2019年数学高考一模试卷(及答案)

合集下载

南通市2019届高三一模数学试卷及答案

南通市2019届高三一模数学试卷及答案

南通市2019届高三一模数学试卷 (满分160分,考试时间120分钟)参考公式:柱体的体积公式:V 柱体=Sh ,其中S 为柱体的底面积,h 为高. 一、 填空题:本大题共14小题,每小题5分,共计70分.1. 已知集合A ={1,3},B ={0,1},则集合A ∪B = .2. 已知复数z =2i1-i-3i (i 为虚数单位),则复数z 的模为 .3. 某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数 2 3 4 5 人数2015105则平均每人参加活动的次数为 .4. 如图是一个算法流程图,则输出的b 的值为 .5. 有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为 .6. 已知正四棱柱的底面边长是3 cm ,侧面的对角线长是35cm ,则这个正四棱柱的体积为 cm 3.7. 若实数x ,y 满足x ≤y ≤2x +3,则x +y 的最小值为 .8. 在平面直角坐标系xOy 中,已知抛物线y 2=2px(p>0)的准线为l ,直线l 与双曲线x 24-y 2=1的两条渐近线分别交于A ,B 两点,AB =6,则p 的值为 .9. 在平面直角坐标系xOy 中,已知直线y =3x +t 与曲线y =a sin x +b cos x(a ,b ,t ∈R )相切于点(0,1),则(a +b )t 的值为 。

10. 已知数列{a n }是等比数列,有下列四个命题:① 数列{|a n |}是等比数列; ② 数列{a n a n +1}是等比数列;③ 数列⎩⎨⎧⎭⎬⎫1a n 是等比数列; ④ 数列{lg a 2n }是等比数列.其中正确的命题有 个.11. 已知函数f(x)是定义在R 上的奇函数,且f (x +2)=f (x ).当0<x ≤1时,f (x )=x 3-ax +1,则实数a 的值为 .12. 在平面四边形ABCD 中,AB =1,DA =DB ,AB →·AC →=3,AC →·AD →=2,则|AC →+2AD →|的最小值为 .13. 在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x -4)2+y 2=4.若存在过点P(m ,0)的直线l ,直线l 被两圆截得的弦长相等,则实数m 的取值范围是 .14. 已知函数f(x)=(2x +a)(|x -a|+|x +2a|)(a<0).若f(1)+f(2)+f(3)+…+f(672)=0,则满足f(x)=2 019的x 的值为 .二、 解答题:本大题共6小题,共计90分.解答时应写出文字说明,证明过程或演算步骤.15. (本小题满分14分) 如图,在四棱锥PABCD 中,M ,N 分别为棱PA ,PD 的中点.已知侧面PAD ⊥底面ABCD ,底面ABCD 是矩形,DA =DP.求证:(1) MN∥平面PBC;(2) MD⊥平面PAB.16. (本小题满分14分)在△ABC中,a,b,c分别为角A,B,C所对边的长,a cos B=2b cos A,cos A=3 3.(1) 求角B的值;(2) 若a=6,求△ABC的面积.17. (本小题满分14分)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a>b>0)的左焦点为F ,右顶点为A ,上顶点为B.(1) 已知椭圆的离心率为12,线段AF 中点的横坐标为22,求椭圆的标准方程;(2) 已知△ABF 的外接圆的圆心在直线y =-x 上,求椭圆的离心率e 的值.18. (本小题满分16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD ,AB ,AD 的长分别为2 3 m 和4 m ,上部是圆心为O 的劣弧CD ,∠COD =2π3.(1) 求图1中拱门最高点到地面的距离; (2) 现欲以点B 为支点将拱门放倒,放倒过程中矩形ABCD 所在的平面始终与地面垂直,如图2、图3、图4所示.设BC 与地面水平线l 所成的角为θ.记拱门上的点到地面的最大距离为h ,试用θ的函数表示h ,并求出h 的最大值.19. (本小题满分16分)已知函数f(x)=ax+ln x(a ∈R ).(1) 讨论函数f (x )的单调性;(2) 设函数f (x )的导函数为f ′(x ),若函数f (x )有两个不相同的零点x 1,x 2. ① 求实数a 的取值范围;② 证明:x 1f ′(x 1)+x 2f ′(x 2)>2ln a +2.20. (本小题满分16分)已知等差数列{a n }满足a 4=4,前8项和S 8=36. (1) 求数列{a n }的通项公式;(2) 若数列{b n }满足k =1n (b k a 2n +1-2k )+2a n =3(2n -1)(n ∈N *).① 证明:{b n }为等比数列;② 求集合⎩⎨⎧⎭⎬⎫(m ,p )|a m b m=3a p b p,m ,p ∈N *.2019届高三年级第一次模拟考试(九)数学附加题(本部分满分40分,考试时间30分钟)21. 【选做题】本题包括A 、B 、C 三小题,请选定其中两小题,并作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A. [选修4-2:矩阵与变换](本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤a b c d ,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,且(MN )-1=⎣⎢⎢⎡⎦⎥⎥⎤14002,求矩阵M .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程是⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数).以原点O 为极点,x轴正半轴为极轴建立极坐标系,直线l 的极坐标方程是ρsin ⎝⎛⎭⎫θ-π4= 2.求: (1) 直线l 的直角坐标方程;(2) 直线l 被曲线C 截得的线段长.C. [选修4-5:不等式选讲](本小题满分10分)已知实数a ,b ,c 满足a 2+b 2+c 2≤1,求证:1a 2+1+1b 2+1+1c 2+1≥.【必做题】第22题、第23题,每小题10分,共计20分.解答时应写出文字说明、证明过程或演算步骤.22. (本小题满分10分)“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3 553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同的2位“回文数”中任取1个乘以4,其结果记为X;从9个不同的2位“回文数”中任取2个相加,其结果记为Y.(1) 求X为“回文数”的概率;(2) 设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E(ξ).23. (本小题满分10分)设集合B是集合A n={1,2,3,…,3n-2,3n-1,3n},n∈N*的子集.记集合B中所有元素的和为S(规定:集合B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1) 集合A1的“和谐子集”的个数;(2) 集合A n的“和谐子集”的个数.南通市2019届高三一模数学参考答案1. {0,1,3}2. 53. 34. 75. 23 6. 547. -6 8. 26 9. 4 10. 3 11. 2 12. 2 5 13. ⎝⎛⎭⎫-4,43 14. 337 15. (1) 在四棱锥PABCD 中,M ,N 分别为棱PA ,PD 的中点, 所以MN ∥AD.(2分) 又底面ABCD 是矩形, 所以BC ∥AD.所以MN ∥BC.(4分)又BC ⊂平面PBC ,MN ⊄平面PBC , 所以MN ∥平面PBC.(6分) (2) 因为底面ABCD 是矩形, 所以AB ⊥AD.又侧面PAD ⊥底面ABCD ,侧面PAD ∩底面ABCD =AD ,AB ⊂底面ABCD , 所以AB ⊥侧面PAD.(8分) 又MD ⊂侧面PAD , 所以AB ⊥MD.(10分)因为DA =DP ,又M 为AP 的中点, 从而MD ⊥PA.(12分)又PA ,AB 在平面PAB 内,PA ∩AB =A , 所以MD ⊥平面PAB.(14分) 16. (1) 在△ABC 中,因为cos A =33,0<A<π, 所以sin A =1-cos 2A =63.(2分) 因为a cos B =2b cos A ,由正弦定理a sin A =bsin B,得sin A cos B =2sin B cos A.所以cos B =sin B.(4分)若cos B =0,则sin B =0,与sin 2B +cos 2B =1矛盾,故cos B ≠0. 于是tan B =sin Bcos B =1.又因为0<B<π, 所以B =π4.(7分)(2) 因为a =6,sin A =63, 由(1)及正弦定理a sin A =b sin B ,得663=b22,所以b =322.(9分)又sin C =sin (π-A -B) =sin (A +B)=sin A cos B +cos A sin B =63×22+33×22 =23+66.(12分) 所以△ABC 的面积为S =12ab sin C =12×6×322×23+66=6+324.(14分)17. (1) 因为椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率为12,所以c a =12,则a =2c.因为线段AF 中点的横坐标为22, 所以a -c 2=22.所以c =2,则a 2=8,b 2=a 2-c 2=6. 所以椭圆的标准方程为x 28+y 26=1.(4分)(2) 因为点A(a ,0),点F(-c ,0), 所以线段AF 的中垂线方程为x =a -c2.又因为△ABF 的外接圆的圆心C 在直线y =-x 上, 所以点C ⎝⎛⎭⎫a -c 2,-a -c 2.(6分) 因为点A(a ,0),点B(0,b),所以线段AB 的中垂线方程为:y -b 2=ab ⎝⎛⎭⎫x -a 2. 由点C 在线段AB 的中垂线上,得-a -c 2-b 2=a b ⎝⎛⎭⎫a -c 2-a 2,整理得,b(a -c)+b 2=ac ,(10分)即(b -c)(a +b)=0.因为a +b>0,所以b =c.(12分)所以椭圆的离心率e =c a =c b 2+c2=22.(14分)18. (1) 如图1,过点O 作与地面垂直的直线交AB ,CD 于点O 1,O 2,交劣弧CD 于点P ,O 1P 的长即为拱门最高点到地面的距离.在Rt △O 2OC 中,∠O 2OC =π3,CO 2=3,所以OO 2=1,圆的半径R =OC =2.所以O 1P =R +OO 1=R +O 1O 2-OO 2=5. 故拱门最高点到地面的距离为5 m .(4分)(2) 在拱门放倒过程中,过点O 作与地面垂直的直线与“拱门外框上沿”相交于点P.当点P 在劣弧CD 上时,拱门上的点到地面的最大距离h 等于圆O 的半径长与圆心O 到地面距离之和;当点P 在线段AD 上时,拱门上的点到地面的最大距离h 等于点D 到地面的距离.由(1)知,在Rt △OO 1B 中,OB =OO 21+O 1B 2=2 3.以B 为坐标原点,地面所在的直线为x 轴,建立如图2所示的坐标系.① 当点P 在劣弧CD 上时,π6<θ≤π2.由∠OBx =θ+π6,OB =23,由三角函数定义,得点O ⎝⎛⎭⎫23cos ⎝⎛⎭⎫θ+π6,23sin ⎝⎛⎭⎫θ+π6, 则h =2+23sin ⎝⎛⎭⎫θ+π6.(8分) 所以当θ+π6=π2即θ=π3时,h 取得最大值2+2 3.(10分)② 如图3,当点P 在线段AD 上时,0≤θ≤π6.设∠CBD =φ,在Rt △BCD 中, DB =BC 2+CD 2=27,sin φ=2327=217,cos φ=427=277.由∠DBx =θ+φ,得点D(27cos (θ+φ),27sin (θ+φ)).所以h =27sin (θ+φ)=4sin θ+23cos θ.(14分)又当0<θ<π6时,h′=4cos θ-23sin θ>4cos π6-23sin π6=3>0.所以h =4sin θ+23cos θ在⎣⎡⎦⎤0,π6上递增. 所以当θ=π6时,h 取得最大值5.因为2+23>5,所以h 的最大值为2+2 3.故h =⎩⎨⎧4sin θ+23cos θ, 0≤θ≤π6,2+23sin ⎝⎛⎭⎫θ+π6, π6<θ≤π2.艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为(2+23)m .(16分)19. (1) 函数f(x)的定义域为(0,+∞),且f′(x)=x -ax 2. ① 当a ≤0时,f′(x)>0成立,所以函数f(x)在(0,+∞)为增函数;(2分) ② 当a>0时,(ⅰ) 当x>a 时,f′(x)>0,所以函数f(x)在(a ,+∞)上为增函数; (ⅱ) 当0<x<a 时,f′(x)<0,所以函数f(x)在(0,a)上为减函数.(4分) (2) ① 由(1)知,当a ≤0时,函数f(x)至多一个零点,不合题意; 当a>0时,f(x)的最小值为f(a),依题意知f(a)=1+ln a<0,解得0<a<1e.(6分)一方面,由于1>a ,f(1)=a>0,函数f(x)在(a ,+∞)为增函数,且函数f(x)的图象在(a ,1)上不间断.所以函数f(x)在(a ,+∞)上有唯一的一个零点.另一方面,因为0<a<1e ,所以0<a 2<a<1e .f(a 2)=1a +ln a 2=1a +2ln a ,令g(a)=1a +2ln a ,当0<a<1e 时,g′(a)=-1a 2+2a =2a -1a 2<0,所以f(a 2)=g(a)=1a+2ln a>g ⎝⎛⎭⎫1e =e -2>0.又f(a)<0,函数f(x)在(0,a)为减函数,且函数f(x)的图象在(a 2,a)上不间断,所以函数f(x)在(0,a)有唯一的一个零点.综上,实数a 的取值范围是⎝⎛⎭⎫0,1e .(10分) ② 设p =x 1f′(x 1)+x 2f′(x 2)=1-a x 1+1-a x 2=2-⎝⎛⎭⎫a x 1+a x 2. 又⎩⎨⎧ln x 1+ax 1=0,ln x 2+a x 2=0,则p =2+ln (x 1x 2).(12分) 下面证明x 1x 2>a 2.不妨设x 1<x 2,由①知0<x 1<a<x 2.要证x 1x 2>a 2,即证x 1>a 2x 2. 因为x 1,a 2x 2∈(0,a),函数f(x)在(0,a)上为减函数, 所以只要证f ⎝⎛⎭⎫a 2x 2>f(x 1).又f(x 1)=f(x 2)=0,即证f ⎝⎛⎭⎫a 2x 2>f(x 2).(14分)设函数F(x)=f ⎝⎛⎭⎫a 2x -f(x)=x a -a x-2ln x +2ln a(x>a). 所以F′(x)=(x -a )2ax 2>0, 所以函数F(x)在(a ,+∞)上为增函数.所以F(x 2)>F(a)=0,所以f ⎝⎛⎭⎫a 2x 2>f(x 2)成立.从而x 1x 2>a 2成立.所以p =2+ln (x 1x 2)>2ln a +2,即x 1f′(x 1)+x 2f′(x 2)>2ln a +2成立.(16分)20. (1) 设等差数列{a n }的公差为d.因为等差数列{a n }满足a 4=4,前8项和S 8=36,所以⎩⎪⎨⎪⎧a 1+3d =4,8a 1+8×72d =36,解得⎩⎪⎨⎪⎧a 1=1,d =1. 所以数列{a n }的通项公式为a n =n.(3分)(2) ① 设数列{b n }的前n 项和为B n .由③-④得3(2n -1)-3(2n -1-1)=(b 1a 2n -1+b 2a 2n -3+…+b n -1a 3+b n a 1+2n)-(b 1a 2n -3+b 2a 2n -5+…+b n -1a 1+2n -2)=[b 1(a 2n -3+2)+b 2(a 2n -5+2)+…+b n -1(a 1+2)+b n a 1+2n]-(b 1a 2n -3+b 2a 2n -5+…+b n -1a 1+2n -2)=2(b 1+b 2+…+b n -1)+b n +2=2(B n -b n )+b n +2.所以3·2n -1=2B n -b n +2(n ≥2,n ∈N *),又3(21-1)=b 1a 1+2,所以b 1=1,满足上式.所以2B n -b n +2=3·2n -1(n ∈N *),⑤(6分)当n ≥2时,2B n -1-b n -1+2=3·2n -2,⑥由⑤-⑥得,b n +b n -1=3·2n -2.(8分)b n -2n -1=-(b n -1-2n -2)=…=(-1)n -1(b 1-20)=0,所以b n =2n -1,b n +1b n=2, 所以数列{b n }是首项为1,公比为2的等比数列.(10分)② 由a m b m =3a p b p ,得m 2m -1=3p 2p -1,即2p -m =3p m . 记c n =a n b n ,由①得,c n =a n b n =n 2n -1, 所以c n +1c n =n +12n≤1,所以c n ≥c n +1(当且仅当n =1时等号成立). 由a m b m =3a p b p,得c m =3c p >c p , 所以m <p .(12分)设t =p -m (m ,p ,t ∈N *),由2p -m =3p m ,得m =3t 2t -3. 当t =1时,m =-3,不合题意;当t =2时,m =6,此时p =8符合题意;当t =3时,m =95,不合题意; 当t =4时,m =1213<1,不合题意. 下面证明当t ≥4,t ∈N *时,m =3t 2t -3<1. 不妨设f (x )=2x -3x -3(x ≥4),则f ′(x )=2x ln 2-3>0,所以函数f (x )在[4,+∞)上是单调增函数,所以f (x )≥f (4)=1>0,所以当t ≥4,t ∈N *时,m =3t 2t -3<1,不合题意. 综上,所求集合{(m ,p )|a m b m =3a p b p,m ,p ∈N *}={(6,8)}.(16分) 21. A. 由题意知(MN )-1=⎣⎢⎢⎡⎦⎥⎥⎤14002, 则MN =⎣⎢⎢⎡⎦⎥⎥⎤40012.(4分) 因为N =⎣⎢⎢⎡⎦⎥⎥⎤10012,则N -1=⎣⎢⎡⎦⎥⎤1002.(6分) 所以矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤40012⎣⎢⎡⎦⎥⎤1002=⎣⎢⎡⎦⎥⎤4001.(10分) B. (1) 直线l 的极坐标方程可化为ρ(sin θcos π4-cos θsin π4)=2,即ρsin θ-ρcos θ=2. 又x =ρcos θ,y =ρsin θ,所以直线l 的直角坐标方程为x -y +2=0.(4分)(2) 曲线C ⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数)的普通方程为x 2=y . 由⎩⎪⎨⎪⎧x 2=y ,x -y +2=0得x 2-x -2=0, 所以直线l 与曲线C 的交点A (-1,1),B (2,4).(8分)所以直线l 被曲线C 截得的线段长为AB =(-1-2)2+(1-4)2=3 2.(10分)C. 由柯西不等式,得[(a 2+1)+(b 2+1)+(c 2+1)](1a 2+1+1b 2+1+1c 2+1)≥(a 2+11a 2+1+b 2+11b 2+1+c 2+11c 2+1)2=9,(5分) 所以1a 2+1+1b 2+1+1c 2+1≥9a 2+b 2+c 2+3≥91+3=94.(10分) 22. (1) 记“X 是‘回文数’”为事件A.9个不同的2位“回文数”乘以4的值依次为44,88,132,176,220,264,308,352,396,其中“回文数”有44,88.所以事件A 的概率P(A)=29.(3分) (2) 根据条件知,随机变量ξ的所有可能取值为0,1,2.由(1)得P(A)=29.(5分) 设“Y 是‘回文数’”为事件B ,则事件A ,B 相互独立. 根据已知条件得,P(B)=20C 29=59. P(ξ=0)=P(A)P(B)=(1-29)×(1-59)=2881; P(ξ=1)=P(A)P(B)+P(A)P(B)=(1-29)×59+29×⎝⎛⎭⎫1-59=4381; P(ξ=2)=P(A)P(B)=29×59=1081(8分) 所以,随机变量ξξ0 1 2 P 2881 4381 1081所以随机变量ξ的数学期望为E(ξ)=0×2881+1×4381+2×1081=79.(10分) 23. (1) 集合A 1={1,2,3}的子集有∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3},其中所有元素和为3的整数倍的集合有∅,{3},{1,2},{1,2,3}, 所以A 1的“和谐子集”的个数等于4.(3分)(2) 记A n 的“和谐子集”的个数等于a n ,即A n 有a n 个所有元素和为3的整数倍的子集; 另记A n 有b n 个所有元素和为3的整数倍余1的子集,有c n 个所有元素和为3的整数倍余2的子集.由(1)知,a 1=4,b 1=2,c 1=2.集合A n +1={1,2,3,…,3n -2,3n -1,3n ,3n +1,3n +2,3(n +1)}的“和谐子集”有以下四类(考察新增元素3n +1,3n +2,3(n +1)):第一类:集合A n ={1,2,3,…,3n -2,3n -1,3n}的“和谐子集”,共a n 个; 第二类:仅含一个元素3(n +1)的“和谐子集”,共a n 个;同时含两个元素3n +1,3n +2的“和谐子集”,共a n 个;同时含三个元素3n +1,3n +2,3(n +1)的“和谐子集”,共a n 个; 第三类:仅含一个元素3n +1的“和谐子集”,共c n 个;同时含两个元素3n +1,3(n +1)的“和谐子集”,共c n 个;第四类:仅含一个元素3n +2的“和谐子集”,共b n 个;同时含有两个元素3n +2,3(n +1)的“和谐子集”,共b n 个, 所以集合A n +1的“和谐子集”共有a n +1=4a n +2b n +2c n 个.同理得b n +1=4b n +2c n +2a n ,c n +1=4c n +2a n +2b n .(7分)所以a n +1-b n +1=2(a n -b n ),a 1-b 1=2,所以数列{a n -b n }是以2为首项,2为公比的等比数列.所以a n -b n =2n .同理得a n -c n =2n .又a n +b n +c n =23n ,所以a n =23×2n +×23n (n ∈N *).(10分)。

上海市2019年高考数学一模试卷(解析版)

上海市2019年高考数学一模试卷(解析版)

2019年上海市高考数学一模试卷一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.(4分)设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B=.2.(4分)函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=.3.(4分)设i为虚数单位,在复平面上,复数对应的点到原点的距离为.4.(4分)若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=.5.(4分)已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=.6.(4分)甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有种.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是.(写出所有真命题的序号)11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为cm.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]三、解答题(共5小题,满分76分)17.(14分)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD 所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).18.(14分)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.19.(14分)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k >0)的图象,与线段DB交于点N(点N不与点D重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.20.(16分)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h (a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.21.(18分)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.参考答案与试题解析一、填空题(共12小题,1-6每题4分,7-12每题5分,共54分)1.设集合A={x||x﹣2|<1,x∈R},集合B=Z,则A∩B={2} .【考点】交集及其运算.【分析】利用交集定义求解.【解答】解:|x﹣2|<1,即﹣1<x﹣2<1,解得1<x<3,即A=(1,3),集合B=Z,则A∩B={2},故答案为:{2}【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意定义法的合理运用.2.函数y=sin(ωx﹣)(ω>0)的最小正周期是π,则ω=2.【考点】正弦函数的图象.【分析】根据三角函数的周期性及其求法即可求值.【解答】解:∵y=sin(ωx﹣)(ω>0),∴T==π,∴ω=2.故答案是:2.【点评】本题主要考查了三角函数的周期性及其求法,属于基础题.3.设i为虚数单位,在复平面上,复数对应的点到原点的距离为.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义、两点之间的距离公式即可得出.【解答】解:复数===对应的点到原点的距离==.故答案为:.【点评】本题考查了复数的运算法则、几何意义、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.4.若函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),则实数a=3.【考点】反函数.【分析】由题意可得函数f(x)=log2(x+1)+a过(1,4),代入求得a的值.【解答】解:函数f(x)=log2(x+1)+a的反函数的图象经过点(4,1),即函数f(x)=log2(x+1)+a的图象经过点(1,4),∴4=log2(1+1)+a∴4=1+a,a=3.故答案为:3.【点评】本题考查了互为反函数的两个函数之间的关系与应用问题,属于基础题.5.已知(a+3b)n展开式中,各项系数的和与各项二项式系数的和之比为64,则n=6.【考点】二项式系数的性质.【分析】令二项式中的a=b=1得到展开式中的各项系数的和,根据二项式系数和公式得到各项二项式系数的和2n,据已知列出方程求出n 的值.【解答】解:令二项式中的a=b=1得到展开式中的各项系数的和4n 又各项二项式系数的和为2n据题意得,解得n=6.故答案:6【点评】求二项展开式的系数和问题一般通过赋值求出系数和;二项式系数和为2n.属于基础题.6.甲、乙两人从5门不同的选修课中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有60种.【考点】排列、组合及简单计数问题.【分析】间接法:①先求所有两人各选修2门的种数,②再求两人所选两门都相同与都不同的种数,作差可得答案.【解答】解:根据题意,采用间接法:①由题意可得,所有两人各选修2门的种数C52C52=100,②两人所选两门都相同的有为C52=10种,都不同的种数为C52C32=30,故只恰好有1门相同的选法有100﹣10﹣30=60种.故答案为60.【点评】本题考查组合公式的运用,解题时注意事件之间的关系,选用间接法是解决本题的关键,属中档题.7.若圆锥的侧面展开图是半径为2cm,圆心角为270°的扇形,则这个圆锥的体积为cm3.【考点】旋转体(圆柱、圆锥、圆台).【分析】利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得底面半径,进而求出圆锥的高,代入圆锥体积公式,可得答案.【解答】解:设此圆锥的底面半径为r,由题意,得:2πr=π×2,解得r=.故圆锥的高h==,∴圆锥的体积V=πr2h=cm3.故答案为:.【点评】本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.8.若数列{a n}的所有项都是正数,且++…+=n2+3n(n∈N*),则()=2.【考点】数列的求和;极限及其运算.【分析】利用数列递推关系可得a n,再利用等差数列的求和公式、极限的运算性质即可得出.【解答】解:∵ ++…+=n2+3n(n∈N*),∴n=1时,=4,解得a1=16.n≥2时,且++…+=(n﹣1)2+3(n﹣1),可得:=2n+2,∴a n=4(n+1)2.=4(n+1).∴()==2.故答案为:2.【点评】本题考查了数列递推关系、等差数列的求和公式、极限运算性质,考查了推理能力与计算能力,属于中档题.9.如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB的长为.【考点】余弦定理.【分析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.【解答】解:在△ADC中,AD=5,AC=7,DC=3,由余弦定理得cos∠ADC==﹣,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=5,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=故答案为:.【点评】本题主要考查余弦定理和正弦定理的应用,在解决问题的过程中要灵活运用正弦定理和余弦定理.属基础题.10.有以下命题:①若函数f(x)既是奇函数又是偶函数,则f(x)的值域为{0};②若函数f(x)是偶函数,则f(|x|)=f(x);③若函数f(x)在其定义域内不是单调函数,则f(x)不存在反函数;④若函数f(x)存在反函数f﹣1(x),且f﹣1(x)与f(x)不完全相同,则f(x)与f﹣1(x)图象的公共点必在直线y=x上;其中真命题的序号是①②.(写出所有真命题的序号)【考点】必要条件、充分条件与充要条件的判断.【分析】①函数f(x)既是奇函数又是偶函数,则f(x)=0.②利用偶函数的定义和性质判断.③利用单调函数的定义进行判断.④利用反函数的性质进行判断.【解答】解:①若函数f(x)既是奇函数又是偶函数,则f(x)=0,为常数函数,所以f(x)的值域是{0},所以①正确.②若函数为偶函数,则f(﹣x)=f(x),所以f(|x|)=f(x)成立,所以②正确.③因为函数f(x)=在定义域上不单调,但函数f(x)存在反函数,所以③错误.④原函数图象与其反函数图象的交点关于直线y=x对称,但不一定在直线y=x上,比如函数y=﹣与其反函数y=x2﹣1(x≤0)的交点坐标有(﹣1,0),(0,1),显然交点不在直线y=x上,所以④错误.故答案为:①②.【点评】本题主要考查函数的有关性质的判定和应用,要求熟练掌握相应的函数的性质,综合性较强.11.设向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,若A、B、C三点共线,则+的最小值为8.【考点】基本不等式.【分析】A、B、C三点共线,则=λ,化简可得2a+b=1.根据+ =(+)(2a+b),利用基本不等式求得它的最小值【解答】解:向量=(1,﹣2),=(a,﹣1),=(﹣b,0),其中O为坐标原点,a>0,b>0,∴=﹣=(a﹣1,1),=﹣=(﹣b﹣1,2),∵A、B、C三点共线,∴=λ,∴,解得2a+b=1,∴+=(+)(2a+b)=2+2++≥4+2=8,当且仅当a=,b=,取等号,故+的最小值为8,故答案为:8【点评】本题主要考查两个向量共线的性质,两个向量坐标形式的运算,基本不等式的应用,属于中档题.12.如图,已知正三棱柱ABC﹣A1B1C1的底面边长为2cm,高为5cm,一质点自A点出发,沿着三棱柱的侧面绕行两周到达A1点的最短路线的长为13cm.【考点】多面体和旋转体表面上的最短距离问题.【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱ABC﹣A1B1C1沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6×2=12,宽等于5,由勾股定理d==13故答案为:13.【点评】本题考查棱柱的结构特征,空间想象能力,几何体的展开与折叠,体现了转化(空间问题转化为平面问题,化曲为直)的思想方法.二、选择题(共4小题,每小题5分,满分20分)13.“x<2”是“x2<4”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先求出x2<4的充要条件,结合集合的包含关系判断即可.【解答】解:由x2<4,解得:﹣2<x<2,故x<2是x2<4的必要不充分条件,故选:B.【点评】本题考察了充分必要条件,考察集合的包含关系,是一道基础题.14.若无穷等差数列{a n}的首项a1<0,公差d>0,{a n}的前n项和为S n,则以下结论中一定正确的是()A.S n单调递增B.S n单调递减C.S n有最小值D.S n有最大值【考点】等差数列的前n项和.【分析】S n=na1+d=n2+n,利用二次函数的单调性即可判断出结论.【解答】解:S n=na1+d=n2+n,∵>0,∴S n有最小值.故选:C.【点评】本题考查了等差数列的求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.给出下列命题:(1)存在实数α使.(2)直线是函数y=sinx图象的一条对称轴.(3)y=cos(cosx)(x∈R)的值域是[cos1,1].(4)若α,β都是第一象限角,且α>β,则tanα>tanβ.其中正确命题的题号为()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【考点】正弦函数的定义域和值域;两角和与差的正弦函数;正弦函数的对称性;余弦函数的定义域和值域.【分析】(1)利用辅助角公式将可判断(1);(2)根据函数y=sinx图象的对称轴方程可判断(2);(3)根据余弦函数的性质可求出y=cos(cosx)(x∈R)的最大值与最小值,从而可判断(3)的正误;(4)用特值法令α,β都是第一象限角,且α>β,可判断(4).【解答】解:(1)∵,∴(1)错误;(2)∵y=sinx图象的对称轴方程为,k=﹣1,,∴(2)正确;(3)根据余弦函数的性质可得y=cos(cosx)的最大值为y max=cos0=1,y min=cos(cos1),其值域是[cos1,1],(3)正确;(4)不妨令,满足α,β都是第一象限角,且α>β,但tanα<tanβ,(4)错误;故选B.【点评】本题考查正弦函数与余弦函数、正切函数的性质,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.16.如果对一切实数x、y,不等式﹣cos2x≥asinx﹣恒成立,则实数a的取值范围是()A.(﹣∞,]B.[3,+∞)C.[﹣2,2]D.[﹣3,3]【考点】函数恒成立问题.【分析】将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立,构造函数f(y)=+,利用基本不等式可求得f(y)=3,于是问题转化为asinx﹣sin2x≤2恒成立.通过对sinx>0、sinx min<0、sinx=0三类讨论,可求得对应情况下的实数a的取值范围,最后取其交集即可得到答案.【解答】解:∀实数x、y,不等式﹣cos2x≥asinx﹣恒成立⇔+≥asinx+1﹣sin2x恒成立,令f(y)=+,则asinx+1﹣sin2x≤f(y)min,当y>0时,f(y)=+≥2=3(当且仅当y=6时取“=”),f(y)=3;min当y<0时,f(y)=+≤﹣2=﹣3(当且仅当y=﹣6时取“=”),f(y)max=﹣3,f(y)min不存在;综上所述,f(y)min=3.所以,asinx+1﹣sin2x≤3,即asinx﹣sin2x≤2恒成立.①若sinx>0,a≤sinx+恒成立,令sinx=t,则0<t≤1,再令g(t)=t+(0<t≤1),则a≤g(t)min.由于g′(t)=1﹣<0,所以,g(t)=t+在区间(0,1]上单调递减,因此,g(t)min=g(1)=3,所以a≤3;②若sinx<0,则a≥sinx+恒成立,同理可得a≥﹣3;③若sinx=0,0≤2恒成立,故a∈R;综合①②③,﹣3≤a≤3.故选:D.【点评】本题考查恒成立问题,将不等式﹣cos2x≥asinx﹣恒成立转化为+≥asinx+1﹣sin2x恒成立是基础,令f(y)=+,求得f (y)min=3是关键,也是难点,考查等价转化思想、分类讨论思想的综合运用,属于难题.三、解答题(共5小题,满分76分)17.(14分)(2017•上海一模)如图,已知AB⊥平面BCD,BC⊥CD,AD与平面BCD所成的角为30°,且AB=BC=2;(1)求三棱锥A﹣BCD的体积;(2)设M为BD的中点,求异面直线AD与CM所成角的大小(结果用反三角函数值表示).【考点】棱柱、棱锥、棱台的体积;异面直线及其所成的角.【分析】(1)由AB⊥平面BCD,得CD⊥平面ABC,由此能求出三棱锥A﹣BCD的体积.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,由此能求出异面直线AD与CM所成角的大小.【解答】解:(1)如图,因为AB⊥平面BCD,所以AB⊥CD,又BC⊥CD,所以CD⊥平面ABC,因为AB⊥平面BCD,AD与平面BCD所成的角为30°,故∠ADB=30°,由AB=BC=2,得AD=4,AC=2,∴BD==2,CD==2,则V A﹣BCD====.(2)以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,则A(0,2,2),D(2,0,0),C(0,0,0),B(0,2,0),M(),=(2,﹣2,﹣2),=(),设异面直线AD与CM所成角为θ,则cosθ===.θ=arccos.∴异面直线AD与CM所成角的大小为arccos.【点评】本题考查了直线和平面所成角的计算,考查了利用等积法求点到面的距离,变换椎体的顶点,利用其体积相等求空间中点到面的距离是较有效的方法,此题是中档题.18.(14分)(2017•上海一模)在△ABC中,a,b,c分别是角A,B,C的对边,且8sin2.(I)求角A的大小;(II)若a=,b+c=3,求b和c的值.【考点】余弦定理;解三角形.【分析】(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos(B+C)]﹣4cos2A+2=7,解方程求得cosA 的值,即可得到A的值.(II)由余弦定理及a=,b+c=3,解方程组求得b 和c的值.【解答】解:(I)在△ABC中有B+C=π﹣A,由条件可得:4[1﹣cos (B+C)]﹣4cos2A+2=7,(1分)又∵cos(B+C)=﹣cosA,∴4cos2A﹣4cosA+1=0.(4分)解得,∴.(6分)(II)由.(8分)又.(10分)由.(12分)【点评】本题主要考查余弦定理,二倍角公式及诱导公式的应用,属于中档题.19.(14分)(2017•上海一模)某地要建造一个边长为2(单位:km)的正方形市民休闲公园OABC,将其中的区域ODC开挖成一个池塘,如图建立平面直角坐标系后,点D的坐标为(1,2),曲线OD 是函数y=ax2图象的一部分,对边OA上一点M在区域OABD内作一次函数y=kx+b(k>0)的图象,与线段DB交于点N(点N不与点D 重合),且线段MN与曲线OD有且只有一个公共点P,四边形MABN 为绿化风景区:(1)求证:b=﹣;(2)设点P的横坐标为t,①用t表示M、N两点坐标;②将四边形MABN的面积S表示成关于t的函数S=S(t),并求S的最大值.【考点】函数模型的选择与应用.【分析】(1)根据函数y=ax2过点D,求出解析式y=2x2;由,消去y得△=0即可证明b=﹣;(2)写出点P的坐标(t,2t2),代入①直线MN的方程,用t表示出直线方程为y=4tx﹣2t2,令y=0,求出M的坐标;令y=2求出N的坐标;②将四边形MABN的面积S表示成关于t的函数S(t),利用基本不等式求出S的最大值.【解答】(1)证明:函数y=ax2过点D(1,2),代入计算得a=2,∴y=2x2;由,消去y得2x2﹣kx﹣b=0,由线段MN与曲线OD有且只有一个公共点P,得△=(﹣k)2﹣4×2×b=0,解得b=﹣;(2)解:设点P的横坐标为t,则P(t,2t2);①直线MN的方程为y=kx+b,即y=kx﹣过点P,∴kt﹣=2t2,解得k=4t;y=4tx﹣2t2令y=0,解得x=,∴M(,0);令y=2,解得x=+,∴N(+,2);②将四边形MABN的面积S表示成关于t的函数为S=S(t)=2×2﹣×2×[+(+)]=4﹣(t+);由t+≥2•=,当且仅当t=,即t=时“=”成立,所以S≤4﹣2;即S的最大值是4﹣.【点评】本题考查了函数模型的应用问题,也考查了阅读理解能力,是综合性题目.20.(16分)(2017•上海一模)已知函数f(x)=9x﹣2a•3x+3:(1)若a=1,x∈[0,1]时,求f(x)的值域;(2)当x∈[﹣1,1]时,求f(x)的最小值h(a);(3)是否存在实数m、n,同时满足下列条件:①n>m>3;②当h (a)的定义域为[m,n]时,其值域为[m2,n2],若存在,求出m、n的值,若不存在,请说明理由.【考点】函数的最值及其几何意义;函数的值域.【分析】(1)设t=3x,则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,φ(t)的对称轴为t=a,当a=1时,即可求出f(x)的值域;(2)由函数φ(t)的对称轴为t=a,分类讨论当a<时,当≤a ≤3时,当a>3时,求出最小值,则h(a)的表达式可求;(3)假设满足题意的m,n存在,函数h(a)在(3,+∞)上是减函数,求出h(a)的定义域,值域,然后列出不等式组,求解与已知矛盾,即可得到结论.【解答】解:(1)∵函数f(x)=9x﹣2a•3x+3,设t=3x,t∈[1,3],则φ(t)=t2﹣2at+3=(t﹣a)2+3﹣a2,对称轴为t=a.当a=1时,φ(t)=(t﹣1)2+2在[1,3]递增,∴φ(t)∈[φ(1),φ(3)],∴函数f(x)的值域是:[2,6];(Ⅱ)∵函数φ(t)的对称轴为t=a,当x∈[﹣1,1]时,t∈[,3],当a<时,y min=h(a)=φ()=﹣;当≤a≤3时,y min=h(a)=φ(a)=3﹣a2;当a>3时,y min=h(a)=φ(3)=12﹣6a.故h(a)=;(Ⅲ)假设满足题意的m,n存在,∵n>m>3,∴h(a)=12﹣6a,∴函数h(a)在(3,+∞)上是减函数.又∵h(a)的定义域为[m,n],值域为[m2,n2],则,两式相减得6(n﹣m)=(n﹣m)•(m+n),又∵n>m>3,∴m﹣n≠0,∴m+n=6,与n>m>3矛盾.∴满足题意的m,n不存在.【点评】本题主要考查二次函数的值域问题,二次函数在特定区间上的值域问题一般结合图象和单调性处理,是中档题.21.(18分)(2017•上海一模)已知无穷数列{a n}的各项都是正数,其前n项和为S n,且满足:a1=a,rS n=a n a n+1﹣1,其中a≠1,常数r ∈N;(1)求证:a n+2﹣a n是一个定值;(2)若数列{a n}是一个周期数列(存在正整数T,使得对任意n∈N*,都有a n+T=a n成立,则称{a n}为周期数列,T为它的一个周期,求该数列的最小周期;(3)若数列{a n}是各项均为有理数的等差数列,c n=2•3n﹣1(n∈N*),问:数列{c n}中的所有项是否都是数列{a n}中的项?若是,请说明理由,若不是,请举出反例.【考点】数列递推式.【分析】(1)由rS n=a n a n+1﹣1,利用迭代法得:ra n+1=a n+1(a n+2﹣a n),由此能够证明a n+2﹣a n为定值.(2)当n=1时,ra=aa2﹣1,故a2=,根据数列是隔项成等差,写出数列的前几项,再由r>0和r=0两种情况进行讨论,能够求出该数列的周期.(3)因为数列{a n}是一个有理等差数列,所以a+a=r=2(r+),化简2a2﹣ar﹣2=0,解得a是有理数,由此入手进行合理猜想,能够求出S n.【解答】(1)证明:∵rS n=a n a n+1﹣1,①∴rS n+1=a n+1a n+2﹣1,②②﹣①,得:ra n+1=a n+1(a n+2﹣a n),∵a n>0,∴a n+2﹣a n=r.(2)解:当n=1时,ra=aa2﹣1,∴a2=,根据数列是隔项成等差,写出数列的前几项:a,r+,a+r,2r+,a+2r,3r+,….当r>0时,奇数项和偶数项都是单调递增的,所以不可能是周期数列,∴r=0时,数列写出数列的前几项:a,,a,,….所以当a>0且a≠1时,该数列的周期是2,(3)解:因为数列{a n}是一个有理等差数列,a+a+r=2(r+),化简2a2﹣ar﹣2=0,a=是有理数.设=k,是一个完全平方数,则r2+16=k2,r,k均是非负整数r=0时,a=1,a n=1,S n=n.r≠0时(k﹣r)(k+r)=16=2×8=4×4可以分解成8组,其中只有,符合要求,此时a=2,a n=,S n=,∵c n=2•3n﹣1(n∈N*),a n=1时,不符合,舍去.a n=时,若2•3n﹣1=,则:3k=4×3n﹣1﹣1,n=2时,k=,不是整数,因此数列{c n}中的所有项不都是数列{a n}中的项.【点评】本题考查了数列递推关系、等差数列的定义与通项公式、数列的周期性性,考查了推理能力与计算能力,属于难题.。

2019年上海市青浦区高考数学一模试卷(含解析版)

2019年上海市青浦区高考数学一模试卷(含解析版)

2019年上海市青浦区高考数学一模试卷一、填空题(本大题满分54分)本题共有12题,1-6每题4分,7-12每题5分考生应在答题相应编号的空格内直接填写结果,每个空格填对得分,否则律得零分。

1.(4分)已知集合A={﹣1,0,1,2},B=(﹣∞,0),则A∩B=.2.(4分)写出命题“若am2<bm2,则a<b”的逆命题.3.(4分)不等式2<()3(x﹣1)的解集为.4.(4分)在平面直角坐标系xOy中,角θ以Ox为始边,终边与单位圆交于点(),则tan(π+θ)的值为.5.(4分)已知直角三角形ABC中,∠A=90°,AB=3,AC=4,则△ABC绕直线AC旋转一周所得几何体的体积为.6.(4分)如图所示,在复平面内,网格中的每个小正形的边长都为1,点A,B对应的复数分别是z1,z2,则||=.7.(5分)已知无穷等比数列{a n}的各项和为4,则首项a1的取值范围是.8.(5分)设函数f(x)=sinωx(0<ω<2),将f(x)图象向左平移单位后所得函数图象的对称轴与原函数图象的对称轴重合,则ω=.9.(5分)2018首届进博会在上海召开,现要从5男4女共9名志愿者中选派3名志愿者服务轨交2号线徐泾东站的一个出入口,其中至少要求一名为男性,则不同的选派方案共有种.10.(5分)设等差数列{a n}满足a1=1,a n>0,其前n顶和为S n,若数列{}也为等差数列,则=.11.(5分)已函数f(x)+2=,当x∈(0,1]时,f(x)=x2,若在区间(﹣1,1]内,g(x)=f(x)﹣t(x+1)有两个不同的零点,则实数t的取值范围是.12.(5分)已知平面向量、、满足||=1,||=||=2,且=0,则当0≤λ≤1时,|﹣λ﹣(1﹣λ)|的取值范围是.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则律得零分。

2019年四川省成都市高考数学一诊试卷(理科)(解析版)

2019年四川省成都市高考数学一诊试卷(理科)(解析版)

2019年四川省成都市高考数学一诊试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x>﹣2},B={x|x≥1},则A∪B=()A.{x|x>﹣2}B.{x|﹣2<x≤1}C.{x|x≤﹣2}D.{x|x≥1}2.(5分)复数(i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)一个三棱锥的正视图和侧视图如图所示(均为直角三角形),则该三棱锥的体积为()A.4B.8C.16D.244.(5分)设实数x,y满足约束条件,则z=3x+y的最小值为()A.1B.2C.3D.65.(5分)执行如图所示的程序框图,则输出的n值是()A.5B.7C.9D.116.(5分)设S n为等差数列{a n}的前n项和,且2+a5=a6+a3,则S7=()A.28B.14C.7D.27.(5分)下列判断正确的是()A.“x<﹣2”是“ln(x+3)<0”的充分不必要条件B.函数的最小值为2C.当α,β∈R时,命题“若α=β,则sinα=sinβ”的逆否命题为真命题D.命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”8.(5分)已知函数f(x)=3x+2cos x,若,b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<c B.c<a<b C.b<a<c D.b<c<a9.(5分)在各棱长均相等的直三棱柱ABC﹣A1B1C1中,已知M是棱BB1的中点,N是棱AC的中点,则异面直线A1M与BN所成角的正切值为()A.B.1C.D.10.(5分)齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为()A.B.C.D.11.(5分)已知定义在R上的函数f(x)的图象关于直线x=a(a>0)对称,且当x≥a时,f(x)=e x﹣2a.若A,B是函数f(x)图象上的两个动点,点P(a,0),则当的最小值为0时,函数f(x)的最小值为()A.e B.e﹣1C.e D.e﹣212.(5分)设椭圆C:=1(a>b>0)的左,右顶点为A,B.P是椭圆上不同于A,B的一点,设直线AP,BP的斜率分别为m,n,则当(3﹣)+3(ln|m|+ln|n|)取得最小值时,椭圆C的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.(5分)已知双曲线C:x2﹣y2=1的右焦点为F,则点F到双曲线C的一条渐近线的距离为.14.(5分)(2x+)4展开式的常数项是.15.(5分)设S n为数列{a n}的前n项和,且a1=4,,则a5=.16.(5分)已知G为△ABC的重心,过点G的直线与边AB,AC分别相交于点P,Q,若AP=λAB,则当△ABC与△APQ的面积之比为时,实数λ的值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤.17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知,.(1)求a的值;(2)若b=1,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠ABC=,P A ⊥平面ABCD,点M是棱PC的中点.(Ⅰ)证明:P A∥平面BMD;(Ⅱ)当P A=时,求直线AM与平面PBC所成角的正弦值.19.(12分)在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值x与销售单价y之间的关系,经统计得到如下数据:(Ⅰ)已知销售单价y与等级代码数值x之间存在线性相关关系,求y关于x的线性回归方程(系数精确到0.1);(Ⅱ)若莫斯科某个餐厅打算从上表的6种等级的中国小龙虾中随机选2种进行促销,记被选中的2种等级代码数值在60以下(不含60)的数量为X,求X的分布列及数学期望.参考公式:对一组数据(x1,y1),(x2,y2),…(x n,y n),其回归直线=x的斜率和截距最小二乘估计分别为:=,=.参考数据:x i y i=8440,x=25564.20.(12分)已知长度为4的线段AB的两个端点A,B分别在x轴和y轴上运动,动点P 满足=3,记动点P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设不经过点H(0,1)的直线y=2x+t与曲线C相交于两点M,N.若直线HM与HN的斜率之和为1,求实数t的值.21.(12分)已知函数.(Ⅰ)当a<0时,讨论函数f(x)的单调性;(Ⅱ)当a=1时,若关于x的不等式f(x)+(x+)e x﹣bx≥1恒成立,求实数b的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数).在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点P(0,﹣1).若直线l与曲线C相交于两点A,B,求|P A|+|PB|的值.[选修4-5:不等式选讲]23.已知函数|.(Ⅰ)求不等式f(x)﹣3<0的解集;(Ⅱ)若关于x的方程f(x)﹣m2﹣2m﹣=0无实数解,求实数m的取值范围.2019年四川省成都市高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:集合A={x|x>﹣2},B={x|x≥1},则A∪B={x|x>﹣2}.故选:A.2.【解答】解:∵=,∴复数在复平面内对应的点的坐标为(1,﹣2),位于第四象限.故选:D.3.【解答】解:由三视图知几何体为三棱锥,且侧棱AO与底面OCB垂直,其直观图如图:∵其俯视图是直角三角形,直角边长为2;4;∴OA=6,∴棱锥的体积V==8.故选:B.4.【解答】解:作出实数x,y满足约束条件表示的平面区域(如图示:阴影部分):由得A(0,1),由z=3x+y得y=﹣3x+z,平移y=﹣3x,易知过点A时直线在y上截距最小,所以z=1.故选:A.5.【解答】解:执行如图所示的程序框图如下,n=1时,S==,n=3时,S=+=,n=5时,S=++=,n=7时,S=+++=,满足循环终止条件,此时n=9,则输出的n值是9.故选:C.6.【解答】解:∵2+a5=a6+a3,∴a4=2,S7==7a4=14.故选:B.7.【解答】解:“x<﹣2”推不出“ln(x+3)<0”,反正成立,所以“x<﹣2”是“ln(x+3)<0”的充分不必要条件,所以A不正确;函数的最小值为3+;所以B不正确;当α,β∈R时,命题“若α=β,则sinα=sinβ”是真命题,所以它的逆否命题为真命题;所以C正确;命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”不满足命题的否定形式,所以D不正确;故选:C.8.【解答】解:根据题意,函数f(x)=3x+2cos x,其导数函数f′(x)=3﹣2sin x,则有f′(x)=3﹣2sin x>0在R上恒成立,则f(x)在R上为增函数;又由2=log24<log27<3<,则b<c<a;故选:D.9.【解答】解:高各棱长均相等的直三棱柱ABC﹣A1B1C1中,棱长为2,以A为原点,AC为y轴,AA1为z轴,建立空间直角坐标系,则A1(0,0,2),M(,1,1),B(,1,0),N(0,1,0),=(,﹣1),=(﹣,0,0),设异面直线A1M与BN所成角为θ,则cosθ===,∴tanθ=.∴异面直线A1M与BN所成角的正切值为.故选:C.10.【解答】解:设齐王上等,中等,下等马分别为A,B,C,田忌上等,中等,下等马分别为a,b,c,现从双方的马匹中随机各选一匹进行一场比赛,基本事件有:(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(C,a),(C,b),(C,c),共9种,有优势的马一定获胜,齐王的马获胜包含的基本事件有:(A,a),(A,b),(A,c),(B,b),(B,c),(C,c),共6种,∴齐王的马获胜的概率为p==.故选:C.11.【解答】解如图,显然的模不为0,故当最小值为0时,只能是图中的情况,此时,P A⊥PB,且P A,PB与函数图象相切,根据对称性,易得∠BPD=45°,设B(x0,y0),当x≥a时,f′(x)=e x﹣2a,∴∴x0=2a∵P(a,0)∴PD=a,∴BD=a,即B(2a,a),∴e2a﹣2a=a,∴a=1,∴当x≥1时,f(x)=e x﹣2,递增,故其最小值为:e﹣1,根据对称性可知,函数f(x)在R上最小值为e﹣1.故选:B.12.【解答】解:A(﹣a,0),B(a,0),设P(x0,y0),则,则m=,n=,∴mn==,∴(3﹣)+3(ln|m|+ln|n|)==,令=t>1,则f(t)=.f′(t)==,∴当t=2时,函数f(t)取得最小值f(2).∴.∴e=,故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.【解答】解:双曲线C:x2﹣y2=1的a=b=1,c=,则可设F(,0),设双曲线的一条渐近线方程为y=x,则F到渐近线的距离为d==1.故答案为:1.14.【解答】解:由通项公式得:T r+1=C(2x)4﹣r()r=24﹣r C x4﹣2r,令r=2,得展开式的常数项为:24﹣2C=24,故答案为:2415.【解答】解:S n为数列{a n}的前n项和,且a1=4,a n+1=S n,①,则:当n≥2时,a n=S n﹣1②①﹣②得:a n+1﹣a n=a n,所以:(常数),所以:数列{a n}是以4为首项,2为公比的等比数列.所以:(首项不符合通项).故:,当n=5时,.故答案为:3216.【解答】解:∵设AQ=μACG为△ABC的重心,∴==.∵P,G,Q三点共线,∴.△ABC与△APQ的面积之比为时,.∴或,故答案为:或.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤. 17.【解答】解:(1)由题意可得,,由余弦定理可得,cos A=(2分)即=,(4分)∴a=(6分)(2)∵a=,b=1,由正弦定理可得,sin B===(8分)∵a>b,∴B=,(9分)C=π﹣A﹣B=(10分)∴S△ABC===(12分)18.【解答】证明:(Ⅰ)如图,连结AC,交BD于点O,连结MO,∵M,O分别为PC,AC的中点,∴P A∥MO∵P A⊄平面BMD,MO⊂平面BMD,∴P A∥平面BMD.解:(Ⅱ)如图,取线段BC的中点H,连结AH,∵ABCD为菱形,∠ABC=,∴AH⊥AD,分别以AH,AD,AP所在直线为x轴,y轴,z轴,建立空间直角坐标系,∴A(0,0,0),B(),C(),P(0,0,),M(),∴=(,),=(0,2,0),=(),设平面PBC的法向量=(x,y,z),则,取z=1,∴=(1,0,1),设直线AM与平面PBC所成角为θ,∴sinθ=|cos<>|===.∴直线AM与平面PBC所成角的正弦值为.19.【解答】解:(Ⅰ)由题意得:=(38+48+58+68+78+88)=63,=(16.8+18.8+20.8+22.8+24+25.8)=21.5,=≈0.2,=﹣=8.9,故所求回归方程是:=0.2x+8.9;(Ⅱ)由题意知X的所有可能为0,1,2,∵P(X=0)==,P(X=1)==,P(X=2)==,故X的分布列为:故E(X)=0×+1×+2×=1.20.【解答】解:(Ⅰ)设P(x,y),A(m,0),B(0,n),∵,∴(x,y﹣n)=3(m﹣x,﹣y)=(3m﹣3x,﹣3y),即,∴,∵|AB|=4,∴m2+n2=16,∴,∴曲线C的方程为:;(Ⅱ)设M(x1,y1),N(x2,y2),由,消去y得,37x2+36tx+9(t2﹣1)=0,由△=(36t)2﹣4×37×9(t2﹣1)>0,可得﹣,又直线y=2x+t不经过点H(0,1),且直线HM与HN的斜率存在,∴t≠±1,又,,∴k HM+k HN===4﹣=1,解得t=3,故t的值为3.21.【解答】解:(Ⅰ)由题意知:f′(x)=,∵当a<0,x>0时,有ax﹣e x<0,∴当x>1时,f′(x)<0,当0<x<1时,f′(x)>0,∴函数f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)由题意当a=1时,不等式f(x)+(x+)e x﹣bx≥1恒成立,即xe x﹣lnx+(1﹣b)x≥1恒成立,即b﹣1≤e x﹣﹣恒成立,设g(x)=e x﹣﹣,则g′(x)=,设h(x)=x2e x+lnx,则h′(x)=(x2+2x)e x+,当x>0时,有h′(x)>0,故h(x)在(0,+∞)递增,且h(1)=e>0,h()=﹣ln2<0,故函数h(x)有唯一零点x0,且<x0<1,故当x∈(0,x0)时,h(x)<0,g′(x)<0,g(x)递减,当x∈(x0,+∞)时,h(x)>0,g′(x)>0,g(x)递增,即g(x0)为g(x)在定义域内的最小值,故b﹣1≤﹣﹣,∵h(x0)=0,得x0=﹣,<x0<1,…(*)令k(x)=xe x,<x<1,故方程(*)等价于k(x)=k(﹣lnx),<x<1,而k(x)=k(﹣lnx)等价于x=﹣lnx,<x<1,设函数m(x)=x+lnx,<x<1,易知m(x)单调递增,又m()=﹣ln2<0,m(1)=1>0,故x0是函数的唯一零点,即lnx0=﹣x0,=,故g(x)的最小值g(x0)=1,故实数b的取值范围是(﹣∞,2].请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.【解答】解:(1)已知直线l的参数方程为(t为参数).转换为直角坐标方程为:.曲线C的极坐标方程是.转换为直角坐标方程为:x2+y2=2x+2y,整理得:(x﹣1)2+(y﹣1)2=2,(2)将直线l的参数方程为(t为参数),代入(x﹣1)2+(y﹣1)2=2.得到:,化简得:,所以:(t 1和t2为A、B对应的参数).故:.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)当x≥,f(x)﹣3=2x﹣1++1﹣3<0,解得x<,即有≤x <;当﹣2<x<时,f(x)﹣3=1﹣2x++1﹣3<0,解得x>﹣,即有﹣<x<;当x≤﹣2时,f(x)﹣3=1﹣2x﹣﹣1﹣3<0,解得x>﹣,即有x∈∅.综上可得原不等式的解集为(﹣,):(Ⅱ)由f(x)=,可得f(x)的值域为[,+∞),关于x的方程f(x)﹣m2﹣2m﹣=0无实数解,可得m2+2m+<,即m2+2m<0,解得﹣2<m<0,则m的范围是(﹣2,0).。

2019年上海市金山区高考数学一模试卷(解析版)

2019年上海市金山区高考数学一模试卷(解析版)

2019年上海市金山区高考数学一模试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸相应编号的空格内直接填写结果.1.(4分)已知集合A={1,3,5,6,7},B={2,4,5,6,8},则A∩B=.2.(4分)抛物线y2=4x的准线方程是.3.(4分)计算:=.4.(4分)不等式|3x﹣2|<1的解集为.5.(4分)若复数z=(3+4i)(1﹣i)(i为虚数单位),则|z|=.6.(4分)已知函数f(x)=1+log2x,则f﹣1(5)=.7.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是.8.(5分)在(x3)10二项展开式中,常数项的值是.(结果用数值表示)9.(5分)无穷等比数列{a n}各项和S的值为2,公比q<0,则首项a1的取值范围是.10.(5分)在120°的二面角内放置一个半径为6的小球,它与二面角的两个半平面相切于A、B两点,则这两个点在球面上的距离是.11.(5分)设函数f(x)=lg(1+|x|)﹣,则使得f(2x)<f(3x﹣2)成立的x的取值范围是.12.(5分)已知平面向量、满足条件:=0,||=cosα,||=sinα,α∈(0,),若向量=(λ,μ∈R).且(2λ﹣1)2cos2α+(2μ﹣1)2sin2α=,则||的最小值为.二、选择题(本大题共4小题,满分20分,每小题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)已知方程+=1表示焦点在x轴上的椭圆,则m的取值范围是()A.m>2或m<﹣1B.m>﹣2C.﹣1<m<2D.m>2或﹣2<m<﹣114.(5分)给定空间中的直线l及平面α,条件“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的()条件.A.充要B.充分非必要C.必要非充分D.既非充分又非必要15.(5分)欧拉公式e ix=cos x+i sin x(i为虚数单位,x∈R,e为自然底数)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e2018i表示的复数在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限16.(5分)已知函数f(x)=,则方程f(x+﹣2)=a(a∈R)的实数根个数不可能()A.5个B.6个C.7个D.8个三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,三棱锥P﹣ABC中,P A⊥底面ABC,M是BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.求:(1)三棱锥P﹣ABC的体积;(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).18.(14分)已知角α的顶点在坐标原点,始边与x轴的正半轴重合,终边经过点P(﹣3,)(1)求行列式的值;(2)若函数f(x)=cos(x+α)cosα+sin(x+α)sinα(x∈R),求函数f(﹣2x)+2f2(x)的最大值,并指出取得最大值时x的值.19.(14分)设函数f(x)=2x﹣1的反函数为f﹣1(x),g(x)=log4(3x+1).(1)若f﹣1(x)≤g(x),求x的取值范围D;(2)在(1)的条件下,设H(x)=g(x)﹣f﹣1(x),当x∈D时,函数H(x)的图象与直线y=a有公共点,求实数a的取值范围.20.(16分)已知椭圆C以坐标原点为中心,焦点在y轴上,焦距为2,且经过点(1,0).(1)求椭圆C的方程;(2)设点A(a,0),点P为曲线C上任一点,求点A到点P距离的最大值d(a);(3)在(2)的条件下,当0<a<1时,设△QOA的面积为S1(O是坐标原点,Q是曲线C上横坐标为a的点),以d(a)为边长的正方形的面积为S2•若正数m满足S1≤mS2,问m是否存在最小值,若存在,请求出此最小值;若不存在,请说明理由.21.(18分)在等差数列{a n}中,a1+a3+a5=15,a6=1l.(1)求数列{a n}的通项公式;(2)对任意m∈N*,将数列{a n}中落入区间(2m+1,22m+1)内的项的个数记为{b m},记数列{b m}的前m项和S m,求使得S m>2018的最小整数m;(3)若n∈N*,使不等式a n+≤(2n+1)λ≤a n+1+成立,求实数λ的取值范围.2019年上海市金山区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸相应编号的空格内直接填写结果.1.【解答】解:A∩B={5,6}.故答案为:{5,6}.2.【解答】解:∵2p=4,∴p=2,开口向右,∴准线方程是x=﹣1.故答案为x=﹣1.3.【解答】解:.故答案为:.4.【解答】解:∵|3x﹣2|<1⇔﹣1<3x﹣2<1⇔1<3x<3,∴<x<1∴不等式|3x﹣2|<1的解集为{x|<x<1}.故答案为:{x|<x<1}.5.【解答】解:∵z=(3+4i)(1﹣i)=7+i,∴|z|=.故答案为:.6.【解答】解:根据题意,令f(x)=1+log2x=5,得log2x=4,则x=24=16,∴f﹣1(5)=16.故答案为:16.7.【解答】解:从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4);则其概率为=;故答案为:.8.【解答】解:展开式的通项为T r+1=(﹣1)r C10r x30﹣5r,令30﹣5r=0得r=6,所以展开式中的常数项为C106=210,故答案为:210.9.【解答】解:由题意可得,,﹣1<q<0a1=2(1﹣q)∴2<a1<4故答案为:(2,4)10.【解答】解:由球的性质知,OA,OB分别垂直于二面角的两个面,又120°的二面角内,故∠AOB=60°∵半径为10cm的球切两半平面于A,B两点∴两切点在球面上的最短距离是6×=2π.故答案为:2π.11.【解答】解:函数f(x)=lg(1+|x|)﹣,∴f(﹣x)=f(x),且函数f(x)在[0,+∞)上单调递增.∵f(2x)<f(3x﹣2),∴|2x|<|3x﹣2|,∴(2x)2<(3x﹣2)2,化为:(x﹣2)(5x﹣2)>0,解得:x>2,或x<.∴使得f(2x)<f(3x﹣2)成立的x的取值范围是∪(2,+∞).故答案为:∪(2,+∞).12.【解答】解:由题意可设=(cosα,0),=(0,sinα),=(x,y),且设∵==(λcosα,μsinα),∴,α∈(0,),∵(2λ﹣1)2cos2α+(2μ﹣1)2sin2α=,则,即,∴C在以D()为圆心,以为半径的圆上,α∈(0,),∴||mn=|OD|﹣==,故答案为:.二、选择题(本大题共4小题,满分20分,每小题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.【解答】解:椭圆的焦点在x轴上∴m2>2+m,即m2﹣2﹣m>0解得m>2或m<﹣1又∵2+m>0∴m>﹣2∴m的取值范围:m>2或﹣2<m<﹣1故选:D.14.【解答】解:直线与平面α内的无数条平行直线垂直,但该直线未必与平面α垂直;即“直线l与平面α内无数条直线都垂直”⇒“直线l与平面α垂直”为假命题;但直线l与平面α垂直时,l与平面α内的每一条直线都垂直,即“直线l与平面α垂直”⇒“直线l与平面α内无数条直线都垂直”为真命题;故“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的必要非充分条件故选:C.15.【解答】解:e2018i=cos2018+i sin2018,∵2018=642π+(2018﹣642π),2018﹣642π∈,∴cos2018=cos(2018﹣642π)>0.sin2018=sin(2018﹣642π)>0,∴e2018i表示的复数在复平面中位于第一象限.故选:A.16.【解答】解:如图所示:∵函数f(x)=,即f(x)=.因为当f(x)=1时,求得x=﹣4,或,或1,或3.则①当a=1时,由方程f(x+﹣2)=a(a∈R),可得x+﹣2=﹣4,或,或1,或3.又因为x+﹣2≥0,或x+﹣2≤﹣4,所以,当x+﹣2=﹣4时,只有一个x=﹣2 与之对应,其它3种情况都有2个x值与之对应.故此时,原方程f(x+﹣2)=a的实数根有7个根.②当1<a<2时,y=f(x)与y=a有4个交点,故原方程有8个根.②当a=2时,y=f(x)与y=a有3个交点,故原方程有6个根.综上:不可能有5个根,故选:A.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.【解答】解:(1)因为P A⊥底面ABC,PB与底面ABC所成的角为所以因为AB=2,所以(2)连接PM,取AB的中点,记为N,连接MN,则MN∥AC所以∠PMN为异面直线PM与AC所成的角计算可得:,MN=1,异面直线PM与AC所成的角为18.【解答】解:角α的终边经过点P(﹣3,)可得:sinα=,cosα=,tanα=.(1)行列式=sinαcosα﹣tanα=;(2)函数f(x)=cos(x+α)cosα+sin(x+α)sinα=cos x那么函数y=f(﹣2x)+2f2(x)=cos()+2cos2x=cos2x+sin2x+1=2sin(2x+)+1,当2x+=时,即x=kπ,函数y取得最大值为3.19.【解答】解:(1)f﹣1(x)=log2(x+1),…(3分)由log2(x+1)≤log4(3x+1),∴….(6分)解得0≤x≤1,∴D=[0,1]﹣﹣﹣.(8分)(2),…..(10分)∴,…(12分)当x∈[0,1]时,单调递增,∴H(x)单调递增,….(14分)∴因此当时满足条件.…(16分)20.【解答】解:(1)由题意得:2c=2,b=1,故a2=b2+c2=2,∴椭圆C的方程为:.(2)设P(x,y),则y2=2﹣2x2.∴|P A|2=(x﹣a)2+y2=(x﹣a)2+2﹣2x2=﹣(x+a)2+2a2+2,令f(x)=﹣(x+a)2+2a2+2,x∈[﹣1,1],所以,当﹣a<﹣1,即a>1时,f(x)在[﹣1,1]上是减函数,[f(x)]max=f(﹣1)=(a+1)2;当﹣1≤﹣a≤1,即﹣1≤a≤1时,f(x)在[﹣1,﹣a]上是增函数,在[﹣a,1]上是减函数,则[f(x)]max=f(﹣a)=2a2+2;当﹣a>1,即a<﹣1时,f(x)在[﹣1,1]上是增函数,[f(x)]max=f(1)=(a﹣1)2.所以,d(a)=.(3)当0<a<1时,P(a,±),于是S1=a,S2=2a2+2,若正数m满足条件,则a≤m(2a2+2),即m≥,m2≥.令f(a)=,设t=a2+1,则t∈(1,2),则a2=t﹣1.于是f(a)==(﹣+﹣1)=﹣(﹣)2+,∴当=时,即t=∈(1,2)时,[f(a)]max=,即m2≥,m≥.所以,m存在最小值21.【解答】解:(1)设数列{a n}的公差为d,由,解得,∴数列{a n}的通项公式为a n=2n﹣1,n∈N*.(2)对任意m∈N*,若2m+1<2n﹣1<22m+1,则,∴b m=22m﹣2m,m∈N*,S m=(22+24+26+…+22m)﹣(2+22+23+…+2m)=﹣=.令>2018,解得m >≈5.3,∴所求的最小整数m为6.(3)≤(2n+1)λ≤,,记A n =,B n=1+,n∈N*,由A n+1﹣A n =﹣=,知A1=A2,且从第二项起,{A n}递增,即A1=A2,A3<A4<…<A n,∵B n=1+递减,∴实数λ的范围为[A1,B1],即[].第11页(共11页)。

2019年北京市高考数学一模试卷(理科)(解析版)

2019年北京市高考数学一模试卷(理科)(解析版)

2019年北京市高考数学一模试卷(理科)(解析版)2019年北京市高考数学一模试卷(理科)一、选择题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z=i(1+i),则|z|等于()A。

2B。

√2C。

1D。

2√22.在方程r=2cosθ+3sinθ(θ为参数)所表示的曲线上的点是()A。

(2.-7)B。

(3.1)C。

(1.5)D。

(2.1)3.设公差不为零的等差数列{an}的前n项和为Sn,若a4=2(a2+a3),则Sn=()A。

5anB。

6anC。

7anD。

14an4.将函数y=sin2x的图象向左平移π/4个单位后得到函数y=g(x)的图象。

则函数g(x)的一个增区间是()A。

(π/4.3π/4)B。

(3π/4.5π/4)C。

(5π/4.7π/4)D。

(7π/4.9π/4)5.使“a>b”成立的一个充分不必要条件是()A。

a>b+1B。

a>b-1C。

a^2>b^2D。

a^3>b^36.下列函数:①y=-|x|;②y=(x-1)^3;③y=log2(x-1);④y=-6.在x中,在(1.+∞)上是增函数且不存在零点的函数的序号是()A。

①④B。

②③C。

②④D。

①③④7.某三棱锥的正视图和侧视图如图所示,则该三棱锥的俯视图的面积为()A。

6B。

8C。

10D。

128.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是()A。

336B。

510C。

1326D。

3603二、填空题共6小题,每小题5分,共30分。

9.在(1-x)^5的展开式中,x^2的系数为______(用数字作答)。

答案:1010.已知向量a=(1.b)。

b=(-2.-1),且向量a+b的模长为√10.则实数x=______。

2019年上海市杨浦区高考数学一模试卷(含解析版)

2019年上海市杨浦区高考数学一模试卷(含解析版)

2019年上海市杨浦区高考数学一模试卷一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)设全集U={1,2,3,4,5},若集合A={3,4,5},则∁U A=.2.(4分)已知扇形的半径为6,圆心角为,则扇形的面积为.3.(4分)已知双曲线x2﹣y2=1,则其两条渐近线的夹角为.4.(4分)若(a+b)n展开式的二项式系数之和为8,则n=.5.(4分)若实数x,y满足x2+y2=1,则xy的取值范围是.6.(4分)若圆锥的母线长l=5(cm),高h=4(cm),则这个圆锥的体积等于.7.(5分)在无穷等比数列{a n}中,(a1+a2+……+a n)=,则a1的取值范围是.8.(5分)若函数f(x)=ln的定义域为集合A,集合B=(a,a+1),且B⊆A,则实数a的取值范围为.9.(5分)行列式中,第3行第2列的元素的代数余子式记作f(x),则y=1+f(x)的零点是.10.(5分)已知复数z1=cos x+2f(x)i,z2=(sin x+cos x)+i(x∈R,i为虚数单位).在复平面上,设复数z1,z2对应的点分别为Z1,Z2,若∠Z1OZ2=90°,其中O是坐标原点,则函数f(x)的最小正周期.11.(5分)当0<x<a时,不等式+≥2恒成立,则实数a的最大值为.12.(5分)设d为等差数列{a n}的公差,数列{b n}的前n项和T n,满足T n+=(﹣1)n b n (n∈N*),且d=a5=b2,若实数m∈P k={x|a k﹣2<x<a k+3}(k∈N*,k≥3),则称m具有性质P k.若H n是数列{T n}的前n项和,对任意的n∈N*,H2n﹣1都具有性质P k,则所有满足条件的k的值为.二、选择题(本题共有4题,满分20分)13.(5分)下列函数中既是奇函数,又在区间[﹣1,1]上单调递减的是()A.f(x)=arcsin x B.y=lg|x|C.f(x)=﹣x D.f(x)=cos x14.(5分)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加象棋比赛,则选出的2人中恰有1人是女队员的概率为()A.B.C.D.15.(5分)已知f(x)=log sinθx,θ∈(0,),设a=f(),b=f(),c=f(),则a,b,c的大小关系是()A.a≤c≤b B.b≤c≤a C.c≤b≤a D.a≤b≤c16.(5分)已知函数f(x)=m•2x+x2+nx,记集合A={x|f(x)=0,x∈R},集合B={x|f[f (x)]=0,x∈R},若A=B,且都不是空集,则m+n的取值范围是()A.[0,4)B.[﹣1,4)C.[﹣3,5]D.[0,7)三、解答题(本大题共有5题,满分76分)17.(14分)如图,P A⊥平面ABCD,四边形ABCD为矩形,P A=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣P AD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.18.(14分)在△ABC中,角A,B,C所对的边分别为a,b,c,且cos B=.(1)若sin A=,求cos C;(2)已知b=4,证明≥﹣5.19.(14分)上海某工厂以x千克小时的速度匀速生产某种产品,每一小时可获得的利润是(5x+1﹣)元,其中1≤x≤10.(1)要使生产该产品2小时获得的利润不低于30元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.20.(16分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B,满足P A,PB的中点均在抛物线C上(1)求抛物线C的焦点到准线的距离;(2)设AB中点为M,且P(x P,y P),M(x M,y M),证明:y P=y M;(3)若P是曲线x2+=1(x<0)上的动点,求△P AB面积的最小值.21.(18分)记无穷数列{a n}的前n项中最大值为M n,最小值为m n,令,其中n∈N*.(1)若a n=2n+cos,请写出b3的值;(2)求证:“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件;(3)若对任意n,有|a n|<2018,且|b n|=1,请问:是否存在K∈N*,使得对于任意不小于K的正整数n,有b n+1=b n成立?请说明理由.2019年上海市杨浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)设全集U={1,2,3,4,5},若集合A={3,4,5},则∁U A={1,2}.【考点】1F:补集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用补集定义直接求解.【解答】解:∵全集U={1,2,3,4,5},集合A={3,4,5},∴∁U A={1,2}.故答案为:{1,2}.【点评】本题考查补集的求法,是基础题,解题时要认真审题,注意补集定义的合理运用.2.(4分)已知扇形的半径为6,圆心角为,则扇形的面积为6π.【考点】G8:扇形面积公式.【专题】11:计算题;31:数形结合;44:数形结合法;56:三角函数的求值.【分析】先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积.【解答】解:根据扇形的弧长公式可得l=αr=×6=2π,根据扇形的面积公式可得S=lr=•2π•6=6π.故答案为:6π.【点评】本题考查扇形的弧长与面积公式,正确运用公式是解题的关键,属于基础题.3.(4分)已知双曲线x2﹣y2=1,则其两条渐近线的夹角为900.【考点】KC:双曲线的性质.【专题】35:转化思想;4O:定义法;5D:圆锥曲线的定义、性质与方程.【分析】由双曲线方程,求得其渐近线方程,求得直线的夹角,即可求得两条渐近线夹角.【解答】解:双曲线x2﹣y2=11的两条渐近线的方程为:y=±x,所对应的直线的倾斜角分别为90°,∴双曲线x2﹣y2=1的两条渐近线的夹角为90°,故答案为:90°.【点评】本题考查双曲线的几何性质,考查直线的倾斜角的应用,属于基础题.4.(4分)若(a+b)n展开式的二项式系数之和为8,则n=3.【考点】DA:二项式定理.【专题】35:转化思想;49:综合法;5P:二项式定理.【分析】由题意利用二项式系数的性质,求得n的值.【解答】解:(a+b)n展开式的二项式系数之和为2n=8,则n=3,故答案为:3.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.5.(4分)若实数x,y满足x2+y2=1,则xy的取值范围是[﹣,].【考点】7F:基本不等式及其应用.【专题】11:计算题;57:三角函数的图象与性质.【分析】三角换元后,利用二倍角正弦公式和正弦函数的值域可得.【解答】因为x2+y2=1,所以可设x=cosθ,y=sinθ,则xy=cosθsinθ=sin2θ∈[﹣,]故答案为[﹣,]【点评】本题考查了三角换元以及正弦函数的值域.属基础题.6.(4分)若圆锥的母线长l=5(cm),高h=4(cm),则这个圆锥的体积等于12πcm3.【考点】L5:旋转体(圆柱、圆锥、圆台).【专题】11:计算题.【分析】利用勾股定理可得圆锥的底面半径,那么圆锥的体积=×π×底面半径2×高,把相应数值代入即可求解.【解答】解:∵圆锥的高是4cm,母线长是5cm,∴圆锥的底面半径为3cm,∴圆锥的体积=×π×32×4=12πcm3.故答案为:12πcm3.【点评】本题考查圆锥侧面积的求法.注意圆锥的高,母线长,底面半径组成直角三角形.7.(5分)在无穷等比数列{a n}中,(a1+a2+……+a n)=,则a1的取值范围是.【考点】8J:数列的极限.【专题】11:计算题;54:等差数列与等比数列.【分析】无穷等比数列{a n}中,,推出0<|q|<1,然后求出首项a1的取值范围.【解答】解:因为无穷等比数列{a n}中,,所以|q|<1,=,所以,∵﹣1<q<1且q≠0∴0<a1<1且a1≠故答案为:.【点评】本题考查无穷等比数列的极限存在条件的应用,解题时要注意极限逆运算的合理运用.8.(5分)若函数f(x)=ln的定义域为集合A,集合B=(a,a+1),且B⊆A,则实数a的取值范围为[﹣1,0].【考点】1C:集合关系中的参数取值问题.【专题】36:整体思想;4O:定义法;5J:集合.【分析】先化简集合A,由B⊆A,得,得﹣1≤a≤0.【解答】解:∵>0,∴(x+1)(x﹣1)<0,∴﹣1<x<1,∴A=(﹣1,1);∵B⊆A,∴,∴﹣1≤a≤0,∴实数a的取值范围为[﹣1,0].故答案为[﹣1,0].【点评】本题考查的知识点是集合的包含关系判断及应用,集合关系中的参数问题,难度中档.9.(5分)行列式中,第3行第2列的元素的代数余子式记作f(x),则y=1+f(x)的零点是﹣1.【考点】OY:三阶矩阵.【专题】33:函数思想;4O:定义法;51:函数的性质及应用.【分析】将行列式按第3行第2列展开,由f(x)=A32=﹣=﹣(4×2x﹣4×4x)=﹣2x+2(1﹣2x),令y=1+f(x)=1﹣2x+2(1﹣2x)=0,解得:x=﹣1,即可求得y =1+f(x)的零点.【解答】解:第3行第2列的元素的代数余子式A32=﹣=﹣4×2x+4×4x=﹣2x+2(1﹣2x),∴f(x)=﹣2x+2(1﹣2x),y=1+f(x)=1﹣2x+2(1﹣2x),令y=0,即2x+2(1﹣2x)=1,解得:2x=,x=﹣1故答案为:﹣1.【点评】本题考查三阶行列式的余子式的定义,考查函数的零点的定义,属于中档题.10.(5分)已知复数z1=cos x+2f(x)i,z2=(sin x+cos x)+i(x∈R,i为虚数单位).在复平面上,设复数z1,z2对应的点分别为Z1,Z2,若∠Z1OZ2=90°,其中O是坐标原点,则函数f(x)的最小正周期π.【考点】A4:复数的代数表示法及其几何意义;A5:复数的运算.【专题】38:对应思想;4R:转化法;57:三角函数的图象与性质;5N:数系的扩充和复数.【分析】由已知求得Z1,Z2的坐标,结合∠Z1OZ2=90°可得f(x)的解析式,降幂后利用辅助角公式化积,再由周期公式求周期.【解答】解:由题意,Z1(cos x,2f(x)),,∴∠Z1OZ2=90°,∴,即2f(x)=﹣,∴f(x)=.则函数f(x)的最小正周期为π.故答案为:π.【点评】本题考查复数的代数表示法及其几何意义,考查三角函数周期的求法,是基础的计算题.11.(5分)当0<x<a时,不等式+≥2恒成立,则实数a的最大值为2.【考点】3R:函数恒成立问题.【专题】11:计算题;35:转化思想.【分析】想法求出左边式子的最小值,首先把分式形式乘以a2,变形为2+[+]+[+],利用均值不等式得出式子的最小值.【解答】解:∵(+)a2=(+)[x+(a﹣x)]2=(+)[x2+2x(a﹣x)+(a﹣x)2]=2+[+]+[+]≥2+4+2=8∴+≥∴≥2'∴0<a≤2.【点评】考查了对式子的配凑变形,均值定理的应用,思路不太好想,有一定难度.12.(5分)设d为等差数列{a n}的公差,数列{b n}的前n项和T n,满足T n+=(﹣1)n b n (n∈N*),且d=a5=b2,若实数m∈P k={x|a k﹣2<x<a k+3}(k∈N*,k≥3),则称m具有性质P k.若H n是数列{T n}的前n项和,对任意的n∈N*,H2n﹣1都具有性质P k,则所有满足条件的k的值为3,4.【考点】8E:数列的求和.【专题】15:综合题;38:对应思想;4R:转化法;54:等差数列与等比数列.【分析】求得n=1,2,3,4,5时,数列{b n}的前5项,即可求出通项公式,再求得d 和首项a1,得到等差数列{a n}的通项公式,求得n=1,2,3,4,H2n﹣1的特点,结合k =3,4,5,6,集合的特点,即可得到所求取值.【解答】解:T n+=(﹣1)n b n(n∈N*),可得n=1时,T1+=﹣b1=﹣T1,解得b1=﹣,T2+=b2=﹣+b2+=b2,T3+=﹣b3=﹣+b2+b3+,即b2+2b3=,T4+=b4=﹣+b2+b3+b4+,即b2+b3=,解得b2=,b3=﹣,同理可得b4=,b5=﹣,…,b2n﹣1=﹣,d=a5=b2,可得d=a1+4d=,解得a1=﹣,d=,a n=,设H n是数列{T n}的前n项和,若对任意的n∈N*,H2n﹣1都具有性质P k,由于H1=T1=b1=﹣,H3=T1+T2+T3=﹣,H5=T1+T2+T3+T4+T5=﹣,H7=﹣+0﹣=﹣,…,H2n﹣1=H2n﹣3+b2n﹣1,(n≥2),当k=3时,P3={x|a1<x<a6}={x|﹣<x<},当k=4时,P4={x|a2<x<a7}={x|﹣<x<},当k=5时,P5={x|a3<x<a8}={x|﹣<x<1},当k=6时,P3={x|a4<x<a9}={x|0<x<},显然k=5,6不成立,故所有满足条件的k的值为3,4.答案为:3,4【点评】本题考查新定义的理解和运用,考查等差数列的通项公式的求法,集合的性质和数列的单调性的判断和应用,考查化简整理的运算能力,属于难题.二、选择题(本题共有4题,满分20分)13.(5分)下列函数中既是奇函数,又在区间[﹣1,1]上单调递减的是()A.f(x)=arcsin x B.y=lg|x|C.f(x)=﹣x D.f(x)=cos x【考点】3E:函数单调性的性质与判断;3K:函数奇偶性的性质与判断.【专题】11:计算题;33:函数思想;49:综合法;51:函数的性质及应用.【分析】可看出f(x)=arcsin x在[﹣1,1]上单调递增,y=lg|x|和f(x)=cos x都是偶函数,从而判断A,B,D都错误,只能选C.【解答】A.f(x)=arcsin x在区间[﹣1,1]上单调递增;∴该选项错误;B.y=lg|x|为偶函数,∴该选项错误;C.f(x)=﹣x是奇函数,且在[﹣1,1]上单调递减;∴该选项正确;D.f(x)=cos x是偶函数,∴该选项错误.故选:C.【点评】考查反正弦函数和一次函数的单调性,以及奇函数和偶函数的定义.14.(5分)某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加象棋比赛,则选出的2人中恰有1人是女队员的概率为()A.B.C.D.【考点】CC:列举法计算基本事件数及事件发生的概率.【专题】15:综合题;34:方程思想;4G:演绎法;5I:概率与统计.【分析】确定基本事件的个数,即可求出概率.【解答】解:随机选派2人参加象棋比赛,有=10种,选出的2人中恰有1人是女队员,有=6种,∴所求概率为=,故选:B.【点评】本题考查古典概型,考查概率的计算,确定基本事件的个数是关键.15.(5分)已知f(x)=log sinθx,θ∈(0,),设a=f(),b=f(),c=f(),则a,b,c的大小关系是()A.a≤c≤b B.b≤c≤a C.c≤b≤a D.a≤b≤c【考点】3G:复合函数的单调性.【专题】35:转化思想;49:综合法;51:函数的性质及应用.【分析】先判断f(x)在(0,+∞)上是减函数,再比较,,的大小关系,从而得到a,b,c的大小关系.【解答】解:∵f(x)=log sinθx,θ∈(0,),∴sinθ∈(0,1),故f(x)在(0,+∞)上为减函数.∵a=f(),b=f(),c=f(),∵≥>0,∴a=f()≤b=f (),a≤b.又≤=,即)≥,∴b=f()≤c=f(),即b≤c.综上,a≤b≤c,故选:D.【点评】本题主要考查复合函数的单调性,基本不等式的应用,比较两个数大小的方法,属于中档题.16.(5分)已知函数f(x)=m•2x+x2+nx,记集合A={x|f(x)=0,x∈R},集合B={x|f[f (x)]=0,x∈R},若A=B,且都不是空集,则m+n的取值范围是()A.[0,4)B.[﹣1,4)C.[﹣3,5]D.[0,7)【考点】19:集合的相等.【专题】32:分类讨论;35:转化思想;5J:集合.【分析】由{x|f(x)=0}={x|f(f(x))=0}可得f(0)=0,从而求得m=0;从而化简f(f(x))=(x2+nx)(x2+nx+n)=0,从而讨论求得【解答】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},∴f(x1)=f(f(x1))=0,∴f(0)=0,即f(0)=m=0,故m=0;故f(x)=x2+nx,f(f(x))=(x2+nx)(x2+nx+n)=0,当n=0时,成立;当n≠0时,0,﹣n不是x2+nx+n=0的根,故△=n2﹣4n<0,解得:0<n<4;综上所述,0≤n+m<4;故选:A.【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题三、解答题(本大题共有5题,满分76分)17.(14分)如图,P A⊥平面ABCD,四边形ABCD为矩形,P A=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣P AD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.【考点】LF:棱柱、棱锥、棱台的体积;LO:空间中直线与直线之间的位置关系.【专题】15:综合题;35:转化思想;49:综合法;5F:空间位置关系与距离.【分析】(1)转换底面,代入体积公式计算;(2)利用线线垂直证明AF⊥平面PBC,即可得出结论.【解答】(1)解:∵P A⊥平面ABCD,且四边形ABCD为矩形.∴,…(3分)∴…(6分)(2)证明:∵P A⊥平面ABCD,∴P A⊥AB,又∵P A=AB=1,且点F是PB的中点,∴AF⊥PB…(8分)又P A⊥BC,BC⊥AB,P A∩AB=A,∴BC⊥平面P AB,又AF⊂平面P AB,∴BC⊥AF…(10分)由AF⊥平面PBC,又∵PE⊂平面PBC∴无论点E在边BC的何处,都有AF⊥PE成立.…(12分)【点评】本题给出特殊的四棱锥,考查了线面垂直的证明与性质的运用,考查了学生的空间想象能力与推理论证能力,关键是要熟练掌握定理的条件.18.(14分)在△ABC中,角A,B,C所对的边分别为a,b,c,且cos B=.(1)若sin A=,求cos C;(2)已知b=4,证明≥﹣5.【考点】9O:平面向量数量积的性质及其运算;HR:余弦定理.【专题】15:综合题;35:转化思想;58:解三角形;5A:平面向量及应用.【分析】(1)利用同角三角函数基本关系式可求sin B,由sin B>sin A,可得A为锐角,可求cos A,根据三角形内角和定理,诱导公式,两角和的余弦函数公式即可计算得解cos C 的值.(2)由余弦定理,基本不等式可求得ac≤13,根据平面向量数量积的运算,诱导公式即可计算得解.【解答】解:(1)∵cos B=,可得:sin B==,∵sin B=>sin A=,∴B>A,可得A为锐角,∴cos A==,∴cos C=﹣cos(A+B)=sin A sin B﹣cos A cos B=.(2)证明:∵由余弦定理b2=a2+c2﹣2ac cos B,可得:a2+c2﹣ac=16,∵a2+c2≥2ac,∴解得:ac≤13,当且仅当a=c时等号成立,∴=ac cos(π﹣B)=﹣ac cos B=﹣ac≥﹣5.得证.【点评】本题主要考查了同角三角函数基本关系式,三角形内角和定理,两角和的余弦函数公式,余弦定理,基本不等式,平面向量数量积的运算,诱导公式在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.19.(14分)上海某工厂以x千克小时的速度匀速生产某种产品,每一小时可获得的利润是(5x+1﹣)元,其中1≤x≤10.(1)要使生产该产品2小时获得的利润不低于30元,求x的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.【考点】5A:函数最值的应用;5C:根据实际问题选择函数类型.【专题】34:方程思想;53:导数的综合应用;59:不等式的解法及应用.【分析】(1)由题意可得:2(5x+1﹣)≥30,1≤x≤10.解出即可得出.(2)要使生产900千克该产品获得的利润最大,设该厂应选取生产速度为,≤10,可得t∈[90,900].可得获得利润f(t)=5×+1﹣=﹣+1,t>0.利用反比例函数的单调性即可得出.【解答】解:(1)由题意可得:2(5x+1﹣)≥30,1≤x≤10.解得:3≤x≤10,因此要使生产该产品2小时获得的利润不低于30元,x的取值范围为[3,10].(2)要使生产900千克该产品获得的利润最大,设该厂应选取生产速度为,≤10,可得t∈[90,900].则获得利润f(t)=5×+1﹣=﹣+1,t>0.由反比例函数的单调性可得:f(t)在t∈[90,900]单调递减.∴t=90时,即该厂应选取10千克小时的速度匀速生产,可使生产900千克该产品获得的利润最大,其最大利润为900f(10)=45630元.故该厂应选取10千克小时的速度匀速生产,可使生产900千克该产品获得的利润最大,其最大利润为900f(10)=45630元.【点评】本题考查了不等式的解法、利用导数研究函数的单调性极值与最值,考查了数形结合方法、推理能力与计算能力,属于中档题.20.(16分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B,满足P A,PB的中点均在抛物线C上(1)求抛物线C的焦点到准线的距离;(2)设AB中点为M,且P(x P,y P),M(x M,y M),证明:y P=y M;(3)若P是曲线x2+=1(x<0)上的动点,求△P AB面积的最小值.【考点】KN:直线与抛物线的综合.【专题】34:方程思想;4I:配方法;4J:换元法;5D:圆锥曲线的定义、性质与方程.【分析】(1)由抛物线方程求得p,则答案可求;(2)P(x P,y P),设A(,y1),B(,y2),运用中点坐标公式可得M的坐标,再由中点坐标公式和点在抛物线上,代入化简整理可得y1,y2为关于y的方程y2﹣2y P y+8x P﹣=0的两根,由根与系数的关系即可得到结论;(3)由题意可得,﹣1≤x P<0,﹣2<y P<2,可得△P AB面积为S=|PM|•|y1﹣y2|,再由配方和换元法结合函数单调性求最值.【解答】(1)解:由抛物线C:y2=4x,得2p=4,则p=2,∴抛物线C的焦点到准线的距离为2;(2)证明:P(x P,y P),设A(,y1),B(,y2),AB中点为M的坐标为M(x M,y M),则M(,),抛物线C:y2=4x上存在不同的两点A,B满足P A,PB的中点均在C上,可得,,化简可得y1,y2为关于y的方程y2﹣2y P y+8x P﹣=0的两根,可得y1+y2=2y P,y1y2=8,可得;(3)解:若P是曲线x2+=1(x<0)上的动点,可得,﹣1≤x P<0,﹣2<y P<2,由(2)可得y1+y2=2y P,y1y2=8,由PM垂直于y轴,可得△P AB面积为S=|PM|•|y1﹣y2|=()•=[﹣]•=(),令t===,得时,t取得最大值.x P=﹣1时,t取得最小值2,即2≤t≤,则S=在2≤t≤递增,可得S∈[6,],∴△P AB面积的最小值为6.【点评】本题考查抛物线的方程和运用,考查转化思想和运算能力,训练了利用换元法及函数的单调性求最值,属于难题.21.(18分)记无穷数列{a n}的前n项中最大值为M n,最小值为m n,令,其中n∈N*.(1)若a n=2n+cos,请写出b3的值;(2)求证:“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件;(3)若对任意n,有|a n|<2018,且|b n|=1,请问:是否存在K∈N*,使得对于任意不小于K的正整数n,有b n+1=b n成立?请说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】34:方程思想;54:等差数列与等比数列;59:不等式的解法及应用.【分析】(1)a n=2n+cos,可得a1=2,a2=3,a3=8,M3,m3.即可得出b3.(2)充分性:若“数列{a n}是等差数列”,设其公差为d,可得b n=,b n+1=.b n+1﹣b n=常数,即可证明“数列{b n}是等差数列”.必要性:若“数列{b n}是等差数列”,设其公差为d′,b n+1﹣b n=﹣=+=d′,根据定义,M n+1≥M n,m n+1≤m n,至少有一个取等号,当d′>0时,M n+1>M n,a n+1=M n+1>M n≥a n,即数列{a n}为增数列,则M n=a n,m n =a1,进而得出.同理可得d′<0时,“数列{a n}是等差数列”;当d′=0时,M n+1=M n,且m n+1=m n,故{a n}为常数列,是等差数列.(3)假设结论不成立,即对任意K∈N*,存在n>K,使b n+1≠b n.由|b n|=1,b n=1或﹣1,对∀K∈N*,一定存在i>K,使得b i,b i+1符号相反.在数列{b n}中存在,,…,,,…,其中k1<k2<k3<…<k i<….﹣1===…==,1===…===…,=﹣1,=1.=﹣1,=1,由于≥与≤中只有一个等号成立,必有>,=.可得=+4.==+4.k i>k i﹣1,k i≥k i﹣1+1,≥+1,≥+4,﹣≥4.利用累加求和方法即可得出.【解答】解:(1)∵a n=2n+cos,∴a1=2,a2=3,a3=8,∴M3=8,m3=2.∴b3==5.(2)证明:充分性:若“数列{a n}是等差数列”,设其公差为d,则b n=,b n+1=.∴b n+1﹣b n=,故“数列{b n}是等差数列”必要性:若“数列{b n}是等差数列”,设其公差为d′则b n+1﹣b n=﹣=+=d′根据定义,M n+1≥M n,m n+1≤m n,至少有一个取等号,当d′>0时,M n+1>M n,a n+1=M n+1>M n≥a n,即数列{a n}为增数列,则M n=a n,m n=a1,则b n+1﹣b n=﹣==d′,即a n+1﹣a n=2d′,即“数列{a n}是等差数列”,同理可得d′<0时,“数列{a n}是等差数列”;当d′=0时,M n+1=M n,且m n+1=m n,故{a n}为常数列,是等差数列.综上可得:“数列{a n}是等差数列”是“数列{b n}是等差数列”的充要条件;(3)假设结论不成立,即对任意K∈N*,存在n>K,使b n+1≠b n.∵|b n|=1,∴b n=1或﹣1,∴对∀K∈N*,一定存在i>K,使得b i,b i+1符号相反∴在数列{b n}中存在,,…,,,…,其中k1<k2<k3<…<k i<…且﹣1===…==,1===…===…∵=﹣1,=1即=﹣1,=1,由于≥与≤中只有一个等号成立,∴必有>,=.可得=+4.∴==+4.∵k i>k i﹣1∴k i≥k i﹣1+1∴≥+1∴≥+4∴﹣≥4.利用累加求和方法可得:≥+4(m﹣1),∴≥+4×(1010﹣1)>﹣2018+4036=2018.这与|a n|<2018矛盾,故假设错误,∴存在K∈N*,使∀n≥K,有b n+1=b n.【点评】本题考查了数列递推关系、等差数列的通项公式与单调性、累加求和方法、不等式的解法、充要条件,考查了推理能力与计算能力,属于难题.。

[数学]2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷带答案解析

[数学]2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷带答案解析

-2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A ={1,3},B ={0,1},则集合A ∪B =.2.(5分)已知复数(i 为虚数单位),则复数z 的模为.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为.4.(5分)如图是一个算法流程图,则输出的b 的值为.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.6.(5分)已知正四棱柱的底面边长为3cm ,侧面的对角线长是3cm ,则这个正四棱柱的体积是cm 3.7.(5分)若实数x ,y 满足x ≤y ≤2x+3,则x+y 的最小值为.8.(5分)在平面直角坐标系xOy 中,已知抛物线y 2=2px (p >0)的准线为l ,直线l 与双曲线的两条渐近线分别交于A ,B 两点,,则p 的值为.9.(5分)在平面直角坐标系xOy 中,已知直线y =3x+t 与曲线y =asinx+bcosx (a ,b ,t ∈R )相切于点(0,1),则(a+b )t 的值为.10.(5分)已知数列{a n }是等比数列,有下列四个命题:①数列{|a n |}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n 2}是等比数列.其中正确的命题有个.11.(5分)已知函数f (x )是定义在R 上的奇函数,且f (x+2)=f (x ).当0<x ≤1时,f (x )=x 3﹣ax+1,则实数a 的值为.12.(5分)在平面四边形ABCD 中,AB =1,DA =DB ,=3,=2,则|的最小值为.13.(5分)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x ﹣4)2+y 2=4.若存在过点P (m ,0)的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围.14.(5分)已知函数f (x )=(2x+a )(|x ﹣a|+|x+2a|)(a <0).若f (1)+f (2)+f (3)+…+f (672)=0,则满足f (x )=2019的x 的值为.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P ﹣ABCD 中,M ,N 分别为棱PA ,PD 的中点.已知侧面P AD⊥底面ABCD ,底面ABCD 是矩形,DA =DP .求证:(1)MN ∥平面PBC ;(2)MD ⊥平面PAB .16.(14分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长,,.(1)求角B 的值;(2)若,求△ABC 的面积.17.(14分)如图,在平面直角坐标系xOy 中,椭圆(a >b >0)的左焦点为F ,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a 2+b2+c2≤1,求证:.【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E (ξ).25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N *的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A={1,3},B={0,1},则集合A∪B={0,1,3}.【解答】解:根据题意,集合A={1,3},B={0,1},则A∪B={0,1,3};故答案为:{0,1,3}.2.(5分)已知复数(i为虚数单位),则复数z的模为.【解答】解:=,则复数z的模为.故答案为:.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为3.【解答】解:根据题意,计算这组数据的平均数为:=×(20×2+15×3+10×4+5×5)=3.故答案为:3.4.(5分)如图是一个算法流程图,则输出的b的值为7.【解答】解:模拟程序的运行,可得a=0,b=1满足条件a<15,执行循环体,a=1,b=3满足条件a<15,执行循环体,a=5,b=5满足条件a<15,执行循环体,a=21,b=7此时,不满足条件a<15,退出循环,输出b的值为7.故答案为:7.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.【解答】解:有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,基本事件总数n=3×3=9,这两位同学参加不同兴趣小组包含的基本事件个数m=3×2=6,则这两位同学参加不同兴趣小组的概率为p==.故答案为:.6.(5分)已知正四棱柱的底面边长为3cm,侧面的对角线长是3cm,则这个正四棱柱的体积是54cm3.【解答】解:设正四棱柱的高为h,∵正四棱柱的底面边长为3cm,侧面的对角线长是3cm,∴=3,解得h=6(cm),∴这个正四棱柱的体积V=Sh=3×3×6=54(cm3).故答案为:54.7.(5分)若实数x,y满足x≤y≤2x+3,则x+y的最小值为﹣6.【解答】解:画出实数x,y满足x≤y≤2x+3的平面区域,如图示:由,解得A(﹣3,﹣3),由z=x+y得:y=﹣x+z,显然直线过A时z最小,z的最小值是﹣6,故答案为:﹣6.8.(5分)在平面直角坐标系xOy 中,已知抛物线y 2=2px (p >0)的准线为l ,直线l 与双曲线的两条渐近线分别交于A ,B 两点,,则p 的值为.【解答】解:抛物线y 2=2px (p >0)的准线为l :x =﹣,双曲线的两条渐近线方程为y =±x ,可得A (﹣,﹣),B ((﹣,),|AB|==,可得p =2.故答案为:2.9.(5分)在平面直角坐标系xOy 中,已知直线y =3x+t 与曲线y =asinx+bcosx (a ,b ,t ∈R )相切于点(0,1),则(a+b )t 的值为4.【解答】解:根据题意得,t =1y ′=acosx ﹣bsinx ∴k =acos0﹣bsin0=a ∴a =3,bcos0=1∴a =3,b =1故答案为4.10.(5分)已知数列{a n }是等比数列,有下列四个命题:①数列{|a n |}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n 2}是等比数列.其中正确的命题有3个.【解答】解:由{a n}是等比数列可得=q(q为常数,q≠0),①==|q|为常数,故是等比数列;②==q2为常数,故是等比数列;③==常数,故是等比数列;④数列a n=1是等比数列,但是lga n2=0不是等比数列;故答案为:311.(5分)已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x).当0<x≤1时,f(x)=x 3﹣ax+1,则实数a的值为2.【解答】解:∵f(x)是定义在R上的奇函数,且f(x+2)=f(x).∴当x=﹣1时,f(﹣1+2)=f(﹣1)=f(1),即﹣f(1)=f(1),则f(1)=0,∵当0<x≤1时,f(x)=x3﹣ax+1.∴f(1)=1﹣a+1=0,得a=2,故答案为:212.(5分)在平面四边形ABCD中,AB=1,DA=DB,=3,=2,则|的最小值为2.【解答】解:如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为?=3,AB=1,所以可设C(3,n),又?=2,所以+mn=2,即mn=,+2=(4,n+2m)|+2|==≥=2,当且仅当n=2m,即n=1,m=时,等号成立.故答案为:213.(5分)在平面直角坐标系xOy 中,圆O :x 2+y 2=1,圆C :(x ﹣4)2+y 2=4.若存在过点P (m ,0)的直线l ,l 被两圆截得的弦长相等,则实数m 的取值范围﹣4<m.【解答】解:显然直线l 有斜率,设直线l :y =k (x ﹣m ),即kx ﹣y ﹣km =0,依题意得1﹣()2=4﹣()2>0有解,即,∴13﹣8m >0且3m 2+8m ﹣16<0解得﹣4<m <,故答案为:﹣4<m .14.(5分)已知函数f (x )=(2x+a )(|x ﹣a|+|x+2a|)(a <0).若f (1)+f (2)+f (3)+…+f (672)=0,则满足f (x )=2019的x 的值为337.【解答】解:注意到:,又因为:,,因此.所以,函数f (x )关于点对称,所以,解得:a =﹣673,f (x )=(2x ﹣673)(|x+673|+|x ﹣2×673|)=2019,显然有:0<2x ﹣673<2019,即,所以,f (x )=(2x ﹣673)(x+673+2×673﹣x )=2019,2x﹣673=1,解得:x=337.故答案为:337.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P﹣ABCD中,M,N分别为棱PA,PD的中点.已知侧面P AD ⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;(2)MD⊥平面PAB.【解答】证明:(1)在四棱锥P﹣ABCD中,M,N分别为棱PA,PD的中点,所以MN∥AD.……………………2分又底面ABCD是矩形,所以BC∥AD,所以MN∥BC.…………………………………………………………………4分又BC?平面PBC,MN?平面PBC,所以MN∥平面PBC.…………………………………………………………6分(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,AB?底面ABCD,所以AB⊥侧面P AD.……………………………………………………………8分又MD?侧面PAD,所以AB⊥MD.………………………………………………………………10分因为DA=DP,又M为AP的中点,从而MD⊥P A.………………………………………………………………12分又P A,AB在平面PAB内,P A∩AB=A,所以MD⊥平面P AB.…………………………………………………………14分16.(14分)在△ABC中,a,b,c分别为角A,B,C所对边的长,,.(1)求角B的值;(2)若,求△ABC的面积.【解答】(本题满分为14分)解:(1)在△ABC中,因为,0<A<π,所以.………………………………………………………2分因为,由正弦定理,得.所以cosB=sinB.…………………………………………………………………4分若cosB=0,则sinB=0,与sin2B+cos2B=1矛盾,故cosB≠0.于是.又因为0<B<π,所以.…………………………………………………………………………7分(2)因为,,由(1)及正弦定理,得,所以.………………………………………………………………………9分又sin C=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=.……………………………………………12分所以△ABC的面积为.……14分17.(14分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左焦点为F,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.【解答】解:(1)因为椭圆(a>b>0)的离心率为,所以,则a=2c.因为线段AF中点的横坐标为,所以.所以,则a2=8,b2=a2﹣c2=6.所以椭圆的标准方程为.…………………………………………………4分(2)因为A(a,0),F(﹣c,0),所以线段AF的中垂线方程为:.又因为△ABF外接圆的圆心C在直线y=﹣x上,所以. (6)分因为A(a,0),B(0,b),所以线段AB的中垂线方程为:.由C在线段AB的中垂线上,得,整理得,b(a﹣c)+b2=ac,…………………………………………………………10分即(b﹣c)(a+b)=0.因为a+b>0,所以b=c.……………………………………………………………12分所以椭圆的离心率.…………………………………………14分18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.【解答】解:(1)如图,过O作与地面垂直的直线交AB,CD于点O1,O2,交劣弧CD 于点P,O1P的长即为拱门最高点到地面的距离.在Rt△O2OC中,,,所以OO2=1,圆的半径R=OC=2.所以O1P=R+OO1=R+O1O2﹣OO2=5.答:拱门最高点到地面的距离为5m.…………………4分(2)在拱门放倒过程中,过点O作与地面垂直的直线与“拱门外框上沿”相交于点P.当点P在劣弧CD上时,拱门上的点到地面的最大距离h等于圆O的半径长与圆心O到地面距离之和;当点P在线段AD上时,拱门上的点到地面的最大距离h等于点D到地面的距离.由(1)知,在Rt△OO1B中,.以B为坐标原点,直线l为x轴,建立如图所示的坐标系.(2.1)当点P在劣弧CD上时,.由,,由三角函数定义,得O,则.…………………………………………………………8分所以当即时,h取得最大值.……………………………………………………10分(2.2)当点P在线段AD上时,.设∠CBD=φ,在Rt△BCD中,,.由∠DBx=θ+φ,得.所以=.……………………………………14分又当时,.所以在上递增.所以当时,h取得最大值5.因为,所以h的最大值为.答:;艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为()m.……………………………………………16分19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.【解答】解:(1)f(x)的定义域为(0,+∞),且.(i)当a≤0时,f'(x)>0成立,所以f(x)在(0,+∞)为增函数;………2分(ii)当a>0时,①当x>a时,f'(x)>0,所以f(x)在(a,+∞)上为增函数;②当0<x<a时,f'(x)<0,所以f(x)在(0,a)上为减函数.………4分(2)①由(1)知,当a≤0时,f(x)至多一个零点,不合题意;当a>0时,f(x)的最小值为f(a),依题意知f(a)=1+lna<0,解得.……………………………………6分一方面,由于1>a,f(1)=a>0,f(x)在(a,+∞)为增函数,且函数f(x)的图象在(a,1)上不间断.所以f(x)在(a,+∞)上有唯一的一个零点.另一方面,因为,所以,,令,当时,,所以又f(a)<0,f(x)在(0,a)为减函数,且函数f(x)的图象在(a2,a)上不间断.所以f(x)在(0,a)有唯一的一个零点.综上,实数a的取值范围是.……………………………………………10分②证明:设.又则p=2+ln(x1x2).………………………………………12分下面证明.不妨设x1<x2,由①知0<x1<a<x2.要证,即证.因为,f(x)在(0,a)上为减函数,所以只要证.又f(x1)=f(x2)=0,即证.……………………………………14分设函数.所以,所以F(x)在(a,+∞)为增函数.所以F(x2)>F(a)=0,所以成立.从而成立.所以p=2+ln(x1x2)>2lna+2,即x1f'(x1)+x2f'(x2)>2lna+2成立.…16分20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【解答】解:(1)设等差数列{a n}的公差为d.因为等差数列{a n}满足a4=4,前8项和S8=36,所以,解得所以数列{a n}的通项公式为a n=n.(2)①设数列{b n}前n项的和为B n.由(1)及得,由③﹣④得3(2n﹣1)﹣3(2n﹣1﹣1)=(b1a2n﹣1+b2a2n﹣3+…+b n﹣1a3+b n a1+2n)﹣(b1a2n ﹣3+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=[b1(a2n﹣3+2)+b2(a2n﹣5+2)+…+b n﹣1(a1+2)+b n a1+2n]﹣(b1a2n﹣3+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=2(b1+b2+…+b n﹣1)+b n+2=2(B n﹣b n)+b n+2.所以3?2n﹣1=2B n﹣b n+2(n≥2,n∈N*),又3(21﹣1)=b1a1+2,所以b1=1,满足上式.所以当n≥2时,由⑤﹣⑥得,.=,所以,,所以数列{b n}是首项为1,公比为2的等比数列.②由,得,即.记,由①得,,所以,所以c n≥c n+1(当且仅当n=1时等号成立).由,得c m=3c p>c p,所以m<p;设t=p﹣m(m,p,t∈N*),由,得.当t=1时,m=﹣3,不合题意;当t=2时,m=6,此时p=8符合题意;当t=3时,,不合题意;当t=4时,,不合题意.下面证明当t≥4,t∈N*时,.不妨设f(x)=2x﹣3x﹣3(x≥4),f'(x)=2x ln2﹣3>0,所以f(x)在[4,+∞)上单调增函数,所以f(x)≥f(4)=1>0,所以当t≥4,t∈N*时,,不合题意.综上,所求集合={(6,8)}.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.【解答】解:由题意,,则.……………………………………4分因为,则.……………………………………………………6分所以矩阵.………………………………………………10分[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.【解答】解:(1)直线l的极坐标方程是ρsin(θ﹣)=.转换为直角坐标方程为:x﹣y+2=0;(2)曲线C的参数方程是(t为参数):转换为直角坐标方程为:x2=y.由,得x2﹣x﹣2=0,所以直线l与曲线C的交点A(﹣1,1),B(2,4).所以直线l被曲线C截得的线段长为.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a 2+b2+c2≤1,求证:.【解答】证明:由柯西不等式,得, (5)分所以.…………………………10分【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E (ξ).【解答】解:(1)记“X是‘回文数’”为事件A.9个不同2位“回文数”乘以4的值依次为:44,88,132,176,220,264,308,352,396.其中“回文数”有:44,88.所以,事件A的概率.……………………………………………………3分(2)根据条件知,随机变量ξ的所有可能取值为0,1,2.由(1)得.…………………………………………………………………5分设“Y是‘回文数’”为事件B,则事件A,B相互独立.根据已知条件得,.;;……………………………………………………8分所以,随机变量ξ的概率分布为ξ012P所以,随机变量ξ的数学期望为:. (10)分25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N *的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.【解答】解:(1)由题意有:A1=,则集合A1的“和谐子集”为:?,,,共4个,故答案为:4;(2)记A n的“和谐子集”的个数等于a n,即A n有a n个所有元素的和为3的整数倍的子集,另记A n有b n个所有元素的和为3的整数倍余1的子集,有c n个所有元素的和为3的整数倍余2的子集,易知:a1=4,b1=2,c1=2,集合A n+1={1,2,3,……,3n﹣2,3n﹣1,3n,3n+1,3n+2,3n+3}的“和谐子集”有以下4种情况,(考查新增元素3n+1,3n+2,3n+3)①集合集合A n={1,2,3,……,3n﹣2,3n﹣1,3n}的“和谐子集”共a n个,②仅含一个元素3(n+1)的“和谐子集”共a n个,同时含两个元素3n+1,3n+2的“和谐子集”共a n个,同时含三个元素3n+1,3n+2,3(n+1)的“和谐子集”共a n个,③仅含一个元素3n+1的“和谐子集”共c n个,同时含两个元素3n+1,3n+3的“和谐子集”共c n个,④仅含一个元素3n+2的“和谐子集”共b n个,同时含两个元素3n+2,3n+3的“和谐子集”共b n个,所以集合A n+1的“和谐子集”共有a n+1=4a n+2b n+2c n,同理:b n+1=4b n+2a n+2c n,c n+1=4c n+2a n+2c n,所以a n+1﹣b n+1=2(a n﹣b n),所以数列是以a1﹣b1=2为首项,2为公比的等比数列,求得:a n=b n+2n,同理a n=c n+2n,又a n+b n+c n=23n,解得:a n=+(n∈N*)故答案为:+(n∈N*)。

2019年高考数学一模试卷(附答案)

2019年高考数学一模试卷(附答案)

的渐近线的
距离为 3 c ,则双曲线的渐近线方程为() 2
A. y 3x
B. y 2x
C. y x
12.在如图的平面图形中,已知
D. y 2x
OM 1,ON 2, MON 120 , BM 2MA,CN 2NA, 则 BC·OM 的值为
A. 15
C. 6 二、填空题
B. 9
D.0
D. b a c
3.如果 ,那么下列不等式成立的是( )
4
2
A. sin cos tan
B. tan sin cos
C. cos sin tan
D. cos tan sin
4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.
甲:我的成绩比乙高.
乙:丙的成绩比我和甲的都高.
2019 年高考数学一模试卷(附答案)
一、选择题
1.若 tan 3 ,则 cos2 2sin 2 (

4
A. 64
B. 48
C.1
25
25
2.设 a sin 5 , b cos 2 , c tan 2 ,则( )
7
7
7
A. a b c
B. a c b
C. b c a
D. 16 25
【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消
去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间
分成 9 组,制成了如图所示的频率分布直方图. (1)求直方图的 的值; (2)设该市有 30 万居民,估计全市居民中月均用水量不低于 3 吨的人数,说明理由; (3)估计居民月用水量的中位数.
23.如图,已知四棱锥 P ABCD 的底面为等腰梯形, AB//CD , AC BD ,垂足为 H , PH 是四棱锥的高.

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。

2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。

1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。

2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。

已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。

6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。

设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。

若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。

e)。

11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。

现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。

2019年上海市浦东新区高考数学一模试卷(解析版)

2019年上海市浦东新区高考数学一模试卷(解析版)

2019年上海市浦东新区高考数学一模试卷一、选择题(本大题共4小题,共20.0分)1. “”是“一元二次方程有实数解”的A. 充分非必要条件B. 充分必要条件C. 必要非充分条件D. 非充分非必要条件【答案】A【解析】解:当一元二次方程有实数解,则:,即,即,又”“能推出“”,但“”不能推出”“,即“”是“一元二次方程有实数解”的充分非必要条件.故选:A.先求出一元二次方程有实数解的充要条件为,再判断“”与”“的关系即可.本题考查了充分条件、必要条件、充要条件及一元二次方程的解,属简单题.2. 下列命题正确的是A. 如果两条直线垂直于同一条直线,那么这两条直线平行B. 如果一条直线垂直于一个平面内的两条直线,那么这条直线垂直于这个平面C. 如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面D. 如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行【答案】D【解析】解:如果两条直线垂直于同一条直线,那么这两条直线平行,或相交,或异面,故错误;如果一条直线垂直于一个平面内的两条平行直线,那么这条直线不一定垂直于这个平面,故错误;如果一条平面外直线平行于一个平面内的一条直线,那么这条直线平行于这个平面,但平面内直线不满足条件,故错误;果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行,故正确;故选:D.根据空间线面关系的判定定理,性质及几何特征,逐一分析给定四个结论的真假,可得答案.本题以命题的真假判断与应用为载体,考查了空间线面关系的判定,难度不大,属于基础题.3. 将4位志愿者分配到进博会的3个不同场馆服务,每个场馆至少1人,不同的分配方案有种.A. 72B. 36C. 64D. 81【答案】B【解析】解:将4位志愿者分配到3个不同场馆服务,每个场馆至少1人,先从4个人中选出2个作为一个元素看成整体,再把它同另外两个元素在三个位置全排列,共有.故选:B.先从4个人中选出2个作为一个元素看成整体,再把它同另外两个元素在三个位置全排列,根据分步乘法原理得到结果本题考查排列组合及简单的计数问题,是一个基础题,本题又是一个易错题,排列容易重复,注意做到不重不漏.4. 已知点,,P为曲线上任意一点,则的取值范围为A. B. C. D.【答案】A【解析】解:设则由可得,令,,,,,,,,,故选:A.结合已知曲线方程,引入参数方程,然后结合和角正弦公式及正弦函数的性质即可求解.本题主要考查了平面向量数量积的运算及三角函数性质的简单应用,参数方程的应用是求解本题的关键二、填空题(本大题共12小题,共54.0分)5. 已知全集,集合,则______.【答案】【解析】解:.故答案为:.进行补集的运算即可.考查区间表示集合的概念,以及补集的运算.6. 抛物线的焦点坐标是______.【答案】【解析】解:根据题意,抛物线的开口向右,其焦点在x轴正半轴上,且,则抛物线的焦点坐标为,故答案为:.根据题意,由抛物线的标准方程分析可得抛物线的点在x轴正半轴上,且,由抛物线的焦点坐标公式计算可得答案.本题考查抛物线的几何性质,注意分析抛物线的开口方向.7. 不等式的解为______.【答案】【解析】解:根据题意,,若,即,解可得,即不等式的解集为;故答案为:.根据题意,由行列式的计算公式可得,原不等式变形可得,解可得x的取值范围,即可得答案.本题考查对数不等式的解法,涉及行列式的计算,属于基础题.8. 已知复数z满足为虚数单位,则z的模为______.【答案】【解析】解:复数z满足为虚数单位,,则.则.故答案为:.利用复数的运算法则及其性质即可得出.本题考查了复数的运算法则及其性质,考查了推理能力与计算能力,属于基础题.9. 若函数的图象恒过点,则函数的图象一定经过定点______.【答案】【解析】解:因为的图象恒过,所以过,所以的图象一定经过定点故答案为:因为的图象恒过,所以过,在上移3个单位得本题考查了反函数,属基础题.10. 已知数列为等差数列,其前n项和为若,则______.【答案】12【解析】解:数列为等差数列,其前n项和为,,解得,.故答案为:12.由,得,再由,能求出结果.本题考查等差数列的三项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.11. 在中,内角A,B,C的对边是a,b,若,,则______.【答案】【解析】解:,又,.故答案为:.在中,运用余弦定理:,代入计算即可得到.本题考查余弦定理及运用,考查运算能力,属于基础题.12. 已知圆锥的体积为,母线与底面所成角为,则该圆锥的表面积为______.【答案】【解析】解:圆锥的体积为,母线与底面所成角为,如图,设圆锥底面半径,则母线长,高,,解得,,,该圆锥的表面积为.故答案为:.设圆锥底面半径,则母线长,高,则,求出,,该圆锥的表面积为,由此能求出结果.本题考查圆锥的表面积的求法,考查圆锥的性质、体积、表面积等基础知识,考查运算求解能力,是基础题.13. 已知二项式的展开式中,前三项的二项式系数之和为37,则展开式中的第五项为______.【答案】【解析】解:已知二项式的展开式中,前三项的二项式系数之和为,则,故展开式中的第五项为,故答案为:由题意利用二项式系数的性质求得n的值,再利用二项展开式的通项公式,求得展开式中的第五项.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14. 已知函数有三个不同的零点,则实数a的取值范围为______.【答案】【解析】解:由可得,即有三个正根,可得或,由,递减,可得方程有一解;由,时取得等号,可得时,有两个正根,综上可得a的范围是故答案为:由,可得,可得或,由函数的单调性和基本不等式,即可得到所求范围.本题考查函数的零点问题解法,注意运用分离参数法和函数的单调性、基本不等式,考查运算能力,属于中档题.15. 已知数列满足:,且,,若,则______.【答案】1009【解析】解:,,,,时,,,对于上式两边取极限可得:,化为:,解得.故答案为:1009.,,,可得,时,,根据已知,对于上式两边取极限可得:,即可解出.本题考查了数列极限性质、方程的解法,考查了推理能力与计算能力,属于中档题.16. 已知函数,若对任意的,都存在唯一的,满足,则实数a的取值范围为______.【答案】【解析】解:当时,当时,若,则在上是单调递增函数,所以若满足题目要求,则所以,,又,所以.若,则,在上是单调递增函数,此时;在上是单调递减函数,此时.若满足题目要求,则,,又,所以.综上,.故答案为:.由题意可得在的范围包含在的范围内,先运用基本不等式求得在的范围,再讨论,,结合函数的单调性可得的范围,解a的不等式可得所求范围.本题考查分段函数的运用,考查任意性和存在性问题解法,注意运用分类讨论思想和转化思想,考查运算能力,属于中档题.三、解答题(本大题共5小题,共76.0分)17. 已知直三棱柱中,,.求异面直线与所成角;求点到平面的距离.【答案】解法一:在直三棱柱中,,,,所以,分因为,,所以为异面直线与所成的角或补角分在中,因为,,所以,异面直线与所成角为分设点到平面的距离为h,由得,分,分因为,,分所以,,解得,.所以,点到平面的距离为分解法二:设异面直线与所成角为,如图建系,则,,分因为,所以,异面直线与所成角为分设平面的法向量为,则.又,,分所以,由,得分所以,点到平面的距离分【解析】法一:求出,从而,进而为异面直线与所成的角或补角,由此能求出异面直线与所成角.设点到平面的距离为h,由,能求出点到平面的距离.法二:设异面直线与所成角为,建立空间直角坐标系,利用向量法能求出异面直线与所成角.求出平面的法向量,利用向量法能求出点到平面的距离.本题考查异面直线所成角的求法,考查点到平面的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.18. 已知函数.若角的终边与单位圆交于点,求的值;当时,求的单调递增区间和值域.【答案】解:角的终边与单位圆交于点,,;由;由,得,,又,所以的单调递增区间是;,,,故得的值域是.【解析】利用定义即可求解的值;利用三角恒等式公式化简,结合三角函数的性质即可求解,当时,求解内层函数,从而求解值域.本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.19. 某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:小时以内含3小时为健康时间,玩家在这段时间内获得的累积经验值单位:与游玩时间小时满足关系式:;到5小时含5小时为疲劳时间,玩家在这段时间内获得的经验值为即累积经验值不变;超过5小时为不健康时间,累积经验值开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.当时,写出累积经验值E与游玩时间t的函数关系式,并求出游玩6小时的累积经验值;该游戏厂商把累积经验值E与游玩时间t的比值称为“玩家愉悦指数”,记作;若,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.【答案】解:,当时,,当时,,则,,综上,【解析】根据题意即可得到函数的解析式,并求出游玩6小时的累积经验值,根据这款游戏的“玩家愉悦指数”不低于24,求出,再分类讨论,即可求出a的范围.本题考查了函数在实际生活中的应用,关键求出函数的解析式,属于中档题20. 已知双曲线:的左、右焦点分别是、,左、右两顶点分别是、,弦AB和CD所在直线分别平行于x轴与y轴,线段BA的延长线与线段CD相交于点如图.若是的一条渐近线的一个方向向量,试求的两渐近线的夹角;若,,,,试求双曲线的方程;在的条件下,且,点C与双曲线的顶点不重合,直线和直线与直线l:分别相交于点M和N,试问:以线段MN为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.【答案】解:双曲线的渐近线方程为:即,所以,分从而,,所以分设,则由条件知:,,即分所以,,分代入双曲线方程知:分双曲线的方程:分因为,所以,由知,,所以的方程为:,令,所以,:,令,所以,:,令,所以,分故以MN为直径的圆的方程为:,即,即,分若以MN为直径的圆恒经过定点于是所以圆过x轴上两个定点和分【解析】可得,从而,,即求得即,从而得,代入双曲线方程知:即可;可得的方程为:,求得,:,令,所以,以MN为直径的圆的方程为:,于是,即可得圆过x轴上两个定点和.本题考查了双曲线的方程与性质,以及圆过定点问题,属于中档题,21. 已知平面直角坐标系xOy,在x轴的正半轴上,依次取点,,,,并在第一象限内的抛物线上依次取点,,,,,使得都为等边三角形,其中为坐标原点,设第n个三角形的边长为.求,,并猜想不要求证明;令,记为数列中落在区间内的项的个数,设数列的前m项和为,试问是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,说明理由;已知数列满足:,数列满足:,求证:.【答案】解:,分猜想分分由,,,,分分分对任意恒成立分.证明:,记,则分,记,则分,当时,可知:,分【解析】,,进而猜想出.由,可得,,,,利用等比数列的求和公式即可得出根据对任意恒成立即可得出范围.,记,可得,,记,可得,根据当时,即可得出.本题考查了数列与函数的关系、等比数列的通项公式与求和公式及其性质、三角函数求值及其性质,考查了推理能力与计算能力,属于难题.第11页,共11页。

2019年全国高考数学卷1试题及答案

2019年全国高考数学卷1试题及答案

2019年全国高考数学卷Ⅰ试题及答案文6.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( )A .8号学生B .200号学生C .616号学生D .815号学生 答案:C .命题意图:本题主要考查以下几点:(1)等差数列的性质;(2)数据分析素养;(3)统计思想;(4)系统抽样.解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意;若616610n =+,则60n =,符合题意;若815610n =+,则80.9n =,不合题意,故选C .理6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A .516B .1132C .2132D .1116答案:A .命题意图:本题主要考查以下几点:(1)利用两个计数原理与排列组合计算古典概型问题;(2)渗透了传统文化、数学计算等数学素养;(3)二项分布.解题思路:“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.解:由题知,每一爻有2中情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为1652636=C ,故选A . 小结:对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.理15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为6.0,客场取胜的概率为5.0,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________. 答案:216.0.命题意图:本题主要考查以下几点:(1)二项分布;(2)分类讨论的思想.解题思路:本题应注意第五场必定是甲队获胜,前四场甲队恰好输一场.分情况讨论:甲队主场输一场、甲队客场输一场.解:前四场中有一场客场输时,甲队以4∶1获胜的概率是108.06.05.03212=⨯⨯C ,前四场中有一场主场输时,甲队以4∶1获胜的概率是072.06.05.04.02212=⨯⨯⨯C ,综上所述,甲队以4∶1获胜的概率是18.0072.0108.0=+=p ,故填18.0. 小结:由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是思维的全面性是否具备,要考虑甲队以4∶1获胜的两种情况;易错点之三是是否能够准确计算.文17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有%95的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bc K a b c d a c b d -=++++.答案:(1)43,55;(2)能有95%的把握认为男、女顾客对该商场服务的评价有差异. 命题意图:本题主要考查以下几点:(1)利用频率来估计概率;(2)利用列联表计算2K 的值;(3)独立性检验.解题思路:(1)从题中所给的22⨯列联表中读出相关的数据,利用满意的人数除以总的人数,分别算出相应的频率,即估计得出的概率值;(2)利用公式求得观测值与临界值比较,得到能有95%的把握认为男、女顾客对该商场服务的评价有差异.解:(1)由题中表格可知,50名男顾客对商场服务满意的有40人,所以男顾客对商场服务满意率估计为1404505P ==,50名女顾客对商场满意的有30人,所以女顾客对商场服务满意率估计为2303505P ==. (2)由列联表可知22100(40203010)100 4.762 3.8417030505021K ⨯-⨯==≈>⨯⨯⨯,所以能有95%的把握认为男、女顾客对该商场服务的评价有差异.理21.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,)8,,1,0( =i p i 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00=p ,18=p ,)7,,2,1(11 =++=+-i cp bp ap p i i i i ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设5.0=α,8.0=β.(i)证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.答案:(1)见解析;(2)(i )见解析;(ii )25714=p . 解题思路:(1)首先确定X 所有可能的取值,再来计算出每个取值对应的概率,从而可得分布列;(2)(i )求解出c b a ,,的取值,可得)7,,2,1(1.05.04.011 =++=+-i p p p p i i i i ,从而整理出符合等比数列定义的形式,问题得证;(ii )列出证得的等比数列的通项公式,采用累加的方式,结合8p 和0p 的值可求得1p ;再次利用累加法可求出4p .解:(1)由题意可知X 所有可能的取值为:1,0,1-,βα-=-=)1()1(X P ,)1)(1()0(β-α-+αβ==X P ,)1()1(β-α==X P ,则X 的分布列如下:(2)∵5.0=α,8.0=β,∴4.08.05.0=⨯=a ,5.02.05.08.05.0=⨯+⨯=b ,1.02.05.0=⨯=c ;(i )∵)7,,2,1(11 =++=+-i cp bp ap p i i i i ,即)7,,2,1(1.05.04.011 =++=+-i p p p p i i i i ,整理可得:)7,,2,1(4511 =+=+-i p p p i i i ,∴)7,,2,1)((411 =-=--+i p p p p i i i i ,又因为1010p p p -=≠,所以{}1(0,1,2,,7)i i p p i +-=为公比为4,首项为1p 的等比数列. (ii )由(i )可得8p )(78p p -=)(67p p -+)(56p p -+)(45p p -+)(34p p -+)(23p p -+)(12p p -+)(1o p p -+18314p -=,由于8=1p ,故18341p =-,所以()()()()44433221101411.325 7p p p p p p p p p p -=-+-+-+=-= 4p 表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为5.0,乙药治愈率为8.0时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理.。

2019年上海市奉贤区高考数学一模试卷(含解析版)

2019年上海市奉贤区高考数学一模试卷(含解析版)

2019年上海市奉贤区高考数学一模试卷一、填空题(第1题到第6題毎题4分,第7题到第12题毎题5分,满分54分)1.(4分)已知A={x|3x<1},B={x|y=lg(x+1)},则A∪B=.2.(4分)双曲线x2﹣=1的一条渐近线的一个方向向量=(u,v),则=.3.(4分)设函数y=f(x)=2x+c的图象经过点(2,5),则y=f(x)的反函数f﹣1(x)=.4.(4分)在(x﹣)5的展开式中x的系数为.5.(4分)若复数z=(a+i)(3+4i)(i是虚数单位)的实部与虚部相等,则复数z的共扼复数的模等于.6.(4分)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地并排摆放到书架的同一层上,则同一科目的书都相邻的概率为.7.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,面积为c,若(a2﹣b2+c2)=,则角B的值为.(用反正切表示)8.(5分)椭圆+=1上任意一点到其中一个焦点的距离恒大于1,则t的取值范围为.9.(5分)函数g(x)对任意的x∈R,有g(x)+g(﹣x)=x2.设函数f(x)=g(x)﹣,且f(x)在区间[0,+∞)上单调递增,若f(a)+f(a2﹣2)≤0,则实数a的取值范围为.10.(5分)天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推.排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推.已知2017年为丁酉年,那么到改革开放100年时,即2078年为年.11.(5分)点P在曲线=1上运动,E是曲线第二象限上的定点,E的纵坐标是,O(0,0),F(4,0),若=x+y,则x+y的最大值是.12.(5分)设A(x1,y1),B(x1,y2)是曲线x2+y2=2x﹣4y的两点,则x1y2﹣x2y1的最大值是.二、选择题(单项选择题,每题5分,满分20分)13.(5分)下列以行列式表达的结果中,与sin(α﹣β)相等的是()A.B.C.D.14.(5分)若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件15.(5分)各项均为正数的等比数列{a n}的前n项和为S n,若,则q的取值范围是()A.(0,1)B.(2,+∞)C.(0,1]∪(2,+∞)D.(0,2)16.(5分)若三个非零且互不相等的实数x1,x2,x3成等差数列且满足=,则称x1,x2,x3成一个“β等差数列”.已知集合M={x||x|≤100,x∈Z},则由M中的三个元素组成的所有数列中,“β等差数列”的个数为()A.25B.50C.51D.100三、解答题(第17-19题每题14分,第20题16分,第21题18分,满分76分) 17.(14分)如图,三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AB=AC,D是BC的中点.(1)求证:BC⊥平面A1AD;(2)若∠BAC=90°,BC=4,三棱柱ABC﹣A1B1C1的体积是8,求异面直线A1D和AB1所成的角的大小.18.(14分)函数f(x)=A sin(ωx+φ)(ω>0,﹣π<φ<0)在一个周期内的图象经过B (),C(),D()三点,求f(x)=A sin(ωx+φ)的解析式.19.(14分)今年入秋以来,某市多有雾霾天气,空气污染较为严重.市环保研究所对近期每天的空气污染情况进行调査研究后发现,每一天中空气污染指数与f(x)时刻x(时)的函数关系为f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a为空气治理调节参数,且a∈(0,1).(1)若a=,求一天中哪个时刻该市的空气污染指数最低;(2)规定每天中f(x)的最大值作为当天的空气污染指数,要使该市每天的空气污染指数不超过3,则调节参数a应控制在什么范围内?20.(16分)已知抛物线y=x2上的A,B两点满足=2,点A、B在抛物线对称轴的左右两侧,且A的横坐标小于零,抛物线顶点为O,焦点为F.(1)当点B的横坐标为2,求点A的坐标;(2)抛物线上是否存在点M,使得|MF|=λ|MO|(λ>0),若请说明理由;(3)设焦点F关于直线OB的对称点是C,求当四边形OABC面积最小值时点B的坐标.21.(18分)若对任意的正整数n,总存在正整数m,使得数列{a n}的前n项和S n=a m,则称{a n}是“回归数列”.(Ⅰ)①前n项和为的数列{a n}是否是“回归数列”?并请说明理由;②通项公式为b n=2n的数列{b n}是否是“回归数列”?并请说明理由;(Ⅱ)设{a n}是等差数列,首项a1=1,公差d<0,若{a n}是“回归数列”,求d的值;(Ⅲ)是否对任意的等差数列{a n},总存在两个“回归数列”{b n}和{c n},使得a n=b n+c n (n∈N*)成立,请给出你的结论,并说明理由.2019年上海市奉贤区高考数学一模试卷参考答案与试题解析一、填空题(第1题到第6題毎题4分,第7题到第12题毎题5分,满分54分)1.(4分)已知A={x|3x<1},B={x|y=lg(x+1)},则A∪B=R.【考点】1D:并集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】分别求出集合A,B,由此能求出A∪B.【解答】解:∵A={x|3x<1}={x|x<0},B={x|y=lg(x+1)}={x|x>﹣1},∴A∪B=R.故答案为:R.【点评】本题考查并集的求法,考查集合的并集运算等基础知识,考查运算求解能力,是基础题.2.(4分)双曲线x2﹣=1的一条渐近线的一个方向向量=(u,v),则=.【考点】KC:双曲线的性质.【专题】35:转化思想;4O:定义法;5D:圆锥曲线的定义、性质与方程.【分析】利用直线的一个方向向量为(1,k),再利用双曲线的定义求得双曲线的渐近线方程即可..【解答】解:双曲线x2﹣=1的渐近线方程为y=±x,则渐近线方一个方向向量为(1,k).∴,故答案为:.【点评】本题考查双曲线的性质,直线方向向量的定义,属于中档题.3.(4分)设函数y=f(x)=2x+c的图象经过点(2,5),则y=f(x)的反函数f﹣1(x)=log2(x﹣1).【考点】4R:反函数.【专题】11:计算题;51:函数的性质及应用.【分析】由f(2)=5,解得c=1,得y=f(x)=2x+1,然后反解x后,对调x与f(x)可得.【解答】解:依题意有:f(2)=22+c=5,解得:c=1,所以f(x)=2x+1,∴2x=f(x)﹣1,x=log2(f(x)﹣1),∴f﹣1(x)=log2(x﹣1)故答案为:log2(x﹣1)【点评】本题考查了反函数.属基础题.4.(4分)在(x﹣)5的展开式中x的系数为40.【考点】DA:二项式定理.【专题】11:计算题;35:转化思想;4O:定义法;5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于1,求出r的值,即可求得开式中x的系数.【解答】解:二项式的展开式的通项公式为T r+1=C5r•(﹣2)r•x5﹣2r,令5﹣2r=1,求得r=2,∴二项式的展开式中x的系数为C52•(﹣2)2=40,故答案为:40.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于中档题.5.(4分)若复数z=(a+i)(3+4i)(i是虚数单位)的实部与虚部相等,则复数z的共扼复数的模等于25.【考点】A5:复数的运算.【专题】49:综合法;4R:转化法;5N:数系的扩充和复数.【分析】利用复数的运算法则化简z,根据实部与虚部相等可得a,再利用复数的运算性质即可得出.【解答】解:复数z=(a+i)(3+4i)=(3a﹣4)+(3+4a)i的实部与虚部相等,∴3a﹣4=3+4a,解得a=﹣7.则复数z=﹣25﹣25i的共扼复数的=﹣25+25i,||==25.故答案为:25.【点评】本题考查了复数的运算法则及其性质、实部与虚部,考查了推理能力与计算能力,属于基础题.6.(4分)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地并排摆放到书架的同一层上,则同一科目的书都相邻的概率为.【考点】CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】本题是一个等可能事件的概率,试验发生包含的事件是把5本书随机的摆到一个书架上,共有A55种结果,同一科目的书都相邻,利用捆绑法,利用古典概型概率公式计算即可【解答】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是把5本书随机的摆到一个书架上,共有A55=120种结果,同一科目的书都相邻,把2本语文书捆绑在一起,再把2本数学书捆绑在一起,故有A22A22A33=24种,故同一科目的书都相邻的概率P==故答案为:【点评】本题考查排列数的计算,捆绑法的应用,古典概型概率公式的应用,属于基础题.7.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,面积为c,若(a2﹣b2+c2)=,则角B的值为arctan.(用反正切表示)【考点】HR:余弦定理.【专题】11:计算题;58:解三角形.【分析】由a2﹣b2+c2=,得=,∴cos B=sin B,∴tan B=,再用反三角表示即可.【解答】解:由a2﹣b2+c2=,得=,∴cos B=sin B,∴tan B=,又B∈(0,),∴B=arctan故答案为:arctan【点评】本题考查了余弦定理.属中档题.8.(5分)椭圆+=1上任意一点到其中一个焦点的距离恒大于1,则t的取值范围为(3,4)∪(4,).【考点】K4:椭圆的性质.【专题】34:方程思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】分t>4和0<t<4求出椭圆的长半轴长和半焦距,再由a﹣c>1列式求解t的取值范围.【解答】解:当t>4时,椭圆+=1表示焦点在y轴上的椭圆,则a=,b=2,c=,由题意可得:a﹣c=>1,解得4<t<;当0<t<4时,椭圆+=1表示焦点在x轴上的椭圆,则a=2,b=,c=,由题意可得:a﹣c=2﹣>1,解得3<t<4.综上,t的取值范围为(3,4)∪(4,).故答案为:(3,4)∪(4,).【点评】本题考查椭圆的简单性质,明确长轴的两个端点到焦点距离最小(或最大)是关键,是中档题.9.(5分)函数g(x)对任意的x∈R,有g(x)+g(﹣x)=x2.设函数f(x)=g(x)﹣,且f(x)在区间[0,+∞)上单调递增,若f(a)+f(a2﹣2)≤0,则实数a的取值范围为[﹣2,1].【考点】3E:函数单调性的性质与判断;3P:抽象函数及其应用.【专题】35:转化思想;48:分析法;51:函数的性质及应用.【分析】判断f(x)的奇偶性和单调性,根据单调性和奇偶性,运用二次不等式的解法求出a的范围.【解答】解:由f(x)=g(x)﹣得:f(﹣x)=g(﹣x)﹣,∴f(x)+f(﹣x)=g(x)+g(﹣x)﹣x2=0,∴f(x)在R上是奇函数,又f(x)在区间[0,+∞)上单调递增,∴f(x)在R上单调递增,∵f(a)+f(a2﹣2)≤0,∴f(a)≤﹣f(a2﹣2)=f(2﹣a2),∴a≤2﹣a2,即﹣2≤a≤1.故答案为:[﹣2,1].【点评】本题考查韩寒说的奇偶性和单调性的判断和运用:解不等式,考查定义法和转化思想,属于基础题.10.(5分)天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推.排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推.已知2017年为丁酉年,那么到改革开放100年时,即2078年为戊戌年.【考点】F4:进行简单的合情推理.【专题】2A:探究型;38:对应思想;4O:定义法;54:等差数列与等比数列;5M:推理和证明.【分析】由题意可得数列天干是以10为等差的等差数列,地支是以12为公差的等差数列,以2017年的天干和地支分别为首项,即可求出答案.【解答】解:天干是以10为构成的等差数列,地支是以12为公差的等差数列,从2017年到2078年经过61年,且2017年为丁酉年,以2017年的天干和地支分别为首项,则61÷10=6余1,则2078的天干为戊,61÷12=5余1,则戊的地支为戌,故答案为:戊戌【点评】本题考查了等差数列在实际生活中的应用,属于中档题.11.(5分)点P在曲线=1上运动,E是曲线第二象限上的定点,E的纵坐标是,O(0,0),F(4,0),若=x+y,则x+y的最大值是.【考点】KE:曲线与方程.【专题】34:方程思想;41:向量法;5A:平面向量及应用;5B:直线与圆.【分析】化简曲线方程画出图形,设出P(m,n),求得E的坐标,由向量坐标表示可得x,y关于m,n的关系式,再由线性规划知识,即可得到所求最大值.【解答】解:曲线=1即为+=1,如图所示,P在曲线上运动,设P(m,n),可得+=1,由E是曲线第二象限上的定点,E的纵坐标是,可得E(﹣,),可得(m,n)=x(4,0)+y(﹣,),即有m=4x﹣y,n=y,可得x=,y=n,即有x+y=+,要求x+y=+在+=1下的最大值,考虑如图所示曲线的顶点(﹣5,0),(5,0),(0,3),(0,﹣3),代入(0,3)可得最大值为.故答案为:.【点评】本题考查曲线方程和应用,考查向量的坐标表示和简单线性规划问题,考查化简运算能力和推理能力,属于中档题.12.(5分)设A(x1,y1),B(x1,y2)是曲线x2+y2=2x﹣4y的两点,则x1y2﹣x2y1的最大值是.【考点】JF:圆方程的综合应用.【专题】11:计算题;38:对应思想;4R:转化法;5B:直线与圆.【分析】由三角形的面积公式,结合向量数量积的坐标表示,变形即可得到所求解析式;x1y2﹣x2y1的最大值为2S的最大值,利用圆内接三角形面积最大时为等边三角形,即可得到取最大值【解答】解:△AOB的面积为S=||•||•|sin∠AOB===|x1y2﹣x2y1|;故x1y2﹣x2y1的最大值为2S的最大值,曲线x2+y2=2x﹣4y,即(x﹣1)2+(y+2)2=5为圆心(1,﹣2),半径为的圆,且圆经过原点,当△AOB为等边三角形时,其面积最大,则最大值为,故x1y2﹣x2y1的最大值为,设故答案为:.【点评】本题考查三角形的面积的求法,注意运用向量数量积的坐标表示,考查代数式的最值求法,属于中档题.二、选择题(单项选择题,每题5分,满分20分)13.(5分)下列以行列式表达的结果中,与sin(α﹣β)相等的是()A.B.C.D.【考点】OM:二阶行列式的定义.【专题】11:计算题.【分析】根据行列式的运算法则对四个选项一一进行化简运算得结果.【解答】解:∵sin(α﹣β)=sinαcosβ﹣cosαsinβ,对于A:=sinαcosβ+cosαsinβ;故错;对于B:=cosαcosβ﹣sinαsinβ,故错;对于C:=sinαcosβ﹣cosαsinβ,正确;对于D:=cosαcosβ﹣sinαsinβ,故错.故选:C.【点评】本题考查行列式的运算,三角函数的变换公式、和角及二倍角的公式等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.14.(5分)若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的()A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件【考点】29:充分条件、必要条件、充要条件;LP:空间中直线与平面之间的位置关系.【分析】由题意知,用由一条直线和直线外一点确定一个平面验证充分性成立,反之必要性不成立.【解答】解:充分性成立:“这四个点中有三点在同一直线上”,则第四点不在共线三点所在的直线上,由一条直线和直线外一点确定一个平面,推出“这四点在唯一的一个平面内”;必要性不成立:“四个点在同一平面上”可能推出“两点分别在两条相交或平行直线上”;故选:A.【点评】本题考查了确定平面的依据:即公理2和推论,还有必要条件、充分条件与充要条件的判断.15.(5分)各项均为正数的等比数列{a n}的前n项和为S n,若,则q的取值范围是()A.(0,1)B.(2,+∞)C.(0,1]∪(2,+∞)D.(0,2)【考点】8J:数列的极限.【专题】11:计算题;34:方程思想;35:转化思想;52:导数的概念及应用;54:等差数列与等比数列.【分析】根据题意,分析可得等比数列{a n}中q≠1,由等比数列的前n项和公式可得=,进而结合极限的计算公式分析可得=<,解可得q的值,即可得答案.【解答】解:根据题意,等比数列{a n}中,则必有q≠1,则S n=,则===,若存在,且{a n}的各项均为正数,必有q>1,此时=<,解可得q>2,即q的取值范围为(2,+∞);故选:B.【点评】本题考查等比数列的前n项和以及极限的计算,注意掌握极限的计算公式,属于基础题.16.(5分)若三个非零且互不相等的实数x1,x2,x3成等差数列且满足=,则称x1,x2,x3成一个“β等差数列”.已知集合M={x||x|≤100,x∈Z},则由M中的三个元素组成的所有数列中,“β等差数列”的个数为()A.25B.50C.51D.100【考点】8B:数列的应用.【专题】11:计算题;34:方程思想;49:综合法;54:等差数列与等比数列.【分析】根据“好集”的定义,可解关于x1,x2,x3的方程组,用x2把另外两个元素表示出来,再根据“集合M={x||x|≤100,x∈Z},通过x1,x2,x3∈M”构造出关于x2的不等式,求出x2中最大的元素.可以求出x2的最大值,从而确定“β等差数列的个数.【解答】解:∵=,且x1+x3=2x2,可得:=,∴(x1﹣x2)(x1+2x2)=0,∴x1=x2(舍),或x1=﹣2x2,∴x3=4x2,令﹣100≤4x2≤100,得﹣25≤x2≤25,∴“β等差数列”的个数为2×25=50.故选:B.【点评】这是一道新定义题,关键是理解好题意,将问题转化为方程(组)或不等式问题,则问题迎刃而解.三、解答题(第17-19题每题14分,第20题16分,第21题18分,满分76分) 17.(14分)如图,三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AB=AC,D是BC的中点.(1)求证:BC⊥平面A1AD;(2)若∠BAC=90°,BC=4,三棱柱ABC﹣A1B1C1的体积是8,求异面直线A1D 和AB1所成的角的大小.【考点】LM:异面直线及其所成的角;LW:直线与平面垂直.【专题】11:计算题;31:数形结合;41:向量法;5F:空间位置关系与距离;5G:空间角.【分析】(1)推导出AA1⊥BC,BC⊥AD,由此能证明BC⊥平面A1AD1.(2)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,由此能求出异面直线A1D和AB1所成的角的大小.【解答】证明:(1)∵AA1⊥底面ABC,∴AA1⊥BC,又AB=AC,D是BC的中点,BC⊥AD,AA1∩AD=A,∴BC⊥平面A1AD1.解:(2)∵∠BAC=90°,AB=AC,BC=4,∴AB=AC=2,==4,∵三棱柱ABC﹣A1B1C1的体积是8,∴S△ABC•AA1=4AA1=8,解得AA1=2,以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,则D(,0),A(0,0,0),B1(2,0,2),=(,﹣2),=(2,0,2),设异面直线A1D,AB1所成角为θ,则cosθ===.∴异面直线A1D和AB1所成的角的大小为arccos.【点评】本题考查线面垂直的证明,考查异面直线所成角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.18.(14分)函数f(x)=A sin(ωx+φ)(ω>0,﹣π<φ<0)在一个周期内的图象经过B (),C(),D()三点,求f(x)=A sin(ωx+φ)的解析式.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;57:三角函数的图象与性质.【分析】分两种情况讨论:(1)当B(,0),C(,0)是半个周期内的两个相邻的零点;(2)当B(,0),C(,0)是一个周期内的两个不相邻的零点.【解答】解:(1)当B(,0),C(,0)是半个周期内的两个相邻的零点,则=﹣,∴T=π,ω=2,φφφ⇒,∴函数f(x)=2sin(2x﹣);(2)当B(,0),C(,0)是一个周期内的两个不相邻的零点,则T=﹣,∴T=,ω=4,⇒,所以函数f(x)=sin(4x﹣).【点评】本题考查了由y=sin(ωx+φ)的部分图象确定其解析式,属中档题.19.(14分)今年入秋以来,某市多有雾霾天气,空气污染较为严重.市环保研究所对近期每天的空气污染情况进行调査研究后发现,每一天中空气污染指数与f(x)时刻x(时)的函数关系为f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a为空气治理调节参数,且a∈(0,1).(1)若a=,求一天中哪个时刻该市的空气污染指数最低;(2)规定每天中f(x)的最大值作为当天的空气污染指数,要使该市每天的空气污染指数不超过3,则调节参数a应控制在什么范围内?【考点】5C:根据实际问题选择函数类型.【专题】32:分类讨论;34:方程思想;35:转化思想;51:函数的性质及应用.【分析】(1)a=时,f(x)=|log25(x+1)﹣|+2,x∈[0,24],令|log25(x+1)﹣|=0,解得x即可得出.(2)令f(x)=|log25(x+1)﹣a|+2a+1=,再利用函数的单调性即可得出.【解答】解:(1)a=时,f(x)=|log25(x+1)﹣|+2,x∈[0,24],令|log25(x+1)﹣|=0,解得x=4,因此:一天中第4个时刻该市的空气污染指数最低.(2)令f(x)=|log25(x+1)﹣a|+2a+1=,当x∈(0,25a﹣1]时,f(x)=3a+1﹣log25(x+1)单调递减,∴f(x)<f(0)=3a+1.当x∈[25a﹣1,24)时,f(x)=a+1+log25(x+1)单调递增,∴f(x)≤f(24)=a+1+1.联立,解得0<a≤.可得a∈.因此调节参数a应控制在范围.【点评】本题考查了对数函数的单调性及其应用,考查了分类讨论方法、推理能力与计算能力,属于难题.20.(16分)已知抛物线y=x2上的A,B两点满足=2,点A、B在抛物线对称轴的左右两侧,且A的横坐标小于零,抛物线顶点为O,焦点为F.(1)当点B的横坐标为2,求点A的坐标;(2)抛物线上是否存在点M,使得|MF|=λ|MO|(λ>0),若请说明理由;(3)设焦点F关于直线OB的对称点是C,求当四边形OABC面积最小值时点B的坐标.【考点】K8:抛物线的性质.【专题】34:方程思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(1)由B(2,4),设A(t,t2),结合已知条件即可求出t的值,则可求点A的坐标;(2)由条件知,把y=x2代入得,求出△,然后分类讨论λ的范围即可得答案;(3)设B(),A(),则,解得x1x2=﹣2,设直线AB的方程为y=kx+m,联立,解得m的值,然后利用基本不等式求解即可得答案.【解答】解:(1)由题意知,B(2,4),设A(t,t2),由=2,得2t+4t2=2,解得:t=(舍)或t=﹣1,∴A(﹣1,1);(2)由条件知,把y=x2代入得,∴,当λ=1时,M有两个点,当时,M有两个点,当时,M点有四个,当λ>1,M点有两个,当,M点不存在;(3)设B(),A(),由题意得:,解得x1x2=﹣2.设直线AB的方程为y=kx+m,联立,得x2﹣kx﹣m=0,得x1x2=﹣m,又x1x2=﹣2,∴m=2,则直线经过定点(0,2),∴S四边形OABC=S△OAB+S△OBC=S△OAB+S△OBF==,当且仅当等号成立,四边形OABC面积最小,∴B(,).【点评】本题考查抛物线方程和性质,考查直线与抛物线的位置关系,考查基本不等式的应用,是中档题.21.(18分)若对任意的正整数n,总存在正整数m,使得数列{a n}的前n项和S n=a m,则称{a n}是“回归数列”.(Ⅰ)①前n项和为的数列{a n}是否是“回归数列”?并请说明理由;②通项公式为b n=2n的数列{b n}是否是“回归数列”?并请说明理由;(Ⅱ)设{a n}是等差数列,首项a1=1,公差d<0,若{a n}是“回归数列”,求d的值;(Ⅲ)是否对任意的等差数列{a n},总存在两个“回归数列”{b n}和{c n},使得a n=b n+c n (n∈N*)成立,请给出你的结论,并说明理由.【考点】8B:数列的应用.【专题】23:新定义;35:转化思想;49:综合法;54:等差数列与等比数列.【分析】(1)利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”即可得到a n,再利用“回归数列”的意义即可得出,②b n=2n,S n=n2+n=n(n+1),n(n+1)为偶数,即可证明数列{b n}是“回归数列”;(2)利用等差数列的前n项和即可得出S n,对∀n∈N*,∃m∈N*使S n=a m,取n=2和根据d<0即可得出;(3)设{a n}的公差为d,构造数列:b n=a1﹣(n﹣1)a1=(2﹣n)a1,c n=(n﹣1)(a1+d),可证明{b n}和{c n}是等差数列.再利用等差数列的前n项和公式及其通项公式、“回归数列”;即可得出.【解答】解:(Ⅰ)①当n≥2时,a n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n≥2时,S n=a n+1.∴数列{a n}是“回归数列”;②b n=2n,前n项和S n,S n=n2+n=n(n+1),∵n(n+1)为偶数,∴存在2m=n(n+1),即m=,数列{b n}是否是“回归数列”;(2)S n=na1+d=n+d,对∀n∈N*,∃m∈N*使S n=a m,即n+d=1+(m﹣1)d,取n=2时,得1+d=(m﹣1)d,解得m=2+,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{a n}的公差为d,令b n=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,b n+1﹣b n=﹣a1,c n=(n﹣1)(a1+d),对∀n∈N*,c n+1﹣c n=a1+d,则b n+c n=a1+(n﹣1)d=a n,且数列{b n}和{c n}是等差数列.数列{b n}的前n项和T n=na1+(﹣a1),令T n=(2﹣m)a1,则m=+2.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使T n=b m成立,即{b n}为“回归数列”;.数列{c n}的前n项和R n=(a1+d),令c m=(m﹣1)(a1+d)=R n,则m=+1.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使R n=c m成立,即{c n}为“回归数列”;.因此命题得证.【点评】本题考查了利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”求a n、等差数列的前n项和公式及其通项公式、“回归数列”意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.。

2019年黑龙江省哈尔滨三中高考数学一模试卷和答案(文科)(内考)

2019年黑龙江省哈尔滨三中高考数学一模试卷和答案(文科)(内考)

2019年黑龙江省哈尔滨三中高考数学一模试卷(文科)(内考)一、选择题:本大题共12小题,每小题5分,共60分.在题目给出的四个选项中,只有一个选项是符合题目要求.1.(5分)已知全集U=R,集合A={﹣2,﹣1,0,1,2},B={x|x2≥4},则如图中阴影部分所表示的集合为()A.{﹣2,﹣1,0,1}B.{0}C.{﹣1,0}D.{﹣1,0,1}2.(5分)若复数z=,则|z|=()A.8B.2C.2D.3.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.2D.4.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b5.(5分)已知数列{a n}的前n项和S n=2+λa n,且a1=1,则S5=()A.27B.C.D.316.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面7.(5分)函数f(x)=a x﹣1(a>0,a≠1)的图象恒过点A,则下列函数中图象不经过点A的是()A.y=B.y=|x﹣2|C.y=2x﹣1D.y=log2(2x)8.(5分)已知函数y=sin(ωx+φ)的最小正周期为,直线是其图象的一条对称轴,则下面各式中符合条件的解析式为()A.B.C.D.9.(5分)阅读如图所示的程序框图,若运行相应的程序输出的结果为0,则判断框中的条件不可能是()A.n≤2014B.n≤2015C.n≤2016D.n≤201810.(5分)已知双曲线C:﹣=1(a>0,b>0)的右焦点F2到渐近线的距离为4,且在双曲线C上到F2的距离为2的点有且仅有1个,则这个点到双曲线C的左焦点F1的距离为()A.2B.4C.6D.811.(5分)已知x2+y2=4,在这两个实数x,y之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为()A.B.C.D.12.(5分)函数,方程[f(x)]2﹣(m+1)f(x)+1﹣m=0有4个不相等实根,则m的取值范围是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知向量=(2,﹣4),=(﹣3,﹣4),则向量与夹角的余弦值为.14.(5分)设x,y满足约束条件,则z=x﹣y的最大值是.15.(5分)学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“A作品获得一等奖”;乙说:“C作品获得一等奖”丙说:“B,D两项作品未获得一等奖”丁说:“是A或D作品获得一等奖”若这四位同学中只有两位说的话是对的,则获得一等奖的作品是.16.(5分)正四面体ABCD的棱长为4,E为棱BC的中点,过E作其外接球的截面,则截面面积的最小值为.三、解答题:本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤. 17.(12分)在△ABC,,BC=2.(1)若AC=3,求AB的长;(2)若点D在边AB上,AD=DC,DE⊥AC,E为垂足,,求角A的值.18.(12分)某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如表:(1)若某企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为ω)的关系式为:S=,试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?附:k2=19.(12分)如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=60°,四边形BDEF 是正方形且DE⊥平面ABCD.(Ⅰ)求证:CF∥平面ADE;(Ⅱ)若AE=,求多面体ABCDEF的体积V.20.(12分)已知椭圆C:+=1(a>b>0)的离心率为,以M(1,0)为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+﹣1=0相切.(1)求椭圆C的标准方程;(2)已知点N(3,2),和平面内一点P(m,n)(m≠3),过点M任作直线l与椭圆C 相交于A,B两点,设直线AN,NP,BN的斜率分别为k1,k2,k3,k1+k3=3k2,试求m,n满足的关系式.21.(12分)已知函数f(x)=lnx﹣kx+1.(1)求函数f(x)的单调区间;(2)若f(x)≤0恒成立,试确定实数k的取值范围;(3)证明:请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.答题时用2B 铅笔在答题卡上把所选的题号涂黑.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C1:x+y=和C2:(φ为参数),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C1、C2的方程化为极坐标方程(2)设C1与x轴、y轴交于M,N两点,且线段MN的中点为P.若射线OP与C1、C2交于P、Q两点,求P,Q两点间的距离.[选修4-5:不等式选讲]23.设a,b,c>0,且ab+bc+ca=1,求证:(1)a+b+c≥;(2)++≥(++)2019年黑龙江省哈尔滨三中高考数学一模试卷(文科)(内考)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在题目给出的四个选项中,只有一个选项是符合题目要求.1.(5分)已知全集U=R,集合A={﹣2,﹣1,0,1,2},B={x|x2≥4},则如图中阴影部分所表示的集合为()A.{﹣2,﹣1,0,1}B.{0}C.{﹣1,0}D.{﹣1,0,1}【解答】解:由Venn图可知阴影部分对应的集合为A∩(∁U B),∵B={x|x2≥4}={x|x≥2或x≤﹣2},A={﹣2,﹣1,0,1,2},∴∁U B={x|﹣2<x<2},即A∩(∁U B)={﹣1,0,1}故选:D.2.(5分)若复数z=,则|z|=()A.8B.2C.2D.【解答】解:复数z=,则|z|===.故选:D.3.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.2D.【解答】解:由主视图和侧视图可知棱锥的高h=2,结合侧视图和俯视图可知三棱锥的底面ABC为直角三角形,BC=1,AB=2,AB⊥BC,∴三棱锥的体积V==,故选:A.4.(5分)已知a=,b=,c=,则()A.b<a<c B.a<b<c C.b<c<a D.c<a<b【解答】解:由a==b==根据指数函数的单调性,∴a>b.a==,c=,∴a<c,可得:b<a<c.故选:A.5.(5分)已知数列{a n}的前n项和S n=2+λa n,且a1=1,则S5=()A.27B.C.D.31【解答】解:S n=2+λa n,且a1=1,∴1=a1=S1=2+λ,解得λ=﹣1.∴n≥2时,S n=2﹣a n=2﹣(S n﹣S n﹣1),化为:S n﹣2=(S n﹣1﹣2),S1﹣2=﹣1,∴S n﹣2=﹣,即S n=2﹣,则S5=2﹣=,故选:C.6.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选:D.7.(5分)函数f(x)=a x﹣1(a>0,a≠1)的图象恒过点A,则下列函数中图象不经过点A的是()A.y=B.y=|x﹣2|C.y=2x﹣1D.y=log2(2x)【解答】解:函数f(x)=y=a x﹣1(a>0,a≠1)的图象恒过点A,即x﹣1=0,可得x=1,那么:y=1.∴恒过点A(1,1).把x=1,y=1带入各选项,经考查各选项,只有A没有经过A点.故选:A.8.(5分)已知函数y=sin(ωx+φ)的最小正周期为,直线是其图象的一条对称轴,则下面各式中符合条件的解析式为()A.B.C.D.【解答】解:函数y=sin(ωx+φ)的最小正周期为,故:,解得:ω=4,直线是其图象的一条对称轴,故:,(k∈Z)解得:φ=k(k∈Z),当k=1时,φ=,故选:A.9.(5分)阅读如图所示的程序框图,若运行相应的程序输出的结果为0,则判断框中的条件不可能是()A.n≤2014B.n≤2015C.n≤2016D.n≤2018【解答】解:模拟执行程序,可得前6步的执行结果如下:s=0,n=1;满足条件,执行循环体,s=,n=2;满足条件,执行循环体,s=0,n=3;满足条件,执行循环体,s=0,n=4;满足条件,执行循环体,s=,n=5;满足条件,执行循环体,s=0,n=6…观察可知,s的值以3为周期循环出现,当n的值除以3余1时,可得对应的s的值为,由于:2014=671×3+1所以:判断条件为n≤2014?时,s=符合题意.故选:A.10.(5分)已知双曲线C:﹣=1(a>0,b>0)的右焦点F2到渐近线的距离为4,且在双曲线C上到F2的距离为2的点有且仅有1个,则这个点到双曲线C的左焦点F1的距离为()A.2B.4C.6D.8【解答】解:设渐近线为,∵右焦点F2到渐近线的距离为4,∴,即b=4.∵双曲线C上到F2的距离为2的点有且仅有1个,这个点是右顶点,∴c﹣a=2.∴(c﹣a)2=4=b,⇒(c﹣a)4=b2=(c﹣a)(c+a),∴c+a=(c﹣a)3=8.则这个点到双曲线C的左焦点F1的距离为c+a=8,故选:D.11.(5分)已知x2+y2=4,在这两个实数x,y之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为()A.B.C.D.【解答】解:根据题意,设插入的三个数为a、b、c,即构成等差数列的五个数分别为x,a,b,c,y,则有x+y=a+c=2b,则b=,c===,则这个等差数列后三项和为b+c+y=3b=,又由x2+y2=4,设x=2cosα,y=2sinα,则b+c+y=(x+3y)=(cosα+3sinα)=sin(α+φ)≤,即这个等差数列后三项和的最大值为;故选:D.12.(5分)函数,方程[f(x)]2﹣(m+1)f(x)+1﹣m=0有4个不相等实根,则m的取值范围是()A.B.C.D.【解答】解:函数是连续函数,x=0时,y=0.x>0时,函数的导数为f′(x)=,当0<x<1时,f′(x)>0,f(x)递增;当x>1时,f′(x)<0,f(x)递减,可得f(x)在x=1处取得极大值,f(x)∈(0,]x<0时,f′(x)=﹣<0,函数是减函数,作出y=f(x)的图象,设t=f(x),关于x的方程[f(x)]2﹣(m+1)f(x)+1﹣m=0即为t2﹣(m+1)t+1﹣m=0,有1个大于实根,一个根在(0,);由题意可得:解得m∈.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知向量=(2,﹣4),=(﹣3,﹣4),则向量与夹角的余弦值为.【解答】解:根据题意,设向量与夹角为θ,向量,,则||=2,||=5,且•=2×(﹣3)+(﹣4)×(﹣4)=10,cosθ===,故答案为:.14.(5分)设x,y满足约束条件,则z=x﹣y的最大值是2.【解答】解:作出不等式组对应的平面区域如图:由z=x﹣y得y=x﹣z,平移直线y=x﹣z,由图象直线当直线y=x﹣z经过B(2,0)时,直线y=x﹣z的截距最小,此时z最大为z=2﹣0=2,即z=x﹣y的最大值是2,故答案为:2.15.(5分)学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“A作品获得一等奖”;乙说:“C作品获得一等奖”丙说:“B,D两项作品未获得一等奖”丁说:“是A或D作品获得一等奖”若这四位同学中只有两位说的话是对的,则获得一等奖的作品是C.【解答】解:根据题意,A,B,C,D作品进行评奖,只评一项一等奖,假设参赛的作品A为一等奖,则甲、丙,丁的说法都正确,乙错误,不符合题意;假设参赛的作品B为一等奖,则甲、乙、丙、丁的说法都错误,不符合题意;假设参赛的作品C为一等奖,则乙,丙的说法正确,甲、丁的说法错误,符合题意;假设参赛的作品D为一等奖,则甲、乙,丙的说法都错误,丁的说法正确,不符合题意;故获得参赛的作品C为一等奖;故答案为:C.16.(5分)正四面体ABCD的棱长为4,E为棱BC的中点,过E作其外接球的截面,则截面面积的最小值为4π.【解答】解:将四面体ABCD放置于正方体中,如图所示可得正方体的外接球就是四面体ABCD的外接球,∵正四面体ABCD的棱长为4,∴正方体的棱长为,可得外接球半径R满足,解得R=E为棱BC的中点,过E作其外接球的截面,当截面到球心O的距离最大时,截面圆的面积达最小值,此时球心O到截面的距离等于正方体棱长的一半,可得截面圆的半径为r==2,得到截面圆的面积最小值为S=πr2=4π.故答案为:4π三、解答题:本大题共5小题,满分60分.解答须写出文字说明、证明过程和演算步骤. 17.(12分)在△ABC,,BC=2.(1)若AC=3,求AB的长;(2)若点D在边AB上,AD=DC,DE⊥AC,E为垂足,,求角A的值.【解答】解:(1)设AB=x,则由余弦定理有:AC2=AB2+BC2﹣2AB•BC cos B,即32=22+x2﹣2x•2cos60°,解得:,所以;(2)因为,所以.在△BCD中,由正弦定理可得:,因为∠BDC=2∠A,所以.所以,所以.18.(12分)某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如表:(1)若某企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为ω)的关系式为:S=,试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?附:k2=【解答】解:(1)设“在本年内随机抽取一天,该天经济损失S大于200元且不超过600元”为事件A…(1分)由200<S≤600,得150<ω≤250,频数为39,…(3分)∴P(A)=….(4分)(2)根据以上数据得到如表:….(8分)K2的观测值K2=≈4.575>3.841….(10分)所以有95%的把握认为空气重度污染与供暖有关.….(12分)19.(12分)如图,多面体ABCDEF中,底面ABCD是菱形,∠BCD=60°,四边形BDEF 是正方形且DE⊥平面ABCD.(Ⅰ)求证:CF∥平面ADE;(Ⅱ)若AE=,求多面体ABCDEF的体积V.【解答】(Ⅰ)证明:∵底面ABCD是菱形,∴AD∥BC,∵四边形BDEF是正方形,∴DE∥BF,∵BF∩BC=B,∴平面ADE∥平面BCF,∵CF⊂平面BCF,∴CF∥平面ADE.(Ⅱ)解:连结AC,交BD于O,∵四边形BDEF是正方形且DE⊥平面ABCD.∴DE⊥平面ABCD,又AC⊂平面ABCD,∴AC⊥DE,∵底面ABCD是菱形,∴AC⊥BD,又BD∩DE=D,∴AC⊥平面BDEF,∵AE=,∠BCD=60°,∴AD=DE=BD=1,∴AO=CO=,∴多面体ABCDEF的体积:V=2V A﹣BDEF=2×=2×=.20.(12分)已知椭圆C:+=1(a>b>0)的离心率为,以M(1,0)为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+﹣1=0相切.(1)求椭圆C的标准方程;(2)已知点N(3,2),和平面内一点P(m,n)(m≠3),过点M任作直线l与椭圆C 相交于A,B两点,设直线AN,NP,BN的斜率分别为k1,k2,k3,k1+k3=3k2,试求m,n满足的关系式.【解答】解:(1)由椭圆C:+=1(a>b>0),焦点在x轴上,则M(1,0)到直线x﹣y+﹣1=0的距离d==1,∴b=d=1,离心率e===,解得:a=,∴椭圆C的标准方程;(2)①当直线斜率不存在时,由,解得x=1,,不妨设,,∵k1+k3=2,∴,∴m,n的关系式为3n=2m.②当直线的斜率存在时,设点A(x1,y1),B(x2,y2),直线l:y=k(x﹣1),联立椭圆整理得:(3k2+1)x2﹣6k2x+3k2﹣3=0,由韦达定理可知:x1+x2=,x1•x2=,∴,=,=.∴,∴m,n的关系式为3n=2m.21.(12分)已知函数f(x)=lnx﹣kx+1.(1)求函数f(x)的单调区间;(2)若f(x)≤0恒成立,试确定实数k的取值范围;(3)证明:【解答】解:(1)函数f(x)的定义域为,当k≤0时,在(0,+∞)上是增函数,当k>0时,若时,有,若时,有,则f(x)在上是增函数,在上是减函数.(2)由(1)知k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1﹣k>0,f(x)≤0不成立,故k>0,又由(1)知f(x)的最大值为,要使f(x)≤0恒成立,则即可,即﹣lnk≤0,得k≥1.(3)由(2)知,当k=1时,有f(x)≤0在(0,+∞)恒成立,且f(x)在(1,+∞)上是减函数,f(1)=0,即lnx<x﹣1,在x∈[2,+∞)上恒成立,令x=n2,则lnn2<n2﹣1,即2lnn<(n﹣1)(n+1),从而得证.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.答题时用2B 铅笔在答题卡上把所选的题号涂黑.[选修4-4:坐标系与参数方程]22.(10分)已知曲线C1:x+y=和C2:(φ为参数),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C1、C2的方程化为极坐标方程(2)设C1与x轴、y轴交于M,N两点,且线段MN的中点为P.若射线OP与C1、C2交于P、Q两点,求P,Q两点间的距离.【解答】解:(1)线C1:x+y=和C2:(φ为参数),以原点O为极点,x轴的正半轴为极轴,建立极坐标系,因为x=ρcosθ,y=ρsinθ,所以C1:,即,所以;C2的普通方程为,所以其极坐标方程为,即.(2)由题意M(,0),N(0,1),所以P(),所以射线OP的极坐标方程为:,把代入C1得到ρ1=1,P(1,);把代入C2得到ρ2=2,Q(2,),所以|PQ|=|ρ2﹣ρ1|=1,即P,Q两点间的距离为1.[选修4-5:不等式选讲]23.设a,b,c>0,且ab+bc+ca=1,求证:(1)a+b+c≥;(2)++≥(++)【解答】证明:(1)运用分析法证明.要证a+b+c≥,即证(a+b+c)2≥3,由a,b,c均为正实数,且ab+bc+ca=1,即有a2+b2+c2+2(ab+bc+ca)≥3,即为a2+b2+c2≥1,①由a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,相加可得a2+b2+c2≥zb+bc+ca=1,则①成立.综上可得,原不等式成立.(2)∵++=,而由(1)a+b+c≥,∴≥(++),故只需≥++,即a+b+c≤1,即:a+b+c≤ab+bc+ac,而a=•≤,b≤,c≤,∴a+b+c≤ab+bc+ac=1成立,(当且仅当a=b=c=时).。

2019年上海市宝山区高考数学一模试卷和答案

2019年上海市宝山区高考数学一模试卷和答案

2019年上海市宝山区高考数学一模试卷一、填空题(本题满分54分)本大题共有12题,1-6每题4分,7-12每题5分,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得分,否则一律得零分。

1.(4分)函数f(x)=sin(﹣2x)的最小正周期为.2.(4分)集合U=R,集合A={x|x﹣3>0},B={x|x+1>0},则B∩∁U A=.3.(4分)若复数z满足(1+i)z=2i(i是虚数单位),则=.4.(4分)方程ln(9x+3x﹣1)=0的根为.5.(4分)从某校4个班级的学生中选出7名学生参加进博会志愿者服务,若每个班级至少有一名代表,则各班级的代表数有种不同的选法.(用数字作答)6.(4分)关于x,y的二元一次方程的增广矩阵为,则x+y=.7.(5分)如果无穷等比数列{a n}所有奇数项的和等于所有项和的3倍,则公比q=.8.(5分)函数y=f(x)与y=lnx的图象关于直线y=﹣x对称,则f(x)=.9.(5分)已知A(2,3),B(1,4),且=(sin x,cos y),x,y∈(﹣,),则x+y=.10.(5分)将函数y=﹣的图象绕着y轴旋转一周所得的几何容器的容积是.11.(5分)张老师整理旧资料时发现一题部分字迹模糊不清,只能看到:在△ABC中,a,b,c分别是角A,B,C的对边,已知b=2,∠A=45°,求边c,显然缺少条件,若他打算补充a的大小,并使得c只有一解,a的可能取值是(只需填写一个适合的答案)12.(5分)如果等差数列{a n},{b n}的公差都为d(d≠0),若满足对于任意n∈N*,都有b n ﹣a n=kd,其中k为常数,k∈N*,则称它们互为同宗”数列.已知等差数列{a n}中,首项a 1=1,公差d=2,数列{b n}为数列{a n}的“同宗”数列,若()=,则k=.二、选择题(本题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.13.(5分)若等式1+x+x2+x3=a0+a1(1﹣x)+a2(1﹣x)2+a3(1﹣x)3对一切x∈R都成立,其中a0,a1,a2,a3为实常数,则a0+a1+a2+a3=()A.2B.﹣1C.4D.114.(5分)“x∈[﹣,]是“sin(arcsin)=x”的()条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要15.(5分)关于函数f(x)=的下列判断,其中正确的是()A.函数的图象是轴对称图形B.函数的图象是中心对称图形C.函数有最大值D.当x>0时,y=f(x)是减函数16.(5分)设点M、N均在双曲线C:=1上运动,F1,F2是双曲线C的左、右焦点,||的最小值为()A.2B.4C.2D.以上都不对三、解答题(本题满分76分)本大题共有5题,解答下列名题必须在答题纸的规定区域(对应的题号)内写出必要的步骤。

2019年上海市长宁区高考数学一模试卷(含解析版)

2019年上海市长宁区高考数学一模试卷(含解析版)

2019年上海市长宁区高考数学一模试卷一、填空题(本大题共有12题,满分54分,第16题每题4分,第7-12题每题5分)考生应在答题纸相应位置直接填写结果1.(4分)已知集合A={1,2,3,4},B={1,3,5},则A∪B=2.(4分)已知=3,则x=.3.(4分)在(1+x)6的二项展开式中,x2项的系数为(结果用数值表示).4.(4分)已知向量=(m,3),=(2,﹣1),若向量,则实数m为.5.(4分)已知函数f(x)=x a的图象过点(2,),则f(x)的定义域为.6.(4分)若圆锥的侧面积为15π,底面面积为9π,则该圆锥的体积为.7.(5分)已知α∈(),且tanα=﹣2,则sin(π﹣α)=.8.(5分)已知函数f(x)=log a x和g(x)=k(x﹣2)的图象如图所示,则不等式≥0的解集是.9.(5分)如图,某学生社团在校园内测量远处某栋楼CD的高度,D为楼顶,线段AB的长度为600m,在A处测得∠DAB=30°,在B处测得∠DBA=105°,且此时看楼顶D 的仰角∠DBC=30°,已知楼底C和A、B在同一水平面上,则此楼高度CD=m (精确到1m)10.(5分)若甲、乙两位同学随机地从6门课程中各选修3门,则两人选修的课程中恰有1门相同的概率为.11.(5分)已知数列{a n}的前n项和为S n,且a n+a n+1=,若数列{S n}收敛于常数A,则首项a1的取值的集合为.12.(5分)已知a1,a2,a3与b1,b2,b3是6个不同的实数,若关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解集A是有限集,则集合A中,最多有个元素.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项考生应在答题纸的相应位置将代表正确选项的小方格涂黑.13.(5分)已知x∈R,则“x≥0”是“x>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.(5分)有一批种子共有98颗,对于一颗种子来说,它可能1天发芽,也可能2天发芽,……,如表是不同发芽天数的种子数的记录:发芽天数1234567种子数82622241242统计每颗种子种子发芽天数得到一组数据,则这组数据的中位数是()A.2B.3C.3.5D.415.(5分)已知向量和的夹角为,||=2,||=3,则(2﹣)(+2)=()A.﹣10B.﹣7C.﹣4D.﹣116.(5分)某位喜欢思考的同学在学习函数的性质时提出了如下两个命题:已知函数y=f(x)的定义域为D,x1,x2∈D.①若当f(x1)+f(x2)=0时,都有x1+x2=0,则函数y=f(x)是D上的奇函数.②若当f(x1)<f(x2)时,都有x1<x2,则函数y=f(x)是D上的奇函数.下列判断正确的是()A.①和②都是真命题B.①是真命题,②是假命题C.①和②都是假命题D.①是假命题,②是真命题三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)求下列不等式的解集:(1)|2x﹣3|<5;(2)4x﹣4×2x﹣12>0.18.(14分)《九章算术》中,将地面为长方形且有一条侧棱与地面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.首届中国国际进口博览会的某展馆棚顶一角的钢结构可以抽象为空间图形阳马,如图所示,在阳马P﹣ABCD中,PD⊥底面ABCD.(1)已知AD=CD=4m,斜梁PB与底面ABCD所成角为15°,求立柱PD的长(精确导0.01m).(2)求证:四面体PDBC为鳖臑.19.(14分)已知△ABC的三个内角A,B,C所对应的边分别为a,b,c,复数z1=a+bi,z2=cos A+i cos B(其中i是虚数单位),且z1•z2=3i.(1)求证:a cos B+b cos A=c,并求边长c的值;(2)判断△ABC的形状,并求当b=时,角A的大小.20.(16分)已知函数f(x)=﹣x2+mx+1,g(x)=2sin(ωx+).(1)若函数y=f(x)+2x为偶函数,求实数m的值;(2)若ω>0,g(x)≤g(),且g(x)在[0,]上是单调函数,求实数ω的值;(3)若ω=1,且当x1∈[1,2]时,总有x2∈[0,π],使得g(x2)=f(x1),求实数m的取值范围.21.(18分)已知数列{a n}的前n项和为S n,且a1=1,a2=a.(1)若数列{a n}是等差数列,且a8=15,求实数a的值;(2)若数列{a n}满足a n+2﹣a n=2(n∈N*),且S19=19a10,求证:数列{a n}是等差数列;(3)设数列{a n}是等比数列,试探究当正实数a满足什么条件时,数列{a n}具有如下性质M:对于任意的n≥2(n∈N*),都存在m∈N*使得(S m﹣a n)(S m﹣a n+1)<0,写出你的探求过程,并求出满足条件的正实数a的集合.2019年上海市长宁区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第16题每题4分,第7-12题每题5分)考生应在答题纸相应位置直接填写结果1.(4分)已知集合A={1,2,3,4},B={1,3,5},则A∪B={1,2,3,4,5}【考点】1D:并集及其运算.【专题】11:计算题;37:集合思想;49:综合法;5J:集合.【分析】进行并集的运算即可.【解答】解:A∪B={1,2,3,4,5}.故答案为:{1,2,3,4,5}.【点评】考查列举法的定义,以及并集的定义及运算.2.(4分)已知=3,则x=1.【考点】OM:二阶行列式的定义.【专题】11:计算题;34:方程思想;4O:定义法;5R:矩阵和变换.【分析】利用二阶行列式展开式直接求解.【解答】解:∵=3,∴2x+1=3,解得x=1.故答案为:1.【点评】本题考查二阶行列式的求法,考查行列式展开法则等基础知识,考查运算求解能力,是基础题.3.(4分)在(1+x)6的二项展开式中,x2项的系数为15(结果用数值表示).【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】通过二项展开式的通项公式求出展开式的通项,利用x的指数为2,求出展开式中x2的系数.【解答】解:展开式的通项为T r+1=C6r x r.令r=2得到展开式中x2的系数是C62=15.故答案为:15.【点评】本题是基础题,考查利用二项展开式的通项公式解决二项展开式的特定项问题.考查计算能力.4.(4分)已知向量=(m,3),=(2,﹣1),若向量,则实数m为﹣6.【考点】96:平行向量(共线).【专题】11:计算题;35:转化思想;41:向量法;5A:平面向量及应用.【分析】根据即可得出﹣m﹣6=0,解出m即可.【解答】解:∵;∴﹣m﹣6=0;∴m=﹣6.故答案为:﹣6.【点评】考查向量坐标的概念,平行向量的坐标关系.5.(4分)已知函数f(x)=x a的图象过点(2,),则f(x)的定义域为(0,+∞).【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】33:函数思想;4R:转化法;51:函数的性质及应用.【分析】求出幂函数的解析式,然后求解函数的定义域即可.【解答】解:设幂函数为y=xα,∵幂函数y=f(x)的图象经过点(2,),∴=2α,解得α=﹣,故f(x)=,故函数的定义域是(0,+∞),故答案为:(0,+∞).【点评】本题考查幂函数的解析式的求法,基本知识的考查.6.(4分)若圆锥的侧面积为15π,底面面积为9π,则该圆锥的体积为12π.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.【分析】求出圆锥的底面周长,然后利用侧面积求出圆锥的母线,求出圆锥的高,即可求出圆锥的体积.【解答】解:根据题意,圆锥的底面面积为9π,则其底面半径是3,底面周长为6π,圆锥的侧面积为15π,又×6πl=15π,∴圆锥的母线为5,则圆锥的高=4,所以圆锥的体积×4×9π=12π.故答案为:12π.【点评】本题是基础题,考查圆锥的有关计算,圆锥的侧面积,体积的求法,考查计算能力.7.(5分)已知α∈(),且tanα=﹣2,则sin(π﹣α)=.【考点】GG:同角三角函数间的基本关系.【专题】11:计算题;38:对应思想;4O:定义法;56:三角函数的求值.【分析】由题意可得sinα>0,再结合tan a==﹣2,sin2a+cos2a=1,求得sin a 的值【解答】解:α∈(),且tanα=﹣2,∴sinα=﹣2cosα,∵sin2α+cos2α=1,∴sin2α=1,∴sinα=,∴sin(π﹣α)=sinα=,故答案为:.【点评】本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.8.(5分)已知函数f(x)=log a x和g(x)=k(x﹣2)的图象如图所示,则不等式≥0的解集是[1,2).【考点】3A:函数的图象与图象的变换.【专题】32:分类讨论;44:数形结合法;51:函数的性质及应用.【分析】根据f(x)=log a x和g(x)=k(x﹣2)图象可得f(x)和g(x)的正负,即可求解不等式≥0的解集.【解答】解:由图象f(x)=log a x可得x∈(0,1)时,f(x)<0,x∈(1,+∞)时,f(x)>0,当x=1时f(x)=0由图象g(x)=k(x﹣2)可得x∈(﹣∞,2)时,g(x)>0,x∈(2,+∞)时,g(x)<0,不等式≥0,即或;∴x∈[1,2)∴不等式≥0的解集为[1,2)故答案为:[1,2)【点评】本题考查了函数图象求解x范围解决不等式的问题,是基础题.9.(5分)如图,某学生社团在校园内测量远处某栋楼CD的高度,D为楼顶,线段AB的长度为600m,在A处测得∠DAB=30°,在B处测得∠DBA=105°,且此时看楼顶D 的仰角∠DBC=30°,已知楼底C和A、B在同一水平面上,则此楼高度CD=212m (精确到1m)【考点】HU:解三角形.【专题】31:数形结合;4O:定义法;58:解三角形.【分析】根据题意,利用正弦定理求得BD的长,再由直角三角形的边角关系求出CD的值.【解答】解:△ABD中,AB=600,∠DAB=30°,∠DBA=105°,∴∠ADB=45°,由正弦定理得=,解得BD==300;在Rt△BCD中,∠DBC=30°,∴CD=BD=150≈212,即楼高CD约212米.故答案为:212.【点评】本题考查了解三角形的应用问题,是基础题.10.(5分)若甲、乙两位同学随机地从6门课程中各选修3门,则两人选修的课程中恰有1门相同的概率为.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题;34:方程思想;4O:定义法;5I:概率与统计.【分析】甲、乙两位同学随机地从6门课程中各选修3门,基本事件总数n==400,两人选修的课程中恰有1门相同包含的基本事件个数m==180,由此能求出两人选修的课程中恰有1门相同的概率.【解答】解:甲、乙两位同学随机地从6门课程中各选修3门,基本事件总数n==400,两人选修的课程中恰有1门相同包含的基本事件个数m==180,∴两人选修的课程中恰有1门相同的概率p===.故答案为:.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.11.(5分)已知数列{a n}的前n项和为S n,且a n+a n+1=,若数列{S n}收敛于常数A,则首项a1的取值的集合为{}.【考点】8H:数列递推式.【专题】32:分类讨论;49:综合法;54:等差数列与等比数列.【分析】对n分类讨论,利用等比数列的求和公式、极限的运算性质即可得出.【解答】解:n=2k(k∈N*)为偶数时,a1+a2=,a3+a4=,……,a2k﹣1+a2k=,S n==→.(k→+∞).n=2k﹣1(k∈N*)为奇数时,a2+a3=,a4+a5=,……,a2k﹣2+a2k﹣1=,S n =a1+=a1+→a1+.∵数列{S n}收敛于常数A,∴a1+=.解得a1=.故答案为:{}.【点评】本题考查了分类讨论、等比数列的求和公式、极限的运算性质,考查了推理能力与计算能力,属于中档题.12.(5分)已知a1,a2,a3与b1,b2,b3是6个不同的实数,若关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解集A是有限集,则集合A中,最多有1个元素.【考点】1A:集合中元素个数的最值.【专题】15:综合题;29:规律型;31:数形结合;35:转化思想;44:数形结合法.【分析】由题意,可将关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解的个数问题转化为f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|两个函数图象交点个数问题,将两个函数变为分段函数,由于两个函数都是折线,分别讨论折线端点处的函数值,作出符合题意的图象,即可得出图象交点个数,从而得出方程解的个数【解答】解:令f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|,将关于x的方程|x﹣a1|+|x﹣a2|+|x﹣a3|=|x﹣b1|+|x﹣b2|+|x﹣b3|解的个数的问题转化为两个函数图象交点个数的问题不妨令a1<a2<a3<,b1<b2<b3,由于f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|=,g(x)=|=|x﹣b1|+|x﹣b2|+|x﹣b3|=,考查两个函数,可以看到每个函数都是由两条射线与两段拆线所组成的,且两条射线的斜率对应相等,两条线段的斜率对应相等.当a1,a2,a3的和与b1,b2,b3的和相等时,此时两个函数射线部分完全重合,这与题设中方程的解集是有限集矛盾不妨令a1,a2,a3的和小于b1,b2,b3的和即a1+a2+a3<b1+b2+b3,﹣a1﹣a2﹣a3>﹣b1﹣b2﹣b3,两个函数图象射线部分端点上下位置不同,即若左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在上,右边射线端点一定在下,反之亦有可能.不妨认为左边f(x)=|x﹣a1|+|x﹣a2|+|x﹣a3|的射线端点在上,右边射线端点一定在下,且射线互相平行,中间线段也对应平行,图象只能如图:故两函数图象只能有一个交点,即方程的解集是有限集时,最多有一个元素,故答案为:1.【点评】本题考查函数的综合运用,属于函数中较难理解的题,用到数形结合的思想,转化化归的思想,属于能开拓思维训练能力的好题,也是易错题二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项考生应在答题纸的相应位置将代表正确选项的小方格涂黑.13.(5分)已知x∈R,则“x≥0”是“x>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】35:转化思想;4O:定义法;5L:简易逻辑.【分析】根据充分条件和必要条件的定义分别进行判断即可.【解答】解:∵x≥0推不出x>1,x>1⇒x≥0,∴“x≥0”是“x>1”的必要非充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.14.(5分)有一批种子共有98颗,对于一颗种子来说,它可能1天发芽,也可能2天发芽,……,如表是不同发芽天数的种子数的记录:发芽天数1234567种子数82622241242统计每颗种子种子发芽天数得到一组数据,则这组数据的中位数是()A.2B.3C.3.5D.4【考点】BB:众数、中位数、平均数.【专题】11:计算题;5I:概率与统计.【分析】根据中位数的概念可求得.【解答】解:将这98颗种子发芽天数从左到右按照从小到大的顺序排成一列,可知正中间两颗种子的发芽天数都是3,所以中位数为=3,故选:B.【点评】本题考查了中位数的概念.属基础题.15.(5分)已知向量和的夹角为,||=2,||=3,则(2﹣)(+2)=()A.﹣10B.﹣7C.﹣4D.﹣1【考点】9O:平面向量数量积的性质及其运算.【专题】11:计算题;5A:平面向量及应用.【分析】首先把原式展开,再利用数量积求值.【解答】解:(2﹣)•()=2﹣2=8﹣18+3×2×3cos=﹣1,故选:D.【点评】此题考查了数量积计算问题,属容易题.16.(5分)某位喜欢思考的同学在学习函数的性质时提出了如下两个命题:已知函数y=f(x)的定义域为D,x1,x2∈D.①若当f(x1)+f(x2)=0时,都有x1+x2=0,则函数y=f(x)是D上的奇函数.②若当f(x1)<f(x2)时,都有x1<x2,则函数y=f(x)是D上的奇函数.下列判断正确的是()A.①和②都是真命题B.①是真命题,②是假命题C.①和②都是假命题D.①是假命题,②是真命题【考点】2K:命题的真假判断与应用.【专题】33:函数思想;4O:定义法;51:函数的性质及应用.【分析】由奇函数的定义,注意定义域关于原点对称,其次可考虑f(﹣x)=﹣f(x),即可判断①②.【解答】解:函数y=f(x)的定义域为D,x1,x2∈D.①若当f(x1)+f(x2)=0时,都有x1+x2=0,可得D关于原点对称,由奇函数的定义可得函数y=f(x)是D上的奇函数,故①正确;②若当f(x1)<f(x2)时,都有x1<x2,则函数y=f(x)是D上的增函数,奇偶性不确定,故②错误.故选:B.【点评】本题考查函数的奇偶性的定义和应用,考查理解能力,属于基础题.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)求下列不等式的解集:(1)|2x﹣3|<5;(2)4x﹣4×2x﹣12>0.【考点】R5:绝对值不等式的解法.【专题】11:计算题;5T:不等式.【分析】(1)根据|f(x)|<a(a>0)⇔﹣a<f(x)<a解得;(2)把2x看成整体,先解一元二次不等式,再解指数不等式可得.【解答】解:(1)|2x﹣3|<5⇔﹣5<2x﹣3<5⇔﹣1<x<4,所以不等式的解集为{x|﹣1<x<4};(2)原不等式可化为:(2x﹣6)(2x+2)>0,∴2x>6,∴x>log26,所以原不等式的解集为{x|x>log26}.【点评】本题考查了绝对值不等式的解法.属中档题.18.(14分)《九章算术》中,将地面为长方形且有一条侧棱与地面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.首届中国国际进口博览会的某展馆棚顶一角的钢结构可以抽象为空间图形阳马,如图所示,在阳马P﹣ABCD中,PD⊥底面ABCD.(1)已知AD=CD=4m,斜梁PB与底面ABCD所成角为15°,求立柱PD的长(精确导0.01m).(2)求证:四面体PDBC为鳖臑.【考点】LW:直线与平面垂直;MI:直线与平面所成的角.【专题】14:证明题;23:新定义;31:数形结合;49:综合法.【分析】(1)推导出侧棱PB在底面ABCD上的射影是DB,从而∠PDB是侧棱PB与底面ABCD所成角,∠PBD=15°,由此能求出立柱PD的长.(2)底面ABCD是长方形,从而△BCD是直角三角形,推导出PD⊥DC,PD⊥DB,PD ⊥BC,从而△PDC,△PDB是直角三角形,由BC⊥平面PDC,得△PBC是直角三角形,由此能证明四面体PDBC为鳖臑.【解答】解:(1)∵侧棱PD⊥底面ABCD,∴侧棱PB在底面ABCD上的射影是DB,∴∠PDB是侧棱PB与底面ABCD所成角,∴∠PBD=15°,在△PBD中,∠PDB=90°,DB==4(m),由tan∠PDB=,得tan15°=,解得PD≈1.52(m),∴立柱PD的长约1.52m.(2)由题意知底面ABCD是长方形,∴△BCD是直角三角形,∵侧棱PD⊥底面ABCD,∴PD⊥DC,PD⊥DB,PD⊥BC,∴△PDC,△PDB是直角三角形,∵BC⊥DC,BC⊥PD,PD∩DC=D,∴BC⊥平面PDC,∵PC⊂平面PDC,∴BC⊥PC,∴△PBC是直角三角形,∴四面体PDBC为鳖臑.【点评】本题考查立柱长的求法,考查四面体为鳖臑的证明,考查线面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,是中档题.19.(14分)已知△ABC的三个内角A,B,C所对应的边分别为a,b,c,复数z1=a+bi,z2=cos A+i cos B(其中i是虚数单位),且z1•z2=3i.(1)求证:a cos B+b cos A=c,并求边长c的值;(2)判断△ABC的形状,并求当b=时,角A的大小.【考点】A5:复数的运算.【专题】11:计算题;14:证明题;5N:数系的扩充和复数.【分析】(1)利用余弦定理和复数实部虚部对应,不难证明;(2)利用第一步的实部为0,结合正弦定理,可得等腰,进而求得A.【解答】解:(1)证明:a cos B+b cos A===c,z1•z2=a cos A﹣b cos B+(a cos B+b cos A)i=3i,∴a cos A﹣b cos B=0,…(*)a cos B+b cos A=3,∴c=3;(2)由(*)式得,a cos A=b cos B,…①由正弦定理得,,…②得,sin2A=sin2B,得,A=B,或A+B=∴△ABC为等腰三角形或直角三角形,若为等腰三角形,当b=时,cos A=,A=.若为直角三角形,当b=时,cos A=,A=arccos.【点评】本题考查了复数代数形式的乘法运算,余弦定理,正弦定理等,难度适中.20.(16分)已知函数f(x)=﹣x2+mx+1,g(x)=2sin(ωx+).(1)若函数y=f(x)+2x为偶函数,求实数m的值;(2)若ω>0,g(x)≤g(),且g(x)在[0,]上是单调函数,求实数ω的值;(3)若ω=1,且当x1∈[1,2]时,总有x2∈[0,π],使得g(x2)=f(x1),求实数m的取值范围.【考点】H6:正弦函数的奇偶性和对称性.【专题】11:计算题;32:分类讨论;4R:转化法;51:函数的性质及应用.【分析】(1)根据偶函数图象关于y轴对称,二次函数的一次项系数为0,可得m的值;(2)根据g(x)≤g(),可知x=时,g(x)取得最大值,且g(x)在[0,]上是单调函数,即,即可求解实数ω的值.(3)求解f(x)的值域M和g(x)的值域N,可得M⊆N,即可求解实数m的取值范围.【解答】解:(1)∵函数y=f(x)+2x=﹣x2+(m+2)x+1,为偶函数,可得m+2=0,可得m=﹣2即实数m的值为﹣2;(2)由g(x)≤g(),可知x=时,g(x)取得最大值,即+=+2kπ,k∈Z可得:ω=且g(x)在[0,]上是单调函数,∴,即T≥π可得:ω≤2.当k=0时,可得ω=,故得实数ω的值为.(3)由ω=1,可得g(x)=2sin(x+).∵x∈[0,π],∴x+∈[,],那么g(x)的值域N=[﹣1,2].当x1∈[1,2]时,总有x2∈[0,π],使得g(x2)=f(x1)转化为函数f(x)的值域是g(x)的值域的子集;即:当x∈[1,2]时,﹣1≤f(x)≤2函数f(x)=﹣x2+mx+1,其对称轴x=,开口向下,当≤1时,即m≤2,可得f(x)min=f(2)=2m﹣3;f(x)max=f(﹣1)=﹣m;可得解:1≤m≤2当1<≤2时,即2<m≤4可得f(x)max=f()=;f(x)min=2m﹣3或﹣m;此时无解.当>2时,即m>4,可得f(x)min=f(﹣1)=﹣m;f(x)max=f(2)=2m﹣3;此时无解.综上可得实数m的取值范围为[1,2].【点评】本题主要考查三角函数的化简,图象即性质的应用,二次函数的最值问题;21.(18分)已知数列{a n}的前n项和为S n,且a1=1,a2=a.(1)若数列{a n}是等差数列,且a8=15,求实数a的值;(2)若数列{a n}满足a n+2﹣a n=2(n∈N*),且S19=19a10,求证:数列{a n}是等差数列;(3)设数列{a n}是等比数列,试探究当正实数a满足什么条件时,数列{a n}具有如下性质M:对于任意的n≥2(n∈N*),都存在m∈N*使得(S m﹣a n)(S m﹣a n+1)<0,写出你的探求过程,并求出满足条件的正实数a的集合.【考点】8H:数列递推式.【专题】33:函数思想;49:综合法;54:等差数列与等比数列.【分析】(1)设等差数列{a n}的公差为d,由已知结合等差数列的通项公式即可求得a的值;(2)由S19=19a10,得a值,由a n+2﹣a n=2,且a1=1,a2=2,得数列{a n}的通项公式,即可证明数列{a n}是等差数列;(3)由题意,,然后对a分类分析,可得当0<a<1,当a=1,当1<a<2时,数列{a n}不具有性质M;当a≥2时,对任意n≥2(n∈N*),都有(S m﹣a n)(S m﹣a n+1)<0,即当a≥2时,数列{a n}具有性质M,由此可得,使得数列{a n}具有性质M的正实数a的集合为[2,+∞).【解答】(1)解:设等差数列{a n}的公差为d,由a1=1,a8=15,得1+7d=15,解得d=2,则a2=a1+d=1+2=3,∴a=3;(2)证明:由S19=19a10,得,解得a=2,由a n+2﹣a n=2,且a1=1,a2=2,得当n为奇数时,;当n为偶数时,.∴对任意n∈N*,都有a n=n,当n≥2时,a n﹣a n﹣1=1,即数列{a n}是等差数列;(3)解:由题意,,①当0<a<1时,a3<a2<a1≤S m,∴对任意m∈N*,都有(S m﹣a2)(S m﹣a3)>0,因此数列{a n}不具有性质M.②当a=1时,a n=1,S n=n,∴对任意m∈N*,都有(S m﹣a2)(S m﹣a3)=(m﹣1)2≥0,因此数列{a n}不具有性质M.③当1<a<2时,(a﹣1)2>0⇔a(2﹣a)<1⇔>a⇔>1.n≥⇔⇔S n≥a n+1,n<⇔<a n⇔S n<a n+1.取[]=n0([x]表示不小于x的最小整数),则,<.∴对于任意m∈N*,.即对于任意m∈N*,S m都不在区间()内,∴数列{a n}不具有性质M.④当a≥2时,<0,且S n>a n,即对任意n≥2(n∈N*),都有(S m﹣a n)(S m﹣a n+1)<0,∴当a≥2时,数列{a n}具有性质M.综上,使得数列{a n}具有性质M的正实数a的集合为[2,+∞).【点评】本题考查数列递推式,考查等差关系的确定,考查逻辑思维能力与推理论证能力,体现了分类讨论的数学思想方法,属于难题.。

2019年高考文科数学全国1卷(附答案)

2019年高考文科数学全国1卷(附答案)
1 1 2A 1
10 .双曲线
2
C: x
2
2
y
的一条渐近线的倾斜角为
2 1( 0, 0)
ab
专业资料
14.记 Sn 为等比数列 { an} 的前 n 项和 .若 a 1 1, S3
3 ,则 S4=___________ .
4

f (x) sin(2 x
) 3cos x 的最小值为 ___________ .

长度之比也是
5

1



2

上述两个黄金分割比 例,且腿长为 105cm ,头顶至脖子下
端的长度为 26 cm , 则其身高可能是
A. 165 cm B. 175 cm
C. 185 cm D. 190cm
在 [ — π, π的] 图像大致为
sin x x
函数 f(x)=
2
cos x x
专业资料
班-
12B-SX-0000022
_-
_______ :
-
绝密 ★ 启用前
2019 年普通高等学校招生全国统一考试
文科数学 全国 I 卷
本试卷共 23 小题,满分 150 分,考试用时 120 分钟
号学
(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福 建
)
_ - 注意事项:
___________________ :
12B-SX-0000022
附: 2
K (a
2
P( K ≥k)
2
n( ad bc)

b)(c d )(a c)(b d)
0.050
0.010

大庆市2019届高三第一次模拟考试数学(理科)含答案解析

大庆市2019届高三第一次模拟考试数学(理科)含答案解析
A. B. C. D.
【分析】利用两角和的正弦公式化简f(x),然后由f(x0)=0求得[0, ]内的x0的值.
【解答】解:∵曲线f(x)=sin(wx)+ cos(wx)=2sin(wx+ )的两条相邻的对称轴之间的距离为 ,
∴ =π,
∴w=2
∴f(x)=2sin(2x+ ).
∵f(x)的图象关于点(x0,0)成中心对称,
【解答】解:函数f(x)=x3﹣x2﹣x+a的导数为f′(x)=3x2﹣2x﹣1,
当x>1或x<﹣ 时,f′(x)>0,f(x)递增;
当﹣ <x<1时,f′(x)<0,f(x)递减.
即有f(1)为极小值,f(﹣ )为极大值.
∵f(x)在(﹣∞,﹣ )上单调递增,
∴当x→﹣∞时,f(x)→﹣∞;
又f(x)在(1,+∞)单调递增,当x→+∞时,f(x)→+∞,
构造函数g(x)=x3+2x﹣ ,则问题转化为g(x)在x∈[﹣1,1]上的零点个数,
求导数可得g′(x)=3x2+2>0,故函数g(x)在x∈[﹣1,1]上单调递增,
由g(﹣1)g(1)<0,故函数g(x)在x∈[﹣1,1]上有唯一一个零点.
故选:A.
【点评】本题考查定积分的运算,涉及转化和数形结合的思想,属中档题.
因为直线l⊥平面α且α⊥β可得直线l平行与平面β或在平面β内,又由直线m⊂平面β,所以l与m,可以平行,相交,异面;故②为假命题;
因为直线l⊥平面α且l∥m可得直线m⊥平面α,又由直线m⊂平面β可得α⊥β;即③为真命题;
由直线l⊥平面α以及l⊥m可得直线m平行与平面α或在平面α内,又由直线m⊂平面β得α与β可以平行也可以相交,即④为假命题.

2019年广东省高考一模数学试卷含参考答案(理科)

2019年广东省高考一模数学试卷含参考答案(理科)

2019年广东省高考一模数学试卷(理科)一、选择题:本大题共12小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.(5分)已知集合A={x|x﹣1<2}, B={y|y=2x, x∈A}, 则A∩B=()A.(﹣∞, 8)B.(﹣∞, 3)C.(0, 8)D.(0, 3)2.(5分)复数z=﹣i(i为虚数单位)的虚部为()A.B.C.D.3.(5分)双曲线9x2﹣16y2=1的焦点坐标为()A.(±, 0)B.(0, )C.(±5, 0)D.(0, ±5)4.(5分)记S n为等差数列{a n}的前n项和, 若a2+a8=34, S4=38, 则a1=()A.4B.5C.6D.75.(5分)已知函数f(x)在(﹣∞, +∞)上单调递减, 且当x∈[﹣2, 1]时, f(x)=x2﹣2x﹣4, 则关于x的不等式f(x)<﹣1的解集为()A.(﹣∞, ﹣1)B.(﹣∞, 3)C.(﹣1, 3)D.(﹣1, +∞)6.(5分)某几何体的三视图如图所示, 则该几何体的体积为()A.3πB.4πC.6πD.8π7.(5分)执行如图的程序框图, 依次输入x1=17, x2=19, x3=20, x4=21, x5=23, 则输出的S值及其统计意义分别是()A.S=4, 即5个数据的方差为4B.S=4, 即5个数据的标准差为4C.S=20, 即5个数据的方差为20D.S=20, 即5个数据的标准差为208.(5分)已知A, B, C三点不共线, 且点O满足16﹣12﹣3=, 则()A.=12+3B.=12﹣3C.=﹣12+3D.=﹣12﹣39.(5分)设数列{a n}的前n项和为S n, 且a1=2, a n+a n+1=2n(n∈N*), 则S13=()A.B.C.D.10.(5分)古希腊数学家欧多克索斯在深入研究比例理论时, 提出了分线段的“中末比”问题:将一线段AB分为两线段AC, CB, 使得其中较长的一段AC是全长AB与另一段CB的比例中项, 即满足==≈0.618.后人把这个数称为黄金分割数, 把点C称为线段AB的黄金分割点在△ABC中, 若点P, Q为线段BC的两个黄金分割点, 在△ABC内任取一点M, 则点M落在△APQ内的概率为()A.B.﹣2C.D.11.(5分)已知函数f(x)=sin(ωx+)+(ω>0), 点P, Q, R是直线y=m(m>0)与函数f(x)的图象自左至右的某三个相邻交点, 且2|PQ|=|QR|=, 则ω+m =()A.B.2C.3D.12.(5分)已知函数若f(x)=(kx+)e x﹣3x, 若f(x)<0的解集中恰有两个正整数, 则k的取值范围为()A.(, ]B.[, )C.(, ]D.[, )二、填空题:本大题共4小题, 每小题5分, 共20分.把答案填在答题卡中的横线上.13.(5分)(2x+y)6的展开式中, x2y4的系数为.14.(5分)设x, y满足约束条件, 则z=2x+y的最大值为.15.(5分)在三棱锥P﹣ABC中, AP, AB, AC两两垂直, 且AP=AB=AC=.若点D, E分别在棱PB, PC上运动(都不含端点), 则AD+DE+EA的最小值为.16.(5分)已知F为抛物线C:x2=2py(p>0)的焦点, 曲线C1是以F为圆心, 为半径的圆, 直线2x﹣6y+3p=0与曲线C, C1从左至右依次相交于P, Q, R, S, 则=三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题, 每道试题考生都必须作答.第22、23题为选考题, 考生根据要求作答.(一)必考题:共60分.17.(12分)△ABC的内角A, B, C的对边分别为a, b, c, 已知c cos A+c sin A=b+a.(1)求C;(2)若D在边BC上, 且BD=3DC, cos B=, S△ABC=10, 求AD.18.(12分)已知五面体ABCDEF中, 四边形CDEF为矩形, AB∥CD, CD=2DE=2AD =2AB=4, AC=2, 且二面角F﹣AB﹣C的大小为30°.(1)证明:AB⊥平面ADE;(2)求二面角E﹣BC﹣F的余弦值.19.(12分)已知点(1, ), ()都在椭圆C:=1(a>b>0)上.(1)求椭圆C的方程;(2)过点M(0, 1)的直线l与椭圆C交于不同两点P, Q(异于顶点), 记椭圆与y 轴的两个交点分别为A1, A2, 若直线A1P与A2Q交于点S, 证明:点S恒在直线y=4上.20.(12分)随着小汽车的普及, “驾驶证”已经成为现代入“必考”的证件之一.若某人报名参加了驾驶证考试, 要顺利地拿到驾驶证, 他需要通过四个科目的考试, 其中科目二为场地考试.在一次报名中, 每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试, 就算顺利通过, 即进入下一科目考试;若5次都没有通过, 则需重新报名), 其中前2次参加科目二考试免费, 若前2次都没有通过, 则以后每次参加科目二考试都需交200元的补考费, 某驾校对以往2000个学员第1次参加科目二考试的通过情况进行了统计, 得到如表:考试情况男学员女学员第1次考科目二人数1200800第1次通过科目二人数960600第1次未通过科目二人数240200若以如表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率, 且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试, 在本次报名中, 若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;(2)若这对夫妻前2次参加科目二考试均没有通过, 记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为X元, 求X的分布列与数学期望.21.(12分)已知函数f(x)=(x﹣a)e x(a∈R).(1)讨论f(x)的单调性;(2)当a=2时, F(x)=f(x)﹣x+lnx, 记函数y=F(x)在(, 1)上的最大值为m, 证明:﹣4<m<﹣3.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做, 则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.(10分)在平面直角坐标系xOy中, 曲线C1的参数方程为, (θ为参数)已知点Q(4, 0), 点P是曲线∁l上任意一点, 点M为PQ的中点, 以坐标原点为极点, x轴正半轴为极轴建立极坐标系.(1)求点M的轨迹C2的极坐标方程;(2)已知直线l:y=kx与曲线C2交于A, B两点, 若=3, 求k的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+2|x﹣1|(a>0).(1)求f(x)的最小值;(2)若不等式f(x)﹣5<0的解集为(m, n), 且n﹣m=, 求a的值.2019年广东省高考一模数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题, 每小题5分, 共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.(5分)已知集合A={x|x﹣1<2}, B={y|y=2x, x∈A}, 则A∩B=()A.(﹣∞, 8)B.(﹣∞, 3)C.(0, 8)D.(0, 3)【解答】解:∵集合A={x|x﹣1<2}={x|x<3},B={y|y=2x, x∈A}=[y|0<y<8},∴A∩B={x|0<x<3}=(0, 3).故选:D.2.(5分)复数z=﹣i(i为虚数单位)的虚部为()A.B.C.D.【解答】解:复数z=﹣i=﹣i=﹣i=﹣﹣i,则z的虚部为﹣.故选:A.3.(5分)双曲线9x2﹣16y2=1的焦点坐标为()A.(±, 0)B.(0, )C.(±5, 0)D.(0, ±5)【解答】解:双曲线9x2﹣16y2=1的标准方程为:,可得a=, b=, c==,所以双曲线的焦点坐标为(±, 0).故选:A.4.(5分)记S n为等差数列{a n}的前n项和, 若a2+a8=34, S4=38, 则a1=()A.4B.5C.6D.7【解答】解:设等差数列{a n}的公差为d, ∵a2+a8=34, S4=38,∴2a1+8d=34, 4a1+6d=38,联立解得:a1=5, d=3,故选:B.5.(5分)已知函数f(x)在(﹣∞, +∞)上单调递减, 且当x∈[﹣2, 1]时, f(x)=x2﹣2x﹣4, 则关于x的不等式f(x)<﹣1的解集为()A.(﹣∞, ﹣1)B.(﹣∞, 3)C.(﹣1, 3)D.(﹣1, +∞)【解答】解:∵x∈[﹣2, 1]时, f(x)=x2﹣2x﹣4;∴f(﹣1)=﹣1;∵f(x)在(﹣∞, +∞)上单调递减;∴由f(x)<﹣1得, f(x)<f(﹣1);∴x>﹣1;∴不等式f(x)<﹣1的解集为(﹣1, +∞).故选:D.6.(5分)某几何体的三视图如图所示, 则该几何体的体积为()A.3πB.4πC.6πD.8π【解答】解:由三视图知, 几何体是一个简单组合体, 左侧是一个半圆柱, 底面的半径是1, 高为:4,右侧是一个半圆柱, 底面半径为1, 高是2,∴组合体的体积是:=3π,故选:A.7.(5分)执行如图的程序框图, 依次输入x1=17, x2=19, x3=20, x4=21, x5=23, 则输出的S值及其统计意义分别是()A.S=4, 即5个数据的方差为4B.S=4, 即5个数据的标准差为4C.S=20, 即5个数据的方差为20D.S=20, 即5个数据的标准差为20【解答】解:根据程序框图, 输出的S是x1=17, x2=19, x3=20, x4=21, x5=23这5个数据的方差,∵=(17+19+20+21+23)=20,∴由方差的公式S=[(17﹣20)2+(19﹣20)2+(20﹣20)2+(21﹣20)2+(23﹣20)2]=4.故选:A.8.(5分)已知A, B, C三点不共线, 且点O满足16﹣12﹣3=, 则()A.=12+3B.=12﹣3C.=﹣12+3D.=﹣12﹣3【解答】解:由题意, 可知:对于A:==,整理上式, 可得:16﹣12﹣3=,这与题干中条件相符合,故选:A.9.(5分)设数列{a n}的前n项和为S n, 且a1=2, a n+a n+1=2n(n∈N*), 则S13=()A.B.C.D.【解答】解:由题意, ∵a1=2,n=2时, a2+a3=22,n=4时, a4+a5=24,n=6时, a6+a7=26,n=8时, a8+a9=28,n=10时, a10+a11=210,n=12时, a12+a13=212,S13=2+22+24+26+28+210+212=2+=.故选:D.10.(5分)古希腊数学家欧多克索斯在深入研究比例理论时, 提出了分线段的“中末比”问题:将一线段AB分为两线段AC, CB, 使得其中较长的一段AC是全长AB与另一段CB的比例中项, 即满足==≈0.618.后人把这个数称为黄金分割数, 把点C称为线段AB的黄金分割点在△ABC中, 若点P, Q为线段BC的两个黄金分割点, 在△ABC内任取一点M, 则点M落在△APQ内的概率为()A.B.﹣2C.D.【解答】解:设BC=a,由点P, Q为线段BC的两个黄金分割点,所以BQ=, CP=,所以PQ=BQ+CP﹣BC=()a,S△APQ:S△ABC=PQ:BC=(﹣2)a:a=﹣2,由几何概型中的面积型可得:在△ABC内任取一点M, 则点M落在△APQ内的概率为=,故选:B.11.(5分)已知函数f(x)=sin(ωx+)+(ω>0), 点P, Q, R是直线y=m(m >0)与函数f(x)的图象自左至右的某三个相邻交点, 且2|PQ|=|QR|=, 则ω+m =()A.B.2C.3D.【解答】解:∵2|PQ|=|QR|=,∴|PQ|=, |QR|=,则T=||PQ+|QR|=+=π,即=π, 即ω=2,即f(x)=sin(2x+)+,∵|PQ|=,∴x2﹣x1=,2x1++2x2+=π,得x1=0, 此时m=sin(2x1+)+=sin+==1.即ω+m=1+2=3,故选:A.12.(5分)已知函数若f(x)=(kx+)e x﹣3x, 若f(x)<0的解集中恰有两个正整数, 则k的取值范围为()A.(, ]B.[, )C.(, ]D.[, )【解答】解:由f(x)<0得f(x)=(kx+)e x﹣3x<0,即(kx+)e x<3x,即(kx+)<的解集中恰有两个正整数,设h(x)=, 则h′(x)==,由h′(x)>0得3﹣3x>0得x<1, 由h′(x)<0得3﹣3x<0得x>1,即当x=1时函数h(x)取得极大值h(1)=,设函数g(x)=kx+,作出函数h(x)的图象如图,由图象知当k≤0, (kx+)<的解集中有很多整数解, 不满足条件.则当k>0时, 要使, (kx+)<的解集中有两个整数解,则这两个整数解为x=1和x=2,∵h(2)=, h(3)=, ∴A(2, )B(3, ),当直线g(x)过A(2, )B(3, )时, 对应的斜率满足2k A+=, 3k B+=, 得k A=, k B=,要使, (kx+)<的解集中有两个整数解,则k B<k≤k A, 即<k≤,即实数k的取值范围是(, ],故选:A.二、填空题:本大题共4小题, 每小题5分, 共20分.把答案填在答题卡中的横线上.13.(5分)(2x+y)6的展开式中, x2y4的系数为60.【解答】解:(2x+y)6的展开式中, 故含x2y4的项为•(2x)2•y4=60x2y4,故答案为:60.14.(5分)设x, y满足约束条件, 则z=2x+y的最大值为7.【解答】解:画出x, y满足约束条件表示的平面区域,如图所示,由, 解得点A(3, 1),结合图形知, 直线2x+y﹣z=0过点A时,z=2x+y取得最大值为2×3+1=7.故答案为:7.15.(5分)在三棱锥P﹣ABC中, AP, AB, AC两两垂直, 且AP=AB=AC=.若点D, E分别在棱PB, PC上运动(都不含端点), 则AD+DE+EA的最小值为.【解答】解:如图,由AP, AB, AC两两垂直, 且AP=AB=AC=,得PB=PC=BC=2, ∠APB=∠APC=45°,沿P A剪开, 向两侧展开到平面PBC上, 连接A′A″,则AD+DE+EA的最小值为A′A″===.故答案为:.16.(5分)已知F为抛物线C:x2=2py(p>0)的焦点, 曲线C1是以F为圆心, 为半径的圆, 直线2x﹣6y+3p=0与曲线C, C1从左至右依次相交于P, Q, R, S, 则=【解答】解:可得直线2x﹣6y+3p=0与y轴交点是抛物线C:x2=2py(p>0)的焦点F,由得x2﹣px﹣p2=0, ⇒x P=, x S=.⇒,|RS|=|SF|﹣=y S+=p, |PQ|=|PF|﹣=y P+﹣=p.∴则=.故答案为:..三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题, 每道试题考生都必须作答.第22、23题为选考题, 考生根据要求作答.(一)必考题:共60分.17.(12分)△ABC的内角A, B, C的对边分别为a, b, c, 已知c cos A+c sin A=b+a.(1)求C;(2)若D在边BC上, 且BD=3DC, cos B=, S△ABC=10, 求AD.【解答】(本题满分为12分)解:(1)∵c cos A+c sin A=b+a,∴由正弦定理可得:sin C cos A+sin C sin A=sin B+sin A,∴sin C cos A+sin C sin A=sin(A+C)+sin A=sin A cos C+cos A sin C+sin A,∴sin C sin A=sin A cos C+sin A,∵sin A≠0,∴sin C=cos C+1,∴解得:sin(C﹣)=,∵C∈(0, π), 可得:C﹣∈(﹣, ),∴C﹣=, 可得:C=.(2)∵cos B=, 可得:sin B==,∴由S△ABC=10=ac sin B=ab sin C, 可得:ac=56, ab=40, 可得:a=, b =,又∵由余弦定理可得:c2=a2+b2﹣ab=a2+b2﹣40,∴c2=()2+()2﹣40, 整理可得:3c4+245c2﹣19208=0,解得:c2=49, 可得:c=7, a=8, b=5,∴在△ACD中, 由余弦定理可得:AD===.18.(12分)已知五面体ABCDEF中, 四边形CDEF为矩形, AB∥CD, CD=2DE=2AD =2AB=4, AC=2, 且二面角F﹣AB﹣C的大小为30°.(1)证明:AB⊥平面ADE;(2)求二面角E﹣BC﹣F的余弦值.【解答】证明:(1)∵五面体ABCDEF中, 四边形CDEF为矩形, CD=2DE=2AD=2AB=4, AC=2,∴DE⊥AD, AD2+CD2=AC2, ∴AD⊥CD,∵AD∩DE=D, ∴CD⊥平面ADE,∵AB∥CD, ∴AB⊥平面ADE.解:(2)由(1)得AB⊥平面ADE,∴∠DAE是二面角F﹣AB﹣C的平面角, 即∠DAE=30°.∵DA=DE=2, ∴∠ADE=120°,以D为原点, DA为x轴, DC为y轴, 过D作平面ABCD的垂线为z轴,建立空间直角坐标系,E(﹣1, 0, ), B(2, 2, 0), C(0, 4, 0), F(0, 4, ), =(﹣2, 2, 0), =(﹣3, ﹣2, ), =(﹣2, 2, ), 设平面BCF的法向量=(x, y, z),则, 取x=1, 得=(1, 1, 0),设平面BCE的法向量=(x, y, z),则, 取x=1, 得=(1, 1, ),设二面角E﹣BC﹣F的平面角为θ,则cosθ===,∴二面角E﹣BC﹣F的余弦值为.19.(12分)已知点(1, ), ()都在椭圆C:=1(a>b>0)上.(1)求椭圆C的方程;(2)过点M(0, 1)的直线l与椭圆C交于不同两点P, Q(异于顶点), 记椭圆与y轴的两个交点分别为A1, A2, 若直线A1P与A2Q交于点S, 证明:点S恒在直线y=4上.【解答】解:(1)由题意可得, 解得a2=4, b2=2,故椭圆C的方程为+=1.证明:(2)易知直线l的斜率存在且不为0, 设过点M(0, 1)的直线l方程为y=kx+1, (k≠0), P(x1, y1), Q(x2, y2),由, 消y可得(k2+2)x2+2kx﹣3=0,∴x1+x2=﹣, x1x2=﹣,∵A1(0, 2), A2(0, ﹣2),∴直线A1P的方程为y=x+2=•x+2=(k﹣)x+2,则直线A2Q的方程为y=x﹣2=(k+)﹣2,由, 消x可得=,整理可得y===+4=+4=4,直线A1P与A2Q交于点S, 则点S恒在直线y=4上20.(12分)随着小汽车的普及, “驾驶证”已经成为现代入“必考”的证件之一.若某人报名参加了驾驶证考试, 要顺利地拿到驾驶证, 他需要通过四个科目的考试, 其中科目二为场地考试.在一次报名中, 每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试, 就算顺利通过, 即进入下一科目考试;若5次都没有通过, 则需重新报名), 其中前2次参加科目二考试免费, 若前2次都没有通过, 则以后每次参加科目二考试都需交200元的补考费, 某驾校对以往2000个学员第1次参加科目二考试的通过情况进行了统计, 得到如表:考试情况男学员女学员第1次考科目二人数1200800第1次通过科目二人数960600第1次未通过科目二人数240200若以如表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率, 且每人每次是否通过科目二考试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试, 在本次报名中, 若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;(2)若这对夫妻前2次参加科目二考试均没有通过, 记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为X元, 求X的分布列与数学期望.【解答】解:根据题意, 设A i表示男学员在第i次参加科目2考试中通过, B i表示女学员在第i次参加科目2考试中通过,则P(A1)==, P(A2)=1﹣=, P(B1)==, P(A2)=1﹣=,(1)根据题意, 设事件M是这对夫妻在本次报名中参加科目二考试都不需要交补考费, 则P(M)=P(A1B1+A1B2+A2B1+A2B2)=×+××+××+×××=;(2)根据题意, X可取的值为400、600、800、1000、1200,P(X=400)=×=,P(X=600)=××+××=,P(X=800)=×××+××+××=P(X=1000)=×××+×××=P(X=1200)=×××=;则X的分布列为X40060080010001200P故EX=400×+600×+800×+1000×+1200×=510.5(元)21.(12分)已知函数f(x)=(x﹣a)e x(a∈R).(1)讨论f(x)的单调性;(2)当a=2时, F(x)=f(x)﹣x+lnx, 记函数y=F(x)在(, 1)上的最大值为m, 证明:﹣4<m<﹣3.【解答】(1)解:f′(x)=[x﹣(a﹣1)]e x, x∈R.可得函数f(x)在(﹣∞, a﹣1)内单调递减, 在(a﹣1, +∞)内单调递增.(2)证明:当a=2时, F(x)=f(x)﹣x+lnx=(x﹣2)e x﹣x+lnx, x∈(, 1).F′(x)=(x﹣1)e x﹣1+=(x﹣1),令F′(x)=0, 解得:=, 即x0=﹣lnx0, x0∈(, 1),令g(x)=e x﹣在x∈(, 1)上单调递增,g()=﹣2<0, g(1)=e﹣1>0.∴x0∈(, 1),可知:x=x0, 函数g(x)取得极大值即最大值,F(x0)=(x0﹣2)﹣2x0=1﹣2(x0+)∈(﹣4, ﹣3).∴﹣4<m<﹣3.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做, 则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22.(10分)在平面直角坐标系xOy中, 曲线C1的参数方程为, (θ为参数)已知点Q(4, 0), 点P是曲线∁l上任意一点, 点M为PQ的中点, 以坐标原点为极点, x轴正半轴为极轴建立极坐标系.(1)求点M的轨迹C2的极坐标方程;(2)已知直线l:y=kx与曲线C2交于A, B两点, 若=3, 求k的值.【解答】解:(1)消去θ得曲线C1的普通方程为:x2+y2=4,设M(x, y)则P(2x﹣4, 2y)在曲线C1上, 所以(2x﹣4)2+(2y)2=4, 即(x ﹣2)2+y2=1, 即x2+y2﹣4x+3=0,C2轨迹的极坐标方程为:ρ2﹣4ρcosθ+3=0.(2)当k>0时, 如图:取AB的中点M, 连CM, CA,在直角三角形CMA中, CM2=CA2﹣(AB)2=1﹣AB2, ①在直角三角形CMO中, CM2=OC2﹣OM2=4﹣(AB)2=4﹣AB2, ②由①②得AB=, ∴OM=, CM=,k===.当k<0时, 同理可得k=﹣.综上得k=±.第页(共22页)21[选修4-5:不等式选讲]23.已知函数f (x )=|x +a |+2|x ﹣1|(a >0).(1)求f (x )的最小值;(2)若不等式f (x )﹣5<0的解集为(m , n ), 且n ﹣m =, 求a 的值.【解答】解:(1)f (x )=, ∴x =1时, f (x ) 的最小值为a +1.(2)如图所示:当a +1<5<2a +2即<a <4时, f (x )﹣5<0的解集为(a ﹣3, ﹣), ∴﹣﹣a +3=﹣=, ∴a =3符合,当2a +2≤5即0<a ≤时, f (x )的解集 为 (﹣﹣1, ﹣), ∴﹣++1=≠.综上可得a =3.第页(共22页)22 注意事项.1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③p∧( q);④( p)∨q 中,真命题是( )
A.①③
B.①④
C.②③
D.②④
6.函数 f (x) x ln x 的大致图像为 ( )
A.
B.
C.
D.
7.已知 m, n 是两条不同的直线, , 是两个不同的平面,给出下列命题:
①若 m , m n ,则 n ;
②若 m , n ,则 m n ;
,已知曲线
C
:
x
3 cos a ( a 为参数),在以 O 原点为极点,
y sin a
x 轴的非负半轴为极轴建立的极坐标系中,直线 l 的极坐标方程为
2 cos( ) 1 .
2
4
(1)求曲线 C 的普通方程和直线 l 的直角坐标方程;
(2)过点 M 1,0 且与直线 l 平行的直线 l1 交 C 于 A , B 两点,求点 M 到 A , B 的距
y 0
16.已知 sin cos 1, cos sin 0 ,则 sin __________.
17. ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 b 2 , c 3, C 2B ,则 ABC 的面积为______.
x 2y 2 0
18.若
x

y
满足约束条件
③若 m, nn 不平行,则 m 与 n 不可能垂直于同一平面.
其中为真命题的是( )
A.②③④
B.①②③
C.①③④
D.①②④
8.已知双曲线 C

x2 a2
y2 b2
1 a
0,b
0 的焦距为 2c ,焦点到双曲线 C
的渐近线的距
离为 3 c ,则双曲线的渐近线方程为() 2
A. y 3x
B. y 2x
C. y x
D. y 2x
9.函数
f
x
sin
2x
2
的图象向右平移
6
个单位后关于原点对称,则函数
f
x

2
,
0
上的最大值为()
A. 3 2
B. 3 2
C. 1 2
D. 1 2
10.一个样本 a,3,4,5,6 的平均数是 b,且不等式 x2-6x+c<0 的解集为(a,b),则这个
A. 45
B. 50
C. 55
D.
二、填空题
13.若三点 A(2,3), B(3, 2),C(1 , m) 共线,则 m的值为

2
14.函数
f
x
x2 2, x 0
的零点个数是________.
2x 6 lnx, x 0
2x y 4 15.已知实数 x , y 满足 x 2 y 4 ,则 z 3x 2y 的最小值是__________.
样本的标准差是( )
A.1
B. 2
C. 3
D.2
11.已知锐角三角形的边长分别为 2,3, x ,则 x 的取值范围是( )
A. 5 x 13
B. 13 x 5
C. 2 x 5
D. 5 x 5
12.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为
20, 40,40,60,60,80,[80,100]. 若低于 60 分的人数是 15 人,则该班的学生人数是( )
(1)求证:平面 EAC 平面 PBC ;
(2)若 E 是 PB 的中点,且二面角 P AC E 的余弦值是 6 ,求直线 PA 与平面 EAC 3
所成角的正弦值.
24.设函数 f (x) x 1 x 5 , x R .
(1)求不等式 f (x) 10 的解集;
(2)如果关于 x 的不等式 f (x) a (x 7)2 在 R 上恒成立,求实数 a 的取值范围.
A.(-1,2)
B.(0,1)
C.(-1,0)
D.(1,2)
4.甲、乙、丙三人到三个不同的景点旅游,每人只去一个景点,设事件 A 为“三个人去
的景点各不相同”,事件 B 为“甲独自去一个景点,乙、丙去剩下的景点”,则 P(A | B)
等于( )
A. 4 9
B. 2 9
C. 1 2
D. 1 3
5.已知命题 p:若 x>y,则-x<-y;命题 q:若 x>y,则 x2>y2.在命题①p∧q;②p∨q;
(1)证明:函数 f (x) 在 (1, ) 上为增函数; (2)用反证法证明: f (x) 0 没有负数根.
22.如图,直三棱柱 ABC-A1B1C1 中,D,E 分别是 AB,BB1 的中点.
(Ⅰ)证明: BC1//平面 A1CD;
(Ⅱ)设 AA1= AC=CB=2,AB=2 2 ,求三棱锥 C 一 A1DE 的体积. 23.如图,在四棱锥 P ABCD 中,已知 PC 底面 ABCD , AB AD , AB / /CD , AB 2 , AD CD 1, E 是 PB 上一点.
2019 年数学高考一模试卷(及答案)
一、选择题
1.如图,点 是抛物线
的焦点,点 , 分别在抛物线 和圆
线部分上运动,且 总是平行于 轴,则
周长的取值范围是( )
的实
A.
B.
C.
D.
2.设函数
f
x
l4oxg, 2x1
0
x
,
x
0
,则
f
3
f
log2 3


A.9
B.11
C.13
D.15
3.已知集合 P x -1<x 1,Q=x 0 x 2 ,那么 P Q=
x
y
1
0
,则 z 3x 2y 的最大值为_____________.
y 0
19.已知向量 a 与 b 的夹角为 60°,| a |=2,| b |=1,则| a +2 b |= ______ .
20.函数 y= 3 2x x2 的定义域是 . 三、解答题
21.已知函数 f (x) ax x 2 (a 1) . x 1
25.选修 4-5:不等式选讲
设函数 f (x) | x 2 | | x 1| . (1)求 f (x) 的最小值及取得最小值时 x 的取值范围; (2)若集合{x | f (x) ax 1 0} R ,求实数 a 的取值范围.
26.(选修 4-4:坐标系与参数方程)
在平面直角坐标系
xOy
离之积.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 解析:B 【解析】 【分析】 圆(y﹣1)2+x2=4 的圆心为(0,1),半径 r=2,与抛物线的焦点重合,可得|FB|=2, |AF|=yA+1,|AB|=yB﹣yA,即可得出三角形 ABF 的周长=2+yA+1+yB﹣yA=yB+3,利用 1< yB<3,即可得出. 【详解】 抛物线 x2=4y 的焦点为(0,1),准线方程为 y=﹣1, 圆(y﹣1)2+x2=4 的圆心为(0,1), 与抛物线的焦点重合,且半径 r=2, ∴|FB|=2,|AF|=yA+1,|AB|=yB﹣yA, ∴三角形 ABF 的周长=2+yA+1+yB﹣yA=yB+3, ∵1<yB<3, ∴三角形 ABF 的周长的取值范围是(4,6).
相关文档
最新文档