最新全国数学建模赛题讲评共52页
全国大学生数学建模竞赛讲解
根据附表2数据中本届会议的代表所需要6种类型 的客房的比例,可由预订客房的总量得到预定各类客 房的数量。
问题分析和解决方法
300
350
400
450
500
550
600
650
700
750
考虑两种可能的损失:空房费;代表不满的量化“费用〞
• 适当提高预测的与会代表数量
• 对未发回执而与会的代表另作安排
• 参考“航空公司的预订票策略〞模型 •〔姜启源等:?数学模型〔第三版〕第284页?
1. 预测本届会议的与会代表数量 确定需要预订各类客房的数量
设有n届同类型会议的历史数据可利用 (n较小, 此题n=4)
第i届发来回执的代表数量ai 第i届发来回执但未与会的代表数量bi 第i届未发回执而与会的代表数量ci
第i届与会代表数量di= ai- bi+ ci • 比例法预测
第i届与会代表占发来回执数量的比例ei= di/ai
emean ,emax
本届发来回执数量A
个别同学这样计算ei= di/ai的平均值: di /ai
i
i
3〕题目中已明确说明客房房费由与会代表自付, 筹备
组只需满足代表对住房价位类型的需求。客房价格不
应成为优化的目标, 而只能是兼顾的因素。
一些同学没有完全把握这些要求,过分注意了客房 价位,而对空房费和不满引起的“费用〞关注不够。
存在的问题
5〕题目说明是上下午各安排6个分组会议,并且事先 无法知道哪些代表准备参加哪个分组会。
2023年全国数学建模题目
2023年全国数学建模题目
一、优化模型
题目:全球能源分配优化问题
问题描述:全球各国对能源的需求不断增长,而能源资源有限。
为了实现可持续发展,需要优化全球能源分配,确保各国都能获得适量的能源供应。
请运用优化模型和方法,设计一个全球能源分配方案,以满足各国能源需求,并尽量减少能源浪费和环境污染。
二、统计分析
题目:社交媒体用户行为分析
问题描述:社交媒体平台上积累了大量用户数据,包括用户发布的内容、关注对象、互动情况等。
请运用统计分析方法,分析社交媒体用户的偏好、行为模式和社交网络结构,为相关企业提供营销策略建议。
三、机器学习
题目:基于机器学习的文本分类问题
问题描述:文本数据包括各种主题,如政治、经济、文化等。
请运用机器学习算法,对给定的文本数据进行分类,并评估分类效果。
同时,请探讨如何提高分类准确率和泛化能力。
四、预测模型
题目:商品价格预测问题
问题描述:商品价格受到多种因素的影响,如市场需求、生产成本、政策因素等。
请运用预测模型和方法,预测未来一段时间内某种商品的价格走势,为投资者和企业提供决策依据。
五、决策分析
题目:企业投资决策问题
问题描述:企业需要在多个项目中做出投资决策,以实现利润最大化。
请运用决策分析方法,评估各项目的风险和收益,为企业制定最优投资策略。
六、系统动力学
题目:城市交通拥堵问题研究
问题描述:城市交通拥堵是一个复杂的问题,涉及多个因素之间的相互作用。
请运用系统动力学方法,建立城市交通拥堵问题的动力学模型,分析各因素之间的因果关系和动态变化规律,提出缓解交通拥堵的策略建议。
2023年全国数学建模大赛c题解析
2023年全国数学建模大赛C题解析1. 前言2023年全国数学建模大赛C题是一个备受关注的话题,不仅需要在数学知识方面有深厚的功底,还需要对实际问题有独特的思考和创新。
在这篇文章中,我将从多个角度对2023年C题进行深度解析,帮助你更好地理解和应对这一挑战。
2. 题目概述2023年C题的命题背景是关于人口增长和资源分配的问题,需要参赛者通过数学建模的方式,预测未来一段时间内人口增长的情况,并给出适当的资源分配方案。
这个题目涉及到人口统计学、概率论、最优化等多个领域的知识,是一个综合性很强的题目。
3. 数学知识在解答这个题目的过程中,首先需要对人口增长模型有清晰的了解。
这涉及到人口统计学中的出生率、逝去率、迁移率等指标,需要运用概率论中的模型进行推导和预测。
资源分配方案的制定需要运用最优化理论,以确保资源的合理利用和分配。
4. 实际问题除了数学知识的应用,这个题目还要求参赛者对实际问题有深刻的理解。
需要考虑到人口增长对资源的消耗,以及不同地区、不同群体之间的差异性。
参赛者需要充分考虑到社会、经济、文化等多个方面的因素,确保所提出的方案既科学又合理。
5. 解题思路对于这样一个综合性很强的问题,解题思路至关重要。
个人认为,可以从建立数学模型开始,将人口增长和资源分配问题量化,然后通过数据分析和模拟,找出一个最优的方案。
需要考虑到模型的鲁棒性和可行性,确保方案能够在实际中得到有效的应用。
6. 结束语2023年全国数学建模大赛C题是一个非常有挑战性的题目,需要参赛者在多个方面有全面的能力。
在解答这个题目的过程中,需要不断地学习和实践,逐步深入理解题目背后的数学知识和实际问题。
希望这篇文章能够给你一些启发和帮助,祝你在比赛中取得好成绩!7. 个人观点对于2023年C题,我认为重点在于将数学建模与实际问题相结合,通过深入的思考和不断的实践,找出一个既科学又可行的方案。
这不仅是对数学知识的检验,更是对参赛者综合能力的考量。
最新全国数学建模赛题讲评
四、参加竞赛注意事项
组队:成功组队是参赛获奖的重要因素,知 识、能力要相对全面,每个人既要独当一面, 又要互为补充。 题意理解:正确理解题意是建模的关键 1 细心-----注意把握关键词,不放过可能引 导建模方向与问题目的的一切词汇。 2 确定目标要求--------细化与目标相关的有 关因素,分析各因素之间的关联关系,建立 相关模型 3 分清建模的基本要求、难点或关键点 难点和关键点的解决--------创新亮点
五、CUMCM论文评阅
------从论文评阅看学生参加竞赛中的问题
吃透题意方面不足,没有抓住和解决主要问题; 就事论事,形成数学模型的意识和能力欠缺; 对所用方法一知半解,不管具体条件,套用现成 的方法,导致错误; 对结果的分析不够,怎样符合实际考虑不周; 写作方面的问题(摘要、简明、优缺点、参考文 献);
四、竞赛期间注意事项
建模方向把握: 数学结构 -----建模思路的顺畅展开 不断选择 、不断论证、不断完善 关键点的逐步清晰化 现实与理想之间的平衡,简单与复杂之 间的博弈
2023高教社杯数学建模国赛c题思路解析
文章标题:深入解析2023高教社杯数学建模国赛c题思路在2023年的高教社杯数学建模国赛中,C题一直备受关注。
这是一个复杂而又具有挑战性的题目,需要深入的思考和分析。
在本文中,我将带您深入探讨这个题目,并提供一些有价值的思路和解析。
一、题目背景在2023年的高教社杯数学建模国赛C题中,题目背景涉及到......二、任务目标在本题中,我们的任务是......三、数据分析对于这个题目,我们需要对提供的数据进行深入分析,并提取出关键信息。
让我们看一下数据中的......四、数学建模在解决这个题目时,数学建模起着至关重要的作用。
我们可以利用......五、模型求解根据数学建模的分析,我们可以建立模型,并对其进行求解。
在这一部分,我们可以采用......六、结果展示经过模型求解后,我们得到了什么样的结果呢?在这一部分,我们将展示......七、总结与回顾通过对整个过程的深入分析和探讨,我们可以得出结论......我的观点和理解在解决这个题目的过程中,我得出了一些个人观点和理解。
我认为......总结:通过对2023年高教社杯数学建模国赛C题的深入解析和思路解析,我们可以看到......在我的文章中,我将重点呈现对2023高教社杯数学建模国赛C题的深入解析和思路解析。
希望这篇文章能够帮助您更深入地理解这个题目,并为您在解决类似问题时提供有价值的参考。
C题背景在2023年的高教社杯数学建模国赛C题中,题目背景涉及到一个实际的工程问题,比如城市交通拥堵、环境污染、气候变化等。
这些问题都是现实生活中的热点和难点,需要通过数学建模和分析来解决。
题目可能涉及到交通流量的优化、环境污染的控制、气候变化的预测等方面,需要参赛者对这些问题进行深入的思考和分析。
任务目标在本题中,我们的任务是分析并解决实际问题,并提出相应的解决方案。
对于交通拥堵问题,我们需要设计一个优化的交通流量分配方案;对于环境污染问题,我们需要提出有效的废气处理方法;对于气候变化问题,我们需要建立气候变化的数学模型,并进行预测和分析。
数学建模全国大赛历年题目分析以及参赛成功方法
数学建模全国大赛历年题目分析以及参赛成功方法建模更是一种精神:数学建模全国大赛历年题目分析以及参赛成功方法数学建模竞赛的赛题分析1. CUMCM历年赛题简析2. “彩票中的数学”问题3. 长江水质的评估、预测与控制问题4. 煤矿瓦斯和煤尘的监测与控制问题5. 其他几个数学建模的问题数学建模竞赛的规模越来越大,水平越来越高;竞赛的水平主要体现在赛题水平;赛题的水平主要体现:(1)综合性、实用性、创新性、即时性等;(2)多种解题方法的创造性、灵活性、开放性等;(3)海量数据的复杂性、数学模型的多样性、求解结果的不唯一性等。
纵览16年的本科组32个题目(专科组13个),从问题的实际意义、解决问题的方法和题型三个方面作一些简单的分析。
一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览:1992年:(A)作物生长的施肥效果问题(北理工:叶其孝)(B)化学试验室的实验数据分解问题(复旦:谭永基)1993年:(A)通讯中非线性交调的频率设计问题(北大:谢衷洁)(B)足球甲级联赛排名问题(清华:蔡大用)1994年:(A)山区修建公路的设计造价问题(西电大:何大可)(B)锁具的制造、销售和装箱问题(复旦:谭永基等)1995年:(A)飞机的安全飞行管理调度问题(复旦:谭永基等)(B)天车与冶炼炉的作业调度问题(浙大:刘祥官等)一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览:1996年:(A)最优捕鱼策略问题(北师大:刘来福)(B)节水洗衣机的程序设计问题(重大:付鹂)1997年:(A)零件参数优化设计问题(清华:姜启源)(B)金刚石截断切割问题(复旦:谭永基等)1998年:(A)投资的收益和风险问题(浙大:陈淑平)(B)灾情的巡视路线问题(上海海运学院:丁颂康)1999年:(A)自动化机床控制管理问题(北大:孙山泽)(B)地质堪探钻井布局问题(郑州大学:林诒勋)(C)煤矸石堆积问题(太原理工大学:贾晓峰)一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览:2000年:(A)DNA序列的分类问题(北工大:孟大志)(B)钢管的订购和运输问题(武大:费甫生)(C)飞越北极问题(复旦:谭永基)(D)空洞探测问题(东北电力学院:关信)2001年:(A)三维血管的重建问题(浙大:汪国昭)(B)公交车的优化调度问题(清华:谭泽光)(C)基金使用计划问题(东南大学:陈恩水)2002年:(A)汽车车灯的优化设计问题(复旦:谭永基等)(B)彩票中的数学问题(信息工程大学:韩中庚)(D) 球队的赛程安排问题(清华大学:姜启源)一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览2003年:(A)SARS的传播问题(集体)(B)露天矿生产的车辆安排问题(吉林大:方沛辰)(D)抢渡长江问题(华中农大:殷建肃)2004年:(A)奥运会临时超市网点设计问题(北工大:孟大志)(B)电力市场的输电阻塞管理问题(浙大:刘康生)(C)酒后开车问题(清华大学:姜启源)(D)公务员的招聘问题(信息工程大学:韩中庚)2005年:(A)长江水质的评价与预测问题(信息工大:韩中庚)(B)DVD在线租赁问题(清华大学:谢金星等)(C) 雨量预报方法的评价问题(复旦:谭永基)一、CUMCM历年赛题的简析1. CUMCM 的历年赛题浏览2006年:(A)出版社的资源管理问题(北工大:孟大志)(B)艾滋病疗法的评价及预测问题(天大:边馥萍)(C)易拉罐形状和尺寸的设计问题(北理工:叶其孝)(D)煤矿瓦斯和煤尘的监测与控制问题(信息工程大学:韩中庚)2007年:(A)中国人口增长预测问题(清华大学:唐云)(B)“乘公交,看奥运”问题(吉大:方沛辰,国防科大:吴孟达)(C)“手机套餐”优惠几何问题(信息工程大学:韩中庚)(D)体能测试时间的安排问题(首都师大:刘雨林)1. CUMCM 的历年赛题浏览2001年夏令营三个题:(A)三峡工程高坡开挖优化设计(三峡大学:李建林等)(B)城市交通拥阻的分析与治理(北京理工大学:叶其孝)(C)乳房癌的诊断问题(复旦大学:谭永基)2006年夏令营三个题:(A)教材出版业的市场调查、评估和预测方法问题(北工大:孟大志)(B)铁路大提速下的京沪线列车调度问题(信息工程大学:韩中庚)(C)旅游需求的预测预报问题(北京理工:叶其孝)2、从问题的实际意义分析32个问题从实际意义分析大体上可分为:工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等七个大类。
全国大学生数学建模竞赛赛题基本解法
• 总结 • 数学建模竞赛常用方法和手段主要是下面几类:
• 1.分析类 如最优捕鱼策略 SARS的传播 微分方程 • 2.运筹学 图论 规划等 • 3.数理统计 统计分析、数据处理等 • 4.计算机 模式识别、Fisher判别、人工神经网
络、仿真模拟等 • 5.常用软件 • Matlab Mathematica Lingo SAS系统等
全国大学生数学建模竞赛贵州赛区组委会93a非线性交调的频率设计拟合规划93b足球队排名图论层次分析整数规划94a逢山开路图论插值动态规划94b锁具装箱问题图论组合数学95a飞行管理问题非线性规划线性规划95b天车与冶炼炉的作业调度动态规划排队论图论96a最优捕鱼策略微分方程优化96b节水洗衣机非线性规划97a零件的参数设计非线性规划97b截断切割的最优排列随机模拟图论98a一类投资组合问题多目标优化非线性规划98b灾情巡视的最佳路线图论组合优化99a自动化车床管理随机优化计算机模拟99b钻井布局01规划图论00adna序列分类模式识别fisher判别人工神经网络00b钢管订购和运输组合优化运输问题01a血管三维重建曲线拟合曲面重建01b工交车调度问题多目标规划02a车灯线光源的优化非线性规划02b彩票问题单目标决策仿真模拟03asars的传播微分方程差分方程时间序列03b露天矿生产的车辆安排整数规划运输问题04a奥运会临时超市网点设计统计分析数据处理优化04b电力市场的输电阻塞管理数据拟合优化05a长江水质的评价和预测统计分析数据处理预测1
• 其包括许多模块,如统计分析模块、绘图模块、 质量控制模块、SAS/ETS(经济计量学和时间 序列分析模块)、SAS/OR(运筹学模块)、 SAS/FSP(快速数据处理的交互式菜单系统模 块)、SAS/AF(交互式全屏幕软件应用系统模 块)等等。
2023年历年全国数学建模试题及解法归纳
历年全国数学建模试题及解法归纳赛题93A非线性交调的频率设计93B足球队排名94A逢山开路94B锁具装箱问题95A飞行管理问题95B天车与冶炼炉的作业调度96A最优捕鱼策略96B节水洗衣机97A零件的参数设计97B截断切割的最优排列98A一类投资组合问题98B灾情巡视的最佳路线99A自动化车床管理99B钻井布局OOA DNA序列分类00B钢管订购和运送01A血管三维重建解法拟合、规划图论、层次分析、整数规划图论、插值、动态规划图论、组合数学非线性规划、线性规划动态规划、排队论、图论微分方程、优化非线性规划非线性规划随机模拟、图论多目的优化、非线性规划图论、组合优化随机优化、计算机模拟0-1规划、图论模式辨认、Fisher判别、人工神经网络组合优化、运送问题曲线拟合、曲面重建赛题01B 公交车调度问题02A 车灯线光源的优化02B 彩票问题03A SARS 的传播03B 露天矿生产的车辆安排04A 奥运会临时超市网点设计04B 电力市场的输电阻塞管理05A 长江水质的评价和预测05B DVD 在线租赁06A 出版社书号问题06B Hiv 病毒问题07A 人口问题07B 公交车问题08A 照相机问题08B 大学学费问题2023年A 题制动器实验台的控制方法分析2023年B 题眼科病床的合理安排2023年C 题卫星监控 解法多目的规划非线性规划单目的决策微分方程、差分方程整数规划、运送问题记录分析、数据解决、优化数据拟合、优化预测评价、数据解决随机规划、整数规划整数规划、数据解决、优化线性规划、回归分析微分方程、数据解决、优化 多目的规划、动态规划、图论、0-1规划非线性方程组、优化数据收集和解决、记录分析、回归分析工程控制排队论,优化,仿真,综合评价几何问题,搜集数据2023年D题会议筹备优化赛题发展的特点:1.对选手的计算机能力提出了更高的规定:赛题的解决依赖计算机,题目的数据较多,手工计算不能完毕,如03B,某些问题需要使用计算机软件,01A。
2023数学建模国赛a题详解
2023数学建模国赛A题详解一、引言2023年数学建模国赛A题是一个涉及多个学科知识的综合性问题,需要学生在有限的时间内分析问题、建立数学模型并进行求解。
本文将对2023年数学建模国赛A题进行详细解析,帮助读者更好地理解这个问题,为参加比赛的同学提供一定的参考。
二、题目分析2023年数学建模国赛A题是关于XXX的问题。
题目要求参赛者通过建立数学模型,分析XXX的变化规律,解决XXX问题。
该问题涉及到多个学科领域的知识,如数学、物理、经济等,需要参赛者进行全面的分析和研究。
三、问题分析针对题目中提出的问题,首先需要分析问题背景和相关信息,明确问题的要求和目标。
根据题目提示,我们可以得出问题的具体内容和需要解决的核心问题,进而确定建模的思路和方法。
四、建模过程1. 确定问题的数学模型针对题目中的具体问题,需要先建立相应的数学模型。
根据问题的特点和要求,可以选择合适的数学方法进行建模,如微分方程、概率统计等。
2. 数据处理与分析在建立数学模型的过程中,可能需要对现有数据进行处理和分析,以获取问题所需的相关信息。
数据的准确性和完整性对建模的结果影响巨大,因此需要对数据进行严格的处理和分析。
3. 模型求解与验证完成数学模型建立后,需要进行模型求解并验证。
通过数学工具和计算机软件,对模型进行求解,并与实际数据进行对比,验证模型的准确性和可靠性。
五、结果分析1. 结果的合理性分析完成模型求解后,需要对结果进行合理性分析。
根据题目要求和实际情况,分析模型的结果是否符合实际,是否具有合理性和可行性。
2. 结果的意义和推广模型求解得到的结果需要具有一定的意义和推广价值,需要对结果进行深入的分析和讨论,探讨模型结果在实际应用中的意义和价值。
六、总结与展望本文对2023年数学建模国赛A题进行了详细解析,并进行了建模过程和结果分析。
在参赛过程中,需要结合题目要求和实际情况,进行全面、深入的分析和研究,不断完善数学模型和求解方法,以获得更好的比赛成绩。
数学建模赛题类型及解析PPT课件
(1)数据处理问题
• ①插值拟合 • 主要用于对数据的补全和基本的趋势分析 • ②小波分析,聚类分析(高斯混合聚类,K-均值聚类等等) • 主要用于诊断数据异常值并进行剔除 • ③主成分分析、线性判别分析、局部保留投影等 • 主要用于多维数据的降维处理,减少数据冗余 • ④均值、方差分析、协方差分析等统计方法 • 主要用于数据的截取或者特征选择
智能算法选讲
兔子们吃了失忆药片,并被发射到太空,然后随机落到了地 球上的某些地方。他们不知道自己的使命是什么。但是,如果 你过几年就杀死一部分海拔低的兔子,多产的兔子们自己就会 找到珠穆朗玛峰。
遗传算法
智能算法选讲
兔子们用酒将自己灌醉了。它们随机地跳了很长时间。在这 期间,它们可能走向高处,也可能踏入平地。但是,随着时间 的流逝,它们渐渐清醒了并朝最高方向跳去。
• ⑧投影寻踪综合评价法:糅合多种算法,比如遗传算法、最优化理论
• ⑨方差分析、协方差分析等
• 方差分析:看几类数据之间有无差异,差异性影响,例如:元素对麦子的产 量有无影响,差异量的多少;(1992年作物生长的施肥问题)
• 协方差分析:有几个因素,我们只考虑一个因素对问题的影响,忽略其他因 素,但注意初始数据的量纲以及初始情况。(2006年,艾滋病疗法的评价以及 预测问题)
• ④马尔科夫预测(备用) • 一个序列之间没有信息的传递,前后没有联系,数据与数据之间随机性
强,相互不影响;今天的温度与昨天、后天没有直接联系,预测后天温 度高、中、低的概率,只能得到概率
• ⑤时间序列预测(必须掌握) • 与马尔科夫预测互补,至少有2个点需要信息的传递,ARMA模型,周
期模型,季节模型等。
• ②主成分分析:评价多个对象的水平并排序,指标间关联性很强。 • ③层次分析法:做决策,通过指标,综合考虑做决定 • ④数据包络(DEA)分析法:优化问题,对各省发展状况进行评判 • ⑤秩和比综合评价法:评价各个对象并排序,指标间关联性不强 • ⑥神经网络评价:适用于多指标非线性关系明确的评价
高教社杯数学模型竞赛赛题
高教社杯数学模型竞赛赛题
高教社杯全国大学生数学建模竞赛赛题涵盖了多个领域,如附件1提供了企业近5年402家原材料供应商的订货量和供货量数据,附件2给出了8家
转运商的运输损耗率数据。
这些赛题要求参赛者结合实际情况,对相关数据进行深入分析,研究问题如下:
1. 根据附件1,对402家供应商的供货特征进行量化分析,建立反映保障企业生产重要性的数学模型,在此基础上确定50家最重要的供应商,并在论
文中列表给出结果。
2. 参考问题1,该企业应至少选择多少家供应商供应原材料才可能满足生产的需求?针对这些供应商,为该企业制定未来24周每周最经济的原材料订
购方案,并据此制定损耗最少的转运方案。
请制定新的订购方案及转运方案,并分析方案的实施效果。
3. 该企业通过技术改造已具备了提高产能的潜力。
根据现有原材料的供应商和转运商的实际情况,确定该企业每周的产能可以提高多少,并给出未来
24周的订购和转运方案。
以上赛题仅供参考,如需更多信息,可访问中国大学生在线网站获取。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
52
最新全国数学建模赛题讲评
31、园日涉以成趣,门虽设而常关。 32、鼓腹无所思。朝起暮归眠。 33、倾壶绝余沥,窥灶不见烟。
34、春秋满四泽,夏云多奇峰,秋月 扬明辉 ,冬岭 秀孤松 。 35、丈夫志四海,我愿不知老。
▪