第16讲 数阵图(一)
小学奥数16数阵图讲解学习
小学奥数16数阵图1.10.5数阵图1.10.5.1基础知识数阵是由幻方演化出来的另一种数字图。
幻方一般均为正方形。
图中纵、横、对角线数字和相等。
数阵则不仅有正方形、长方形,还有三角形、圆、多边形、星形、花瓣形、十字形,甚至多种图形的组合。
变幻多姿,奇趣迷人。
一般按数字的组合形式,将其分为三类,即辐射型数阵、封闭型数阵、复合型数阵。
数阵的特点是:每一条直线段或由若干线段组成的封闭线上的数字和相等。
它的表达形式多为给出一定数量的数字,要求填入指定的图中,使其具备数阵的特点。
解数阵问题的一般思路是:1.求出条件中若干已知数字的和。
2.根据“和相等”,列出关系式,找出关键数——重复使用的数。
3.确定重复用数后,对照“和相等”的条件,用尝试的方法,求出其他各数。
有时,因数字存在不同的组合方法,答案往往不是唯一的。
1.10.5.2辐射型数阵例1 将1~5五个数字,分别填入下图的五个○中,使横、竖线上的三个数字和都是10。
解:已给出的五个数字和是:1+2+3+4+5=15题中要求横、竖每条线上数字和都是10,两条线合起来便是20了。
20-15=5,怎样才能增加5呢?因为中心的一个数是个重复使用数。
只有5连加两次才能使五个数字的和增加5,关键找到了,中心数必须填5。
确定中心数后,按余下的1、2、3、4,分别填在横、竖线的两端,使每条线上数的和是10便可。
例2将1~7七个数字,分别填入图中的各个○内,使每条线上的三个数和相等。
解:图中共有3条线,若每条线数字和相等,三条线的数字总和必为3的倍数。
设中心数为a,则a被重复使用了2次。
即,1+2+3+4+5+6+7+2a=28+2a,28+2a应能被3整除。
(28+2a)÷3=28÷3+2a÷3其中28÷3=9…余1,所以2a÷3应余2。
由此,便可推得a只能是1、4、7三数。
当a=1时,28+2a=30 30÷3=10,其他两数的和是10-1=9,只要把余下的2、3、4、5、6、7,按和为9分成三组填入两端即可。
小学数学四年级奥数基础教程目录
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
数阵图(一)(含详细解析)
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。
【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】例题精讲知识点拨教学目标5-1-3-1.数阵图87654321【答案】87654321【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【考点】封闭型数阵图 【难度】2星 【题型】填空【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:(2)h gf ed c baa+b+c=14(1)c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行. 若e=1,则c=14-(1+3)=10,不行. 若g=1,则a=8,c=4,e=7.说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。
四年级奥数:数阵图
四年级奥数:数阵图(一)我们在三年级已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”。
本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”。
我们先从一道典型的例题开始。
例1把1~9这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等。
分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。
我们可以这样去想:因为1~9这九个数字之和是45,正好是三个横行数字之和,所以每一横行的数字之和等于45÷3=15。
也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15。
在1~9这九个数字中,三个不同的数相加等于15的有:9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3,6+5+4。
因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。
因为中心方格中的数既在一个横行中,又在一个竖列中,还在两对角线上,所以它应同时出现在上述的四个算式中,只有5符合条件,因此应将5填在中心方格中。
同理,四个角上的数既在一个横行中,又在一个竖列中,还在一条对角线上,所以它应同时出现在上述的三个算式中,符合条件的有2,4,6,8,因此应将2,4,6,8填在四个角的方格中,同时应保证对角线两数的和相等。
经试验,有下面八种不同填法:上面的八个图,都可以通过一个图的旋转和翻转得到。
例如,第一行的后三个图,依次由第一个图顺时针旋转90°,180°,270°得到。
又如,第二行的各图,都是由它上面的图沿竖轴翻转得到。
所以,这八个图本质上是相同的,可以看作是一种填法。
例1中的数阵图,我国古代称为“纵横图”、“九宫算”。
一般地,将九个不同的数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,那么这样的图称为三阶幻方。
数阵图
小学四年级奥数专题讲座第十六讲数阵图(一)奥数梦园 2009-05-03 00:00 阅读1454 评论1字号:大中小第16讲数阵图(一)我们在三年级已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”。
本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”。
我们先从一道典型的例题开始。
例1把1~9这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等。
分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。
我们可以这样去想:因为1~9这九个数字之和是45,正好是三个横行数字之和,所以每一横行的数字之和等于45÷3=15。
也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15。
在1~9这九个数字中,三个不同的数相加等于15的有:9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3,6+5+4。
因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。
因为中心方格中的数既在一个横行中,又在一个竖列中,还在两对角线上,所以它应同时出现在上述的四个算式中,只有5符合条件,因此应将5填在中心方格中。
同理,四个角上的数既在一个横行中,又在一个竖列中,还在一条对角线上,所以它应同时出现在上述的三个算式中,符合条件的有2,4,6,8,因此应将2,4,6,8填在四个角的方格中,同时应保证对角线两数的和相等。
经试验,有下面八种不同填法:上面的八个图,都可以通过一个图的旋转和翻转得到。
例如,第一行的后三个图,依次由第一个图顺时针旋转90°,180°,270°得到。
又如,第二行的各图,都是由它上面的图沿竖轴翻转得到。
所以,这八个图本质上是相同的,可以看作是一种填法。
例1中的数阵图,我国古代称为“纵横图”、“九宫算”。
四年级奥数教程答案
四年级奥数教程答案【篇一:四年级奥数教程】>例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:解:选基准数为450,则- 1 -累计差=12+30-7-30+23-21+18-11+25+11=50,答:平均每块麦田的产量为455千克。
求一位数的平方,在乘法口诀的小学奥数基础教程(四年级)第1讲速算与巧算(一)86,78,77,83,91,74,92,第2讲速算与巧算(二) 69,84,75。
第3讲高斯求和求这10名同学的总分。
第4讲 4,8,9整除的数的特征分析与解:通常的做法是将这10个数第5讲弃九法直接相加,但这些数杂乱无章,直接第6讲数的整除性(二)相加既繁且易错。
观察这些数不难发第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“ 80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
三年级上奥数第16讲 数阵图(一)
三秋第16讲 数阵图(一)一、教学目标将一些数按照一定的规律排列而成的图形,通常叫做数阵图.向四周呈放射状的数阵就是放射式数阵.首尾相接的是封闭状数阵.填数阵图的方法是将题目所给的若干个数进行分析,找出规律,正确填充.填放射式数阵的关键是确定公共部分的数.填封闭状数阵的关键是确定首尾相连即相交部分的数. 二、例题精选【例1】 将10—18这九个数分别填入下图中的○里,使每条直线上的三个数之和都相等。
你有几种填法呢?(至少填出两种)【巩固1】在空格内填入1、2、3、4、5各数,使每条线上三个数的和都相等,你能写出几种呢?【例2】 把2、3、4、5、6五个数填入下面的圆圈里,使横行、竖行三个数相加的和都是13.【巩固2】将7~1这七个数填入左下图中,使每条直线上的三个数的和为10。
【例3】 一天喜羊羊在回羊村的路上遇到了灰太狼,灰太狼有意刁难他,挡住他的去路对他说:“只要你用16这六个数字填在图中的圆圈内,使每条线上的三个数之和等于12,我就让你过去。
”喜羊羊想了想,不慌不忙的就填了出来。
你知道喜羊羊是怎么解决的吗?【巩固3】从1、2、3、4、5、6中选取适合的数填在圆圈里,使每个圆上四个数的和都等于15.【例4】将1~9这九个数分别填入下左图中,使每个三角形的顶点上的三个数的和相等。
【巩固4】将1,2,3,5,6,7这六个数填入下左表中,使每行中三个数的和相等,同时使每列两个数的和也相等。
【例5】在下左图中,三个圆圈两两相交成7块小区域,分别填上1~7这七个自然数,在一些小区域中已填好数字,请你把其余的数填到空着的小区域中,要求每个圆圈中四个数的和都是15。
375【例6】在下左列表格中填上0~8这9个数字,使得各行各列的和都恰好等于表格边上的数。
(每个数字只能用1次)21312121014。
小学数学奥数基础教程(四年级)目录.doc
小学数学奥数基础教程(四年级)目录(含答案).word文档下载地址.文档贡献者:与你的缘.第1讲速算与巧算(一)练习1第2讲速算与巧算(二)练习2第3讲高斯求和练习3第4讲数的整除性(一)练习4第5讲弃九法练习5第6讲数的整除性练习6第7讲找规律(一)练习7第8讲找规律(二)练习8第九讲数字迷(一)练习9第10讲数字迷(二)练习10第11讲归一问题与归总问题练习11第12讲年龄问题练习12第13讲鸡兔同笼问题与假设法练习13第14讲盈亏问题与比较法(一)练习14第15讲盈亏问题与比较法(二)练习15第16讲数阵图(一)练习16第17讲数阵图(二)练习17第18讲数阵图(三)练习18第19讲乘法原理练习19第20讲加法原理(一)练习20第21讲加法原理(二)练习21第22讲还原问题(一)练习22第23讲还原问题(二)练习23第24讲页码问题练习24第25讲智取火柴练习25第26讲逻辑问题(一)练习26第27讲逻辑问题(二)练习27第28讲逻辑问题(二)练习28第29讲抽屉原理(一)练习29第30讲抽屉原理(二)练习30情感语录1.爱情合适就好,不要委屈将就,只要随意,彼此之间不要太大压力2.时间会把最正确的人带到你身边,在此之前,你要做的,是好好的照顾自己3.女人的眼泪是最无用的液体,但你让女人流泪说明你很无用4.总有一天,你会遇上那个人,陪你看日出,直到你的人生落幕5.最美的感动是我以为人去楼空的时候你依然在6.我莫名其妙的地笑了,原来只因为想到了你7.会离开的都是废品,能抢走的都是垃圾8.其实你不知道,如果可以,我愿意把整颗心都刻满你的名字9.女人谁不愿意青春永驻,但我愿意用来换一个疼我的你10.我们和好吧,我想和你拌嘴吵架,想闹小脾气,想为了你哭鼻子,我想你了11.如此情深,却难以启齿。
其实你若真爱一个人,内心酸涩,反而会说不出话来12.生命中有一些人与我们擦肩了,却来不及遇见;遇见了,却来不及相识;相识了,却来不及熟悉,却还要是再见13.对自己好点,因为一辈子不长;对身边的人好点,因为下辈子不一定能遇见14.世上总有一颗心在期待、呼唤着另一颗心15.离开之后,我想你不要忘记一件事:不要忘记想念我。
小学数学奥数基础教程(三年级)目30讲全
小学奥数基础教程(三年级)- 1 -小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除一、两、三位数乘一位数(一)二、两、三位数乘一位数(二)三、乘法分配律数学智慧园(一)四、等量替换五、两、三位数除以一位数(一)六、两、三位数除以一位数(二)七、和差问题数学智慧园(二)八、图形空格填数九、归一问题十、和倍问题十一、差倍问题数学智慧园(三)十二、两积之和第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。
解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的数。
根据“加数=和-另一个加数”知,□=582-324=258。
又如,求右竖式中字母A,B所代表的数字。
显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。
解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。
这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。
人教版小学三年级数学第讲 数阵图(一)
第16讲数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。
重叠数求出来了,其余各数就好填了(见右上图)。
例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所以,必须先求出这个“和”。
根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。
数学活动课内容
一数字谜(一)列表更清楚
二数字谜(二)鸡兔同笼
三定义新运算(一)谁是智多星(分数加减法运算比赛)四定义新运算(二)趣变火柴棒
五数的整除性(一)四边形的可活动性
六数的整除性(二)生活中的数
七奇偶性(一)
八奇偶性(二)第18讲数阵图(三)
九奇偶性(三)第19讲乘法原理
十质数与合数第20讲加法原理(一)
十一分解质因数
十二最大公约数与最小公倍数(一)第21讲加法原理(二)
十三最大公约数与最小公倍数(二)十四余数问题
十五孙子问题与逐步束法十六巧算24
十七位值原则十八最大最小
十九图形的分割与拼接二十多边形的面积
小小采购员
过河搭一搭
我长高了巧拼组合图形
动脑筋找规律牙膏中的数学问题
第1讲速算与巧算(一)第2讲速算与巧算(二)
第3讲高斯求和第4讲数的整除性(一)
第5讲弃九法第6讲数的整除性(二)
第7讲找规律(一)第8讲找规律(二)
第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题
第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)
第17讲数阵图(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴
第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)
第30讲抽屉原理(二)。
(2021年整理)三年级数学奥数基础课程教案(30讲全)
三年级数学奥数基础课程教案(30讲全)三年级数学奥数基础课程教案(30讲全)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三年级数学奥数基础课程教案(30讲全))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三年级数学奥数基础课程教案(30讲全)的全部内容。
三年级数学奥数基础课程教案(30讲全) 小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。
解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的数.根据“加数=和—另一个加数"知,□=582—324=258。
又如,求右竖式中字母A,B所代表的数字。
显然个位数相减时必须借位,所以,由12-B=5知,B =12-5=7;由A-1=3知,A=3+1=4.解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。
小学数学奥数基础教程(三年级)30讲全
小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。
解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的数。
根据“加数=和-另一个加数”知,□=582-324=258。
又如,求右竖式中字母A,B所代表的数字。
显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。
解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。
这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。
由它们推演还可以得到以下运算规则:由(1),得和-一个加数=另一个加数;其次,要熟悉数字运算和拆分。
例如,8可用加法拆分为8=0+8=1+7=2+6=3+5=4+4;24可用乘法拆分为24=1×24=2×12=3×8=4×6(两个数之积)=1×2×12=2×2×6=…(三个数之积)=1×2×2×6=2×2×2×3=…(四个数之积)例1下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28-○=15+7;(3)3×△=54;(4)☆÷3=87;(5)56÷*=7。
学而思(四年级)目30讲全
合用标准准数,各数与基准数的差的和叫做累学而思(四年级)若是你需要更多的各种奥数计差。
由例 1 获取:教材,课程同步教材,同步总和数 =基准数×加数的个数+累计第 1 讲速算与巧算(一)练习题,培优练习题,期中差,第 2 讲速算与巧算(二)期末单元试卷,平均数 =基准数 +累计差÷加数的个第 3讲高斯求和各种致富管理文学作品书籍数。
第4讲4, 8, 9 整除的数的特点维修书籍大人物传记在使用基准数法时,应采用与各第 5讲弃九法都是电子档。
能够联系我数的差较小的数作为基准数,这样才第 6 讲数的整除性(二)468453607简单计算累计差。
同时考虑到基准数第 7 讲找规律(一)微信电话与加数个数的乘法能够方便地计算出第 8 讲找规律(二)来,所以基准数应尽量采用整十、整第 9 讲数字谜(一)百的数。
第 10 讲数字谜(二)例 2 某农场有 10 块麦田,每块的产量第 11 讲归一问题与归总问题以下(单位:千克):第 12 讲年龄问题462,480,443,420,473,429 ,第 13 讲鸡兔同笼问题与假设法例 1 四年级一班第一小组有10名同468, 439,475 , 461。
求平均每块麦第 14 讲盈亏问题与比较法(一)学,某次数学测试的成绩(分数)如田的产量。
第 15 讲盈亏问题与比较法(二)下:解:选基准数为 450,则第 16 讲数阵图(一)86, 78, 77, 83, 91, 74, 92,累计差 =12+ 30-7- 30+23- 21第 17 讲数阵图(二)69,84,75。
+18-11+25+11第 18 讲数阵图(三)求这 10 名同学的总分。
=50,第 19 将乘法原理解析与解:平常的做法是将这10 个数平均每块产量 =450 + 50÷ 10 =第 20 讲加法原理(一)直接相加,但这些数纷乱无章,直接455(千克)。
第 21 讲加法原理(二)相加既繁且易错。
三年级数学奥数基础课程教案(30讲全)
小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。
解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的数。
根据“加数=和-另一个加数”知,□=582-324=258。
又如,求右竖式中字母A,B所代表的数字。
显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。
解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。
这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。
由它们推演还可以得到以下运算规则:由(1),得和-一个加数=另一个加数;其次,要熟悉数字运算和拆分。
例如,8可用加法拆分为8=0+8=1+7=2+6=3+5=4+4;24可用乘法拆分为24=1×24=2×12=3×8=4×6(两个数之积)=1×2×12=2×2×6=…(三个数之积)=1×2×2×6=2×2×2×3=…(四个数之积)例1下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28-○=15+7;(3)3×△=54;(4)☆÷3=87;(5)56÷*=7。
高斯小学奥数四年级下册含答案第16讲_奇偶性分析
第十六讲奇偶性分析一个整数要么是奇数,要么是偶数,二者必居其一,这个属性叫做这个数的奇偶性.利用奇数与偶数的分类及其特殊性质,可以“简捷”地求解一些与整数有关的问题,我们把这种通过分析整数的奇偶性来解决问题的方法称为“奇偶分析法”.在正式开始本讲的学习之前,我们首先需要较熟练的掌握以下结论,有助于我们更好的去思考问题:一、加减法性质+=奇奇偶,+=奇偶奇,+=偶偶偶-=奇奇偶,-=奇偶奇,-=偶奇奇,-=偶偶偶1、相邻2个自然数一定是一个是奇数、一个是偶数,其和一定是奇数.2、通过观察可以看出,一个数加偶数不会改变奇偶性,所以和的奇偶性是由奇数的个数决定的.奇数个奇数的和是奇数,偶数个奇数的和是偶数;任意个偶数的和是偶数.3、可看出两个数的和与差奇偶性相同.一些数相加减,最后的结果的奇偶性也是由奇数的个数决定的,即“奇数个奇数的和差是奇数,偶数个奇数的和差是偶数;任意个偶数的和差是偶数”.二、乘除法性质⨯=奇奇奇,⨯=奇偶偶,⨯=偶偶偶当乘数都是奇数时,乘积是奇数(反过来,如果若干个整数的乘积是奇数,那么其中的每一个乘数都是奇数);只要乘数里出现至少1个偶数,那么乘积就是偶数(反过来,如果若干个整数的乘积是偶数,那么其中至少有一个乘数是偶数.)——所以乘积的奇偶性是由是否存在偶数决定的.÷奇偶(除不尽),÷=奇奇奇(在能除尽时),÷=偶奇偶(在能除尽时),÷偶偶(结果不确定,可奇、可偶)(在能除尽时)在做除法时不一定能除尽,所以我们讨论的都是除尽的情况,主要注意“”的情况不确定,其余的在五年级学完分解质因数后同学们会有更深刻的理解.÷偶偶例题1(1)12342012+++++L 的和是奇数还是偶数?(2)在1、2、3、…、2013的每一个数前,添上加号或减号,请问:能否找到一种添法,使得算式结果为0?「分析」加减法结果的奇偶性取决于算式中奇数的个数,你能计算出算式中有多少个奇数吗?练习1123456789201120122013-++-++-+++-+L 的结果是奇数还是偶数?例题2(1)12233499100⨯+⨯+⨯++⨯L 的结果是奇数还是偶数?(2)133599101⨯+⨯++⨯L 的结果是奇数还是偶数?「分析」(1)中每个乘积是奇数还是偶数?(2)中乘积都是奇数,那么到底是多少个奇数相加呢?练习213355720112013⨯+⨯+⨯++⨯L 的结果是奇数还是偶数?构造论证是一类很有意思的问题,它或者要求你设计一种巧妙的处理问题的方案,或者希望你帮忙说明一些事情的道理.事实上,设计方案就是构造.在所有的问题中,如果能够构造出一种合适的方案,那问题就解决了,但如果不能构造出,那就需要说明为什么不能构造,而这个叙述的过程就叫做论证.论证的方法有很多,今天主要是利用奇偶性分析来说明问题.例题3一次宴会上,客人们相互握手,每两人之间都握一次手,请问:所有人握手次数之和是奇数还是偶数?握过奇数次手的人数是奇数还是偶数?「分析」大家好好思考一下:所有人握手次数之和是否等于总的握手次数呢?高思杯足球赛施行单循环赛,赛制规定:每场比赛胜者得2分,负者得0分,平局各得1分.比赛结束后,所有队的得分总和是奇数还是偶数?接下来我们看构造论证模块中一类非常经典的翻硬币问题.例题4桌上放有5枚硬币,第一次翻动1枚,第二次翻动2枚,第三次翻动3枚,第四次翻动4枚,第五次翻动5枚.能否恰当地选择每次翻动的硬币,使得最后桌上所有的硬币都翻过来?如果桌上有6枚硬币,按类似的方法翻动6次,能否使得所有的硬币都翻过来?「分析」要想让一枚硬币翻过来,我们需要翻动几次?要想让5枚硬币都翻过来,那么我们要翻动的总次数应该是什么样的?练习4桌上放有6枚正面朝下的硬币,第一次翻动其中的5枚,第二次翻动其中的4枚,第三次翻动其中的3枚,第四次翻动2枚,第五次翻动1枚.请问:能否恰当地选择每次翻动的硬币,使得最后桌上所有的硬币正面都朝上?在构造论证中的“证明不可能”即“论证”环节,往往会用到“反证法”,即先假设“可以”,再进过推理得出矛盾,说明“假设不成立”.例题5(1)有2013个自然数的和是偶数,那么它们的乘积是奇数还是偶数?(2)有2012个自然数的和是奇数,那么它们的乘积是奇数还是偶数?「分析」(1)2013个数的和是偶数,那么关于这些加数,你能得出什么结论呢?(2)2012个什么样的自然数的和会是奇数呢?在1~15中选出10个数填入右下图的圆圈中,每两个有线相连的圆圈中的数相加,请问:这14个和能否恰好是5~18?「分析」数阵图中我们学习过了重数分析法,即把所有的和加起来,看每个数加了几次,然后再列算式进行分析.对本题我们不妨也试着用类似的方法试一下吧!课堂内外数论急先锋——神秘的奇偶数奇偶数有很多特别的性质,让我们来总结一下吧:(1)运算性质:在加减法运算中,出现偶数不改变奇偶,而每出现一个奇数就改变一次奇偶;乘法运算中,乘数中一旦出现偶数,结果就是偶数,否则结果就是奇数.(2)两个自然数的和与差同奇偶.(3)任意相邻的两个自然数必是一奇一偶,并且这两个数互质.(4)差为2n的两个奇数互质.(5)从1开始,前n个奇数的和等于n2.(6)任意两个奇数的平方差是8的倍数.(7)偶数的平方一定是4的倍数,奇数的平方除以4和8都余1.(8)相邻两个偶数的最大公约数是2,相邻两个奇数的最大公约数是1.(9)相邻两个偶数的最小公倍数是两数乘积的一半,相邻两个奇数的最小公倍数是两数之积.(10)完全平方数有奇数个不同的约数,非完全平方数有偶数个不同的约数.哥德巴赫猜想:任意一个不小于4的偶数都可以拆成两个质数的和.例如:422=+,633=+,=+,14311=+,835=+,1257=+,1037=+,……16313=+,18513作业1. 算式7563454343388⨯-+的结果是奇数还是偶数?2. 算式1234192021L的结果是奇数还是偶数?-+-++-+3. (1)能否在1、2、3、…、9、10的相邻两个数之间填入加号或减号(不能改变数的顺序),使得结果是25?(2)能否在1、2、3、…、9、10的相邻两个数之间填入加号或减号(不能改变数的顺序),使得结果是36?4. 请问是否存在两个自然数,它们的和比它们的差多5?若存在,请写出一组这样的数;若不存在,请说明理由.5.桌上放着七只杯子,有三只杯口朝上,四只杯口朝下,每个人任意将杯子翻动四次.请问:若干人翻动后,能否将七只杯子全变成杯口朝下?第十六讲 奇偶性分析1. 例题1答案:(1)偶数;(2)不能详解:(1)和的奇偶性只取决于加数中奇数的个数.1~2012中共有1006个奇数,所以和是偶数.(2)不可能.1232013++++L ,1~2013中共有1007个奇数,所以和为奇数;根据“和差奇偶性相同”可得,1232013++++L 任意把一些加号变为减号,结果也一定是一个奇数,不可能是0.2. 例题2答案:(1)偶数;(2)偶数详解:(1)每个乘积都是偶数,所以和是偶数.(2)每个乘积都是奇数,和的奇偶性取决于加数中奇数的个数.1、3、5、…、99共有50个奇数,所以结果是偶数.3. 例题3答案:(1)偶数;(2)偶数详解:(1)每一次握手都是涉及两个人的,所以把所有人的握手次数相加时,每一次握手都是被计算了两次的,所以总和一定是偶数.(2)握手次数总和是偶数,所以加数中奇数的个数一定是偶数,即握过奇数次手的人数是偶数.4. 例题4答案:(1)可以;(2)不能详解:把硬币编号①②③④……(1)可以:第一次①、第二次②③、第三次①④⑤、第四次②③④⑤、第五次①②③④⑤.(2)不能:每一枚硬币要反过来,需要翻动奇数次,一共6枚,共需翻动6个奇数次,则翻动总次数是偶数;而12345621++++++=和为奇数,所以不能.5. 例题5答案:(1)偶数;(2)偶数详解:乘积的奇偶性取决于乘数中是否有偶数.(1)2013个数的和是偶数,那么这2013个数中一定有偶数(如果全是奇数,那么2013个奇数的和就一定是奇数了),所以它们的乘积一定是偶数.(2)2012个数的和是奇数,那么这2012个数中一定有偶数(如果全是奇数,那么2012个奇数的和就一定是偶数了),所以它们的乘积一定是偶数.6. 例题6答案:不能详解:反证法:假设恰好是5~18,则:把14个和相加,那么每一个圆圈中的数一定会出现偶数次(要么加了2次、要么加了4次),所以最后的结果应该是一个偶数.但是,5~18的和是奇数,所以矛盾,不可能.7. 练习1答案:奇数简答:同例1(2)分析,1232013++++L 和为奇数,把其中任意加号变为减号,结果也一定是奇数.8. 练习2答案:偶数简答:每个乘积都是奇数,和的奇偶性取决于加数中奇数的个数.1、3、5、…、2011共有1006个奇数,所以结果是偶数.9. 练习3答案:偶数简答:每一场比赛,无论是分胜负还是平局,两个队的得分之和都是2分.而所有队的得分总和即为所有场比赛的得分和之总和,即使若干个2相加,总和是偶数.10. 练习4答案:不能简答:一共翻动了5432115++++=次,奇数次;而要使得一枚硬币翻过来,需要翻动奇数次,所以一共要翻动6个奇数次,总次数应该是偶数,与15矛盾.11. 作业1答案:奇数简答:756345⨯乘积是偶数,4343是奇数,388是偶数,只有1个奇数,所以结果是奇数.12. 作业2答案:奇数简答:1~21中,奇数一共有11个,所以结果是奇数.13. 作业3答案:(1)可以,答案不唯一;(2)不能简答:1~10的和为55,和为奇数.根据“和、差奇偶性相同”,那么如果把一部分加号改为减号,那么结果应该仍是奇数,所以:(1)结果为25是可能的,可以是12345678910+++-++++-;(2)结果为36是不可能的.14.作业4答案:不存在简答:两个数的和与差奇偶性相同,所以两个自然数的“和-差”结果一定是偶数,不可能是5.15.作业5答案:不能简答:七只杯子,有三只口朝上、四只口朝下,口朝上的杯子要变成口朝下,需要翻动奇数次,而口朝上的杯子有奇数只,所以最后要将七只杯子全变成口朝下,那么一共需要翻动奇数次.但是每个人任意翻动四次,那么若干人翻动的总次数一定是偶数次,所以不可能.。
小学数学奥数基础教程(三年级)目30讲全
小学奥数基础教程(三年级)- 1 -小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除一、两、三位数乘一位数(一)二、两、三位数乘一位数(二)三、乘法分配律数学智慧园(一)四、等量替换五、两、三位数除以一位数(一)六、两、三位数除以一位数(二)七、和差问题数学智慧园(二)八、图形空格填数九、归一问题十、和倍问题十一、差倍问题数学智慧园(三) 十二、两积之和第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。
解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。
例如,求算式324+□=528中□所代表的数。
根据“加数=和—另一个加数”知,□=582-324=258。
又如,求右竖式中字母A,B所代表的数字。
显然个位数相减时必须借位,所以,由12—B=5知,B=12—5=7;由A—1=3知,A=3+1=4.解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。
这一讲介绍简单的算式(横式)数字谜的解法。
解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数—减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商.由它们推演还可以得到以下运算规则:由(1),得和-一个加数=另一个加数;其次,要熟悉数字运算和拆分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第16讲数阵图(一)
在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:
左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。
下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。
分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。
也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。
因为横行的三个数之和与竖列的三个数之和都等于9,所以
(1+2+3+4+5)+重叠数=9+9,
重叠数=(9+9)-(1+2+3+4+5)=3。
重叠数求出来了,其余各数就好填了(见右上图)。
例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。
所
以,必须先求出这个“和”。
根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于
[(1+2+3+4+5)+5]÷2=10。
因此,两条直线上另两个数(非“重叠数”)的和等于10-5=5。
在剩下的四个数1, 2, 3,4中,只有1+4=2+ 3=5。
故有右上图的填法。
例3把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等。
分析与解:例1是知道每条直线上的三数之和,不知道重叠数;例2是知道重叠数,不知道两条直线上的三个数之和;本例是这两样什么都不知道。
但由例1、例2的分析知道,
(1+2+3+4+5)+重叠数
=每条直线上三数之和×2,
所以,每条直线上三数之和等于(15+重叠数)÷2。
因为每条直线上的三数之和是整数,所以重叠数只可能是1,3或5。
若“重叠数”=1,则两条直线上三数之和为
(15+1)÷2=8。
填法见左下图;
若“重叠数”=3,则两条直线上三数之和为
(15+3)÷2=9。
填法见下中图;
若“重叠数”=5,则两条直线上三数之和为
(15+5)÷2=10。
填法见右下图。
由以上几例看出,求出重叠数是解决数阵问题的关键。
为了进一步学会掌握这种解题方法,我们再看两例。
例4将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。
分析与解:与例1类似,知道每条边上的三数之和,但不知道重叠数。
因为有3条边,所以中间的重叠数重叠了两次。
于是得到
(1+2+…+7)+重叠数×2=10×3。
由此得出重叠数为
[10×3-(1+2+…+7)]÷2=1。
剩下的六个数中,两两之和等于9的有2,7;3,6;4,5。
可得右上图的填法。
如果把例4中“每条边上的三个数之和都等于10”改为“每条边上的三个数之和都相等”,其他不变,那么仿照例3,重叠数可能等于几?怎样填?
例5将 10~20填入左下图的○内,其中15已填好,使得每条边上的三个数字之和都相等。
解:与例2类似,中间○内的15是重叠数,并且重叠了四次,所以每条边上的三个数字之和等于
[(10+11+…+20)+15×4]÷5=45。
剩下的十个数中,两两之和等于(45-15=)30的有10,20;11,19;12,18;13,17;14,16。
于是得到右上图的填法。
例1~5都具有中心数是重叠数,并且每边的数字之和都相等的性质,这样的数阵图称为辐射型。
例4的图中有三条边,每边有三个数,称为辐射型3—3图;例5有五条边每边有三个数,称为辐射型5—3图。
一般地,有m条边,每边有n个数的形如下图的图形称为辐射型m-n图。
辐射型数阵图只有一个重叠数,重叠次数是“直线条数”-1,即m-1。
对于辐射型数阵图,有
已知各数之和+重叠数×重叠次数
=直线上各数之和×直线条数。
由此得到:
(1)若已知每条直线上各数之和,则重叠数等于
(直线上各数之和×直线条数-已知各数之和)÷重叠次数。
如例1、例4。
(2)若已知重叠数,则直线上各数之和等于(已知各数之和+重叠数×重叠次数)÷直线条数。
如例2、例5。
(3)若重叠数与每条直线上的各数之和都不知道,则要从重叠数的可能取值分析讨论,如例3。