高中数学必修3各章节知识点梳理与测试题附加答案.doc
高中数学必修3(北师版)第三章3.3 (与最新教材完全匹配)知识点总结含同步练习题及答案
![高中数学必修3(北师版)第三章3.3 (与最新教材完全匹配)知识点总结含同步练习题及答案](https://img.taocdn.com/s3/m/7cdb4564561252d380eb6e44.png)
P (A ) =
例题:
构成事件A的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积)
.
判断下列试验是古典概型还是几何概型. (1)先后抛掷两枚质地均匀的骰子,求出现两个“ 4 点”的概率; (2)如图所示,图中有一个转盘,甲、乙两人玩转盘游戏,规定指南针指向 N 区域时,甲获 胜,否则乙获胜,求甲获胜的概率.
A.
1 4 1
B.
1 3
2
C.
解:C 点 Q 取自 △ABE 内部的概率为
1 2
D.
2 3
S △ABE SΒιβλιοθήκη 矩形ABCD1 |AB||CD| 1 = 2 = . 2 |AB||CD|
设不等式组 { 0 ⩽ x ⩽ 2 表示的平面区域为 D ,在区域 D 内随机取一个点,则此点到坐标原 点的距离大于 2 的概率是(
0⩽y⩽2
)
π A. 4 π C. 6
解:D
π−2 2 4−π D. 4
B.
如图所示,正方形 OABC 及其内部为不等式组表示的区域 D ,且区域 D 的面积为 4 ,而阴 影部分表示的是区域 D 内到坐标原点的距离大于 2 的区域,易知该阴影部分的面积为 4 − π . 因此满足条件的概率是
4−π . 4
高中数学必修3(北师版)知识点总结含同步练习题及答案
第三章 概率 3.3 模拟方法--概率的应用
一、知识清单
几何概型
二、知识讲解
1.几何概型 描述: 几何概型的概念 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模 型为几何概率模型(geometric models of probability),简称几何概型. 几何概型的计算公式 在几何概型中,事件 A 的概率的计算公式:
高三数学必修三知识点梳理
![高三数学必修三知识点梳理](https://img.taocdn.com/s3/m/aaeffefa0d22590102020740be1e650e53eacf79.png)
高三数学必修三知识点梳理哪些学问点能够真正帮忙到我们呢?我为各位同学整理了《高三数学必修三学问点梳理》,期望对你的学习有所帮忙!1.高三数学必修三学问点梳理篇一1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,3、正方体a—边长,S=6a2,V=a34、长方体a—长,b—宽,c—高S=2(ab+ac+bc)V=abc5、棱柱S—底面积h—高V=Sh6、棱锥S—底面积h—高V=Sh/37、棱台S1和S2—上、下底面积h—高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体S1—上底面积,S2—下底面积,S0—中截面积h—高,V=h(S1+S2+4S0)/69、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h10、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)11、直圆锥r—底半径h—高V=πr^2h/312、圆台r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/313、球r—半径d—直径V=4/3πr^3=πd^3/614、球缺h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/315、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/616、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/417、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)2.高三数学必修三学问点梳理篇二特别棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心。
新人教版高中数学必修3全册同步测试题及解析答案.doc
![新人教版高中数学必修3全册同步测试题及解析答案.doc](https://img.taocdn.com/s3/m/43e93464dcccda38376baf1ffc4ffe473368fd9f.png)
新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
高中数学必修三理科知识点总结及例题解析
![高中数学必修三理科知识点总结及例题解析](https://img.taocdn.com/s3/m/a1f0f8f64afe04a1b071ded3.png)
目录:数学3(必修)数学3(必修)第一章:算法初步 [基础训练A组]数学3(必修)第一章:算法初步 [综合训练B组]数学3(必修)第一章:算法初步 [提高训练C组]数学3(必修)第二章:统计 [基础训练A组]数学3(必修)第二章:统计 [综合训练B组]数学3(必修)第二章:统计 [提高训练C组]数学3(必修)第三章:概率 [基础训练A组]数学3(必修)第三章:概率 [综合训练B组]数学3(必修)第三章:概率 [提高训练C组]新课程高中数学训练题组根据最新课程标准,参考独家内部资料,精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。
欢迎使用本资料!(数学3必修)第一章:算法初步[基础训练A组]一、选择题1.下面对算法描述正确的一项是:()A.算法只能用自然语言来描述B.算法只能用图形方式来表示1a = 3b = a a b =+ b a b =- PRINT a ,bIF 10a < THEN 2y a =* else y a a =* “n=”,n i =1 s=1 i< =n s=s*i i=i+1 PRINT s ENDC .同一问题可以有不同的算法D .同一问题的算法不同,结果必然不同 2.用二分法求方程022=-x 的近似根的算法中要用哪种算法结构( )A .顺序结构B .条件结构C .循环结构D .以上都用 3.将两个数8,17a b ==交换,使17,8a b ==,下面语句正确一组是 ( ) A. B. C. D.4.计算机执行下面的程序段后,输出的结果是( )A .1,3B .4,1C .0,0D .6,0 5.当3=a 时,下面的程序段输出的结果是( )A .9B .3C .10D .6二、填空题1.把求!n 的程序补充完整2.用“冒泡法”给数列1,5,3,2,7,9按从大到小进行排序时,经过第一趟排序后得到的新数列为 。
3.用“秦九韶算法”计算多项式12345)(2345+++++=x x x x x x f ,当x=2时的值的a=b b=a c=b b=a a=c b=a a=b a=cc=b b=ai=1 s=0 WHILE i<=4 s=s*x+1 i=i+1 WEND过程中,要经过 次乘法运算和 次加法运算。
高中数学必修三所有知识点总结和常考题型练习精选
![高中数学必修三所有知识点总结和常考题型练习精选](https://img.taocdn.com/s3/m/46c5a53c9b6648d7c1c7466b.png)
高中数学 必修3知识点第一章 算法初步一,算法与程序框图1,算法的概念:按一定规则解决某一类问题的明确和有限的步骤。
2,算法的三个基本特征:明确性,有限性,有序性。
4,三种程序框图(1)顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
(2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。
(3)循环结构:直到型循环结构,当型循环结构。
一个完整的循环结构,应该包括三个内容:1)循环体;2)循环判断语句;3)与循环判断语句相关的变量。
二,基本算法语句(一定要注意各种算法语句的正确格式)1,输入语句2,输出语句2146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0 ..............余数为0时计算终止。
为最大公约数2,更相减损术:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。
继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。
注意:提示内容用双引号标明,并与变量用分号隔开。
3,秦九韶算法:将1110()n n n n f x a x a x a x a 改写成1210()(()))n n n f x a x a x a x a x a 再由内及外逐层计算。
4,进位制:注意K 进制与十进制的互化。
1)例:将三进制数(3)10212化为十进制数10212(3)=2+1×3+2×32+0×33+1×34=1042)例:将十进制数104化为三进制数104=3×34+2 ....... 最先出现的余数是三进制数的最右一位 34=3×11+111=3×3+23=3×1+01=3×0+1 ............ 商数为0时计算终止104=(3)10212第二章 统计一,随机抽样1,简单随机抽样:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本,如果每次抽取时总体内的各个个体被抽取到的机会都相等,就把这种抽样方法叫做简单随机抽样。
高中数学 必修3专题(完整知识点梳理及经典例题答案详解)
![高中数学 必修3专题(完整知识点梳理及经典例题答案详解)](https://img.taocdn.com/s3/m/bd45f7aa240c844769eaee9f.png)
必修三专题第一节算法与程序框图[最新考纲展示]1.了解算法的含义,了解算法的思想.2.理解算法框图的三种基本结构:顺序结构、条件结构、循环结构.3.了解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.考点一算法的定义算法是指按照一定规则解决某一类问题的明确和有限的步骤.考点二程序框图1.程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.程序框图通常由程序框和流程线组成.3.基本的程序框有终端框(起止框)、输入、输出框、处理框(执行框)、判断框.考点三三种基本逻辑结构算法的三种基本逻辑结构算法的三种基本逻辑结构为顺序结构、条件结构和循环结构,尽管算法千差万别,但都是由这三种基本逻辑结构构成的.顺序结构顺序结构是由若干个依次执行的步骤组成的,这是任何一个算法都离不开的基本结构,用程序框图表示为:条件结构的概念在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向,处理这种过程的结构就是条件结构. 条件结构程序框图的两种形式及特征循环结构(1)概念:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构,反复执行的步骤为循环体.可以用如图①②所示的程序框图表示.名称 形式一 形式二结构 形式特征 两个步骤A ,B 根据条件选择一个执行根据条件是否成立选择是否执行步骤A(2)直到型循环结构:如图①所示,其特征是:在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.(3)当型循环结构:如图②所示,其特征是:在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.考点四基本算法语句输入语句格式INPUT“提示内容”;变量功能可以一次为一个或多个变量赋值,实现了算法中的输入功能说明“提示内容”一般是提示用户输入什么样的信息,程序框图中的输入框转化为算法语句就是输入语句输出语句格式PRINT“提示内容”;表达式功能先计算表达式的值,然后输出结果,实现了算法中的输出功能.显然在计算机屏幕上,也就是输出信息,可以是常量、变量的值和系统信息说明程序框图中的输出框转化为算法语句就是输出语句赋值语句格式变量=表达式功能先计算表达式的值,然后把结果赋值给“=”左边的变量,此步完成后,“=”左边变量的值就改变了说明 赋值语句中的“=”叫做赋值号,它和数学中的等号不一样.条件语句的格式及框图格式一格式二条件 语句 IF 条件 THEN 语句体 END IF语句 功能首先对IF 后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体,否则执行END_IF 之后的语句首先对IF 后的条件进行判断,如果(IF)条件符合,那么(THEN)执行语句体1,否则(ELSE)执行语句体2对应 条件 结构 框图循环语句 UNTIL 语句(1)UNTIL 语句的格式:(2)UNTIL 语句的执行过程:当计算机执行上述语句时,先执行一次DO和UNTIL之间的循环体,再对UNTIL后的条件进行判断,如果条件不符合,继续执行循环体;然后再检查上述条件,如果条件仍不符合,再次执行循环体,直到条件符合时为止.这时,计算机将不执行循环体,直接跳到UNTIL 语句后,接着执行UNTIL语句之后的语句.(3)UNTIL语句对应的程序框图:WHILE语句(1)WHILE语句的格式:(2)WHILE语句的执行过程:当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE和WEND之间的循环体,然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止,这时计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句.(3)WHILE语句对应的程序框图:解决程序框图问题时应注意(1)不要混淆处理框和输入框.(2)注意区分条件结构和循环结构.(3)注意区分当型循环和直到型循环.(4)循环结构中要正确控制循环次数.(5)要注意各个框的顺序.考向一算法的基本结构【例1】(2013年高考江西卷)阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是( )A.S<8 B.S<9C.S<10 D.S<11[解析] 由框图及输出i=4可知循环应为:i=2,S=5;i=3,S =8;i=4,S=9,输出i=4,所以应填入的条件是S<9,故选B. [答案] B反思总结1.解决程序框图问题要注意几个常用变量(1)计数变量:用来记录某个事件发生的次数,如i=i+1;(2)累加变量:用来计算数据之和,如S=S+i;(3)累乘变量:用来计算数据之积,如p=p×i.2.处理循环结构的框图问题,关键是理解并认清终止循环结构的条件及循环次数.变式训练1.若如下框图所给的程序运行结果为S=20,那么判断框中应填入的关于k的条件是( )A.k=9? B.k≤8?C.k<8? D.k>8?解析:据程序框图可得当k=9时,S=11;k=8时,S=11+9=20.∴应填入“k>8?”答案:D考向二程序框图的应用【例2】(2014年广州模拟)阅读如图所示的程序框图,则输出的S =________.[解析] 由框图知,程序执行的功能为:S=(3×1-1)+(3×2-1)+(3×3-1)+(3×4-1)+(3×5-1)=3×(1+2+3+4+5)-5=40.[答案] 40反思总结1.识别、运行程序框图和完善程序框图的思路(1)要明确程序框图的顺序结构、条件分支结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.2.解决程序框图问题时的注意点(1)不要混淆处理框和输入框. (2)注意区分条件分支结构和循环结构. (3)注意区分当型循环和直到型循环. (4)循环结构中要正确控制循环次数. (5)要注意各个框的顺序考向三 基本算法语句【例3】 (2013年高考陕西卷)根据下列算法语句,当输入x 为60时,输出y 的值为( )A .25B .30C .31D .61[解析] 该语句为分段函数y =⎩⎨⎧0.5x , x ≤50,25+0.6(x -50),x >50,当x =60时, y =25+0.6×(60-50)=31,故选C.[答案] C 变式训练2.下面程序运行的结果为( )A.4 B.5 C.6 D.7解析:第一次执行后,S=100-10=90,n=10-1=9;第二次执行后,S=90-9=81,n=9-1=8;第三次执行后,S=81-8=73,n=8-1=7;第四次执行后,S=73-7=66,n=7-1=6.此时S=66≤70,结束循环,输出n=6.答案:C第二节随机抽样[最新考纲展示]1.理解随机抽样的必要性和重要性. 2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.考点一简单随机抽样定义一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样分类抽签法(抓阄法)和随机数法特点①简单随机抽样要求总体中的个体数N是有限的.②简单随机抽样抽取样本的容量n小于或等于总体的个体数N③简单随机抽样中的每个个体被抽到的可能性均为nN④逐个抽取即每次仅抽取一个个体⑤简单随机抽样是不放回的抽样,即抽取的个体不再放回总体适用范围当总体中的个体无差异且个体数目较少时,采用简单随机抽样抽取样本考点二系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:[通关方略]1.辨析抽签法和随机数法相同点:(1)都是简单随机抽样,并且要求被抽取样本的总体的个体数有限;(2)都是从总体中逐个地进行抽取,都是不放回抽样.不同点:(1)在总体容量较小的情况下,抽签法比随机数法简单;(2)抽签法适用于总体中的个体数相对较少的情况,而随机数法更适用于总体中的个体数较多的情况,这样可以节约大量的人力和制作号签的成本.2.系统抽样的公平性在系统抽样中,(1)若N能被n整除,则将比值Nn作为分段间隔k.由于起始编号的抽取采用简单随机抽样的方法,因此每个个体被抽取的可能性是一样的.(2)若N不能被n整除,则用简单随机抽样的方法从总体中剔除几个个体,使得总体中剩余的个体数能被n整除,再确定样本.因此每个个体被抽取的可能性还是一样的.所以系统抽样是公平的.考点三分层抽样1.定义在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.2.分层抽样的应用范围当总体是由差异明显的几个部分组成时,往往选用分层抽样.三种抽样方法的异同点考向一简单随机抽样【例1】第二届夏季青年奥林匹克运动会将于2014年在南京举行,南京某大学为了支持运动会,从报名的60名大学生中选10人组成志愿小组,请用抽签法设计抽样方案.[解析] 第一步:将60名志愿者编号,编号为1,2,3, (60)第二步:将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签;第三步:将60个号签放入一个不透明的盒子里,充分搅匀;第四步:从盒子中逐个抽取10个号签,并记录上面的编号;第五步:所得号码对应的志愿者,就是志愿小组的成员.反思总结简单随机抽样须满足的条件与特点(1)抽取的个体数有限;(2)逐个抽取;(3)是不放回抽取;(4)是等可能抽取;(5)抽签法适于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况.变式训练1.(2013年高考江西卷)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481A.08 B.07C.02 D.01解析:由题意知前5个个体的编号为08、02、14、07、01,故选D.答案:D考向二系统抽样【例2】(2014年宿州模拟)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是________.[解析] 由题中的抽取规则可知依次抽取的号码为:6、18、29、30、41、52、63、74、85、96.故第7组中抽取的号码为63.[答案] 63反思总结1.当总体容量较大,样本容量也较大时,可用系统抽样法.2.在利用系统抽样时,经常遇到总体容量不能被样本容量整除的情况,这时可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.变式训练2.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为( )A.7 B.9 C.10 D.15解析:由系统抽样的特点知:抽取号码间隔为96032=30,抽取的号码依次为9,39,69,...,939.落入区间[451,750]的有459,489, (729)这些数构成首项为459,公差为30的等差数列,设有n项,显然有729=459+(n-1)×30,解得n=10.答案:C考向三分层抽样【例3】(2013年高考湖南卷)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9 B.10 C.12 D.13[解析]利用分层抽样抽取甲、乙、丙三个车间的产品数量比为120∶80∶60=6∶4∶3,从丙车间的产品中抽取了3件,则n×313=3,得n=13,则选D.[答案] D反思总结进行分层抽样时应注意以下几点(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠;(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同;(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样(4)抽样比=样本容量个体数量=各层样本容量各层个体数量.第三节 用样本估计总体[最新考纲展示]1.了解分布的意义与作用,会列频率分布表、会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差. 3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释. 4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想. 5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.考点一 作频率分布直方图的步骤1.求极差(即一组数据中最大值 与 最小值 的差).2.决定 组距 与 组数 .3.将数据分组 .4.列 频率分布表.5.画频率分布直方图[通关方略]探究组距和组数的确定(1)组距的选择应力求“取整”,如果极差不利于分组(如不能被组数整除),可适当增大极差,如在左、右两端各增加适当范围(尽量使两端增加的量相同).(2)数据分组的组数与样本容量有关,一般样本容量越大,所分组数应越多.当样本容量不超过100时,按照数据的多少,常分成5至12组.考点二频率分布折线图和总体密度曲线1.频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图.2.总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.考点三茎叶图用茎叶图表示数据有两个突出的优点:一是茎叶图上没有原始数据的损失,所有的数据信息都可以从茎叶图中得到;二是茎叶图可以在比赛时随时记录,方便记录与表示.考点四样本的数据特征(1)众数:在一组数据中,出现次数最多的数叫做众数.如果有两个或两个以上数据出现的最多且出现的次数相等,那么这些数据都是这组数据的众数;如果一组数据中,所有数据出现的次数都相等,那么认为这组数据没有众数.(2)中位数:将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的那个数是这组数据的中位数;当数据有偶数个时,处在最中间的两个数的平均数是这组数据的中位数.(3)平均数:一组数据的总和除以这组数据的个数取得的商叫做这组数据的平均数,一般记为x =1n(x 1+x 2+…+x n ). (4)标准差:标准差是样本数据到平均数的一种平均距离,一般用s 表示.假设样本数据是x 1,x 2,…,x n ,x 表示这组数据的平均数,则s =1n [x 1-x 2x 2-x 2x n -x 2].(5)方差:标准差的平方s 2即为方差.则s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. [通关方略]1.利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.2.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,标准差、方差越小,数据的离散程度越小,因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般多采用标准差.考向一频率分布直方图的应用【例1】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.[解析](1)由频率分布直方图可知(2a+0.04+0.03+0.02)×10=1,解得a=0.005.(2)由频率分布直方图估计这100名学生语文成绩的平均分为55×0.005×10+65×0.04×10+75×0.03×10+85×0.02×10+95×0.005×10=73(分).(3)由频率分布直方图及表中数据得:分数段x y[50,60) 5 5[60,70) 40 20[70,80) 30 40[80,90) 20 25∴数学成绩在[50,90)之外的人数为100-5-20-40-25=10.反思总结解决频率分布直方图问题时要抓住(1)直方图中各小长方形的面积之和为1.(2)直方图中纵轴表示频率组距,故每组样本的频率为组距×频率组距,即矩形的面积.(3)直方图中每组样本的频数为频率×总体数.考向二茎叶图的应用【例2】(2013年高考安徽卷)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为x 1、x 2,估计x 1-x 2的值.[解析] (1)设甲校高三年级学生总人数为n .由题意知,30n=0.05,即n =600.样本中甲校高三年级学生数学成绩不及格人数为5,据此估计甲校高三年级此次联考数学成绩及格率为1-530=56.(2)设甲、乙两校样本平均数分别为x1′、x2′,根据样本茎叶图可知,30(x1′-x2′)=30x1′-30x2′=(7-5)+(55+8-14)+(24-12-65)+(26-24-79)+(22-20)+92=2+49-53-77+2+92=15.因此x1′-x2′=0.5.故x1-x2的估计值为0.5分.反思总结由于茎叶图完全反映了所有的原始数据,解决由茎叶图给出的统计图表试题时,就要充分使用这个图表提供的数据进行相关的计算或者是对某些问题作出判断,这类试题往往伴随着对数据组的平均值或者是方差的计算等.变式训练1.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人比赛得分的中位数之和是________.解析:甲比赛得分的中位数为28,乙比赛得分的中位数为36,所以甲、乙两人比赛得分的中位数之和为28+36=64.答案:64考向三用样本的数字特征估计总体的数字特征【例3】甲、乙两名战士在相同条件下各射靶10次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7;乙:6,7,7,8,6,7,8,7,9,5.(1)分别计算两组数据的平均数;(2)分别计算两组数据的方差;(3)根据计算结果,估计一下两名战士的射击水平谁更好一些.[解析] (1)x 甲=110(8+6+7+8+6+5+9+10+4+7)=7, x 乙=110(6+7+7+8+6+7+8+7+9+5)=7. (2)由方差公式s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]可求得s 2甲=3.0,s 2乙=1.2.(3)由x 甲=x 乙,说明甲、乙两战士的平均水平相当;又∵s 2甲>s 2乙,说明甲战士射击情况波动大,因此乙战士比甲战士射击情况稳定.反思总结平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.变式训练2.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( )A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差解析:由条形统计图知:甲射靶5次的成绩分别为:4,5,6,7,8;乙射靶5次的成绩分别为:5,5,5,6,9,所以x甲=4+5+6+7+85=6;x乙=5+5+5+6+95=6.所以x甲=x乙.故A不正确.甲的成绩的中位数为6,乙的成绩的中位数为5,故B 不正确. s 2甲=15[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=15×10=2,s 2乙=15[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=15×12=125,因为2<125,所以s 2甲<s 2乙.故C 正确.甲的成绩的极差为:8-4=4,乙的成绩的极差为:9-5=4,故D 不正确.故选C.答案:C第四节变量间的相关关系、统计案例[最新考纲展示]1.会作两个相关变量的数据的散点图,会利用散点图认识变量间的相关关系. 2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 3.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用. 4.了解回归分析的基本思想、方法及其简单应用.考点一变量间的相关关系1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关变量;与函数关系不同,相关变量是一种非确定性关系.2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.[通关方略]相关关系与函数关系有何异同点?共同点:二者都是指两个变量间的关系.不同点:函数关系是一种确定性关系,体现的是因果关系;而相关关系是一种非确定性关系,体现的不一定是因果关系,可能是伴随关系.考点二两个变量的线相关1.从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线。
高中数学必修3各章节知识点梳理及测试题(附加答案).doc
![高中数学必修3各章节知识点梳理及测试题(附加答案).doc](https://img.taocdn.com/s3/m/4d666ce03b3567ec102d8aec.png)
高中数学必修3知识点第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.算法的特点 :(1) 有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可 .(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题 .(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决 .1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用程序框名称功能表示一个算法的起始和结束,是任何流程图起止框不可少的。
表示一个算法输入和输出的信息,可用在算输入、输出框法中任何需要输入、输出的位置。
赋值、计算,算法中处理数据需要的算式、处理框公式等分别写在不同的用以处理数据的处理框内。
判断某一条件是否成立,成立时在出口处标判断框明“是”或“ Y”;不成立时标明“否”或“ N”。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
第二章统计2.1.1简单随机抽样1.总体和样本在统计学中,把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。
高中数学必修三所有知识点总结和常考题型练习精选
![高中数学必修三所有知识点总结和常考题型练习精选](https://img.taocdn.com/s3/m/6f5c672cc850ad02df804166.png)
高中数学必修3知识点第一章算法初步一,算法与程序框图1,算法的概念:按一定规则解决某一类问题的明确和有限的步骤。
2,算法的三个基本特征:明确性,有限性,有序性。
(1)顺序结构:顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
(2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。
(3)循环结构:直到型循环结构,当型循环结构。
一个完整的循环结构,应该包括三个内容:1)循环体;2)循环判断语句;3)与循环判断语句相关的变量。
二,基本算法语句(一定要注意各种算法语句的正确格式)当型2146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0..............余数为0时计算终止。
37为最大公约数2,更相减损术:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。
继续这个操作,直到所得的数相1a x a +++1210(()))n n n a x a x a x a x a --+++++ 再由内及外逐层计算。
1=3×0+1 ............ 商数为0时计算终止104=(3)10212 第二章统计一,随机抽样1,简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本,如果每次抽取时总体内的各个个体被抽取到的机会都相等,就把这种抽样方法叫做简单随机抽样。
(关键词)逐个,不放回,机会相等2,随机数表法的步骤:11)N=,kn若Nn1二,用样本估计总体1,用样本的频率分布估计总体:通过对样本的分析,得到个体的频率分布的情况,进而对总体中个体的频率分布情况进行估计。
总体中的个体分布的频率约等于样本中的个体分布的频率;样本容量越大,这种估计的精确程度越高。
21作为45明)3,频率分布折线图:将频率分布直方图中各小长方形上端的中点连接,得到的图形称为频率分布折线图。
高中数学必修3(人教A版)第三章概率3.2知识点总结含同步练习及答案
![高中数学必修3(人教A版)第三章概率3.2知识点总结含同步练习及答案](https://img.taocdn.com/s3/m/2d72f439ee06eff9aef807c7.png)
3 18
)
B.
4 18
C.
5 18
D.
6 18
答案: C 解析: 正方形四个顶点可以确定
6 条直线,甲乙各自任选一条共有 36 个基本事件.4 组邻边和对角线中两条直线相互垂直 10 5 的情况有 5 种,包括 10 个基本事件,根据古典概型公式得到结果 p = . = 36 18
4. 有 20 张卡片,每张卡片上分别标有两个连续的自然数 k , k + 1 ,其中 k = 0, 1, 2, ⋯ , 19 .从这 20 张卡片中任取一 张,记事件"该卡片上两个数的各位数字之和(例如:若取到标有 9, 10 的卡片,则卡片上两个数的各位数字之和为
所以取出的 2 个球一个是白球,另一个是红球的概率为
P ( B) =
某高级中学共有学生 3000 名,各年级男、女生人数如下表:
8 . 15
已知在全校学生中抽取 1 名学生,抽到高二年级女生的概率是 0.18 . (1)求 x 的值; (2)现用分层抽样的方法在全校学生中抽取 120 名学生,问应在高三年级抽取学生多少名? (3)在(2)的前提下,已知 y ⩾ 345 ,z ⩾ 345,求高三年级男生比女生多的概率. 解:(1)因为 (2)高三年级总人数为
y = kx + b 不经过第三象限的概率为 (
A.
2 9
B.
1 3
)
C.
4 9Байду номын сангаас
D.
5 9
答案: A 解析: 若直线
y = kx + b 不经过第三象限,则有 { k = −1, 和 { k = −1, b = 1, b = 2.
则满足条件的概率为
(word版)高中数学必修三所有知识点总结和常考题型练习,文档
![(word版)高中数学必修三所有知识点总结和常考题型练习,文档](https://img.taocdn.com/s3/m/b97a343e26fff705cd170a42.png)
高中数学必修3知识点第一章算法初步一,算法与程序框图1,算法的概念:按一定规那么解决某一类问题的明确和有限的步骤。
2,算法的三个根本特征:明确性,有限性,有序性。
3,程序框图:也称流程图,是一种用程序框,流程线及文字说明来表示算法的图形。
图形符号名称功能终端框表示一个算法的起始和结束输入〔输出框〕表示一个算法输入和输出的信息处理框赋值、计算判断某一个条件是否成立,成立时在出口处标明“是〞或“Y〞,判断框不成立时标明“否〞或“N〞。
流程线连接程序框连接点连接程序框图的两局部4,三种程序框图1〕顺序结构:顺序结构在程序框图中的表达就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
2〕条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。
〔3〕循环结构:直到型循环结构,当型循环结构。
一个完整的循环结构,应该包括三个内容:1〕循环体;2〕循环判断语句;3〕与循环判断语句相关的变量。
二,根本算法语句〔一定要注意各种算法语句的正确格式〕1,输入语句INPUT“提示内容〞;表达式注意:提示内容用双引号标明,并2,输出语句PRINT“提示内容〞;表达式与变量用分号隔开。
3,赋值语句变量=表达式注意:“=〞的含义是赋值,将右边的值赋予左边的变量4,条件语句IF条件THEN IF条件THEN语句体1语句体ELSEEND IF语句体2END IF5,循环语句:直到型当型DO WHILE条件循环体1循环体LOOP UNTIL条件WEND直到型和当型循环可以相互演变,循环体相同,条件恰好互补。
三,算法案例1,辗转相除法:例:求2146与1813的最大公约数2146=1813×1+3331813=333×5+148333=148×2+37148=37×4+0..............余数为0时计算终止。
37为最大公约数2,更相减损术:以较大的数减去较小的数,接着把较小的数与所得的差比拟,并以大数减小数。
高中数学必修三 计数,概率,统计与分布列知识梳理 含答案
![高中数学必修三 计数,概率,统计与分布列知识梳理 含答案](https://img.taocdn.com/s3/m/3bd496f6b9f3f90f76c61bf2.png)
计数,概率,统计与分布列知识梳理10.1分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,……,在第n类办法中有m n种方法.那么,完成这件事共有_____________种方法.(也称加法原理)2.分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,……,做第n步有m n种方法.那么,完成这件事共有__________________种方法.(也称乘法原理) 3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.[方法与技巧]1.分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2.分类标准要明确,做到不重复不遗漏.3.混合问题一般是先分类再分步.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.[失误与防范]1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.10.2排列与组合1.排列与组合的概念2.(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的_________的个数叫作从n个不同元素中取出m个元素的排列数,用A m n表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的_________的个数,叫作从n个不同元素中取出m个元素的组合数,用C m n表示.3.排列数、组合数的公式及性质1.对于有附加条件的排列、组合应用题,通常从三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不符合要求的排列数或组合数.2.排列、组合问题的求解方法与技巧:(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.[失误与防范]求解排列与组合问题的三个注意点:(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,再利用两个原理做最后处理.(2)解受条件限制的组合题,通常用直接法(合理分类)或间接法(排除法)来解决,分类标准应统一,避免出现重复或遗漏.(3)对于选择题要谨慎处理,注意等价答案的不同形式,处理这类选择题可采用排除法分析选项,错误的答案都有重复或遗漏的问题.10.3二项式定理1.二项式定理(1)0≤r≤n时,C r n与C n-r的关系是______n(2)二项式系数先增后减________最大当n为偶数时,第_____项的二项式系数最大,最大值为__;当n为奇数时,第____项和_______项的二项式系数最大,最大值为______和_____(3)各二项式系数和:C0n+C1n+C2n+…+C n n=____,C0n+C2n+C4n+…=C1n+C3n+C5n+…=____【知识拓展】二项展开式形式上的特点(1)项数为______(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按_____排列,从第一项开始,次数由n逐项减1直到零;字母b按_____排列,从第一项起,次数由零逐项增1直到n.,___(4)二项式的系数从____,C1n,一直到C n-1n[方法与技巧]1.通项T r+1=C r n a n-r b r是(a+b)n的展开式的第r+1项,而不是第r项,这里r=0,1,…,n.2.二项式系数与项的系数是完全不同的两个概念.二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.3.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.4.运用通项求展开式的一些特殊项,通常都是由题意列方程求出r,再求所需的某项;有时需先求n,计算时要注意n和r的取值范围及它们之间的大小关系.[失误与防范]1.项的系数与a、b有关,二项式系数只与n有关,大于0.2.求二项式所有系数的和,可采用“赋值法”.3.关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法.4.展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.11.1随机抽样1.抽样调查(1)抽样调查通常情况下,从调查对象中按照一定的方法抽取一部分,进行_________,获取数据,并以此对调查对象的某项指标作出_______,这就是抽样调查.(2)总体和样本调查对象的______称为总体,被抽取的_______称为样本.(3)抽样调查与普查相比有很多优点,最突出的有两点:①______________;②节约人力、物力和财力.2.简单随机抽样(1)简单随机抽样时,要保证每个个体被抽到的概率______(2)通常采用的简单随机抽样的方法:__________________3.分层抽样(1)定义:将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本.这种抽样方法通常叫作分层抽样,有时也称为类型抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.4.系统抽样系统抽样是将总体中的个体进行编号,_______分组,在第一组中按照___________抽取第一个样本,然后按____________ (称为抽样距)抽取其他样本.这种抽样方法有时也叫等距抽样或机械抽样.[方法与技巧]1.简单随机抽样的特点:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小;用简单随机抽样法抽取的个体带有随机性;个体间无固定间距.2.系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.3.分层抽样的特点:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.[失误与防范]进行分层抽样时应注意以下几点:(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.\11.2统计图表,用样本估计总体1.统计图表统计图表是_____和_____数据的重要工具,常用的统计图表有____________,______________,______________,______________等.2.数据的数字特征(1)众数、中位数、平均数众数:在一组数据中,出现次数_____的数据叫作这组数据的众数.中位数:将一组数据按大小依次排列,把处在_______位置的一个数据(或最中间两个数据的平均数)叫作这组数据的中位数.平均数:样本数据的算术平均数,即x=________________在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.(2)样本方差、标准差标准差s=______________________________其中x n是样本数据的第n项,n是___________,x是________标准差是刻画数据的离散程度的特征数,样本方差是标准差的____.通常用样本方差估计总体方差,当____________________时,样本方差很接近总体方差.3.用样本估计总体(1)通常我们对总体作出的估计一般分成两种,一种是用_____________________________,另一种是用____________________________(2)在频率分布直方图中,纵轴表示______,数据落在各小组内的频率用______________表示,各小长方形的面积总和等于____.(3)在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的_____开始,用线段依次连接各个矩形的__________,直至右边所加区间的中点,就可以得到一条折线,称之为频率折线图.(4)当样本数据较少时,用茎叶图表示数据的效果较好,它没有信息的缺失,而且___________,方便表示与比较.[方法与技巧]1.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.2.茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以随时记录;而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作.3.若取值x1,x2,…,x n的频率分别为p1,p2,…,p n,则其平均值为x1p1+x2p2+…+x n p n;若x1,x2,…,x n的平均数为x,方差为s2,则ax1+b,ax2+b,…,ax n+b的平均数为a x +b,方差为a2s2.[失误与防范]频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.11.3变量间的相关关系,统计案例1.相关性(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的_______(2)从散点图上可以看出,如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样近似的过程称为_______(3)在两个变量x和y的散点图中,若所有点看上去都在一条直线附近波动,则称变量间是__________的,若所有点看上去都在某条曲线(不是一条直线)附近波动,称此相关是___________的.如果所有的点在散点图中没有显示任何关系,则称变量间是__________ 2.线性回归方程(1)最小二乘法如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2来刻画这些点与直线y =a +bx 的接近程度,使得上式达到最小值的直线y =a +bx 就是所要求的直线,这种方法称为最小二乘法.(2)线性回归方程方程y =bx +a 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.⎩⎪⎨⎪⎧ b =∑n i =1 (x i -x )(y i -y )∑n i =1 (x i -x )2=∑n i =1x i y i -n x y ∑n i =1x 2i -n x 2,a =y -b x .3.回归分析(1)定义:对具有________的两个变量进行统计分析的一种常用方法.(2)样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )中,________称为样本点的中心.(3)相关系数①r =∑ni =1 (x i -x )(y i -y )∑n i =1 (x i -x )2∑n i =1(y i -y )2=∑ni =1x i y i -n x y(∑n i =1x 2i -n x 2)(∑n i =1y 2i -n y 2);②当r >0时,表明两个变量_______;当r <0时,表明两个变量_________当r =0时,表明两个变量_________.r 的绝对值越接近于1,表明两个变量之间的线性相关程度_______.r 的绝对值越接近于0,表明两个变量之间的线性相关程度越低.4.独立性检验设A ,B 为两个变量,每一个变量都可以取两个值,变量A :A 1,A 2=A 1;变量B :B 1,B 2=B 1;2×2列联表:构造一个随机变量χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).利用随机变量χ2来判断“两个分类变量有关系”的方法称为独立性检验.当χ2≤2.706时,没有充分的证据判定变量A,B有关联,可以认为变量A,B没有关联的;当χ2>2.706时,有90%的把握判定变量A,B有关联;当χ2>3.841时,有95%的把握判定变量A,B有关联;当χ2>6.635时,有99%的把握判定变量A,B有关联.[方法与技巧]1.回归分析是处理变量相关关系的一种数学方法.主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出线性回归方程.2.根据χ2的值可以判断两个分类变量有关的可信程度.[失误与防范]1.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.2.独立性检验中统计量χ2的值的计算公式很复杂,在解题中易混淆一些数据的意义,代入公式时出错,而导致整个计算结果出错.12.1随机事件的概率1.随机事件和确定事件(1)在条件S下,一定会发生的事件,叫作相对于条件S的_____________(2)在条件S下,一定不会发生的事件,叫作相对于条件S_____________(3)___________________________统称为相对于条件S的确定事件.(4)______________________________的事件,叫作相对于条件S的随机事件.(5)___________和____________统称为事件,一般用大写字母A,B,C…表示.2.频率与概率在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有_______.这时,我们把_______叫作随机事件A的概率,记作P(A).3.事件的关系与运算互斥事件:在一个随机试验中,我们把一次试验下发生的两个事件A与B称作互斥事件.事件A+B:事件A+B发生是指事件A和事件B______________________对立事件:不会______发生,并且___________发生的事件是相互对立事件.4.概率的几个基本性质(1)概率的取值范围:________________(2)必然事件的概率P(E)=____(3)不可能事件的概率P(F)=____(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A+B)=________________②若事件A与事件A互为对立事件,则P(A)=______________.[知识拓展]互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.[方法与技巧]1.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于_________, 因此可以用频率f n(A)来估计概率P(A).2.从集合角度理解互斥事件和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为______,事件A的对立事件A所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的_______.[失误与防范]1.正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的__________条件.2.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.12.2古典概型1.基本事件的特点(1)任何两个基本事件是_______的;(2)任何事件(除不可能事件)都可以表示成_____________的和.2.古典概型具有以下两个特点的概率模型称为古典的概率模型,简称古典概型.(1)试验的所有可能结果_____________,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性__________3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是 1n;如果某个事件A 包括的结果有m 个,那么事件A 的概率P (A )= ________ .4.古典概型的概率公式P (A )=事件A 包含的可能结果数试验的所有可能结果数. [方法与技巧]1.古典概型计算三步曲第一,本试验是不是等可能的;第二,本试验的基本事件有多少个;第三,事件A 是什么,它包含的基本事件有多少个.2.确定基本事件的方法(1)当基本事件总数较少时,可列举计算;(2)列表法、树状图法.3.较复杂事件的概率可灵活运用互斥事件、对立事件、相互独立事件的概率公式简化运算.[失误与防范]1.古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是不是等可能的.2.概率的一般加法公式:P (A +B )=___________________.公式使用中要注意:(1)公式的作用是求A +B 的概率,当AB =∅时,A 、B 互斥,此时P (AB )=0,所以P (A +B )=P (A )+P (B );(2)要计算P (A +B ),需要求P (A )、P (B ),更重要的是把握事件AB,并求其概率;(3)该公式可以看作一个方程,知三可求一.12.3几何概型1.几何概型向平面上有限区域(集合)G内随机地投掷点M,若点M落在子区域G1G的概率与G1的面积成正比,而与G的形状、位置无关,即P(点M落在G1)=___________,则称这种模型为几何概型.2.几何概型中的G也可以是空间中或直线上的有限区域,相应的概率是_______之比或_________之比.3.借助_________可以估计随机事件发生的概率.[方法与技巧]1.区分古典概型和几何概型最重要的是看__________的个数是有限个还是无限个.2.转化思想的应用对一个具体问题,可以将其几何化,如建立坐标系将试验结果和点对应,然后利用几何概型概率公式.(1)一般地,一个连续变量可建立与_____有关的几何概型,只需把这个变量放在坐标轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与______有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系建立与_______有关的几何概型.[失误与防范]1.准确把握几何概型的“测度”是解题关键;2.几何概型中,线段的端点、图形的边框是否包含在事件之内_________所求结果.12.4离散型随机变量及其分布列1.离散型随机变量的分布列(1)将随机现象中试验(或观测)的每一个可能的结果都对应于________,这种_______称为一个随机变量.(2)离散型随机变量:随机变量的取值能够______________,这样的随机变量称为离散型随机变量.(3)设离散型随机变量X的取值为a1,a2,…随机变量X取a i的概率为p i(i=1,2,…),记作:_____________ (i=1,2,…),或把上式列表:称为离散型随机变量X(4)性质:①p i___0,i=1,2,…;②p1+p2+…=___.2.超几何分布一般地,设有N件产品,其中有M(M≤N)件次品.从中任取n(n≤N)件产品,用X表示取出的n件产品中次品的件数,那么P(X=k)=______________ (其中k为非负整数).如果一个随机变量的分布列由上式确定,则称X服从参数为N,M,n的超几何分布.[方法与技巧]1.对于随机变量X的研究,需要了解随机变量能取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X的______以及取这些值的______.2.求离散型随机变量的分布列,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.[失误与防范]掌握离散型随机变量的分布列,须注意:(1)分布列的结构为两行,第一行为随机变量X所有可能取得的值;第二行是对应于随机变量X的值的事件发生的概率.看每一列,实际上是上为“事件”,下为“事件发生的概率”,只不过“事件”是用一个反映其结果的实数表示的.每完成一列,就相当于求一个随机事件发生的概率.(2)要会根据分布列的两个性质来检验求得的分布列的正误.12.5二项分布及其应用1.条件概率在已知B发生的条件下,事件A发生的概率叫作B发生时A发生的___________,用符号P(A|B)来表示,其公式为P(A|B)=__________ (P(B)>0).2.相互独立事件(1)一般地,对两个事件A,B,如果有________________,则称A、B相互独立.(2)如果A、B相互独立,则_________________________________也相互独立.(3)如果A1,A2,…,A n相互独立,则有:P(A1A2…A n)=_________________________.3.二项分布进行n次试验,如果满足以下条件:(1)每次试验只有两个相互对立的结果,可以分别称为“成功”和“失败”;(2)每次试验“成功”的概率均为p,“失败”的概率均为1-p;(3)各次试验是___________.用X表示这n次试验中成功的次数,则P(X=k)=_____________ (k=0,1,2,…,n)若一个随机变量X的分布列如上所述,称X服从参数为n,p的二项分布,简记为X~B(n,p).[方法与技巧]1.古典概型中,A发生的条件下B发生的条件概率公式为P(B|A)=____=_____,其中,在实际应用中P(B|A)=n(AB)n(A)是一种重要的求条件概率的方法.2.相互独立事件与互斥事件的区别相互独立事件是指两个事件发生的概率互不影响,计算式为____________.互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为_______________.3.n次独立重复试验中,事件A恰好发生k次可看作是____个互斥事件的和,其中每一个事件都可看作是__个A事件与____个A事件同时发生,只是发生的次序不同,其发生的概率都是_________.因此n次独立重复试验中事件A恰好发生k次的概率为C k n p k(1-p)n-k. [失误与防范]1.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A、B相互独立时,公式才成立.2.独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中某事件发生的概率相等.注意“恰好”与“至多(少)”的关系,灵活运用对立事件.12.6离散型随机变量的均值与方差,正态分布1.离散型随机变量的均值与方差若离散型随机变量X的分布列为P(X=a i)=p i(i=1,2,…r).(1)均值EX=________________________,EX刻画的是_____________________(2)方差DX=_______________为随机变量X的方差,它刻画了随机变量X与其均值EX的____________________2.二项分布的均值、方差若X~B(n,p),则EX=_____________,DX=______________3.正态分布(1)X~N(μ,σ2),表示X服从参数为__________的正态分布.(2)正态分布密度函数的性质:①函数图像关于___________对称;②_________________决定函数图像的“胖”“瘦”;③P(μ-σ<X<μ+σ)=__________;P(μ-2σ<X<μ+2σ)=__________;P(μ-3σ<X<μ+3σ)=__________[方法与技巧]1.均值与方差的性质(1)E(aX+b)=__________,D(aX+b)=_______(a,b为常数).(2)若X服从两点分布,则EX=___,DX=_______.(3)若X服从二项分布,即X~B(n,p),则EX=_____,DX=________.2.求离散型随机变量的均值与方差的基本方法(1)已知随机变量的分布列求它的均值、方差,按定义求解.(2)已知随机变量X的均值、方差,求X的线性函数Y=aX+b的均值、方差,可直接用X 的均值、方差的性质求解.(3)如果所给随机变量是服从常用的分布(如两点分布、二项分布等),利用它们的均值、方差公式求解.3.若X服从正态分布,即X~N(μ,σ2),要充分利用正态曲线的对称性和曲线与x轴之间的面积为____.[失误与防范]1.在没有准确判断分布列模型之前不能随便套用公式.2.对于应用问题,必须对实际问题进行具体分析,一般要将问题中的随机变量设出来,再进行分析,求出随机变量的分布列,然后按定义计算出随机变量的均值、方差.计数,概率,统计与分布列知识梳理答案10.1分类加法计数原理与分步乘法计数原理1. N=m1+m2+…+m n 2 .N=m1×m2×…×m n10.2排列与组合1. 一定的顺序2.(1) 所有排列(2) 所有组合3. (1) n(n-1)(n-2)…(n-m+1) ,n!(n-m)!(2) A m nA m m,n(n-1)(n-2)…(n-m+1)m!,n!m!(n-m)!(3) 1 , n!(4) C n-mn , C m n+C m-1n10.3二项式定理1.C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n, r+12. (1) C r n=C n-rn .(2)中间项,n2+1 ,2Cnn,n+12, n+32,12Cnn-,12Cnn+.(3)2n 2n-1.【知识拓展】(1) n+1. (3) 降幂, 升幂(4) C0n, C n n.11.1随机抽样1.(1) 调查或观测, 推断(2) 全体, 一部分(3)①迅速、及时;2.(1) 相同.(2) 抽签法和随机数法.4. 等距,简单随机抽样, 分组的间隔11.2统计图表,用样本估计总体1.表达, 分析, 条形统计图、扇形统计图、折线统计图、茎叶图2.(1) 最多, 最中间, 1n(x1+x2+…+x n).(2)1n[(x1-x)2+(x2-x)2+…+(x n-x)2],, 样本容量, 平均数, 平方, 样本容量接近总体容量3.(1) 样本的频率分布估计总体的频率分布, 样本的数字特征估计总体的数字特征.(2) 频率组距, 各小长方形的面积, 1 (3)中点, 顶端中点(4) 可以随时记录11.3变量间的相关关系,统计案例1.(1)散点图.(2)曲线拟合.(3)线性相关, 非线性相关, 不相关的.3.(1) 相关关系(2) (x,y) (3)②正相关, 负相关, 线性不相关, 越高12.1随机事件的概率1.(1)必然事件(2)不可能事件(3)必然事件与不可能事件(4)在条件S下可能发生也可能不发生(5)确定事件和随机事件2.稳定性, 这个常数3.不能同时, 至少有一个发生,同时, 一定有一个4.(1)0≤P(A)≤1. (2)1. (3)0. (4)①P(A)+P(B).②1-P(A).[方法与技巧]1. 概率P(A)2. 空集, 补集[失误与防范]1.必要不充分12.2古典概型1.(1)互斥(2)基本事件2.(1)只有有限个,(2)相同3.m n.[失误与防范]2.P(A)+P(B)-P(AB) 12.3几何概型1.G1的面积G的面积2.体积,长度3.模拟方法[方法与技巧]。
高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案
![高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案](https://img.taocdn.com/s3/m/27aff98bec3a87c24028c4b4.png)
描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。
高中数学必修3第二章知识点总结及练习
![高中数学必修3第二章知识点总结及练习](https://img.taocdn.com/s3/m/1e084e78bf1e650e52ea551810a6f524ccbfcb13.png)
高中数学必修3第二章知识点总结及练习高中数学必修3第二章主要讲解了函数的相关知识。
下面是对第二章的知识点进行总结,并附上一些相关练习题,希望能够帮助同学们更好地学习与掌握这一部分内容。
1. 函数的概念函数是一种特殊的映射关系,是一种对应关系,是具有唯一性的。
函数通常用f(x)或y来表示,其中x称为自变量,表示函数的输入值,y称为因变量,表示函数的输出值。
2. 函数的定义域、值域与对应关系函数的定义域是所有自变量取值的集合,对应的值域是函数所有可能的取值集合。
对于给定的自变量,函数能够唯一地确定一个因变量,这种关系称为对应关系。
3. 函数的表示函数可以通过函数图象、解析式、列表和数列等方式来表示。
4. 函数的性质函数可以分为奇函数和偶函数。
奇函数满足f(-x)=-f(x),而偶函数满足f(-x)=f(x)。
奇偶函数在函数图象上有对称特点。
5. 反函数若函数f(x)的定义域D和值域R满足:对于f(x1)=y1,必存在唯一的x2使得f(x2)=y2,则函数f(x)存在反函数g(x),满足g(y1)=x1,g(y2)=x2。
反函数的图象是原函数的图象关于y=x 的对称。
6. 复合函数给定两个函数f(x)和g(x),则两个函数可以进行复合运算。
复合函数的定义域为g(x)的定义域,值域为f(x)的值域。
7. 隐函数隐函数是由x和y之间的关系方程所确定的函数。
对于隐函数,可以通过求导和解方程等方式来求解。
8. 指数函数与对数函数指数函数是以一个固定底数为底的幂函数,可表示为y=a^x,其中a是底数,x是指数,a>0且a≠1。
对数函数是指数函数的反函数,可表示为y=loga(x),其中a>0且a≠1。
练习题:1. 判断下列函数是奇函数还是偶函数:a) f(x) = x^2 + 2x + 1b) g(x) = sin(x)c) h(x) = |x|d) k(x) = x^3 - x2. 求下列函数的反函数:a) f(x) = 2x + 1b) g(x) = 3x^23. 求下列复合函数:a) f(x) = 2x + 1,g(x) = x^2b) f(x) = sin(x),g(x) = x^24. 求解下列隐函数:a) x + y = 5b) x^2 + y^2 = 95. 求下列指数函数和对数函数的值:a) y = 2^3b) y = log2(8)以上是关于高中数学必修3第二章的知识点总结及练习题。
高中数学 必修3第三章知识点+经典习题
![高中数学 必修3第三章知识点+经典习题](https://img.taocdn.com/s3/m/cdb16cdd76eeaeaad1f3305f.png)
第三章 概率 3.1 事件与概率 3.1.1 随机现象一、必然现象与随机现象1. 必然现象:必然发生某种结果的现象注:必然现象具有确定性,它在一定条件下,肯定发生2. 随机现象:相同条件下,多次观察同一现象,每一次观察到的结果不一定相同,事先很难预料哪一种结果会出现注:⑴相同条件下,观察同一现象 ⑵多次观察⑶每次观察的结果不一定相同,且无法预料下一次的观察结果3.1.2 事件与基本事件空间一、不可能事件、必然事件、随机事件的概念1. 在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;在试验中可能发生,可能不发生称为随机事件2. 随机事件的记法:用大写字母A 、B 、C ……二、基本事件、基本事件空间1. 试验中不能再分的简单的随机事件,其他事件可用它们来描绘,这样的事件称为基本事件2. 所有基本事件构成的集合称为基本事件空间,用Ω表示3.1.3 频率与概率一、概率的定义及其理解1. 定义:一般地,在n 次重复进行的试验中,事件A 发生的频率m n,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记作()P A2. 区别:(1)频率随着试验次数的改变而改变,概率却是一个常数(2)频率有一定的稳定性,总在某个常数附近摆动,概率可看成频率在理论上的期望,它从数量上反映了随机事件发生的可能性的大小二、随机事件A 的概率()P A 的范围1. 设随机事件A 在n 次试验中发生了m 次,那么有0mn ≤≤,01mn ≤≤ ()01P A ≤≤当A 是必然事件时, ()1P A = 当A 是不可能事件时,()0P A =3.1.4概率的相关性质一、互斥事件的基本概念1. 互斥事件:事件A 与B 不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件2. 对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件,事件A 的对立事件记作A 二、事件A 与B 的并(或和)及互斥事件的概率加法公式1. 由事件A 和B 至少有一个发生所构成的集合C ,称为事件A 与B 的并(或和),记作:C A B =⋃2. 互斥事件的概率加法公式若事件A 、B 互斥,那么事件A B ⋃发生的概率等于事件A 、B 分别发生的概率的和,即)()()(B P A P B A P +=推广 ,)()()()(2121n n A P A P A P A A A P +++= 3. 注意:如果两个事件不互斥,就不能运用上面的公式 4. 对立事件:()()1P A P A +=3.2 古典概型一、古典概型1. 定义:(1)在一次试验中,所有可能出现的基本事件只有有限个 (2)每个基本事件出现的可能性相等2. 求法:(古典概率模型)若一次试验中的等可能基本事件共有n 个,那么每一个等可能事件的概率都是,如果随机事件A 中包含了其中的m 个等可能的基本事件,那么随机事件A 发生的概率为()m P A n= 二、概率的一般加法公式(选学) 1. 事件A 与B 的交(或积)事件A 和B 同时发生所构成的事件D ,称为事件A 与B 的交(或积),记作D A B =⋂(或D A B =)2. 概率的一般加法公式当A 、B 不是互斥事件时的基本事件总数中基本事件个数中基本事件个数中基本事件个数的基本事件总数中包含的基本事件数Ω-+=Ω=B A B A B A B A P )( 即)()()()(B A P B P A P B A P -+=三、练习题1. 下列现象中,随机现象有哪些? ⑴某体操元动员参加下周举行的运动会 ⑵同时掷两颗骰子,出现6点 ⑶某人购买福利彩票中奖⑷三角形中任意两边的和大于第三边 2. 判断下列现象是必然现象还是随机现象 ⑴掷一枚质地均匀的硬币的结果⑵行人在十字路口看到的交通信号灯的颜色⑶在10个同类产品中,有8个正品,2个次品,从中任意抽取出3个检验的结果⑷在10个同类产品中,有8个正品,2个次品,从中任意抽取出3个,至少有一个正品的结果 ⑸三角形的内角和是180︒3. 下面给出五个事件: ⑴某地2月3日下雪⑵函数xy a =(0a >且1a ≠)在其定义域上是增函数⑶实数的绝对值不小于0⑷在标准大气压下,水在1C ︒时结冰⑸,a b R ∈,则ab ba =其中必然事件是________,不可能事件是________,随机事件是________ 4. 以1,2,3,5中任取2个数字作为直线0Ax By +=的系数,A B ⑴写出这个实验的基本事件空间 ⑵求这个实验基本事件总数⑶写出“这条直线的斜率大于1-”这一事件所包括的基本事件5.袋中有红,白,黄,黑大小相同颜色不同的四个小球,按下列要求分别进行实验 ⑴从中任取一个球;⑵从中任取两个球;⑶先后不放回地各取一个球 分别写出上面试验的基本事件空间,并指出基本事件总数6. 某农场计划种植某种新作物,为此对这种作物的两个品种(分别成为品种甲和品种乙)进行田间试验,选取两大块地,每大块地n 个小块地,在总共n 2小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙,假设2=n ,求第一大块地都种植品种甲的概率7. 一个容量为100的样本,某数据的分组与各组的频数如下: 组别 (]0,10(]10,20(]20,30(]30,40(]40,50(]50,60(]60,70频数1213241516137则样本数据落在]40,10(上的频率为( )A . 0.13B . 0.39C . 0.52D . 0.648. 某种产品质量以其质量指标衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质点,现用两种新配方(分别成为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面的试验结果 A 配方的频数分布表 指标值分组 [)90,94[)94,98[)98,102[)102,106[)106,110频数82042228B 配方的频数分布表 指标值分组 [)90,94[)94,98[)98,102[)102,106[)106,110频数412423210分别估计用A 配方,B 配方生产的产品的优质品率9. 为了解学生身高情况,某校以10%的比例对全校100名学生按性别进行分层抽样调查,测得身高情况的统计图如图: ⑴估计该校男生人数⑵估计该校学生身高在cm 185~170之间的概率⑶以样本中身高在cm 190~180之间的男生中任选2人,求至少有1人身高在cm 190~185之间的概率10.在一个容量为66的样本,数据的分组及各组的频数如下:2)5.15,5.11[;4)5.19,5.15[;9)5.23,5.19[;18)5.27,5.23[;11)5.31,5.27[;12)5.35,5.31[;7)5.39,5.35[;3)5.43,5.39[ 根据样本的频率分布估计,数据落在)5.43,5.31[的概率约是( )A .61B .31C .21D .3211. 某城市有甲、乙两种报纸供居民们订阅,记事件A 为“只订甲报”,事件B 为“至少订一种报”,事件C 为“至多订一种报”,事件D 为“不订甲报”,事件E 为“一种报也不定”,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件⑴ A 与C ⑵ B 与E ⑶ B 与D ⑷ B 与C ⑸ C 与E12. 玻璃盒子里装有各色球12只,其中5红,4黑,2白,1绿,从中取1球,设事件A 为“取出1只红球”,事件B 为“取出1只黑球”,事件C 为“取出1只白球”,事件D 为“取出1只绿球”,已知121)(,61)(,31)(,125)(====D P C P B P A P ,求: ⑴“取出一球为红球或黑球”的概率 ⑵“取出1球为红球或黑球或白球”的概率13.现有8名奥运会志愿者,其中志愿者321,,A A A 通晓日语,321,,B B B 通晓俄语,21,C C 通晓韩语,从中选取通晓日语,俄语和韩语的志愿者各1名,组成一个小组 ⑴ 求1A 被选中的概率 ⑵求1B 和1C 不全被选中的概率身高频数 1510513 61271 男生2 4131452 身高频数15 10 5女生14. 设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程02=++c bx x 实根的个数(重根按一个计算),求方程02=++c bx x 有实根的概率15. 依次投掷两枚骰子,并记录骰子的点数 ⑴这个试验的基本事件空间包括多少个基本事件? ⑵事件“点数相同”包含哪几个基本事件? ⑶事件“点数之和为奇数”包含哪几个基本事件16. 袋中装有6个小球,其中4个白球,2个红球,从袋中任意取出2个球,求下列事件的概率: ⑴事件A :取出的2个球都是白球.⑵事件B :取出的2个球1个是白球,另一个是红球17. 从标有1,2,3,…,7的7个小球中取出一球,记下它上面的数字,放回后再取出一球,记下它上面的数字,求两球上的数字之和大于11或者能被4整除的概率18. 某初级中学共有学生2000名,各年级男女生人数如下表:初一年纪 初二年级初三年级女生 373 xy 男生377370z已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19 ⑴求x 的值⑵现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? ⑶已知245≥y ,245≥z 求初三年级中女生比男生多的概率19. 从长度分别为2,3,4,5的四条线中任意取出三条,则以这三条线段为边可以构成三角形的概率是________20. 某饮料公司对一名员工进行测试以便更确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一品尝后,从5杯饮料中选出3杯A 饮料,若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格。
高中数学必修3(北师版)第三章3.2 古典概型(与最新教材完全匹配)知识点总结含同步练习题及答案
![高中数学必修3(北师版)第三章3.2 古典概型(与最新教材完全匹配)知识点总结含同步练习题及答案](https://img.taocdn.com/s3/m/553750c89ec3d5bbfd0a7444.png)
名,各年级男、女生人数如下表:0.18例题: 一般地,如果事件 ,,, 两两互斥(彼此互斥),那么事件“ ”发生(是指事件 ,,, 中至少有一个发生)的概率,等于这 个事件发生的概率和,即(3)对立事件的概率:若事件 与事件 互为对立事件,则 为必然事件,.高考不提分,赔付1万元,关注快乐学了解详情。
A 1A 2⋯A n ∪∪⋯∪A 1A 2A n A 1A 2⋯A n n P (∪∪⋯∪)=P ()+P ()+⋯+P ().A 1A 2A n A 1A 2A n AB A ∪B P (A ∪B )=1 盒子里有 个红球, 个白球,现从中任取 个球,设事件 ,事件,事件 ,事件.(1)事件 与 、是什么样的运算关系?(2)事件 与的交事件是什么事件?解:(1)对于事件 ,可能的结果为 个红球 个白球,或 个红球 个白球,故 .(2)对于事件 ,可能的结果为 个红球 个白球, 个红球 个白球,个均为红球,故 .643A ={3个球中有1个红球,2个白球}B ={3个球中有2个红球,1个白球}C ={3个球中至少有1个红球}D ={3个球中既有红球又有白球}D A B C A D 1221D =A ∪B C 12213C ∩A =A 判断下列给出的每对事件是否为互斥事件,是否为对立事件,并说明理由.从 张扑克牌(红桃、黑桃、方块、梅花的牌面数字都是从 到 )中任意抽取 张.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌的牌面数字为 的倍数”与“抽出的牌的牌面数字大于 ”.解:(1)是互斥事件,不是对立事件.从 张扑克牌中任意抽取 张,“抽出红桃”和“抽出黑桃”是不可能同时发生的,所以是互斥事件.由于可能抽出方块或者梅花,因此不能保证其中必有一个发生,所以二者不是对立事件.(2)既是互斥事件,又是对立事件.从 张扑克牌中任意抽取 张,“抽取红色牌”与“抽取黑色牌”不可能同时发生,且其中必有一个发生,所以它们既是互斥事件,又是对立事件.(3)不是互斥事件,也不是对立事件.从 张扑克牌中任意抽取 张,“抽出的牌的牌面数字为 的倍数”与“抽出的牌的数字大于 ”这两个事件可能同时发生,如抽出的牌的牌面数字为 ,因此二者不是互斥事件,当然也不可能是对立事件.401101594014014015910某人去开会,他乘火车、轮船、汽车、飞机去的概率分别为 ,,,.(1)求他乘火车或乘飞机去的概率;(2)求他不乘轮船去的概率;(3)请问他可能乘何种交通工具去的概率为 ?解:(1)记“他乘火车去”为事件 ,“他乘轮船去”为事件 ,“他乘汽车去”为事件 ,“他乘飞机去”为事件 ,这四个事件不可能同时发生,故它们彼此互斥.所以(2)设他不乘轮船去的概率为 ,则(3)由于故他有可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.0.30.20.10.40.5A 1A 2A 3A 4P (∪)=P ()+P ()=0.3+0.4=0.7.A 1A 4A 1A 4P P =1−P ()=1−0.2=0.8.A 20.3+0.2=0.5,0.1+0.4=0.5,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
......高中数学必修 3 知识点第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2.算法的特点 :(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可 .(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题 .(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.......1.1.2程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用程序框名称功能表示一个算法的起始和结束,是任何流程图起止框不可少的。
表示一个算法输入和输出的信息,可用在算输入、输出框法中任何需要输入、输出的位置。
赋值、计算,算法中处理数据需要的算式、处理框公式等分别写在不同的用以处理数据的处理框内。
判断某一条件是否成立,成立时在出口处标判断框明“是”或“Y”;不成立时标明“否”或“N ”。
......(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
第二章统计2.1.1 简单随机抽样1.总体和样本在统计学中, 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:( 1)抽签法;⑵ 随机数表法;⑶ 计算机模拟法;⑷ 使用统计软件直接抽取。
4.抽签法 :5.随机数表法:2.1.2 系统抽样......把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
2.1.3 分层抽样第一章算法初步1.执行下面的程序框图 ,若输入的 a,b,k 分别为 1,2,3,则输出的 M=()A. B. C. D.2.执行下面的程序框图 ,如果输入的 x,t 均为 2,则输出的 S=()A.4B.5C.6D.73.当 m=7,n=3时,执行如图所示的程序框图,输出的 S 值为 ()......A.7B.42C.210D.8404.阅读下边的程序框图 ,运行相应的程序 ,输出 S 的值为 ()A.15B.105C.245D.9455.如图所示 ,程序框图 (算法流程图 )的输出结果是 ()A.34B.55C.78D.89......6.阅读如图所示的程序框图,运行相应的程序 ,输出的 S 的值等于 ()A.18B.20C.21D.407.执行如图所示的程序框图,若输出 k 的值为 6,则判断框内可填入的条件是()A.s>B.s>C.s>D.s>8.执行如图的程序框图 ,如果输入的 x,y∈ 那R,么输出的S的最大值为()A.0B.1C.2D.39.执行如图所示的程序框图,如果输入的 t ∈[-2,2], 则输出的 S 属于 ()A.[-6,-2]B.[-5,-1]C.[-4,5]D.[-3,6]10、阅读如下程序框图 ,运行相应的程序 ,则程序运行后输出的结果为()A.7B.9C.10D.1111.如图是一个算法流程图 ,则输出的 n 的值是.12、执行如图所示的程序框图,若输入的 x 的值为 1,则输出的 n 的值为.13、若某程序框图如图所示 ,当输入 50 时 ,则该程序运行后输出的结果是.14、执行下面的程序框图 ,若输入 x=9, 则输出 y=.第一章算法初步 (参考答案 )1-5 DDCBB 6-10 BCCDB 11、 5 12 、 3 13 、6 14 、第二章 统计一、选择题1. 10 名工人某天生产同一零件 ,生产的件数是 15,17,14,10,15,17,17,16,14,12, 设其平均数为 a ,中位数为 b 众数为 c ,则有 ( ) , A . ab c B . b c aC . c a bD . c b a2.下列说法错误的是 ( )A .在统计里 ,把所需考察对象的全体叫作总体B . 一组数据的平均数一定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大3.某同学使用计算器求30 个数据的平均数时,错将其中一个数据 105输入为15,那么由此求出的平均数与实际平均数的差是 ( )A. 3.5 B . 3C. 3 D .0.54. 要了解全市高一学生身高在某一范围的学生所占比例的大小,需知道相应样本的 ( )A. 平均数B. 方差C. 众数D. 频率分布5.要从已编号( 1 60 )的 60 枚最新研制的某型导弹中随机抽取 6 枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的 6 枚导弹的编号可能是()A .5,10,15,20,25,30B .3,13,23,33,43,53C .1,2,3,4,5,6 D.2,4,8,16,32,486.容量为 100 的样本数据,按从小到大的顺序分为8组,如下表:组号 1 2 3 4 5 6 7 8频数10 13 x 14 15 13 12 9 第三组的频数和频率分别是( )A.14和 0.14 B . 0.14 和14 C .1和 0.14 D .1和1 14 3 14二、填空题1.为了了解参加运动会的2000名运动员的年龄情况,从中抽取 100名运动员;就这个问题,下列说法中正确的有;① 2000 名运动员是总体;② 每个运动员是个体;③ 所抽取的 100名运动员是一......个样本;④样本容量为 100 ;⑤ 这个抽样方法可采用按年龄进行分层抽样;⑥ 每个运动员被抽到的概率相等。
2.经问卷调查,某班学生对摄影分别执“喜欢”、不“喜欢”和“一般”三种态度,其中执“一般”态度的比“不喜欢”态度的多 12 人,按分层抽样方法从全班选出部分学生座谈摄影,如果选出的 2 位“喜欢”摄影的同学、 1位“不喜欢”摄影的同学和3 位执“一般”态度的同学,那么全班学生中“喜欢”摄影的比全班人数的一半还多人。
3.数据70,71,72,73 的标准差是。
4.数据a1, a2,a3,..., a n的方差为 2 ,平均数为,则(1)数据ka1 b, ka2 b, ka3 b,..., ka n b,( kb 0) 的标准差为,平均数为.(2)数据k (a1 b), k( a2 b), k (a3 b),..., k (a n b),( kb 0) 的标准差为,平均数为。
5.观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在2700,3000 的频率为。
频率 /组距0.0012400 2700 3000 3300 3600 3900 体重三、解答题1.对某校初二男生抽取体育项目俯卧撑,被抽到的 50 名学生的成绩如下:成绩(次)10 9 8 7 6 5 4 3 人数8 6 5 16 4 7 3 1试求全校初二男生俯卧撑的平均成绩。
.专业 word 可编辑.2.为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:组别频数频率145.5 ~149.5 1 0.02149.5 ~153.5 4 0.08153.5 ~157.5 20 0.40157.5 ~161.5 15 0.30161.5 ~165.5 8 0.16165.5 ~169.5 M n合计M N (1)求出表中m, n, M , N所表示的数分别是多少?(2)画出频率分布直方图 .(3)全体女生中身高在哪组范围内的人数最多?3.某校高中部有三个年级,其中高三有学生 1000人,现采用分层抽样法抽取一个容量为 185 的样本,已知在高一年级抽取了75 人,高二年级抽取了 60 人,则高中部共有多少学生?4.从两个班中各随机的抽取10 名学生,他们的数学成绩如下:甲班76 74 82 96 66 76 78 72 52 68 乙班86 84 62 76 78 92 82 74 88 85画出茎叶图并分析两个班学生的数学学习情况5 对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?6某学校共有教师 490 人,其中不到 40 岁的有 350 人, 40 岁及以上的有 140 人。
为了了解普通话在该校中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为 70 人的样本进行普通话水平测试,其中在不到 40 岁的教师中应抽取的人数为多少人?7 已知 200 辆汽车通过某一段公路时的时速的频率频率0.04组距分布直方图如右图所示,求时速在 [60,70] 的汽车0.03大约有多少辆?0.020.0140 50 60 70 80 时速8、院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取 6 株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20乙:8,14,13,10,12,21.(1)在右面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.9、三抽出 50 名学生参加数学竞赛,由成绩得到如下的频率分布直方图.试利用频率分布直方图求:(1)这 50 名学生成绩的众数与中位数.(2)这 50 名学生的平均成绩.第二章统计(参考答案)一、选择题1.D总和为147, a14.7 ;样本数据17分布最广,即频率最大,为众数,c17 ;从小到大排列,中间一位,或中间二位的平均数,即 b152.B 平均数不大于最大值 ,不小于最小值3.B 少输入 90 3, 平均数少 3 ,求出的平均数减去实际的平均数等于390,304.D5.B60,间隔应为 101066.A 频数为 100 (1013 14 15 13 12 9) 14 ;频率为140.14100二、填空题1.④,⑤,⑥ 2000 名运动员的年龄情况是总体 ;每个运动员的年龄是个体 ;2. 33 位执 “一般 ”对应 1位“不喜欢 ”,即“一般 ”是“不喜欢 ”的 3 倍,而他们的差为 12 人,即“一般 ”有 18 人,“不喜欢 ”的有 6 人,且“喜欢 ”是“不喜欢 ”的6 倍,即 30 人,全班有 54人, 301 54323.570 71 72 73X471.5,2s1[(70 71.5) 2 (71 71.5)2 (72 71.5)2(73 71.5) 2 ]542.( ) k , k b ( ) k , kkb412(1) X ka 1 b ka 2 b ...ka n b k a 1 a 2 ... a n b kbnns1 [( ka 1 b kb) 2(ka 2 b kb)2... ( ka n b kb)2 ]nk 1[( a 1)2 (a 2)2 ... (a n) 2 ]kn(2)Xk (a 1 b) k(a 2 b) ...k (a n b)k a 1 a 2 ... a n nb knbnns1 [( ka 1 kb kkb)2 ( ka 2kb kkb) 2... ( ka n kb kkb)2 ]nk1[(a 1 ) 2 (a 2 ) 2 ... ( a n) 2 ] kn5. 0.3率/距0.001,距300 ,率0.001 3000.3三、解答10 8 9 6 8 5 7 16 6 4 5 7 4 3 3 1 360 1.解:X50 7.250 2.解:( 1)M 1 50, m 50 (1 4 20 15 8) 20.02N 1,n 20.04 50(2)⋯(3)在 153.5 157.5范内最多。