知识讲解-导数的计算-基础(1)
1[1]2导数的计算(1)
![1[1]2导数的计算(1)](https://img.taocdn.com/s3/m/6084a19877232f60dccca1b3.png)
x 0
x
lim 3( x x) 3x lim 3 3 O
x 0
x
x 0
3. 求函数y 4x的导数:
y
解:同理可得:y ' 4
4.求函数y kx(k 0)增(减)
的快慢与什么有关?与 | k | 有关. O
y 2x
x
y 3x
x
y 4x
x
例3:求函数y f ( x) x2的导数。
f ( x) A( x)
二、应用举例
例1:求函数y f ( x) c(c为常数)的导数 y
解:y ' lim f ( x x) f ( x)
x 0
x
cc
lim
lim 0 0
O
x x0
x0
yc
x
公式1:(C) 0 (C是常数)
从物理的角度理解:
若y c表示路程关于时间的函数,则: y ' 0表示物体在任意时刻的瞬时速度始终为0, 即物体一直处于静止状态。
当x 0时,随着x的增加,y x2增加得越来越快
从物理的角度理解:
若y x2表示路程关于时间的函数,则: y ' 2x表示物体做变速运动,在时刻x的瞬时速度为2x
课堂练习
求函数y f ( x) x3的导数。
解:y ' f '( x) lim f ( x x) f ( x)
x0
x
பைடு நூலகம்
x0
x( x x x )
lim
1
x0 x x x
1 2x
学生活动:请同学们归纳各题的导数
(1)y f (x) x1
y ' 1 1x11
(2)y f (x) x2
高考数学复习考点知识讲解课件15 导数的概念及运算

=
y′u·u′x
,即 y 对 x 的导数等于 y 对 u 的导数与 u 对 x 的导数的乘积.
— 7—
(新教材) 高三总复习•数学
— 返回 —
常用结论 1.f′(x0)代表函数 f(x)在 x=x0 处的导数值;[f(x0)]′是函数值 f(x0)的导数,则[f(x0)]′ =0. 2.在点处的切线,该点一定是切点,切线有且仅有一条;过点处的切线,该点不一 定是切点,切线至少有一条. 3.函数 y=f(x)的导数 f′(x)反映了函数 f(x)的瞬时变化趋势,其正负号反映了变化的 方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.
— 22 —
(新教材) 高三总复习•数学
— 返回 —
(1)求曲线在点 P(x0,y0)处的切线,则表明 P 点是切点,只需求出函数在 P 处的导数, 然后利用点斜式写出切线方程,若在该点 P 处的导数不存在,则切线垂直于 x 轴,切线方 程为 x=x0.
(2)求曲线的切线方程要分清“在点处”与“过点处”的切线方程的不同.过点处的 切点坐标不知道,要设出切点坐标,根据斜率相等建立方程(组)求解,求出切点坐标是解 题的关键.
— 13 —
(新教材) 高三总复习•数学
— 返回 —
6.(2022·江苏常州期末)已知定义域都是 R 的两个不同的函数 f(x),g(x)满足 f′(x)=
g(x),且 g′(x)=f(x).写出一个符合条件的函数 f(x)的解析式,则 f(x)= ______ex_+__e_-_x_(答__案__不__唯__一__)_________.
(-3Δt-6)=-6.
— 10 —
(新教材) 高三总复习•数学
导数的概念教案及说明

导数的概念教案及说明教学目标:1. 理解导数的定义和意义;2. 掌握导数的计算方法;3. 能够应用导数解决实际问题。
教学内容:第一章:导数的定义1.1 引入导数的概念1.2 导数的定义及其几何意义1.3 导数的计算法则第二章:导数的计算2.1 基本导数公式2.2 导数的四则运算2.3 高阶导数第三章:导数的应用3.1 函数的单调性3.2 函数的极值3.3 曲线的切线与法线第四章:导数与实际问题4.1 运动物体的瞬时速度与加速度4.2 函数的优化问题4.3 导数在经济学中的应用第五章:导数的进一步应用5.1 曲线的凹凸性与拐点5.2 函数的单调区间与最大值、最小值5.3 函数的渐近线教学步骤:1. 引入导数的概念:通过生活中的例子,如物体运动的瞬时速度,引出导数的定义。
2. 讲解导数的定义及其几何意义:解释导数的定义,并通过图形演示导数的几何意义。
3. 导数的计算法则:讲解基本导数公式,引导学生掌握导数的计算方法。
4. 导数的应用:通过实例讲解函数的单调性、极值等概念,并引导学生运用导数解决实际问题。
5. 总结与拓展:总结本章内容,提出进一步的学习要求和思考题。
教学评价:1. 课堂讲解:评价教师的讲解是否清晰、生动,能否引导学生理解和掌握导数的概念和计算方法。
2. 课堂练习:评价学生是否能够正确计算导数,并应用导数解决实际问题。
3. 课后作业:评价学生是否能够独立完成作业,并对导数的应用有深入的理解。
教学资源:1. 教案、PPT等教学资料;2. 数学软件或计算器;3. 实际问题案例。
教学建议:1. 注重引导学生从实际问题中抽象出导数的概念,提高学生的学习兴趣和积极性;2. 通过图形演示导数的几何意义,帮助学生直观理解导数的概念;3. 鼓励学生进行课堂练习和课后作业,及时巩固所学知识;4. 结合实际问题,引导学生运用导数解决实际问题,提高学生的应用能力。
第六章:导数与函数的单调性6.1 单调增函数与单调减函数6.2 利用导数判断函数的单调性6.3 单调性在实际问题中的应用第七章:函数的极值与导数7.1 极值的概念7.2 利用导数求函数的极值7.3 极值在实际问题中的应用第八章:曲线的切线与法线8.1 切线方程的求法8.2 法线方程的求法8.3 切线与法线在实际问题中的应用第九章:导数与函数的图像9.1 凹凸性的定义与判断9.2 拐点的定义与判断9.3 利用导数分析函数的图像特点第十章:导数在经济、物理等领域的应用10.1 导数在经济学中的应用10.2 导数在物理学中的应用10.3 导数在其他领域的应用案例分析教学步骤:6.1-6.3:通过具体例子讲解单调增函数与单调减函数的概念,引导学生利用导数判断函数的单调性,并应用于实际问题。
二轮复习之导数的运算法则及基本公式应用(基础篇)

教学过程一、高考解读导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导二、复习预习基本初等函数的导数公式表(学生填写)三、知识讲解考点1 1深刻理解导数的概念,了解用定义求简单的导数 x y ∆∆表示函数的平均改变量,它是Δx 的函数,而f ′(x 0)表示一个数值,即f ′(x )=x y x ∆∆→∆lim 0,知道导数的等价形式 )()()(lim )()(lim 0000000x f x x x f x f x x f x x f x x x '=--=∆-∆+→∆→∆ 2求导其本质是求极限,在求极限的过程中,力求使所求极限的结构形式转化为已知极限的形式,即导数的定义,这是顺利求导的关键考点21对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误2复合函数求导法则,像链条一样,必须一环一环套下去,而不能丢掉其中的一环必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合而成的,分清其间的复合关系四、例题精析例题1 已知1=,用导数的定义求y'。
yx【规范解答】11()x y x x x x x x ∆∆=-=-+∆+∆,)(1x x x x y ∆+-=∆∆,所以201lim x y y x x ∆→∆'==-∆。
【总结与思考】 利用导数的定义求函数()y f x =的导数的一般方法是:(1)求函数的改变量()()f f x x f x ∆=+∆-;(2)求平均变化率()()f f x x f x xx∆+∆-=∆∆; (3)取极限,得导数y '=0lim x f x ∆→∆∆。
例题2求函数的导数 )1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx x y ω【规范解答】22222(1)(1)cos (1)[(1)cos ](1):(1)cos x x x x x x y x x''-+--+'=+-解 2222222222222222(1)cos (1)[(1)cos (1)(cos )](1)cos (1)cos (1)[2cos (1)sin ](1)cos (21)cos (1)(1)sin (1)cos x x x x x x x x xx x x x x x x x xx x x x x x x x''-+--+++=+-+---+=+--+-+=+(2)解y =μ3,μ=ax -b sin 2ωx ,μ=av -by v =x ,y =sin γγ=ωxy ′=(μ3)′=3μ2·μ′=3μ2(av -by )′=3μ2(av ′-by ′)=3μ2(av ′-by ′γ′)=3(ax -b sin 2ωx )2(a -b ωsin2ωx )(3)解法一设y =f (μ),μ=v ,v =x 2+1,则y ′x =y ′μμ′v ·v ′x =f ′(μ)·21v -21·2x =f ′(12+x )·21112+x ·2x =),1(122+'+x f x x解法二y ′=[f (12+x )]′=f ′(12+x )·(12+x )′=f ′(12+x )·21(x 2+1)21-·(x 2+1)′ =f ′(12+x )·21(x 2+1)21-·2x =12+x x f ′(12+x ) 【总结与思考】本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法这是导数中比较典型的求导类型解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数例题3已知函数()f x=32+++的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0,求x bx cx d函数()=的解析式。
三角函数的导数与导函数计算

三角函数的导数与导函数计算三角函数是高等数学中的重要概念,对于学习微积分的同学来说,掌握三角函数的导数和导函数计算是至关重要的。
本文将详细介绍三角函数的导数和导函数计算的方法,帮助读者更好地理解和掌握这一知识。
1. 正弦函数的导数和导函数计算正弦函数是三角函数中最为基础和常见的一种函数,它的导数和导函数计算如下:(1)导数计算:设函数y = sin(x),则其导数为:dy/dx = cos(x)(2)导函数计算:将dy/dx = cos(x)表示为函数形式,则有:f'(x) = cos(x)2. 余弦函数的导数和导函数计算余弦函数是三角函数中的另一种常见函数,它的导数和导函数计算如下:(1)导数计算:设函数y = cos(x),则其导数为:(2)导函数计算:将dy/dx = -sin(x)表示为函数形式,则有:f'(x) = -sin(x)3. 正切函数的导数和导函数计算正切函数是三角函数中的一种特殊函数,它的导数和导函数计算如下:(1)导数计算:设函数y = tan(x),则其导数为:dy/dx = sec^2(x)(2)导函数计算:将dy/dx = sec^2(x)表示为函数形式,则有:f'(x) = sec^2(x)4. 余切函数的导数和导函数计算余切函数是三角函数中的另一种特殊函数,它的导数和导函数计算如下:(1)导数计算:设函数y = cot(x),则其导数为:(2)导函数计算:将dy/dx = -csc^2(x)表示为函数形式,则有:f'(x) = -csc^2(x)5. 正割函数的导数和导函数计算正割函数是三角函数中的一种与余弦函数相关的函数,它的导数和导函数计算如下:(1)导数计算:设函数y = sec(x),则其导数为:dy/dx = sec(x) * tan(x)(2)导函数计算:将dy/dx = sec(x) * tan(x)表示为函数形式,则有:f'(x) = sec(x) * tan(x)6. 余割函数的导数和导函数计算余割函数是三角函数中的一种与正弦函数相关的函数,它的导数和导函数计算如下:(1)导数计算:设函数y = csc(x),则其导数为:dy/dx = -csc(x) * cot(x)(2)导函数计算:将dy/dx = -csc(x) * cot(x)表示为函数形式,则有:f'(x) = -csc(x) * cot(x)通过以上的导数和导函数计算,我们可以更好地理解和掌握三角函数的性质和变化规律。
导数的计算方法

导数的计算方法导数是微积分中的重要概念,它描述了函数在某一点的变化率。
在实际问题中,导数的计算方法可以帮助我们分析函数的特性,解决各种问题。
下面我们将介绍几种常见的导数计算方法。
一、基本导数公式。
1.1 导数的定义。
在介绍导数的计算方法之前,我们先来回顾一下导数的定义。
对于函数y=f(x),它在点x处的导数可以定义为:f'(x) = lim (Δx→0) [f(x+Δx)-f(x)] / Δx。
其中,f'(x)表示函数f(x)在点x处的导数。
这个定义可以帮助我们理解导数的几何意义,即切线的斜率。
1.2 基本导数公式。
在实际计算中,我们经常会用到一些基本的导数公式。
这些公式可以帮助我们快速计算各种函数的导数,其中一些常见的导数公式包括:(1)常数函数的导数公式,若y=c,其中c为常数,则y'=0。
(2)幂函数的导数公式,若y=x^n,其中n为常数,则y'=nx^(n-1)。
(3)指数函数的导数公式,若y=a^x,其中a为常数且a>0且a≠1,则y'=a^x ln(a)。
(4)对数函数的导数公式,若y=log_a(x),其中a为常数且a>0且a≠1,则y' = 1 / (x ln(a))。
(5)三角函数的导数公式,若y=sin(x),则y'=cos(x);若y=cos(x),则y'=-sin(x);若y=tan(x),则y'=sec^2(x)。
以上是一些基本的导数公式,掌握这些公式可以帮助我们快速计算各种函数的导数。
二、导数的计算方法。
2.1 使用导数的定义。
在一些特殊情况下,我们可以使用导数的定义来计算函数的导数。
例如,对于一些复杂的函数或者无法直接套用基本导数公式的函数,我们可以利用导数的定义进行计算。
这种方法可能会比较繁琐,但在某些情况下是非常有效的。
2.2 利用导数的性质。
导数具有一些特性和性质,我们可以利用这些性质来简化导数的计算。
高三一轮复习导数的概念、几何意义及导数的计算 (1)

第十四课时 导数的概念、几何意义及导数的计算考纲要求:1.导数的概念(A) 2.导数的几何意义(B) 3.导数的运算(B)知识梳理:1.导数的概念(1)函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x=x 0,即f ′(x 0)=(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x )Δx为f (x )的导函数. 2.导数公式及运算法则(1)(2)①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );③⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 基础训练:1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)f ′(x 0)与[f (x 0)]′表示的意义相同.( )(2)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( )(3)曲线的切线不一定与曲线只有一个公共点.( )(4)⎝⎛⎭⎫sin π3′=cos π3.( ) (5)(3x )′=3x ln 3.( )(6)⎝⎛⎭⎫e x +cos π4′=e x .( ) 答案:(1)× (2)√ (3)√ (4)× (5)√ (6)√2.曲线y =sin x +e x 在点(0,1)处的切线方程是________.解析:∵y =sin x +e x ,∴y ′=cos x +e x ,∴y ′x =0=cos 0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0.答案:2x -y +1=03.求下列函数的导数:(1)y =x n e x ;(2)y =x 3-1sin x. 答案:(1)y ′=e x (nx n -1+x n ).(2)y ′=3x 2sin x -(x 3-1)cos x sin 2x.[典题1] 求下列函数的导数:(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =ln x x; (3)y =tan x ;(4)y =3x e x -2x +e ;解析: (1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x -x =x -12-x 12, ∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12. (2)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. (3)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x=cos x cos x -sin x (-sin x )cos 2x =1cos 2x. (4)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x )′=3x (ln 3)·e x +3x e x -2x ln 2= (ln 3+1)·(3e)x -2x ln 2.小结:导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导.(4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导.[典题2](1)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.(2)已知f (x )=12x 2+2xf ′(2 016)+2 016ln x ,则f ′(2 016)=________. 解析:(1)f ′(x )=a ⎝⎛⎭⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.(2)由题意得f ′(x )=x +2f ′(2 016)+2 016x, 所以f ′(2 016)=2 016+2f ′(2 016)+2 0162 016, 即f ′(2 016)=-(2 016+1)=-2 017.答案:(1)3 (2)-2 017注意:在求导过程中,要仔细分析函数解析式的特点,紧扣法则,记准公式,预防运算错误.练习:1.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________.解析:∵f (x )=ax 4+bx 2+c ,∴f ′(x )=4ax 3+2bx .又f ′(1)=2,∴4a +2b =2,∴f ′(-1)=-4a -2b =-2.答案:-22.在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)的值为________.解析:因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)·(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.答案:212导数的几何意义是每年高考的必考内容,考查题型既有填空题,也常出现在解答题的第(1)问中,难度偏小,属中低档题,且主要有以下几个命题角度:角度一:求切线方程[典题3](1)曲线y =e x -ln x 在点(1,e)处的切线方程为________.(2)设曲线y =e x +12ax 在点(0,1)处的切线与直线x +2y -1=0垂直,则实数a =________. (3)已知函数f (x )=x 3-4x 2+5x -4.①求曲线f (x )在点(2,f (2))处的切线方程;②求经过点A (2,-2)的曲线f (x )的切线方程.解析:(1)由于y ′=e -1x,所以y ′x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.(2)∵与直线x +2y -1=0垂直的直线斜率为2,∴f ′(0)=e 0+12a =2,解得a =2. (3)①∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0.②设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0.答案:(1)(e -1)x -y +1=0 (2)2注意:注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.角度二:求切点坐标[典题4] 设曲线y =e x 在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析: y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x(x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).答案:(1,1)小结:已知斜率k ,求切点A (x 0,f (x 0)),即解方程f ′(x 0)=k .角度三:求参数的值[典题5](1)若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =________.(2)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.(3)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:(1)∵两曲线的交点为(0,m ),∴⎩⎪⎨⎪⎧ m =a ,m =1,即a =1, ∴f (x )=cos x ,∴f ′(x )=-sin x ,则f ′(0)=0,f (0)=1.又g ′(x )=2x +b ,∴g ′(0)=b ,∴b =0,∴a +b =1.(2)∵f ′(x )=3ax 2+1,∴f ′(1)=3a +1.又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1).∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1.(3)法一:∵y =x +ln x ,∴y ′=1+1x,y ′x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8.法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧ 2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧ x 0=-12,a =8.答案:(1)1 (2)1 (3)8小结:(1)根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.(2)当切线方程中x (或y )的系数含有字母参数时,则切线恒过定点.总结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.注意:1.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.2.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.3.直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.4.曲线未必在其切线的同侧,如曲线y =x 3在其过(0,0)点的切线y =0的两侧.课后作业:1.曲线y =e x 在点A (0,1)处的切线斜率为________.解析:由题意知y ′=e x ,故所求切线斜率k =e x x =0=e 0=1.答案:12.已知函数f (x )=1xcos x ,则f (π)+f ′⎝⎛⎭⎫π2=________. 解析:∵f ′(x )=-1x 2cos x +1x (-sin x ),∴f (π)+f ′⎝⎛⎭⎫π2=-1π+2π·(-1)=-3π. 答案:-3π3.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于________.解析:∵y ′=-1-cos x sin 2x ,∴y ′x =π2=-1,由条件知1a=-1,∴a =-1. 答案:-14.设直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为________. 解析:设切点坐标为(x 0,ln x 0),则1x 0=12,即x 0=2,∴切点坐标为(2,ln 2),又切点在直线y =12x +b 上,∴ln 2=1+b ,即b =ln 2-1. 答案:ln 2-15.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小值为________.解析:因为定义域为(0,+∞),所以y ′=2x -1x=1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2. 答案:26.已知函数f (x )=x ln x ,若f ′(x 0)=2,则x 0=________.解析:f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e.答案:e7.若直线l 与幂函数y =x n 的图象相切于点A (2,8),则直线l 的方程为________. 解析:由题意知,A (2,8)在y =x n 上,∴2n =8,∴n =3,∴y ′=3x 2,直线l 的斜率k =3×22=12,又直线l 过点(2,8).∴y -8=12(x -2),即直线l 的方程为12x -y -16=0.答案:12x -y -16=08.在平面直角坐标系xOy 中,点M 在曲线C :y =x 3-x 上,且在第二象限内,已知曲线C 在点M 处的切线的斜率为2,则点M 的坐标为________.解析:∵y ′=3x 2-1,曲线C 在点M 处的切线的斜率为2,∴3x 2-1=2,x =±1,又∵点M 在第二象限,∴x =-1,∴y =(-1)3-(-1)=0,∴M 点的坐标为(-1,0).答案:(-1,0)9.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x=0,即a =-13x3(x >0),故a ∈(-∞,0). 答案:(-∞,0)10.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为________.解析:设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率k =3t 2-a ①,所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ) ②.将点A (1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意得它们互为相反数,故a =278. 答案:27811.函数f (x )=e x +x 2+x +1与g (x )的图象关于直线2x -y -3=0对称,P ,Q 分别是函数f (x ),g (x )图象上的动点,则|PQ |的最小值为________.解析:因为f (x )与g (x )的图象关于直线2x -y -3=0对称,所以当f (x )与g (x )在P ,Q 处的切线与2x -y -3=0平行时,|PQ |的长度最小.f ′(x )=e x +2x +1,令e x +2x +1=2,得x =0,此时P (0,2),且P 到2x -y -3=0的距离为5,所以|PQ |min =2 5.答案:2512.已知函数f (x )=x ,g (x )=a ln x ,a ∈R .若曲线y =f (x )与曲线y =g (x )相交,且在交点处有相同的切线,则a =________,切线方程为________.解析:f ′(x )=12x,g ′(x )=a x (x >0), 由已知得⎩⎪⎨⎪⎧x =a ln x ,12x=a x ,解得a =e 2,x =e 2, ∴两条曲线交点的坐标为(e 2,e),切线的斜率为k =f ′(e 2)=12e, ∴切线的方程为y -e =12e (x -e 2),即x -2e y +e 2=0.答案:e 2x -2e y +e 2=013.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标. 解:(1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1,∴f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13.∴切线的方程为y +6=13(x -2),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,y 0=x 30+x 0-16,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又∵直线l 过原点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8, ∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,得切点坐标(-2,-26),k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26).14.设函数y =x 2-2x +2的图象为C 1,函数y =-x 2+ax +b 的图象为C 2,已知过C 1与C 2的一个交点的两切线互相垂直,求a +b 的值.解:对于C 1:y =x 2-2x +2,有y ′=2x -2,对于C 2:y =-x 2+ax +b ,有y ′=-2x +a ,设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直.∴(2x 0-2)·(-2x 0+a )=-1,即4x 20-2(a +2)x 0+2a -1=0,①又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b ,⇒2x 20-(a +2)x 0+2-b =0.②由①②消去x 0,可得a +b =52. 15.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C . (1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k , 则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧ k ≥-1,-1k≥-1, 解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1,得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).。
导数的定义与计算方法

导数的定义与计算方法导数是微积分中的重要概念之一,用于研究函数的变化率和曲线的切线斜率。
本文将从导数的定义入手,介绍导数的计算方法,并给出一些例题来帮助读者更好地理解和应用导数。
一、导数的定义在数学上,给定一个函数y=f(x),其导数定义为函数在某一点x处的变化率。
导数可以用极限来表示,即:f'(x) = lim Δx→0 (f(x+Δx) - f(x))/Δx其中f'(x)表示函数f(x)在点x处的导数,Δx为自变量的增量。
导数的值可以表示函数在该点的切线斜率,即函数曲线在该点处的速率。
二、导数的计算方法导数的计算方法有多种,下面列举几种常见的:1. 基本导数公式对于常见的基本函数,存在一些导数的基本公式,如:- 常数函数导数为零:d/dx(c) = 0,其中c为常数;- 幂函数导数为功率减一:d/dx(x^n) = nx^(n-1),其中n为常数;- 指数函数导数等于自身:d/dx(e^x) = e^x;- 对数函数导数为倒数:d/dx(ln(x)) = 1/x。
通过应用基本导数公式,可以计算更复杂函数的导数。
2. 导数的四则运算规则对于已知的函数f(x)和g(x),导数的四则运算规则如下:- 和差法则:(f(x) ± g(x))' = f'(x) ± g'(x)- 积法则:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- 商法则:(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2以上规则为导数的基本运算规则,可以根据需要进行组合和推广。
3. 链式法则如果函数y=f(g(x))是由两个函数复合而成,那么它的导数可以用链式法则来计算。
链式法则可以表示为:d/dx(f(g(x))) = f'(g(x)) * g'(x)通过链式法则,可以求解更复杂的复合函数的导数,进一步扩展了导数的计算方法。
导数的计算(一轮复习)

5.曲线 y=9x在点 M(3,3)处的切线方程是 x+y-6=0 . 解析 ∵y′=-x92, ∴y′|x=3=-1, ∴过点(3,3)的斜率为-1的切线方程为y-3=-(x-3), 即x+y-6=0.
12345
10.已知抛物线 y=x2,求过点-12,-2且与抛物线相切的直线方程.
12345
2.已知 f(x)
解析
f(x)=
x,得
f′(x)=
1
-
x
1
2,
2
∴
f
8 =
1
-
8
1 2
2
2
8
12345
D.-1
3.(多选)下列结论正确的是
√A.若 y=3,则 y′=0 √C.若 y= x,则 y′=21 x
B.若
y=
1 ,则 x
y′=-12
x
√D.若 y=x,则 y′=1
解析 只有B是错误的.
因为y
1 x
'
1
x2
'
1 2
3
x2
1 2x
x
12345
4.已知 f(x)=ln x 且 f′(x0)=x120,则 x0= 1 .
解析 因为f(x)=ln x(x>0), 所以 f′(x)=1x, 所以 f′(x0)=x10=x120, 所以x0=1.
一点的函数值
思考辨析 巩固知识
1.函数在某点处的导数f′(x0)是一个常数.( √ )
2.函数y=f(x)在点x0处的导数f′(x0)就是导函数f′(x)在点x=x0处的函数值.
(√ ) 3.函数f(x)=0没有导数.( × ) 4.直线与曲线相切,则直线与该曲线只有一个公共点.( × )
高中导数知识点总结大全

高中导数知识点总结大全目录高中导数知识点总结高中数学的学习方法如何提升高中数学成绩高中导数知识点总结1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。
V=s/(t)表示即时速度。
a=v/(t)表示加速度。
3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。
4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。
(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。
当函数y=f(x)的自变量x 在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a 即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
知识讲解_《变化率与导数、导数的应用》全章复习与巩固_基础

《导数及其应用》全章复习与巩固【学习目标】1. 导数概念通过具体情境,感受在现实实际和实际生活中存在着大量的变化率问题,体会平均变化率、瞬时变化率和导数的实际意义,理解导数的几何意义2. 导数运算(1)会用导数定义计算一些简单函数的导数;(2)会利用导数公式表求出给定函数的导数;(3)掌握求导的四则运算法则,掌握求复合函数的导数,并会利用导数的运算法则求出函数的导函数3. 体会研究函数的意义(1 )认识导数对于研究函数的变化规律的作用;(2)会用导数的符号来判断函数的单调性;(3)会利用导数研究函数的极值点和最值点.4•导数在实际问题中的应用(1)进一步体会函数是描述世界变化规律的基本数学模型;(2)联系实际生活和其他学科,进一步体会导数的意义;(3)从实际生活抽象出一些基本的用导数刻画的问题,并加以解决【知识网络】【要点梳理】要点一:导数的概念及几何意义导数的概念:函数y=f(x)在x0点的导数,通常用符号f ‘X。
)表示,定乂为:一山y 「 f (Xo +^X)—f (Xo )f(x0尸lim ——=lim ------- ----------- ----- ---瘵T0也X 2°氐X要点诠释:(1)丄[_^= _j—X L,它表示当自变量x从x°变X i,函数值从 f x°变到 f X1时,.X X—X°. X函数值关于X的平均变化率•当X趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y=f(x)在X°点的导数.(2)导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率•如瞬时速度即是位移在这一时刻的瞬间变化率.(3)对于不同的实际问题,平均变化率富于不同的实际意义.如位移运动中,位移S从时间1到t2的平均变化率即为t i到t2这段时间的平均速度.要点诠释:求曲线的切线方程时,抓住切点是解决问题的关键,有切点直接求,无切点则设切点,布列方程组.导数的物理意义:在物理学中,如果物体运动的规律是s=s t ,那么该物体在时刻t0的瞬时速度v就是s=s t在t=t0时的导数,即v=s' t。
导数的概念及运算知识点讲解(含解析)

导数的概念及运算一、知识梳理1.函数y =f(x)在x =x 0处的导数(1)定义:称函数y =f(x)在x =x 0处的瞬时变化率0lim x ∆→f (x 0+Δx )-f (x 0)Δx=lim x ∆→ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx称为函数y =f (x )在开区间内的导函数.3.导数公式表4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1) [f (x )±g (x )]′=f ′(x )±g ′(x ); (2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3) ⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为 y x ′=y u ′·u x ′.知识点小结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2. ⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2. 3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( ) 解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错.(3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错. 答案 (1)× (2)× (3)× (4)√2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9B.-3C.9D.15解析 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9. 答案 C3.在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________ m/s ,加速度a =______ m/s 2.解析 v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8. 答案 -9.8t +6.5 -9.84.(2019·青岛质检)已知函数f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A.e 2B.1C.ln 2D.e解析 f ′(x )=2 018+ln x +x ×1x =2 019+ln x .由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1. 答案 B5.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析 由题意得f ′(x )=e xln x +e x·1x ,则f ′(1)=e.答案 e6.(2017·全国Ⅰ卷)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +1考点一 导数的运算角度1 根据求导法则求函数的导数 【例1-1】 分别求下列函数的导数: (1)y =e x ln x ; (2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)f (x )=ln 1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e xx =e x ⎝⎛⎭⎪⎫ln x +1x .(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x 3. (3)因为y =ln1+2x =12ln ()1+2x ,所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2 抽象函数的导数计算【例1-2】 (2019·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x ,则f (1)=( ) A.-eB.2C.-2D.e解析 由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2. 答案 B【训练1】 (1)若y =x -cos x 2sin x2,则y ′=________. (2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析 (1)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4,∴f ′(0)=-4. 答案 (1)1-12cos x (2)-4考点二 导数的几何意义 角度1 求切线方程【例2-1】 (2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) A.y =-2x B.y =-x C.y =2xD.y =x解析 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x . 答案 D角度2 求切点坐标【例2-2】 (1)(2019·聊城月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A.3B.2C.1D.12(2)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________. 解析 (1)设切点的横坐标为x 0(x 0>0),∵曲线y =x 24-3ln x 的一条切线的斜率为12, ∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3. (2)∵函数y =e x 的导函数为y ′=e x ,∴曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·⎝ ⎛⎭⎪⎫-1x 20=-1,解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x (x >0)上,∴y 0=1,故点P 的坐标为(1,1). 答案 (1)A (2)(1,1)角度3 求参数的值或取值范围【例2-3】 (1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)(2)(2019·河南六市联考)已知曲线f (x )=x +ax +b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b =________.解析 (1)由题意知f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x . 因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). (2)f ′(x )=1-ax 2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有⎩⎪⎨⎪⎧1-a =2,2a +b =5,解得⎩⎪⎨⎪⎧a =-1,b =7,∴a -b =-1-7=-8. 答案 (1)B (2)-8规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A.(0,0)B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________.解析 (1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax . 根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,可列方程组⎩⎪⎨⎪⎧x 30+ax 20=-x 0, ①3x 20+2ax 0=-1, ②解得⎩⎪⎨⎪⎧x 0=1,a =-2或⎩⎪⎨⎪⎧x 0=-1,a =2.当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1. ∴点P 的坐标为(1,-1)或(-1,1). (2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 (1)D (2)y =2x三、课后练习1.(2019·深圳二模)设函数f (x )=x +1x +b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab =( ) A.1B.0C.-1D.-2解析 由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a -b =⎝⎛⎭⎪⎫1-1a 2(x -a ),将(0,0)代入得-a -1a -b=⎝ ⎛⎭⎪⎫1-1a 2(-a ),故b =-2a ,故ab =-2. 答案 D2.已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________. 解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时, 由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在[0,1]上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎪⎨⎪⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1]. 答案 [-2,-1]3.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________. 解析 设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0),∴最短距离为(1,0)到直线y =x 的距离, 即为|1-0|1+1=22. 答案 224.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)。
高中数学 第一章 导数及其应用 1.2 导数的计算 导数概念与运算基础知识总结素材 新人教A版选修2-2

导数概念与运算基础知识总结知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x xy∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim 。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f(x 0))处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''v uv v u -(v ≠0)。
《高中数学导数讲解》课件

积分
导数是积分的基础,通过 求导可以推导出原函数的 表达式。
微分方程
导数在解决微分方程问题 中起到关键作用,如物理 中的动力学问题。
THANKS
感谢观看
பைடு நூலகம்
高中数学导数讲解
目录
• 导数的基本概念 • 导数的计算 • 导数的应用 • 导数的实际应用 • 导数的扩展知识
01
导数的基本概念
导数的定义
总结词
导数是函数在某一点的变化率,表示函数在该点的切线斜率。
详细描述
导数是微积分中的一个基本概念,用于描述函数在某一点附近的变化率。对于可导函数$f(x)$,其在点$x_0$处 的导数定义为$f'(x_0) = lim_{Delta x to 0} frac{Delta y}{Delta x}$,其中$Delta y = f(x_0 + Delta x) - f(x_0)$ 。导数表示函数在点$x_0$处的切线斜率。
01
02
03
起源
导数最初由牛顿和莱布尼 茨在17世纪分别独立发现 ,为微积分学奠定了基础 。
早期发展
18世纪,欧拉、拉格朗日 等数学家进一步发展了导 数理论,将其应用于函数 研究。
现代应用
随着数学的发展,导数在 物理、工程、经济等领域 得到广泛应用,成为解决 实际问题的重要工具。
导数的其他性质
导数的几何意义
详细描述
在物理中,导数具有实际意义。例如,物体运动的瞬时速度 可以由速度函数的导数表示,物质扩散的瞬时速度可以由扩 散函数的导数表示。导数可以描述物体或物质在极短时间内 速度或加速度的变化。
02
导数的计算
切线斜率与导数
切线斜率
导数描述了函数在某一点的切线斜率 ,即函数在该点的变化率。
导数概念--公式知识点总结+习题含详细讲解

.《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。
2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。
函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。
3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x+∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。
由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。
当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。
特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。
5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。
基本初等函数的导数公式及导数的运算法则一.docx

1.2. 2基本初等函数的导数公式及导数的运算法则(一》教学目的:1熟练掌握基本初等函数的导数公式。
2掌握导数的四则运算法则;3能利用给出的公式和法则求解函数的导数。
教学重点难点 重点:基本初等函数的导数公式、导数的四则运算法则 难点:基本初等函数的导数公式和导数的四则运算法则的应用教学安排:两课时教学过程:引入:复习巩固导数的基本公式,及其基本运算规律。
知识讲解:一:基本初等函数的导数公式为了方便我们将可以直接使用的基本初等函数的导数公式表如下:函数 导数 y = c y =0 y = ^ y =1 y = x 2 y =2x1 1y=- y 一 2X X y = 4x y,=^y = f(x) = x n (n^Q^ y = nx n ~[且[/(x) + c]‘ 二广(兀) \_Af= Af (x) [/(x) + g(x)]‘ =/'(x) + g(x)'和该幕函数降一次的幕的乘积。
即: 八丿v=fM=sinx 3正弦函数 的导数是余弦函数。
即: y — f (工)一COS X余弦函数~ 的导数是正弦函数的相反数。
x) =-sinx从图像上来看,正弦函数在区间上单调递增,瞬时变化率为正,和余弦函数在该区间的正负是一致的,余弦函数在区间上是单调递减,瞬时变化率为负,和正弦函数在该区间的正负是相反的,故有一个负号。
y = f(x) = ci A a x lntz4指数函数 '7 的导数是指数函数 与 的乘积。
特别的函y = f(x} = e x ,数八丿 的导数是它自身。
y=f(x) = l (gx 丄 」一5 对数函数 八)°的导数是反比例函数尢与In 。
的乘积。
特函数导数 y = cy =0y = nr"」 y = sin x• y =cosx y = cos xf y =-sinx y = f(x) = a xy = a* • In Q (a > 0) y = f(x) = e x y = e x/(兀)=log “ xy_ 1 x\na f(x) = lnx f (x)=- X关于表特别说明: 1常数函数数是以对应幕函 数的指数为系数 数是0;即")" "W 的导2 舉函数 (sinx) =cosxcosv = f (x ) = lnx —别的函数 ' 7 的导数是反比例函数兀。
高中数学选修2-2-导数的计算 (1)

导数的计算知识集结知识元导数的四则运算知识讲解1.导数的运算【知识点的知识】1、基本函数的导函数①C′=0(C为常数)②(x n)′=nx n﹣1(n∈R)③(sin x)′=cos x④(cos x)′=﹣sin x⑤(e x)′=e x⑥(a x)′=(a x)*lna(a>0且a≠1)⑦[log a x)]′=*(log a e)=(a>0且a≠1)⑧[lnx]′=.2、和差积商的导数①[f(x)+g(x)]′=f′(x)+g′(x)②[f(x)﹣g(x)]′=f′(x)﹣g′(x)③[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)④[]′=.3、复合函数的导数设y=u(t),t=v(x),则y′(x)=u′(t)v′(x)=u′[v(x)]v′(x)【典型例题分析】题型一:和差积商的导数典例1:已知函数f(x)=a sin x+bx3+4(a∈R,b∈R),f′(x)为f(x)的导函数,则f (2014)+f(﹣2014)+f′(2015)﹣f′(﹣2015)=()A.0 B.2014 C.2015 D.8解:f′(x)=a cos x+3bx2,∴f′(﹣x)=a cos(﹣x)+3b(﹣x)2∴f′(x)为偶函数;f′(2015)﹣f′(﹣2015)=0∴f(2014)+f(﹣2014)=a sin(2014)+b•20143+4+a sin(﹣2014)+b(﹣2014)3+4=8;∴f(2014)+f(﹣2014)+f′(2015)﹣f(﹣2015)=8故选D.题型二:复合函数的导数典例2:下列式子不正确的是()A.(3x2+cos x)′=6x﹣sin x B.(lnx﹣2x)′=ln2C.(2sin2x)′=2cos2x D.()′=解:由复合函数的求导法则对于选项A,(3x2+cos x)′=6x﹣sin x成立,故A正确;对于选项B,成立,故B正确;对于选项C,(2sin2x)′=4cos2x≠2cos2x,故C不正确;对于选项D,成立,故D正确.故选C.【解题方法点拨】1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.2.导数的加法与减法法则【知识点的知识】1、基本函数的导函数①C′=0(C为常数)②(x n)′=nx n﹣1(n∈R)③(sin x)′=cos x④(cos x)′=﹣sin x⑤(e x)′=e x⑥(a x)′=(a x)*lna(a>0且a≠1)⑦[log a x)]′=*(log a e)(a>0且a≠1)⑧[lnx]′=.2、和差积商的导数①[f(x)+g(x)]′=f′(x)+g′(x)②[f(x)﹣g(x)]′=f′(x)﹣g′(x)③[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)④[]′=.例题精讲导数的四则运算例1.已知f1(x)=cos x,f2(x)=f(x),f3(x)=f′2(x),f4(x)=f′3(x),…,f n(x)=f′n-1(x),则f2019(x)等于()A.sin x B.-sin x C.cos x D.-cos x例2.下列求导运算正确的是()A.B.C.(tan x)′=cos2xD.(x2cos x)′=-2x sin x例3.已知f(x)=+2xf′(2019)-2019lnx,则f'(2019)=()A.2018 B.-2018 C.2019 D.-2019 简单的复合函数的导数知识讲解1、复合函数的导数设y=u(t),t=v(x),则y′(x)=u′(t)v′(x)=u′[v(x)]v′(x)题型:复合函数的导数典例2:下列式子不正确的是()A.(3x2+cos x)′=6x﹣sin x B.(lnx﹣2x)′=ln2C.(2sin2x)′=2cos2x D.()′=解:由复合函数的求导法则对于选项A,(3x2+cos x)′=6x﹣sin x成立,故A正确;对于选项B,成立,故B正确;对于选项C,(2sin2x)′=4cos2x≠2cos2x,故C不正确;对于选项D,成立,故D正确.故选C.【解题方法点拨】1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.例题精讲简单的复合函数的导数例1.'已知函数f(x)=eπx∙sin2πx,求f'(x)及.'例2.'已知f(x)=sin2x+3sin x+3cos x(0≤x<2π),(1)求f(x)的值域;(2)求f(x)的单调区间.' 例3.'求下列函数的导数.(1)y=2x sin(2x-5);(2).'当堂练习单选题练习1.函数f(x)=sin2x的导数f′(x)=()A.2sin x B.2sin2xC.2cos x D.sin2x练习2.已知函数f(x)=cos(x+ϕ)(0<ϕ<π)的导函数f'(x)的图象如图所示,则ϕ=()A.B.C.D.练习3.已知函数f′(x)是函数f(x)的导函数,g′(x)是函数g(x)的导函数,,g(x)=bx2-b2x,对于任意的a,b∈R,f′(a)与g′(a)的大小关系()A.f′(a)=g′(a)B.f′(a)<g′(a)C.f′(a)>g′(a)D.不能确定练习4.已知函数f(x)=a sin x+bx3+4(a∈R,b∈R),f′(x)为f(x)的导函数,则f(2016)+f (-2016)+f′(2017)-f′(-2017)=()A.0 B.2016 C.2017 D.8练习5.下面四个图象中,有一个是函数f(x)=x3+ax2+(a2-1)x+1(a∈R)的导函数y=f′(x)的图象,则f(-1)=()A.或B.或C.或D.或练习6.已知函数f(x)=e x-me-x,若恒成立,则实数m的取值范围是()A.[0,+∞)B.[2,+∞)C.[3,+∞)D.(-∞,3]练习7.已知函数f(x)在R上可导,且f(x)=x2+2xf'(1),则f'(1)=()A.-2 B.2 C.4 D.-4练习8.已知f(x)=cos x,则f'(x)=()A.cos x B.-cos x C.sin x D.-sin x练习9.已知函数f(x)=3x2,则f(x)在x=3处的导数为()A.6 B.12 C.18 D.27练习10.函数f(x)=x2+lnx+sin x+1的导函数是()A.2x++cos x+1 B.2x-+cos xC.2x+-cos x D.2x++cos x解答题练习1.'已知函数f(x)=alnx-ax(a≠0).(I)讨论f(x)的单调性;(Ⅱ)若f(x)+(a+1)x+1-e≤0对任意x∈[e,e2]恒成立,求实数a的取值范围(e为自然常数);(Ⅲ)求证lnn!≤(n≥2,n∈N*).'练习2.'已知函数f(x)=(x+1)lnx-a(x-1).(Ⅰ)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(Ⅱ)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.'练习3.'证明下列命题:(1)若函数f(x)可导且为周期函数,则f′(x)也为周期函数;(2)可导的奇函数的导函数是偶函数。
导数的定义与求导法则详解

导数的定义与求导法则详解导数是微积分中的重要概念之一。
在数学中,导数用来描述函数在某一点的变化率。
它不仅可以帮助我们了解函数的性质,还可以应用于各种实际问题的求解。
本文将详细介绍导数的定义以及常用的求导法则。
一、导数的定义导数的定义是基于极限的概念,即函数在某一点的导数等于该点的函数值与自变量趋于该点时函数值之差的比值的极限。
用数学符号表示如下:若函数f(x)在点x_0处导数存在,记为f'(x_0)或dy/dx|x=x_0,已知函数在该点处连续,则导数的定义为:f'(x_0) = lim┬(Δx→0)〖(f(x_0+Δx)-f(x_0))/Δx 〗导数可以理解为函数图像在某点处的切线斜率,当导数为正时,函数递增;当导数为负时,函数递减;当导数为零时,函数取得极值。
二、导数的求导法则求导法则是用来计算函数的导数的一组规则。
根据导数的定义,可以推导得到以下常用的求导法则:1. 基本常数法则:常数的导数为0,即d/dx(c)=0,其中c为常数。
2. 变量的幂法则:对于任意的实数n,导数d/dx(x^n)=nx^(n-1),其中x为自变量。
3. 求和差法则:导数是线性运算,对于任意的可导函数f(x)和g(x),有d/dx(f(x)±g(x))=d/dx(f(x))±d/dx(g(x))。
4. 乘法法则:对于可导函数f(x)和g(x),有d/dx(f(x)⋅g(x))=f'(x)⋅g(x)+f(x)⋅g'(x)。
5. 商法则:对于可导函数f(x)和g(x),有d/dx(f(x)/g(x))=(f'(x)⋅g(x)-f(x)⋅g'(x))/[g(x)]^2。
6. 复合函数法则:若y=f(g(x)),其中f(u)和g(x)都是可导函数,则d/dx(y)=d/dx(f(g(x)))=f'(g(x))⋅g'(x)。
7. 反函数法则:若y=f(x)的反函数为x=g(y),则g'(y)=[1/f'(x)],其中f'(x)≠0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的计算【学习目标】 1. 牢记几个常用函数的导数公式,并掌握其推导过程。
2. 熟记八个基本初等函数的导数公式,并能准确运用。
3. 能熟练运用四则运算的求导法则,4. 理解复合函数的结构规律,掌握求复合函数的求导法则:“由外及内,层层求导”.【要点梳理】知识点一:基本初等函数的导数公式(1)()f x C =(C 为常数),'()0f x = (2)()nf x x =(n 为有理数),1'()n f x n x -=⋅(3)()sin f x x =,'()cos f x x = (4)()cos f x x =,'()sin f x x =- (5)()xf x e =,'()xf x e =(6)()xf x a =,'()ln xf x a a =⋅(7)()ln f x x =,1'()f x x = (8)()log a f x x =,1'()log a f x e x =。
要点诠释:1.常数函数的导数为0,即C '=0(C 为常数).其几何意义是曲线()f x C =(C 为常数)在任意点处的切线平行于x 轴.2.有理数幂函数的导数等于幂指数n 与自变量的(n -1)次幂的乘积,即1()'nn x nx-=(n ∈Q ).特别地211'x x ⎛⎫=-⎪⎝⎭,=。
3.正弦函数的导数等于余弦函数,即(sin x )'=cos x .4.余弦函数的导数等于负的正弦函数,即(cos x )'=-sin x .5.指数函数的导数:()'ln xxa a a =,()'xxe e =. 6.对数函数的导数:1(log )'log a a x e x =,1(ln )'x x=. 有时也把1(log )'log a a x e x = 记作:1(log )'ln a x x a=以上常见函数的求导公式不需要证明,只需记住公式即可.知识点二:函数的和、差、积、商的导数运算法则:(1)和差的导数:[()()]''()'()f x g x f x g x ±=± (2)积的导数:[()()]''()()()'()f x g x f x g x f x g x ⋅=+(3)商的导数:2()'()()()'()[]'()[()]f x f xg x f x g x g x g x ⋅-⋅=(()0g x ≠) 要点诠释:1. 上述法则也可以简记为:(ⅰ)和(或差)的导数:()'''u v u v ±=±, 推广:1212()''''n n u u u u u u ±±±=±±±.(ⅱ)积的导数:()'''u v u v uv ⋅=+, 特别地:()''cu cu =(c 为常数).(ⅲ)商的导数:2'''(0)u u v uv v v v -⎛⎫=≠⎪⎝⎭, 两函数商的求导法则的特例 2()'()()()'()'(()0)()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦, 当()1f x =时,2211'()1'()'()'(()0)()()()g x g x g x g x g x g x g x ⎡⎤⋅-⋅==-≠⎢⎥⎣⎦. 这是一个函数倒数的求导法则.2.两函数积与商求导公式的说明(1)类比:()'''uv u v uv =+,2'''u u v uv v v -⎛⎫=⎪⎝⎭(v ≠0),注意差异,加以区分. (2)注意:'''u u v v ⎛⎫≠⎪⎝⎭且2'''u u v uv v v +⎛⎫≠ ⎪⎝⎭(v ≠0). 3.求导运算的技巧在求导数中,有些函数虽然表面形式上为函数的商或积,但在求导前利用代数或三角恒等变形可将函数先化简(可能化去了商或积),然后进行求导,可避免使用积、商的求导法则,减少运算量.知识点三:复合函数的求导法则 1.复合函数的概念对于函数[()]y f x ϕ=,令()u x ϕ=,则()y f u =是中间变量u 的函数,()u x ϕ=是自变量x 的函数,则函数[()]y f x ϕ=是自变量x 的复合函数.要点诠释: 常把()u x ϕ=称为“内层”, ()y f u =称为“外层” 。
2.复合函数的导数设函数()u x ϕ=在点x 处可导,''()x u x ϕ=,函数()y f u =在点x 的对应点u 处也可导''()u y f u =,则复合函数[()]y f x ϕ=在点x 处可导,并且'''x u x y y u =⋅,或写作'[()]'()'()x f x f u x ϕϕ=⋅. 3.掌握复合函数的求导方法(1)分层:将复合函数[()]y f x ϕ=分出内层、外层。
(2)各层求导:对内层()u x ϕ=,外层()y f u =分别求导。
得到'(),'()x f u ϕ (3)求积并回代:求出两导数的积:'()'()f u x ϕ⋅,然后将()u x ϕ用替换,即可得到[()]y f x ϕ=的导数。
要点诠释: 1. 整个过程可简记为分层——求导——回代,熟练以后,可以省略中间过程。
若遇多重复合,可以相应地多次用中间变量。
2. 选择中间变量是复合函数求导的关键。
求导时需要记住中间变量,逐层求导,不遗漏。
求导后,要把中间变量转换成自变量的函数。
【典型例题】类型一:求简单初等函数的导数 例1. 求下列函数的导数: (1) 3x (2)21x (3)x (4)sin y x =(5)ln x 【解析】(1) (x 3)′=3x 3-1=3x 2; (2) (21x)′=(x -2)′=-2x -2-1=-2x -3(3) xx x x x 212121)()(2112121==='='--(4)'(sin )'cos y x x ==; (5)1'(ln )'y x x==;【点评】(1)用导数的定义求导是求导数的基本方法,但运算较繁。
利用常用函数的导数公式,可以简化求导过程,降低运算难度。
(2)准确记忆公式。
(3)根式、分式求导时,先将根式、分式转化为幂的形式。
举一反三:【变式】求下列函数的导数:(1)y =31x(2)y =3x (3)y=2x 3―3x 2+5x +4 (4)222log log y x x =-; 【答案】(1) y ′=(31x)′=(x -3)′=-3x -3-1=-3x -4(2321313133131)()(--=='='='x x x x y(3)322'2()'3()'5()'(4)'665y x x x x x =-++=-+(4)∵2222log log log y x x x =-=,∴21'(log )'ln 2y x x ==⋅. 类型二:求函数的和、差、积、商的导数例2. 求下列函数导数: (1) y =3x 2+xcosx ; (2)y =1x x+; (3)y =lgx -e x;(4)y=x e tanx. 【解析】(1)y ′=6x +cos x -x sin x .(2)y ′=2211(1)(1)x x x x +-=++.(3)y ′=(lg x )′-(e x )′=1ln10x -e x. (4)'y =xe tanx+xe x2cos . 【点评】(1)熟记基本初等函数的导数公式和灵活运用导数的四则运算法则,是求导函数的前提。
(2)先化简再求导,是化难为易,化繁为简的基本原则和策略。
举一反三:【变式1】函数2(1)(1)y x x =+-在1x =处的导数等于( ) A .1 B .2 C .3 D .4 【答案】D法一: 22'[(1)]'(1)(1)(1)'y x x x x =+-++- 222(1)(1)(1)321x x x x x =+⋅-++=+-∴1'|4x y ==.法二:∵22(1)(1)(1)(1)y x x x x =+-=-+321x x x =+--∴322'()'()''1'321y x x x x x =+--=+- ∴1'|4x y ==.【变式2】 求下列各函数的导函数(1)y=(x+1)(x+2)(x+3)。
(2)y=x 2sinx; (3)y=xx xx sin cos ++【答案】(1)∵y=(x 2+3x+2)(x+3)=x 3+6x 2+11x+6,∴y '=3x 2+12x+11。
(2)y ′=(x 2)′sinx +x 2(sinx )′=2xsinx +x 2cosx(3)2(cos )(sin )(cos )(sin )'(sin )x x x x x x x x y x x ''++-++=+ =2)sin ()cos 1)(cos ()sin )(sin 1(x x x x x x x x +++-+-2)sin (1cos sin sin cos x x x x x x x x +--+-- 【变式3】求下列函数的导数.(1) y =(2 x 2-5 x +1)e x ;(2)1)y=-; (3) y =xx x xx x sin cos cos sin +-【答案】(1) y ′=(2 x 2-5 x +1)′e x +(2 x 2-5 x +1) (e x )′=(4 x -5)e x +(2 x 2-5 x +1)e x =(2x 2-x -4)e x(2)1122y x x-===-,∴312211'22y x x --=--.(3)y ′=2)sin (cos 1x x x +[(sin x -x cos x )′(cos x +x sin x )-(sin x -x cos x )·(cos x +x sin x )′] =2)sin (cos 1x x x +[(cos x -cos x +x sin x ) (cos x +x sin x )-(sin x -x cos x ) (x cos x )]=22222)sin (cos cos cos sin sin cos sin x x x x x x x x x x x x x ++-+=xx x x sin cos 2+ 类型三:求复合函数的导数例3求下列函数的导数: (1)4)31(1x y -=; (2))63cos(π-=x y ; (3)2ln(231)y x x =++; 【解析】(1)设μ=1-3x ,4-=μy ,则55)31(12)3(4'''x y y x x -=-⋅-=⋅=-μμμ。