电容降压电源的特点
电容降压的工作原理
电容降压的工作原理一、引言电容降压是一种常见的电源降压方式,通过使用电容器来实现电压的降低。
本文将详细介绍电容降压的工作原理,包括电容器的基本原理、电路连接方式以及电容降压的优缺点。
二、电容器的基本原理电容器是一种能够存储电荷的电子元件,由两个导体板和介质组成。
当电容器充电时,正极板上的电子被吸引到负极板上,导致正极板带正电荷,负极板带负电荷,形成电场。
电容器的容量取决于导体板的面积、介质的介电常数和导体板的距离。
三、电路连接方式1. 直接连接方式电容降压电路中最简单的方式是将电容器直接连接在电源和负载之间。
当电容器充电时,电压逐渐上升,当达到一定值时,电容器开始放电,供电给负载。
通过调整电容器的容量和电源电压,可以实现所需的降压效果。
2. 串联连接方式在电容降压电路中,可以将多个电容器串联连接,以增加总的电容量。
串联连接的电容器会共享电压,因此可以实现更大的降压效果。
此外,串联连接还可以提高电容器的工作电压,以适应高压环境。
3. 并联连接方式与串联连接相反,电容降压电路中也可以将多个电容器并联连接。
并联连接的电容器具有相同的电压,但总的电容量会增加。
这种连接方式适合于需要较大电流输出的情况。
四、电容降压的工作原理电容降压的工作原理可以简单概括为以下几个步骤:1. 充电阶段:当电源接通时,电容器开始充电。
电容器的两个板之间形成电场,导致电容器的电压逐渐上升。
充电时间取决于电容器的容量和电源的电压。
2. 放电阶段:当电容器的电压达到一定值时,电容器开始放电。
放电过程中,电容器释放储存的电荷,供电给负载。
电容器的放电时间取决于负载的电流需求和电容器的容量。
3. 循环工作:电容降压电路会不断循环进行充电和放电的过程,以保持稳定的输出电压。
通过调整电容器的容量和电源的电压,可以实现所需的输出电压。
五、电容降压的优缺点1. 优点:- 简单:电容降压电路结构简单,成本低廉,易于实现。
- 快速响应:电容器可以快速充电和放电,使得电容降压电路具有快速响应的特点。
三相阻容降压整流电路
三相阻容降压整流电路
三相阻容降压整流电路是一种常用的电源电路,它通过阻容元件的降压作用,将三相交流电转换为直流电。
这种电路通常由三个阻容元件组成,每个元件与相应的相线连接,通过电容的容抗作用来降低电压。
在三相阻容降压整流电路中,当交流电的正半周来临时,电容充电,电流通过电容和整流二极管流向负载。
当交流电的负半周来临时,电容放电,电流通过电容和整流二极管反向流向负载。
由于电容的容抗作用,输出电压被降低,从而实现了降压的目的。
三相阻容降压整流电路具有简单、可靠、成本低等优点,因此被广泛应用于各种需要三相电源的设备和系统中。
例如,它可以用于电动机的控制、电力变压器的测试以及各种需要稳定电压的电子设备中。
需要注意的是,三相阻容降压整流电路的输出电压和电流可以通过改变阻容元件的参数来进行调整。
此外,为了保护电路和延长电容寿命,应该选择合适的电容容量和耐压值,并在电路中加入适当的保护元件。
电感电容降压电路工作原理
电感电容降压电路工作原理电感电容降压电路是一种常见的电路拓扑结构,它能够将高电压的直流电源降压到需要的电压水平。
这种电路通常被广泛应用在各种电子设备和系统中,包括通信设备、电源模块、调节器和逆变器等。
了解其工作原理对于理解电子电路的基本原理和提高工程技能至关重要。
下面将详细介绍电感电容降压电路的工作原理。
一、电感电容降压电路的基本结构电感电容降压电路通常由输入电容、滤波电感、开关管、输出整流电容和输出负载组成。
在工作中,输入电源的电压通过滤波电感和开关管的控制被转换成所需的输出电压,输出负载会接收到这一水平的电压。
整个电路可以看作一个能够转换高电压到低电压的控制系统。
二、电路的工作原理1. 输入滤波在电路的工作开始时,输入电源的直流电压首先通过输入电容进行滤波。
输入电容能够去除输入电源中的高频噪音并降低电压的纹波。
2. 开关管的控制控制开关管的导通及关断状态能够实现对输入电压的调节。
当开关管导通时,输入电源的电压会通过电感传导到输出端,此时开关管处于导通状态。
而当开关管关断时,则输入电源的电压不会传导到输出端。
根据开关管的开关频率和占空比大小,输出的电压也会相应地被调节。
3. 输出整流在输出端,通常还会加上一个输出整流电容。
输出整流电容能够平滑输出电压,使其更加稳定。
三、电感电容降压电路的工作特点电感电容降压电路的工作原理在工程中有一些显著的特点:1. 有效降压:由于电感的特性,电感电容降压电路能够很好地实现高压到低压的转换,保证输出电压的稳定性。
2. 高效率:通过控制开关管的开关频率和占空比,电感电容降压电路能够实现高效率的电压转换。
3. 可靠性:电感电容降压电路通常具有较高的工作可靠性,能够适应多种工作环境和负载变化。
四、电感电容降压电路在实际工程中的应用电感电容降压电路在电子电路和电源系统中具有广泛的应用,例如在直流-直流变换器、开关电源、逆变器、电源管理单元以及各种嵌入式系统中都能看到电感电容降压电路的身影。
电源常用拓扑结构特点及波形
电源常用拓扑结构特点及波形基本名词电源常见的拓扑结构■Buck降压■Boost升压■Buck-Boost降压-升压■Flyback反激■Forward正激■Two-Transistor Forward双晶体管正激■Push-Pull推挽■Half Bridge半桥■Full Bridge全桥基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:1、Buck降压特点■把输入降至一个较低的电压。
■可能是最简单的电路。
■电感/电容滤波器滤平开关后的方波。
■输出总是小于或等于输入。
■输入电流不连续(斩波)。
■输出电流平滑。
2、Boost升压特点■把输入升至一个较高的电压。
■与降压一样,但重新安排了电感、开关和二极管。
■输出总是比大于或等于输入(忽略二极管的正向压降)。
■输入电流平滑。
■输出电流不连续(斩波)。
3、Buck-Boost降压-升压特点■电感、开关和二极管的另一种安排方法。
■结合了降压和升压电路的缺点。
■输入电流不连续(斩波)。
■输出电流也不连续(斩波)。
■输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入。
■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
4、Flyback反激特点■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
■输出可以为正或为负,由线圈和二极管的极性决定。
■输出电压可以大于或小于输入电压,由变压器的匝数比决定。
■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。
5、Forward正激■降压电路的变压器耦合形式■不连续的输入电流,平滑的■因为采用变压器,输出可以■增加次级绕组和电路可以获■在每个开关周期中必须对变绕组。
■在开关接通阶段存储在初级6、Two-Transistor Fo 特点■两个开关同时工作。
■开关断开时,存储在变压器■主要优点:■每个开关上的电压永远不会■无需对绕组磁道复位。
220V电容降压直流电源原理及阻容计算
220V电容降压直流电源原理及阻容计算阻容原理电容降压的工作原理并不复杂。
他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。
例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。
当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。
虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。
根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。
例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。
因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。
同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。
因为5W/65V的灯泡的工作电流也约为70mA。
因此,电容降压实际上是利用容抗限流。
而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。
下图为阻容降压的典型应用,C1为降压电容,R1为断开电源时C1的泄放电阻,D1为半波整流二极管,D2在市电的负半周为C1提供放电回路,否则电容C1充满电就不工作了,Z1为稳压二极管,C2为滤波电容。
输出为稳压二极管Z1的稳定电压值。
在实际应用中,可以用下图代替上图,这里用了Z1正向特性和反向特性,其反向特性(也就是其稳压特性)来稳定电压,其正向特性用来在市电负半周给C1提供放电回路。
阻容计算这一类的电路通常用于低成本取得非隔离的小电流电源。
它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。
所能提供的电流大小正比于限流电容容量。
采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位)I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C=0.44*220*2*3.14*50*C=30000C=30000*0.000001=0.03A=30mAf为电源频率单位HZ;C为电容容值单位F法拉;V为电源电压单位伏V;Zc=2*Pi*f*C为阻抗阻值单位欧姆.如果采用全波整流可得到双倍的电流(平均值)为:I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C=0.89*220*2*3.14*50*C=60000C=60000*0.000001=0.06A=60mA一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。
电容降压式直流稳压电源__容值与电流的关系
电容降压式直流稳压电源__电容值/电流计算与稳压电路设计摘要:在交流输入电源高电压(150V~264V/50Hz)的地区,在电风扇、面包机等小型家电中,其小信号控制部分需求电流<50mA时,电容降压式电源有广泛的应用。
该电源具有电路简单、成本低廉、可靠性高、无干扰辐射等明显优势。
本文给出了降压电容与输出电流的简单计算公式,并设计需求电流>30mA的稳压电路,在交流输入上、下限电压时,保证稳压输出足够电流。
一、简介电容降压式电源的工作原理如上图所示,是一个典型的电容降压式电源,C102为降压电容,在C103上产生V1的直流电压,再通过R102稳压到Vout。
R101为限制冲击电流电阻,取值金属膜0.5W4.7~10Ω;D101/D102用1N4148即可。
先描述一下一个交流电周期的工作过程:设在XS101端输入交流电压Uin(上正下负),C102上的电压为U(左正右负),当Uin从0V变为负时,D101反压截止,D102导通,Uin通过D102向C102反向充电,因R101极小,D102的导通压降相对于交流输入电压来讲忽略不计,在Uin为负、且负增长时, U=Uin; U一直跟随Uin到达负峰值Uin=一V M,V M为交流输入电源电压的峰值,U=一V M,D102截止;Uin到达负峰值后开始上升, D101仍然反压截止;当Uin上升到一V M +V1后,D101开始导通(压降忽略不计),给C103充电,U=Uin一V1;一直充到Uin= V M(正峰值)停止,此时U= V M一V1; Uin开始下降,D101截止;当Uin下降到V M一V1时,D102又开始导通,如此循环。
从上面的描述看到,输入交流电压Uin通过C102对C103充电的过程为,Uin从一V M +V1开始,以正弦波到V M结束;对应的U从一V M开始,正弦波到V M一V1结束。
二、根据电容计算电流、或反之设C102的容值为C,向C103充电时C102上的电流为I,平均输出电流为I out,一个完整正弦波周期时间为T(频率为f),I = C*dU/dt,整个周期的输出电流,由几乎是半个周期的充电电流提供:I out * T = ∫I*dt = (C*dU/dt)dt = C*∫dU【U从(一V M) Æ(V M一V1)】= C*(2*V M﹣V1)C*(2*V M一V1)Î I out =‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐= C*(2*V M一V1)*f 。
电容降压电源原理和计算公式-5V直流稳压电源
电容降压电源原理和计算公式用电容降压的电路里,给电容并联的电阻起什么作用最佳答案刚接通电路时,电容是没有初始储能的,电容相当于短路,所以会对后面电路产生危害,所以并联电阻降压。
等电容储能完毕,电容上就分担了大部分电流,等于把电阻开路了。
在电源关闭后,电容可以通过电阻释放储存的能量。
我是这么理解的。
这一类的电路通常用于低成本取得非隔离的小电流电源.它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管.所能提供的电流大小正比于限流电容容量.采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位)I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C=30000*0.000001=0.03A=30mA如果采用全波整流可得到双倍的电流(平均值)为:I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C=60000*0.000001=0.06A=60mA一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少.使用这种电路时,需要注意以下事项:1、未和220V交流高压隔离,请注意安全,严防触电!2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻.3、注意齐纳管功耗,严禁齐纳管断开运行.C1取值大小应根据负载电流来选择,比如负载电路需要9V工作电压,负载平均电流为75毫安,由于Id=0.62C1,可以算得C1=1.2uF.考虑到稳压管DZ1的损耗,C1可以取1.5uF,此时电源实际提供的电流为Id=93毫安.稳压管的稳压值应等于负载电路的工作电压,其稳定电流的选择也非常重要.由于电容降压电源提供的的是恒定电流,近似为恒流源,因此一般不怕负载短路,但是当负载完全开路时,R2(串在整流电路后,做限流)及DZ1回路中将通过全部的93毫安电流,所以DZ1的最大稳定电流应该取100毫安为宜.由于RL与DZ1并联,在保证RL 取用75毫安工作电流的同时,尚有18毫安电流通过DZ1,所以其最小稳定电流不得大于18毫安,否则将失去稳压作用.电工原理:整流后的直流电流平均值Id,与交流电平均值I的关系为Id=V/XC1.C1以uF为单位,则Id为毫安单位问:谈到电容降压,我有点小问问题想请各位指教.我公司有多款产品都用到电容降压,但都没有用齐纳管也没有任何事发生,照常出货.前不久,我们生产一批产品,是黄色LED灯,却出现大量死灯,而且是一死灯就是整块板的灯全开路死灯,到现在也没有搞清楚是怎么回事(其它颜色的灯没有出现这样的情况).今天看到你们的贴子这么好,也想借此机会向各位请教.答:一是你的CBB选大了, 二是你CBB选的是对的,但是客户的输入电压肯定不是咱们的220 有可能高出几伏或者十几伏, 所以会开路死灯,发表我的看法.我认为,inherit先生的计算公式是错误的,连近似公式都不是.还有,画的电路也不完整.我认为,完整的电路应该是:1.输入端应串接浪涌限制电阻.2.稳压管上应并联滤波电容(如果没有电容的话,纹波大,稳压管也容易损坏).3.输出端应接入稳压器件,例如78系列的78X05之类.4.半波整流的情况下,整流二极管应挪到稳压管后面.我认为,平均电流的计算公式中不应有0.44,0.89,Pi.在有效值电流和视在功率的式子中可能出现0.44(半波),0.89(全波).sqrt(Pi)/4=0.44(近似),sqrt(Pi)/2=0.89(近似).很抱歉,因为有效值电流和视在功率的近似式子中出现sqrt(Pi)项,我用除4或除8的方法,主观硬凑出0.44和0.89的.前几年,我是建立数学模型,用解微分方程的方法得出了近似式子,费了不功夫,向公司递交了技术报告.当时看到公司的人用实验方法确定降压电容,很挠心.得出的近似式子如下:1.半波:I(AV)=2*sqrt(2)*f*c*Vrms(近似)I(rms)=2*sqrt(2)*f*c*Vrms*sqrt(Pi)(近似)视在功率=2*sqrt(2)*f*c*Vrms*Vrms*sqrt(Pi)(近似)2.全波:I(AV)=4*sqrt(2)*f*c*Vrms(近似)I(rms)=2*sqrt(2)*f*c*Vrms*sqrt(Pi)(近似)视在功率=2*sqrt(2)*f*c*Vrms*Vrms*sqrt(Pi)(近似)其实,若考虑稳压管的电压、整流二极管的压降、导通角,上面的式子非常复杂,我没法输入,只好在此省略了,很抱歉.这种电路有以下优点:1.电路简单、元件少2.噪声小3.可防磁场干扰这种电路有以下缺点:1.功率因数低,无功功率大.2.不适合于负载电流稍大的电源,不适合于宽输入电压、负荷电流变动很大的电源.因为降压电容是在最低输入电压、最低工作频率、最大负荷电流的条件下确定的.当输入电压和工作频率较高、负荷电流较小时,多余的电流会流向稳压管,导致稳压管发热.3.因为是非绝缘型电源,电路带电,电路的使用范围受到限制.不能有一端接了零线就安全的想法.设计时,1.根据输入电压的最小值、最低工作频率、最大负荷电流、电容的误差和温度变化率计算出降压电容容量.2.根据输入电压的最大值、降压电容的容量(应考虑误差和温度变化率)、并参照有关电气规定确定放电电阻的阻值.3.根据输入电压的最大值、最高工作频率、最小负荷电流、降压电容的容量(应考虑误差和温度变化率)、稳压管的最大容许功率和热阻抗(应考虑最高环境温度),确定稳压管的型号.从成本的角度看,我个人认为,这种电路不太适合于200V-240V电网,是适合于100V电网.因为输入电压很高时,要想采用可靠的降压电容,电容的成本太高.另,特别要注意稳压管的安全.其实,稳压管的稳压值和损失的关系曲线成抛物线.电容器使用说明1)名称:聚酯(涤纶)电容符号:(CL)电容量:40p--4uf额定电压:63--630V主要特点:小体积,大容量,耐热耐湿,稳定性差应用:对稳定性和损耗要求不高的低频电路2)名称:聚苯乙烯电容符号:(CB)电容量:10p--1uf额定电压:100V--30KV主要特点:稳定,低损耗,体积较大应用:对稳定性和损耗要求较高的电路3)名称:聚丙烯电容符号:(CBB)电容量:1000p--10uf额定电压:63--2000V主要特点:性能与聚苯相似但体积小,稳定性略差应用:代替大部分聚苯或云母电容,用于要求较高的电路4)名称:云母电容符号:(CY)电容量:10p--0.1uf额定电压:100V--7kV主要特点:高稳定性,高可*性,温度系数小应用:高频振荡,脉冲等要求较高的电路5)名称:高频瓷介电容符号:(CC)电容量:1--6800p额定电压:63--500V主要特点:高频损耗小,稳定性好应用:高频电路6)名称:低频瓷介电容符号:(CT)电容量:10p--4.7uf额定电压:50V--100V主要特点:体积小,价廉,损耗大,稳定性差应用:要求不高的低频电路7)名称:玻璃釉电容符号:(CI)电容量:10p--0.1uf额定电压:63--400V主要特点:稳定性较好,损耗小,耐高温(200度)应用:脉冲、耦合、旁路等电路8)名称:铝电解电容符号:(CD)电容量:0.47--10000uf额定电压:6.3--450V主要特点:体积小,容量大,损耗大,漏电大应用:电源滤波,低频耦合,去耦,旁路等9)名称:钽电解电容符号:(CA)铌电解电容(CN)电容量:0.1--1000uf额定电压:6.3--125V主要特点:损耗、漏电小于铝电解电容应用:在要求高的电路中代替铝电解电容10)名称:空气介质可变电容器符号:可变电容量:100--1500p主要特点:损耗小,效率高;可根据要求制成直线式、直线波长式、直线频率式及对数式等应用:电子仪器,广播电视设备等11)名称:薄膜介质可变电容器符号:可变电容量:15--550p主要特点:体积小,重量轻;损耗比空气介质的大应用:通讯,广播接收机等12)名称:薄膜介质微调电容器符号:可变电容量:1--29p主要特点:损耗较大,体积小应用:收录机,电子仪器等电路作电路补偿13)名称:陶瓷介质微调电容器可变电容量:0.3--22p主要特点:损耗较小,体积较小应用:精密调谐的高频振荡回路14)名称:独石电容电容量大、体积小、可*性高、电容量稳定,耐高温耐湿性好等.应用范围:广泛应用于电子精密仪器.各种小型电子设备作谐振、耦合、滤波、旁路.容量范围:0.5PF--1UF耐压:二倍额定电压.独石又叫多层瓷介电容,分两种类型,1型性能挺好,但容量小,一般小于0.2Uf,另一种叫II型,容量大,但性能一般.独石电容最大的缺点是温度系数很高,做振荡器的频漂让人受不了,我们做的一个555振荡器,电容刚好在7805旁边,开机后,用示波器看频率,眼看着就慢慢变化,后来换成涤纶电容就好多了.就温漂而言:独石为正温糸数+130左右,CBB为负温系数-230,用适当比例并联使用,可使温漂降到很小.就价格而言:钽,铌电容最贵,独石,CBB较便宜,瓷片最低,但有种高频零温漂黑点瓷片稍贵.云母电容Q值较高,也稍贵.15)安规电容是指用于这样的场合,即电容器失效后,不会导致电击,不危及人身安全.安规电容安全等级应用中允许的峰值脉冲电压过电压等级(IEC664)X1 >2.5kV ≤4.0kVⅢX2 ≤2.5kVⅡX3 ≤1.2kV——16)安规电容安全等级绝缘类型额定电压范围Y1 双重绝缘或加强绝缘≥ 250VY2 基本绝缘或附加绝缘≥150V ≤250VY3 基本绝缘或附加绝缘≥150V ≤250VY4 基本绝缘或附加绝缘 <150VY电容的电容量必须受到限制,从而达到控制在额定频率及额定电压作用下,流过它的漏电流的大小和对系统EMC性能影响的目的.GJB151规定Y电容的容量应不大于0.1uF.Y电容除符合相应的电网电压耐压外,还要求这种电容器在电气和机械性能方面有足够的安全余量,避免在极端恶劣环境条件下出现击穿短路现象,Y电容的耐压性能对保护人身安全具有重要意义安规电容的参数选择X电容,聚苯乙烯(薄膜乙烯)电容,从上面的贴子里也可以看到,聚苯乙烯的耐电压较高,适合EMI 电路的高压脉冲吸收作用.2.容量计算:一般两级X电容,前一级用0.47uF,第二基用0.1uF;单级则用0.47uF.目前还没有比较方便的计算方法.(电容容量的大小和电源的功率无直接关系)电解电容的设计,一点小经验:1.电解电容在滤波电路中根据具体情况取电压值为噪声峰值的1.2--1.5倍,并不根据滤波电路的额定值;2.电解电容的正下面不得有焊盘和过孔.3.电解电容不得和周边的发热元件直接接触.电路设计(4)铝电解电容分正负极,不得加反向电压和交流电压,对可能出现反向电压的地方应使用无极性电容.(5)对需要快速充放电的地方,不应使用铝电解电容器,应选择特别设计的具有较长寿命的电容器.(6)不应使用过载电压1.直流电压玉文博电压叠加后的缝制电压低于额定值.2.两个以上电解电容串联的时候要考虑使用平衡电阻器,使得各个电容上的电压在其额定的范围内.(9)设计电路板时,应注意电容齐防爆阀上端不得有任何线路,,并应留出2mm以上的空隙.(10)电解也主要化学溶剂及电解纸为易燃物,且电解液导电.当电解液与pc板接触时,可能腐蚀pc板上的线路.,以致生烟或着火.因此在电解电容下面不应有任何线路.(11)设计线路板向背应确认发热元器件不靠近铝电解电容电容的型号命名:1) 各国电容器的型号命名很不统一,国产电容器的命名由四部分组成:第一部分:用字母表示名称,电容器为C.第二部分:用字母表示材料.第三部分:用数字表示分类.第四部分:用数字表示序号.2) 电容的标志方法:(1) 直标法:用字母和数字把型号、规格直接标在外壳上.(2) 文字符号法:用数字、文字符号有规律的组合来表示容量.文字符号表示其电容量的单位:P、N、u、m、F 等.和电阻的表示方法相同.标称允许偏差也和电阻的表示方法相同.小于10pF的电容,其允许偏差用字母代替:B——±0.1pF,C——±0.2pF,D——±0.5pF,F——±1pF.(3) 色标法:和电阻的表示方法相同,单位一般为pF.小型电解电容器的耐压也有用色标法的,位置*近正极引出线的根部,所表示的意义如下表所示:颜色黑棕红橙黄绿蓝紫灰耐压 4V 6.3V 10V 16V 25V 32V 40V 50V 63V(4) 进口电容器的标志方法:进口电容器一般有6项组成.第一项:用字母表示类别:第二项:用两位数字表示其外形、结构、封装方式、引线开始及与轴的关系.第三项:温度补偿型电容器的温度特性,有用字母的,也有用颜色的,其意义如下表所示:序号字母颜色允许偏差字母颜色温度系数1 A 金 +100 R 黄 -2202 B 灰 +30 S 绿 -3303 C 黑 0 T 蓝 -4704 G ±30 U 紫 -7505 H 棕 -30 ±60 V -10006 J ±120 W -15007 K ±250 X -22008 L 红 -80 ±500 Y -33009 M ±1000 Z -470010 N ±2500 SL +350~-100011 P 橙 -150 YN -800~-5800备注:温度系数的单位10e -6/℃;允许偏差是 % .第四项:用数字和字母表示耐压,字母代表有效数值,数字代表被乘数的10的幂.第五项:标称容量,用三位数字表示,前两位为有效数值,第三为是10的幂.当有小数时,用R或P表示.普通电容器的单位是pF,电解电容器的单位是uF.第六项:允许偏差.用一个字母表示,意义和国产电容器的相同.也有用色标法的,意义和国产电容器的标志方法相同.3.电容的主要特性参数:(1) 容量与误差:实际电容量和标称电容量允许的最大偏差范围.一般分为3级:I级±5%,II级±10%,III级±20%.在有些情况下,还有0级,误差为±20%.精密电容器的允许误差较小,而电解电容器的误差较大,它们采用不同的误差等级.常用的电容器其精度等级和电阻器的表示方法相同.用字母表示:D——005级——±0.5%;F——01级——±1%;G——02级——±2%;J——I级——±5%;K——II 级——±10%;M——III级——±20%.(2) 额定工作电压:电容器在电路中能够长期稳定、可*工作,所承受的最大直流电压,又称耐压.对于结构、介质、容量相同的器件,耐压越高,体积越大.(3) 温度系数:在一定温度范围内,温度每变化1℃,电容量的相对变化值.温度系数越小越好.(4) 绝缘电阻:用来表明漏电大小的.一般小容量的电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆.电解电容的绝缘电阻一般较小.相对而言,绝缘电阻越大越好,漏电也小.(5) 损耗:在电场的作用下,电容器在单位时间内发热而消耗的能量.这些损耗主要来自介质损耗和金属损耗.通常用损耗角正切值来表示.(6) 频率特性:电容器的电参数随电场频率而变化的性质.在高频条件下工作的电容器,由于介电常数在高频时比低频时小,电容量也相应减小.损耗也随频率的升高而增加.另外,在高频工作时,电容器的分布参数,如极片电阻、引线和极片间的电阻、极片的自身电感、引线电感等,都会影响电容器的性能.所有这些,使得电容器的使用频率受到限制.不同品种的电容器,最高使用频率不同.小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ① 铝电解电容与钽电解电容铝电解电容的容体比较大,串联电阻较大,感抗较大,对温度敏感.它适用于温度变化不大、工作频率不高(不高于25kHz)的场合,可用于低频滤波.铝电解电容具有极性,安装时必须保证正确的极性,否则有爆炸的危险.与铝电解电容相比,钽电解电容在串联电阻、感抗、对温度的稳定性等方面都有明显的优势.但是,它的工作电压较低.② 纸介电容和聚酯薄膜电容其容体比较小,串联电阻小,感抗值较大.它适用于电容量不大、工作频率不高(如1MHz以下)的场合,可用于低频滤波和旁路.使用管型纸介电容器或聚酯薄膜电容器时,可把其外壳与参考地相连,以使其外壳能起到屏蔽的作用而减少电场耦合的影响.③ 云母和陶瓷电容其容体比很小,串联电阻小,电感值小,频率/容量特性稳定.它适用于电容量小、工作频率高(频率可达500MHz)的场合,用于高频滤波、旁路、去耦.但这类电容承受瞬态高压脉冲能力较弱,因此不能将它随便跨接在低阻电源线上,除非是特殊设计的.④ 聚苯乙烯电容器其串联电阻小,电感值小,电容量相对时间、温度、电压很稳定.它适用于要求频率稳定性高的场合,可用于高频滤波、旁路、去耦.电容降压应用一种常见LED驱动电路的分析--转伟纳电子采用电容降压电路是一种常见的小电流电源电路﹐由于其具有体积小﹑成本低﹑电流相对恒定等优点﹐也常应用于LED的驱动电路中。
RC降压原理
注意:只有交流电路中才能使用电容降压电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。
在实际应用时常常采用的是图2的所示的电路。
当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。
整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。
二、器件选择1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。
因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。
C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。
当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁。
2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。
3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。
三、设计举例图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。
C1在电路中的容抗Xc为:Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K流过电容器C1的充电电流(Ic)为:Ic = U / Xc = 220 / 9.65 = 22mA。
通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5I,其中C的容量单位是μF,Io的单位是A。
电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电。
220v 阻容降压 原理
220v 阻容降压原理阻容降压电路是常用于电子电路中的一种电源降压方式。
其原理是通过串联电阻和电容器的方式对输入电路进行限制,从而实现输出电压的降低。
在实际电路设计中,这种降压方式被广泛应用于各类电器、电子设备中。
该电路的特点是简单可靠、成本较低、能够输出稳定的直流电压。
下面将从阻容降压电路的原理、优缺点、设计和应用等多个方面进行详细说明。
一、阻容降压电路原理阻容降压电路的基本原理是以电容器作为滤波器,将交流电压滤波成直流电压。
通过串联电阻的方式对电路进行限制,将输入电压控制在一定范围之内,实现输出电压的降低。
具体地,电容器将交流电流滤波成稳定的直流电流,电阻通过限制电流的大小来控制输出电压的大小。
阻容电路示意图如下所示:R为串联电阻,C为电容器,Vin为输入电压,Vout为输出电压,I为电路中的电流。
二、阻容降压电路的优缺点阻容降压电路具有以下优点:1、简单可靠:阻容降压电路的原理和构造都比较简单,可以达到稳定输出电压的目标。
电阻和电容器本身都是常见的电子元器件,易于制造和获取。
该电路的可靠性也比较高。
2、成本较低:阻容降压电路成本较低,主要是因为电阻和电容器成本较低,且该电路的构造比较简单。
3、电压输出稳定:通过适当的选择电阻和电容,可以使阻容降压电路输出的电压保持稳定。
阻容降压电路的缺点包括:1、效率低:由于阻值比较大,因此在电路中会有一定的功率损耗,电路效率不高。
2、不能输出高电流:阻容降压电路的电路中电阻比较大,因此电路不能输出较大的电流,通常只能传输小电流。
三、阻容降压电路的设计在进行阻容降压电路的设计时,需要考虑输入电压和输出电压的大小、电阻和电容器的选择等多个因素。
下面对该电路的设计要点进行详细说明:1、选择电容器:选择合适的电容器是阻容降压电路设计中的一个重要步骤。
电容器的容量大小影响输出电压的稳定性,容量越大滤波效果越好。
但过大的电容会导致启动时间较长,且会增加成本。
应根据实际应用需求选择适当的电容器。
电容降压式电源原理
电容降压式电源原理
电容器是一种具有存储电荷能力的元件,用来储存电荷并在需要时释
放出来。
在电容降压式电源电路中,电容器起到了降低电压的作用。
具体
原理如下:
1.电容器的充电过程:当电容器两端有电压差时,电流会通过电路,
导致电容器开始充电。
在充电过程中,电压的增加速度与电流的变化成正比。
电容器两端的电压会随着时间的推移而逐渐增加,直到电容器充满电荷。
2.电容器的放电过程:当外部电路上的电压变化时,电容器会开始放电。
在放电过程中,电容器释放储存的电荷,导致电容器两端的电压下降。
电容器的放电速度与电流的变化成正比。
电容器两端的电压会随着时间的
推移而逐渐降低,直到电容器被完全放空。
3.电容器的充电和放电过程交替进行:在电容降压式电源电路中,电
容器会按照一定的频率进行充电和放电。
这个频率取决于电源的输入频率
和电容器的充电和放电速度。
通过控制充电和放电的周期和频率,可以实
现降低电压的效果。
总结来说,电容降压式电源利用了电容器的充电和放电特性,通过不
断的充电和放电过程,将电源输入的高电压降低到需要的低电压。
通过调
整电容器的容值和电路的设计,可以实现不同的降压效果和输出电压。
电
容降压式电源被广泛应用于各种电子设备和电路中,提供稳定的低电压供电。
电容降压电源原理和计算公式
電容降壓電源原理和計算公式這一類的電路通常用於低成本取得非隔離的小電流電源。
它的輸出電壓通常可在幾伏到三幾十伏,取決於所使用的齊納穩壓管。
所能提供的電流大小正比於限流電容容量。
採用半波整流時,每微法電容可得到電流(平均值)爲:(國際標準單位)I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C=0.44*220*2*3.14*50*C=30000C=30000*0.000001=0.03A=30mA如果採用全波整流可得到雙倍的電流(平均值)爲:I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C=0.89*220*2*3.14*50*C=60000C=60000*0.000001=0.06A=60mA一般地,此類電路全波整流雖電流稍大,但是因爲浮地,穩定性和安全性要比半波整流型更差,所以用的更少。
使用這種電路時,需要注意以下事項:1、未和220V交流高壓隔離,請注意安全,嚴防觸電!2、限流電容須接於火線,耐壓要足夠大(大於400V),並加串防浪湧衝擊兼保險電阻和並放電電阻。
3、注意齊納管功耗,嚴禁齊納管斷開運行。
電容降壓電路的特點及元器件選擇在電子製作時,爲了減小體積、降低成本,往往採用電容降壓的方法代替笨重的電源變壓器。
採用電容降壓方法如元器件選擇不當,不但達不到降壓要求,還有可能造成電路損壞。
本文從實際應用角度,介紹電容降壓元器件應如何進行正確選擇。
最簡單的電容降壓直流供電電路及其等效電路如圖1,C1爲降壓電容,一般爲0.33~3.3uF。
假設C1=2uF,其容抗XCL=1/(2PI*fC1)=1592。
由於整流管的導通電阻只有幾歐姆,穩壓管VS的動態電阻爲10歐姆左右,限流電阻R1及負載電阻RL一般爲100~200,而濾波電容一般爲100uF~1000uF,其容抗非常小,可以忽略。
若用R代表除C1以外所有元器件的等效電阻,可以畫出圖2的交流等效電路。
同時滿足了XC1>R的條件,所以可以畫出電壓向量圖。
关于220V电源降压电容应用说明
®
电晕图 氧化/电化学腐蚀图
自愈图
82
® FARATRONIC
法拉电子电容降压专用电容器 A.C. Capacitors for Capacitive Divider
---
box-type
金属化聚丙烯,环氧粉末封装
C49
(CBB62)
Metallized polypropylene, Powder-coated
---
250VAC: 0.10μF ~6.8μF 300VAC: 0.10μF ~6.8μF
230VAC: 0.033μF ~4.7μF 250VAC: 0.010μF ~4.0μF 275VAC: 0.10μF ~2.2μF
3.3 32.0 33.0 18.0 27.5 0.8 C23E2335-BE****+++
® FARATRONIC
降压电容应用说明
在电表、白色家电控制单元、感应设备以及系统控制单元中,常常用薄膜电容串联在电路中作为降 压使用,我们习惯称这种电容为降压电容。如下图所示:
在电源接入端,我们习惯用安规电容如 X2 作为抗干扰电容,和负载并联在电路中使用,我们习惯 称为 X2 电容。如下图膜电容器系列代码 C23
Digit 1 to 3
Series code of film capacitor C23
第 4~5 位 交流额定电压 E2=250V Q1=300V
Digit 4 to 5 AC rated voltage E2=250V Q1=300V
第 6~8 位 标称容量 举例:104=10×104pF=0.10μF
阻容降压电路
阻容降压电路一、阻容降压原理电容降压的工作原理并不复杂。
他的工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。
例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180欧姆。
当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。
虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。
根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。
例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。
因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。
同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。
因为5W/65V的灯泡的工作电流也约为70mA。
因此,电容降压实际上是利用容抗限流。
而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。
电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。
在实际应用时常常采用的是图2的所示的电路。
当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。
二、器件选择1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。
因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。
C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。
当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁。
阻容降压原理说明
阻容降压原理说明电容降压的电路通常用于低成本取得非隔离的小电流电源。
它的输出电压通常可在几伏到三几十伏,取决于所使用的稳压管。
所能提供的电流大小正比于限流电容容量。
电容降压的工作原理为利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。
例如,在50Hz 的工频条件下,一个1uF 的电容所产生的容抗约为3180 奥姆。
当220V 的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。
虽然流过电容的电流有70mA,但在电容器上并不产生功耗,应为如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。
根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性组件,则阻性组件两端所得到的电压和它所产生的功耗完全取决于这个阻性组件的特性。
因此,电容降压实际上是利用容抗限流。
而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。
电容降压计算公式采用半波整流时,每微法电容可得到电流(平均值)为:Zc 的单位是奥姆;交流电频率f 的单位是赫兹;电容器C 的单位是法拉。
I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C=0.44*220*2*3.14*50*C=30395C=30395*0.000001=0.03A=30mA采用全波整流可得到双倍的电流(平均值)为:I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C=0.89*220*2*3.14*50*C=61481C=61481*0.000001=0.061A=61mA采用电容降压时应注意以下几点:1 根据负载的电流大小和交流电的工作频率选取适当的电容,而不是依据负载的电压和功率。
2 限流电容必须采用无极性电容,绝对不能采用电解电容。
而且电源电压为110V 时电容的耐压须在275V 以上,电源电压为220V 时电容的耐压须在600V 以上。
3 限流电容须接于火线,电容降压不适合动态负载条件。
电容的电流电压关系与电容降压电源
电容的电流电压关系与电容降压电源集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-电容的电流电压关系与电容降压电源1.电容电压与电流的关系1.1:概述电容两端的电压不能突变,有一个充电的过程,而随着电容充电逐渐充到饱和,电容的容抗也会随之增加,容抗增加会导致通过电流两端的电流减小,所以电容中,电压滞后于电流,在纯电容电路中,电压滞后于电流90度。
1.2电容两端充放电的电流电压波形(在交流电中,直流电中也是类似滴)如上图所示,当电容的容值固定的前提下,在交流电路中,两端的电压如上图(a)所示,电流如上图(b)所示,1.3电容的容抗是能够通过的,但是将电容接入交流电路中时,电容器极板上所带电荷对定向移动的具有阻碍作用称为容抗,用字母Xc表示。
所以电容对交流电仍然有,当电容充电完成后,由于容抗的原因电容两端便不会有电流流过。
容抗Xc计算公式如下:Xc=1/(2πfc)f=交流信号的频率(一般情况下是50,因为中国的市电是50hz的)c=电容的容值2.电容降压电源概述1.1:上图电路概述上图所示,电容降压利用电容在一定的交流信号频率下产生的容抗(Xc)来限制最大工作电流,即通过限流后终端负载拉低了输出电压,电容器实际上起到一个限制电流和动态分配电容器与负载两端电压的角色。
这种电路相对于变压器降压和开关电源降压的方式成本要低廉得多。
可以说成本低廉是这种降压供电方式的唯一优点;它的缺点其实是很多的。
1.2:电路工作原理图中R1的作用是为了当电源断开的时候给电容C1一个放电回路,达到电压平衡,这个电阻的存在主要是出于安全考虑的。
AC220V经过电容C1降压后来到D1,D1的作用是将从电容中流过的交流电整流为脉动直流电。
Z1的作用是将交流电的正半周电压稳压位13V,Z1的作用不仅仅是稳压,在交流电的负半周的Z1的任务是为电容C1放电通路,因为要保证C1在整个交流电周期内都是工作的,否则电容C1充满电后就不会放电了,电容两端电流会非常小,起不到为后级负载供电的作用。
电容降压电源原理和计算公式
电容降压电源原理和计算公式在常用的低压电源中,用电容器降压(实际是电容限流)与用变压器相比,电容降压的电源体积小、经济、可靠、效率高,缺点是不如变压器变压的电源安全。
通过电容器把交流电引入负载中,对地有220V 电压,人易触电,但若用在不需人体接触的电路内部电路电源中,本弱点也可克服。
如冰箱电子温控器或遥控电源的开/关等电源都是用电容器降压而制作的。
相对于电阻降压,对于频率较低的50Hz交流电而言,在电容器上产生的热能损耗很小,所以电容器降压更优于电阻降压。
电容降压的工作原理并不复杂,其工作原理是利用电容在一定的交流信号频率下产生的容抗来限制最大工作电流。
例如,在50Hz的工频条件下,一个1uF的电容所产生的容抗约为3180Ω。
当220V的交流电压加在电容器的两端,则流过电容的最大电流约为70mA。
虽然流过电容的电流有70mA,但在电容器上并不产生功耗,如果电容是一个理想电容,则流过电容的电流为虚部电流,它所作的功为无功功率。
根据这个特点,我们如果在一个1uF的电容器上再串联一个阻性元件,则阻性元件两端所得到的电压和它所产生的功耗完全取决于这个阻性元件的特性。
例如,我们将一个110V/8W的灯泡与一个1uF的电容串联,在接到220V/50Hz的交流电压上,灯泡被点亮,发出正常的亮度而不会被烧毁。
因为110V/8W的灯泡所需的电流为8W/110V=72mA,它与1uF电容所产生的限流特性相吻合。
同理,我们也可以将5W/65V的灯泡与1uF电容串联接到220V/50Hz的交流电上,灯泡同样会被点亮,而不会被烧毁。
因为5W/65V的灯泡的工作电流也约为70mA。
因此,电容降压实际上是利用容抗限流。
而电容器实际上起到一个限制电流和动态分配电容器和负载两端电压的角色。
电容降压式简易电源的基本电路如图1,C1 为降压电容器,VD2 为半波整流二极管,VD1 在市电的负半周时给C1 提供放电回路,VD3 是稳压二极管,R1 为关断电源后 C1 的电荷泄放电阻。
电阻电容降压电路
将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源.采用电容降压时应注意以下几点:1 根据负载的电流大小和交流电的工作频率选取适当的电容,而不是依据负载的电压和功率.2 限流电容必须采用无极性电容,绝对不能采用电解电容.而且电容的耐压须在400V以上.最理想的电容为铁壳油浸电容.3 电容降压不能用于大功率条件,因为不安全.4 电容降压不适合动态负载条件.5 同样,电容降压不适合容性和感性负载.6 当需要直流工作时,尽量采用半波整流.不建议采用桥式整流.而且要满足恒定负载的条件.电路一,这一类的电路通常用于低成本取得非隔离的小电流电源。
它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管。
所能提供的电流大小正比于限流电容容量。
采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位)I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C=0.44*220*2*3.14*50*C=30000C=30000*0.000001=0.03A=30mA如果采用全波整流可得到双倍的电流(平均值)为:I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C=0.89*220*2*3.14*50*C=60000C=60000*0.000001=0.06A=60mA一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少。
使用这种电路时,需要注意以下事项:1、未和220V交流高压隔离,请注意安全,严防触电!2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻。
3、注意齐纳管功耗,严禁齐纳管断开运行。
电路二,最简单的电容降压直流供电电路及其等效电路如图1,C1为降压电容,一般为0. 33~3.3uF。
假设C1=2uF,其容抗XCL=1/(2PI*fC1)=1592。
电容降压电源原理和计算公式-5V直流稳压电源
电容降压电源原理和计算公式用电容降压的电路里,给电容并联的电阻起什么作用最佳答案刚接通电路时,电容是没有初始储能的,电容相当于短路,所以会对后面电路产生危害,所以并联电阻降压。
等电容储能完毕,电容上就分担了大部分电流,等于把电阻开路了。
在电源关闭后,电容可以通过电阻释放储存的能量。
我是这么理解的。
这一类的电路通常用于低成本取得非隔离的小电流电源.它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管.所能提供的电流大小正比于限流电容容量.采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位)I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C =0.44*220*2*3.14*50*C=30000C=30000*0.000001=0.03A=30mA如果采用全波整流可得到双倍的电流(平均值)为:I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C =0.89*220*2*3.14*50*C=60000C=60000*0.000001=0.06A=60mA一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少.使用这种电路时,需要注意以下事项:1、未和220V交流高压隔离,请注意安全,严防触电!2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻.3、注意齐纳管功耗,严禁齐纳管断开运行.C1取值大小应根据负载电流来选择,比如负载电路需要9V工作电压,负载平均电流为75毫安,由于Id=0.62C1,可以算得C1=1.2uF.考虑到稳压管DZ1的损耗,C1可以取1.5uF,此时电源实际提供的电流为Id=93毫安.稳压管的稳压值应等于负载电路的工作电压,其稳定电流的选择也非常重要.由于电容降压电源提供的的是恒定电流,近似为恒流源,因此一般不怕负载短路,但是当负载完全开路时,R2(串在整流电路后,做限流)及DZ1回路中将通过全部的93毫安电流,所以DZ1的最大稳定电流应该取100毫安为宜.由于RL与DZ1并联,在保证RL 取用75毫安工作电流的同时,尚有18毫安电流通过DZ1,所以其最小稳定电流不得大于18毫安,否则将失去稳压作用.电工原理:整流后的直流电流平均值Id,与交流电平均值I的关系为Id=V/XC1.C1以uF为单位,则Id为毫安单位问:谈到电容降压,我有点小问问题想请各位指教.我公司有多款产品都用到电容降压,但都没有用齐纳管也没有任何事发生,照常出货.前不久,我们生产一批产品,是黄色LED灯,却出现大量死灯,而且是一死灯就是整块板的灯全开路死灯,到现在也没有搞清楚是怎么回事(其它颜色的灯没有出现这样的情况).今天看到你们的贴子这么好,也想借此机会向各位请教.答:一是你的CBB选大了, 二是你CBB选的是对的,但是客户的输入电压肯定不是咱们的220 有可能高出几伏或者十几伏, 所以会开路死灯,发表我的看法.我认为,inherit先生的计算公式是错误的,连近似公式都不是.还有,画的电路也不完整.我认为,完整的电路应该是:1.输入端应串接浪涌限制电阻.2.稳压管上应并联滤波电容(如果没有电容的话,纹波大,稳压管也容易损坏).3.输出端应接入稳压器件,例如78系列的78X05之类.4.半波整流的情况下,整流二极管应挪到稳压管后面.我认为,平均电流的计算公式中不应有0.44,0.89,Pi.在有效值电流和视在功率的式子中可能出现0.44(半波),0.89(全波).sqrt(Pi)/4=0.44(近似),sqrt(Pi)/2=0.89(近似).很抱歉,因为有效值电流和视在功率的近似式子中出现sqrt(Pi)项,我用除4或除8的方法,主观硬凑出0.44和0.89的.前几年,我是建立数学模型,用解微分方程的方法得出了近似式子,费了不功夫,向公司递交了技术报告.当时看到公司的人用实验方法确定降压电容,很挠心.得出的近似式子如下:1.半波:I(AV)=2*sqrt(2)*f*c*Vrms(近似)I(rms)=2*sqrt(2)*f*c*Vrms*sqrt(Pi)(近似)视在功率=2*sqrt(2)*f*c*Vrms*Vrms*sqrt(Pi)(近似)2.全波:I(AV)=4*sqrt(2)*f*c*Vrms(近似)I(rms)=2*sqrt(2)*f*c*Vrms*sqrt(Pi)(近似)视在功率=2*sqrt(2)*f*c*Vrms*Vrms*sqrt(Pi)(近似)其实,若考虑稳压管的电压、整流二极管的压降、导通角,上面的式子非常复杂,我没法输入,只好在此省略了,很抱歉.这种电路有以下优点:1.电路简单、元件少2.噪声小3.可防磁场干扰这种电路有以下缺点:1.功率因数低,无功功率大.2.不适合于负载电流稍大的电源,不适合于宽输入电压、负荷电流变动很大的电源.因为降压电容是在最低输入电压、最低工作频率、最大负荷电流的条件下确定的.当输入电压和工作频率较高、负荷电流较小时,多余的电流会流向稳压管,导致稳压管发热.3.因为是非绝缘型电源,电路带电,电路的使用范围受到限制.不能有一端接了零线就安全的想法.设计时,1.根据输入电压的最小值、最低工作频率、最大负荷电流、电容的误差和温度变化率计算出降压电容容量.2.根据输入电压的最大值、降压电容的容量(应考虑误差和温度变化率)、并参照有关电气规定确定放电电阻的阻值.3.根据输入电压的最大值、最高工作频率、最小负荷电流、降压电容的容量(应考虑误差和温度变化率)、稳压管的最大容许功率和热阻抗(应考虑最高环境温度),确定稳压管的型号.从成本的角度看,我个人认为,这种电路不太适合于200V-240V电网,是适合于100V电网.因为输入电压很高时,要想采用可靠的降压电容,电容的成本太高.另,特别要注意稳压管的安全.其实,稳压管的稳压值和损失的关系曲线成抛物线.电容器使用说明1)名称:聚酯(涤纶)电容符号:(CL)电容量:40p--4uf额定电压:63--630V主要特点:小体积,大容量,耐热耐湿,稳定性差应用:对稳定性和损耗要求不高的低频电路2)名称:聚苯乙烯电容符号:(CB)电容量:10p--1uf额定电压:100V--30KV主要特点:稳定,低损耗,体积较大应用:对稳定性和损耗要求较高的电路3)名称:聚丙烯电容符号:(CBB)电容量:1000p--10uf额定电压:63--2000V主要特点:性能与聚苯相似但体积小,稳定性略差应用:代替大部分聚苯或云母电容,用于要求较高的电路4)名称:云母电容符号:(CY)电容量:10p--0.1uf额定电压:100V--7kV主要特点:高稳定性,高可*性,温度系数小应用:高频振荡,脉冲等要求较高的电路5)名称:高频瓷介电容符号:(CC)电容量:1--6800p额定电压:63--500V主要特点:高频损耗小,稳定性好应用:高频电路6)名称:低频瓷介电容符号:(CT)电容量:10p--4.7uf额定电压:50V--100V主要特点:体积小,价廉,损耗大,稳定性差应用:要求不高的低频电路7)名称:玻璃釉电容符号:(CI)电容量:10p--0.1uf额定电压:63--400V主要特点:稳定性较好,损耗小,耐高温(200度)应用:脉冲、耦合、旁路等电路8)名称:铝电解电容符号:(CD)电容量:0.47--10000uf额定电压:6.3--450V主要特点:体积小,容量大,损耗大,漏电大应用:电源滤波,低频耦合,去耦,旁路等9)名称:钽电解电容符号:(CA)铌电解电容(CN)电容量:0.1--1000uf额定电压:6.3--125V主要特点:损耗、漏电小于铝电解电容应用:在要求高的电路中代替铝电解电容10)名称:空气介质可变电容器符号:可变电容量:100--1500p主要特点:损耗小,效率高;可根据要求制成直线式、直线波长式、直线频率式及对数式等应用:电子仪器,广播电视设备等11)名称:薄膜介质可变电容器符号:可变电容量:15--550p主要特点:体积小,重量轻;损耗比空气介质的大应用:通讯,广播接收机等12)名称:薄膜介质微调电容器符号:可变电容量:1--29p主要特点:损耗较大,体积小应用:收录机,电子仪器等电路作电路补偿13)名称:陶瓷介质微调电容器可变电容量:0.3--22p主要特点:损耗较小,体积较小应用:精密调谐的高频振荡回路14)名称:独石电容电容量大、体积小、可*性高、电容量稳定,耐高温耐湿性好等.应用范围:广泛应用于电子精密仪器.各种小型电子设备作谐振、耦合、滤波、旁路.容量范围:0.5PF--1UF耐压:二倍额定电压.独石又叫多层瓷介电容,分两种类型,1型性能挺好,但容量小,一般小于0.2Uf,另一种叫II型,容量大,但性能一般.独石电容最大的缺点是温度系数很高,做振荡器的频漂让人受不了,我们做的一个555振荡器,电容刚好在7805旁边,开机后,用示波器看频率,眼看着就慢慢变化,后来换成涤纶电容就好多了.就温漂而言:独石为正温糸数+130左右,CBB为负温系数-230,用适当比例并联使用,可使温漂降到很小.就价格而言:钽,铌电容最贵,独石,CBB较便宜,瓷片最低,但有种高频零温漂黑点瓷片稍贵.云母电容Q值较高,也稍贵.15)安规电容是指用于这样的场合,即电容器失效后,不会导致电击,不危及人身安全.安规电容安全等级应用中允许的峰值脉冲电压过电压等级(IEC664)X1 >2.5kV ≤4.0kVⅢX2 ≤2.5kVⅡX3 ≤1.2kV——16)安规电容安全等级绝缘类型额定电压范围Y1 双重绝缘或加强绝缘≥ 250VY2 基本绝缘或附加绝缘≥150V ≤250VY3 基本绝缘或附加绝缘≥150V ≤250VY4 基本绝缘或附加绝缘 <150VY电容的电容量必须受到限制,从而达到控制在额定频率及额定电压作用下,流过它的漏电流的大小和对系统EMC性能影响的目的.GJB151规定Y电容的容量应不大于0.1uF.Y电容除符合相应的电网电压耐压外,还要求这种电容器在电气和机械性能方面有足够的安全余量,避免在极端恶劣环境条件下出现击穿短路现象,Y电容的耐压性能对保护人身安全具有重要意义安规电容的参数选择X电容,聚苯乙烯(薄膜乙烯)电容,从上面的贴子里也可以看到,聚苯乙烯的耐电压较高,适合EMI 电路的高压脉冲吸收作用.2.容量计算:一般两级X电容,前一级用0.47uF,第二基用0.1uF;单级则用0.47uF.目前还没有比较方便的计算方法.(电容容量的大小和电源的功率无直接关系)电解电容的设计,一点小经验:1.电解电容在滤波电路中根据具体情况取电压值为噪声峰值的1.2--1.5倍,并不根据滤波电路的额定值;2.电解电容的正下面不得有焊盘和过孔.3.电解电容不得和周边的发热元件直接接触.电路设计(4)铝电解电容分正负极,不得加反向电压和交流电压,对可能出现反向电压的地方应使用无极性电容.(5)对需要快速充放电的地方,不应使用铝电解电容器,应选择特别设计的具有较长寿命的电容器.(6)不应使用过载电压1.直流电压玉文博电压叠加后的缝制电压低于额定值.2.两个以上电解电容串联的时候要考虑使用平衡电阻器,使得各个电容上的电压在其额定的范围内.(9)设计电路板时,应注意电容齐防爆阀上端不得有任何线路,,并应留出2mm以上的空隙.(10)电解也主要化学溶剂及电解纸为易燃物,且电解液导电.当电解液与pc板接触时,可能腐蚀pc板上的线路.,以致生烟或着火.因此在电解电容下面不应有任何线路.(11)设计线路板向背应确认发热元器件不靠近铝电解电容电容的型号命名:1) 各国电容器的型号命名很不统一,国产电容器的命名由四部分组成:第一部分:用字母表示名称,电容器为C.第二部分:用字母表示材料.第三部分:用数字表示分类.第四部分:用数字表示序号.2) 电容的标志方法:(1) 直标法:用字母和数字把型号、规格直接标在外壳上.(2) 文字符号法:用数字、文字符号有规律的组合来表示容量.文字符号表示其电容量的单位:P、N、u、m、F 等.和电阻的表示方法相同.标称允许偏差也和电阻的表示方法相同.小于10pF的电容,其允许偏差用字母代替:B——±0.1pF,C——±0.2pF,D——±0.5pF,F——±1pF.(3) 色标法:和电阻的表示方法相同,单位一般为pF.小型电解电容器的耐压也有用色标法的,位置*近正极引出线的根部,所表示的意义如下表所示:颜色黑棕红橙黄绿蓝紫灰耐压 4V 6.3V 10V 16V 25V 32V 40V 50V 63V(4) 进口电容器的标志方法:进口电容器一般有6项组成.第一项:用字母表示类别:第二项:用两位数字表示其外形、结构、封装方式、引线开始及与轴的关系.第三项:温度补偿型电容器的温度特性,有用字母的,也有用颜色的,其意义如下表所示:序号字母颜色允许偏差字母颜色温度系数1 A 金 +100 R 黄 -2202 B 灰 +30 S 绿 -3303 C 黑 0 T 蓝 -4704 G ±30 U 紫 -7505 H 棕 -30 ±60 V -10006 J ±120 W -15007 K ±250 X -22008 L 红 -80 ±500 Y -33009 M ±1000 Z -470010 N ±2500 SL +350~-100011 P 橙 -150 YN -800~-5800备注:温度系数的单位10e -6/℃;允许偏差是 % .第四项:用数字和字母表示耐压,字母代表有效数值,数字代表被乘数的10的幂.第五项:标称容量,用三位数字表示,前两位为有效数值,第三为是10的幂.当有小数时,用R或P表示.普通电容器的单位是pF,电解电容器的单位是uF.第六项:允许偏差.用一个字母表示,意义和国产电容器的相同.也有用色标法的,意义和国产电容器的标志方法相同.3.电容的主要特性参数:(1) 容量与误差:实际电容量和标称电容量允许的最大偏差范围.一般分为3级:I级±5%,II级±10%,III级±20%.在有些情况下,还有0级,误差为±20%.精密电容器的允许误差较小,而电解电容器的误差较大,它们采用不同的误差等级.常用的电容器其精度等级和电阻器的表示方法相同.用字母表示:D——005级——±0.5%;F——01级——±1%;G——02级——±2%;J——I级——±5%;K——II 级——±10%;M——III级——±20%.(2) 额定工作电压:电容器在电路中能够长期稳定、可*工作,所承受的最大直流电压,又称耐压.对于结构、介质、容量相同的器件,耐压越高,体积越大.(3) 温度系数:在一定温度范围内,温度每变化1℃,电容量的相对变化值.温度系数越小越好.(4) 绝缘电阻:用来表明漏电大小的.一般小容量的电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆.电解电容的绝缘电阻一般较小.相对而言,绝缘电阻越大越好,漏电也小.(5) 损耗:在电场的作用下,电容器在单位时间内发热而消耗的能量.这些损耗主要来自介质损耗和金属损耗.通常用损耗角正切值来表示.(6) 频率特性:电容器的电参数随电场频率而变化的性质.在高频条件下工作的电容器,由于介电常数在高频时比低频时小,电容量也相应减小.损耗也随频率的升高而增加.另外,在高频工作时,电容器的分布参数,如极片电阻、引线和极片间的电阻、极片的自身电感、引线电感等,都会影响电容器的性能.所有这些,使得电容器的使用频率受到限制.不同品种的电容器,最高使用频率不同.小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ① 铝电解电容与钽电解电容铝电解电容的容体比较大,串联电阻较大,感抗较大,对温度敏感.它适用于温度变化不大、工作频率不高(不高于25kHz)的场合,可用于低频滤波.铝电解电容具有极性,安装时必须保证正确的极性,否则有爆炸的危险.与铝电解电容相比,钽电解电容在串联电阻、感抗、对温度的稳定性等方面都有明显的优势.但是,它的工作电压较低.② 纸介电容和聚酯薄膜电容其容体比较小,串联电阻小,感抗值较大.它适用于电容量不大、工作频率不高(如1MHz以下)的场合,可用于低频滤波和旁路.使用管型纸介电容器或聚酯薄膜电容器时,可把其外壳与参考地相连,以使其外壳能起到屏蔽的作用而减少电场耦合的影响.③ 云母和陶瓷电容其容体比很小,串联电阻小,电感值小,频率/容量特性稳定.它适用于电容量小、工作频率高(频率可达500MHz)的场合,用于高频滤波、旁路、去耦.但这类电容承受瞬态高压脉冲能力较弱,因此不能将它随便跨接在低阻电源线上,除非是特殊设计的.④ 聚苯乙烯电容器其串联电阻小,电感值小,电容量相对时间、温度、电压很稳定.它适用于要求频率稳定性高的场合,可用于高频滤波、旁路、去耦.电容降压应用一种常见LED驱动电路的分析--转伟纳电子采用电容降压电路是一种常见的小电流电源电路﹐由于其具有体积小﹑成本低﹑电流相对恒定等优点﹐也常应用于LED的驱动电路中。
电容降压电源原理和计算公式
电容降压电源原理和计算公式这一类的电路通常用于低成本取得非隔离的小电流电源.它的输出电压通常可在几伏到三几十伏,取决于所使用的齐纳稳压管.所能提供的电流大小正比于限流电容容量.采用半波整流时,每微法电容可得到电流(平均值)为:(国际标准单位)I(AV)=0.44*V/Zc=0.44*220*2*Pi*f*C=0.44*220*2*3.14*50*C=30000C=30000*0.000001=0.03A=30mA如果采用全波整流可得到双倍的电流(平均值)为:I(AV)=0.89*V/Zc=0.89*220*2*Pi*f*C=0.89*220*2*3.14*50*C=60000C=60000*0.000001=0.06A=60mA一般地,此类电路全波整流虽电流稍大,但是因为浮地,稳定性和安全性要比半波整流型更差,所以用的更少.使用这种电路时,需要注意以下事项:1、未和220V交流高压隔离,请注意安全,严防触电!2、限流电容须接于火线,耐压要足够大(大于400V),并加串防浪涌冲击兼保险电阻和并放电电阻.3、注意齐纳管功耗,严禁齐纳管断开运行.C1取值大小应根据负载电流来选择,比如负载电路需要9V工作电压,负载平均电流为75毫安,由于Id=0.62C1,可以算得C1=1.2uF.考虑到稳压管DZ1的损耗,C1可以取1.5uF,此时电源实际提供的电流为Id=93毫安.稳压管的稳压值应等于负载电路的工作电压,其稳定电流的选择也非常重要.由于电容降压电源提供的的是恒定电流,近似为恒流源,因此一般不怕负载短路,但是当负载完全开路时,R2(串在整流电路后,做限流)及DZ1回路中将通过全部的93毫安电流,所以DZ1的最大稳定电流应该取100毫安为宜.由于RL与DZ1并联,在保证RL取用75毫安工作电流的同时,尚有18毫安电流通过DZ1,所以其最小稳定电流不得大于18毫安,否则将失去稳压作用.电工原理:整流后的直流电流平均值Id,与交流电平均值I的关系为Id=V/XC1.C1以uF为单位,则Id为毫安单位问:谈到电容降压,我有点小问问题想请各位指教.我公司有多款产品都用到电容降压,但都没有用齐纳管也没有任何事发生,照常出货.前不久,我们生产一批产品,是黄色LED灯,却出现大量死灯,而且是一死灯就是整块板的灯全开路死灯,到现在也没有搞清楚是怎么回事(其它颜色的灯没有出现这样的情况).今天看到你们的贴子这么好,也想借此机会向各位请教.答:一是你的CBB选大了,二是你CBB选的是对的,但是客户的输入电压肯定不是咱们的220有可能高出几伏或者十几伏, 所以会开路死灯,发表我的看法.我认为,inherit先生的计算公式是错误的,连近视公式都不是.还有,画的电路也不完整.我认为,完整的电路应该是:1.输入端应串接浪涌限制电阻.2.稳压管上应并联滤波电容(如果没有电容的话,纹波大,稳压管也容易损坏).3.输出端应接入稳压器件,例如78系列的78X05之类.4.半波整流的情况下,整流二极管应挪到稳压管后面.我认为,平均电流的计算公式中不应有0.44,0.89,Pi.在有效值电流和视在功率的式子中可能出现0.44(半波),0.89(全波).sqrt(Pi)/4=0.44(近似),sqrt(Pi)/2=0.89(近似).很抱歉,因为有效值电流和视在功率的近似式子中出现sqrt(Pi)项,我用除4或除8的方法,主观硬凑出0.44和0.89的.前几年,我是建立数学模型,用解微分方程的方法得出了近似式子,费了不功夫,向公司递交了技术报告.当时看到公司的人用实验方法确定降压电容,很挠心.得出的近似式子如下: 1.半波:I(AV)=2*sqrt(2)*f*c*Vrms(近似)I(rms)=2*sqrt(2)*f*c*Vrms*sqrt(Pi)(近似)视在功率=2*sqrt(2)*f*c*Vrms*Vrms*sqrt(Pi)(近似)2.全波:I(AV)=4*sqrt(2)*f*c*Vrms(近似)I(rms)=2*sqrt(2)*f*c*Vrms*sqrt(Pi)(近似)视在功率=2*sqrt(2)*f*c*Vrms*Vrms*sqrt(Pi)(近似)其实,若考虑稳压管的电压、整流二极管的压降、导通角,上面的式子非常复杂,我没法输入,只好在此省略了,很抱歉.这种电路有以下优点:1.电路简单、元件少2.噪声小3.可防磁场干扰这种电路有以下缺点:1.功率因数低,无功功率大.2.不适合于负载电流稍大的电源,不适合于宽输入电压、负荷电流变动很大的电源.因为降压电容是在最低输入电压、最低工作频率、最大负荷电流的条件下确定的.当输入电压和工作频率较高、负荷电流较小时,多余的电流会流向稳压管,导致稳压管发热.3.因为是非绝缘型电源,电路带电,电路的使用范围受到限制.不能有一端接了零线就安全的想法.设计时,1.根据输入电压的最小值、最低工作频率、最大负荷电流、电容的误差和温度变化率计算出降压电容容量.2.根据输入电压的最大值、降压电容的容量(应考虑误差和温度变化率)、并参照有关电气规定确定放电电阻的阻值.3.根据输入电压的最大值、最高工作频率、最小负荷电流、降压电容的容量(应考虑误差和温度变化率)、稳压管的最大容许功率和热阻抗(应考虑最高环境温度),确定稳压管的型号.从成本的角度看,我个人认为,这种电路不太适合于200V-240V电网,是适合于100V电网.因为输入电压很高时,要想采用可靠的降压电容,电容的成本太高.另,特别要注意稳压管的安全.其实,稳压管的稳压值和损失的关系曲线成抛物线.电容器使用说明1)名称:聚酯(涤纶)电容符号:(CL)电容量:40p--4uf额定电压:63--630V主要特点:小体积,大容量,耐热耐湿,稳定性差应用:对稳定性和损耗要求不高的低频电路2)名称:聚苯乙烯电容符号:(CB)电容量:10p--1uf额定电压:100V--30KV主要特点:稳定,低损耗,体积较大应用:对稳定性和损耗要求较高的电路3)名称:聚丙烯电容符号:(CBB)电容量:1000p--10uf额定电压:63--2000V主要特点:性能与聚苯相似但体积小,稳定性略差应用:代替大部分聚苯或云母电容,用于要求较高的电路4)名称:云母电容符号:(CY)电容量:10p--0.1uf额定电压:100V--7kV主要特点:高稳定性,高可*性,温度系数小应用:高频振荡,脉冲等要求较高的电路5)名称:高频瓷介电容符号:(CC)电容量:1--6800p额定电压:63--500V主要特点:高频损耗小,稳定性好应用:高频电路6)名称:低频瓷介电容符号:(CT)电容量:10p--4.7uf额定电压:50V--100V主要特点:体积小,价廉,损耗大,稳定性差应用:要求不高的低频电路7)名称:玻璃釉电容符号:(CI)电容量:10p--0.1uf额定电压:63--400V主要特点:稳定性较好,损耗小,耐高温(200度)应用:脉冲、耦合、旁路等电路8)名称:铝电解电容符号:(CD)电容量:0.47--10000uf额定电压:6.3--450V主要特点:体积小,容量大,损耗大,漏电大应用:电源滤波,低频耦合,去耦,旁路等9)名称:钽电解电容符号:(CA)铌电解电容(CN)电容量:0.1--1000uf额定电压:6.3--125V主要特点:损耗、漏电小于铝电解电容应用:在要求高的电路中代替铝电解电容10)名称:空气介质可变电容器符号:可变电容量:100--1500p主要特点:损耗小,效率高;可根据要求制成直线式、直线波长式、直线频率式及对数式等应用:电子仪器,广播电视设备等11)名称:薄膜介质可变电容器符号:可变电容量:15--550p主要特点:体积小,重量轻;损耗比空气介质的大应用:通讯,广播接收机等12)名称:薄膜介质微调电容器符号:可变电容量:1--29p主要特点:损耗较大,体积小应用:收录机,电子仪器等电路作电路补偿13)名称:陶瓷介质微调电容器可变电容量:0.3--22p主要特点:损耗较小,体积较小应用:精密调谐的高频振荡回路14)名称:独石电容电容量大、体积小、可*性高、电容量稳定,耐高温耐湿性好等.应用范围:广泛应用于电子精密仪器.各种小型电子设备作谐振、耦合、滤波、旁路.容量范围:0.5PF--1UF耐压:二倍额定电压.独石又叫多层瓷介电容,分两种类型,1型性能挺好,但容量小,一般小于0.2Uf,另一种叫II型,容量大,但性能一般.独石电容最大的缺点是温度系数很高,做振荡器的频漂让人受不了,我们做的一个555振荡器,电容刚好在7805旁边,开机后,用示波器看频率,眼看着就慢慢变化,后来换成涤纶电容就好多了.就温漂而言:独石为正温糸数+130左右,CBB为负温系数-230,用适当比例并联使用,可使温漂降到很小.就价格而言:钽,铌电容最贵,独石,CBB较便宜,瓷片最低,但有种高频零温漂黑点瓷片稍贵.云母电容Q值较高,也稍贵.15)安规电容是指用于这样的场合,即电容器失效后,不会导致电击,不危及人身安全.安规电容安全等级应用中允许的峰值脉冲电压过电压等级(IEC664)X1 >2.5kV≤4.0kVⅢX2 ≤2.5kVⅡX3 ≤1.2kV——16)安规电容安全等级绝缘类型额定电压范围Y1 双重绝缘或加强绝缘≥ 250VY2 基本绝缘或附加绝缘≥150V ≤250VY3 基本绝缘或附加绝缘≥150V ≤250VY4 基本绝缘或附加绝缘<150VY电容的电容量必须受到限制,从而达到控制在额定频率及额定电压作用下,流过它的漏电流的大小和对系统EMC性能影响的目的.GJB151规定Y 电容的容量应不大于0.1uF.Y电容除符合相应的电网电压耐压外,还要求这种电容器在电气和机械性能方面有足够的安全余量,避免在极端恶劣环境条件下出现击穿短路现象,Y电容的耐压性能对保护人身安全具有重要意义安规电容的参数选择X电容,聚苯乙烯(薄膜乙烯)电容,从上面的贴子里也可以看到,聚苯乙烯的耐电压较高,适合EMI 电路的高压脉冲吸收作用.2.容量计算:一般两级X电容,前一级用0.47uF,第二基用0.1uF;单级则用0.47uF.目前还没有比较方便的计算方法.(电容容量的大小和电源的功率无直接关系)电解电容的设计,一点小经验:1.电解电容在滤波电路中根据具体情况取电压值为噪声峰值的1.2--1.5倍,并不根据滤波电路的额定值;2.电解电容的正下面不得有焊盘和过孔.3.电解电容不得和周边的发热元件直接接触.电路设计(4)铝电解电容分正负极,不得加反向电压和交流电压,对可能出现反向电压的地方应使用无极性电容.(5)对需要快速充放电的地方,不应使用铝电解电容器,应选择特别设计的具有较长寿命的电容器.(6)不应使用过载电压1.直流电压玉文博电压叠加后的缝制电压低于额定值.2.两个以上电解电容串联的时候要考虑使用平衡电阻器,使得各个电容上的电压在其额定的范围内.(9)设计电路板时,应注意电容齐防爆阀上端不得有任何线路,,并应留出2mm以上的空隙.(10)电解也主要化学溶剂及电解纸为易燃物,且电解液导电.当电解液与pc板接触时,可能腐蚀pc板上的线路.,以致生烟或着火.因此在电解电容下面不应有任何线路.(11)设计线路板向背应确认发热元器件不靠近铝电解电容电容的型号命名:1) 各国电容器的型号命名很不统一,国产电容器的命名由四部分组成:第一部分:用字母表示名称,电容器为C.第二部分:用字母表示材料.第三部分:用数字表示分类.第四部分:用数字表示序号.2) 电容的标志方法:(1) 直标法:用字母和数字把型号、规格直接标在外壳上.(2) 文字符号法:用数字、文字符号有规律的组合来表示容量.文字符号表示其电容量的单位:P、N、u、m、F等.和电阻的表示方法相同.标称允许偏差也和电阻的表示方法相同.小于10pF的电容,其允许偏差用字母代替:B——±0.1pF,C——±0.2pF,D——±0.5pF,F——±1pF.(3) 色标法:和电阻的表示方法相同,单位一般为pF.小型电解电容器的耐压也有用色标法的,位置*近正极引出线的根部,所表示的意义如下表所示: 颜色黑棕红橙黄绿蓝紫灰耐压 4V 6.3V 10V 16V 25V 32V 40V 50V 63V(4) 进口电容器的标志方法:进口电容器一般有6项组成.第一项:用字母表示类别:第二项:用两位数字表示其外形、结构、封装方式、引线开始及与轴的关系.第三项:温度补偿型电容器的温度特性,有用字母的,也有用颜色的,其意义如下表所示:序号字母颜色允许偏差字母颜色温度系数1 A 金 +100 R 黄 -2202 B 灰 +30 S 绿 -3303 C 黑 0 T 蓝 -4704 G ±30U 紫 -7505 H 棕 -30 ±60V -10006 J ±120 W -15007 K ±250 X -22008 L 红 -80 ±500 Y -33009 M ±1000Z -470010 N ±2500SL +350~-10 0011 P 橙 -150 YN -800~-58 00备注:温度系数的单位10e -6/℃;允许偏差是 % .第四项:用数字和字母表示耐压,字母代表有效数值,数字代表被乘数的10的幂.第五项:标称容量,用三位数字表示,前两位为有效数值,第三为是10的幂.当有小数时,用R或P表示.普通电容器的单位是pF,电解电容器的单位是uF.第六项:允许偏差.用一个字母表示,意义和国产电容器的相同.也有用色标法的,意义和国产电容器的标志方法相同.3.电容的主要特性参数:(1) 容量与误差:实际电容量和标称电容量允许的最大偏差范围.一般分为3级:I级±5%,II级±10%,III级±20%.在有些情况下,还有0级,误差为±20%.精密电容器的允许误差较小,而电解电容器的误差较大,它们采用不同的误差等级.常用的电容器其精度等级和电阻器的表示方法相同.用字母表示:D——005级——±0.5%;F——01级——±1%;G——02级——±2%;J——I级——±5%;K——II级——±10%;M——III级——±20%.(2) 额定工作电压:电容器在电路中能够长期稳定、可*工作,所承受的最大直流电压,又称耐压.对于结构、介质、容量相同的器件,耐压越高,体积越大.(3) 温度系数:在一定温度范围内,温度每变化1℃,电容量的相对变化值.温度系数越小越好.(4) 绝缘电阻:用来表明漏电大小的.一般小容量的电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆.电解电容的绝缘电阻一般较小.相对而言,绝缘电阻越大越好,漏电也小.(5) 损耗:在电场的作用下,电容器在单位时间内发热而消耗的能量.这些损耗主要来自介质损耗和金属损耗.通常用损耗角正切值来表示.(6) 频率特性:电容器的电参数随电场频率而变化的性质.在高频条件下工作的电容器,由于介电常数在高频时比低频时小,电容量也相应减小.损耗也随频率的升高而增加.另外,在高频工作时,电容器的分布参数,如极片电阻、引线和极片间的电阻、极片的自身电感、引线电感等,都会影响电容器的性能.所有这些,使得电容器的使用频率受到限制.不同品种的电容器,最高使用频率不同.小型云母电容器在250MHZ 以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ① 铝电解电容与钽电解电容铝电解电容的容体比较大,串联电阻较大,感抗较大,对温度敏感.它适用于温度变化不大、工作频率不高(不高于25kHz)的场合,可用于低频滤波.铝电解电容具有极性,安装时必须保证正确的极性,否则有爆炸的危险.与铝电解电容相比,钽电解电容在串联电阻、感抗、对温度的稳定性等方面都有明显的优势.但是,它的工作电压较低.② 纸介电容和聚酯薄膜电容其容体比较小,串联电阻小,感抗值较大.它适用于电容量不大、工作频率不高(如1MHz以下)的场合,可用于低频滤波和旁路.使用管型纸介电容器或聚酯薄膜电容器时,可把其外壳与参考地相连,以使其外壳能起到屏蔽的作用而减少电场耦合的影响.③ 云母和陶瓷电容其容体比很小,串联电阻小,电感值小,频率/容量特性稳定.它适用于电容量小、工作频率高(频率可达500MHz)的场合,用于高频滤波、旁路、去耦.但这类电容承受瞬态高压脉冲能力较弱,因此不能将它随便跨接在低阻电源线上,除非是特殊设计的.④ 聚苯乙烯电容器其串联电阻小,电感值小,电容量相对时间、温度、电压很稳定.它适用于要求频率稳定性高的场合,可用于高频滤波、旁路、去耦.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电容降压电源的特点
一、概述
电子工程师总是在不断追求减小设备体积,优化设计,以期最大限度地降低设备成本。
其中,减小作为辅助电源的直流稳压电源电路部分的体积,往往是最难解决的问题之一。
普通的线性直流稳压电源电路效率比较低,电源的变压器体积大,重量重,成本较高。
开关电源电路结构较复杂,成本高,电源纹波大,RFI和EMI干扰是难以解决的。
下文介绍的是一种新颖的电容降压型直流稳压电源电路。
这种电路无电源变压器,结构非常简单,具体有:体积小、重量轻、成本低廉、动态响应快、稳定可靠、高效(可达90%以上)等特点。
二、电容降压原理
当一个正弦交流电源U(如220V AC 50HZ)施加在电容电路上时,电容器两极板上的电荷,极板间的电场都是时间的函数。
也就是说:电容器上电压电流的有效值和幅值同样遵循欧姆定律。
即加在电容上的电压幅值一定,频率一定时,就会流过一个稳定的正弦交流电流ic。
容抗越小(电容值越大),流过电容器的电流越大,在电容器上串联一个合适的负载,就能得到一个降低的电压源,可经过整流,滤波,稳压输出。
电容在电路中只是吞吐能量,而不消耗能量,所以电容降压型电路的效率很高。
三、原理方框图
电路由降压电容,限流,整流滤波和稳压分流等电路组成。
1.降压电容:相当于普通稳压电路中的降压变压器,直接接入交流电源回路中,几乎承受全部的交流电源U,应选用无极性的金属膜电容(METALLIZED POLYESTER FILM CAPACITOR)。
2.限流电路:在合上电源的瞬间,有可能是U的正或负半周的峰_峰值,此时瞬间电流会很大,因此在回路中需串联一个限流电阻,以保证电路的安全。
3.整流滤波:有半波整流和全波整流,与普通的直流稳压电源电路的设计要求相同。
4.稳压分流:电压降压回路中,电流有效值I是稳定的,不受负载电流大小变化的影响,因此在稳压电路中,要有分流回路,以响应负载电流的大小变化。
四、设计势实例
1.桥式全波整流稳压电路:
规格要求:输出DC电压12V,DC电流 300mA;输入电源220V AC/50HZ 市电。
1)降压电容C1的选择:
a. C1容值的选择:
电容值取决于负载电流,负载电流I确定后,可得: C1≥1/2лfU
式中交流电源U值计算时取负10%,即:I=300mA,U=220V*(-10%)=198V,f=50HZ,
C1≥0.3(2*3.14156*50*198)=4.82uF)
电容值只可取大,不可取小,本例电容C1取值5uF。
b. 耐压值的选择:
要考虑电源正10%的情况,如本例用市电,C1要选择250V AC的金属膜电容。
c. 耐瞬间冲击电流的选择:
金属膜电容的内阻是很低的,允许电容在吞吐能量时,有大的电流流过,这个电流的大小取决于电容值和它的du/dt值,此值由电容的结构,金属膜的类型,引出线的方式决定的。
du/dt值与电容的耐压值有关,耐压越高,du/dt值越大,不同厂家产品du/dt 值也有很大的差别,如耐压为250VAC电容值为5uF的金属膜电容的du/dt值一般在3-30之间选择。
在本例中:C1=5uF,du/dt值取3,则C1耐瞬间冲击电流值为:
I=Cdu/dt=5*3=15(A)
2)限流电阻R1的选择:
先求C1的容抗:Xc=1/2лfC=1/(2*3.1416*50*0.000005)=636.36Ω
则复阻抗:|Z|=638.3Ω(R1取值为 47Ω)
求得电流有效值为:I=U/|Z|=220 /638.3344.7mA
电阻实际承受的有效电压值:UR=344.7mA*47Ω=16.2V
求出电阻实际承受的功率:PR=16.2V*344.7mA=5.58W(R1选用线绕电阻器,功率取7.5W)
3)稳压分流电路:
稳压管ZD1和T1管E-B结,R3组成稳压电路,T1,R2组成分流电路。
ZD1选用11.3V的稳压管;R3阻值取180Ω1/6W;T1管响应负载电流的大小变化,负载电流可在0-300mA内变化,T1选用2W的 PNP管,电流放大倍数≥200;R2用作负载电流较小时,分担一部分T1管的功率,R2取值30Ω/3W。
2. 半波整流稳压电路:
规格要求:输出一组24V DC电压(如提供继电器工作用),一组DC电压
5V(如供微控制器工作或双向可控硅触发电流用),输出DC电流60mA;输入电源220V/50HZ。
1)降压电容C1的选择:
a.流过电容C1的电流约是负载电流的两倍,即 120mA,得出:
C1≥1/2лfU=0.12(2*3.14156*50*198)=1.93(uF)
C1的实际取值2uF。
b.选择耐压值为250V AC的金属膜电容。
c.瞬间冲击电流值为:I=Cdu/dt=2*3=6(A)
2)限流电阻R1的选择:
电路的复阻抗:
Xc=1/(2*3.14156*50*0.000002)=1.464KΩ
|Z|=1.467 KΩ(R1取值100Ω)
求得电流有效值:I=U/|Z|=220 /1.467=150mA
再求出电阻承受的有效电压值为:UR=150mA×100 =15V
求出电阻实际承受的功率:PR=15V×150mA=2.25W (R1的功率取3W)3)半波整流电路:
D1作半波整流用,C2、C3为滤波电容,交流电源U上半周时,经C1、R1降压,由D1整流后给电容C2平滑滤波输出
D2的作用:交流电源U下半周时,降压电容C1 经由D2放电。
4)稳压分流:
ZD1、ZD2、R3组成DC 24V稳压即分流电路,T1、ZD3和R4组成DC 5V 稳压电路。
点击查看:电容降压全波整流稳压电源电路
使用注意事项:
1.这种电路输出DC电压与输入AC电源之间是不隔离的,因此,它用在不需隔离的电子设备中,如在一些控制、检测、分析电子装置中,在家用电器等电子设备中,特别是在小家电领域具有广泛的实用价值;正因为没有隔离,所以应用在需要隔离的电子设备中不合适。
2、金属膜电容的容量还不能做得很大,因此,这种电路通常用在小功率直流稳压电源的电子设备中。
1、电路结构非常简单,具有体积小、重量轻,有利于实现电子设备的小型化;
2、省去了电源变压器,对元器件的要求也不高,成本非常低,有力于降低电子设备的成本;
3、电容降压电路是一个电流源,只需改变基准电压元件,就可得到很宽范围内的任一DC电压源;。