国赛历届数学建模赛题题目与解题方法

合集下载

数学建模国赛历年题目

数学建模国赛历年题目

数学建模国赛历年题目
以下是数学建模国赛历年题目的一部分:
1. 2018年题目:某公司想要投资一个新的项目,该项目有一
定的风险,但可能会带来高额的回报。

你被要求通过建立一个数学模型来评估该项目的可行性和预测可能的回报。

2. 2017年题目:某城市的交通拥堵问题日益严重,政府希望
通过优化信号灯的调节策略来缓解交通压力。

你需要建立一个数学模型来确定最佳的信号灯时间调节方案,以最大程度地减少交通拥堵。

3. 2016年题目:在某个城市,政府计划在两个特定的区域之
间修建一个新的道路,并需要确定最佳的路线以及道路的设计参数。

你需要建立一个数学模型来分析各种因素,如交通流量、土地利用等,以确定最佳的道路路线和设计。

4. 2015年题目:某公司生产的产品在市场上的销售量一直在
下降,他们希望通过改变产品的包装和定价策略来提振销售。

你需要建立一个数学模型来分析不同包装和定价方案对销售量的影响,并提出最佳的包装和定价策略。

以上题目只是数学建模国赛历年题目的一小部分,每年的具体题目会有所变化。

完成这些题目需要的技巧包括数学建模、数据分析和优化方法等。

如果你对数学建模感兴趣,建议多参加相关的竞赛和训练,积累经验和提高自己的能力。

数学建模国赛题目

数学建模国赛题目

数学建模国赛题目一、关于校园生活类- 逻辑:同学们在食堂排队打饭的时候,总是希望能尽快拿到食物。

这里面涉及到食堂窗口的数量、每个窗口打饭的速度(比如打不同菜品的复杂程度、工作人员的熟练程度等)、同学们到达食堂的时间分布等因素。

可以通过建立数学模型,来分析怎样安排窗口的服务或者调整同学们的排队方式,能让整体的排队等待时间最短,就像指挥一场让大家都能快速填饱肚子的战斗。

- 逻辑:在宿舍里,每个舍友用电用水的习惯都不太一样。

有人喜欢长时间开着电脑,有人洗澡特别久,水电费总是一笔糊涂账。

通过收集每个舍友的电器使用时长、用水次数和时长等数据,建立数学模型,来找出到底谁在水电费上贡献最大,就像侦探破案一样,揭开隐藏在宿舍里的“耗能大户”的神秘面纱。

二、环境保护类- 逻辑:城市里种了很多小树苗来美化环境,但是有些树苗活不了多久就夭折了。

这可能和种植的土壤质量、浇水的频率和量、周围的空气污染程度、光照等因素有关。

我们要建立一个数学模型,就像给小树苗当医生一样,找出影响它们存活的关键因素,然后提出提高树苗存活率的最佳方案,让城市里能有更多茁壮成长的绿树。

- 逻辑:城市每天都会产生大量的垃圾,这些垃圾要从各个小区、街道收集起来,然后运到垃圾处理厂。

但是垃圾车的行驶路线、垃圾收集点的分布、不同区域垃圾产量的不同等因素都会影响垃圾处理的效率。

我们要像给垃圾规划一场旅行一样,建立数学模型找到垃圾从产生地到处理厂的最优路径,让垃圾能够高效地被处理,减少对城市环境的污染。

三、经济与商业类- 逻辑:校园小卖部里的商品琳琅满目,但是怎么给这些商品定价可是个大学问。

如果定价太高,同学们就不买了;定价太低,又赚不到钱。

这里面要考虑商品的进价、同学们的消费能力、不同商品的受欢迎程度等因素。

通过建立数学模型,就像寻找宝藏的密码一样,找到能让小卖部利润最大化的定价策略。

- 逻辑:现在有很多网红店,门口总是排着长长的队伍。

这背后可能是因为独特的营销策略、美味的食物或者时尚的装修。

数学建模国赛历年

数学建模国赛历年

数学建模国赛历年
中国数学建模国赛(CUMCM,China Undergraduate Mathematical Contest in Modeling)是由中国高等教育学会主办的年度竞赛活动。

该比赛自2002年开始,在国内具有较高的知名度和影响力。

以下是数学建模国赛的历年比赛题目:
1. 2002年:载具最优路径规划问题。

2. 2003年:某种病例发病规律研究与流行趋势预测。

3. 2004年:火山的群体爆发问题。

4. 2005年:寻找最优泊位调度问题。

5. 2006年:渐开线传动机构建模与优化设计。

6. 2007年:数字图书馆文献导航问题。

7. 2008年:草坪生长问题。

8. 2009年:城市排水系统优化设计。

9. 2010年:城市地下热岛效应形成机制与控制。

10. 2011年:航空贸易通航网络优化设计。

11. 2012年:移动互联网2G网络运用效果评估与优化。

12. 2013年:网约车资源调度问题。

13. 2014年:地板砖铺设方案优化设计。

14. 2015年:电视台节目时段规划问题。

15. 2016年:共享单车调度问题。

16. 2017年:基于航班延误的航空公司航线规划问题。

17. 2018年:产品质量维度数学量化研究。

18. 2019年:风力发电场多目标优化规划问题。

19. 2020年:新能源汽车充电站规划问题。

以上只是部分年份的题目,每年的题目都与实际问题紧密相关,考察数学建模的能力和创新思维。

历年全国赛数学建模题目

历年全国赛数学建模题目

目录1996年全国大学生数学建模竞赛题目 (2)A题最优捕鱼策略 (2)B题节水洗衣机 (2)1997年全国大学生数学建模竞赛题目 (3)A题零件的参数设计 (3)B题截断切割 (4)1998年全国大学生数学建模竞赛题目 (5)A题投资的收益和风险 (5)B题灾情巡视路线 (6)1999创维杯全国大学生数学建模竞赛题目 (7)A题自动化车床管理 (7)B题钻井布局 (8)C题煤矸石堆积 (9)D题钻井布局(同 B 题) (9)2000网易杯全国大学生数学建模竞赛题目 (10)A题 DNA分子排序 (10)B题钢管订购和运输 (12)C题飞越北极 (15)D题空洞探测 (15)2001年全国大学生数学建模竞赛题目 (17)A题血管的三维重建 (17)B题公交车调度 (18)C题基金使用计划 (20)D题公交车调度 (20)2002高教社杯全国大学生数学建模竞赛题目 (21)A题车灯线光源的优化设计 (21)B题彩票中的数学 (21)C题车灯线光源的计算 (23)D题赛程安排 (23)2003高教社杯全国大学生数学建模竞赛题目 (24)A题 SARS的传播 (24)B题露天矿生产的车辆安排 (28)C题 SARS的传播 (29)D题抢渡长江 (30)2004高教社杯全国大学生数学建模竞赛题目 (31)A题奥运会临时超市网点设计 (31)B题电力市场的输电阻塞管理 (35)C题饮酒驾车 (39)D题公务员招聘 (39)2005高教社杯全国大学生数学建模竞赛题目 (42)A题: 长江水质的评价和预测 (42)B题: DVD在线租赁 (43)C题雨量预报方法的评价 (44)D题: DVD在线租赁 (45)2006高教社杯全国大学生数学建模竞赛题目 (46)A题:出版社的资源配置 (46)B题: 艾滋病疗法的评价及疗效的预测 (46)C题: 易拉罐形状和尺寸的最优设计 (47)D题: 煤矿瓦斯和煤尘的监测与控制 (48)2007高教社杯全国大学生数学建模竞赛题目 (53)A题:中国人口增长预测 (53)2008高教社杯全国大学生数学建模竞赛题目 (56)A题数码相机定位 (56)B题高等教育学费标准探讨 (57)C题地面搜索....................................................................................................... 错误!未定义书签。

历年数学建模国赛预测类题目

历年数学建模国赛预测类题目

历年数学建模国赛预测类题目
历年数学建模国赛的预测类题目涉及到多个领域,包括但不限
于经济、环境、社会等方面的问题。

以下是一些历年数学建模国赛
的预测类题目的一些例子:
1. 预测城市交通拥堵情况,要求参赛者利用历史交通数据和城
市发展规划,预测未来某一时段内城市交通拥堵的情况,并提出改
善方案。

2. 预测气候变化对农作物产量的影响,要求参赛者结合气候数
据和农作物生长模型,预测未来气候变化对特定农作物产量的影响,并提出应对措施。

3. 预测人口增长对城市基础设施的需求,要求参赛者利用人口
增长趋势和城市基础设施数据,预测未来某一时期城市基础设施的
需求情况,并提出相应的规划建议。

4. 预测金融市场波动对投资组合的影响,要求参赛者利用金融
市场数据和投资组合理论,预测未来金融市场波动对特定投资组合
的影响,并提出风险管理策略。

5. 预测环境污染对健康的影响,要求参赛者结合环境监测数据和健康统计数据,预测未来环境污染对特定人群健康的影响,并提出环境保护建议。

以上仅是一些例子,实际上历年数学建模国赛的预测类题目涉及的领域非常广泛,涉及到经济、环境、社会等多个方面的实际问题,要求参赛者综合运用数学建模的方法和技巧进行预测和分析。

希望这些例子可以帮助你对历年数学建模国赛的预测类题目有一个初步的了解。

数学建模国赛物理题

数学建模国赛物理题

数学建模国赛物理题题目:水滴在竖直电场中的运动轨迹背景描述:在实验室中,研究人员将一块亲水性材料悬挂在竖直电场中,并在材料上滴下水滴,观察水滴的运动轨迹。

通过研究水滴在电场中的运动,可以了解电场对水滴的运动轨迹产生的影响,进而应用于液滴操控、液滴传感等领域。

问题陈述:已知在竖直电场中,一个水滴从某固定高度自由下落。

假设电场以垂直向上的方向施加竖直电场力。

我们需要对水滴的运动轨迹进行建模,并分析不同参数对运动轨迹的影响。

问题分析:1. 水滴:将水滴视为一个质点,忽略其形状和内部力。

2. 电场力:竖直电场力大小为 F = qE,其中 q 为水滴的电荷量,E 为电场强度。

3. 空气阻力:假设水滴在空气中运动,考虑由于空气阻力产生的影响。

4. 运动轨迹:水滴的运动轨迹可表示为函数 y(x),描述水滴的垂直运动。

5. 初始条件:已知水滴自由落体的初始速度和初始高度。

模型假设:1. 忽略水滴的蒸发和凝结;2. 忽略水滴之间的相互作用。

模型建立:对于水滴的竖直运动,可以利用牛顿第二定律对其运动进行描述。

在竖直方向上,模型可表示为以下方程:m(d2y/dt2) = mg - Fd - bv - fas其中:m 为水滴的质量;g 为重力加速度;F 为电场力大小;d 为水滴的直径;b 为空气阻力系数;v 为水滴的速度;fas 为电场力和空气阻力的合力。

由于水滴在竖直电场中运动,考虑竖直方向上的运动轨迹,模型可简化为二阶常微分方程:d2y/dt2 = g - (qE + bv)/m模型求解:利用数值方法(如欧拉法、龙格-库塔法等)对二阶常微分方程进行数值求解,可以得到水滴的运动轨迹 y(x)。

模型分析:根据上述模型,可以进行以下分析:1. 不同初始条件下,水滴的运动轨迹如何变化?2. 水滴电荷量 q 对轨迹的影响如何?3. 电场强度 E 对轨迹的影响如何?4. 空气阻力系数 b 对轨迹的影响如何?通过对以上问题的研究和分析,可以对水滴在竖直电场中的运动轨迹有更深入的理解,并为相关领域的设计和应用提供参考。

全国数学建模大赛c题

全国数学建模大赛c题

全国数学建模大赛c题
全国数学建模大赛C题是关于古代玻璃制品的成分分析与鉴别的问题。

题目要求对玻璃文物的表面风化与其玻璃类型、纹饰和颜色的关系进行分析,并结合玻璃的类型,分析文物样品表面有无风化化学成分含量的统计规律,并根据风化点检测数据,预测其风化前的化学成分含量。

解题思路可以从以下几个方面展开:
1. 数据收集:首先需要收集相关数据,包括玻璃文物的类型、纹饰、颜色、表面风化程度、化学成分等信息。

这些数据可以通过查阅文献、参观博物馆、实验室检测等方式获得。

2. 数据清洗:对收集到的数据进行清洗和处理,去除无效数据和异常值,确保数据的准确性和可靠性。

3. 数据分析:利用数学建模的方法对数据进行深入分析,包括相关性分析、回归分析、聚类分析等。

目的是找出玻璃文物表面风化与其类型、纹饰、颜色以及化学成分之间的关系,并预测风化前的化学成分含量。

4. 模型建立:根据数据分析的结果,建立相应的数学模型,以便对未知的玻璃文物进行预测和鉴别。

5. 模型评估与优化:对建立的模型进行评估和优化,确保其准确性和有效性。

在解题过程中,需要注意以下几点:
1. 考虑玻璃的主要原料是石英砂,主要化学成分是二氧化硅(SiO2),助熔剂的不同会对玻璃的化学成分产生影响。

2. 考虑到玻璃类型、纹饰和颜色与其化学成分之间的关系,可以尝试通过特征提取和降维的方法,将高维度的数据转化为低维度的特征,以便更好地进行分析和建模。

3. 在预测风化前的化学成分含量时,需要注意控制变量和误差项的影响,确保预测结果的准确性。

4. 最后,需要对建立的模型进行交叉验证和外部测试,以评估其泛化能力和实际应用价值。

全国大学生数学建模竞赛经典试题

全国大学生数学建模竞赛经典试题

全国大学生数学建模竞赛经典试题导语:数模参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。

竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。

欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网的经典的数学建模问题:运用灰色关联模型为我国产业结构的调整和优化提供建议改革开放以来,中国的产业结构优化都是以经济增长为主要目标,在该目标下所形成的产业结构己经使中国经济保持了近三十年的高速增长。

但是,由于忽视了能源与环境目标,过快的经济增长导致了产业结构失衡、能源消耗过渡、环境污染严重等问题。

因此,产业结构优化作为促进经济发展的重要手段已不是传统意义所指,结构优化的目标更着重于促进产业持续、健康发展以及产业与自然、社会和谐发展,结构状态和变化趋势符合可持续发展要求,结构的优化和变革促进产业可持续发展能力增强,结构优化政策贯彻可持续发展战略思想等。

基于此结合收集的资料,建立数学模型,解决一下问题。

问题一:建立各产业对我国经济增长影响的定量数学模型。

问题二:定量分析能源消费结构对空气质量的的关系。

问题三:建立数学模型分析未来能源消费的大体趋势。

问题四:结合以上问题结论为我国产业结构的调整和优化提供一些建议。

一、问题分析问题一我们发现我国各产业对经济的增长都有一定的作用,通过表分析我们需要定量分析各产业对我国经济增长影响的大小,于是我们通过建立灰色关联的数学模型计算各产业灰色相对关联度p1,p2,p3,比较其大小发现各产业对我国经济增长的定量影响。

问题二我们认为SO2排放放映出我国空气质量的大体状况,而无论是煤炭,石油,天然气,电能等能源的消耗都会排放一定量的的SO2,但我们无法准确确定影响大小,于是我们考虑建立灰色关联的数学模型,计算出各能源对SO2排放的影响程度大小,进而确定能源消费结构对空气质量的关系。

全国数学建模大赛题目

全国数学建模大赛题目

全国数学建模大赛题目摘要:一、全国数学建模大赛简介1.比赛背景与目的2.比赛分类与级别3.参赛对象与要求二、比赛题目类型及解题技巧1.题目类型概述a.数据题b.机理题c.分析题d.综合题2.解题技巧a.分析题目b.制定策略c.查找资料d.分工合作三、全国数学建模大赛题目举例1.数据题举例2.机理题举例3.分析题举例4.综合题举例四、比赛对参赛者的帮助与启示1.提升数学应用能力2.增强团队协作能力3.拓宽学术视野4.对未来发展的启示正文:全国数学建模大赛是我国面向全国大学生的一项重要数学竞赛活动,旨在选拔优秀的数学建模人才,推动数学建模教育事业的发展。

该比赛按照难度和层次分为多个级别,涵盖了不同专业和年级的学生。

比赛要求参赛者具备扎实的数学基础和良好的逻辑思维能力,能够独立或团队协作解决复杂数学问题。

比赛题目类型多样,涵盖了数据题、机理题、分析题和综合题等。

对于参赛者来说,掌握各类题型的解题技巧至关重要。

首先,要深入分析题目,理解题目背景、要求和条件。

其次,要制定合适的策略,根据题目类型和自身优势进行分工合作。

然后,查找相关资料,为解题提供有力支持。

最后,注意时间分配,确保按时完成答卷。

以下是全国数学建模大赛中的一些题目举例:1.数据题:某企业生产某种产品,需要确定最佳生产策略以实现利润最大化。

参赛者需要根据提供的数据,建立数学模型,为企业提供决策建议。

2.机理题:考虑一种生物生长过程中的数学模型,参赛者需要分析生长过程中的关键因素,并预测未来的生长趋势。

3.分析题:分析某种经济现象背后的数学原理,参赛者需要运用经济学理论和数学方法,揭示现象背后的规律。

4.综合题:设计一种新型交通管理系统,参赛者需要综合运用多种数学知识,解决实际问题。

参加全国数学建模大赛对于参赛者来说具有多方面的帮助和启示。

首先,通过解决实际问题,参赛者可以提升自己的数学应用能力,将所学知识运用到实际中。

其次,比赛过程中的团队协作可以增强参赛者的团队协作能力,提高沟通与协作效果。

全国大学生数学建模竞赛赛题基本解法

全国大学生数学建模竞赛赛题基本解法

• 总结 • 数学建模竞赛常用方法和手段主要是下面几类:
• 1.分析类 如最优捕鱼策略 SARS的传播 微分方程 • 2.运筹学 图论 规划等 • 3.数理统计 统计分析、数据处理等 • 4.计算机 模式识别、Fisher判别、人工神经网
络、仿真模拟等 • 5.常用软件 • Matlab Mathematica Lingo SAS系统等
全国大学生数学建模竞赛贵州赛区组委会93a非线性交调的频率设计拟合规划93b足球队排名图论层次分析整数规划94a逢山开路图论插值动态规划94b锁具装箱问题图论组合数学95a飞行管理问题非线性规划线性规划95b天车与冶炼炉的作业调度动态规划排队论图论96a最优捕鱼策略微分方程优化96b节水洗衣机非线性规划97a零件的参数设计非线性规划97b截断切割的最优排列随机模拟图论98a一类投资组合问题多目标优化非线性规划98b灾情巡视的最佳路线图论组合优化99a自动化车床管理随机优化计算机模拟99b钻井布局01规划图论00adna序列分类模式识别fisher判别人工神经网络00b钢管订购和运输组合优化运输问题01a血管三维重建曲线拟合曲面重建01b工交车调度问题多目标规划02a车灯线光源的优化非线性规划02b彩票问题单目标决策仿真模拟03asars的传播微分方程差分方程时间序列03b露天矿生产的车辆安排整数规划运输问题04a奥运会临时超市网点设计统计分析数据处理优化04b电力市场的输电阻塞管理数据拟合优化05a长江水质的评价和预测统计分析数据处理预测1
• 其包括许多模块,如统计分析模块、绘图模块、 质量控制模块、SAS/ETS(经济计量学和时间 序列分析模块)、SAS/OR(运筹学模块)、 SAS/FSP(快速数据处理的交互式菜单系统模 块)、SAS/AF(交互式全屏幕软件应用系统模 块)等等。

历届数学建模国赛题

历届数学建模国赛题
中国人口增长预测文字信息处理大量数据处理函数拟合以及参数确定数据搜索能力高等数学知识常微分方程稳定性和矩阵知识微分方程拟合程度马尔科夫矩阵的处理和求解创新点如参数确定方法等结论的合理性图论动态规划算法最短路径dijkstra算法大量数据处理计算机程序设计优化软件应用2008a
历届数学建模国赛题 及优秀论文赏析
2008 B:高等教育学费标准探讨 问题涉及: 评价(3),预测(2) 主要可用模型或方法: 不定 要求能力: 数据搜索能力,微分方程,个人价值观, 文笔 决胜关键: 结论的合理性,数据的全面程度和准确程 度
2009 A: 制动器试验台的控制方法分析 问题涉及: 计算(3),评价(1),优化(1) 主要可用模型或方法: 物理知识(静动力学分析,转动惯量等), 排列组合,优化算法 要求能力: 大数据处理,大数据计算,优化软件应用, 计算机仿真 决胜关键: 结果正确性
2007 A:中国人口增长预测 问题涉及: 预测(5) 主要可用模型或方法: 微分方程模型,马尔科夫链,计算机仿真 要求能力: 文字信息处理,大量数据处理,函数拟合以及参 数确定,数据搜索能力,高等数学知识(常微分 方程稳定性和矩阵知识) 决胜关键: 微分方程拟合程度,马尔科夫矩阵的处理和求解, 创新点(如参数确定方法等),结论的合理性
预测类问题
优化类问题
计算类问题
必备能力
大数据处理
计算机仿真
总结
从单纯的统计结果看: 1.预测类问题出现情况成波动状,截至09年 处于低谷。 2.优化类问题出现比较稳定。 3.近两年开始偏向于应用专业知识较多的计 3. 算类问题。 4.总的来说竞赛还不成熟,有时在求新求变, 有时则中规中矩。
一些建议
2007 B: 乘公交,看奥运 乘公交, 问题涉及: 优化(5) 主要可用模型或方法: 图论,动态规划算法,最短路径(dijkstra 算法) 要求能力: 大量数据处理,计算机程序设计,优化软 件应用 决胜关键: 程序运行速度,算法的正确性

全国数学建模大赛题目

全国数学建模大赛题目

全国数学建模大赛题目
题目一:城市交通优化方案
某城市的交通状况日益拥堵,为了解决交通问题,需要制定一个交通优化方案。

假设该城市的道路网络呈现网状结构,拥有多个交叉口和道路,每个交叉口都有多个入口和出口道路。

现在需要你们设计一个算法,以找到最优的交通优化方案,使得城市的车辆数最小化,同时满足交通流量平衡和道路容量约束。

题目二:无人机配送路径规划
某公司使用无人机进行货物配送,无人机需要从指定的起点出发,依次经过多个目标点进行货物的投放,最后返回起点。

每个目标点有不同的货物量和不同的时间窗限制。

现在需要你们设计一个路径规划算法,以最小化无人机在配送过程中的总飞行距离,同时满足货物量和时间窗的要求。

题目三:自然灾害预测与应急响应
某地区常常受到洪水的威胁,为了及时应对洪水灾害,需要建立一个洪水预测和应急响应系统。

现有该地区多个监测站点,能够实时测量水位、降雨量等数据,并预测洪水的发生时间和范围。

现在需要你们设计一个预测模型,以准确预测洪水的发生时间和范围,并制定相应的应急响应措施,以最大程度地减少洪灾对人民生命和财产的威胁。

题目四:物流中心选址与配送路径规划
某公司计划在某区域新建一个物流中心,以提高货物配送的效率。

现在需要你们选取一个最佳的物流中心位置,并设计一个配送路径规划算法,以最小化货物配送的总距离和成本。

同时,
由于该区域存在不同的道路类型和限制条件,需要考虑不同道路类型的通行能力和限制,以确保货物配送的顺利进行。

国内数模赛题解题方法总结

国内数模赛题解题方法总结

国内数模赛题解题方法总结第一篇:国内数模赛题解题方法总结国内数学建模竞赛试题解题方法总结国内数学建模竞赛试题解题方法总结93A 非线性交调的频率设计(拟合、规划)93B 足球队排名次(矩阵论、图论、层次分、整数规划)94A 逢山开路(图论、插值、动态规划)94B 锁具装箱问题(图论、组合数学)95A 飞行管理问题(非线性规划、线性规划)95B 天车与冶炼炉的作业调度(非线性规划、动态规划、层次分析法、PETRI方法、图论方法、排队论方法)96A 最优捕鱼策略(微分方程、优化)96B 节水洗衣机(非线性规划)97A 零件的参数设计(田口方法、非线性规划)97B 截断切割的最优排列(动态规划、图论模型、随机模拟)98A 一类投资组合问题(多目标优化、模糊线性规划、非线性规划)98B 灾情巡视的最佳路线(图论、组合优化、线性规划)99A 自动化车床管理(随机优化、计算机模拟)99B 钻井布局(0-1规划、非线性规划、图论方法)00A DNA序列分类(欧氏距离、马氏距离分类法、Fischer判别模型、神经网络方法)00B 钢管订购和运输(离散优化、运输问题)01A 血管三维重建(曲面重建、曲线拟合)01B 公交车调度问题(多目标规划)02A 车灯线光源的优化(非线性规划)02B 彩票问题(单标决策、多目标决策)目第二篇:2014年数模校内赛题2014年全国大学生数学建模竞赛(2014CMCM)浙江科技学院校内选拔赛试题A题暑假活动安排的决策模型我校某二年级学生准备暑假参加三种活动之一:活动一:赴美国进行游学一个月。

具体内容就是赴美国几所全球著名进行游学。

体验国际一流大学的学习、生活的情况,达到为今后择业、就业和留学等事早作准备。

活动二:准备从大二开始参加各种辅导班,比如数学考研班、英语考研班等;为两年以后考研提前做准备。

活动三:准备参加为期四十天的暑期数学建模竞赛集训班,为九月份的全国大学生数学建模竞赛作准备。

数学建模历年国赛c题

数学建模历年国赛c题

数学建模历年国赛C题1. 引言数学建模是数学学科与实际问题相结合的一种学科交叉。

每年都会有各种各样的数学建模竞赛,其中国家级数学建模竞赛是最高水平的竞赛之一。

本文将对国家级数学建模竞赛历年的C题进行分析与总结,希望能够为参与数学建模竞赛的同学提供一些帮助与指导。

2. 国赛C题概述国家级数学建模竞赛的C题是一道较为综合性的题目,通常涉及到多个数学领域的知识和技巧。

C题的解答过程往往需要多个步骤和推理,并且对数学建模的基本原理和方法都有一定的要求。

下面将对历年的C题进行概述,给出简要的问题描述和解题思路。

2.1 C题年份1问题描述:该年的C题是关于城市交通规划的问题。

给定一个城市的道路网络图,要求设计一种最优的交通规划方案,使得城市中的交通流量最大化,同时减少人们的出行时间和减少环境污染。

解题思路:该问题可以转化为一个最小费用流问题,通过对道路网络图进行建模,确定各条道路的容量和费用,然后使用最小费用流算法求解最优的交通规划方案。

2.2 C题年份2问题描述:该年的C题是关于电力系统的问题。

给定一个电力系统的拓扑结构图和负荷需求,要求设计一种最优的供电方案,使得电力系统的供电可靠性最大化,同时满足负荷需求,最大限度地减少系统的能量损耗。

解题思路:该问题可以转化为一个优化问题,通过对电力系统的拓扑结构图进行建模,确定各个电力节点的供电能力和负荷需求,然后使用整数规划或者动态规划等方法求解最优的供电方案。

2.3 C题年份3问题描述:该年的C题是关于物流配送的问题。

给定若干个配送中心和客户需求,要求设计一种最优的物流配送方案,使得客户的需求能够得到满足,同时最大限度地减少车辆行驶的总路程。

解题思路:该问题可以转化为一个带约束条件的最小路径问题,通过对配送中心和客户需求的位置和距离进行建模,可以使用图论中的最短路径算法求解最优的物流配送方案。

3. 解题方法与技巧国赛C题作为一道较为综合性的数学建模题目,解答过程通常需要运用多种数学知识和技巧。

全国大学生数学建模竞赛赛题特点、方法简析

全国大学生数学建模竞赛赛题特点、方法简析

一,解法多样
车流波动理论、综合评价。
灰度矩阵理论、多维相关系数分
问题较为专业,具体的实际问 题,规范性强,具有开放性、
析、匹配模型、相关性分析、最
挑战性
优化问题、三线格基线、计算机
编程计算。
微分方程理论、微分方程数值解、
附件较多,过程比较复杂。模 型、算法及结论不集中
(无穷维的)优化问题、控制理
论、灵敏度分析、误差控制。
分表示
数据量大,数据需要提炼, 综合评价方法、回归分析、动态
有些无用数据,求解方法较多、加 时权 间的 序综 列合 方排 法序 、灰,色插预值测与、拟微合分、
挑战性强
方程、差分方程
数据量大,所提问题多,题意 满意度函数,概率模型、线性规 划、混合整数规划、抽样分析、
理解有一定难度 网络流,数值模拟
海量数据,数据不完备,信息 数据处理、满意度等指标函数,
A 题:血管的三 维重组
B 题:公交车调度
A 题:车灯线光 源的优化设计
B 题:彩票中的数

A 题:SARS 的传 播
B 题:露天矿生产
的车辆安排
题目 来源
社会 热点
国内 大事
工业 问题
工业 问题
国际 大事
国家 项目
行业 问题
社会 服务 工业 问题 社会 热点
国际 大事
工业 问题
特点
模型方法与算法
属社会关注热点问题,题目不 多目标规划、线性规划、非线性
序、模糊数学方法、非线性规划
微分方程模型、差分方程模型、 是社会关注的热点问题,具有 较大的开放性和时效性,数据 微分差分方程组合模型、插值与
拟合,时间序列方法,灰色预测、 量大、需要提炼,

历年全国数学建模试题及解法

历年全国数学建模试题及解法

一、历年全国数学建模试题及解法赛题解法93A 非线性交调的频率设计拟合、规划93B 足球队排名图论、层次分析、整数规划94A 逢山开路图论、插值、动态规划94B 锁具装箱问题图论、组合数学95A 飞行管理问题非线性规划、线性规划95B 天车与冶炼炉的作业调度动态规划、排队论、图论96A 最优捕鱼策略微分方程、优化96B 节水洗衣机非线性规划97A 零件的参数设计非线性规划97B 截断切割的最优排列随机模拟、图论98A 一类投资组合问题多目标优化、非线性规划98B 灾情巡视的最灾情巡视的最佳佳路线图论、组合优化99A 自动化车动化车床床管理随机优化、计随机优化、计算算机模拟99B 钻井布局0-1规划、图论00A DNA 序列分类模式识别式识别、、Fisher 判别判别、、人工神经网络00B 钢管订购和运输组合优化、组合优化、运输运输运输问题问题01A 血管三维重建曲线拟合、线拟合、曲面重建曲面重建01B 工交车调度问题多目标规划02A 车灯线光源光源的优化的优化非线性规划02B 彩票彩票问题问题问题 单目标目标决决策 03A SARS 的传播传播 微分方程、微分方程、差差分方程分方程03B 露天矿生产矿生产的车的车的车辆安辆安辆安排排 整数规划、整数规划、运输运输运输问题问题问题 04A 奥运会临时超市网点奥运会临时超市网点设计设计设计 统计分析、数计分析、数据处据处据处理、优化理、优化理、优化 04B 电力市场电力市场的的输电阻塞输电阻塞管理管理管理 数据拟合、优化拟合、优化 05A 长江长江水水质的评价和预测评价和预测 预测评价预测评价、数、数、数据处据处据处理理 05B DVD 在线租赁租赁 随机规划、整数规划随机规划、整数规划二、赛题发展的特点1.对选手对选手的计的计的计算算机能力提出了更高能力提出了更高的的要求:要求:赛题的解赛题的解赛题的解决依赖决依赖决依赖计计算机,题目的数题目的数据较据较据较多多,手工,手工计计算不能完成,如03B ,某些,某些问题问题问题需要需要需要使用使用使用计计算机软件,01A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历届数学建模题目浏览:1992--2009
1992年 (A) 施肥效果分析问题(北京理工大学:叶其孝)
(B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基)
1993年 (A) 非线性交调的频率设计问题(北京大学:谢衷洁)
(B) 足球排名次问题(清华大学:蔡大用)
1994年 (A) 逢山开路问题(西安电子科技大学:何大可)
(B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)
1995年 (A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此)
(B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,
李吉鸾)
1996年 (A) 最优捕鱼策略问题(北京师范大学:刘来福)
(B) 节水洗衣机问题(重庆大学:付鹂)
1997年 (A) 零件参数设计问题(清华大学:姜启源)
(B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)
1998年 (A) 投资的收益和风险问题(浙江大学:陈淑平)
(B) 灾情巡视路线问题(上海海运学院:丁颂康)
1999年 (A) 自动化车床管理问题(北京大学:孙山泽)
(B) 钻井布局问题(郑州大学:林诒勋)
1999年(C) 煤矸石堆积问题(太原理工大学:贾晓峰)
(D) 钻井布局问题(郑州大学:林诒勋)
2000年 (A) DNA序列分类问题(北京工业大学:孟大志)
(B) 钢管订购和运输问题(武汉大学:费甫生)
(C) 飞越北极问题(复旦大学:谭永基)
(D) 空洞探测问题(东北电力学院:关信)
2001年 (A) 血管的三维重建问题(浙江大学:汪国昭)
(B) 公交车调度问题(清华大学:谭泽光)
(C) 基金使用计划问题(东南大学:陈恩水)
(D) 公交车调度问题(清华大学:谭泽光)
2002年 (A) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)
(B) 彩票中的数学问题(解放军信息工程大学:韩中庚)
(C) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)
(D) 赛程安排问题(清华大学:姜启源)
2003年 (A) SARS的传播问题(组委会)
(B) 露天矿生产的车辆安排问题(吉林大学:方沛辰)
(C) SARS的传播问题(组委会)
(D) 抢渡长江问题(华中农业大学:殷建肃)
2004年 (A) 奥运会临时超市网点设计问题(北京工业大学:孟大志)
(B) 电力市场的输电阻塞管理问题(浙江大学:刘康生)
(C) 酒后开车问题(清华大学:姜启源)
(D) 招聘公务员问题(解放军信息工程大学:韩中庚)2005年 (A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)
(B) DVD在线租赁问题(清华大学:谢金星等)
(C) 雨量预报方法的评价问题(复旦大学:谭永基)
(D) DVD在线租赁问题(清华大学:谢金星等)
2006年 (A) 出版社的资源配置问题(北京工业大学:孟大志)
(B) 艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)
(C) 易拉罐的优化设计问题(北京理工大学:叶其孝)
(D) 煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)
2007年 (A) 中国人口增长预测
(B) 乘公交,看奥运
(C) 手机“套餐”优惠几何
(D) 体能测试时间安排
2008年
(A)数码相机定位,
(B)高等教育学费标准探讨,
(C)地面搜索,
(D)NBA赛程的分析与评价
2009年
(A)制动器试验台的控制方法分析
(B)眼科病床的合理安排
(C)卫星和飞船的跟踪测控
(D)会议筹备
历年全国数学建模试题及解法归纳


解法
93A非线性交调的频率设计拟合、规划
93B足球队排名图论、层次分析、整数规划
94A逢山开路图论、插值、动态规划
94B锁具装箱问题图论、组合数学
95A飞行管理问题非线性规划、线性规划
95B天车与冶炼炉的作业调度动态规划、排队论、图论
96A最优捕鱼策略微分
方程、优化
96B节水洗衣机非线性规划
97A零件的参数设计非线性规划
97B截断切割的最优排列随机模拟、图论
98A一类投资组合问题多目标优化、非线性规划
98B灾情巡视的最佳路线图论、组合优化
99A自动化车床管理随机优化、计算机模拟
99B钻井布局 0-1规划、图论
00A DNA序列分类模式识别、Fisher判别、人工
神经网络
00B钢管订购和运输组合优化、运输问题
01A血管三维重建曲线拟合、曲面重建
赛题解法
01B 公交车调度问题多目标规划
02A车灯线光源的优化非线性规划02B彩票问题单目标决策
03A SARS的传播微分方程、差分方程
03B 露天矿生产的车辆安排整数规划、运输问题
04A奥运会临时超市网点设计统计分析、数据处理、优化
04B电力市场的输电阻塞管理数据拟合、优化
05A长江水质的评价和预测预测评价、数据处理
05B DVD在线租赁随机规划、整数规划
06A出版社书号问题整数规划、数据处理、优化
06B Hiv病毒问题线性规划、回归分析
07A 人口问题微分方程、数据处理、优化07B 公交车问题多目标规划、动态规划、图
论、0-1规划
08A 照相机问题非线性方程组、优化
08B 大学学费问题数据收集和处理、统计分
析、回归分析
赛题发展的特点:
1. 对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B,某些问题需要使用计算机软件,01A。

问题的数据读取需要计算机技术,如00A(大数据),01A(图象数据,图象处理的方法获得),04A(数据库数据,数据库方法,统计软件包)。

计算机模拟和以算法形式给出最终结果。

2. 赛题的开放性增大解法的多样性,一道赛题可用多种解法。

开放性还表现在对模型假设和对数据处理上。

3. 试题向大规模数据处理方向发展
4. 求解算法和各类现代算法的融合。

相关文档
最新文档