江苏省无锡市宜兴市洑东中学2015届九年级上期中考试数学试题及答案
江苏省无锡市新区2015届九年级上期中考试数学试题及答案
2014-2015学年第一学期初三数学期中试卷一、选择题(本大题共8小题,每小题3分,共24分)1. 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两条弧是等弧.其中正确的有 ( )A .4个B .3个C . 2个D . 1个2. 用配方法解方程2250x x --=时,原方程应变形为 ( )A .()216x -= B .()216x += C .()229x += D .()229x -=3. 三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为 ( )A .12B .14C .12或14D .以上都不对4. 在Rt△ABC 中,∠C=90°,∠B=30°,BC =4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是 ( ) A .相离 B .相切 C .相交 D .相切或相交5. 如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是 ( ) A.k >14-B. 14k ≥-且0k ≠C.k <14-D. k >14-且0k ≠6.某厂一月份生产某机器300台,计划二、三月份共生产980台。
设二三月份每月的平均增长率为x ,根据题意列出的方程是 ( ) A .300(1+x )2=980 B .300(1-x )2=980C .300(1+x )+300(1+x )2=980D .300+300(1+x )+300(1+x )2=9807. 如图,将量角器按所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为 ( ) A .15︒ B .28︒ C .29︒ D .34︒8.如图,等边三角形ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了 ( )A .2周B . 3周C .4周D .5周 二、填空题(本大题共10小题,每空2分,共26分)9.将一元二次方程x 2+1=2x 化成一般形式可得 ,它的解是 . 10.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 .班级 姓名 学号 .……………………………………………………………装……………订……………线…………………………………………………………(第8题) O D AB C(第7题)11. 一元二次方程220x x +-=的两根之和是 ,两根之积是 .12. 方程x 2-6x +k =0的一根是4,则k = ,另一个根是______.13. 如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠OBC = °.14. 如图,ABCD 是⊙O 的内接四边形,AD 为直径,∠C =130°,则∠ADB 的度数为 .15.如图,直角坐标系中一条圆弧经过格点A ,B ,C ,其中B 点坐标为(3,4),则该弧所在圆心的坐标是 .16.若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m ﹣4,则ab= .17. 如图,一张圆心角为45°的扇形纸板按如图方式剪得一个正方形,正方形的边长为1,则扇形纸板的面积是 .18. 如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PB 切⊙O 于点B ,则PB 的最小值是 .三、解答题(本大题共7小题,共50分) 19(本题满分12分,每小题3分)解下列方程: (1)042=-x x (2)x 2-8x-10=0(配方法)(3)x 2+6x -1=0 (4)2x 2+5x -3=0(第13题)OB C D A(第14题) O x y A B C(第15题)(第17题) (第18题)A BC P O 20(本题满分6分)如图,已知:⊙O 的直径AB 与弦AC 的夹角∠A=30°,AC =CP . (1) 求证:CP 是⊙O 的切线;(2) 若PC =6,AB=43求图中阴影部分的面积.21(本题满分4分)如图,AB 是⊙O 直径,弦CD 与AB 相交于点E ,∠ACD =52°,∠ADC =26°.求∠CEB 的度数.22(本题满分4分)某商店经销一批小家电,每个小家电的成本为40元。
江苏省无锡 九年级(上)期中数学试卷-(含答案)
九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列方程中是关于x的一元二次方程的是()A. B.C. D.2.如图,CD是⊙O的直径,弦DE∥OA,若∠D的度数是50°,则∠C的度数是()A.B.C.D.3.如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为1:4.其中正确的有()A. 0个B. 1个C. 2个D.3个4.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A. 6B. 5C. 4D. 35.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A. cmB.C. cmD. 1cm6.如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A. B.C. D.7.下列命题是真命题的是()A. 垂直于圆的半径的直线是圆的切线B. 经过半径外端的直线是圆的切线C. 直线上一点到圆心的距离等于圆的半径的直线是圆的切线D. 到圆心的距离等于圆的半径的直线是圆的切线8.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.9.如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.B.C.D.10.如图,在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,若AD=2,线段CP的最小值是()A. B. C. D.二、填空题(本大题共8小题,共16.0分)11.已知=,则= ______ .12.近年来全国房价不断上涨,我市2013年的房价平均每平方米为7000元,经过两年的上涨,2015年房价平均每平方米为8500元,设这两年房价的年平均增长率均为x,则关于的方程为______ .13.若关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则k的取值范围是______.14.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA= ______ °.15.小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为______ .16.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是______.17.如图,平面直角坐标系中,⊙A的圆心在x轴上,坐标为(a,0),半径为1,直线l为y=2x-2,若⊙A沿x轴向右运动,当⊙A与直线l有公共点时,点A横坐标a 的取值范围是______ .18.如图,在平面直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,点B落在点D的位置,且AD交y轴于点E,那么点D的坐标为______ .三、解答题(本大题共10小题,共84.0分)19.(1)3y(y-1)=2(y-1)(2)(x-1)(x+2)=70(3)2y2-3=4y(配方法)20.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平地面上放一面平面镜,镜子与教学大楼的距离EA=21米.当她与镜子的距离CE=2.5米时,她刚好能从镜子中看到教学大楼的顶端B.已知她的眼睛距地面高度DC=1.6米.请你帮助小玲计算出教学大楼的高度AB是多少米?(注意:根据光的反射定律:反射角等于入射角).21.在等腰△ABC中,三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△ABC的周长.22.如图,在单位长度为1的正方形网格中,一段圆弧经过格点A、B、C.(1)请找出该圆弧所在圆的圆心O的位置;(2)请在(1)的基础上,完成下列问题:①⊙O的半径为______ (结果保留根号);②的长为______ (结果保留π);③试判断直线CD与⊙O的位置关系,并说明理由.23.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.24.如图,Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,以BC为直径的半圆交AB于点D,以A为圆心,AC为半径的扇形交AB 于点E.(1)以BC为直径的圆与AC所在的直线有何位置关系?请说明理由;(2)求图中阴影部分的面积(结果保留根号和π).25.某公司销售一种进价为20(元/个)的计算器,其销售量y(万个)与销售价格x(元/个)之间为一次函数关系,其变化如下表:40万元的净利润,且尽可能让顾客得到实惠,那么销售价格应定为多少?(注:净利润=总销售额-总进价-其他开支)26.如图,在平面直角坐标系中,矩形AOBC的边长为AO=6,BO=8,(1)如图①,动点P以每秒2个单位的速度由点C向点A沿线段CA运动,同时点Q以每秒4个单位的速度由点O向点C沿线段OC运动,求当P、Q、C三点构成等腰三角形时点P的坐标.(2)如图②,E是OB的中点,将△AOE沿AE折叠后得到△AFE,点F在矩形AOBC 内部,延长AF交BC于点G.求点G的坐标.27.如图1,小红将一张直角梯形纸片沿虚线剪开,得到矩形和三角形两张纸片,测得AB=15,AD=12.在进行如下操作时遇到了下面的几个问题,请你帮助解决.(1)将△EFG的顶点G移到矩形的顶点B处,再将三角形绕点B顺时针旋转使E 点落在CD边上,此时,EF恰好经过点A(如图2)求FB的长度;(2)在(1)的条件下,小红想用△EFG包裹矩形ABCD,她想了两种包裹的方法如图3、图4,请问哪种包裹纸片的方法使得未包裹住的面积大?(纸片厚度忽略不计)请你通过计算说服小红.28.对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C 在点D的左侧.(1)当r=4时,①在P1(0,-3),P2(4,6),P3(4,2)中可以成为正方形ABCD的“等距圆”的圆心的是______;②若点P在直线y=-x+2上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为______;(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P在y轴上截得的弦长;②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是______.答案和解析1.【答案】C【解析】解:A、由原方程得到2x+1=0,即未知数的最高次数是1.故本选项错误;B、当a=0时.该方程不是一元二次方程.故本选项错误;C、由原方程得到x2-x-1=0,符合一元二次方程的定义,故本选项正确;D、该方程中含有两个未知数.故本选项错误;故选C.本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.【答案】A【解析】解:∵DE∥OA,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°,故选:A.根据平行线的性质可得∠AOD=∠D,再根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案.此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.【答案】D【解析】解:∵等边三角形ABC的边长为2,DE是它的中位线,∴DE=1,DE∥AB,∴△CDE∽△CAB,∴DE:AB=1:2,∴△CDE的面积与△CAB的面积之比为1:4.故选D.由题意即可推出DE∥AB,推出DE=1,△CDE∽△CAB,△CDE的面积与△CAB 的面积之比为相似比的平方,即为1:4.本题主要考查相似三角形的判定与性质、等边三角形的性质、三角形中位线定理,关键在于推出DE∥AB.4.【答案】B【解析】解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.5.【答案】A【解析】解:连接AC,过B作BD⊥AC于D;∵AB=BC,∴△ABC是等腰三角形,∴AD=CD;∵此多边形为正六边形,∴∠ABC==120°,∴∠ABD=×120°=60°,∴∠BAD=30°,AD=AB•cos30°=2×=,∴a=2cm.故选A.连接AC,作BD⊥AC于D;根据正六边形的特点求出∠ABC的度数,再由等腰三角形的性质求出∠BAD的度数,由特殊角的三角函数值求出AD的长,进而可求出AC的长.此题比较简单,解答此题的关键是作出辅助线,根据等腰三角形及正六边形的性质求解.6.【答案】B【解析】解:依题意,设金色纸边的宽为xcm,则(80+2x)(50+2x)=5400.故选:B.根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(树叶画的长+2个纸边的宽度)×(树叶画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.此题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.7.【答案】D【解析】解:A、应经过此半径的外端,故本选项错误;B、应该垂直于此半径,故本选项错误.C、应是圆心到直线的距离等于圆的半径,故本选项错误;D、根据切线的判定方法,故本选项正确;故选D.要正确理解切线的定义:和圆有唯一公共点的直线是圆的切线.掌握切线的判定:①经过半径的外端,且垂直于这条半径的直线,是圆的切线;②到圆心的距离等于半径的直线是该圆的切线.本题考查了命题和定理,知识点有:切线的判定方法.8.【答案】D【解析】解:∵∠C=∠E,且∠BDE=∠ADC,∴△BDE∽△ADC,∴=,∵BC=8,BD:DC=5:3,∴BD=5,DC=3,AD=4,∴=,解得DE=,故选:D.由条件可证明△BDE∽△ADC,且可求得BD和DC的长度,利用相似三角形的对应边的比相等可求得DE.本题主要考查了相似三角形的判定与性质,解题时注意:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.9.【答案】B【解析】解:小正方形的面积是:1;当圆运动到正方形的一个角上时,形成扇形BAO,它的面积是.则这张圆形纸片“不能接触到的部分”的面积是4×(1-)=4-π.故选:B.这张圆形纸片“不能接触到的部分”的面积是就是小正方形的面积与扇形的面积的差的4倍.本题主要考查了轨迹、正方形和圆的面积的计算公式,正确记忆公式是关键.10.【答案】B【解析】解:∵动点E,F分别从D,C两点同时出发,以相同的速度在边DC,CB上移动,∴DE=CF,在△ADE和△DCF中,,∴∠DAE=∠CDF,∵∠CDF+∠ADF=∠ADC=90°,∴∠ADF+∠DAE=90°,∴∠APD=90°,取AD的中点O,连接OP,则OP=AD=×2=1(不变),根据两点之间线段最短得C、P、O三点共线时线段CP的值最小,在Rt△COD中,根据勾股定理得,CO===,所以,CP=CO-OP=-1.故选B.根据点E、F的运动速度判断出DE=CF,然后利用“边角边”证明△ADE和△DCF全等,根据全等三角形对应角相等可得∠DAE=∠CDF,然后求出∠APD=90°,取AD的中点O,连接OP,根据直角三角形斜边上的中线等于斜边的一半可得点P到AD的中点的距离不变,再根据两点之间线段最短可得C、P、O三点共线时线段CP的值最小,然后根据勾股定理列式求出CO,再求解即可.本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,确定出点P到AD的中点的距离是定值是解题的关键,也是本题的难点.11.【答案】【解析】解;由=,得=.由合比性质,得=.=,故答案为:.根据比例的性质,可得y:x的值,再根据倒数的意义,可得答案.本题是基础题,考查了比例的基本性质,比较简单12.【答案】7000(1+x)2=8500【解析】解:设这两年房价的年平均增长率均为x,根据题意,可列方程:7000(1+x)2=8500,故答案为:7000(1+x)2=8500.由于设这两年房价的平均增长率均为x,那么2014年房价平均每平方米为7000(1+x)元,2015年的房价平均每平方米为7000(1+x)(1+x)元,然后根据2015年房价平均每平方米为8500元即可列出方程.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.13.【答案】k>且k≠1【解析】解:根据题意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故答案为:k>且k≠1.根据一元二次方程的定义和判别式的意义得到k-1≠0且△=22-4(k-1)×(-2)>0,然后求出两个不等式的公共部分即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.【答案】67.5【解析】解:∵PD切⊙O于点C,∴∠OCD=90°;又∵CO=CD,∴∠COD=∠D=45°;∴∠A=∠COD=22.5°(同弧所对的圆周角是所对的圆心角的一半),∵OA=OC,∴∠A=∠ACO=22.5°(等边对等角),∴∠PCA=180°-∠ACO-∠OCD=67.5°.故答案是:67.5°.根据切线的性质知∠OCD=90°,然后在等腰直角三角形OCD中∠COD=∠D=45°;再由圆周角定理求得∠ACO=22.5°;最后由平角的定义即可求得∠PCA的度数.本题考查了圆的切线.解题的关键是根据切线的定义推知∠OCD=90°.15.【答案】216°【解析】解:母线长==15,设该扇形薄纸板的圆心角为n°,所以2π•9=,解得n=216,即该扇形薄纸板的圆心角为216°.故答案为216°.利用勾股定理计算出母线长=15,设该扇形薄纸板的圆心角为n°,利用弧长公式得到2π•9=,解得n=216.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.【答案】4π【解析】解:弧CD的长是=,弧DE的长是:=,弧EF的长是:=2π,则曲线CDEF的长是:++2π=4π.故答案为:4π.弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3,利用弧长的计算公式可以求得三条弧长,三条弧的和就是所求曲线的长.本题考查了弧长的计算公式,理解弧CD,弧DE,弧EF的圆心角都是120度,半径分别是1,2,3是解题的关键.17.【答案】1-≤a≤1+【解析】解:如图:当⊙A在直线L的左侧,⊙A与直线L相切时,△BOD∽△ABC,∵直线l为y=2x-2,∴B(1,0),D(0,-2),∴OB=1,OD=2,∴,即,∴BC=,∴AB=,当⊙A在直线L的右侧,⊙A与直线L相切时,同理A′B=,∴A横坐标a的取值范围是1-≤a≤1+,故答案为:1-≤a≤1+.根据⊙A与L有公共点从左相切开始,到相交,到右相切,所以A移动的距离是左相切到右相切时的距离.此题主要考查了坐标与图形的性质和直线与圆的位置关系,关键是知道点A 移动距离.18.【答案】(-,)【解析】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3-x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3-x)2=x2+12,∴x=.又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3-=,∴==,即==.∴DF=,AF=.∴OF=-1=.∴点D的坐标为(-,).故答案为:(-,).如图,过D作DF⊥AF于F,根据折叠可以证明△CDE≌△AOE,然后利用全等三角形的性质得到OE=DE,OA=CD=1,设OE=x,那么CE=3-x,DE=x,利用勾股定理即可求出OE的长度,而利用已知条件可以证明△AEO∽△ADF,而AD=AB=3,接着利用相似三角形的性质即可求出DF、AF的长度,也就求出了D的坐标.此题主要考查了图形的折叠问题,也考查了坐标与图形的性质,解题的关键是把握折叠的隐含条件,利用隐含条件得到全等三角形和相似三角形,然后利用它们的性质即可解决问题.19.【答案】解:(1)∵3y(y-1)=2(y-1),∴(y-1)(3y-2)=0,∴y-1=0或3y-2=0,∴y1=1,y2=;(2)∵(x-1)(x+2)=70,∴x2+x-2=70,∴x2+x-72=0,∴(x+9)(x-8)=0,∴x+9=0或x-8=0,∴x1=-9,x2=8;(3)∵2y2-3=4y,∴2(y2-2y+1-1)-3=0,∴2(y-1)2=5,y=1±,y1=1+,y2=1-.【解析】(1)移项将方程右边化简为0,然后在提取公因式即可求解;(2)将方程左边去括号然后再化简成x2+x-72=0,利用因式分解即可求解;(3)移项然后在利用配方法即可求解.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.20.【答案】解:根据题意可得:∠AEB=∠CED,∠BAE=∠DCE=90°,(2分)∴△ABE∽△CDE,(5分)∴,(7分)∴,(8分)∴AB=13.44(米).(11分)答:教学大楼的高度AB是13.44米.(12分)【解析】根据反射定律,∠1=∠2,又因为FE⊥EC,所以∠3=∠4,再根据垂直定义得到∠BAE=∠DCE,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.21.【答案】解:∵关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,∴△=(b+2)2-4(6-b)=0,即b2+8b-20=0;解得b=2,b=-10(舍去);①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;②当b为底,a为腰时,则5-2<5<5+2,能够构成三角形;此时△ABC的周长为:5+5+2=12;答:△ABC的周长是12.【解析】若一元二次方程有两个相等的实数根,则根的判别式△=0,据此可求出b的值;进而可由三角形三边关系定理确定等腰三角形的三边长,即可求得其周长.此题考查了根与系数的关系、等腰三角形的性质及三角形三边关系定理;在求三角形的周长时,不能盲目的将三边相加,而应在三角形三边关系定理为前提条件下分类讨论,以免造成多解、错解.22.【答案】2;π【解析】解:(1)如图所示:连接AC,作线段AC的垂线OE,交正方形网格于点O,则O点即为⊙O的圆心;(2)①在Rt△OCF中,∵CF=2,OF=4,∴OC===2;②在Rt△OAG与Rt△OCF中,AG=OF=4,OG=CF=2,OA=OC=2,∴∠OAG=∠COF,∠AOG=∠OCF,∵∠OAG+∠AOG=90°,∠OCF+∠COF=90°,∴∠AOG+∠COF=90°,∴∠AOC=90°,∴===π;③直线DC与⊙O相切.理由:∵连接CD,在△DCO中,CD=,CO=2,DO=5,∴CD2+CO2=25=DO2.∴∠DCO=90°,即CD⊥OC.∴CD与⊙O相切.(1)连接AC,作AC的垂直平分线,由垂径定理可知OE与网格的交点即为⊙O的圆心;(2)①直接根据正方形网格的特点及勾股定理求出OC的长即为⊙O的半径;②先根据直角三角形的性质得出∠AOC=90°,再根据弧长公式求出的度数;③连接CD,根据勾股定理得出CD、OD的长,由勾股定理的逆定理判断出△OCD的形状即可.本题考查的是垂径定理的应用、勾股定理、直线与圆的位置关系、勾股定理的逆定理及弧长的计算,在解答此题时要先根据垂径定理作出圆心,再根据勾股定理的相关知识进行解答.23.【答案】(1)证明:连接OA.∵AE是⊙O切线,∴OA⊥AE,∴∠OAE=90°,∴∠EAD+∠OAD=90°,∵∠ADO=∠ADE,OA=OD,∴∠OAD=∠ODA=∠ADE,∴∠EAD+∠ADE=90°,∴∠AED=90°,∴AE⊥CD;(2)解:过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°,∴四边形AOFE是矩形.∴OF=AE=4cm.又∵OF⊥CD,∴DF=CD=3cm.在Rt△ODF中,OD==5cm,即⊙O的半径为5cm.【解析】(1)欲证明AE⊥CD,只要证明∠EAD+∠ADE=90°即可;(2)过点O作OF⊥CD,垂足为点F.从而证得四边形AOFE是矩形,得出OF=AE,根据垂径定理得出DF=CD,在Rt△ODF中,根据勾股定理即可求得⊙O的半径.本题考查了等腰三角形的性质,垂径定理,平行线的判定和性质,切线的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.24.【答案】解:(1)相切,理由是:∵∠ACB=90°,BC为半圆的直径,∴以BC为直径的圆与AC所在的直线相切;(2)在Rt△ACB中,∠B=30°,∴∠A=90°-30°=60°,AC=AB=×4=2,由勾股定理得:BC==2,∴S阴影=S半圆-(S△ABC-S扇形AEC),=π-×2×+,=-2,答:图中阴影部分的面积是-2.【解析】(1)切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,满足这两个条件,则与圆相切;(2)先根据条件求直角三角形的各边长和锐角∠A的度数,再利用差求阴影部分的面积.本题考查了直线和圆的位置关系、勾股定理及扇形的面积,属于常考题型,难度不大;熟练掌握直线和圆的位置关系,在求阴影部分面积时,要注意利用和或差来求解.25.【答案】解:设y与x的解析式为:y=ax+b,则,解得:,∴y=-0.1x+8,根据题意,得:(x-20)(-0.1x+8)-40=40,∴x1=40,x2=60,∵尽可能让顾客得到实惠,∴价格应定为40元.答:价格应定为40元.【解析】设y与x的解析式为:y=ax+b,将表格中的数代入解析式,求出a、b的值,求出解析式,然后表示出利润,根据利润为40万元,求出销售价格.本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.26.【答案】解:(1)设运动的时间为t秒,由勾股定理得,OC==10,当CQ=CP时,2t=10-4t,解得,t=,此时CP=2×=,∴AP=8-=,P点坐标为(,6),当PC=PQ时,如图①,过点Q作AC的垂线交AC于点E,CQ=10-4t,CP=2t.∵△CEQ∽△CAO,∴EQ=CQ=(10-4t)=6-t,PE=(10-4t)-2t=8-t-2t=8-t,由勾股定理得,(6-t)2+(8-t)2=(2t)2,整理得:36t2-140t+125=0,解得,t1=,t2=(舍去),此时,AP=8××2=,∴P点坐标为(,6),当QC=PQ时,如图②,过点Q作AC的垂线交AC于点F,CQ=10-4t,CP=2t,∵△CFQ∽△CAO,∴QF═(10-4t)=6-t,PF=2t-(10-4t)=t-8,则(6-t)2+(t-8)2=(10-4t)2,整理得,21t2-40t=0,解得,t1=,t2=0(舍去),此时,AP=8-×2=,则P点坐标为(,6),综上所述,P点坐标为(,6),(,6),(,6);(2))如图③,连接EG,由题意得:△AOE≌△AFE,∴∠EFG=∠OBC=90°,∵E是OB的中点,∴EG=EG,EF=EB=4,在Rt△EFG和Rt△EBG中,,∴Rt△EFG≌Rt△EBG(HL)∴∠FEG=∠BEG,∠AOB=∠AEG=90°,∴△AOE∽△AEG,∴AE2=AO•AG,即36+16=6×AG,解得,AG=,由勾股定理得,CG==,∴BG=6-=,G的坐标为(8,).【解析】(1)分CQ=CP、PC=PQ和QC=PQ三种情况,根据等腰三角形的性质计算即可;(2)连接EG,由翻转变换的性质得到△AOE≌△AFE,根据全等三角形的性质得到∠EFG=∠OBC=90°,证明Rt△EFG≌Rt△EBG得到∠FEG=∠BEG,∠AOB=∠AEG=90°,得到△AOE∽△AEG,根据相似三角形的性质列出比例式,计算即可.本题考查的是翻转变换的性质、等腰三角形的性质、相似三角形的判定和性质,掌握翻转变换的性质、灵活运用分情况讨论思想是解题的关键.27.【答案】解:(1)∵BE=AB=15,在直角△BCE中,CE===9∴DE =6,∵∠EAD +∠BAE =90°,∠BAE =∠BEF ,∴∠EAD +∠BEF =90°,∵∠BEF +∠F =90°,∴∠EAD =∠F∵∠ADE =∠FBE∴△ADE ∽△FBE ,∴ ,, ∴BF =30;(2)①如图1,将矩形ABCD 和直角△FBE 以CD 为轴翻折,则△AMH 即为未包裹住的面积,∵Rt △F ′HN ∽Rt △F ′EG ,∴ ′ ′ = ,即 ,解得:HN =3,∴S △AMH = •AM •MH = ×12×24=144; ②如图2,将矩形ABCD 和Rt △ECF 以AD 为轴翻折,∵Rt △GBE ∽Rt △GB ′C ′,∴ ′ ′ ′,即′ ′ ,解得:GB ′=24, ∴S △B ′C ′G = •B ′C ′•B ′G = ×12×24=144, ∴按照两种包裹方法的未包裹面积相等.【解析】(1)先证明△ADE ∽△FBE ,利用相似的性质得BF ;(2)①利用相似三角形的判定,证明Rt △F′HN ∽Rt △F′EG ,利用相似三角形的性质,求得HN ,利用三角形的面积公式得结果;②利用相似三角形的判定,证明Rt △F′HN ∽Rt △F′EG ,利用相似三角形的性质,求得HN ,利用三角形的面积公式得结果.本题主要考查了相似三角形的判定和性质及翻折变化,以动态(平移和旋转)的形式考查了分类讨论的思想、函数的知识和直角三角形是解答此题的关键.28.【答案】P 2,P 3;(4,-2)或P (-4,6);0<r < 或r >2 +2【解析】解:(1)①连接AC和BD,交于点M,∵四边形ABCD是正方形,∴M到正方形ABCD四条边距离都相等∴⊙P一定通过点M,∵A(2,4)∴M(0,2)设⊙P的圆心坐标是(x,y),∴r=4时,∴x2+(y-2)2=(4)2,即,x2+(y-2)2=32,把P1(0,-3),P2(4,6),P3(4,2)代入,只有P2,P3成立,∴可以成为正方形ABCD的“等距圆”的圆心的是P2,P3,故答案为:P2,P3;②∵点P在直线y=-x+2上,且⊙P是正方形ABCD的“等距圆”,∴把y=-x+2代入x2+(y-2)2=32,得x2+x2=32,解得x=±4,∴y=-2或6,∴P(4,-2)或P(-4,6).故答案为:(4,-2)或P(-4,6).(2)如下图:①∵⊙P同时为正方形ABCD与正方形EFGH的“等距圆”,∴⊙P同时过正方形ABCD的对称中心E和正方形EFGH的对称中心I.∴点P在线段EI的中垂线上.∵A(2,4),正方形ABCD的边CD在x轴上;F(6,2),正方形EFGH的边HE 在y轴上,∴E(0,2),I(3,5)∴∠IEH=45°,设线段EI的中垂线与y轴交于点L,与x轴交于点M,∴△LIE为等腰直角三角形,LI⊥y轴,∴L(0,5),∴△LOM为等腰直角三角形,LO=OM∴M(5,0),∴P在直线y=-x+5上,∴设P(p,-p+5)过P作PQ⊥直线BC于Q,连结PE,∵⊙P与BC所在直线相切,∴PE=PQ,∴p2+(-p+5-2)2=(p+2)2,解得:P1=5+2,P2=5-2,∴P1(5+2,-2),P2(5-2,2),∵⊙P过点E,且E点在y轴上,∴⊙P在y轴上截得的弦长为2|-2-2|=4或2|2-2|=4-4.②如图2,连接DH,作DT⊥HF,以D为圆心,DE为半径作圆,交DT于点E1,交HD于E2,当0<r<DT-DE1时,线段HF上没有一个点能成为它的“等距圆”的圆心.∵HF所在的直线为:y=-x+8,DT所在的直线为:y=x-2,∴T(5,3),∵D(2,0),∴DT==3,∵DE=DE1∴DT-DE=DT-DE=3-2=,1∴当0<r<时,线段HF上没有一个点能成为它的“等距圆”的圆心.当r>HE2时,线段HF上没有一个点能成为它的“等距圆”的圆心.∵HE2=HD+DE2,DE2=DE,∴HE=HD+DE=+2=2+2,2∴当r>2+2时,线段HF上没有一个点能成为它的“等距圆”的圆心.综上可知当0<r<或r>2+2时线段HF上没有一个点能成为它的“等距圆”的圆心,故答案为:0<r<或r>2+2.(1)①连接AC和BD,交于点M,设⊙P的圆心坐标是(x,y),列出圆心到M的关系式,把P1(0,-3),P2(4,6),P3(4,2)代入,看是否成立来逆定,②把y=-x+2代入x2+(y-2)2=32,求出x和y的值,再写出坐标.(2)①先求出△LIE为等腰直角三角形,得到L(0,5),进而得出△LOM为等腰直角三角形,设P(p,-p+5)据关系列出方程求了圆心,的坐标,最后得出弦长.②连接DH,作DT⊥HF,以D为圆心,DE为半径作圆,交DT于点E1,交HD于E2,当0<r<DT-DE1时,线段HF上没有一个点能成为它的“等距圆”的圆心.当r>HE2时,线段HF上没有一个点能成为它的“等距圆”的圆心.据此求解.本题考查圆的综合题,解题的关键是明确题意,根据题目给出的条件,作出合适的辅助线,找出所求问题需要的条件,利用数形结合的思想解答问题.此外对本题中的“等距圆”的定义正确理解也是解题的关键.。
江苏省无锡市宜兴市 九年级(上)期中数学试卷
九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列关于x的方程中,一定是一元二次方程的为()A. x2−1=0B. x2+2y+1=0C. x2−2=(x+3)2D. x2+3x−5=02.一元二次方程x2-x+10=0的根的情况是()A. 有两个不等的实数根B. 有两个相等的实数根C. 没有实数根D. 不能确定3.某厂1月份生产原料a吨,以后每个月比前一个月增产x%,3月份生产原料的吨数是()A. a(1+x)2B. a(1+x%)2C. a+a⋅x%D. a+a⋅(x%)24.如图,在△ABC中,DE∥BC,ADDB=12,DE=4,则BC的长是()A. 8B. 10C. 11D. 125.在相同时刻物高与影长成比例,如果高为1.5m的测竿的影长为 2.5m,那么影长为30m的旗杆的高度是()A. 20mB. 16mC. 18mD. 15m6.下列四个命题:(1)三点确定一个圆;(2)平分弦的直径必定垂直于这条弦;(3)相等的圆心角所对的弧相等;(4)长度相等的两条弧是等弧.其中错误的个数是()A. 1个B. 2个C. 3个D. 4个7.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A. 35∘B. 27.5∘C. 30∘D. 25∘8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC所在直线平移后与⊙O相切,则平移的距离是()A. 1cmB. 2cmC. 8cmD. 2cm或8cm9.如图,在平面直角坐标系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的内心,将△ABC绕原点逆时针旋转90°后,I的对应点I′的坐标为()A. (−2,3)B. (−3,2)C. (3,−2)D. (2,−3)10.如图,在平面直角坐标系中,A(0,23),动点B、C从原点O同时出发,分别以每秒1个单位和每秒2个单位长度的速度沿x轴正方向运动,以点A为圆心,OB的长为半径画圆;以BC为一边,在x轴上方作等边△BCD.设运动的时间为t秒,当⊙A与△BCD的边BD所在直线相切时,t的值为()A. 3−32B. 3+32C. 43+6D. 43−6二、填空题(本大题共8小题,共16.0分)11.方程x2-2x=0的根是______.12.已知a2=b5,则b−aa的值为______.13.在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,则A、B两地的实际距离为______km.14.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边的边长等于______厘米.15.如图,一宽为2cm的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm),则该圆的半径为______cm.16.如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC交AC于点E,如果BC=6,那么线段GE的长为______.17.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为______.18.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为______.三、解答题(本大题共10小题,共84.0分)19.解方程(1)(x-2)2-9=0(2)x2-2x-8=0(3)2x2+3x-1=0(4)(x-3)2+2x(x-3)=020.已知,△ABC在直角坐标平面内,三个顶点的坐标分别为A(-2,2)、B(-1,0)、C(0,1)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC关于y轴的轴对称图形△A1B1C1;(2)以点O为位似中心,在网格内画出所有符合条件的△A2B2C2,使△A2B2C2与△A1B1C1位似,且位似比为2:1;(3)求△A1B1C1与△A2B2C2的面积比.21.关于x的一元二次方程x2-(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.22.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.23.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.24.如图,灯杆AB与墙MN的距离为18米,小丽在离灯杆(底部)9米的D处测得其影长DF为3m,设小丽身高为1.6m.(1)求灯杆AB的高度;(2)小丽再向墙走7米,她的影子能否完全落在地面上?若能,求此时的影长;若不能,求落在墙上的影长.25.百货商店销售某种冰箱,每台进价2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;每台售价每降低10元时,平均每天能多售出1台.(销售利润=销售价-进价)(1)如果设每台冰箱降价x元,那么每台冰箱的销售利润为______元,平均每天可销售冰箱______台;(用含x的代数式表示)(2)商店想要使这种冰箱的销售利润平均每天达到5600元,且尽可能地清空冰箱库存,每台冰箱的定价应为多少元?26.在平面直角坐标系xOy中,点M的坐标为(x1,y1),点N的坐标为(x2,y2),且x1≠x2,y1≠y2,以MN为边构造菱形,若该菱形的两条对角线分别平行于x轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A(2,0),B(0,23),则以AB为边的“坐标菱形”的最小内角为______;(2)若点C(1,2),点D在直线y=5上,以CD为边的“坐标菱形”为正方形,求直线CD表达式;(3)⊙O的半径为2,点P的坐标为(3,m).若在⊙O上存在一点Q,使得以QP为边的“坐标菱形”为正方形,求m的取值范围.27.如图,在矩形ABCD中,点E是AD上的一个动点,连结BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设ADAE=n.(1)求证:AE=GE;(2)当点F落在AC上时,用含n的代数式表示ADAB的值;(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.28.如图1,直线y=-43x+8,与x轴、y轴分别交于点A、C,以AC为对角线作矩形OABC,点P、Q分别为射线OC、射线AC上的动点,且有AQ=2CP,连结PQ,设点P的坐标为P(0,t).(1)求点B的坐标.(2)若t=1时,连接BQ,求△ABQ的面积.(3)如图2,以PQ为直径作⊙I,记⊙I与射线AC的另一个交点为E.①若PEPQ=35,求此时t的值.②若圆心I在△ABC内部(不包含边上),则此时t的取值范围为______.(直接写出答案)答案和解析1.【答案】A【解析】解:A、是一元二次方程,故A正确;B、是二元二次方程,故B错误;C、是一元一次方程,故C错误;D、是分式方程,故D错误;故选:A.根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.【答案】C【解析】解:∵a=1,b=-1,c=10,△=b2-4ac=(-1)2-4×1×10=1-40=-39<0所以方程没有实数根.故选:C.确定a、b、c计算△,利用根的判别式直接判断.本题考查了一元二次方程根的判别式.根的判别式:△=b2-4ac.当△>0时,方程有两个不相等实数根,当△=0时,方程有两个相等实数根,当△<0时,方程无实数根.3.【答案】B【解析】解:∵1月份产量为a吨,以后每个月比上一个月增产x%,∴2月份的产量是a(1+x%),则3月份产量是a(1+x%)2.故选:B.1月到3月发生了两次变化,其增长率相同,故由1月份的产量表示出2月份的产量,进而表示出3月份的产量.本题考查了代数式的列法,涉及的知识是一个增长率问题,关键是看清发生了两次变化.4.【答案】D【解析】解:∵,∴=,∵在△ABC中,DE∥BC,∴=,∵DE=4,∴BC=3DE=12.故选:D.由在△ABC中,DE∥BC,根据平行线分线段成比例定理,即可得DE:BC=AD:AB,又由,DE=4,即可求得BC的长.此题考查了平行线分线段成比例定理.此题难度不大,注意掌握比例线段的对应关系.5.【答案】C【解析】解:∵,∴,解得旗杆的高度==18m.故选:C.根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.本题考查相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.6.【答案】D【解析】解:不共线的三点确定一个圆,所以(1)错误;平分弦(非直径)的直径必定垂直于这条弦,所以(2)错误;在同圆或等圆中,相等的圆心角所对的弧相等,所以(3)错误;在同圆或等圆中,长度相等的两条弧是等弧,所以(4)错误.故选:D.根据确定圆的条件对(1)进行判断;根据垂径定理的推论对(2)进行判断;根据圆心角、弧、弦的关系对(3)进行判断;根据等弧的定义对(4)进行判断.本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.【答案】A【解析】解:∵∠ADC=∠A+∠B,∠A=60°,∠ADC=85°,∴∠B=25°,∴∠AOC=2∠B=50°,∵∠ADC=∠AOC+∠C,∴∠C=85°-50°=35°,故选:A.由∠ADC=∠A+∠B,∠A=60°,∠ADC=85°,推出∠B=25°,两点∠AOC=2∠B=50°,再根据∠ADC=∠AOC+∠C,即可求出∠C;本题考查圆周角定理,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【答案】D【解析】解:连接OB,∵AB⊥OC,∴AH=BH,∴BH=AB=×8=4,在Rt△BOH中,OB=OC=5,∴OH==3,又∵将直线l通过平移使直线l与⊙O相切,∴直线l垂直过C点的直径,垂足为直径的两端点,∴当向下平移时,直线l平移的距离=5-3=2(cm);当向上平移时,直线l平移的距离=5+3=8(cm).故选:D.根据垂径定理得到BH=AB=×8=4,再利用勾股定理计算出OH,然后利用切线和平移的性质分类讨论:当向下平移时,直线l平移的距离为半径减去OH;当向上平移时,直线l平移的距离为半径加上OH.本题考查了直线与圆的位置关系,垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了平移的性质、切线的性质以及勾股定理.9.【答案】A【解析】解:过点作IF⊥AC于点F,IE⊥OA于点E,∵A(4,0),B(0,3),C(4,3),∴BC=4,AC=3,则AB=5,∵I是△ABC的内心,∴I到△ABC各边距离相等,等于其内切圆的半径,∴IF=1,故I到BC的距离也为1,则AE=1,故IE=3-1=2,OE=4-1=3,则I(3,2),∵△ABC绕原点逆时针旋转90°,∴I的对应点I'的坐标为:(-2,3).故选:A.直接利用直角三角形的性质得出其内切圆半径,进而得出I点坐标,再利用旋转的性质得出对应点坐标.此题主要考查了旋转的性质以及直角三角形的性质,得出其内切圆半径是解题关键.10.【答案】C【解析】解:作AH⊥BD于H,延长DB交y轴于E,如图,∵⊙A与△BCD的边BD所在直线相切,∴AH=OB=t,∵△BCD为等边三角形,∴∠DBC=60°,∴∠OBE=60°,∴∠OEB=30°,在Rt△OBE中,OE=OB=t,在Rt△AHE中,AE=2AH=2t,∵A(0,2),∴OA=2,∴2+t=2t,∴t=4+6.故选:C.作AH⊥BD于H,延长DB交y轴于E,如图,利用切线的性质得AH=OB=t,再利用等边三角形的性质得∠DBC=60°,则∠OBE=60°,所以OE=OB=t,AE=2AH=2t,从而得到2+t=2t,然后解关于t的方程即可.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了等边三角形的性质.11.【答案】x1=0,x2=2【解析】解:因式分解得x(x-2)=0,解得x1=0,x2=2.故答案为x1=0,x2=2.因为x2-2x可提取公因式,故用因式分解法解较简便.本题考查了因式分解法解一元二次方程,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.12.【答案】32【解析】解:两边都乘以5,得b=.==,故答案为:.根据等式的性质,可用a表示b,根据分式的性质,可得答案.本题考查了比例的性质,利用等式得出b=是解题关键.13.【答案】1.5【解析】解:∵比例尺为1:5000,量得两地的距离是20厘米,∴,∴A、B两地的实际距离=150000cm=1.5km.故答案为:1.5.由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.14.【答案】(105-10)【解析】解:设所求边长为x,由题意,得=,解得x=(10-10)cm.故答案为(10-10).由黄金矩形的定义,可知黄金矩形的宽与长之比为,设所求边长为x,代入已知数据即可得出答案.本题主要考查了黄金分割点的概念,需要熟记黄金比的值,难度适中.15.【答案】134【解析】解:作OE垂直AB于E,交⊙O于D,设OB=r,根据垂径定理,BE=AB=×6=3cm,根据题意列方程得:(r-2)2+9=r2,解得r=,∴该圆的半径为cm.根据垂径定理得BE的长,再根据勾股定理列方程求解即可.本题考查了垂径定理的应用及勾股定理,根据题意得出BC=3是解答此题的关键.16.【答案】2【解析】解:∵点G是△ABC重心,BC=6,∴CD=BC=3,=2,∵GE∥BC,∴△AEG∽△ACD,∴==,∴GE=2.故答案为:2.由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.此题考查了相似三角形的判定与性质以及三角形重心的性质.解题时注意:重心到顶点的距离与重心到对边中点的距离之比为2:1.17.【答案】9202【解析】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2∵BF=2FC,BC=AD=3,∴BF=AH=2,FC=HD=1,∴AF===2,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH-OH=2-=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==,∴AN=AF=,∴MN=AN-AM=-=.故答案为:.首先过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理求得AF,根据平行线分线段成比例定理求得OH,由相似三角形的性质求得AM与AF的长,根据相似三角形的性质,求得AN的长,即可得到结论.本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN与AM的长是解题的关键.18.【答案】213−2【解析】解:如图:取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆.连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E.由以上作图可知,BG⊥EC于G.PD+PG=PD′+PG=D′G由两点之间线段最短可知,此时PD+PG最小.∵D′C′=4,OC′=6∴D′O=∴D′G=2∴PD+PG的最小值为2故答案为:2作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.本题考查线段和的最小值问题,通常思想是将线段之和转化为固定两点之间的线段和最短.19.【答案】解:(1)(x-2)2-9=0(x-2)2=9x-2=±3x=±3+2x1=5,x2=-1;(2)x2-2x-8=0(x-4)(x+2)=0,x1=4,x2=-2;(3)2x2+3x-1=0△=32-4×2×(-1)=17>0x=−3±174x1=−3+174,x2=−3−174;(4)(x-3)2+2x(x-3)=0(x-3)(x-3+2x)=0(x-3)(3x-3)=0x1=3,x2=1.【解析】(1)利用直接开平方法解方程;(2)利用因式分解法解方程;(3)利用公式法解方程;(4)利用因式分解法解方程.本题考查的是一元二次方程的解法,掌握直接开平方法,因式分解法,公式法解一元二次方程的一般步骤是解题的关键.20.【答案】解(1)如图:A1(2,2),B1(1,0),C1(0,1);(2)如图:A1(4,4),B1(2,0),C1(0,2)或A1(-4,-4),B1(-2,0),C1(0,-2);(3)∵△A2B2C2与△A1B1C1位似,且位似比为2:1,∴△A1B1C1与△A2B2C2的面积比=(12)2=14.【解析】(1)由△ABC关于y轴的轴对称图形△A1B1C1,根据轴对称的性质,可求得△A1B1C1各点的坐标,继而画出△A1B1C1;(2)由△A2B2C2与△A1B1C1位似,且位似比为2:1;根据位似的性质,可求得△A2B2C2各点的坐标,继而画出△A2B2C2;(3)由相似三角形的面积比等于相似比的平方,即可求得△A1B1C1与△A2B2C2的面积比.此题考查了位似变换以及轴对称变换.注意关于原点位似的图形有两个,注意相似三角形的面积比等于相似比的平方.21.【答案】(1)证明:∵在方程x2-(k+3)x+2k+2=0中,△=[-(k+3)]2-4×1×(2k+2)=k2-2k+1=(k-1)2≥0,∴方程总有两个实数根.(2)解:∵x2-(k+3)x+2k+2=(x-2)(x-k-1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.【解析】(1)根据方程的系数结合根的判别式,可得△=(k-1)2≥0,由此可证出方程总有两个实数根;(2)利用分解因式法解一元二次方程,可得出x1=2、x2=k+1,根据方程有一根小于1,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.本题考查了根的判别式、因式分解法解一元二次方程以及解一元一次不等式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)利用因式分解法解一元二次方程结合方程一根小于1,找出关于k的一元一次不等式.22.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠C+∠B=180°,∠ADF=∠DEC.∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C.在△ADF与△DEC中,∠AFD=∠C∠ADF=∠DEC∴△ADF∽△DEC.(2)解:∵四边形ABCD是平行四边形,∴CD=AB=8.由(1)知△ADF∽△DEC,∴ADDE=AFCD,∴DE=AD⋅CDAF=63×843=12.在Rt△ADE中,由勾股定理得:AE=DE2−AD2=122−(63)2=6.【解析】(1)利用对应两角相等,证明两个三角形相似△ADF∽△DEC;(2)利用△ADF∽△DEC,可以求出线段DE的长度;然后在Rt△ADE中,利用勾股定理求出线段AE的长度.本题主要考查了相似三角形的判定与性质、平行四边形的性质和勾股定理三个知识点.题目难度不大,注意仔细分析题意,认真计算,避免出错.23.【答案】解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC,∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=12AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD,∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴BCCD=CDCE,∴8CD=CD2,∴CD=4,在Rt△BCD中,BD=BC2+CD2=45同理:△CFD∽△BCD,∴CFBC=CDBD,∴CF8=445,∴CF=855,∴AC=2AF=1655.【解析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.24.【答案】解:(1)∵∠AFB=∠CFD,∠ABF=∠CDF,∴△ABF∽△CDF,∴ABCD=BFDF,∴AB=BFDF•CD=9+33×1.6=6.4.∴灯杆AB的高度为6.4米.(2)将CD往墙移动7米到C′D′,作射线AC′交MN于点P,延长AP交地面BN于点Q,如图所示.∵∠AQB=∠C′QD′,∠ABQ=∠C′D′Q=90°,∴△ABQ∽△C′D′Q,∴D′QBQ=C′D′AB,即D′QD′Q+16=1.66.4,∴D′Q=163.同理,可得出△PQN∽△AQB,∴PNAB=QNBQ,即PN6.4=163−9+7163+9+7,∴PN=1.∴小丽的影子不能完全落在地面上,小丽落在墙上的影长为1米.【解析】(1)由∠AFB=∠CFD、∠ABF=∠CDF可得出△ABF∽△CDF,根据相似三角形的性质可求出AB的长度,此题得解;(2)将CD往墙移动7米到C′D′,作射线AC′交MN于点P,延长AP交地面BN于点Q,由∠AQB=∠C′QD′、∠ABQ=∠C′D′Q=90°可得出△ABQ∽△C′D′Q,根据相似三角形的性质可求出D′Q的长度,同理可得出△PQN∽△AQB,再利用相似三角形的性质可求出PN的长度,此题得解.本题考查了相似三角形的应用以及中心投影,解题的关键是:(1)由△ABF∽△CDF利用相似三角形的性质求出AB的长度;(2)由△PQN∽△AQB 利用相似三角形的性质求出PN的长度.25.【答案】(400-x)(8+x10)【解析】解:(1)解:(1)销售1台的利润:2900-2500=400;降价后销售的数量:8+,降价后销售的利润:400-x;故答案是:(400-x);(8+).(2)依题意,可列方程:(400-x)(8+)=5600解方程得:x1=120,x2=200因为要尽可能地清空冰箱库存,所以x=120舍去答:应定价2700元.(1)销售利润=销售价-进价;降低售价的同时,销售量就会提高,“一减一加”;(2)根据每台的盈利×销售的件数=5600元,即可列方程求解.此题主要考查了一元二次方程的应用,本题关键是会表示一台冰箱的利润,销售量增加的部分.找到关键描述语,找到等量关系:每台的盈利×销售的件数=5600元是解决问题的关键.26.【答案】60°【解析】解:(1)∵点A(2,0),B(0,2),∴OA=2,OB=2,在Rt△AOB中,由勾股定理得:AB==4,∴∠ABO=30°,∵四边形ABCD是菱形,∴∠ABC=2∠ABO=60°,∵AB∥CD,∴∠DCB=180°-60°=120°,∴以AB为边的“坐标菱形”的最小内角为60°,故答案为:60°;(2)如图2,∵以CD为边的“坐标菱形”为正方形,∴直线CD与直线y=5的夹角是45°.过点C作CE⊥DE于E.∴D(4,5)或(-2,5).∴直线CD的表达式为:y=x+1或y=-x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,∵⊙O的半径为,且△OQ'D是等腰直角三角形,∴OD=OQ'=2,∴P'D=3-2=1,∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(0,5),∴当1≤m≤5时,以QP为边的“坐标菱形”为正方形;②先作直线y=-x,再作圆的两条切线,且平行于直线y=-x,如图4,∵⊙O的半径为,且△OQ'D是等腰直角三角形,∴OD=OQ'=2,∴BD=3-2=1,∵△P'DB是等腰直角三角形,∴P'B=BD=1,∴P'(0,-1),同理可得:OA=2,∴AB=3+2=5,∵△ABP是等腰直角三角形,∴PB=5,∴P(0,-5),∴当-5≤m≤-1时,以QP为边的“坐标菱形”为正方形;综上所述,m的取值范围是1≤m≤5或-5≤m≤-1.(1)根据定义建立以AB为边的“坐标菱形”,由勾股定理求边长AB=4,可得30度角,从而得最小内角为60°;(2)先确定直线CD与直线y=5的夹角是45°,得D(4,5)或(-2,5),易得直线CD的表达式为:y=x+1或y=-x+3;(3)分两种情况:①先作直线y=x,再作圆的两条切线,且平行于直线y=x,如图3,根据等腰直角三角形的性质分别求P'B=BD=1,PB=5,写出对应P的坐标;②先作直线y=-x,再作圆的两条切线,且平行于直线y=-x,如图4,同理可得结论.本题是一次函数和圆的综合题,考查了菱形的性质、正方形的性质、点P,Q 的“坐标菱形”的定义等知识,解题的关键是理解题意,学会利用图象解决问题,学会用分类讨论的思想思考问题,注意一题多解,属于中考创新题目.27.【答案】解:设AE=a,则AD=na,(1)由对称知,AE=FE,∴∠EAF=∠EFA,∵GF⊥AF,∴∠EAF+∠FGA=∠EFA+∠EFG=90°,∴∠FGA=∠EFG,∴EG=EF,∴AE=EG;(2)如图1,当点F落在AC上时,由对称知,BE⊥AF,∴∠ABE+∠BAC=90°,∵∠DAC+∠BAC=90°,∴∠ABE=∠DAC,∵∠BAE=∠D=90°,∴△ABE∽△DAC,∴ABDA=AEDC,∵AB=DC,∴AB2=AD•AE=na2,∵AB>0,∴AB=n a,∴ADAB=nana=n;(3)若AD=4AB,则AB=n4a,如图2,当点F落在线段BC上时,EF=AE=AB=a,此时n4a=a,∴n=4,∴当点F落在矩形内部时,n>4,∵点F落在矩形内部,点G在AD上,∴∠FCG<∠BCD,∴∠FCG<90°,①当∠CFG=90°时,如图3,则点F落在AC上,由(2)得,ADAB=n,∴n=16,②当∠CGF=90°时,则∠CGD+∠AGF=90°,∵∠FAG+∠AGF=90°,∴∠CGD=∠FAG=∠ABE,∵∠BAE=∠D=90°,∴△ABE∽△DGC,∴ABDG=AEDC,∴AB•DC=DG•AE,∵DG=AD-AE-EG=na-2a=(n-2)a,∴(n4a)2=(n-2)a•a,∴n=8+42或n=8-42(由于n>4,所以舍),∴当n=16或n=8+42时,以点F,C,G为顶点的三角形是直角三角形.【解析】(1)直接利用等角的余角相等得出∠FGA=∠EFG,即可得出EG=EF,代换即可;(2)先判断出△ABE∽△DAC,得出比例式用AB=DC代换化简即可得出结论;(3)先判断出只有∠CFG=90°或∠CGF=90°,分两种情况建立方程求解即可.此题是相似形综合题,主要考查了矩形的性质,等腰三角形的判定,相似三角形的判定和性质,解(1)的关键是判断出EG=EF,解(2)的关键是判断出△ABE∽△DAC,解(3)的关键是分类讨论,用方程的思想解决问题.28.【答案】8<t<14413【解析】解:(1)将x=0代入y=-x+8,得y=8,∴C(0,8),将y=0代入y=-x+8,得x=6,∴A(6,0),∵四边形OABC是矩形,∴B(6,8);(2)如图1,作QH⊥AB于H,当t=1时,CP=7,AQ=14,易证AC=10,sin∠BAC=,∴QH=AQsin∠BAC=,∴S△ABQ=;(3)分类:Ⅰ、如图2,当P在线段OC上,Q在线段AC上时,即3<<8时,易证=sin∠EQP=sin∠ACO=,∴∠EQP=∠ACO,∴CP=PQ,∵PE⊥CQ,∴CE=EQ,∴2×(8-t)=10-(16-2t),解得t1=,Ⅱ、当Q与C重合,P在OC上时,如图3,可得16-2t=10,解得t2=3,Ⅲ、当Q与C重合,P在OC延长线上时,如图4,可得2t-16=10,解得t3=13,Ⅳ、当P在OC延长线上,Q在AC延长线上时,如图5,同Ⅰ,可得∠Q=∠PCQ,∴CP=PQ,∴(2t-16-10)=(t-8),解得t4=33,∴t=或3或13或33;②当圆心I在边AC上时,如图6,P与C重合,Q与A重合,∴OP=t=8,当圆心I在边BC上时,设⊙I与x轴交于F,连接FQ,∵PQ是直径,∴QF⊥x轴,∴FQ∥OA,CP=CF=t-8,∴△CQF∽△ACO,∴=,即=,∴t=,∴若圆心I在△ABC内部(不包含边上),则此时t的取值范围为8<t<,故答案为:8<t<.(1)将x=0代入y=-x+8,得y=8,将y=0代入y=-x+8,得x=6,于是得到结论;(2)如图1,作QH⊥AB于H,当t=1时,CP=7,AQ=14,解直角三角形得到QH=AQsin∠BAC=,根据三角形的面积公式即可得到结论;(3)Ⅰ、如图2,当P在线段OC上,Q在线段AC上时,解直角三角形得到解得t1=,Ⅱ、当Q与C重合,P在OC上时,如图3,解得t2=3,Ⅲ、当Q与C 重合,P在OC延长线上时,如图4,解得t3=13,Ⅳ、当P在OC延长线上,Q 在AC延长线上时,如图5,同Ⅰ,解得t4=33;②当圆心I在边AC上时,如图6,P与C重合,Q与A重合,求得OP=t=8,当圆心I在边BC上时,设⊙I与x轴交于F,连接FQ,根据相似三角形的性质得到t=,于是得到结论.本题考查了矩形的性质,一次函数的性质,相似三角形的判定和性质,解直角三角形,正确的作出图形是解题的关键.。
江苏初三初中数学期中考试带答案解析
江苏初三初中数学期中考试班级:___________ 姓名:___________ 分数:___________一、选择题1.(2015秋•仪征市期中)方程x2=2x的解是()A.2B.﹣2C.0,2D.0,﹣22.(2014•孟津县一模)关于x的一元二次方程x2﹣2ax﹣1=0(其中a为常数)的根的情况是()A.有两个不相等的实数根B.可能有实数根,也可能没有C.有两个相等的实数根D.没有实数根3.(2015秋•仪征市期中)如图,AB为⊙O的直径,点C在⊙O上,∠A=40°,则∠B的度数为()A.20°B.40°C.50°D.60°4.(2015秋•仪征市期中)下列命题:①直径是圆中最长的弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④菱形的四个顶点在同一个圆上;其中正确结论的个数有()A.1个B.2个C.3个D.4个5.(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2B.1:3C.2:3D.2:56.(2006•杭州)已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.7.(2014•天津)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28B.x(x﹣1)=28C.x(x+1)=28D.x(x﹣1)=288.(2015秋•仪征市期中)如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=42°,则∠CAD的度数为()A.110°B.88°C.84°D.66°二、填空题1.(2014•汕头)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.2.(2015秋•仪征市期中)⊙O的半径为R,圆心O到点A的距离为d,且R、d分别是方程x2﹣6x+9=0的两根,则点A与⊙O的位置关系是.3.(2015秋•仪征市期中)在⊙O中,弦AB=2cm,圆心角∠AOB=60°,则⊙O的直径为 cm.4.(2013•禅城区校级模拟)在如图所示的平面直角坐标系中,点A(2,9),B(2,3),C(3,2),D(9,2)在⊙P上,则圆心P的坐标是.5.(2015秋•仪征市期中)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是.6.(2015秋•仪征市期中)一块矩形菜地的面积是120平方米,如果它的长减少2米,那么菜地就变成了正方形,则原矩形的长是米.7.(2014•滨州)如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则= .8.(2015秋•仪征市期中)如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=3,BD=2,则CD的长为.9.(2015秋•仪征市期中)若m是方程x2﹣2x﹣2=0的一个根,则2m2﹣4m+2012的值是.10.(2015•河池)如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则+= . 三、解答题 1.(2015秋•仪征市期中)解方程:(1)x 2﹣8x ﹣10=0;(2)9t 2﹣(t ﹣1)2=0.2.(2015秋•仪征市期中)已知关于x 的方程x 2+(m+2)x+2m ﹣1=0.(1)求证:方程有两个不相等的实数根.(2)若1是该方程的一个根.求m 的值并求出此时方程的另一个根.3.(2015•长沙)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?4.(2015秋•仪征市期中)如图△ABC 中,DE ∥BC ,=,M 为BC 上一点,AM 交DE 于N .(1)若AE=4,求EC 的长;(2)若M 为BC 的中点,S △ABC =36,求S △ADN .5.(2013秋•昌平区校级期末)如图,在△ABC 中,∠ABC=2∠C ,BD 平分∠ABC ,且,,求AB 的值.6.(2013秋•相城区校级期末)如图,已知点C 、D 在以O 为圆心,AB 为直径的半圆上,且OC ⊥BD 于点M ,CF ⊥AB 于点F 交BD 于点E ,BD=8,CM=2.(1)求⊙O 的半径;(2)求证:CE=BE .7.(2015秋•仪征市期中)如图,在△ABC 中,AB=AC ,以AC 为直径的⊙O 交AB 于点D ,交BC 于点E .(1)求证:BE=CE ;(2)若∠B=70°,求弧DE 的度数.(3)若BD=2,BE=3,求AC 的长.8.(2015•海宁市模拟)如图,四边形OBCD 中的三个顶点在⊙O 上,点A 是⊙O 上的一个动点(不与点B 、C 、D 重合).(1)若点A 在优弧上,且圆心O 在∠BAD 的内部,已知∠BOD=120°,则∠OBA+∠ODA= °. (2)若四边形OBCD 为平行四边形.①当圆心O 在∠BAD 的内部时,求∠OBA+∠ODA 的度数; ②当圆心O 在∠BAD 的外部时,请画出图形并直接写出∠OBA 与∠ODA 的数量关系.9.(2015秋•仪征市期中)如图,在矩形ABCD 中,AB=3,BC=4,动点P 从点D 出发沿DA 向终点A 运动,同时动点Q 从点A 出发沿对角线AC 向终点C 运动.过点P 作PE ∥DC ,交AC 于点E ,动点P 、Q 的运动速度是每秒1个单位长度,运动时间为t 秒,当点P 运动到点A 时,P 、Q 两点同时停止运动.(1)用含有t 的代数式表示PE= ;(2)探究:当t 为何值时,四边形PQBE 为梯形?(3)是否存在这样的点P 和点Q ,使△PQE 为等腰三角形?若存在,请求出所有满足要求的t 的值;若不存在,请说明理由.江苏初三初中数学期中考试答案及解析一、选择题1.(2015秋•仪征市期中)方程x 2=2x 的解是( )A .2B .﹣2C .0,2D .0,﹣2【答案】C【解析】首先移项,进而提取公因式分解因式解方程即可.解:x 2=2x ,则x 2﹣2x=0,x (x ﹣2)=0,解得:x 1=0,x 2=2.故选:C .【考点】解一元二次方程-因式分解法.2.(2014•孟津县一模)关于x 的一元二次方程x 2﹣2ax ﹣1=0(其中a 为常数)的根的情况是( )A .有两个不相等的实数根B .可能有实数根,也可能没有C .有两个相等的实数根D .没有实数根【答案】A【解析】先计算△=(﹣2a)2﹣4×(﹣1)=4a2+4,由于4a2≥0,则4a2+4>0,即△>0,然后根据根的判别式的意义进行判断即可.解:△=(﹣2a)2﹣4×(﹣1)=4a2+4,∵4a2≥0,∴4a2+4>0,即△>0,∴方程有两个不相等的实数根.故选A.【考点】根的判别式.3.(2015秋•仪征市期中)如图,AB为⊙O的直径,点C在⊙O上,∠A=40°,则∠B的度数为()A.20°B.40°C.50°D.60°【答案】C【解析】根据圆周角定理:直径所对的圆周角为直角,可以得到△ABC是直角三角形,根据直角三角形的两锐角互余即可求解.解:∵AB是⊙O的直径,∴∠C=90°,∵∠A=40°,∴∠B=50°,故选C.【考点】圆周角定理;直角三角形的性质.4.(2015秋•仪征市期中)下列命题:①直径是圆中最长的弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④菱形的四个顶点在同一个圆上;其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】B【解析】利用直径、不在同一直线上的三点确定一个圆和三角形外心和四点共圆即可作出判断.解:①直径是圆中最长的弦,正确;②经过不在同一直线上的三点确定一个圆,错误;③三角形的外心到三角形各顶点的距离都相等,正确;④菱形的对角不一定互补,故其四个顶点不一定在同一个圆上,错误;故选B【考点】命题与定理.5.(2011•威海)在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2B.1:3C.2:3D.2:5【答案】A【解析】根据四边形ABCD是平行四边形,求证△AEF∽△BCF,然后利用其对应边成比例即可求得答案.解:∵四边形ABCD是平行四边形,∴△AEF∽△BCF,∴=,∵点E为AD的中点,∴==,故选:A.【考点】相似三角形的判定与性质;平行四边形的性质.6.(2006•杭州)已知△ABC如图,则下列4个三角形中,与△ABC相似的是()A.B.C.D.【答案】C【解析】△ABC是等腰三角形,底角是75°,则顶角是30°,看各个选项是否符合相似的条件.解:∵由图可知,AB=AC=6,∠B=75°,∴∠C=75°,∠A=30°,A、三角形各角的度数分别为75°,52.5°,52.5°,B、三角形各角的度数都是60°,C、三角形各角的度数分别为75°,30°,75°,D、三角形各角的度数分别为40°,70°,70°,∴只有C选项中三角形各角的度数与题干中三角形各角的度数相等,故选:C.【考点】相似三角形的判定.7.(2014•天津)要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28B.x(x﹣1)=28C.x(x+1)=28D.x(x﹣1)=28【答案】B【解析】关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选:B.【考点】由实际问题抽象出一元二次方程.8.(2015秋•仪征市期中)如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=42°,则∠CAD的度数为()A.110°B.88°C.84°D.66°【答案】C【解析】首先以A为圆心,AB长为半径画弧,然后可确定B、C、D同在⊙A上,再根据∠CBD=2∠BDC可得=2,然后可得∠CAD=2∠BAC=84°.解:以A为圆心,AB长为半径画弧,∵AB=AC=AD,∴B、C、D同在⊙A上,∵∠CBD=2∠BDC,∴=2,∴∠CAD=2∠BAC=84°,故选:C.【考点】圆周角定理.二、填空题1.(2014•汕头)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为.【答案】3.【解析】作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=4,然后在Rt△AOC中利用勾股定理计算OC即可.解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.【考点】垂径定理;勾股定理.2.(2015秋•仪征市期中)⊙O的半径为R,圆心O到点A的距离为d,且R、d分别是方程x2﹣6x+9=0的两根,则点A与⊙O的位置关系是.【答案】点A在⊙O上.【解析】解方程得出R=d=3,即可得出点A在⊙O上.解:∵R、d分别是方程x2﹣6x+9=0的两根,解方程得:R=d=3,∴点A在⊙O上.故答案为:点A在⊙O上.【考点】点与圆的位置关系;解一元二次方程-配方法.3.(2015秋•仪征市期中)在⊙O中,弦AB=2cm,圆心角∠AOB=60°,则⊙O的直径为 cm.【答案】4.【解析】根据题意画出图形,再由等边三角形的性质即可得出结论.解:如图所示,∵在⊙O中AB=2cm,圆心角∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB=2cm,∴⊙O的直径=2OA=4cm.故答案为:4.【考点】圆心角、弧、弦的关系;等边三角形的判定与性质.4.(2013•禅城区校级模拟)在如图所示的平面直角坐标系中,点A(2,9),B(2,3),C(3,2),D(9,2)在⊙P上,则圆心P的坐标是.【答案】(6,6).【解析】根据A、B、C、D都在⊙P上得出P在AB和CD的垂直平分线的交点上,根据A、B的纵坐标得出P在直线y=6上,根据CD的横坐标得出P在直线x=6上,求出两直线的交点坐标即可.解:∵A(2,9),B(2,3),C(3,2),D(9,2)在⊙P上,∴P在AB和CD的垂直平分线的交点上,根据A、B的纵坐标得出P在直线y=6上,根据CD的横坐标得出P在直线x=6上,即P的坐标是(6,6),故答案为:(6,6).【考点】垂径定理;坐标与图形性质;勾股定理.5.(2015秋•仪征市期中)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是.【答案】k>﹣1且k≠0.【解析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,然后解不等式即可得到k的取值范围.解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴k≠0且△>0,即(﹣2)2﹣4×k×(﹣1)>0,解得k>﹣1且k≠0.∴k的取值范围为k>﹣1且k≠0,故答案为:k>﹣1且k≠0.【考点】根的判别式;一元二次方程的定义.6.(2015秋•仪征市期中)一块矩形菜地的面积是120平方米,如果它的长减少2米,那么菜地就变成了正方形,则原矩形的长是米.【答案】12.【解析】根据“如果它的长减少2m,那么菜地就变成正方形”可以得到长方形的长比宽多2米,利用矩形的面积公式列出方程即可.解:∵长减少2m,菜地就变成正方形,∴设原菜地的长为x米,则宽为(x﹣2)米,根据题意得:x(x﹣2)=120,解得:x=12或x=﹣10(舍去),故答案为:12.【考点】一元二次方程的应用.7.(2014•滨州)如图,平行于BC 的直线DE 把△ABC 分成的两部分面积相等,则= . 【答案】. 【解析】根据相似三角形的判定与性质,可得答案. 解:∵DE ∥BC , ∴△ADE ∽△ABC . ∵S △ADE =S 四边形BCED ,∴, ∴, 故答案为:.【考点】相似三角形的判定与性质.8.(2015秋•仪征市期中)如图,△ABC 中,D 为BC 上一点,∠BAD=∠C ,AB=3,BD=2,则CD 的长为 .【答案】.【解析】易证△BAD ∽△BCA ,然后运用相似三角形的性质可求出BC ,从而可得到CD 的值.解:∵∠BAD=∠C ,∠B=∠B ,∴△BAD ∽△BCA ,∴=. ∵AB=3,BD=2, ∴=,∴BC=,∴CD=BC ﹣BD=﹣2=.故答案为.【考点】相似三角形的判定与性质.9.(2015秋•仪征市期中)若m 是方程x 2﹣2x ﹣2=0的一个根,则2m 2﹣4m+2012的值是 .【答案】2016.【解析】根据一元二次方程的解的定义得到m 2﹣2m ﹣2=0,变形得m 2﹣2m=2,又2m 2﹣4m+2012=2(m 2﹣2m )+2012,然后利用整体思想进行计算解:∵m 是方程x 2﹣2x ﹣2=0的一个根,∴m 2﹣2m ﹣2=0,∴m 2﹣2m=2,∴2m 2﹣4m+2012=2(m 2﹣2m )+2012=2×2+2012=2016.故答案为2016.【考点】一元二次方程的解.10.(2015•河池)如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则+= .【答案】1.【解析】根据四边形ABCD 是菱形得到BC ∥AD ,从而得到=,根据CD ∥AM 得到,从而得到==1,代入菱形的边长为1即可求得结论. 【解答】证明:∵四边形ABCD 是菱形,∴BC ∥AD ,CD ∥AM ,∴=,, ∴==1, 又∵AB=AD=1,∴+=1. 故答案为:1.【考点】相似三角形的判定与性质;菱形的性质.三、解答题1.(2015秋•仪征市期中)解方程:(1)x 2﹣8x ﹣10=0;(2)9t 2﹣(t ﹣1)2=0.【答案】(1)x 1=4+,x 2=4﹣;(2)t 1=,t 2=﹣.【解析】(1)利用配方法得到(x ﹣4)2=26,然后利用直接开平方法解方程;(2)利用因式分解法解方程.解:(1)x 2﹣8x=10,x 2﹣8x+16=26,(x ﹣4)2=26,x ﹣4=±,所以x 1=4+,x 2=4﹣;(2)(3t+t ﹣1)(3t ﹣t+1)=0,3t+t ﹣1=0或3t ﹣t+1=0,所以t 1=,t 2=﹣.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.2.(2015秋•仪征市期中)已知关于x 的方程x 2+(m+2)x+2m ﹣1=0.(1)求证:方程有两个不相等的实数根.(2)若1是该方程的一个根.求m 的值并求出此时方程的另一个根.【答案】(1)见解析;(2)另一个根为﹣【解析】(1)若方程有两个不相等的实数根,则应有△=b 2﹣4ac >0,故计算方程的根的判别式即可证明方程根的情况;(2)直接代入x=1,求得m 的值后,解方程即可求得另一个根.【解答】(1)证明:∵a=1,b=m+2,c=2m ﹣1,∴△=(m+2)2﹣4×1×(2m ﹣1)=m 2﹣4m+8=(m ﹣2)2+4,∵无论m 取何值,(m ﹣2)2≥0,∴(m ﹣2)2+4>0,即△>0,∴方程x 2+(m+2)x+2m ﹣1=0有两个不相等的实数根;(2)解:把x=1代入原方程得,1+m+2+2m ﹣1=0,∴m=﹣,∴原方程化为程x 2+x ﹣=0,解得:x 1=1,x 2=﹣,即另一个根为﹣【考点】根的判别式.3.(2015•长沙)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【答案】(1)10%;(2)2名业务员.【解析】(1)设该快递公司投递总件数的月平均增长率为x ,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.解:(1)设该快递公司投递总件数的月平均增长率为x ,根据题意得10(1+x )2=12.1,解得x 1=0.1,x 2=﹣2.2(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件, ∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31, ∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.【考点】一元二次方程的应用;一元一次不等式的应用.4.(2015秋•仪征市期中)如图△ABC 中,DE ∥BC ,=,M 为BC 上一点,AM 交DE 于N .(1)若AE=4,求EC 的长;(2)若M 为BC 的中点,S △ABC =36,求S △ADN .【答案】(1)EC=2;(2)S △ADN =8.【解析】(1)利用平行可得=可求得AC 的长,结合条件可求得EC ;(2)可先求得△ABM 的面积,再利用相似可求得△ADN 的面积.解:(1)∵DE ∥BC ,∴==,∵AE=4, ∴AC=6, ∴EC=6﹣4=2;(2)∵M 为BC 的中点,∴S △ABM =S △ABC =18,∵DE ∥BC , ∴△AND ∽△ABM ,∴=()2=,∴S △ADN =8.【考点】平行线分线段成比例;相似三角形的判定与性质.5.(2013秋•昌平区校级期末)如图,在△ABC 中,∠ABC=2∠C ,BD 平分∠ABC ,且,,求AB 的值.【答案】【解析】由在△ABC中,∠ABC=2∠C,BD平分∠ABC,易证得△ABD∽△ACB,然后由相似三角形的对应边成比例,求得AB2=AD•AC,则可求得AB的值.解:∵在△ABC中,∠ABC=2∠C,BD平分∠ABC,∴∠ABD=∠C=∠CBD,∴CD=BD=2,∴AC=AD+CD=+2=3,∵∠A是公共角,∴△ABD∽△ACB,∴AD:AB=AB:AC,∴AB2=AD•AC=×3=6,∴AB=【考点】相似三角形的判定与性质.6.(2013秋•相城区校级期末)如图,已知点C、D在以O为圆心,AB为直径的半圆上,且OC⊥BD于点M,CF⊥AB于点F交BD于点E,BD=8,CM=2.(1)求⊙O的半径;(2)求证:CE=BE.【答案】(1)r=5;(2)见解析【解析】(1)可在Rt△OBM中,用半径表示出OM,然后根据勾股定理求出半径的长;(2)可连接BC,证∠EBC=∠ECB即可;已知的条件是由垂径定理得出的,可有两种证法:①连接AC,易证得∠CAB=∠BCF,然后根据上面得出的等弧,通过等量代换得出结论;②将半圆补全,直接由垂径定理求出结果.【解答】(1)解:∵OC为⊙O的半径,OC⊥BD,∴;∵DB=8,∴MB=4(1分)设⊙O的半径为r,∵CM=2,∴OM=r﹣2,在Rt△OMB中,根据勾股定理得(r﹣2)2+42=r2,解得r=5;(2分)(2)证明:方法一:连接AC、CB,∵AB是直径,∴∠ACB=90°.∴∠ACF+∠FCB=90°.又∵CF⊥AB,∴∠CAF+∠ACF=90°∴∠FCB=∠CAF(3分)∵OC为⊙O的半径,OC⊥BD,∴C是的中点,∴∠CAF=∠CBD.(4分)∴∠FCB=∠DBC.∴CE=BE;(5分)方法二:如图,连接BC,补全⊙O,延长CF交⊙O于点G;又∵CF⊥AB,AB为直径,∴=.(3分)∴OC为⊙O的半径,OC⊥BD.∴C是的中点,∴=.(4分)∴=.∴∠FCB=∠DBC.∴CE=BE.(5分)【考点】圆周角定理;勾股定理;垂径定理.7.(2015秋•仪征市期中)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若∠B=70°,求弧DE的度数.(3)若BD=2,BE=3,求AC的长.【答案】(1)见解析;(2)40°;(3)9.【解析】(1)连结AE,如图,由圆周角定理得∠AEC=90°,而AB=AC,则根据等腰三角形的性质即可判断BE=CE;(2)连结OD、OE,如图,在Rt△ABE中,利用互余计算出∠BAE=20°,再根据圆周角定理得∠DOE=2∠DAE=40°,然后根据圆心角的度数等于它所对的弧的度数即可得到弧DE的度数为40°;(3)连结CD,如图,BC=2BE=6,设AC=x,则AD=x﹣2,由圆周角定理得∠ADC=90°,在Rt△BCD中,利用勾股定理得CD2=32,然后在Rt△ADC中再利用勾股定理得到(x﹣2)2+32=x2,接着解方程求出x即可.解:(1)证明:连结AE,如图,∵AC为直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴BE=CE;(2)解:连结OD、OE,如图,在Rt△ABE中,∠BAE=90°﹣∠B=90°﹣70°=20°,∴∠DOE=2∠DAE=40°,∴弧DE的度数为40°;(3)解:连结CD,如图,BC=2BE=6,设AC=x,则AD=x﹣2,∵AC为直径,∴∠ADC=90°,在Rt△BCD中,CD2=BC2﹣BD2=62﹣22=32,在Rt△ADC中,∵AD2+CD2=AC2,∴(x﹣2)2+32=x2,解得x=9,即AC的长为9.【考点】圆周角定理;等腰三角形的判定与性质.8.(2015•海宁市模拟)如图,四边形OBCD中的三个顶点在⊙O上,点A是⊙O上的一个动点(不与点B、C、D重合).(1)若点A在优弧上,且圆心O在∠BAD的内部,已知∠BOD=120°,则∠OBA+∠ODA= °.(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.【答案】(1)60°;(2)①60°;②∠ODA=∠OBA+60°.【解析】(1)连接BD,首先圆周角定理,求出∠BAD的度数是多少;然后根据三角形的内角和定理,求出∠0BD、∠ODB的度数和是多少;最后在△ABD中,用180°减去∠BAD、∠0BD、∠ODB的度数和,求出∠OBA+∠ODA等于多少即可.(2)①首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,,求出∠B0D的度数,进而求出∠BAD的度数;最后根据平行四边形的性质,求出∠OBC、∠ODC的度数,再根据∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.②Ⅰ、首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,,求出∠B0D的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠OBA=∠ODA+60°即可.Ⅱ、首先根据四边形OBCD为平行四边形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根据∠BAD+∠BCD=180°,,求出∠B0D的度数,进而求出∠BAD的度数;最后根据OA=OD,OA=OB,判断出∠OAD=∠ODA,∠OAB=∠OBA,进而判断出∠ODA=∠OBA+60°即可.解:(1)如图1,连接BD,,∵∠BOD=120°,∴∠BAD=120°÷2=60°,∴∠0BD+∠ODB=180°﹣∠BOD=180°﹣120°=60°,∴∠OBA+∠ODA=180°﹣(∠0BD+∠ODB)﹣∠BAD=180°﹣60°﹣60°=120°﹣60°=60°(2)①如图2,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,,∴,∴∠B0D=120°,∠BAD=120°÷2=60°,∴∠OBC=∠ODC=180°﹣120°=60°,又∵∠ABC+∠ADC=180°,∴∠OBA+∠ODA=180°﹣(∠OBC+∠ODC)=180°﹣(60°+60°)=180°﹣120°=60°②Ⅰ、如图3,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,,∴,∴∠B0D=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD+∠BAD=∠OAD+60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA=∠ODA+60°.Ⅱ、如图4,,∵四边形OBCD为平行四边形,∴∠BOD=∠BCD,∠OBC=∠ODC,又∵∠BAD+∠BCD=180°,,∴,∴∠B0D=120°,∠BAD=120°÷2=60°,∴∠OAB=∠OAD﹣∠BAD=∠OAD﹣60°,∵OA=OD,OA=OB,∴∠OAD=∠ODA,∠OAB=∠OBA,∴∠OBA=∠ODA﹣60°,即∠ODA=∠OBA+60°.故答案为:60.【考点】圆周角定理;平行四边形的性质;圆内接四边形的性质.9.(2015秋•仪征市期中)如图,在矩形ABCD中,AB=3,BC=4,动点P从点D出发沿DA向终点A运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC于点E,动点P、Q的运动速度是每秒1个单位长度,运动时间为t秒,当点P运动到点A时,P、Q两点同时停止运动.(1)用含有t的代数式表示PE= ;(2)探究:当t为何值时,四边形PQBE为梯形?(3)是否存在这样的点P和点Q,使△PQE为等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.【答案】(1)﹣t+3;(2)t=,(3)见解析【解析】(1)由四边形ABCD为矩形,得到∠D为直角,对边相等,可得三角形ADC为直角三角形,由AD与DC的长,利用勾股定理求出AC的长,再由PE平行于CD,利用两直线平行得到两对同位角相等,可得出三角形APE与三角形ADC相似,由相似得比例,将各自的值代入,整理后得到y与x的关系式;(2)若QB与PE平行,得到四边形PQBE为矩形,不合题意,故QB与PE不平行,当PQ与BE平行时,利用两直线平行得到一对内错角相等,可得出一对邻补角相等,再由AD与BC平行,得到一对内错角相等,可得出三角形APQ与三角形BEC相似,由相似得比例列出关于x的方程,求出方程的解即可得到四边形PQBE为梯形时x的值;(3)存在这样的点P和点Q,使P、Q、E为顶点的三角形是等腰三角形,分两种情况考虑:当Q在AE上时,由AE﹣AQ表示出QE,再根据PQ=PE,PQ=EQ,PE=QE三种情况,分别列出关于x的方程,求出方程的解即可得到满足题意x的值;当Q在EC上时,由AQ﹣AE表示出QE,此时三角形为钝角三角形,只能PE=QE列出关于x的方程,求出方程的解得到满足题意x的值,综上,得到所有满足题意的x的值.解:(1)∵四边形ABCD是矩形,∴∠D=90°,AB=DC=3,AD=BC=4,∴在Rt△ACD中,利用勾股定理得:AC==5,∵PE∥CD,∴∠APE=∠ADC,∠AEP=∠ACD,∴△APE∽△ADC,又∵PD=t,AD=4,AP=AD﹣PD=4﹣t,AC=5,DC=3,∴==,即==,∴PE=﹣t+3.故答案为:﹣t+3;(2)若QB∥PE,四边形PQBE是矩形,非梯形,故QB与PE不平行,当QP∥BE时,∵∠PQE=∠BEQ,∴∠AQP=∠CEB,∵AD∥BC,∴∠PAQ=∠BCE,∴△PAQ∽△BCE,由(1)得:AE=﹣t+5,PA=4﹣t,BC=4,AQ=t,∴==,即==,整理得:5(4﹣t)=16,解得:t=,∴当t=时,QP∥BE,而QB与PE不平行,此时四边形PQBE是梯形;(3)存在.分两种情况:当Q在线段AE上时:QE=AE﹣AQ=﹣t+5﹣t=5﹣t,(i)当QE=PE时,5﹣t=﹣t+3,解得:x=;(ii)当QP=QE时,∠QPE=∠QEP,∵∠APQ+∠QPE=90°,∠PAQ+∠QEP=90°,∴∠APQ=∠PAQ,∴AQ=QP=QE,∴t=5﹣t,解得,t=;(iii)当QP=PE时,过P作PF⊥QE于F(如图1),可得:FE=QE=(5﹣t)=,∵PE∥DC,∴∠AEP=∠ACD,∴cos∠AEP=cos∠ACD==,∵cos∠AEP===,解得t=;当点Q在线段EC上时,△PQE只能是钝角三角形,如图2所示:∴PE=EQ=AQ﹣AE,AQ=t,AE=﹣t+5,PE=﹣t+3,∴﹣t+3=t﹣(﹣t+5),解得t=.综上,当t=或t=或t=或t=时,△PQE为等腰三角形.【考点】四边形综合题.。
无锡市宜兴市洑东中学2015届九年级上期中数学试题及答案
OPABxy110B CA2014-2015学年度宜兴市洑东中学第一学期期中试卷九年级数学(考试时间120分钟,试卷满分130分)一、 选择题。
(本大题共l0小题.每小题3分.共30分。
每题只有一个正确答案) 1.方程2x =4的解是 ( )A .2B . -2C . ±2D . 42.要求设计4幅既是轴对称图形又是中心对称图形的图案,小明设计完成了下列4幅图案,其中符合要求的个数是 ( )A .1个B .2个C .3个D .4个 3.—元二次方程x 2-2x -4=0的两个实根为x 1和x 2,则下列结论正确的是( ) A 、x 1+x 2=2B 、x 1+x 2=-4C 、x 1·x 2=-2D 、x 1·x 2=44.已知方程x 2-3x+k=0有一个根是-1,则该方程的另一根是( ) A .1 B .0 C .-4 D .4 5.如图,PA 、PB 是⊙O 的两条切线,A 、B 是切点,若 ∠APB=60°,PO=2,则⊙O 的半径等于( ) A 、2 B 、1 C 、2 D 、3(第5题图)6.关于x 的一元二次方程x 2+kx -1=0的根的情况是 ( ) A 、有实数根 B 、有两个不相等的实数根 C 、有两个相等的实数根 D 、没有实数根7. 已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( ) A .5πcm 2 B .10π cm 2 C .15 cm 2 D .15π cm 28. 某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份 平均每月的增长率为x ,那么x 满足的方程是 ( ) A 、50(1+x)2=182 B 、50+50(1+x)+50(1+x)2=182 C 、50(1+2x)=182 D 、50+50(1+x)+50(1+2x)=182 9. 如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3)B .点(2,3)OABCCG DEFO C .点(5,1) D .点(6,1)10. 如图的平面直角坐标系中有一个正六边形ABCDEF ,其中C .D 的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x 轴向右滚动,则在滚动过程中,这个六边形的顶点A .B .C .D .E 、F 中,会过点(50,2)的是 ( )A. 点AB. 点BC.点 CD. 点D二、填空题(本题本大题共8小题,每小题2分,共l6分。
江苏省宜兴九年级上学期期中考试数学试卷有答案
江苏省宜兴市屺亭中学九年级上学期期中考试数学试卷一、选择题(本大题共10小题,每小题3分,满分30分)1. sin30°的值是 ( ▲ )A .1B .22C .32D . 122.已知1x 、2x 是一元二次方程0142=+-x x 的两个根,则21x x ⋅等于(▲ ) A. 4- B. 1- C. 1 D. 4 3. 下列一元二次方程中,无实数根的方程是( ▲ )A. 022=+xB.022=--x xC. 022=-+x xD.02=+x x 4.若两个相似多边形的面积之比为1:4,则它们的周长之比为( ▲ )5.下列说法正确的是( ▲ )A.经过三点可以作一个圆B.三角形的外心到这个三角形的三边距离相等C.等弧所对的圆心角相等D.相等的圆心角所对的弧相等6.已知⊙O 的半径是6cm ,点O 到同一平面内直线L 的距离为5cm ,则直线L 与⊙O 的位置关系是( ▲ ) A.相交 B.相切 C.相离 D.无法判断7. 如图,AB 是⊙0的直径,点D 在AB 的延长线上,过点D 作⊙0的切线,切点为C ,若25A =∠,则D =∠ ( ) A . 60° B .65° C .50°D .40°8. 如图,在平地MN 上用一块10m 长的木板AB 搭了一个斜坡,两根支柱AC =7.5m ,AD =6m ,其中AC ⊥AB ,AD ⊥MN ,则斜坡AB 的坡度是( ▲ )A. 3:5B. 4:5C. 3:4D. 4:39. 如图,点D 为△ABC 的边AB 上的一点,连结CD ,过点B 作BE//AC 交CD 的延长线于点E ,且∠ACD=∠DBC ,9:4:=∆∆BED ADC S S ,AB =10,则AC 的长为(▲ ).C. 6D.1360第9题图CABD第10题图CD 第8题图第7题图A10. 已知等腰梯形ABCD 中,AD ∥BC ,∠B =45°,AD =23-2.动点P 在折线BA -AD -DC 上移动,若存在∠BPC =120°,且这样的P 点恰好出现3次,则梯形ABCD 的面积是( ▲ ) A .23-1B .23-2C .2 3D .23+1二、填空题(本大题共8小题,每小题2分,满分16分.)11. 在1:500000的无锡市地图上,新建的地铁线估计长4.5cm ,那么等地铁造好后实际长约为 ▲ 千米。
江苏省无锡市宜兴九年级(上)期中数学试卷
江苏省无锡市九年级(上)期中数学试卷一、精心选一选(本大题共10小题,每题3分,共30分,每题的四个选项中,只有一个符合题意):1.(3分)(2015秋•宜兴市校级期中)下列关于x的方程中,一定是一元二次方程的为()A.x2﹣1=0 B.x2+2y+1=0 C.x2﹣2=(x+3)2D.x22.(3分)(2015秋•衡阳县期末)关于x的一元二次方程x2+mx﹣1=0的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.不能确定3.(3分)(2015秋•宜兴市校级期中)⊙O的半径为4,线段OP=4,则点P与⊙O的位置关系是()A.点P在⊙O外 B.点P在⊙O内 C.点P在⊙O上 D.不能确定4.(3分)(2014秋•防城区期末)如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.C.∠ACD=∠ADC D.OM=BM5.(3分)(2015•梅州)如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于()A.20°B.25°C.40°D.50°6.(3分)(2015秋•宜兴市校级期中)下列说法中,正确的是()A.垂直于半径的直线一定是这个圆的切线B.任何三角形有且只有一个内切圆C.三点确定一个圆D.三角形的内心到三角形的三个顶点的距离相等7.(3分)(2015秋•宜兴市校级期中)如图,在△ABC中,点O为重心,则S△DOE:S△BOC=()A.1:4 B.1:3 C.1:2 D.2:38.(3分)(2012•西城区校级模拟)如图,将△ABC的三边分别扩大一倍得到△A1B1C1(顶点均在格点上),若它们是以P点为位似中心的位似图形,则P点的坐标是()A.(﹣3,﹣4)B.(﹣3,﹣3)C.(﹣4,﹣4)D.(﹣4,﹣3)9.(3分)(2014•长沙校级自主招生)以半圆中的一条弦BC(非直径)为对称轴将弧BC 折叠后与直径AB交于点D,若,且AB=10,则CB的长为()A.B. C. D.410.(3分)(2014•无锡)已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条二、仔细填一填(本大题共8小题,每空2分,共计16分):11.(2分)(2012秋•滦南县校级期末)在实数范围内因式分解:3m2﹣6=______.12.(2分)(2015秋•宜兴市校级期中)已知m、n是一元二次方程x2+x﹣1=0的两个根,那么m+n=______.13.(2分)(2015秋•宜兴市校级期中)在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的实际高度是______米.14.(2分)(2015•泰州)如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于______.15.(2分)(2015秋•宜兴市校级期中)如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=2cm,则线段BC=______cm.16.(2分)(2015•漳州)如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD的度数为______.17.(2分)(2015秋•宜兴市校级期中)如图,平面直角坐标系的长度单位是厘米,直线y=﹣x+6分别与x轴、y轴相交于B、A两点.点C在射线BA上以3厘米/秒的速度运动,以C点为圆心作半径为1厘米的⊙C.点P以2厘米/秒的速度在线段OA上来回运动,过点P作直线l∥x轴.若点C与点P同时从点B、点O开始运动,设运动时间为t秒,则在整个运动过程中直线l与⊙C最后一次相切时t=______秒.18.(2分)(2014•无锡)如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是______.三、解答题(本大题共9小题,共计84分.)19.(16分)(2015秋•宜兴市校级期中)解一元二次方程:(1)(x﹣2)2=9(2)x2﹣5x﹣6=0(3)3y2+4y﹣1=0(4)3(x﹣5)2=x(5﹣x)20.(6分)(2015•淮安)先化简(1+)÷,再从1,2,3三个数中选一个合适的数作为x的值,代入求值.21.(8分)(2015•南京)如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.22.(10分)(2015•鄂州)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC 的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.23.(8分)(2015•南通)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?24.(8分)(2014•泰州一模)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为______km/h,快车的速度为______km/h;(2)解释图中点D的实际意义并求出点D的坐标;(3)求当x为多少时,两车之间的距离为300km.25.(8分)(2015秋•宜兴市校级期中)如图,△ABC中,AB=AC=4,BC=8.(1)动手操作:利用尺规作以AC为直径的圆O,并标圆O与AB的交点D,与BC的交点E,连接DE、CE(保留作图痕迹,不写作法)(2)综合应用:在你所作的图中,①求证:DE=CE;②求点D到BC的距离.26.(10分)(2015•苏州一模)如图①,一个Rt△DEF直角边DE落在AB上,点D与点B重合,过A点作二射线AC与斜边EF平行,己知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)•(1)当t=5时,连接QE,PF,判断四边形PQEF的形状;(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:①当D、M、Q三点在同一直线上时,求运动时间t;②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.27.(10分)(2015•扬州)如图1,直线l⊥AB于点B,点C在AB上,且AC:CB=2:1,点M是直线l上的动点,作点B关于直线CM的对称点B′,直线AB′与直线CM相交于点P,连接PB.(1)如图2,若点P与点M重合,则∠PAB=______,线段PA与PB的比值为______ (2)如图3,若点P与点M不重合,设过P,B,C三点的圆与直线AP相交于D,连接CD,求证:①CD=CB′;②PA=2PB;(3)如图4,若AC=2,BC=1,则满足条件PA=2PB的点都在一个确定的圆上,在以下小题中选做一题:①如果你能发现这个确定的圆的圆心和半径,那么不必写出发现过程,只要证明这个圆上的任意一点Q,都满足QA=2QB;②如果你不能发现这个确定的圆的圆心和半径,那么请取出几个特殊位置的P点,如点P 在直线AB上,点P与点M重合等进行探究,求这个圆的半径.江苏省无锡市宜兴九年级(上)期中数学试卷参考答案与试题解析一、精心选一选(本大题共10小题,每题3分,共30分,每题的四个选项中,只有一个符合题意):1.(3分)(2015秋•宜兴市校级期中)下列关于x的方程中,一定是一元二次方程的为()A.x2﹣1=0 B.x2+2y+1=0 C.x2﹣2=(x+3)2D.x2【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是一元二次方程,故A正确;B、是二元二次方程,故B错误;C、是一元一次方程,故C错误;D、是分式方程,故D错误;故选:A.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.(3分)(2015秋•衡阳县期末)关于x的一元二次方程x2+mx﹣1=0的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.不能确定【分析】计算出方程的判别式为△=m2+4,可知其大于0,可判断出方程根的情况.【解答】解:方程x2+mx﹣1=0的判别式为△=m2+4>0,所以该方程有两个不相等的实数根,故选A.【点评】本题主要考查一元二次方程根的判别式,掌握根的判别式与方程根的情况是解题的关键.3.(3分)(2015秋•宜兴市校级期中)⊙O的半径为4,线段OP=4,则点P与⊙O的位置关系是()A.点P在⊙O外 B.点P在⊙O内 C.点P在⊙O上 D.不能确定【分析】根据点与圆的位置关系的判定方法进行判断.【解答】解:∵OP=4,∴OP等于⊙O的半径,∴点P与⊙O上.故选C.【点评】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.4.(3分)(2014秋•防城区期末)如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DM B.C.∠ACD=∠ADC D.OM=BM【分析】先根据垂径定理得CM=DM,=,=,再根据圆周角定理得到∠ACD=∠ADC,而OM与BM的关系不能判断.【解答】解:∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,=,=,∴∠ACD=∠ADC.故选D.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.5.(3分)(2015•梅州)如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于()A.20°B.25°C.40°D.50°【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=20°,∴∠AOC=40°,∴∠C=50°.故选:D.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,掌握已知切线时常用的辅助线是连接圆心与切点是解题的关键.6.(3分)(2015秋•宜兴市校级期中)下列说法中,正确的是()A.垂直于半径的直线一定是这个圆的切线B.任何三角形有且只有一个内切圆C.三点确定一个圆D.三角形的内心到三角形的三个顶点的距离相等【分析】根据切线的判定定理对A进行判断;根据三角形内心的定义对B、D进行判断;根据确定圆的条件对C进行判断.【解答】解:A、过半径的外端垂直于半径的直线是这个圆的切线,所以A选项错误;B、任何三角形有且只有一个内切圆,所以B选项正确;C、不共线的三点确定一个圆,所以C选项错误;D、三角形的内心到三角形的三边的距离相等,所以D选项错误.故选B.【点评】本题考查了三角形的内切圆与内心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.也考查了切线的性质.7.(3分)(2015秋•宜兴市校级期中)如图,在△ABC中,点O为重心,则S△DOE:S△BOC=()A.1:4 B.1:3 C.1:2 D.2:3【分析】利用三角形重心的定义得出D是AB的中点,E是AC的中点,进而得出△DOE ∽△COB,再利用相似三角形的性质得出答案.【解答】解:∵点O为重心,∴D是AB的中点,E是AC的中点,∴DE∥BC,=,∴△DOE∽△COB,∴S△DOE:S△BOC=1:4.故选:A.【点评】此题主要考查了相似三角形的判定与性质以及重心的定义,得出△DOE∽△COB 是解题关键.8.(3分)(2012•西城区校级模拟)如图,将△ABC的三边分别扩大一倍得到△A1B1C1(顶点均在格点上),若它们是以P点为位似中心的位似图形,则P点的坐标是()A.(﹣3,﹣4)B.(﹣3,﹣3)C.(﹣4,﹣4)D.(﹣4,﹣3)【分析】根据位似图形的性质,对应点的坐标相交于一点,连接AA1,BB1,CC1,交点即是P点坐标.【解答】解:∵△ABC的三边分别扩大一倍得到△A1B1C1(顶点均在格点上),它们是以P 点为位似中心的位似图形,根据位似图形的性质,对应点的坐标相交于一点,连接AA1,BB1,CC1,交点即是P点坐标,∴如图所示,P点的坐标为:(﹣4,﹣3).故选:D.【点评】此题主要考查了位似图形的性质,根据位似图形性质得出位似图形对应点相交于一点是解决问题的关键.9.(3分)(2014•长沙校级自主招生)以半圆中的一条弦BC(非直径)为对称轴将弧BC 折叠后与直径AB交于点D,若,且AB=10,则CB的长为()A.B. C. D.4【分析】作AB关于直线CB的对称线段A′B,交半圆于D′,连接AC、CA′,构造全等三角形,然后利用勾股定理、割线定理解答.【解答】解:如图,若,且AB=10,∴AD=4,BD=6,作AB关于直线BC的对称线段A′B,交半圆于D′,连接AC、CA′,可得A、C、A′三点共线,∵线段A′B与线段AB关于直线BC对称,∴AB=A′B,∴AC=A′C,AD=A′D′=4,A′B=AB=10.而A′C•A′A=A′D′•A′B,即A′C•2A′C=4×10=40.则A′C2=20,又∵A′C2=A′B2﹣CB2,∴20=100﹣CB2,∴CB=4.故选A.【点评】此题将翻折变换、勾股定理、割线定理相结合,考查了同学们的综合应用能力,要善于观察图形特点,然后做出解答.10.(3分)(2014•无锡)已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条【分析】利用等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可.【解答】解:如图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.故选:B.【点评】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键.二、仔细填一填(本大题共8小题,每空2分,共计16分):11.(2分)(2012秋•滦南县校级期末)在实数范围内因式分解:3m2﹣6=3(m+)(m ﹣).【分析】首先提公因式2,然后利用平方差公式分解即可求得答案.【解答】解:3m2﹣6=3(m2﹣2)=3(m+)(m﹣).故答案为:3(m+)(m﹣).【点评】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.12.(2分)(2015秋•宜兴市校级期中)已知m、n是一元二次方程x2+x﹣1=0的两个根,那么m+n=﹣1.【分析】由m与n为已知方程的解,利用根与系数的关系求出m+n即可.【解答】解:∵m、n是一元二次方程x2+x﹣1=0的两个根,∴m+n=﹣1,故答案为:﹣1,【点评】此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键.13.(2分)(2015秋•宜兴市校级期中)在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的实际高度是36米.【分析】设此高楼的高度为h米,再根据同一时刻物高与影长成正比列出关于h的比例式,求出h的值即可.【解答】解:设此高楼的高度为h米,∵在同一时刻,有人测得一高为1.8米得竹竿的影长为3米,某高楼的影长为60米,∴=,解得h=36.故答案是:36.【点评】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.14.(2分)(2015•泰州)如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于130°.【分析】根据圆内接四边形的对角互补求得∠C的度数,再根据圆周角定理求解即可.【解答】解:∵∠A=115°∴∠C=180°﹣∠A=65°∴∠BOD=2∠C=130°.故答案为:130°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.15.(2分)(2015秋•宜兴市校级期中)如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=2cm,则线段BC=6cm.【分析】过点A作AE⊥CE于点E,交BD于点D,根据平行线分线段成比例可得=,代入计算即可解答.【解答】解:如图,过点A作AE⊥CE于点E,交BD于点D,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,即,∴BC=6cm.故答案为:6.【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.16.(2分)(2015•漳州)如图,一块直角三角板ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是58°,则∠ACD的度数为61°.【分析】首先连接OD,由直角三角板ABC的斜边AB与量角器的直径恰好重合,可得点A,B,C,D共圆,又由点D对应的刻度是58°,利用圆周角定理求解即可求得∠BCD的度数,继而求得答案.【解答】解:连接OD,∵直角三角板ABC的斜边AB与量角器的直径恰好重合,∴点A,B,C,D共圆,∵点D对应的刻度是58°,∴∠BOD=58°,∴∠BCD=∠BOD=29°,∴∠ACD=90°﹣∠BCD=61°.故答案为:61°.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.17.(2分)(2015秋•宜兴市校级期中)如图,平面直角坐标系的长度单位是厘米,直线y=﹣x+6分别与x轴、y轴相交于B、A两点.点C在射线BA上以3厘米/秒的速度运动,以C点为圆心作半径为1厘米的⊙C.点P以2厘米/秒的速度在线段OA上来回运动,过点P作直线l∥x轴.若点C与点P同时从点B、点O开始运动,设运动时间为t秒,则在整个运动过程中直线l与⊙C最后一次相切时t=秒.【分析】首先过点C作CD⊥x轴于点D,由直线AB的解析式为y=﹣x+6,分别与x轴、y轴相交于B、A两点.即可求得点A与B的坐标,则可求得∠ABO的度数,得到BC=2CD;然后分别从直线l与⊙C第一次相切,第二次相切,第三次相切,去分析求解,即可求得答案.【解答】解:过点C作CD⊥x轴于点D,∵直线AB的解析式为y=﹣x+6,分别与x轴、y轴相交于B、A两点,∴当x=0时,y=6,当y=0时,x=6,∴点A的坐标为:(0,6),点B的坐标为:(6,0),∴OA=6,OB=6,∴在Rt△AOB中,tan∠ABO==,∴∠ABO=30°,∴在Rt△BCD中,BC=2CD,如图1,直线直线l与⊙C第一次相切,由题意得:OP=2t,BC=3t,∴CD=2t﹣1,∴3t=2(2t﹣1),解得:t=2;如图2,直线直线l与⊙C第二次相切,由题意得:OP=6﹣(2t﹣6)=12﹣2t,BC=3t,∴CD=12﹣2t﹣1,∴3t=2(12﹣2t﹣1),解得:t=;如图3,直线直线l与⊙C第三次相切,由题意得:OP=6﹣(2t﹣6)=12﹣2t,BC=3t,∴CD=12﹣2t+1,∴3t=2(12﹣2t+1),解得:t=.∴在整个运动过程中直线l与⊙C共有3次相切;直线l与⊙C最后一次相切时t=.故答案为:.【点评】此题考查了一次函数与坐标轴的交点问题、切线的性质以及特殊角的三角函数值等知识.此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用,注意掌握辅助线的作法是解此题的关键.18.(2分)(2014•无锡)如图,菱形ABCD中,∠A=60°,AB=3,⊙A、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是3.【分析】利用菱形的性质以及相切两圆的性质得出P与D重合时PE+PF的最小值,进而求出即可.【解答】解:由题意可得出:当P与D重合时,E点在AD上,F在BD上,此时PE+PF 最小,连接BD,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2和1,∴PE=1,DF=2,∴PE+PF的最小值是3.故答案为:3.【点评】此题主要考查了菱形的性质以及相切两圆的性质等知识,根据题意得出P点位置是解题关键.三、解答题(本大题共9小题,共计84分.)19.(16分)(2015秋•宜兴市校级期中)解一元二次方程:(1)(x﹣2)2=9(2)x2﹣5x﹣6=0(3)3y2+4y﹣1=0(4)3(x﹣5)2=x(5﹣x)【分析】(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(3)求出b2﹣4ac的值,再代入公式求出即可;(4)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)(x﹣2)2=9,开方得:x﹣2=±3,解得:x1=5,x2=﹣1;(2)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x﹣6=0,x+1=0,x1=6,x2=﹣1;(3)3y2+4y﹣1=0,b2﹣4ac=42﹣4×3×(﹣1)=28,y=,y1=,y2=;(4)3(x﹣5)2=x(5﹣x),3(x﹣5)2+x(x﹣5)=0,(x﹣5)[3(x﹣5)+x]=0,x﹣5=0,3(x﹣5)+x=0,x1=5,x2=.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.20.(6分)(2015•淮安)先化简(1+)÷,再从1,2,3三个数中选一个合适的数作为x的值,代入求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x=3代入计算即可求出值.【解答】解:原式=•=•=x﹣2,当x=3时,原式=3﹣2=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.(8分)(2015•南京)如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.22.(10分)(2015•鄂州)如图,在△ABC中,AB=AC,AE是∠BAC的平分线,∠ABC 的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.(1)求证:AE为⊙O的切线.(2)当BC=8,AC=12时,求⊙O的半径.(3)在(2)的条件下,求线段BG的长.【分析】(1)连接OM.利用角平分线的性质和平行线的性质得到AE⊥OM后即可证得AE 是⊙O的切线;(2)设⊙O的半径为R,根据OM∥BE,得到△OMA∽△BEA,利用平行线的性质得到=,即可解得R=3,从而求得⊙O的半径为3;(3)过点O作OH⊥BG于点H,则BG=2BH,根据∠OME=∠MEH=∠EHO=90°,得到四边形OMEH是矩形,从而得到HE=OM=3和BH=1,证得结论BG=2BH=2.【解答】(1)证明:连接OM.∵AC=AB,AE平分∠BAC,∴AE⊥BC,CE=BE=BC=4,∵OB=OM,∴∠OBM=∠OMB,∵BM平分∠ABC,∴∠OBM=∠CBM,∴∠OMB=∠CBM,∴OM∥BC又∵AE⊥BC,∴AE⊥OM,∴AE是⊙O的切线;(2)设⊙O的半径为R,∵OM∥BE,∴△OMA∽△BEA,∴=即=,解得R=3,∴⊙O的半径为3;(3)过点O作OH⊥BG于点H,则BG=2BH,∵∠OME=∠MEH=∠EHO=90°,∴四边形OMEH是矩形,∴HE=OM=3,∴BH=1,∴BG=2BH=2.【点评】本题考查了圆的综合知识,题目中还运用到了切线的判定与性质、相似三角形的判定与性质,综合性较强,难度较大.23.(8分)(2015•南通)某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?【分析】(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案;(2)根据销量乘以每台利润进而得出总利润,即可求出即可.【解答】解:(1)y=,(2)在0≤x≤10时,y=100x,当x=10时,y有最大值1000;在10<x≤30时,y=﹣3x2+130x,当x=21时,y取得最大值,∵x为整数,根据抛物线的对称性得x=22时,y有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.【点评】此题主要考查了二次函数的应用,根据题意得出y与x的函数关系是解题关键.24.(8分)(2014•泰州一模)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x h,两车之间的距离为y km,图中的折线表示y与x之间的函数关系.根据图象解决以下问题:(1)慢车的速度为80km/h,快车的速度为120km/h;(2)解释图中点D的实际意义并求出点D的坐标;(3)求当x为多少时,两车之间的距离为300km.【分析】(1)先利用前0.5小时的路程除以时间求出一辆车的速度,再利用相遇问题根据2.7小时列式求解即可得到另一辆车的速度,从而得解;(2)点D为快车到达乙地,然后求出快车行驶完全程的时间从而求出点D的横坐标,再求出相遇后两辆车行驶的路程得到点D的纵坐标,从而得解;(3)分相遇前相距300km和相遇后相遇300km两种情况列出方程求解即可.【解答】解:(1)(480﹣440)÷0.5=80km/h,440÷(2.7﹣0.5)﹣80=120km/h,所以,慢车速度为80km/h,快车速度为120km/h;故答案为:80;120.(2)快车到达乙地(出发了4小时快车慢车相距360KM时甲车到达乙地);∵快车走完全程所需时间为480÷120=4(h),∴点D的横坐标为4.5,纵坐标为(80+120)×(4.5﹣2.7)=360,即点D(4.5,360);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为300km.即相遇前:(80+120)×(x﹣0.5)=440﹣300,解得x=1.2(h),相遇后:(80+120)×(x﹣2.7)=300,解得x=4.2(h),故x=1.2 h或4.2 h,两车之间的距离为300km.【点评】本题考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.25.(8分)(2015秋•宜兴市校级期中)如图,△ABC中,AB=AC=4,BC=8.(1)动手操作:利用尺规作以AC为直径的圆O,并标圆O与AB的交点D,与BC的交点E,连接DE、CE(保留作图痕迹,不写作法)(2)综合应用:在你所作的图中,①求证:DE=CE;②求点D到BC的距离.【分析】(1)先作AC的垂直平分线得到AC的中点O,再以O为圆心,OA为半径作圆交AB于D,交BC于E;(2)①连结AE,先利用圆周角定理得到∠AEC=90°,再根据等腰三角形的性质得到AE 平分∠BAC,即∠DAE=∠CAE,则根据圆周角定理得=,于是根据圆心角、弧、弦的关系得到结论;②作DF⊥BC于F,连结CD,如图,先根据勾股定理计算出AE=8,再利用面积法求出CD=,然后证明Rt△ABE∽Rt△CDF,则利用相似比可计算出BF.【解答】(1)解:如图,⊙O为所作;(2)①证明:连结AE,如图,∵AC为直径,∴∠AEC=90°,∵AB=AC,∴BE=CE=4,∴AE平分∠BAC,即∠DAE=∠CAE,∴=,∴DE=CE;②解:作DF⊥BC于F,连结CD,如图,在Rt△ABE中,AE===8,∵CD•AB=AE•BC,∴CD==,∵∠BAE=∠DCF,∴Rt△ABE∽Rt△CDF,∴=,即=,解得DF=,即点D到BC的距离为.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理和勾股定理.26.(10分)(2015•苏州一模)如图①,一个Rt△DEF直角边DE落在AB上,点D与点B重合,过A点作二射线AC与斜边EF平行,己知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)•(1)当t=5时,连接QE,PF,判断四边形PQEF的形状;(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止,M为EF中点,解答下列问题:①当D、M、Q三点在同一直线上时,求运动时间t;②运动中,是否存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切?若存在,求出此时的运动时间t;若不存在,说明理由.【分析】(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12﹣t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.【解答】解:(1)四边形EFPQ是菱形.理由:过点Q作QH⊥AB于H,如图①,∵t=5,∴AP=2×5=10.∵点Q是AP的中点,∴AQ=PQ=5.。
宜兴初三期中考试数学试卷
一、选择题(本大题共20小题,每小题3分,共60分)1. 下列各数中,属于无理数的是()A. √4B. √9C. √16D. √252. 已知等腰三角形ABC中,AB=AC,若∠BAC=60°,则底边BC的长度是()A. 2B. √3C. 3D. 43. 在平面直角坐标系中,点P(2,-3)关于x轴的对称点坐标是()A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)4. 下列函数中,是反比例函数的是()A. y=x+1B. y=2xC. y=3/xD. y=x²5. 若a、b是方程x²-5x+6=0的两个根,则a+b的值是()A. 2B. 3C. 4D. 56. 已知一元二次方程x²-4x+3=0,则它的判别式Δ=()A. 1B. 2C. 3D. 47. 在直角三角形ABC中,∠C=90°,AC=3cm,BC=4cm,则AB的长度是()A. 5cmB. 6cmC. 7cmD. 8cm8. 若函数y=2x-1的图象上所有点的横坐标增加1,则函数图象平移的单位是()A. 向右1个单位B. 向左1个单位C. 向上1个单位D. 向下1个单位9. 在等差数列{an}中,若a1=3,公差d=2,则第10项an的值是()A. 23B. 25C. 27D. 2910. 已知一元二次方程ax²+bx+c=0(a≠0)有两个相等的实数根,则a、b、c之间的关系是()A. b²=4acB. b²=acC. b²=4a²cD. b²=ac²11. 在平面直角坐标系中,点A(-1,2),点B(3,-4),则线段AB的中点坐标是()A.(1,-1)B.(2,-3)C.(1,-3)D.(2,-1)12. 下列图形中,具有对称性的是()A. 矩形B. 等腰三角形C. 正方形D. 梯形13. 已知函数y=kx+b(k≠0)的图象经过点(1,-2),则该函数的解析式是()A. y=x-3B. y=2x-1C. y=-2x+1D. y=-3x+214. 若等比数列{an}中,a1=2,公比q=3,则第5项an的值是()A. 54B. 162C. 486D. 145815. 在直角坐标系中,点P(-2,3)关于原点的对称点坐标是()A.(2,-3)B.(-2,-3)C.(-2,3)D.(2,3)16. 下列各数中,是整数的是()A. √9B. √16C. √25D. √3617. 若函数y=kx²+b(k≠0)的图象开口向上,则k的取值范围是()A. k>0B. k<0C. k=0D. k∈R18. 在等差数列{an}中,若a1=5,公差d=3,则第10项an的值是()A. 25B. 28C. 31D. 3419. 已知函数y=2x+3的图象上所有点的纵坐标增加2,则函数图象平移的单位是()A. 向上2个单位B. 向下2个单位C. 向右2个单位D. 向左2个单位20. 在直角三角形ABC中,∠C=90°,AC=5cm,AB=13cm,则BC的长度是()A. 12cmB. 13cmC. 14cmD. 15cm二、填空题(本大题共10小题,每小题5分,共50分)21. 若方程2x-3=5的解为x=,则该方程的系数k=______。
苏科版2015九年级上期中考试数学试题(含答案)
第一学期初三数学期中考试试卷注意事项:1.本试卷共6页,全卷满分130分,考试时间为120分钟. 2.考生答题全部答在答题卷上,答在本试卷上无效.一、选择题(本大题共10小题,每小题3分,共30分.四个选项中,只有一项是正确的)1.若等腰三角形的两边长为3、6,则它的周长为 ( ) A .12 B .15 C .12或15 D .以上都不对 2.下列说法正确的是 ( ) A .形状相同的两个三角形是全等三角形 B .面积相等的两个三角形是全等三角形 C .三个角对应相等的两个三角形是全等三角形 D .三条边对应相等的两个三角形是全等三角形3.下列四种说法:① 矩形的两条对角线相等且互相垂直;② 菱形的对角线相等且互相平分; ③ 有两边相等的平行四边形是菱形; ④ 有一组邻边相等的菱形是正方形.其中正确的有 ( ) A. 0个 B. 1个 C. 2个 D. 3个 4. 已知一组数据:15,13,16,17,14,则这组数据的极差与方差分别是 ( ) A .4,3 B .3,3C .3,2D .4,25.若1-x 有意义,则x 的取值范围是( )A .x >1B .x ≥1C .x ≤1D .1≠x6. 下列方程是一元二次方程的是 ( )A .2)1(x x x =- B .02=++c bx ax C .01122=++xx D .012=+x 7.下列一元二次方程中,有实数根的是 ( )A .x 2-x +1=0B .x 2-2x+3= 0C .x 2+x -1=0D . x 2+4=0 8.在一幅长为80cm 、宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩 形挂图.如右图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是 ( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --= D .2653500x x --=9.如图,在正方形ABCD 中,AB=3,点P 在BC 上,点Q 在CD 上,若∠PAQ=450,那么△PCQ 的周长为 ( ) A .8 B .7C .6D .510.如图,平行四边形ABCD 中,AB ∶BC =3∶2,∠DAB =60°,E 在AB 上,且AE ∶EB =1∶2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于 ( )二、填空题(本大题共8小题,每小题2分共16分)11.若等腰三角形的一个角为1000,则其余两个角为_____________.12.如图,AD =AC ,BD =BC ,O 为AB 上一点,那么图中共有 对全等三角形.13.在平行四边形ABCD 中,对角线AC 和BD 相交于O .如果090=∠+∠ADO ABO ,那么平行四边形ABCD 一定是_____形.14.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于 .15.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC = °. 16.若一等腰梯形的对角线互相垂直,且它的高为5,则该梯形的面积为________. 17.若关于x 的方程042=+-mx x 有两个相等的实数根,则m =________.18.已知A 、B 、C 三点的坐标分别是(0,0),(5,0),(5,3),且这3点是一个平行四边形的顶点,请写出第四点D 的坐标为 .三、解答题(本大题共10小题,共84分)19.(本题满分8分)计算:(1)21)1(320-++-π (2) 22523352-33)()(+20. (本题满分8分) 解方程:(1)0232=-+x x (用公式法) (2) 01432=-+x x (用配方法)21.(本题满分10分)如图,四边形ABCD 中,对角线AC 与BD 相交于O ,在①AB ∥CD ;②AO =CO ;③AD=BC 中任意选取两个作为条件,“四边形ABCD 是平行四边形”为结论构成命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例; (2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)OD BA22.(本题满分9分)甲、乙两支仪仗队队员的身高(单位:厘米)如下: 甲队:178,177,179,178,177,178,177,179,178,179; 乙队:178,179,176,178,180,178,176,178,177,180; (1)将下表填完整:(2)甲队队员身高的平均数为______厘米,乙队队员身高的平均数为______厘米;(3)你认为哪支仪仗队更为整齐?简要说明理由.23.(本题满分8分)如果一元二次方程ax 2+bx+c=0(a≠0)的两根是x 1、x 2,那么利用公式法写出两个根x 1、x 2,通过计算可以得出:x 1+x 2=ab -,x 1x 2=a c.由此可见,一元二次方程两个根的和与积是由方程的系数决定的.这就是一元二次方程根与系数的关系.请利用上述知识解决下列问题: (1)若方程2x 2-4x-1=0的两根是x 1、x 2,则x 1+x 2=_____,x 1x 2=______.(2)已知方程x 2-4x+c=0的一个根是32+,请求出该方程的另一个根和c 的值.24.(本题满分8分)如图,将矩形ABCD 沿着对角线BD 折叠,使点C 落在C ’,BC 交AD 于E , (1)试判断△BDE 的形状,并说明理由; (2)若AB=3,BC=5,试求△BDE 的面积.25.(本题满分6分)已知关于x 的方程0)21(4)12(2=-++-k x k x 。
无锡市2015届九年级上期中考试数学试题及答案
学校 班级 姓名 考试号………………………………………………………………………………………………………………………………………………………………(第4题图)(第5题图)(第7题图)2014~2015学年第一学期期中试卷初三数学 2014.11(考试时间:120分钟 满分:130分)一.选择题(本大题共10小题,每题3分,共30分.)1.下列方程中,一元二次方程的是…………………………………………………( )A .3x -2x =0 B .x (x -1)=1 C .x 2=(x -1)2 D .ax 2+bx +c =02.若△ABC ∽△DEF ,相似比为1:2.若BC =1,则EF 的长是…………………( )A . 12 B . 1 C . 2 D . 43.原价168元的商品连续两次降价a %后售价为128元,下列方程正确的是…( )A . 128(1+a %)2=168B . 168(1-a 2%)=128C . 168(1-2a %)=128D . 168(1-a %)2=1284.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( )A .2B .4C .6D .85.如图,在⊙O 中,AB 是直径,BC 是弦,点P 是 ⌒BC上任意一点.若AB =5,BC =3,则AP 的长不可能为………………………………………………………………( ) A . 3 B . 4 C . 4.5 D . 56.已知扇形的圆心角为45º,半径长为12,则该扇形的弧长为…………………( )A . 34π B . 2π C . 3π D . 12π7.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD , ∠C =40º,则∠ABD 的度数是……………………………………………………( ) A . 25º B . 20º C .30º D .15º8.如图,边长为a 的正六边形内有两个三角形(数据如图),则S 阴影S 空白的值为……( )A . 3B . 4C . 5D . 69.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB =9,BD =3,则CF 等于…………………………………………………………( ) A . 1 B . 2 C . 3 D . 410.如图,Rt △ABC 中,AC ⊥BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AD 交AB 于点E ,M 为AE 的中点,BF ⊥BC 交CM 的延长线于点F ,BD =4,CD =3.下列结论:①∠AED =∠ADC ;②DEDA =12;③AC ·BE =12;④3BF =4AC .其中正确结论的个数有( )(第8题图)(第9题图)FB A CD E M(第10题图)(第15题图)(第14题图)(第16题图)(第17题图)A .1个B .2个C .3个D .4个二.填空题(本大题共10小题,每题2分,共20分.)11.方程x 2=0的解是 .12.一元二次方程(a +1)x 2-ax +a 2=1的一个根为0,则a = .13.若一元二次方程mx 2=n (mn >0)的两个根分别是k +1与2k -4,则nm = .14.如图,已知AB 是△ABC 外接圆的直径,∠A =35º,则∠B 的度数是 . 15.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD =4,DB =2,则DEBC的值为 .16.如图,AB 、AC 、BD 是⊙O 的切线,P 、C 、D 为切点,如果AB =5,AC =3,则BD 的长为 . 17.如图,△ABC 中,AE 交BC 于点D ,∠C =∠E ,AD :DE =3:5,AE =8,BD =4,则DC 的长等于 .18.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于点D ,P 是 ⌒CD上的一个动点,连接AP ,则AP 的最小值是 .19.如图,A 、B 、C 、D 依次为一直线上4个点,BC =2,△BCE 为等边三角形,⊙O 过A 、D 、E 3点,且∠AOD =120º.设AB =x ,CD =y ,则y 与x 的函数关系式为 .20.如图,在矩形ABCD 中,AD =8,E 是边AB 上一点,且AE =14AB .⊙O 经过点E ,与边CD 所在直线相切于点G (∠GEB 为锐角),与边AB 所在直线交于另一点F ,且 EG :EF =5:2.当边AD 或BC 所在的直线与⊙O 相切时,AB 的长是 .三.解答题(本大题共8小题,共80分. 解答需写出必要的文字说明或演算步骤)21.(16分)解方程:(1)x 2-5x -6=0 (2)2x 2-4x -1=0(3)(x -7)2+2(x -7)=0 (4)(3x +2)2=4(x -3)2(第19题图)(第18题图) (第20题图)C B F E AD G O ·22.(8分)已知关于x 的一元二次方程x 2+2(m +1)x +m 2-1=0. (1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足(x 1-x 2)2=16-x 1x 2,求实数m 的值.23.(8分)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于点D ,且∠D =2∠A .(1)求∠D 的度数;(2)若CD =2,求BD 的长.24.(10分)如图,在□ABCD 中,过点B 作BE ⊥CD 于E ,F 为AE 上一点,且∠BFE =∠C . (1)求证:△ABF ∽△EAD ;(2)若AB =4,∠BAE =30º,求AE 的长; (3)在(1)(2)的条件下,若AD =3,求BF 的长.25.(8分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?ACEF DBOABCDP。
中考数学模拟试卷精选汇编:弧长与扇形面积附答案
弧长与扇形面积一.选择题1.(2015·江苏江阴长泾片·期中)已知圆锥的底面半径为4cm ,高为3cm ,则圆锥的侧面积是 ( )A .20 cm 2B .20兀cm 2C .12兀cm 2D .10兀cm 2 答案:B2.(2015·江苏江阴青阳片·期中)圆锥的底面半径为2,母线长为4,则它的侧面积为 ( ▲ ) A .8π B .π12C .43πD .4π答案:A3.(2015·江苏江阴夏港中学·期中)一个圆锥底面直径为2,母线为4,则它的侧面积为( ) A .2π B .12πC . 4πD .8π答案:C4.(2015·江苏江阴要塞片·一模)圆锥的底面半径为2,母线长为4,则它的侧面积为 ( ▲ )A .4πB .8πC .16πD .43π答案:B5. (2015·湖南永州·三模)如图,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B 、E 是半圆弧的三等分点,弧BE 的长为32π,则图中阴影部分的面积为( )A .9π B .93πC .2323π−D .32233π−答案:D 解析:连接OB .OE 、BE ,,因为B .E 是半圆弧的三等分点,所以∠BOE =60°,根据同底等高的三角形面积相等可知△OBE 和△ABE 的面积相等,所以阴影部分的面积等于△ABC 减去扇形OBE 的面积.因为弧BE的长为32π,设半圆的半径为r ,根据弧长公式1806032r ⨯⨯=ππ,解得r =2,323221OBE 2ππ=⨯⨯=扇形S .根据圆周角的性质可知,∠DAB =∠EAB =30°,连接BD ,则△ABD 是直角三角形,AD =2r =4,cos ∠DAB =ADAB ,AB 在Rt △ABC 中,得BC 由正切计算得AC =3,所以S △ABC所以阴影面积32π.6. (2015•山东滕州张汪中学•质量检测二)用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图1所示),则这个纸帽的高是( )A .2cmB .32cmC .42cmD . 4cm答案:C ;7. (2015·江西省·中等学校招生考试数学模拟)如图所示,正三角形ABC 中,边AC 渐变成»AC ,其它两边长度不变,则ABC Ð的度数的大小由60 变为( ) A . 180p B . 120p C . 90p D . 60p答案:选A .命题思路:考查弧长的计算公式的运用8. (2015·山东省枣庄市齐村中学二模)已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为( ) A .2.5B .5C .10D .15答案:C9. (2015•山东济南•模拟)扇形的半径为30cm ,圆心角为120°,此扇形的弧长是A .20πcmB .10πcmC .10 cmD .20 cm 答案:A10. (2015·江苏无锡北塘区·一模)已知圆柱的底面半径为2cm ,高为4cm ,则圆柱的侧面积是( ▲ )A .16 cm 2B .16π cm 2C .8π cm 2D .4π cm 2 答案: B11. (2015·无锡市宜兴市洑东中学·一模)圆锥的底面半径为2,母线长为4,则它的侧面积为 ( ▲ )A .4πB .8πC .16πD .43π答案:B12.(2015·锡山区·期中)一个圆锥形的圣诞帽底面半径为12cm ,母线长为13cm ,则圣诞帽的表面积为(▲)A .312π2cm B .156π2cm C .78π2cm D .60π2cm 答案:B二.填空题1. (2015·江苏高邮·一模)半径为6 cm ,圆心角为120°的扇形的面积为 ▲ . 答案:12π2. (2015·江苏高邮·一模)如图,已知正方形ABCD 的顶点A 、B 在⊙O 上,顶点C 、D 在⊙O 内,将正方形ABCD 绕点逆时针旋转,使点D 落在⊙O 上.若正方形ABCD 的边长和⊙O 的半径均为6 cm ,则点D 运动的路径长为 ▲ cm .答案:π;3. (2015·江苏常州·一模)若扇形的半径为3cm ,扇形的面积为2π2cm ,则该扇形的圆心角为 ▲ °,弧长为 ▲ cm . 答案:80,34π 4. (2015·吉林长春·二模)答案:π5.(2015·江苏江阴·3月月考)如图,AB 、CD 是⊙O 的两条互相垂直的直径,点O 1、O 2、O 3、O 4分别OA 、OB 、OC 、OD 的中点,若⊙O 的半径是2,则阴影部分的面积为____________________.A BCD答案:86.(2015·江苏江阴要塞片·一模)如图,正△ABC 的边长为9cm ,边长为3cm 的正△RPQ 的顶点R 与点A 重合,点P ,Q 分别在AC ,AB 上,将△RPQ 沿着边AB ,BC ,CA 连续翻转(如图所示),直至点P 第一次回到原来的位置,则点P 运动路径的长为____▲____cm .(结果保留π)答案:6π7.( 2015·广东广州·二模)如图5,菱形ABCD 的边长为2,∠ADC =120°,弧CD 是以 点B 为圆心BC 长为半径的弧.则图中阴影部分的面积为 ▲ (结 果保留π). 答案:23π8.(2015•山东滕州东沙河中学•二模)若一个圆锥的轴截面是一个腰长为6 cm ,底边长为2 cm 的等腰三角形,则这个圆锥的表面积为____cm 2. 答案:7π;9.(2015•山东滕州羊庄中学•4月模拟)已知扇形的弧长为3πcm ,面积为3πcm 2,扇形的半径是 cm .答案:2;10. (2015·网上阅卷适应性测试)将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ cm .答案:42第1题图(图5)11. ( 2015·呼和浩特市初三年级质量普查调研)已知圆锥的母线长度为8,其侧面展开图的半圆,则这个圆锥的高为_____________. 答案:4312. (2015·辽宁盘锦市一模)在半径为2的圆中,弦AB 的长为2, 则弧的长等于答案:32π 13.(2015·辽宁东港市黑沟学校一模,3分)已知圆锥底面圆的半径为6cm ,它的侧面积为60πcm 2,则这个圆锥的高是____________cm . 答案: 814.(2015·山东省东营区实验学校一模)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将 Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为BD ︵,则图中阴影部分的面积是____.答案:π615.(2015·广东中山·4月调研)如图,在△ABC中,CA=CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为 _________ .答案:214−π16.(2015·山东枣庄·二模)如图,△ABC 是边长为2的等边三角形,D 为AB 边的中点,以CD 为直径画圆,则图中影阴部分的面积为____________(结果保留π).答案:5384π− 17. (2015•山东青岛•模拟)如图,在等腰直角三角形ABC 中,AB =BC =2 cm ,以直角顶点B 为圆心,AB 长为半径画弧,再以AC 为直径画弧,两弧之间形成阴影部分.阴影部分面积为 cm 2. 答案:218. (2015•山东济南•一模)图①所示的正方体木块棱长为6cm ,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A 爬行到顶点B 的最短距离为____________cm . 答案:(3+3)19.(2015·江苏扬州宝应县·一模)如图,小正方形的边长均为1,扇形OAB 是某圆锥的侧面展开图,则这个圆锥的底面周长为 ▲ .(结果保留π)答案:2π20.(2015·江苏南京溧水区·一模)圆锥的底面直径是6,母线长为5,则圆锥侧面展开图的圆心角是 ▲ 度. 答案: 216;21.(2015·江苏无锡崇安区·一模)已知扇形的圆心角为120º,半径为6cm ,则扇形的弧长为 ▲ cm.(第16题)AOB答案: 4π22.(2015·无锡市南长区·一模)一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积...是 . 答案:3π23.(2015·无锡市宜兴市洑东中学·一模)若一个圆锥底面圆的半径为3,高为4,则这个圆锥的侧面积为 . 答案:15π24.(2015·无锡市新区·期中)已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是 ▲ . 答案:10πcm 225.(2015·无锡市新区·期中)如图,扇形OMN 与正三角形ABC ,半径OM 与AB 重合,扇形弧MN 的长为AB 的长,已知AB =10,扇形沿着正三角形翻滚到首次与起始位置相同,则点O 经过的路径长 ▲ .答案:37010π+三.解答题 1.(2015·江苏江阴·3月月考)如图四边形ABCD 中,已知∠A =∠C =30°,∠D =60°,AD =8,CD =10.(1)求AB 、BC 的长(2)已知,半径为1的⊙P 在四边形ABCD 的外面沿各边滚动(无滑动)一周,求⊙P 在整个滚动过程中所覆盖部分图形的面积.答案:解:(1)AB =23BC =43ABCABCP(2)在⊙P 的整个滚动过程中,圆心P 的运动路径长为18+167333π+; 所以⊙P 在整个滚动过程中,所覆盖部分图形的面积为36+3214333π+;2.(2015·江苏江阴长泾片·期中)如图,等腰梯形MNPQ 的上底长为2,腰长为3,一个底角为60°.等边△ABC 的边长为1,它的一边AC 在MN 上,且顶点A 与M 重合.现将等边△ABC 在梯形的外面沿边MN 、NP 、PQ 进行翻滚,翻滚到有一个顶点与Q 重合即停止滚动.(1)请在所给的图中,画出顶点A 在等边△ABC 整个翻滚过程中所经过的路线图; (2)求等边△ABC 在整个翻滚过程中顶点A 所经过的路径长; 答案: 解:(1)如右图所示:……………………………3分 (2)点A 所经过的路线长π311……………………………6分3.(2015·邗江区·初三适应性训练)如图,⊙O 是△ABC 的外接圆,AB 是直径,作OD ∥BC 与过点A 的切线交于点D ,连接DC 并延长交AB 的延长线于点E . (1)求证:DE 是⊙O 的切线;(2)若AE =6,CE =32,求线段CE 、BE 与劣弧BC 所围成的图形面积.(结果保留根号和π)答案:解:(1)连结OC ,证得∠AOD =∠COD ;证得△AOD ≌△COD (SAS ); 第3题证得∠OCD =∠OAD =90°; 则DE 是⊙O 的切线.(2)设半径为r ,在Rt △OCE 中,OC 2+CE 2=OE 2()()22236r r ∴+=−2,解得2r =.︒=∠∴=∠60,3tan COE COE π32=∴COB S 扇形∴所求图形面积为π3232−=−∆COB COE S S 扇形4. (2015·辽宁东港市黑沟学校一模,12分)如图,⊙O 是△ACD 的外接圆,AB 是直径,过点D 作直线DE ∥AB ,过点B 作直线BE ∥AD ,两直线交于点E ,如果∠ACD =45°,⊙O 的半径是4cm(1)请判断DE 与⊙O 的位置关系,并说明理由; (2)求图中阴影部分的面积(结果用π表示).解:(1)DE 与⊙O 相切.理由如下: 连结OD ,则∠ABD =∠ACD =45°, ∵AB 是直径, ∴∠ADB =90°,∴△ADB 为等腰直角三角形, 而点O 为AB 的中点, ∴OD ⊥AB , ∵DE ∥AB , ∴OD ⊥DE , ∴DE 为⊙O 的切线; (2)∵BE ∥AD ,DE ∥AB , ∴四边形ABED 为平行四边形,∴DE=AB=8cm,∴S阴影部分=S梯形BODE﹣S扇形OBD=(4+8)×4﹣=(24﹣4π)cm2.5.(2015·山东省济南市商河县一模)(本小题满分4分)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA.求:劣弧BC的长.(结果保留π)解:连接OC,OB,∵AB为圆O的切线,∴∠ABO=90°,------------------------------------1分在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,----------------------------2分∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°------------------------------------------------3分∴劣弧长为=π.----------------------------------------4分6. (2015·广东从化·一模)(本小题满分12分某公园管理人员在巡视公园时,发现有一条圆柱形的输水管道破裂,通知维修人员到场检测,维修员画出水平放置的破裂管道有水部分的截面图(如图9).(1)请你帮忙补全这个输水管道的圆形截面(不写作法,但应保留作图痕迹);12cm,水面最深地方的高度为(2)维修员量得这个输水管道有水部分的水面宽AB=36cm,请你求出这个圆形截面的半径r及破裂管道有水部分的截面图的面积S。
2015年秋季新版苏科版九年级数学上学期期中复习试卷17
2015~2016学年度第一学期期中考试九年级 数学试题卷 2015.11一.选择题 (本大题共8小题,每小题3分,共24分.)1.下列方程是一元二次方程的是…………………………………………………………………( ▲ ) A .x +2y =1 B .x 2+5=0 C .x 2+3x=8 D .3x +8=6x +22.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是…( ▲ ) A .k >-1 B .k >-1且k ≠0 C .k <1 D .k <1且k ≠03.如图,∠ADE =∠ACD =∠ABC ,图中相似三角形共有……………………………………( ▲ ) A .1对 B .2对 C .3对 D .4对4.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D 、E 、F 分别是OA 、OB 、OC 的中点,则△DEF 与△ABC 的面积比是…………………………………………………( ▲ ) A .1∶2 B .1∶4 C .1∶5 D .1∶65.如图,在Rt △ABC 中,∠C =90°,D 是AC 边上一点,AB =5,AC =4,若△ABC ∽△BDC ,则CD 的值为……………………………………………………………………………………( ▲ ) A .2 B .32 C .43 D .946.下列命题:①圆周角的度数等于圆心角度数的一半;②90°的圆周角所对的弦是直径;③三个点确定一个圆;④同圆或等圆中,同弧所对的圆周角相等.其中正确的是…………………( ▲ ) A .①② B .②③ C .②④ D .①④7.如图,AB 是⊙O 的直径,AB 垂直于弦CD ,∠BOC =70°,则∠ABD 的度数为…………( ▲ ) A .20° B .46°C .55°D .70°8.如图,⊙O 的半径为3,点O 到直线l 的距离为4,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为……………………………………………………………………………( ▲ ) A .7 B . 5 C .4 D .5二.填空题 (本大题共10小题,每小题2分,共20分.) 9.若关于x 的方程x 2+3x +a =0有一个根是-1,则a = ▲ . 10.若x ∶y =2∶3,那么x ∶(x +y )= ▲ .11.若关于x 的方程(m -3)x ||m -1+2x -7=0是一元二次方程,则m = ▲ . 12.已知一个扇形的弧长为10πcm ,圆心角是150°,则它的半径长为DBC(第5题)(第3题)(第4题)(第7题)(第8题)13.如图,要得到△ABC ∽△ADE ,只需要再添加一个条件是 ▲ .14.若⊙O 的半径是方程(2x +1)(x -4)=0的一个根,圆心O 到直线l 的距离为3,则直l 与⊙O 的位置关系是 ▲ .15.如图,点O 是△ABC 的内切圆的圆心,若∠A =80°,则∠BOC 为 ▲ .16.将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 ▲ cm 2.17.在Rt △ABC 中,∠C =90°,AC =3,BC =4,以C 为圆心,r 为半径作⊙C .若⊙C 与斜边AB 有两个公共点,则r 的取值范围是 ▲ .18.如图,在△ABC 中,AB =AC =5,BC =2,在BC 上有100个不同的点P 1、P 2、P 3…P 100(BC 中点除外),过这100个点分别作△ABC 的内接矩形P 1E 1F 1G 1,P 2E 2F 2G 2…P 100E 100F 100G 100,设每个内接矩形的周长分别为L 1、L 2…L 100,则L 1+L 2+…+L 100= ▲ .三. 解答题 (本大题共7小题,共56分.) 19.(每小题4分,共16分)解方程:(1)(1+x )2=9; (2)2(x -1)2=(x -1) ;(3)x 2+2x -1=0; (4) x (x +2)=5x +10 ABCO(第13题)(第15题)AE 2F 2 E 1 F 1 B P 1P2G 2G 1C (第18题)20.(本题6分)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由.(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.21.(本题6分)如图,AB是⊙O的直径,PB与⊙O相切于点B,C为⊙O上的点,OP∥AC.试判断PC 与⊙O的位置关系,并证明你的结论.(第21题)22.(本题6分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价.(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.23.(本题6分)如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动点P从点A出发沿边AC向点C以1cm/s的速度运动,另一动点Q同时从点C出发沿CB边向点B以2cm/s的速度运动.问:(1)运动几秒时,△CPQ的面积是8cm2?(2)运动几秒时,△CPQ与△ABC相似?24.(本题8分)如图,在△ABC 中,AD 为∠BAC 的平分线,点E 在BC 的延长线上,且∠EAC =∠B ,以DE 为直径的半圆交AD 于点F ,交AE 于点M . (1)判断AF 与DF 的数量关系,并说明理由.(2)只用无刻度的直尺........画出△ADE 的边DE 上的高AH (不要求写做法,保留作图痕迹) . (3)若EF =8,DF =6,求DH 的长.ADBC EMF (第24题)25.(本题8分)如图,半圆O的直径DE=12cm,Rt△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm.半圆O以2cm/s的速度从左向右运动,在运动过程中,直径DE始终在直线BC上.设运动时间为t(s),当t =0(s)时,半圆O在△ABC的左侧,OC=8cm.(1)当t=8(s)时,试判断点C与半圆O所在的圆的位置关系.(2)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切.(3)在(2)的条件下,如果半圆O与△ABC三边围成的区域有重叠部分,求重叠部分的面积.(第25题)2015~2016学年第一学期九年级期中数学答案及评分标准一、选择题(每题3分,共24分)1.B2.B3.D4.B5.D6.C7.C8.A 二、填空题(每空2分,共20分)9. 2 10. 2∶5或25 11. -3 12. 12cm 13. 答案不唯一14. 相交 15. 130° 16. 12.5 17. 125<r ≤3 18. 400 三、解答题(共6大题,共56分) 19.解方程(1)x 1=2,x 2=-4 (2)x 1=1,x 2=32(3)x 1=-1+2,x 2=-1- 2 (4)x 1=-2,x 2=5 (每题第一步正确得2分,两个解正确各给1分)20.解:(1)当x =-1时,原方程可化为(a +c )-2b +(a -c )=0,┄┄┄(2分)整理得a =b ,则△ABC 是等腰三角形.┄┄┄┄┄┄┄┄┄┄┄(3分)(2)∵方程有两个相等的实数根 ∴△=4b 2-4(a +c )(a -c )=0┄┄┄┄(4分)整理得b 2+c 2=a 2,则△ABC 是直角三角形.┄┄┄┄┄┄┄┄┄┄(6分) 21.解:PC 与⊙O 相切.┄┄┄┄┄┄┄┄┄┄┄(1分) 连接OC .┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(2分) ∵AC ∥OP ∴∠1=∠2,∠3=∠4∵OA =OC ∴∠1=∠3 ∴∠2=∠4┄┄┄┄(3分) 在△POC 和△POB 中OC =OB ,∠2=∠4,PO =PO∴△POC ≌△POB ∴∠PCO =∠PBO ┄┄┄┄┄┄(4分)∵PB 与⊙O 相切,AB 是⊙O 的直径 ∴∠PCO =∠PBO =90°┄┄(5分) ∵OC 为⊙O 的半径 ∴PC 与⊙O 相切.┄┄┄┄┄┄┄┄┄┄┄(6分)答:每张门票的原定票价是400元.┄┄┄┄┄┄┄┄┄┄┄┄(3分) (2)设平均每次降价的百分率为y ,根据题意得 400(1-y )2=324┄┄(4分)答:平均每次降价的百分率是10%.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(6分) 23.解:(1)设运动x 秒时,此时CP =(6-x )cm ,CQ =2x cm .由题意得,12(6-x )2x =8 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(1分)解得:x 1=2,x 2=4(经检验,两解均符合题意.)┄┄┄┄┄┄(2分) ∴运动到2秒或4秒时,△CPQ 的面积是8cm².┄┄┄┄┄┄┄(3分)(2)设运动y 秒时,△CPQ 与△ABC 相似.若△CPQ ∽△CAB ,则CP CA =CQ CB ,∴6-y 6=2y 8解得y =2.4秒┄┄┄(4分)若△CPQ ∽△CBA ,则CP CB =CQ CA ,∴6-y 8=2y 6解得y =1811秒┄┄┄(5分)综上所述,运动2.4秒或1811秒时,△CPQ 与△ABC 相似.┄┄┄(6分)24.解:(1)AF =DF .┄┄┄┄┄┄┄┄┄(1分) ∵AD 是∠BAC 的角平分线 ∴∠2=∠3 ∵∠1=∠B +∠2 ∠EAD =∠EAC +∠3∴∠EAD =∠EDA ∴AE =DE ┄┄┄┄(2分) ∵DE 是直径 ∴∠EFD =90°即EF ⊥AD ∵AE =DE ,EF ⊥AD ∴AF =DF ┄┄┄(3分)(2)如图,连结DM .DM 交EF 于G ,作射线AG 交DE 于H , 则AH 即为DE 边上的高.┄┄┄┄┄┄┄(5分)(3)在△EFD 中,EF =8,DF =6,由勾股定理得,DE =AE =10. ┄┄┄┄(6分) ∵AH 是DE 边上的高 ∴∠AHD =90° ∵∠EFD =90°∴∠AHD =∠EFD∵∠ADH =∠EDF ∴△ADH ∽△EDF ∴DH DF =ADDE ┄┄┄┄┄┄┄┄┄┄(7分)∴DH 6=1210 解得DH =365┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(8分) 25.解:(1)(图略)∵DE =12cm ∴OE =6cm ∵OC =8cm ∴EC =OC -OE =2cm 当t =8s 时,半圆O 运动了8×2=16cm , 此时点O 距离C 点8cm . ∵8>6 ∴此时点C 在半圆O 外.┄┄┄┄┄┄┄┄┄┄┄┄(2分) (2)①当半圆O 所在的圆与AC 相切且圆心O 在AC 左侧时,点O 运动了2cm ,∴t =1.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(3分) ②当半圆O 所在的圆与AC 相切且圆心O 在AC 右侧时,③当半圆O所在的圆与AB相切且圆心O在点B左侧时,点O运动了8cm,∴t=4.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(5分)④当半圆O所在的圆与AB相切且圆心O在点B右侧时,点O运动了32cm,∴t=16.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(6分)综上所述,当t=1、4、7、16时,半圆O所在的圆与△ABC一边所在的直线相切(3)有(2)可知,只有②③两种情况下有重叠部分,分别为9π和6π+9 3.┄┄(10分)。
宜兴初三期中考试数学试卷
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. √9B. -2.5C. πD. 1/32. 下列函数中,y是x的一次函数的是()A. y = 2x^2 - 3x + 1B. y = 3x - 4C. y = √xD. y = x^33. 在平面直角坐标系中,点A(2,3)关于y轴的对称点坐标是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)4. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 1,3,5,7C. 2,4,8,16D. 3,6,12,245. 下列各式中,正确的是()A. (a+b)^2 = a^2 + 2ab + b^2B. (a-b)^2 = a^2 - 2ab + b^2C. (a+b)^3 = a^3 + b^3D. (a-b)^3 = a^3 - b^36. 下列各式中,正确的是()A. sin(π/2) = 1B. cos(π/2) = 0C. tan(π/4) = 1D. cot(π/4) = 17. 在△ABC中,若∠A = 45°,∠B = 60°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°8. 若x + y = 5,x - y = 1,则x^2 - y^2的值是()A. 16B. 9C. 10D. 69. 下列各式中,正确的是()A. log2(8) = 3B. log2(1/8) = -3C. log2(2) = 1D. log2(1) = 010. 下列函数中,y是x的反比例函数的是()A. y = 2x - 3B. y = 1/xC. y = x^2D. y = 3x + 2二、填空题(每题5分,共30分)11. 计算:-3 × (-2) × (-1) × 4 = _______12. 若x = 2,则3x - 4的值是 _______13. 在△ABC中,若a = 5,b = 6,c = 7,则△ABC是 _______三角形。
江苏省无锡市宜兴市洑东中学2015届九年级中考一模数学试题(有答案)
A.∠1+∠6﹦∠2B.∠4+∠5﹦∠2
C.∠1+∠3+∠6﹦180°D.∠1+∠5+∠4﹦180°
9.根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的个数是------------------------------------------------- -----------------------------------------------()
16.如图,△ABC是⊙O的内接三角形,∠C=50°,则∠OAB=.
17.已知A是双曲线 在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限,已知点C的位置始终在一函数图像上运动,则这个函数解析式为__________________.
第17题图第18题图
A. B. C. D.
二、填空题(本大题共有8小题,每空2分,共16分.不需写出解答过程,请把答案直接填写在相应位置上)
11.分解因式:a3-9a﹦.
12.用科学记ห้องสมุดไป่ตู้法表示0.000031的结果是.
13.写出的一个同类二次根式.
14.若一个圆锥底面圆的半径为3,高为4,则这个圆锥的侧面积为.
15.某小组8位学生一次数学测试的分数为121,123,123,124,126,127,128,128,那么这个小组测试分数的标准差是.
三、解答题(本大题共10小题,共计82分.解答时应写出必要的文字说明、证明过程或演算步骤.)
19.(本题8分)计算:(1)()-1-3tan60°+;(2)+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OPABxy110B CA2014-2015学年度宜兴市洑东中学第一学期期中试卷九年级数学(考试时间120分钟,试卷满分130分)一、 选择题。
(本大题共l0小题.每小题3分.共30分。
每题只有一个正确答案) 1.方程2x =4的解是 ( )A .2B . -2C . ±2D . 42.要求设计4幅既是轴对称图形又是中心对称图形的图案,小明设计完成了下列4幅图案,其中符合要求的个数是 ( )A .1个B .2个C .3个D .4个 3.—元二次方程x 2-2x -4=0的两个实根为x 1和x 2,则下列结论正确的是( ) A 、x 1+x 2=2B 、x 1+x 2=-4C 、x 1²x 2=-2D 、x 1²x 2=44.已知方程x 2-3x+k=0有一个根是-1,则该方程的另一根是( ) A .1 B .0 C .-4 D .4 5.如图,PA 、PB 是⊙O 的两条切线,A 、B 是切点,若 ∠APB=60°,PO=2,则⊙O 的半径等于( ) A 、2 B 、1 C 、2 D 、3(第5题图)6.关于x 的一元二次方程x 2+kx -1=0的根的情况是 ( ) A 、有实数根 B 、有两个不相等的实数根 C 、有两个相等的实数根 D 、没有实数根7. 已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( ) A .5πcm 2 B .10π cm 2 C .15 cm 2 D .15π cm 28. 某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份 平均每月的增长率为x ,那么x 满足的方程是 ( ) A 、50(1+x)2=182 B 、50+50(1+x)+50(1+x)2=182 C 、50(1+2x)=182 D 、50+50(1+x)+50(1+2x)=182 9. 如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )A .点(0,3)B .点(2,3)OABCCG DEFO C .点(5,1) D .点(6,1)10. 如图的平面直角坐标系中有一个正六边形ABCDEF ,其中C .D 的坐标分别为(1,0)和(2,0).若在无滑动的情况下,将这个六边形沿着x 轴向右滚动,则在滚动过程中,这个六边形的顶点A .B .C .D .E 、F 中,会过点(50,2)的是 ( )A. 点AB. 点BC.点 CD. 点D二、填空题(本题本大题共8小题,每小题2分,共l6分。
)11. 请你写出一个有一根为1的一元二次方程: 12. 当m= 时,方程05)3()2(m=+-+-x m x m 是一元二次方程.13.在中,ABC ∆已知10BC 8,AC 6,AB ===则ABC ∆的外接圆半径是________.14. 如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = ° (第14题图) 15. 若关于x 的一元二次方程(k-1)x 2+2x -1=0有两个实数根, 则k 的取值范围是 .16. 如图,⊙O 的直径CD ⊥弦EF ,垂足为点G ,∠EOD=58° ,则∠F= _____ .(第16题图)17.如图在矩形ABCD 中,AB=3,AD=1,把该矩形绕点A 顺时针旋转a°得到矩形AB'C'D'点C‘落在AB 的延长线上,则图中阴影部分的面积是__________.(第17题图)18. 如图,在直角坐标系中,⊙P 的圆心是P (a ,2)(a >0),半径为2;直线y=x 被⊙P 截得的弦长为23,则a 的值是 . (第18题图)三、解答题(本大题共10小题.共84分) 19.解一元二次方程。
(本题16分,每小题4分)①042=-x x ②6)1(32=-x③0142=+-x x ④x x -=-2)2(3220. 先化简,再求值:2221121x x x x x x --⋅+-+,其中x 满足2320x x -+=.(本题5分)21. 为响应市委市政府提出的建设“绿色宜兴”的号召,我市某单位准备将院内一块长30m ,宽20m 的长方形空地,建成一个矩形花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)(本题5分)22. 如图,已知AB 是⊙O 的直径,弦CD AB ⊥于E ,16CD =cm ,BE=4 cm ,求:(1)OD的长.(2)若∠M=∠D,求∠D的度数.(本题7分)23. 已知关于x的方程x2-(2k+1)x+4(k-0.5)=0(1)求证:无论k取什么实数,这个方程总有实数根;(2)若等腰△ABC的边长a=4,另两边长b、c恰好是这个方程的两个根,求△ABC的周长。
(本题7分)24.用长35的木条围成一个面积为180m2的矩形仓库,仓库的一面靠墙(墙宽18米),在与墙平行的一边开两道门,一道2米宽,另一道1米宽,求垂直于墙的一边长为多少?(本题6分)25. 如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E 、F ,点G 是AD 的中点,连结DE. (本题8分)求证:(1)GE=AG=GD ;(2)试判断直线GE 与⊙O 的位置关系?并说明理由;26. 如图,已知直角梯形ABCD 中,AD ∥BC ,∠B =90°,AB =8 cm ,AD =24 cm ,BC =26 cm ,AB 为⊙O 的直径,动点P 从点A 开始沿AD 边向点D 以1 cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以3cm/s 速度运动。
P 、Q 分别从点A 、C 同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t s ,问 (1)t 为何值时, P 、Q 两点之间的距离为10 cm ?(2)t 分别为何值时,直线PQ 与⊙O 相切?相离?相交? (本题8分)27.某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现采用尽量提高售价,减少进货量............的方法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件。
问:①应将售价提为多少元时,才能使所赚利润为□AGDBEC²OF700元?②当售价提高多少元时,所获利润最大?并求出最大利润。
(本题10分)28.如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.(本题12分)(1)若直线AB与有两个点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.2014-2015学年度宜兴市洑东中学第一学期期中考试九年级数学答案一、选择题(每题3分)1.C2.C3.A4.D5.B6.B7.D8.B9.C 10.A 二、填空(每题2分)11.答案不限 12. -2 13. 5 14. 480 15.k ≥0且k ≠1 16. 610 17.4-23π18.2±2 三、解答题19.(1)x(x-4)=0---- 2分,x 1=0, x 2=4----4分 (2)(x-1)2=2----1分,x-1=±2----2分,x=1±2-----4分(3)∆=12----2分,x=2±3---4分 (4) (x-2)(3x-5)=0----2分,x=2,35----4分 20.原式=x---2分,方程的解x 1=1(舍), x 2=2---4分,原式=2----5分 21.解:设小道宽度为x 米。
(30-2x )(20-x)=532--------2分x 1=1, x 2=34(舍)------4分,回答---------5分 22.解:设OD=x.82+(x-4)2=x 2-----2分,x=10--------4分∵∠M=∠D ,∠M=21∠BOD ,∴∠D=21∠BOD----6分,∴∠D=300-----7分23.解:(1)∆=(2k-3)2-----2分,∵(2k-3)2≥0,∴结论成立。
----3分(2)①b=4,c=2----4分,周长=10---5分;②b=c=2(舍)---6分,∴周长=10---7分24.解:设垂直于墙的一边长x 米。
x(38-2x)=180--------2分, x 1=10, x 2=9----4分 检验舍去x 2=9----5分, 回答---6分 25.解:①∵CD 是直径∴∠CED=∠AED=900---2分,∵点G 是AD 的中点∴GE=AG=GD---3分; ②相切---4分, 连接OE ,∵GE=GD ∴∠GED=∠GDE---5分,∵OE=OD ∴∠OED=∠ODE---6分 ∵CD 是高∴∠ODE+∠GDE=900---7分,∴∠ODE+∠GDE=900,∴OE ⊥GE ,∴GE 与⊙O 相切---8分26.解:(1)AP=t,BQ=26-3t,作PE ⊥BC 于E.QE=26-4t.(26-4t)2+64=100t=5或8----2分(2)当PQ 与⊙O 相切时,PQ=AP+BQ=26-2t, (26-4t)2+64=(26-2t)2相切t=8或32----4分, 当t=326时运动停止,相交0≤t <32或8<t ≤326------6分 相离32< t <8-----8分 27.解:①设售价提高x 元。
(2+x )(200-2x)=700----2分X=3或5-----4分 ∴售价提为15元。
----5分 ②设利润为y 元,y=(2+x )(200-2x)=-20(x-4)2+720-----8分 当售价提高4元时,获利最大,最大利润720元。
----10分 28.解:∠CFE=21∠EOC=450----2分, A (34b,0)B(0,b)AB=35b---3分 作OH ⊥AB 于H ,OH=54b---4分,连接OF ,OF=4,∴FH 2=16-2516b 2---5分 FG 2=(2FH )2=64-2564b 2---7分, 4≤b <5-----8分 ①b=5时,AB 与⊙O 相切,点H 即点P ,P (516512,)----10分②b >5时,AB 与⊙O 相离,点P 不存在-------12分。