的个数分别为()A.32π3,4 B.9π2,3C.6π,4D.32π3,3A级基础巩固一、选择题1.体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.32 3πC.8πD.4π2.(2021·郑州调研)现有同底等高的圆锥和圆柱,已知圆柱的轴截面是边长为2的正方形,则圆锥的侧面积为()A.3πB.3π2C.5π2 D.5π3.如图所示,正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为3,D为BC中点,则三棱锥A-B1DC1的体积为()A.3B.3 2C.1D.3 24.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为()A.3172B.210C.132D.3105.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4 C.π2 D.π46.(2020·全国Ⅱ卷)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C.1 D.327.一个几何体的三视图如图所示,其中俯视图是半径为r 的圆,若该几何体的体积为98π,则它的表面积是( )A.92πB.9πC.454πD.544π8.(2021·安庆调研)已知在四面体P ABC 中,P A =4,BC =26,PB =PC =23,P A ⊥平面PBC ,则四面体P ABC 的外接球的表面积是( ) A.160π B.128π C.40π D.32π二、填空题9.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.10.已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为________.11.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)为________.12.(2021·太原质检)已知圆锥的顶点为S,底面圆周上的两点A、B满足△SAB为等边三角形,且面积为43,又知圆锥轴截面的面积为8,则圆锥的侧面积为________.B级能力提升13.(2020·全国Ⅰ卷)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π14.已知四面体ABCD中,AB=AD=BC=DC=BD=5,AC=8,则四面体ABCD的体积为________.15.(2021·贵阳调研)如图,三棱锥的所有顶点都在一个球面上,在△ABC中,AB=3,∠ACB=60°,∠BCD=90°,AB⊥CD,CD=22,则该球的体积为________.16.(2019·北京卷)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为______.。
进阶初中数学如何理解和应用立体几何的体积和表面积
进阶初中数学如何理解和应用立体几何的体积和表面积在初中数学中,立体几何是一个重要的内容,其中体积和表面积是最基础的概念之一。
理解和应用立体几何的体积和表面积不仅可以帮助我们解决实际问题,还能培养我们的空间想象力和逻辑思维能力。
本文将详细介绍如何理解和应用立体几何的体积和表面积。
一、理解立体几何的体积体积是立体几何中一个重要的概念,它用于描述一个立体物体所占据的空间大小。
在初中数学中,我们主要学习了几种常见的立体体积的计算方法,如长方体、正方体、圆柱体、锥体和球体等。
首先,我们来了解长方体的体积计算方法。
长方体具有三个相互垂直的矩形面,底面积为A,高度为h,那么它的体积V等于底面积A 乘以高度h,即V=A*h。
接下来,我们学习正方体的体积计算方法。
正方体的六个面都是正方形,边长为a,那么它的体积V等于边长a的立方,即V=a³。
然后,我们研究圆柱体的体积计算方法。
圆柱体由一个圆面和一个平行于圆底的矩形面组成,圆面的半径为r,矩形面的长为l,圆柱体的高度为h,那么它的体积V等于底面积πr²乘以高度h,即V=πr²*h。
接着,我们讨论锥体的体积计算方法。
锥体由一个圆锥面和一个圆锥底面组成,圆锥底面的半径为r,圆锥体的高度为h,那么它的体积V等于底面积πr²乘以高度h再除以3,即V=πr²*h/3。
最后,我们研究球体的体积计算方法。
球体的体积V等于4/3乘以π乘以半径r的立方,即V=4/3πr³。
通过理解和掌握这些常见立体体积的计算方法,我们就能够准确地计算不同形状的立体物体的体积。
二、应用立体几何的体积理解立体几何的体积不仅仅是为了应对数学考试,更重要的是能够将所学知识应用于实际生活中。
立体几何的体积在日常生活中有着广泛的应用。
首先,体积的应用之一是在容器的设计中。
比如,制作一个容器,我们需要考虑到容器所需的容量大小,这时就需要计算容器的体积来满足使用需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.【要点归纳】
1.多面体的面积和体积公式
表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表斜高,h ′表示斜高,l 表示侧棱长。
2.旋转体的面积和体积公式 表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径 二.【典例解析】
题型1:柱体的体积和表面积
例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长.
点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的
名称 侧面积(S 侧) 全面积(S 全) 体 积(V) 棱 柱 棱柱 直截面周长×l
S 侧+2S 底
S 底·h=S 直截面·h
直棱柱 ch
S 底·h
棱 锥 棱锥 各侧面积之和
S 侧+S 底
3
1
S 底·h 正棱锥 2
1
ch ′ 棱 台
棱台 各侧面面积之和
S 侧+S 上底+S 下底
3
1
h(S 上底+S 下底+下底下底S S )
正棱台
2
1
(c+c ′)h ′ 名称 圆柱 圆锥 圆台 球
S 侧 2πrl πrl π(r 1+r 2)l
S 全 2πr(l+r) πr(l+r)
π(r 1+r 2)l+π(r 21+r 22)
4πR 2
V
πr 2
h(即πr 2
l)
3
1
πr 2h 3
1
πh(r 21+r 1r 2+r 22) 3
4
πR 3
表面积多被考察。
我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。
例2.在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=
3
π。
(1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上;(2)求这个平行六面体的体积
题型2:柱体的表面积、体积综合问题
例3.一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .23
B .32
C .6
D .6
点评:解题思路是将三个面的面积转化为解棱柱面积、体积的几何要素—棱长。
例4.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= ____ _。
点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。
最后用统一的量建立比值得到结论即可 题型3:锥体的体积和表面积
例5.一空间几何体的三视图如图所示,则该几何体的体积为( ).
A.223π+
B. 423π+
C. 323π+
D. 23
43
π+
【命题立意】:本题考查了立体几何中的空间想象能力,
由三视图能够想象得到空间的立体图,并能准确地计算出.几何体的体积.
例6、设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45°角的平面截球O 的表面得到圆C 。
若圆C 的面积等于
4
7π
,则球O 的表面积等于 例7.ABCD 是边长为4的正方形,E 、F 分别是AB 、AD 的中点,GB 垂直于正方形ABCD 所在
2 2
侧(左)视
2 2
正(主)
D
B
A
O C
E
F
的平面,且GC =2,求点B 到平面EFC 的距离
点评:该问题主要的求解思路是将点面的距离问题转化为体积问题来求解。
构造以点B 为顶点,△EFG 为底面的三棱锥是解此题的关键,利用同一个三棱锥的体积的唯一性列方程是解这类题的方法,从而简化了运算。
例8.已知三个球的半径1R ,2R ,3R 满足32132R R R =+,则它们的表面积1S ,2S ,3S ,满足的等量关系是______.
例11.如图所示,球面上有四个点P 、A 、B 、C ,如果PA ,PB ,PC 两两互相
垂直,且PA=PB=PC=a ,求这个球的表面积。
点评:本题也可用补形法求解。
将P —ABC 补成一个正方体,由对称性可知,正方体内接于球,则球的直径就是正方体的对角线,易得球半径R=2
3
a ,下略 题型4:球的面积、体积综合问题
例9.(1)表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积。
(2)正四面体ABCD 的棱长为a ,球O 是内切球,球O 1是与正四面体的三个面和球O 都相切的一个小球,求球O 1的体积。
题型5:球面距离问题
例10.在北纬45圈上有,A B 两点,设该纬度圈上,A B 两点的劣弧长为2
4
R π(R 为地球半径),求,A B 两点间的球面距离
点评:要求两点的球面距离,必须先求出两点的直线距离,再求出这两点的球心角,进而求出这两点的球面距离。