高中数学第二章数列2.3等差数列的前n项和课时作业新人教A版必修5

合集下载

2014-2015学年高中数学(人教A版,必修五)作业:2.3 等差数列的前n项和(1)

2014-2015学年高中数学(人教A版,必修五)作业:2.3 等差数列的前n项和(1)

§2.3 等差数列的前n 项和(一)课时目标1.掌握等差数列前n 项和公式及其性质.2.掌握等差数列的五个量a 1,d ,n ,a n ,S n 之间的关系.1.把a 1+a 2+…+a n 叫数列{a n }的前n 项和,记做S n .例如a 1+a 2+…+a 16可以记作S 16;a 1+a 2+a 3+…+a n -1=S n -1 (n ≥2).2.若{a n }是等差数列,则S n 可以用首项a 1和末项a n 表示为S n =n (a 1+a n )2;若首项为a 1,公差为d ,则S n 可以表示为S n =na 1+12n (n -1)d .3.等差数列前n 项和的性质(1)若数列{a n }是公差为d 的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为d2.(2)S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m-S 2m 也成等差数列.(3)设两个等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,则a n b n =S 2n -1T 2n -1.一、选择题1.设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ) A .13 B .35 C .49 D .63 答案 C解析 S 7=7(a 1+a 7)2=7(a 2+a 6)2=49.2.等差数列{a n }中,S 10=4S 5,则a 1d等于( )A.12 B .2 C.14D .4 答案 A解析 由题意得:10a 1+12×10×9d =4(5a 1+12×5×4d ),∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12.3.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( ) A .-9 B .-11 C .-13 D .-15 答案 D解析 由a 23+a 28+2a 3a 8=9得 (a 3+a 8)2=9,∵a n <0, ∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15.4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36.则a 7+a 8+a 9等于( ) A .63 B .45 C .36 D .27 答案 B解析 数列{a n }为等差数列,则S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6),∵S 3=9,S 6-S 3=27,则S 9-S 6=45. ∴a 7+a 8+a 9=S 9-S 6=45.5.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C .763 D .663 答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.6.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( )A .3B .-3C .-2D .-1 答案 B解析 由⎩⎨⎧a 1+a 3+…+a2n -1=na 1+n (n -1)2×(2d )=90,a 2+a 4+…+a2n =na 2+n (n -1)2×(2d )=72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3. 二、填空题7.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________. 答案 15解析 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1,S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8. 由⎩⎪⎨⎪⎧ a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2. 故a 9=a 1+8d =-1+8×2=15.8.两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,则a 5b 5的值是________.答案 6512解析 a 5b 5=9(a 1+a 9)9(b 1+b 9)=S 9T 9=6512.9.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 的值为________.答案 10解析 S 奇=(n +1)(a 1+a 2n +1)2=165,S 偶=n (a 2+a 2n )2=150.∵a 1+a 2n +1=a 2+a 2n ,∴n +1n =165150=1110,∴n =10.10.等差数列{a n }的前m 项和为30,前2m 项和为100,则数列{a n }的前3m 项的和S 3m的值是________.答案 210解析 方法一 在等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列. ∴30,70,S 3m -100成等差数列.∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m3m成等差数列,∴2S 2m 2m =S m m +S 3m 3m. 即S 3m =3(S 2m -S m )=3×(100-30)=210. 三、解答题11.在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n .解 由⎩⎪⎨⎪⎧a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d , 得⎩⎪⎨⎪⎧a 1+2(n -1)=11,na 1+n (n -1)2×2=35, 解方程组得⎩⎪⎨⎪⎧ n =5a 1=3或⎩⎪⎨⎪⎧n =7,a 1=-1.12.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解 设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d ,∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧7a 1+21d =715a 1+105d =75,即⎩⎪⎨⎪⎧ a 1+3d =1a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2d =1, ∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12,∴T n =n ×(-2)+n (n -1)2×12=14n 2-94n .能力提升13.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .29 答案 B解析 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200.∴n =19时,剩余钢管根数最少,为10根.14.已知两个等差数列{a n }与{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5 答案 D解析 a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1=7(n +1)+12n +1=7+12n +1,∴n =1,2,3,5,11.。

高中数学 2.3 等差数列的前n项和 第2课时课件 新人教A版必修5

高中数学 2.3 等差数列的前n项和 第2课时课件 新人教A版必修5

时,Sn 最大.这是因为:当an>0时,Sn>Sn-1 ,即递增;当an<0时,
Sn<Sn-1,即递减. 类似地,当a1<0,d>0时,则n为使an≤0成立的最大自然数时, Sn最小.
A.2 C.4 B.3 D.5
)
解析:∵S奇=a1+a3+a5+a7+a9=15,S偶=a2+a4+a6+a8 +a10=30,S偶-S奇=5d=15,∴d=3. 答案:B
3.等差数列{an}的前n项和为Sn ,若S2 =2,S4=10,则S6等
于(
)
A.12 C.24 B.18 D.42
解析:∵等差数列{an}的前n项和为Sn ,∴有S2 ,S4 -S2 ,S6 -S4成等差数列,∴2(S4-S2)=S2+(S6-S4).整理得S6=3S4-3S2 =3×10-3×2=24. 答案:C
以及数形结合,从而使问题得解;(2)通项公式法:求使an≥0(或
an≤0)成立的最大n即可.这是因为:当an<0时,Sn<Sn-1,即单调 递减.
一般地,等差数列{an}中,若a1>0,且Sp=Sq(p≠q),则①当 p+q p+q为偶数时,则n= 2 时,Sn最大;②当p+q为奇数时, p+q-1 p+q+1 则n= 2 或n= 2 时,Sn最大.
[例1] 若Sn表示等差数列的前n项和, ________.
S4 1 S8 = ,则 = S8 3 S16
[分析]
S4 可以设出首项a1与公差d,代入条件 ,进一 S8
S8 步求 的值. S16 但是,我们注意到序号为4、8、16,可以考虑用性质 来解.
S4 1 [解] ∵S =3,故设S4=x,则S8=3x. 8 由于S4,S8-S4,S12-S8,S16-S12成等差数列,且S4= x,S8-S4=3x-x=2x, ∴新数列公差为x. ∴S12-S8=3x,S16-S12=4x, ∴S12=3x+S8=3x+3x=6x,而S16=S12+4x=6x+4x= 10x. S8 3x 3 ∴S =10x=10.

2021年高中数学人教A版必修五第二章数列第二课时 等差数列的前n项和的最值及应用

2021年高中数学人教A版必修五第二章数列第二课时 等差数列的前n项和的最值及应用

5
课前预习
课堂互动
课堂小结
@《创新设计》
知识点2 裂项相消法
把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求和.
常见的拆项方法:
(1)n(n1+k)=_1k__1n_-__n_+1__k__;
(2)
1 n+k+
=_1k___n_+___k_-___n__;
n
(3)(2n-1)1(2n+1)=_12_2_n__1-__1_-__2_n_1+__1__.
绕天心石砌9块扇面形石板构成第一环,向外每环依次
增加9块.下一层的第一环比上一层的最后一环多9块.向
外每环依次也增加9块.已知每层环数相同,且下层比中
层多729块,则三层共有扇面形石板(不含天心石)( )
A.3 699块
B.3 474块
C.3 402块
D.3 339块
@《创新设计》
18
课前预习
课堂互动
7
课前预习
课堂互动
@《创新设计》 课堂小结
@《创新设计》
2.数列{an}的通项公式 an=
1 n+
n+1,其前
n
项和
Sn=9,则
n=________.
解析
an=
1 n+
n+1=
n+1-
n,
∴Sn=( 2-1)+( 3- 2)+…+( n+1- n)
= n+1-1=9,∴n=99. 答案 99
8
课前预习
25
课前预习
课堂互动
课堂小结
(1)若{an}是等差数列,则ana1n+1=1da1n-an1+1,ana1n+2=21da1n-an1+2.
(2)n(n1+k)=1k1n-n+1 k.

2021学年高中数学第二章数列2.3.2等差数列前n项和的性质课时作业含解析新人教A版必修5

2021学年高中数学第二章数列2.3.2等差数列前n项和的性质课时作业含解析新人教A版必修5

课时作业12 等差数列前n 项和的性质时间:45分钟——基础巩固类——一、选择题1.已知等差数列{a n }的前n 项和为S n ,且S 2=4,S 4=16,则a 5+a 6=( C ) A .11 B .16 C .20D .28解析:由等差数列的性质知S 2,S 4-S 2,S 6-S 4成等差数列,即4,12,a 5+a 6成等差数列,易知其公差为8,故a 5+a 6=20.2.已知等差数列{a n }中,d =2,S 3=-24,则其前n 项和S n 取最小值时n 的值为( D ) A .5 B .6 C .7D .5或6解析:由d =2,S 3=3a 1+3d =-24,得a 1=-10,令a n =-10+(n -1)×2=0,得n =6,所以a 6=0,S 5=S 6均为最小值.3.设数列{a n }是公差为-2的等差数列,如果a 1+a 4+…+a 97=50,那么a 3+a 6+a 9+…+a 99等于( D )A .-182B .-78C .-148D .-82解析:由a 1+a 4+a 7+…+a 97=50,① 令a 3+a 6+a 9+…+a 99=x ,②②-①,得2d ×33=x -50,∵d =-2, ∴x =-132+50=-82.故选D.4.在等差数列{a n }中,S n 为前n 项和,若S m =20,S 3m =210,则S 2m =( C ) A .115 B .100 C .90D .70 解析:因为{a n }为等差数列,所以S m ,S 2m -S m ,S 3m -S 2m 成等差数列,则有2(S 2m -S m )=S m +S 3m -S 2m ,即3S 2m =S 3m +3S m =210+60=270.所以S 2m =90.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5=( A )A .1B .-1C .2D.12解析:S 9S 5=9(a 1+a 9)25(a 1+a 5)2=9×2a 55×2a 3=95×59=1.6.设等差数列{a n }的前n 项和为S n ,若S 12>0,S 13<0,则S n 中最大的是( C ) A .S 12 B .S 13 C .S 6D .S 7解析:∵在等差数列{a n }中, S 12=12(a 1+a 12)2=12(a 6+a 7)2>0,∴a 6+a 7>0. 又S 13=13(a 1+a 13)2=13·2a 72<0,∴a 7<0.∴a 6>0,a 7<0. ∴前6项和S 6最大. 二、填空题7.已知等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =10. 解析:∵S 9=S 4,∴a 5+a 6+a 7+a 8+a 9=0. ∴a 7=0,从而a 4+a 10=2a 7=0.∴k =10.8.已知数列{a n }的前n 项和S n =n 2-2n ,则a 2+a 3-a 4+a 5+a 6=15.解析:易知数列{a n }为等差数列,则a 2+a 3-a 4+a 5+a 6=3a 4,由S n =n 2-2n 知a 4=S 4-S 3=42-2×4-32+2×3=5,所以a 2+a 3-a 4+a 5+a 6=15.9.已知项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是11,项数是7.解析:设该等差数列的项数为2n +1, 由题意得⎩⎪⎨⎪⎧S 奇+S 偶=S 2n +1=77,S奇-S 偶=a n +1=11,S2n +1=(2n +1)a n +1,解得⎩⎪⎨⎪⎧a n +1=11,2n +1=7.故该数列的中间项为a n +1=a 4=11,项数为7. 三、解答题10.已知数列{a n }为等差数列,S n 为其前n 项和,若S 7=7,S 15=75,求数列{S nn }的前n 项和T n .解:设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d .由S 7=7,S 15=75,得⎩⎪⎨⎪⎧ 7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧a 1+3d =1,a 1+7d =5, 解得⎩⎪⎨⎪⎧a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1). ∵S n +1n +1-S n n=(-2+12n )-[-2+12(n -1)]=12,∴数列{S n n }是首项为-2,公差为12的等差数列.故T n =-2n +12n (n -1)×12=14n 2-94n .11.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 有最大值,并求出它的最大值.解:设等差数列{a n }的公差为d , ∵a 1=20,S 10=S 15,∴10a 1+10×92d =15a 1+15×142d .解得d =-53.(方法一)由以上得a n =20-53(n -1)=-53n +653.由a n ≥0得-53n +653≥0,∴n ≤13.∴数列{a n }的前12项或前13项的和最大,其最大值为S 12=S 13=12a 1+12×112d =130.(方法二)由以上得S n =20n +n (n -1)2×⎝⎛⎭⎫-53 =-56n 2+56n +20n =-56n 2+1256n=-56(n 2-25n )=-56⎝⎛⎭⎫n -2522+3 12524. 故当n =12或n =13时,S n 最大,最大值为S 12=S 13=130.——能力提升类——12.等差数列{a n }的公差d <0,且a 21=a 213,则数列{a n }的前n 项和S n 取最大值时的项数n 是( D )A .5B .6C .5或6D .6或7解析:因为d <0,所以数列{a n }为递减数列,又a 21=a 213,所以a 1=-a 13,且a 1>0,a 13<0,即a 1+a 13=2a 7=0,所以数列{a n }的前n 项和S n 取最大值时的项数n 是6或7.13.{a n }为等差数列,公差为d ,S n 为其前n 项和,S 6>S 7>S 5,则下列结论中不正确的是( C )A .d <0B .S 11>0C .S 12<0D .S 13<0解析:S 6>S 7>S 5,则d <0,a 6>0且a 7<0, 所以S 11=11(a 1+a 11)2=11×2a 62>0,S 13=13(a 1+a 13)2=13×2a 72<0, 而S 12=12(a 1+a 12)2=6(a 6+a 7)无法判断大于0或小于0.14.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4=1941. 解析:由等差数列的性质得a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=2a 62b 6=a 6b 6,又S 11=11a 6,T 11=11b 6,所以a 6b 6=11a 611b 6=S 11T 11=2×11-34×11-3=1941.所以a 9b 5+b 7+a 3b 8+b 4=1941.15.若数列{a n }的前n 项和为S n ,点(n ,S n )均在函数y =32x 2-12x 的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m .解:(1)由题意知S n =32n 2-12n .当n ≥2时,a n =S n -S n -1=3n -2; 当n =1时,a 1=1,适合上式. ∴a n =3n -2.(2)由(1)得b n=3a n a n+1=3(3n-2)(3n+1)=13n-2-13n+1,∴T n=b1+b2+…+b n=1-14+14-17+…+13n-2-13n+1=1-13n+1<1,则要使T n<m20对所有n∈N*都成立,只需m20≥1,∴m≥20,∴满足条件的最小正整数m的值为20.。

新人教A版必修5高中数学2.3等差数列的前n项和(2)学案(二)

新人教A版必修5高中数学2.3等差数列的前n项和(2)学案(二)

高中数学 2.3等差数列的前n 项和(2)学案新人教A 版必修5学习目标1. 进一步熟练掌握等差数列的通项公式和前n 项和公式;2. 了解等差数列的一些性质,并会用它们解决一些相关问题;3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值.学习重难点1.重点:数列前n 项和公式的研究应用2.难点:前 n 项和的公式n S 的最值.一、课前预习习1:等差数列{n a }中, 4a =-15, 公差d =3,求5S .习2:等差数列{n a }中,已知31a =,511a =,求和8S .二、新课探究 ※ 学习探究问题:如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?※ 试一试例1已知数列{}n a 的前n 项为212n S n n =+,求这个数列的通项公式. 这个数列是等差数列吗?如果是,它的首项与公差分别是什么?变式:已知数列{}n a 的前n 项为212343n S n n =++,求这个数列的通项公式.小结:数列通项n a 和前n 项和n S 关系为: n a =11(1)(2)nn S n S S n -=⎧⎨-≥⎩,由此可由n S 求n a .例2 已知等差数列2454377,,,....的前n 项和为n S ,求使得n S 最大的序号n 的值.变式:等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.小结:等差数列前项和的最大(小)值的求法.(1)利用n a : 当n a >0,d <0,前n 项和有最大值,可由n a ≥0,且1n a +≤0,求得n 的值; 当n a <0,d >0,前n 项和有最小值,可由n a ≤0,且1n a +≥0,求得n 的值(2)利用n S :由21()22n d dS n a n =+-,利用二次函数配方法求得最大(小)值时n 的值.※ 模仿练习练1. 已知232n S n n =+,求数列的通项n a .练2. 有两个等差数列2,6,10,…,190及2,8,14,…200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,求这个新数列的各项之和.三、总结提升 ※ 学习小结1. 数列通项n a 和前n 项和n S 关系;2. 等差数列前项和最大(小)值的两种求法. ※ 知识拓展等差数列奇数项与偶数项的性质如下:1°若项数为偶数2n ,则: S S nd 偶奇-=;1(2)n n S an S a +≥奇偶=;2°若项数为奇数2n +1,则: 1n S S a +奇偶-=;1n S na +=偶;1(1)n S n a ++奇=;1S n S n +偶奇=. 当堂检测1. 下列数列是等差数列的是( ).A. 2n a n =B. 21n S n =+C. 221n S n =+D. 22n S n n =-2. 等差数列{n a }中,已知1590S =,那么8a =( ). A. 3 B. 4 C. 6 D. 123. 等差数列{n a }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ). A. 70 B. 130 C. 170 D. 2104. 在小于100的正整数中共有 个数被7除余2,这些数的和为 .5. 在等差数列中,公差d =12,100145S =,则13599...a a a a ++++= .课后作业1. 在项数为2n +1的等差数列中,所有奇数项和为165,所有偶数项和为150,求n 的值.2. 等差数列{n a },10a <,912S S =,该数列前多少项的和最小?课后反思。

高中数学 第2章 数列 2_5 等比数列的前n项和 第2课时 数列求和课时作业 新人教A版必修5

高中数学 第2章 数列 2_5 等比数列的前n项和 第2课时 数列求和课时作业 新人教A版必修5

2017春高中数学 第2章 数列 2.5 等比数列的前n 项和 第2课时数列求和课时作业 新人教A 版必修5基 础 巩 固一、选择题1.(2016·江苏启东中学期中)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为导学号 54742500( A )A .100101 B .99101 C .99100D .101100[解析] 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎪⎨⎪⎧a 1+4d =5,5a 1+5× 5-12d =15,解得⎩⎪⎨⎪⎧a 1=1,d =1.∴a n =a 1+(n -1)d =n . ∴1a n a n +1=1n n +1 =1n -1n +1,∴数列{1a n a n +1}的前100项和为(1-12)+(12-13)+…+(1100-1101)=1-1101=100101. 2.数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2016等于导学号 54742501( A )A .1008B .2016C .504D .0[解析] ∵函数y =cosn π2的周期T =2ππ2=4,且第一个周期四项依次为0,-1,0,1. ∴可分四组求和:a 1+a 5+…+a 2013=0,a 2+a 6+...+a 2014=-2-6- (2014)504× -2-20142=-504×1008,∴a 3+a 7+…+a 2015=0,a 4+a 8+…+a 2016=4+8+…+2016=504× 4+20162=504×1010.∴S 2016=0-504×1008+0+504×1010=504×(1010-1008)=1008,故选A . 3.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,设b n =1a n a n +1,那么数列{b n }前n 项的和为导学号 54742502( A )A .4(1-1n +1) B .4(12-1n +1)C .1-1n +1D .12-1n +1[解析] ∵a n =1+2+3+…+nn +1=n n +12n +1=n2, ∴b n =1a n a n +1=4n n +1 =4(1n -1n +1).∴S n =4[(1-12)+(12-13)+(13-14)+…+(1n -1n +1)]=4(1-1n +1).4.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于导学号 54742503( B )A .200B .-200C .400D .-400[解析] S 100=1-5+9-13+…+(4×99-3)-(4×100-3)=50×(-4)=-200. 5.(2016·湖北孝感高中月考)已知数列{a n }是等差数列,a 1=tan225°,a 5=13a 1.设S n 为数列{(-1)n a n }的前n 项和,则S 2016导学号 54742504( C )A .2016B .-2016C .3024D .-3024[解析] ∵a 1=tan225°=1,∴a 5=13a 1=13, ∴数列{a n }的公差d =a 5-a 15-1=13-14=3.∴S 2016=(a 2-a 1)+(a 4-a 3)+(a 6-a 5)+…+(a 2016-a 2015)=1008d =3024.6.数列{a n }满足a n +1+(-1)na n =2n -1,则{a n }的前60项和为导学号 54742505( D )A .3690B .3660C .1845D .1830[解析] 不妨令a 1=1,则a 2=2,a 3=a 5=a 7=…=1,a 4=6,a 6=10,…,所以当n 为奇数时,a n =1;当n 为偶数时,各项构成以2为首项,4为公差的等差数列,所以前60项的和为30+2×30+30× 30-12×4=1830.二、填空题7.数列22,422,623,…,2n 2n ,…前n 项的和为4-n +22n -1.导学号 54742506[解析] 设S n =22+422+623+ (2)2n ①12S n =222+423+624+ (2)2n +1② ①-②得(1-12)S n =22+222+223+224+…+22n -2n 2n +1=2-12n -1-2n 2n +1.∴S n =4-n +22n -1.8.(2015·广东理,10)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=10.导学号 54742507[解析] 因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25 即a 5=5,a 2+a 8=2a 5=10.三、解答题9.(2015·山东理,18)设数列{a n }的前n 项和为S n ,已知2S n =3n+3.导学号 54742508 (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . [解析] (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3, n =1.,3n -1,n ≥2.(2)因为a n b n =log 3a n ,所以b 1=13,当n ≥2时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n=13+(1×3-1+2×3-2+…+(n -1)×31-n), 所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n].两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n . 所以T n =1312-6n +34×3n经检验,n =1时也适合. 综上可得T n =1312-6n +34×3n .10.(2016·浙江文,17)设数列{a n }的前n 项和为S n .已知S 2=4,a n +1=2S n +1,n ∈N *.导学号 54742509(1)求通项公式a n ;(2)求数列{|a n -n -2|}的前n 项和.[解析] (1)由题意得⎩⎪⎨⎪⎧a 1+a 2=4,a 2=2a 1+1,则⎩⎪⎨⎪⎧a 1=1,a 2=3.又当n ≥2时,由a n +1-a n =(2S n +1)-(2S n -1+1)=2a n ,得a n +1=3a n .所以,数列{a n }的通项公式为a n =3n -1,n ∈N *.(2)设b n =|3n -1-n -2|,n ∈N *,b 1=2,b 2=1.当n ≥3时,由于3n -1>n +2,故b n =3n -1-n -2,设数列{b n }的前n 项和为T n ,则T 1=2,T 2=3. 当n ≥3时,T n =3+9 1-3n -21-3- n +7 n -2 2=3n-n 2-5n +112,所以T n =⎩⎪⎨⎪⎧2,n =1,3n -n 2-5n +112,n ≥2,n ∈N *.能 力 提 升一、选择题11.已知等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,且S n T n =7n +1n +3,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=导学号 54742510( A )A .315B .325C .6D .7[解析] ∵a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16= a 2+a 22 + a 5+a 17 b 8+b 16 + b 10+b 12 =2a 12+2a 112b 12+2b 11=a 11+a 12b 11+b 12=a 1+a 22b 1+b 22,又∵S 22T 22= a 1+a 22 ×22 b 1+b 22 ×22=a 1+a 22b 1+b 22, ∴a 1+a 22b 1+b 22=7×22+122+3=315. ∴a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=315.12.数列{a n }的通项公式是a n =2sin(n π2+π4),设其前n 项和为S n ,则S 12的值为导学号 54742511( A )A .0B . 2C .- 2D .1[解析] a 1=2sin(π2+π4)=1,a 2=2sin(π+π4)=-1,a 3=2sin(3π2+π4)=-1,a 4=2sin(2π+π4)=1, 同理,a 5=1,a 6=-1,a 7=-1,a 8=1,a 9=1,a 10=-1,a 11=-1,a 12=1,∴S 12=0.13.(2015·江西省质检)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n (n ∈N *),则数列{a n }的前2015项的和S 2015等于导学号 54742512( A )A .31008-2 B .31008-3 C .32015-2D .32015-3[解析] 因为a 1=1,a 2=3,a n +2a n=3, 所以S 2015=(a 1+a 3+…+a 2015)+(a 2+a 4+…+a 2014)=1-310081-3+3 1-310071-3=31008-2.二、填空题14.等比数列{a n }的前n 项和S n =3n +1+a (a 为常数),b n =1a 2n,则数列{b n }的前n 项和为132×(1-19n ).导学号 54742513 [解析] ∵S n 为等比数列{a n }的前n 项和,且S n =3(3n+a3).∴a3=-1,∴a =-3,∴S n =3n +1-3,∴当n ≥2时,a n =S n -S n -1=(3n +1-3)-(3n-3)=2×3n①,又∵a 1=S 1=6符合①式,∴a n =2×3n, ∴b n =1a 2n =14×9n =14·(19)n,∴{b n }的前n 项和为T n =136×[1- 19 n ]1-19=132×(1-19n ).15.求和1+(1+3)+(1+3+32)+(1+3+32+33)+…+(1+3+…+3n -1)=34(3n-1)-n2.导学号 54742514 [解析] a 1=1,a 2=1+3,a 3=1+3+32,……a n =1+3+32+…+3n -1=12(3n -1),∴原式=12(31-1)+12(32-1)+......+12(3n -1)=12[(3+32+ (3))-n ]=34(3n -1)-n2.三、解答题16.(2015·全国Ⅰ理,17)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.导学号 54742515(1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.[解析] (1)当n =1时,a 21+2a 1=4S 1+3=4a 1+3,因为a n >0,所以a 1=3, 当n ≥2时,a 2n +2a n -a 2n -1-2a n -1 =4S n +3-4S n -1-3=4a n ,即(a n +a n -1)(a n -a n -1)=2(a n +a n -1), 因为a n >0,所以a n -a n -1=2,所以数列{a n }是首项为3,公差为2的等差数列, 所以a n =2n +1;(2)由(1)知,b n = 12n +1 2n +3=12(12n +1-12n +3), 所以数列{b n }前n 项和为b 1+b 2+…+b n =12[(13-15)+(15-17)+…+(12n +1-12n +3)]=16-14n +6=n3 2n +3. 17.已知数列{a n }和{b n }中,数列{a n }的前n 项和为S n .若点(n ,S n )在函数y =-x 2+4x 的图象上,点(n ,b n )在函数y =2x的图象上.导学号 54742516(1)求数列{a n }的通项公式; (2)求数列{a n b n }的前n 项和T n . [解析] (1)由已知得S n =-n 2+4n , ∵当n ≥2时,a n =S n -S n -1=-2n +5, 又当n =1时,a 1=S 1=3,符合上式. ∴a n =-2n +5.(2)由已知得b n =2n,a n b n =(-2n +5)·2n.T n =3×21+1×22+(-1)×23+…+(-2n +5)×2n ,2T n =3×22+1×23+…+(-2n +7)×2n +(-2n +5)×2n +1.两式相减得T n =-6+(23+24+…+2n +1)+(-2n +5)×2n +1=231-2n -11-2+(-2n +5)×2n +1-6=(7-2n )·2n +1-14.。

高中数学:第二章 2.3 第1课时 等差数列的前n项和公式

高中数学:第二章 2.3 第1课时 等差数列的前n项和公式

[课时作业]页[A 组 基础巩固]1.等差数列{a n }中,d =2,a n =11,S n =35,则a 1等于( )A .5或7B .3或5C .7或-1D .3或-1解析:由题意,得⎩⎪⎨⎪⎧ a n =11,S n =35,即⎩⎪⎨⎪⎧ a 1+2(n -1)=11,na 1+n (n -1)2×2=35.解得⎩⎪⎨⎪⎧ n =5,a 1=3,或⎩⎪⎨⎪⎧n =7,a 1=-1. ★答案★:D2.已知等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 为( )A .7B .6C .3D .2解析:由S 2=4,S 4=20,得2a 1+d =4,4a 1+6d =20,解得d =3.★答案★:C3.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10等于( )A .138B .135C .95D .23解析:由a 2+a 4=4,a 3+a 5=10,可知d =3,a 1=-4.∴S 10=-40+10×92×3=95. ★答案★:C4.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7等于( )A .12B .13C .14D .15解析:由S 5=5a 3=25,∴a 3=5.∴d =a 3-a 2=5-3=2.∴a 7=a 2+5d =3+10=13.★答案★:B5.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( )A .9B .8C .7D .6 解析:当n =1时,a 1=S 1=-8;当n ≥2时,a n =S n -S n -1=(n 2-9n )-[(n -1) 2-9(n -1)]=2n -10.综上可得数列{a n }的通项公式a n =2n -10.所以a k =2k -10.令5<2k -10<8,解得k =8.★答案★:B6.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________. 解析:∵n ≥2时,a n =a n -1+12,且a 1=1,所以数列{a n }是以1为首项,以12为公差的等差数列,所以S 9=9×1+9×82×12=9+18=27. ★答案★:277.等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n =________.解析:⎩⎪⎨⎪⎧a 1+9d =10a 1+18d =100,∴d =10,a 1=-80. ∴S n =-80n +n (n -1)2×10=0, ∴-80n +5n (n -1)=0,n =17.★答案★:178.等差数列{a n }中,a 2+a 7+a 12=24,则S 13=________.解析:因为a 1+a 13=a 2+a 12=2a 7,又a 2+a 7+a 12=24,所以a 7=8.所以S 13=13(a 1+a 13)2=13×8=104. ★答案★:1049.在等差数列{a n }中:(1)已知a 5+a 10=58,a 4+a 9=50,求S 10;(2)已知S 7=42,S n =510,a n -3=45,求n .解析:(1)由已知条件得⎩⎪⎨⎪⎧ a 5+a 10=2a 1+13d =58,a 4+a 9=2a 1+11d =50,解得⎩⎪⎨⎪⎧a 1=3,d =4. ∴S 10=10a 1+10×(10-1)2d =10×3+10×92×4=210. (2)S 7=7(a 1+a 7)2=7a 4=42, ∴a 4=6.∴S n =n (a 1+a n )2=n (a 4+a n -3)2=n (6+45)2=510.∴n =20.10.在等差数列{a n }中,a 10=18,前5项的和S 5=-15,(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和的最小值,并指出何时取得最小值.解析:(1)设{a n }的首项,公差分别为a 1,d .则⎩⎪⎨⎪⎧a 1+9d =18,5a 1+52×4×d =-15, 解得a 1=-9,d =3,∴a n =3n -12.(2)S n =n (a 1+a n )2=12(3n 2-21n ) =32⎝⎛⎭⎫n -722-1478, ∴当n =3或4时,前n 项的和取得最小值为-18.[B 组 能力提升]1.S n 是等差数列{a n }的前n 项和,a 3+a 6+a 12为一个常数,则下列也是常数的是( )A .S 17B .S 15C .S 13D .S 7 解析:∵a 3+a 6+a 12为常数,∴a 2+a 7+a 12=3a 7为常数,∴a 7为常数.又S 13=13a 7,∴S 13为常数.★答案★:C2.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:a m =S m -S m -1=2,a m +1=S m +1-S m =3,∴d =a m +1-a m =1,由S m =(a 1+a m )m 2=0, 知a 1=-a m =-2,a m =-2+(m -1)=2,解得m =5.★答案★:C3.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于________. 解析:由等差数列的性质,a 5a 3=2a 52a 3=a 1+a 9a 1+a 5=59,∴S 9S 5=92(a 1+a 9)52(a 1+a 5)=95×59=1. ★答案★:14.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项和为180,S n =324(n >6),则数列的项数n =________,a 9+a 10=________.解析:由题意,可知a 1+a 2+…+a 6=36 ①,a n +a n -1+a n -2+…+a n -5=180 ②,由①+②,得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36.又S n =n (a 1+a n )2=324,∴18n =324,∴n =18,∴a 1+a 18=36,∴a 9+a 10=a 1+a 18=36. ★答案★:18 365.等差数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n . 解析:a 1=S 1=101,当n ≥2时,a n =S n -S n -1=-32n 2+2052n -⎣⎡ -32(n -1)2+ ⎦⎤2052(n -1)=-3n +104,a 1=S 1=101也适合上式,所以a n =-3n +104,令a n =0,n =3423,故n ≥35时,a n <0,n ≤34时,a n >0,所以对数列{|a n |},n ≤34时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =-32n 2+2052n , 当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n |=a 1+a 2+…+a 34-a 35-…-a n=2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n )=2S 34-S n =32n 2-2052n +3 502, 所以T n=⎩⎨⎧ -32n 2+2052n (n ≤34),32n 2-2052n +3 502(n ≥35).6.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解析:设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d , ∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧ 7a 1+21d =7,15a 1+105d =75, 即⎩⎪⎨⎪⎧ a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12, ∴T n =n ×(-2)+n ·(n -1)2×12=14n 2-94n .。

高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修5

高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修5

高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修51.等比数列{a n}的各项都是正数,若a1=81,a5=16,则它的前5项和是( B )(A)179 (B)211 (C)248 (D)275解析:由16=81×q4,q>0得q=,所以S5==211.故选B.2.在等比数列{a n}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是( A )(A)(B)-(C)±(D)±3解析:依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6==.故选A.3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1等于( C )(A)(B)-(C)(D)-解析:设等比数列{a n}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,所以q2=9,又a5=a1q4=9,所以a1=.故选C.4.等比数列{a n}中,a3=3S2+2,a4=3S3+2,则公比q等于( C )(A)2 (B)(C)4 (D)解析:因为a3=3S2+2,a4=3S3+2,所以a4-a3=3(S3-S2)=3a3,即a4=4a3,所以q==4,故选C.5.等比数列{a n}的前n项和S n=3n-a,则实数a的值为( B )(A)0 (B)1 (C)3 (D)不存在解析:法一当n≥2时,a n=S n-S n-1=3n-3n-1=2·3n-1,==3.又a1=S1=3-a,a2=2×3=6,则=.因为{a n}是等比数列,所以=3,得a=1.故选B.法二由等比数列前n项和公式知,3n系数1与-a互为相反数,即-a=-1,则a=1.故选B.6.在14与之间插入n个数组成等比数列,若各项和为,则数列的项数为( B )(A)4 (B)5 (C)6 (D)7解析:设公比为q,由等比数列的前n项和公式及通项公式得解之,得则数列的项数为5.故选B.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( C )(A)24里(B)12里(C)6里(D)3里解析:记每天走的路程里数为{a n},易知{a n}是公比q=的等比数列,S6=378,S6==378,所以a1=192,所以a6=192×=6,故选C.8.设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:由3S1,2S2,S3成等差数列知,4S2=3S1+S3,可得a3=3a2,所以公比q=3,故等比数列通项a n=a1q n-1=3n-1.答案:3n-19.在等比数列{a n}中,已知a1+a2+a3=1,a4+a5+a6=-2,则该数列的前15项和S15= .解析:记b1=a1+a2+a3,b2=a4+a5+a6,…,b5=a13+a14+a15,依题意{b n}构成等比数列,其首项b1=1,公比为q==-2,则{b n}的前5项和即为{a n}的前15项和S15==11.答案:1110.在等比数列{a n}中,公比q=,且log2a1+log2a2+…+log2a10=55,则a1+a2+…+a10= .解析:据题意知log2(·q1+2+…+9)=log2(·q45)=55,即=2100.又a n>0,所以a1=210,所以S10=211-2.答案:211-211.已知等比数列前20项和是21,前30项和是49,则前10项和是.解析:由S10,S20-S10,S30-S20成等比数列,所以(S20-S10)2=S10·(S30-S20),即(21-S10)2=S10(49-21).所以S10=7或S10=63.答案:7或6312.已知数列{a n} 的前n项和为S n,a1=1,S n=2a n+1,求S n的值.解:因为S n=2a n+1,所以n≥2时,S n-1=2a n.因为a n=S n-S n-1=2a n+1-2a n,所以3a n=2a n+1,所以=.又因为S1=2a2,所以a2=,所以=,所以{a n}从第二项起是以为公比的等比数列.所以S n=a1+a2+a3+…+a n=1+=()n-1.13.知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.解:(1)设等差数列{a n}的公差为d,由题意得d===3,所以a n=a1+(n-1)d=3n(n=1,2,…).设等比数列{b n-a n}的公比为q,由题意得q3===8,解得q=2.所以b n-a n=(b1-a1)q n-1=2n-1.从而b n=3n+2n-1(n=1,2,…).(2)由(1)知b n=3n+2n-1(n=1,2,…).数列{3n}的前n项和为n(n+1),数列{2n-1}的前n项和为=2n-1.所以数列{b n}的前n项和为n(n+1)+2n-1.14.已知数列{a n}满足a1=1,a n+1=3a n+1.(1)求证是等比数列,并求{a n}的通项公式;(2)求证++…+<.证明:(1)由a n+1=3a n+1得a n+1+=3(a n+).又a1+=,所以是首项为,公比为3的等比数列.所以a n+=,因此{a n}的通项公式为a n=.(2)由(1)知=.因为当n≥1时,3n-1≥2×3n-1,所以≤.于是++…+≤1++…+=(1-)<.所以++…+<.15.数列{a n}中,已知对任意n∈N*,a1+a2+a3+…+a n=3n-1,则+++…+等于( B )(A)(3n-1)2(B)(9n-1)(C)9n-1 (D)(3n-1)解析:因为a1+a2+…+a n=3n-1,n∈N*,n≥2时,a1+a2+…+a n-1=3n-1-1,所以当n≥2时,a n=3n-3n-1=2·3n-1,又n=1时,a1=2适合上式,所以a n=2·3n-1,故数列{}是首项为4,公比为9的等比数列.因此++…+==(9n-1).故选B.16.已知S n是等比数列{a n}的前n项和,若存在m∈N*,满足=9,=,则数列{a n}的公比为( B )(A)-2 (B)2 (C)-3 (D)3解析:设公比为q,若q=1,则=2,与题中条件矛盾,故q≠1.因为==q m+1=9,所以q m=8.所以==q m=8=,所以m=3,所以q3=8,所以q=2.故选B.17.设各项都是正数的等比数列{a n},S n为前n项和且S10=10,S30=70,那么S40= .解析:依题意,知数列{a n}的公比q≠-1,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30;又S20>0,因此S20=30,S20-S10=20,S30-S20=40,故S40-S30=80,S40=150.答案:15018.已知等差数列{a n}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{b n}的第2项,第3项,第4项.(1)求数列{a n}与{b n}的通项公式;(2)设数列{c n}对于任意n∈N*均有+++…+=a n+1成立,求c1+c2+c3+…+c2 015+c2 016的值. 解:(1)依题意得b2=a2=a1+d,b3=a5=a1+4d,b4=a14=a1+13d,由等比中项得(1+4d)2=(1+d)(1+13d),解得d=2或d=0(舍去),因此a n=1+2(n-1)=2n-1,b2=3,b3=9,b4=27,故数列{b n}是首项为1,公比为3的等比数列.因此b n=3n-1.(2)因为+++…+=a n+1,所以当n≥2时,+++…+=a n,两式作差得=a n+1-a n=d,又d=2,故c n=2×3n-1,又=a2,所以c1=3,因此数列c n=。

高中数学 第二章 数列 2.3 等差数列的前n项和学案 新人教A版必修5-新人教A版高一必修5数学学

高中数学 第二章 数列 2.3 等差数列的前n项和学案 新人教A版必修5-新人教A版高一必修5数学学

2.3 等差数列的前n项和(1)数列前n项和的定义是什么?通常用什么符号表示?(2)能否根据首项、末项与项数求出等差数列的前n项和?(3)能否根据首项、公差与项数求出等差数列的前n项和?[新知初探]1.数列的前n项和对于数列{a n},一般地称a1+a2+…+a n为数列{a n}的前n项和,用S n表示,即S n=a1+a2+…+a n.2.等差数列的前n项和公式已知量首项,末项与项数首项,公差与项数选用公式S n=n a1+a n2S n=na1+n n-12d[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)数列的前n项和就是指从数列的第1项a1起,一直到第n项a n所有项的和( )(2)a n=S n-S n-1(n≥2)化简后关于n与a n的函数式即为数列{a n}的通项公式( )(3)在等差数列{a n}中,当项数m为偶数2n时,则S偶-S奇=a n+1( )解析:(1)正确.由前n项和的定义可知正确.(2)错误.例如数列{a n}中,S n=n2+2.当n≥2时,a n=S n-S n-1=n2-(n-1)2=2n-1.又∵a1=S1=3,∴a1不满足a n=S n-S n-1=2n-1,故命题错误.(3)错误.当项数m为偶数2n时,则S偶-S奇=nd.预习课本P42~45,思考并完成以下问题答案:(1)√ (2)× (3)×2.等差数列{a n }中,a 1=1,d =1,则S n 等于( ) A .n B .n (n +1) C .n (n -1)D.n n +12解析:选 D 因为a 1=1,d =1,所以S n =n +n n -12×1=2n +n 2-n 2=n 2+n 2=n n +12,故选D.3.设等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6等于( )A .16B .24C .36D .48解析:选D 设等差数列{a n }的公差为d , 由已知得4a 1+4×32d =20,即4×12+4×32d =20,解得d =3,∴S 6=6×12+6×52×3=3+45=48.4.在等差数列{a n }中,S 4=2,S 8=6,则S 12=________.解析:由等差数列的性质,S 4,S 8-S 4,S 12-S 8成等差数列,所以2(S 8-S 4)=S 4+(S 12-S 8),S 12=3(S 8-S 4)=12.答案:12等差数列的前n 项和的有关计算[典例] 已知等差数列{a n }.(1)a 1=56,a 15=-32,S n =-5,求d 和n ;(2)a 1=4,S 8=172,求a 8和d .[解] (1)∵a 15=56+(15-1)d =-32,∴d =-16.又S n =na 1+n n -12d =-5,解得n =15或n =-4(舍). (2)由已知,得S 8=8a 1+a 82=84+a 82=172, 解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5.等差数列中的基本计算(1)利用基本量求值:等差数列的通项公式和前n 项和公式中有五个量a 1,d ,n ,a n 和S n ,这五个量可以“知三求二”.一般是利用公式列出基本量a 1和d 的方程组,解出a 1和d ,便可解决问题.解题时注意整体代换的思想.(2)结合等差数列的性质解题:等差数列的常用性质:若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q ,常与求和公式S n =n a 1+a n2结合使用.[活学活用]设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 8=11,则S 9等于( ) A .13 B .35 C .49D .63解析:选D ∵{a n }为等差数列,∴a 1+a 9=a 2+a 8, ∴S 9=9a 2+a 82=9×142=63.已知S n 求a n 问题[典例] 已知数列{a n }的前n 项和S n =-2n 2+n +2.(1)求{a n }的通项公式; (2)判断{a n }是否为等差数列? [解] (1)∵S n =-2n 2+n +2, ∴当n ≥2时,S n -1=-2(n -1)2+(n -1)+2=-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3,∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.(2)由(1)知,当n ≥2时,a n +1-a n =[-4(n +1)+3]-(-4n +3)=-4,但a 2-a 1=-5-1=-6≠-4,∴{a n }不满足等差数列的定义,{a n }不是等差数列.(1)已知S n 求a n ,其方法是a n =S n -S n -1(n ≥2),这里常常因为忽略条件“n ≥2”而出错. (2)在书写{a n }的通项公式时,务必验证n =1是否满足a n (n ≥2)的情形.如果不满足,则通项公式只能用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2表示.[活学活用]1.已知数列{a n }的前n 项和为S n =-n 2,则( ) A .a n =2n +1 B .a n =-2n +1 C .a n =-2n -1D .a n =2n -1解析:选B 当n =1时,a 1=S 1=-1;n ≥2时,a n =S n -S n -1=-n 2+(n -1)2=-2n +1,此时满足a 1=-1.综上可知a n =-2n +1.2.已知S n 是数列{a n }的前n 项和,根据条件求a n . (1)S n =2n 2+3n +2;(2)S n =3n-1.解:(1)当n =1时,a 1=S 1=7,当n ≥2时,a n =S n -S n -1=(2n 2+3n +2)-[2(n -1)2+3(n -1)+2]=4n +1,又a 1=7不适合上式,所以a n =⎩⎪⎨⎪⎧7,n =1,4n +1,n ≥2.(2)当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=(3n-1)-(3n -1-1)=2×3n -1,显然a 1适合上式,所以a n =2×3n -1(n ∈N *).等差数列的前n 项和性质[典例] (1)等差数列前n 项的和为30,前2n 项的和为100,则它的前3n 项的和为( ) A .130 B .170 C .210D .260(2)等差数列{a n }共有2n +1项,所有的奇数项之和为132,所有的偶数项之和为120,则n 等于________.(3)已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n =2n +2n +3,则a 5b 5=________.[解析] (1)利用等差数列的性质:S n ,S 2n -S n ,S 3n -S 2n 成等差数列.所以S n +(S 3n -S 2n )=2(S 2n -S n ), 即30+(S 3n -100)=2(100-30), 解得S 3n =210.(2)因为等差数列共有2n +1项,所以S 奇-S 偶=a n +1=S 2n +12n +1,即132-120=132+1202n +1,解得n =10.(3)由等差数列的性质,知a 5b 5=a 1+a 92b 1+b 92=a 1+a 92×9b 1+b 92×9=S 9T 9=2×9+29+3=53. [答案] (1)C (2)10 (3)53等差数列的前n 项和常用的性质(1)等差数列的依次k 项之和,S k ,S 2k -S k ,S 3k -S 2k …组成公差为k 2d 的等差数列.(2)数列{a n }是等差数列⇔S n =an 2+bn (a ,b 为常数)⇔数列⎩⎨⎧⎭⎬⎫S n n 为等差数列.(3)若S 奇表示奇数项的和,S 偶表示偶数项的和,公差为d , ①当项数为偶数2n 时,S 偶-S 奇=nd ,S 奇S 偶=a na n +1; ②当项数为奇数2n -1时,S 奇-S 偶=a n ,S 奇S 偶=n n -1. [活学活用]1.设等差数列{a n }的前n 项和为S n ,若S 4=8,S 8=20,则a 11+a 12+a 13+a 14=( ) A .18 B .17 C .16D .15解析:选A 设{a n }的公差为d ,则a 5+a 6+a 7+a 8=S 8-S 4=12,(a 5+a 6+a 7+a 8)-S 4=16d ,解得d =14,a 11+a 12+a 13+a 14=S 4+40d =18.2.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.解析:因为a n =2n +1,所以a 1=3, 所以S n =n 3+2n +12=n 2+2n ,所以S n n=n +2,所以⎩⎨⎧⎭⎬⎫S n n 是公差为1,首项为3的等差数列,所以前10项和为3×10+10×92×1=75.答案:75等差数列的前n 项和最值问题[典例] 在等差数列{a n }中,a 1=25,S 17=S 9,求前n 项和S n 的最大值. [解] 由S 17=S 9,得25×17+17×17-12d =25×9+9×9-12d ,解得d =-2, [法一 公式法]S n =25n +n n -12×(-2)=-(n -13)2+169.由二次函数性质得,当n =13时,S n 有最大值169. [法二 邻项变号法]∵a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2n -1≥0,a n +1=25-2n ≤0,得⎩⎪⎨⎪⎧n ≤1312,n ≥1212,即1212≤n ≤1312.又n ∈N *,∴当n =13时,S n 有最大值169.求等差数列的前n 项和S n 的最值的解题策略(1)将S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 配方,转化为求二次函数的最值问题,借助函数单调性来解决.(2)邻项变号法:当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0的项数n 使S n 取最大值.当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a n ≤0,a n +1≥0的项数n 使S n 取最小值.[活学活用]已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =( )A .11B .17C .19D .21解析:选C ∵S n 有最大值,∴d <0,则a 10>a 11,又a 11a 10<-1,∴a 11<0<a 10,a 10+a 11<0,S 20=10(a 1+a 20)=10(a 10+a 11)<0,S 19=19a 10>0,∴S 19为最小正值.故选C.层级一 学业水平达标1.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n2B .-32n 2-n2C.32n 2+n 2D.32n 2-n 2解析:选A ∵a n =2-3n ,∴a 1=2-3=-1,∴S n =n -1+2-3n2=-32n 2+n2.2.等差数列{a n }的前n 项和为S n ,若a 7>0,a 8<0,则下列结论正确的是( ) A .S 7<S 8 B .S 15<S 16 C .S 13>0D .S 15>0解析:选 C 由等差数列的性质及求和公式得,S 13=13a 1+a 132=13a 7>0,S 15=15a 1+a 152=15a 8<0,故选C.3.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A .63 B .45 C .36D .27解析:选B ∵a 7+a 8+a 9=S 9-S 6,而由等差数列的性质可知,S 3,S 6-S 3,S 9-S 6构成等差数列,所以S 3+(S 9-S 6)=2(S 6-S 3),即a 7+a 8+a 9=S 9-S 6=2S 6-3S 3=2×36-3×9=45.4.已知等差数列{a n }的前n 项和为S n,7a 5+5a 9=0,且a 9>a 5,则S n 取得最小值时n 的值为( )A .5B .6C .7D .8解析:选B 由7a 5+5a 9=0,得a 1d =-173.又a 9>a 5,所以d >0,a 1<0.因为函数y =d 2x 2+⎝⎛⎭⎪⎫a 1-d 2x 的图象的对称轴为x =12-a 1d =12+173=376,取最接近的整数6,故S n 取得最小值时n 的值为6.5.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12解析:选A S 9S 5=92a 1+a 952a 1+a 5=9×2a 55×2a 3=9a 55a 3=95×59=1. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________. 解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.设等差数列{a n }的前n 项和为S n ,且S m =-2,S m +1=0,S m +2=3,则m =________. 解析:因为S n 是等差数列{a n }的前n 项和,所以数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,所以S m m +S m +2m +2=2S m +1m +1,即-2m +3m +2=0,解得m =4. 答案:48.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________.解析:设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=n +1a 1+a 2n +12=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n a 2+a 2n2=na n +1,所以S 奇S 偶=n +1n =4433,解得n =3,所以项数2n +1=7, S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项.答案:11 79.已知数列{a n }的前n 项和为S n ,且满足log 2(S n +1)=n +1,求数列{a n }的通项公式. 解:由已知条件,可得S n +1=2n +1,则S n =2n +1-1.当n =1时,a 1=S 1=3, 当n ≥2时,a n =S n -S n -1=(2n +1-1)-(2n -1)=2n,又当n =1时,3≠21,故a n =⎩⎪⎨⎪⎧3,n =1,2n,n ≥2.10.在等差数列{a n }中,S n 为其前n 项的和,已知a 1+a 3=22,S 5=45. (1)求a n ,S n ;(2)设数列{S n }中最大项为S k ,求k .解:(1)由已知得⎩⎪⎨⎪⎧2a 2=22,5a 3=45, 即⎩⎪⎨⎪⎧a 2=11,a 3=9,所以⎩⎪⎨⎪⎧a 1=13,d =-2,所以a n =-2n +15,S n =-n 2+14n .(2)由a n ≥0可得n ≤7,所以S 7最大,k =7.层级二 应试能力达标1.已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =( ) A .12 B .14 C .16D .18解析:选B 因为S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n a 1+a n2=210,得n =14.2.在等差数列{a n }中,S n 是其前n 项和,且S 2 011=S 2 014,S k =S 2 009,则正整数k 为( ) A .2 014 B .2 015 C .2 016D .2 017解析:选C 因为等差数列的前n 项和S n 是关于n 的二次函数,所以由二次函数的对称性及S 2 011=S 2 014,S k =S 2 009,可得2 011+2 0142=2 009+k 2,解得k =2 016.故选C. 3.已知S n 为等差数列{a n }的前n 项和,S 1<0,2S 21+S 25=0,则S n 取最小值时,n 的值为( )A .11B .12C .13D .14解析:选A 设等差数列{a n }的公差为d ,由2S 21+S 25=0得,67a 1+720d =0,又d >0,∴67a 11=67(a 1+10d )=67a 1+670d <0,67a 12=67(a 1+11d )=67a 1+737d >0,即a 11<0,a 12>0.故选A.4.已知等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:选D ∵a n b n =a 1+a 2n -12b 1+b 2n -12=a 1+a 2n -122n -1b 1+b 2n -122n -1=A 2n -1B 2n -1=72n -1+452n -1+3=14n +382n +2=7+12n +1,∴当n 取1,2,3,5,11时,符合条件,∴符合条件的n 的个数是5. 5.若数列{a n }是等差数列,首项a 1<0,a 203+a 204>0,a 203·a 204<0,则使前n 项和S n <0的最大自然数n 是________.解析:由a 203+a 204>0⇒a 1+a 406>0⇒S 406>0,又由a 1<0且a 203·a 204<0,知a 203<0,a 204>0,所以公差d >0,则数列{a n }的前203项都是负数,那么2a 203=a 1+a 405<0,所以S 405<0,所以使前n 项和S n <0的最大自然数n =405.答案:4056.已知等差数列{a n }的前n 项和为S n ,若S 4≤4,S 5≥15,则a 4的最小值为________. 解析:S 4=2(a 1+a 4)≤4⇒2a 3-d ≤2,S 5=5a 3≥15⇒a 3≥3.因为2a 3-d ≤2,所以d -2a 3≥-2,又因为a 3≥3,所以2a 3≥6,所以d ≥4,所以a 4=a 3+d ≥7,所以a 4的最小值为7.答案:77.已知等差数列{a n }的公差d >0,前n 项和为S n ,且a 2a 3=45,S 4=28.(1)求数列{a n }的通项公式;(2)若b n =S n n +c (c 为非零常数),且数列{b n }也是等差数列,求c 的值. 解:(1)∵S 4=28,∴a 1+a 4×42=28,a 1+a 4=14,a 2+a 3=14,又a 2a 3=45,公差d >0,∴a 2<a 3,∴a 2=5,a 3=9,∴⎩⎪⎨⎪⎧ a 1+d =5,a 1+2d =9,解得⎩⎪⎨⎪⎧ a 1=1,d =4,∴a n =4n -3. (2)由(1),知S n =2n 2-n ,∴b n =S n n +c =2n 2-n n +c, ∴b 1=11+c ,b 2=62+c ,b 3=153+c . 又{b n }也是等差数列,∴b 1+b 3=2b 2,即2×62+c =11+c +153+c, 解得c =-12(c =0舍去).8.在等差数列{a n }中,a 10=23,a 25=-22.(1)数列{a n }前多少项和最大?(2)求{|a n |}的前n 项和S n .解:(1)由⎩⎪⎨⎪⎧ a 1+9d =23,a 1+24d =-22,得⎩⎪⎨⎪⎧ a 1=50,d =-3,∴a n =a 1+(n -1)d =-3n +53.令a n >0,得n <533, ∴当n ≤17,n ∈N *时,a n >0; 当n ≥18,n ∈N *时,a n <0,∴{a n }的前17项和最大.(2)当n ≤17,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =na 1+n n -12d =-32n 2+1032n .当n ≥18,n ∈N *时,|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 17-a 18-a 19-…-a n =2(a 1+a 2+…+a 17)-(a 1+a 2+…+a n )=2⎝ ⎛⎭⎪⎫-32×172+1032×17-⎝ ⎛⎭⎪⎫-32n 2+1032n =32n 2-1032n +884. ∴S n =⎩⎪⎨⎪⎧ -32n 2+1032n ,n ≤17,n ∈N *,32n 2-1032n +884,n ≥18,n ∈N *.。

2019_2020学年高中数学第二章数列2.3.1等差数列的前n项和练习(含解析)新人教A版必修5

2019_2020学年高中数学第二章数列2.3.1等差数列的前n项和练习(含解析)新人教A版必修5

第11课时 等差数列的前n 项和知识点一 等差数列前n 项和公式的简单应用1.已知等差数列{a n }中,a 2=7,a 4=15,则S 10等于( ) A .100 B .210 C .380 D .400 答案 B 解析 ∵d =a 4-a 24-2=15-72=4,又a 2=a 1+d =7,∴a 1=3.∴S 10=10a 1+10×92d =10×3+45×4=210.故选B .2.在等差数列{a n }中,S 10=120,则a 2+a 9=( ) A .12 B .24 C .36 D .48 答案 B 解析 ∵S 10=10a 1+a 102=5(a 2+a 9)=120,∴a 2+a 9=24.3.设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=( ) A .8 B .7 C .6 D .5 答案 D 解析 ∵S 7=a 1+a 72×7=35,∴a 1+a 7=10,∴a 4=a 1+a 72=5.知识点二 “知三求二”问题4.等差数列{a n }中,a 1=1,a 3+a 5=14,其前n 项和S n =100,则n =( ) A .9 B .10 C .11 D .12 答案 B解析 a 1=1,a 3+a 5=2a 1+6d =14,∴d =2,∴S n =n +n n -12×2=100.∴n =10.5.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________. 答案 2n解析 由已知⎩⎪⎨⎪⎧a 1+5d =12,3a 1+3d =12⇒⎩⎪⎨⎪⎧a 1=2,d =2.故a n =2n .知识点三 a n 与S n 的关系6.已知数列{a n }的通项公式为a n =2-3n ,则{a n }的前n 项和S n 等于( ) A .-32n 2+n 2 B .-32n 2-n2C .32n 2+n 2D .32n 2-n 2 答案 A解析 易知{a n }是等差数列且a 1=-1,所以S n =n a 1+a n2=n 1-3n2=-32n 2+n2.故选A .7.已知等差数列{a n }的前n 项和S n =n 2+n ,则过P (1,a 1),Q (2,a 2)两点的直线的斜率是( )A .1B .2C .3D .4 答案 B解析 ∵S n =n 2+n ,∴a 1=S 1=2,a 2=S 2-S 1=6-2=4.∴过P ,Q 两点直线的斜率k =a 2-a 12-1=4-21=2.8.已知{a n }的前n 项之和S n =2n+1,则此数列的通项公式为________.答案 a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2解析 当n =1时,a 1=S 1=2+1=3, 当n ≥2时,a n =S n -S n -1=2n +1-(2n -1+1)=2n -1,又21-1=1≠3,所以a n =⎩⎪⎨⎪⎧3n =1,2n -1n ≥2.易错点一 等差数列的特点考虑不周全9.已知数列{a n }的前n 项和S n =n 2+3n +2,判断{a n }是否为等差数列.易错分析 本题容易产生如下错解:∵a n =S n -S n -1=(n 2+3n +2)-[(n -1)2+3(n -1)+2]=2n +2.a n +1-a n =[2(n +1)+2]-(2n +2)=2(常数),∴数列{a n }是等差数列.需注意:a n =S n -S n -1是在n ≥2的条件下得到的,a 1是否满足需另外计算验证. 解 a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(n 2+3n +2)-[(n -1)2+3(n -1)+2]=2n +2,∴a n =⎩⎪⎨⎪⎧6n =1,2n +2n ≥2,显然a 2-a 1=6-6=0,a 3-a 2=2,∴{a n }不是等差数列.易错点二 忽略对项数的讨论10.已知等差数列{a n }的第10项为-9,前11项和为-11,求数列{|a n |}的前n 项和T n . 易错分析 对于特殊数列求和,往往要注意项数的影响,要对部分特殊项进行研究,否则计算易错.解 设等差数列{a n }的首项为a 1,公差为d ,前n 项和为S n ,则⎩⎪⎨⎪⎧a 1+9d =-9,11a 1+11×102d =-11,解得⎩⎪⎨⎪⎧a 1=9,d =-2,所以a n =9-2(n -1)=11-2n . 由a n >0,得n <112,则从第6项开始数列各项均为负数,那么 ①当n ≤5时,数列{a n }的各项均为正数,T n =n a 1+a n 2=n 9+11-2n 2=n (10-n );②当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5)=-S n +2S 5=n 2-10n +2×(10×5-52)=n 2-10n +50.所以T n =⎩⎪⎨⎪⎧n 10-n ,1≤n ≤5,n 2-10n +50,n ≥6.一、选择题1.在各项均不为零的等差数列{a n }中,若a n +1-a 2n +a n -1=0(n ≥2),则S 2n -1-4n =( ) A .-2 B .0 C .1 D .2 答案 A解析 ∵{a n }是等差数列,∴2a n =a n -1+a n +1(n ≥2).又a n +1-a 2n +a n -1=0(n ≥2),∴2a n-a 2n =0.∵a n ≠0,∴a n =2,∴S 2n -1-4n =(2n -1)×2-4n =-2.故选A .2.《九章算术》是我国第一部数学专著,下有源自其中的一个问题:“今有金箠(chuí),长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问金箠重几何?”其意思为:“今有金杖(粗细均匀变化)长5尺,截得本端1尺,重4斤,截得末端1尺,重2斤.问金杖重多少?”则答案是( )A .14斤B .15斤C .16斤D .18斤 答案 B解析 由题意可知等差数列中a 1=4,a 5=2,则S 5=a 1+a 5×52=4+2×52=15, ∴金杖重15斤.故选B .3.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( )A .3B .-3C .-2D .-1 答案 B解析 由⎩⎪⎨⎪⎧a 1+a 3+…+a 2n -1=na 1+n n -12×2d =90,a 2+a 4+…+a2n=na 2+n n -12×2d =72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3.4.一同学在电脑中打出如下图案:○●○○●○○○●○○○○●○○○○○●…若将此图案依此规律继续下去,那么在前120个中的●的个数是( )A .12B .13C .14D .15 答案 C解析 S =(1+2+3+…+n )+n =n n +12+n ≤120,∴n (n +3)≤240,∴n =14.故选C .5.在小于100的自然数中,所有被7除余2的数之和为( ) A .765 B .665 C .763 D .663 答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15.∴n =14,S 14=14×2+12×14×13×7=665.二、填空题6.已知数列{a n }的前n 项和S n =n 2+1,则a 1+a 5=________. 答案 11解析 由S n =n 2+1,得a 1=12+1=2,a 5=S 5-S 4=(52+1)-(42+1)=9.∴a 1+a 5=2+9=11.7.S n 是等差数列{a n }的前n 项和,若S n S 2n =n +14n +2,则a 3a 5=________.答案 35解析 ∵S n 是等差数列{a n }的前n 项和,S n S 2n =n +14n +2, ∴S 1S 2=a 1a 1+a 1+d =26=13,∴3a 1=2a 1+d ,∴a 1=d ,∴a 3a 5=a 1+2d a 1+4d =3d 5d =35.8.在等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10=________. 答案 -15解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9, ∵a n <0,∴a 3+a 8=-3. ∴S 10=10a 1+a 102=10a 3+a 82=10×-32=-15. 三、解答题9.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解 设等差数列{a n }的公差为d ,∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列S n n 是等差数列,其首项为-2,公差为12,∴T n =n ×(-2)+n n -12×12=14n 2-94n . 10.已知{a n }是等差数列,公差为d ,首项a 1=3,前n 项和为S n ,令c n =(-1)nS n (n ∈N *),{c n }的前20项和T 20=330.数列{b n }满足b n =2(a -2)dn -2+2n -1,a ∈R .(1)求数列{a n }的通项公式;(2)若b n +1≤b n ,n ∈N *,求a 的取值范围. 解 (1)设等差数列的公差为d ,因为c n =(-1)nS n ,所以T 20=-S 1+S 2-S 3+S 4+…+S 20=330, 则a 2+a 4+a 6+…+a 20=330,则10(3+d )+10×92×2d =330,解得d =3,所以a n =3+3(n -1)=3n . (2)由(1)知b n =2(a -2)3n -2+2n -1,b n +1-b n=2(a -2)3n -1+2n-[2(a -2)3n -2+2n -1]=4(a -2)3n -2+2n -1=4·3n -2⎣⎢⎡⎦⎥⎤a -2+12⎝ ⎛⎭⎪⎫23n -2,由b n +1≤b n ⇔(a -2)+12⎝ ⎛⎭⎪⎫23n -2≤0⇔a ≤2-12⎝ ⎛⎭⎪⎫23n -2,因为2-12⎝ ⎛⎭⎪⎫23n -2随着n 的增大而增大,所以n =1时,2-12⎝ ⎛⎭⎪⎫23n -2最小值为54,所以a ≤54.。

2017-2018年度高中数学 第二章 数列 2.3 等差数列的前n项和讲义 新人教A版必修5

2017-2018年度高中数学 第二章 数列 2.3 等差数列的前n项和讲义 新人教A版必修5
+a6+a7+a8)-S4=16d,解得 d=14,a11+a12+a13+a14=S4问题
[例 4] 已知等差数列{an}中,a1=9,a4+a7=0. (1)求数列{an}的通项公式; (2)当 n 为何值时,数列{an}的前 n 项和取得最大值. 【思路点拨】
跟踪训练 2 已知数列{an}的前 n 项和 Sn=-2n2+n+2. (1)求{an}的通项公式; (2)判断{an}是否为等差数列?
解析:(1)因为 Sn=-2n2+n+2, 所以当 n≥2 时,Sn-1=-2(n-1)2+(n-1)+2 =-2n2+5n-1,
所以 an=Sn-Sn-1 =(-2n2+n+2)-(-2n2+5n-1)
A.138
B.135
C.95
D.23
解析:由 a2+a4=4,a3+a5=10,可得 d=3,a1=-4. 所以 S10=-40+10× 2 9×3=95. 答案:C
3.(教材同类改编)等差数列{an}中,d=2,an=11,Sn=35, 则 a1 等于( )
A.5 或 7 B.3 或 5 C.7 或-1 D.3 或-1
令 an≥0,则 11-2n≥0,解得 n≤121. ∵n∈N+,∴n≤5 时,an>0,n≥6 时,an<0. ∴S5 最大.
方法归纳,
求等差数列的前 n 项和 Sn 的最值有两种方法: (1)通项法 ①当 a1>0,d<0 时,{an}只有前面的有限项为非负数,从某 项开始其余所有项均为负数,所以由am≥0, am+1≤0 可得 Sn 的最大值为 Sm;②当 a1<0,d>0 时,{an}只有前面的有限项为负 数,从某项开始其余所有项均为非负数,所以由
=-4n+3.
又 a1=S1=1,不满足 an=-4n+3, 所以数列{an}的通项公式是

高中数学人教版必修5课时练习:第二章 数列2-3 等差数列的前n项和

高中数学人教版必修5课时练习:第二章 数列2-3 等差数列的前n项和

=-1,所以当 n=20 时 Sn 最大.故选 B.
3.3×1 5+5×1 7+7×1 9+…+13×1 15=(
)
A.145
B.125
C.1145
D.175
[答案] B
[解析] 原式=12(31-15)+12(51-17)+…+12(113-115)=12(13-115)=125,故选 B.
4.已知等差数列{an}的前 n 项和为 Sn,a5=5,S5=15,则数列{ana1n+1}的前 100 项和为(
∴数列{Snn}是等差数列,其首项为-2,公差为21,
∴Tn=14n2-94n.
第 2 课时
一、选择题
1.记等差数列{an}的前 n 项和为 Sn.若 d=3,S4=20,则 S6=( )
A.16
B.24
C.36
D.48
[答案] D
[解析] 由 S4=20,4a1+6d=20,解得 a1=12⇒S6=6a1+6×2 5×3=48.
7.设 Sn 是等差数列{an}(n∈N*)的前 n 项和,且 a1=1,a4=7,则 S5=________. [答案] 25
[解析]
由a1=1 得a1=1 , a4=7 d=2
∴S5=5a1+5×2 4×d=25.
8.(2014·北京理,12)若等差数列{an}满足 a7+a8+a9>0,a7+a10<0,则当 n=________
高中数学人教版必修 5 课时练习 第二章 2.3 等差数列的前 n 项和
一、选择题
1.设 Sn 为等差数列{an}的前 n 项和,S8=4a3,a7=-2,则 a9=( )
A.-6
B.-4
C.-2
D.2
[答案] A

高中数学 2.3《等差数列的前n项和》三维目标教案(第1课时) 新人教A版必修5

高中数学 2.3《等差数列的前n项和》三维目标教案(第1课时) 新人教A版必修5

高中数学 2.3《等差数列的前n 项和》三维目标教案(第1课时) 新人教A 版必修5授课类型:新授课(第1课时)●三维目标知识与技能:掌握等差数列前n 项和公式及其获取思路;会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平.情感态度与价值观:通过公式的推导过程,展现数学中的对称美。

●教学重点等差数列n 项和公式的理解、推导及应●教学难点灵活应用等差数列前n 项公式解决一些简单的有关问题●教学过程Ⅰ.课题导入“小故事”:高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目:1+2+…100=?”过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说: “1+2+3+…+100=5050。

教师问:“你是如何算出答案的?高斯回答说:因为1+100=101;2+99=101;…50+51=101,所以101×50=5050”这个故事告诉我们:(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西。

(2)该故事还告诉我们求等差数列前n 项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法。

Ⅱ.讲授新课1.等差数列的前n 项和公式1:2)(1n n a a n S += 证明: n n n a a a a a S +++++=-1321 ①1221a a a a a S n n n n +++++=-- ②①+②:)()()()(223121n n n n n n a a a a a a a a S ++++++++=--∵ =+=+=+--23121n n n a a a a a a ∴)(21n n a a n S += 由此得:2)(1n n a a n S +=从而我们可以验证高斯十岁时计算上述问题的正确性2. 等差数列的前n 项和公式2:2)1(1dn n na S n -+=用上述公式要求n S 必须具备三个条件:n a a n ,,1 但d n a a n )1(1-+= 代入公式1即得: 2)1(1dn n na S n -+= 此公式要求n S 必须已知三个条件:d a n ,,1 (有时比较有用)[范例讲解]课本P49-50的例1、例2、例3由例3得与n a 之间的关系:由n S 的定义可知,当n=1时,1S =1a ;当n ≥2时,n a =n S -1-n S , 即n a =⎩⎨⎧≥-=-)2()1(11n S S n S n n .Ⅲ.课堂练习课本P52练习1、2、3、4Ⅳ.课时小结本节课学习了以下内容:1.等差数列的前n 项和公式1:2)(1n n a a n S +=2.等差数列的前n 项和公式2:2)1(1dn n na S n -+=Ⅴ.课后作业●板书设计●授后记。

人教a版必修5学案:2.3等差数列的前n项和(2)(含答案)

人教a版必修5学案:2.3等差数列的前n项和(2)(含答案)

2.3 等差数列的前n 项和(二)自主学习知识梳理1.前n 项和S n 与a n 之间的关系对任意数列{a n },S n 是前n 项和,S n 与a n 的关系可以表示为a n =⎩⎪⎨⎪⎧(n =1), (n ≥2).2.等差数列前n 项和公式S n =____________=____________.3.等差数列前n 项和的最值(1)在等差数列{a n }中当a 1>0,d <0时,S n 有________值,使S n 取到最值的n 可由不等式组____________确定;当a 1<0,d >0时,S n 有________值,使S n 取到最值的n 可由不等式组____________确定.(2)因为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,若d ≠0,则从二次函数的角度看:当d >0时,S n 有____________值;当d <0时,S n 有________值;且n 取最接近对称轴的自然数时,S n 取到最值.4.一个有用的结论:若S n =an 2+bn ,则数列{a n }是等差数列.反之亦然.自主探究在等差数列{a n }中,a n =2n -14,试用两种方法求该数列前n 项和S n 的最值.对点讲练知识点一 已知前n 项和S n ,求a n例1 已知数列{a n }的前n 项和为S n ,且S n =2n 2-3n ,求通项公式a n .总结 已知前n 项和S n 求通项a n ,先由n =1时,a 1=S 1求得a 1,再由n ≥2时,a n =S n -S n -1求a n ,最后验证a 1是否符合a n ,若符合则统一用一个解析式表示.变式训练1 已知数列{a n }的前n 项和S n =3n +b ,求a n .知识点二等差数列前n项和最值问题例2在等差数列{a n}中,a1=25,S17=S9,求S n的最大值.总结在等差数列中,求S n的最大(小)值,其思路是找出某一项,使这项及它前面的项皆取正(负)值或零,而它后面的各项皆取负(正)值,则从第1项起到该项的各项的和为最大(小).由于S n为关于n的二次函数,也可借助二次函数的图象或性质求解.变式训练2等差数列{a n}中,a1<0,S9=S12,该数列前多少项的和最小?知识点三已知{a n}为等差数列,求{|a n|}的前n项和例3已知等差数列{a n}中,记S n是它的前n项和,若S2=16,S4=24,求数列{|a n|}的前n项和T n.总结等差数列{a n}前n项的绝对值之和,由绝对值的意义,应首先分清这个数列的哪些项是负的,哪些项是非负的,然后再分段求出前n项的绝对值之和.变式训练3数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0 (n∈N*).(1)求数列{a n}的通项公式;(2)设S n=|a1|+|a2|+…+|a n|,求S n.1.公式a n =S n -S n -1并非对所有的n ∈N *都成立,而只对n ≥2的正整数才成立.由S n求通项公式a n =f (n )时,要分n =1和n ≥2两种情况分别计算,然后验证两种情况可否用统一解析式表示,若不能,则用分段函数的形式表示.2.求等差数列前n 项和的最值(1)二次函数法:用求二次函数的最值方法来求其前n 项和的最值,但要注意n ∈N *,结合二次函数图象的对称性来确定n 的值,更加直观.(2)通项法:当a 1>0,d <0,⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0时,S n 取得最大值;当a 1<0,d >0,⎩⎪⎨⎪⎧a n ≤0,a n +1≥0时,S n 取得最小值.3.求等差数列{a n }前n 项的绝对值之和,关键是找到数列{a n }的正负项的分界点.课时作业一、选择题1.设数列{a n }是等差数列,且a 2=-8,a 15=5,S n 是数列{a n }的前n 项和,则( )A .S 9<S 10B .S 9=S 10C .S 11<S 10D .S 11=S 102.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 为( )A .9B .8C .7D .63.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( ) A.310 B.13 C.18 D.194.数列{a n }的前n 项和S n =3n -2n 2 (n ∈N *),则当n ≥2时,下列不等式成立的是( )A .S n >na 1>na nB .S n >na n >na 1C .na 1>S n >na nD .na n >S n >na 15.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值题 号1 2 3 4 5 答 案二、填空题6.数列{a n }的前n 项和为S n ,且S n =n 2-n (n ∈N *),则通项a n =________.7.等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使前n 项和S n 取得最大值的自然数n 是______.8.在等差数列{a n }中,已知前三项和为15,最后三项和为78,所有项和为155,则项数n =________.三、解答题9.已知f (x )=x 2-2(n +1)x +n 2+5n -7(1)设f (x )的图象的顶点的纵坐标构成数列{a n },求证:{a n }为等差数列;(2)设f (x )的图象的顶点到x 轴的距离构成{b n },求{b n }的前n 项和.10.设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0.(1)求公差d 的范围;(2)问前几项的和最大,并说明理由.§2.3 等差数列的前n 项和(二)知识梳理1.S 1 S n -S n -12.n (a 1+a n )2 na 1+n (n -1)2d 3.(1)最大 ⎩⎪⎨⎪⎧ a n ≥0a n +1≤0 最小 ⎩⎪⎨⎪⎧a n ≤0a n +1≥0 (2)最小 最大 自主探究解 方法一 ∵a n =2n -14,∴a 1=-12,d =2. ∴a 1<a 2<…<a 6<a 7=0<a 8<a 9<….∴当n =6或n =7时,S n 取到最小值.易求S 7=-42,∴(S n )min =-42.方法二 ∵a n =2n -14,∴a 1=-12.∴S n =n (a 1+a n )2=n 2-13n =⎝⎛⎭⎫n -1322-1694. ∴当n =6或n =7时,S n 最小,且(S n )min =-42. 对点讲练例1 解 当n =1时,a 1=S 1=-1,当n ≥2时,a n =S n -S n -1=4n -5.又∵a 1=-1,适合a n =4n -5,∴a n =4n -5 (n ∈N *).变式训练1 解 当n =1时,a 1=S 1=3+b .n ≥2时,a n =S n -S n -1=2·3n -1.因此,当b =-1时,a 1=2适合a n =2·3n -1,∴a n =2·3n -1.当b ≠-1时,a 1=3+b 不适合a n =2·3n -1,∴a n =⎩⎪⎨⎪⎧ 3+b (n =1)2·3n -1 (n ≥2). 综上可知,当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧ 3+b (n =1)2·3n -1 (n ≥2). 例2 解 方法一 利用前n 项和公式和二次函数性质.由S 17=S 9,得25×17+172×(17-1)d =25×9+92×(9-1)d , 解得d =-2,所以S n =25n +n 2(n -1)(-2)=-(n -13)2+169, 由二次函数性质可知,当n =13时,S n 有最大值169.方法二 先求出d =-2,因为a 1=25>0,由⎩⎪⎨⎪⎧a n =25-2(n -1)≥0,a n +1=25-2n ≤0, 得⎩⎨⎧ n ≤1312,n ≥1212.所以当n =13时,S n 有最大值.S 13=25×13+13×(13-1)2×(-2)=169. 因此S n 的最大值为169.方法三 由S 17=S 9,得a 10+a 11+…+a 17=0,而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14,故a 13+a 14=0.由方法一知d =-2<0,又因为a 1>0,所以a 13>0,a 14<0,故当n =13时,S n 有最大值.S 13=25×13+13×(13-1)2×(-2)=169. 因此S n 的最大值为169.变式训练2 解 方法一 由S 9=S 12,得d =-110a 1, 由⎩⎪⎨⎪⎧a n =a 1+(n -1)d ≤0a n +1=a 1+nd ≥0, 得⎩⎨⎧ 1-110(n -1)≥01-110n ≤0,解得10≤n ≤11.∴当n 为10或11时,S n 取最小值,∴该数列前10项或前11项的和最小.方法二 由S 9=S 12,得d =-110a 1, 由S n =na 1+n (n -1)2d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,得S n =⎝⎛⎭⎫-120a 1·n 2+⎝⎛⎭⎫2120a 1·n =-a 120⎝⎛⎭⎫n -2122+44180a 1 (a 1<0), 由二次函数性质可知n =212=10.5时,S n 最小. 但n ∈N *,故n =10或11时S n 取得最小值.所以该数列前10项或者前11项的和最小.例3 解 由S 2=16,S 4=24,得⎩⎨⎧ 2a 1+2×12d =16,4a 1+4×32d =24.即⎩⎪⎨⎪⎧ 2a 1+d =16,2a 1+3d =12. 解得⎩⎪⎨⎪⎧ a 1=9,d =-2. 所以等差数列{a n }的通项公式为a n =11-2n (n ∈N *).(1)当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n .(2)当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-a 6-a 7-…-a n =2S 5-S n=2×(-52+10×5)-(-n 2+10n )=n 2-10n +50,故T n =⎩⎪⎨⎪⎧ -n 2+10n (n ≤5),n 2-10n +50 (n ≥6). 变式训练3 解 (1)∵a n +2-2a n +1+a n =0. ∴a n +2-a n +1=a n +1-a n =…=a 2-a 1.∴{a n }是等差数列且a 1=8,a 4=2,∴d =-2,a n =a 1+(n -1)d =10-2n .(2)T n =a 1+a 2+…+a n =n (8+10-2n )2=9n -n 2. ∵a n =10-2n ,令a n =0,得n =5.当n >5时,a n <0;当n =5时,a n =0;当n <5时,a n >0.∴当n ≥6时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n )=T 5-(T n -T 5)=2T 5-T n=2×(9×5-25)-9n +n 2=n 2-9n +40,当n ≤5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =T n =9n -n 2.∴S n =⎩⎪⎨⎪⎧ 9n -n 2, (n ≤5)n 2-9n +40, (n >5) n ∈N *. 课时作业1.B [由已知得d =a 15-a 215-2=1,∴a 1=-9, ∴a 10=a 1+9d =0,∴S 10=S 9+a 10=S 9.]2.B [由a n =⎩⎪⎨⎪⎧S 1, n =1S n -S n -1, n ≥2,∴a n =2n -10. 由5<2k -10<8,得:7.5<k <9,∴k =8.]3.A [方法一 S 3S 6=3a 1+3d 6a 1+15d =13,∴a 1=2d ,S 6S 12=6a 1+15d 12a 1+66d =12d +15d 24d +66d =310. 方法二 由S 3S 6=13, 得S 6=3S 3.S 3,S 6-S 3,S 9-S 6,S 12-S 9仍然是等差数列, 公差为(S 6-S 3)-S 3=S 3,从而S 9-S 6=S 3+2S 3=3S 3⇒S 9=6S 3, S 12-S 9=S 3+3S 3=4S 3⇒S 12=10S 3,所以S 6S 12=310.] 4.C [由a n =⎩⎪⎨⎪⎧S 1 (n =1)S n -S n -1(n ≥2), 解得a n =5-4n .∴a 1=5-4×1=1,∴na 1=n ,∴na n =5n -4n 2, ∵na 1-S n =n -(3n -2n 2)=2n 2-2n =2n (n -1)>0. S n -na n =3n -2n 2-(5n -4n 2)=2n 2-2n >0.∴na 1>S n >na n .]5.C [由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0.由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0.]6.2n -27.5或6解析 d <0,|a 3|=|a 9|,∴a 3>0,a 9<0且a 3+a 9=0, ∴a 6=0,∴a 1>a 2>…>a 5>0,a 6=0,0>a 7>a 8>….∴当n =5或6时,S n 取到最大值.8.10解析 由已知,a 1+a 2+a 3=15,a n +a n -1+a n -2=78,两式相加,得 (a 1+a n )+(a 2+a n -1)+(a 3+a n -2)=93,即a 1+a n =31.由S n =n (a 1+a n )2=31n 2=155,得n =10. 9.(1)证明 f (x )=[x -(n +1)]2+3n -8,∴a n =3n -8,∵a n +1-a n =3,∴{a n }为等差数列.(2)解 b n =|3n -8|.当1≤n ≤2时,b n =8-3n ,b 1=5.S n =n (5+8-3n )2=13n -3n 22. 当n ≥3时,b n =3n -8,S n =5+2+1+4+…+(3n -8)=7+(n -2)(1+3n -8)2=3n 2-13n +282. ∴S n =⎩⎨⎧13n -3n 22 (1≤n ≤2),3n 2-13n +282 (n ≥3).10.解 (1)根据题意,有:⎩⎨⎧12a 1+12×112d >0,13a 1+13×122d <0,a 1+2d =12,整理得:⎩⎪⎨⎪⎧ 2a 1+11d >0,a 1+6d <0,a 1+2d =12.解之得:-247<d <-3. (2)∵d <0,∴a 1>a 2>a 3>…>a 12>a 13>…,而S 13=13(a 1+a 13)2=13a 7<0,∴a 7<0. 又S 12=12(a 1+a 12)2=6(a 1+a 12)=6(a 6+a 7)>0, ∴a 6>0.∴数列{a n }的前6项和S 6最大.。

高中数学第二章数列2.5等比数列的前n项和学案新人教A版必修5(2021年整理)

高中数学第二章数列2.5等比数列的前n项和学案新人教A版必修5(2021年整理)

(浙江专版)2018年高中数学第二章数列2.5 等比数列的前n项和学案新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2018年高中数学第二章数列2.5 等比数列的前n项和学案新人教A版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2018年高中数学第二章数列2.5 等比数列的前n项和学案新人教A版必修5的全部内容。

2。

5 错误!第一课时等比数列的前n项和(1)公比是1的等比数列的前n项和如何计算?(2)能否根据首项、末项与项数求出等比数列的前n项和?(3)能否根据首项、公比与项数求出等比数列的前n项和?(4)等比数列前n项和的性质有哪些?[新知初探]1.等比数列的前n项和公式已知量首项a1与公比q首项a1,末项a n与公比q公式S n=错误!S n=错误![在应用公式求和时,应注意到S n错误!常数列求和,即S n=na1.2.等比数列前n项和的性质(1)等比数列{a n}中,若项数为2n,则错误!=q;若项数为2n+1,则错误!=q。

(2)若等比数列{a n}的前n项和为S n,则S n,S2n-S n,S3n-S2n…成等比数列(其中S n,S2n -S n,S3n-S2n…均不为0).(3)若一个非常数列{a n}的前n项和S n=Aq n-A(A≠0,q≠0,n∈N*),则数列{a n}为等比数列,即S n=Aq n-A(A≠0,q≠0,q≠1,n∈N*)⇔数列{a n}为等比数列.错误!1.判断下列命题是否正确.(正确的打“√",错误的打“×”)(1)求等比数列{a n}的前n项和时可直接套用公式S n=a11-q n1-q来求( )预习课本P55~58,思考并完成以下问题(2)首项为a的数列既是等差数列又是等比数列,则其前n项和为S n=na()(3)若某数列的前n项和公式为S n=-aq n+a(a≠0,q≠0且q≠1,n∈N*),则此数列一定是等比数列( )解析:(1)错误.在求等比数列前n项和时,首先应看公比q是否为1,若q≠1,可直接套用,否则应讨论求和.(2)正确.若数列既是等差数列,又是等比数列,则是非零常数列,所以前n项和为S n=na。

高中数学第二章数列2.3等差数列前n项和(第1课时)课件新人教A版必修5

高中数学第二章数列2.3等差数列前n项和(第1课时)课件新人教A版必修5
算上容易出现失误,不能准确 求出首项 a1 和公差 d; (2)基本公式中的项数或奇偶项的 确定不正确; (3)判断一个数列是否为等差数列
时,易忽略验证第一项.
[活学活用] 已知等差数列{an}中,a1=1,a3=-3. (1)求数列{an}的通项公式;(2)若数列{an}的前 k 项和 Sk=-35,求 k 的值. 解:(1)设等差数列{an}的公差为 d,则 an=a1+(n-1)d. 由 a1=1,a3=-3 可得 1+2d=-3.解得 d=-2. 从而,an=1+(n-1)×(-2)=3-2n. (2)由(1)可知 an=3-2n.所以 Sn=n1+23-2n=2n- n2.进而由 Sk=-35,可得 2k-k2=-35. 又 k∈N*,故 k=7 为所求.
归纳小结
等差数列的前 n 项和公式
已知量 首项,末项与项数 首项,公差与项数
选用 公式
Sn=na12+an
Sn=na1+nn2-1d
[化解疑难] 等差数列前 n 项和公式的特点
(1)两个公式共涉及到 a1,d,n,an 及 Sn 五个基本量,它 们分别表示等差数列的首项,公差,项数,通项和前 n 项和.
[答案] B
(2)[解] ∵数列{an}为等差数列, ∴S10,S20-S10,S30-S20,…,S110-S100 也成等差数列. 设其公差为 D,则 S10+(S20-S10)+(S30-S20)+…+(S100 -S90)=S100,
即 10S10+10×2 9×D=S100=10. 又∵S10=100,代入上式,得 D=-22, ∴S110-S100=S10+(11-1)×D=100+10×(- 22)=-120, ∴S110=-120+S100=-110.
答案:104

2020_2021学年高中数学第二章数列2.3.1等差数列的前n项和同步作业含解析新人教A版必修52

2020_2021学年高中数学第二章数列2.3.1等差数列的前n项和同步作业含解析新人教A版必修52

等差数列的前n项和(30分钟60分)一、选择题(每小题5分,共30分)1.已知等差数列{a n}的前10项和为30,a6=8,则a100=( )A.100B.958C.948D.18【解析】选C.设等差数列{a n}的公差为d,由已知解得所以a100=-42+99×10=948.2.已知等差数列{a n}的公差为3,且a1+a3=8,则数列{a n}的前4项的和S4的值为( ) A.10B.16C.22D.35【解析】选C.因为等差数列{a n}的公差为3,且a1+a3=8,所以2a1+2×3=8,所以a1=1,所以S4=4×1+×3=22.3.(2019·某某高二检测)已知等差数列的前n项和S n,且S3=S5=15,则S7=() A.4B.7C.14D.【解析】选B.等差数列的前n项和为S n,且S3=S5=15,所以a4+a5=0,所以2a1+7d=0.再根据S3=3a1+3d=15,可得a1=7,d=-2,则S7=7a1+d=49+21×(-2)=7.4.(2019·某某高一检测)在等差数列{a n}中,若a3+a4+a5+a6+a7=45,则S9=() A.45B.162C.81D.【解析】选C.因为在等差数列{a n}中,a3+a4+a5+a6+a7=5a5=45,所以a5=9.所以S9==9a5=81.5.等差数列{a n}的前n项和为S n,若=,则下列结论中正确的是( )A.=2B.=C.=D.=【解析】选C.由已知S n=a n,S n-1=a n-1(n≥2),两式相减可得a n=a n-a n-1(n≥2),化简得=(n≥2),当n=3时,=.6.数列{a n}的前n项和S n=2n2+n(n∈N*),则a n=( )A.2n-1B.2n+1C.4n-1D.3n+2【解析】选C.因为数列{a n}的前n项和S n=2n2+n,所以当n≥2时,a n=S n-S n-1=2n2+n-[2(n-1)2+(n-1)]=4n-1,当n=1时,a1=S1=3,符合上式,所以综上a n=4n-1.二、填空题(每小题5分,共10分)7.设等差数列{a n}的前n项和为S n,S3=6,S4=12,则S6=________.【解析】方法一:设数列{a n}的首项为a1,公差为d,由S3=6,S4=12,得解得所以S6=6a1+15d=30.方法二:因为{a n}为等差数列,可设前n项和S n=An2+Bn,由S3=6,S4=12得解得即S n=n2-n,所以S6=36-6=30.答案:308.设等差数列{a n}的前n项和为S n,若S8=32,则a2+2a5+a6=__________.【解析】因为S8=32,所以=32.可得a4+a5=a1+a8=8,则a2+2a5+a6=2(a4+a5)=2×8=16.答案:16三、解答题(每小题10分,共20分)9.在各项为正的等差数列{a n}中,已知公差d=2,a n=11,S n=35,求a1和n.【解析】由题意得即解得或(舍去)故10.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ.(2)是否存在λ,使得{a n}为等差数列?并说明理由.【解析】(1)由a n a n+1=λS n-1知,a n+1a n+2=λS n+1-1,两式相减得,a n+1(a n+2-a n)=λa n+1,又因为a n+1≠0,所以a n+2-a n=λ.(2)存在.由a1=1,a1a2=λa1-1,得a2=λ-1,由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.所以a n+2-a n=4,由此可得,{a2n-1}是首项为1,公差为4的等差数列,a2n-1=1+(n-1)·4=4n-3; {a2n}是首项为3,公差为4的等差数列,a2n=3+(n-1)·4=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得{a n}为等差数列.(45分钟75分)一、选择题(每小题5分,共25分)1.已知等差数列{1-3n},则公差d等于( )A.1B.3C.-3D.n【解析】选C.因为a n=1-3n,所以a1=-2,a2=-5,所以d=a2-a1=-3.2.设等差数列{a n}的前n项和为S n,若S17=255,a10=20,则数列{a n}的公差为( ) A.3B.4C.5D.6【解析】选C.根据等差数列的求和公式,可得S17=×17=17a9=255,可得a9=15,又a10=20,所以d=a10-a9=20-15=5.3.等差数列中,S n是前n项和,若a3+a8=5,S9=45,则S11=( )A.0B.10C.20D.25【解析】选A.设等差数列的首项为a1,公差为d,因为,所以,即,解得,则S11=25×11-×5=0.故选A.4.已知等差数列{a n}中,a2=6,a5=15,若b n=a2n,则数列{b n}的前5项和等于( ) A.30B.45C.90D.186【解析】选C.因为所以故所以a n=a1+(n-1)d=3n,故b n=a2n=6n,则因此{b n}的前5项和为S5=5×6+×6=90.5.(2019·定州高一检测)记等差数列{a n}的前n项和为S n,若a5=3,S13=91,则S11=( ) A.36B.72C.55D.110【解析】选C.因为S13==13a7=91,所以a7=7,因为a5=3,所以a5+a7=10,因为a1+a11=a5+a7=10,所以S11==55.二、填空题(每小题5分,共20分)6.(2019·全国卷Ⅲ)记S n为等差数列{a n}的前n项和,a1≠0,a2=3a1,则=________.【解析】设该等差数列的公差为d,因为a2=3a1,所以a1+d=3a1,故d=2a1(a1≠0,d≠0),所以====4.答案:47.若数列{a n}的前n项和S n=n2-8n,n=1,2,3,…,则满足a n>0的n的最小值为________.【解析】(1)当n=1时,a1=S1=12-8=-7.(2)当n>1时,由S n=n2-8n得:S n-1=(n-1)2-8(n-1)=n2-10n+9,两式相减,得:a n=2n-9,n=1也符合,由a n=2n-9>0,得:n>4.5,所以,满足a n>0的n的最小值为5.答案:58.已知数列{a n}的前n项和S n=n2-2n+3,则a n=________.【解析】当n=1时,a1=S1=2,当n≥2,a n=S n-S n-1=n2-2n-(n-1)2+2(n-1)=2n-3,故a n=答案:9.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,天坛圆丘的地面由扇环形的石板铺成(如图所示),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是________.【解析】因为最高一层的中心是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则每圈的石板数构成一个以9为首项,以9为公差的等差数列,所以a n=9n,当n=9时,第9圈共有81块石板,所以前9圈的石板总数S9=(9+81)=405.答案:405三、解答题(每小题10分,共30分)10.等差数列{a n}的前n项和记为S n,已知a10=30,a20=50.(1)求通项a n.(2)令S n=242,求n.【解析】(1)由a n=a1+(n-1)d,a10=30,a20=50,得方程组解得所以a n=2n+10.(2)由S n=na1+·d,S n=242,得方程12n+×2=242,解得n=11或n=-22(舍去),即n=11.11.设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0.(1)若S5=5,求S6及a1.(2)求d的取值X围.【解析】(1)由题意知S6=-=-3,a6=S6-S5=-8,所以解得a1=7. 综上,S6=-3,a1=7.(2)因为S5S6+15=0,所以(5a1+10d)(6a1+15d)+15=0,即2+9da1+10d2+1=0,所以(4a1+9d)2=d2-8,所以d2≥8.故d的取值X围为d≤-2或d≥2.12.(2017·某某高考)对于给定的正整数k,若数列{a n}满足a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”.(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【证明】(1)因为是等差数列,设其公差为d,则a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列是“P数列”.(2)数列既是“P数列”,又是“P数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n),④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2+a3+a3+2d′+a3+3d′=4(a3+d′),即a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,因为a3=a2+d′,所以a1+a2+a2+2d′+a2+3d′=4(a2+d′), 即a1=a2-d′,所以数列{a n}是等差数列.。

高中数学《2.3等差数列的前n项和》导学案 新人教A版必修5

高中数学《2.3等差数列的前n项和》导学案 新人教A版必修5

2.3等差数列的前n 项和【学习目标】1.掌握等差数列前n 项和公式及其获取思路;2.会用等差数列的前n 项和公式解决一些简单的与前n 项和有关的问题 【研讨互动 问题生成】 1.等差数列的前n 项和公式1 2.等差数列的前n 项和公式2 【合作探究 问题解决】1.一般地,如果一个数列{},n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少?2.对等差数列的前n 项和公式2:2)1(1dn n na S n -+=可化成式子:n )2d a (n2d S 12n -+=,当d ≠0,是一个常数项为零的二次式【点睛师例 巩固提高】例1. 一个等差数列前4项的和是24,前5项的和与前2项的和的差是27,求这个等差数列的通项公式。

例2.差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值。

【要点归纳 反思总结】1.前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,一定是等差数列,该数列的首项是1a p q r =++; 公差是d=2p通项公式是111,12(),2n n n S a p q r n a S S pn p q n -==++=⎧=⎨-=-+≥⎩当时当时2.等差数列前项和的最值问题有两种方法:(1)当n a >0,d<0,前n 项和有最大值可由n a ≥0,且1+n a ≤0,求得n 的值。

当n a <0,d>0,前n 项和有最小值可由n a ≤0,且1+n a ≥0,求得n 的值。

(2)由n )2d a (n2d S 12n -+=利用二次函数配方法求得最值时n 的值【多元评价】自我评价: 小组成员评价: 小组长评价: 学科长评价: 学术助理评价: 【课后训练】1.在等差数列{a n }中,S m =S n ,则S m+n 的值为( ) (A )0 (B )S m +S n (C )2(S m +S n ) (D ))(21n m S S +2.在等差数列{a n }中,S 4=6,S 8=20,则S 12= 。

新人教A版高中数学教材目录(必修+选修)

新人教A版高中数学教材目录(必修+选修)

必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎证明阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰思考题二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告选修4-1几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-5不等式选讲第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲讲明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6初等数论初步第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7优选法与试验设计初步第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告选修4-9风险与决策第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告。

高中数学《2.3等差数列的前n项和》第1课时评估训练 新人教A版必修5

高中数学《2.3等差数列的前n项和》第1课时评估训练 新人教A版必修5

2.3 等差数列的前n 项和 第1课时 等差数列的前n 项和双基达标 限时20分钟1.在等差数列{a n }中,S 10=120,那么a 1+a 10的值是( ).A .12B .24C .36D .48解析 由S 10=10a 1+a 102,得a 1+a 10=S 105=1205=24.答案 B2.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于 ( ).A .9B .8C .7D .6解析 此数列为等差数列,a n =S n -S n -1=2n -10,由5<2k -10<8得到k =8. 答案 B3.已知等差数列{a n }中,a 32+a 82+2a 3a 8=9,且a n <0,则S 10为 ( ).A .-9B .-11C .-13D .-15解析 由a 32+a 82+2a 3a 8=9得(a 3+a 8)2=9,∵a n <0, ∴a 3+a 8=-3, ∴S 10=10a 1+a 102 =10a 3+a 82=10×-32=-15.答案 D4.若数列{a n }的前n 项和S n =n 2+2n +5,则a 5+a 6+a 7=________. 解析 a 5+a 6+a 7=S 7-S 4=39. 答案 395.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________. 解析 由a 6=S 3=12可得{a n }的公差d =2,首项a 1=2,故易得a n =2n . 答案 2n6.已知等差数列{a n }中, (1)a 1=12S 4=20,求S 6;(2)a 1=32d =-12,S n =-15,求n 及a n ;(3)a 1=1,a n =-512,S n =-1 022,求d . 解 (1)S 4=4a 1+44-12d =4a 1+6d =2+6d =20,∴d =3. 故S 6=6a 1+66-12d =6a 1+15d =3+15d =48. (2)∵S n =n ·32+n n -12⎝⎛⎭⎫-12=-15,整理得n 2-7n -60=0,解得n =12或n =-5(舍去), a 12=32+(12-1)×⎝⎛⎭⎫-12=-4.(3)由S n =n a 1+a n 2=n -512+12=-1 022,解得n =4.又由a n =a 1+(n -1)d ,即-512=1+(4-1)d , 解得d =-171.综合提高 限时25分钟7.等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a m 2=0,S 2m -1=38,则m 等于 ( ). A .38B .20C .10D .9解析 因为{a n }是等差数列,所以a m -1+a m +1=2a m ,由a m -1+a m +1-a m 2=0,得:2a m -a m 2=0,由S 2m -1=38知a m ≠0,所以a m =2,又S 2m -1=38,即2m -1a 1+a 2m -12=38,即(2m -1)×2=38,解得m =10,故选C. 答案 C8.等差数列{a n }中,首项a 1>0,公差d <0,S n 为其前n 项和,则点(n ,S n )可能在下列哪条曲线上( ).解析 由S n =na 1+12n (n -1)d =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,及d <0,a 1>0知,d 2<0,a 1-d2>0,排除A 、B.对称轴n =-a 1-d2d=d -2a 12d>0,排除D. 答案 C9.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________. 解析 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1, S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8. 由⎩⎪⎨⎪⎧a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15. 答案 1510.在等差数列{a n }和{b n }中,a 1=25,b 1=75,a 100+b 100=100,则数列{a n +b n }的前100项的和为________.解析 由已知得{a n +b n }为等差数列,故其前100项的和为S 100=100[a 1+b 1+a 100+b 100]2=50×(25+75+100)=10 000.答案 10 00011.设正项数列{a n }的前n 项和为S n ,并且对于任意n ∈N *,a n 与1的等差中项等于S n ,求数列{a n }的通项公式. 解 由题意知,S n =a n +12,得:S n =a n +124.∴a 1=S 1=1.又∵a n +1=S n +1-S n =14[(a n +1+1)2-(a n +1)2],∴(a n +1-1)2-(a n +1)2=0, 即(a n +1+a n )(a n +1-a n -2)=0, ∵a n >0,∴a n +1-a n =2,∴{a n }是以1为首项,2为公差的等差数列, ∴a n =2n -1.12.(创新拓展)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ; (2)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c .解 (1){a n }为等差数列,∵a 3+a 4=a 2+a 5=22, 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两个根,又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13. ∴⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1,d =4,∴a n =4n -3.(2)由(1)知,S n =n ·1+n n -12·4=2n 2-n ,∴b n =S nn +c =2n 2-n n +c ,∴b 1=11+c ,b 2=62+c ,b 3=153+c, ∵{b n }是等差数列,∴2b 2=b 1+b 3,∴2c 2+c =0, ∴c =-12(c =0舍去).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 等差数列的前n项和
[选题明细表]
基础巩固
1.已知等差数列{a n}的通项公式为a n=2-3n,则{a n}的前n项和S n等于( A )
(A)-n2+ (B)-n2-
(C)n2+ (D)n2-
解析:因为a n=2-3n,所以a1=2-3=-1,
所以S n==-n2+.故选A.
2.等差数列{a n}中,d=2,a n=11,S n=35,则a1等于( D )
(A)5或7 (B)3或5
(C)7或-1 (D)3或-1
解析:S n==35.
所以na1+11n=70, ①
a n=a1+(n-1)×2=11.
所以a1+2n=13. ②
由①②得a1=3或a1=-1.故选D.
3.(2019·潮州期末)数列{a n}的前n项和S n=2n2+n,那么它的通项公式是( C )
(A)a n=2n-1 (B)a n=2n+1
(C)a n=4n-1 (D)a n=4n+1
解析:因为S n=2n2+n,
所以a1=2×12+1=3,
当n≥2时,a n=S n-S n-1=2n2+n-[2(n-1)2+(n-1)]=4n-1,
把n=1代入上式可得a1=3,即也符合,故通项公式为a n=4n-1,故选C.
4.等差数列{a n}中,a1+a4+a7=39,a3+a6+a9=27,则数列{a n}前9项的和S9等于( B )
(A)66 (B)99 (C)144 (D)297
解析:因为a1+a7=2a4,a3+a9=2a6,
所以3a4=39,3a6=27,
所以a4=13,a6=9,
所以S9===99.故选B.
5.(2019·潍坊高二检测)已知数列{a n}的前n项和为S n,且S n=3n-2,则a n= .
解析:当n≥2时,a n=S n-S n-1=2×3n-1,当n=1时,a1=S1=3-2=1,不符合
上式,
所以a n=
答案:
6.(2019·大理州期末)等差数列{a n}中,a1>0,S3=S10,则当S n取最大值时,n的值为. 解析:因为等差数列{a n}中,a1>0,S3=S10,
所以S10-S3=a4+a5+…+a10=7a7=0,即a7=0,
所以等差数列{a n}中前6项为正数,第7项为0,从第8项开始为负数,
所以当S n取最大值时,n的值为6或7.
答案:6或7
7.有两个等差数列{a n},{b n}满足=,求.
解:设{a n},{b n}的前n项和分别为A n,B n,
则有=,
其中A n=.
由于a1+a9=2a5,
即=a5,
故A9==a5×9.
同理B9=b5×9.
故=.
故===.
能力提升
8.(2019·威海高二检测)设S n是等差数列{a n}的前n项和,若=,则等于( A )
(A)1 (B)-1 (C)2 (D)
解析:====×=1.故选A.
9.设等差数列{a n}的前n项和为S n,若S3=9,S6=36,则a7+a8+a9等于( B )
(A)63 (B)45 (C)36 (D)27
解析:因为a7+a8+a9=S9-S6,而由等差数列前n项和的性质可知,S3, S6-S3,S9-S6构成等差数列.
所以S3+(S9-S6)=2(S6-S3),
即S9-S6=2S6-3S3=2×36-3×9=45.故选B.
10.(2019·长沙高二检测)已知等差数列{a n}的公差为1,且a1+a2+…+a98+a99=99,则a3+a6+a9+…+a96+a99= .
解析:由a1+a2+…+a98+a99=99,得
99a1+=99.
所以a1=-48,所以a3=a1+2d=-46.
又因为{a3n}是以a3为首项,以3为公差的等差数列.
所以a3+a6+a9+…+a99=33a3+×3=33(48-46)=66.
答案:66
11.(2019·山东德州检测)已知在正整数数列{a n}中,前n项和S n满足S n=(a n+2)2.
(1)求证:{a n}是等差数列;
(2)若b n=a n-30,求数列{b n}的前n项和的最小值.
(1)证明:由S n=(a n+2)2,
得S n-1=(a n-1+2)2(n≥2).
当n≥2时,a n=S n-S n-1=(a n+2)2-(a n-1+2)2,
整理得(a n+a n-1)(a n-a n-1-4)=0.
所以a n-a n-1=4,即{a n}为等差数列.
(2)解:因为S1=(a1+2)2,所以a1=(a1+2)2,
解得a1=2.所以a n=2+4(n-1)=4n-2.
所以b n=a n-30=(4n-2)-30=2n-31.
令b n<0,得n<,
所以S15为前n项和最小值.
S15=b1+b2+…+b15=
==-225.
探究创新
12.(2019·杭州高二检测)已知等差数列{a n}的公差d>0,前n项和为S n,且a2a3=45,S4=28.
(1)求数列{a n}的通项公式;
(2)若b n=(c为非零常数),且数列{b n}也是等差数列,求c的值.
解:(1)因为S4=28,
所以=28,a1+a4=14,a2+a3=14,
又a2a3=45,公差d>0,
所以a2<a3,所以a2=5,a3=9,
所以解得所以a n=4n-3.
(2)由(1),知S n=2n2-n,
所以b n==,
所以b1=,b2=,b3=.
又{b n}也是等差数列,所以b1+b3=2b2,
即2×=+,
解得c=-(c=0舍去).。

相关文档
最新文档