四年级下册植树方阵问题

合集下载

第十四周植树问题

第十四周植树问题

植树问题一、知识点归纳:(一)植树问题:1、两端要栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数+1;间隔数=棵数-12、两端不栽:间隔数=总长÷间距;总长=间距×间隔数;棵数=间隔数-1;间隔数=棵数+1间隔数=总长度÷间隔长度情况分类:1、两端都植:棵数=间隔数+12、一端植,一端不植:棵数=间隔数3、两端都不植:棵数=间隔数-14、封闭:棵数=间隔数(二)锯木问题:段数=次数+1;次数=段数-1总时间=每次时间×次数(三)方阵问题:最外层的数目是:边长×4—4或者是(边长-1)×4整个方阵的总数目是:边长×边长(四)封闭的图形(例如围成一个圆形、椭圆形):总长÷间距=间隔数;棵数=间隔数(五)棋盘棋子数目:1.棋盘最外层棋子数:每边棋子数×边数-边数2.棋盘总的棋子数:每行棋子数×每列棋子数3.方阵最外层人数:每边人数×4-44.多边形上摆花盆:每边摆的花盆数×边数-边数二、典型例题例1、戴氏教育学校旁边的一条路长20米,在路的一边从头至尾每隔4米种一棵树,一共能种几棵树?例2、小熊家门口有一条小路长50米,从门口开始在小路的一旁每隔5米栽一棵树,问一共栽了多少棵树?例3、两座楼房之间相距40米,每隔4米栽一颗雪松,一共能栽多少棵?例4、晶晶上楼,从第一层走到第三层需要走36级台阶。

那么从第一层走到第六层需要走多少级台阶?例5、将一根木料锯成5分米长的小段,一共花了12分钟,已知锯下一段要花5分钟,问:这根木料有多长?例6、有一正方形操场,每边都栽种17棵树,四个角各种1棵,共种树多少棵?变试题;1.有一个挂钟,每小时敲一次钟,几点钟就敲几下,六点时,5秒钟敲完,那么十二点时,几秒钟才能敲完?2.戴氏教育学校有一个圆形花坛,花坛周围一共种了25棵月季,每两棵月季花之间的距离是2米,问:花坛的周长是多少?三、课堂练习随堂练习:1、元旦即将来临,学校准备在教学大楼的顶部前沿从头到尾每隔5米插上一面彩旗,测得大楼的顶部前沿长50米。

植树问题和方阵问题

植树问题和方阵问题

一、 植树问题分两种情况:(一)不封闭的植树路线.① 若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-)株距=全长÷(棵数1-)② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距;株距=全长÷棵数.③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+).全长=株距⨯(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、 解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.知识框架植树问题和方阵问题例题精讲一、不封闭植树问题【例1】大头儿子的学校旁边的一条路长400米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树?【巩固】在一条长240米的水渠边上植树,每隔3米植1棵。

两端都植,共植树多少棵?【例2】从小熊家到小猪家有一条小路,每隔45米种一棵树,加上两端共种53棵;现在改成每隔60米种一棵树.求可余下多少棵树?【巩固】从甲地到乙地每隔40米安装一根电线杆,加上两端共51根;现在改成每隔60米安装一根电线杆.求还需要多少根电线杆?【例3】马路的一边,相隔8米有一棵杨树,小强乘汽车从学校回家,从看到第一棵树到第153棵树共花了4分钟,小强从家到学校共坐了半小时的汽车,问:小强的家距离学校多远?【巩固】马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树,问汽车每小时走多少千米?【例4】晶晶上楼,从第一层走到第三层需要走36级台阶.如果从第一层走到第六层需要走多少级台阶?(各层楼之间的台阶数相同)【巩固】丁丁和爸爸两个人比赛跑楼梯,从一层开始比赛,丁丁到四层时,爸爸到三层,如此算来,丁丁到16层时,爸爸跑到了几层?【例5】有一个报时钟,每敲响一下,声音可持续3秒.如果敲响6下,那么从敲响第一下到最后一下持续声音结束,一共需要43秒.现在敲响12下,从敲响第一下到最后一下持续声音结束,一共需要多长时间?【巩固】有一个挂钟,每小时敲一次钟,几点钟就敲几下,六点时,5秒钟敲完,那么十二点时,几秒钟才能敲完?【例6】元宵节到了,实验中学学校大门上挂了红绿两种颜色的彩灯,从头到尾一共挂了21只,每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,问实验中学学校的大门有多宽?【巩固】校门口放着一排花,共10盆.从左往右数茉莉花摆在第6,从右往左数,月季花摆在第8,一串红花全都摆在了茉莉花和月季花之间.算一算,一串红花一共有多少盆?【例7】有三根木料,打算把每根锯成3段,每锯开一处需用3分钟,全部锯完需要多少分钟?【巩固】一根木料在24秒内被锯成了4段,用同样的速度锯成5段,需要多少秒?【例8】有一根180厘米长的绳子,从一端开始每3厘米作一记号,每4厘米也作一记号,然后将标有记号的地方剪断,绳子共被剪成了多少段?【巩固】大头儿子和小头爸爸一起攀登一个有300级台阶的山坡,爸爸每步上3级台阶,儿子每步上2级台阶,从起点处开始,父子俩走完这段路共踏了多少级不同的台阶?二、封闭植树问题【例9】公园内有一个圆形花坛,绕着它走一圈是120米.如果沿着这一圈每隔6米栽一棵丁香花,再在每相邻的两株丁香花之间等距离地栽2株月季花,可栽丁香花多少株?可栽月季花多少株?两株相邻的丁香花之间的2株月季花相距多少米?【巩固】一个圆形花坛,周长是180米.每隔6米种一棵芍药花,每相邻的两棵芍药花之间均匀地栽两棵月季花.问可栽多少棵芍药?多少棵月季?两棵月季之间的株距是多少米?一、 方阵问题(1) 明确空心方阵和实心方阵的概念及区别.(2) 每边的个数=总数÷41 ”;(3) 每向里一层每边棋子数减少2;(4) 掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。

6-1-13 植树问题(一).教师版

6-1-13 植树问题(一).教师版

5-1-3.植树问题(一)教学目标1.封闭与非封闭植树路线的讲解及生活运用。

2.掌握空心方阵和实心方阵的变化规律.3.几何图形的设计与构造知识点拨一、植树问题分两种情况:(一)不封闭的植树路线.①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-)株距=全长÷(棵数1-)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距;株距=全长÷棵数.③如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+).全长=株距⨯(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数. 全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数=总数÷41+”;(3)每向里一层每边棋子数减少2;(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。

例题精讲【例 1】大头儿子的学校旁边的一条路长400米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树?【考点】直线上的植树问题【难度】1星【题型】解答【解析】从图上可以看出,每隔4米种一棵树,如果20米长的路的一边共种了6棵树,这是因为我们首先要在这条路的一端种上一棵,就是说种树的棵树要比间距的个数多1,所以列式为:400÷4+1=101(棵). 【答案】101棵【巩固】在一条长240米的水渠边上植树,每隔3米植1棵。

植树问题的公式知识点

植树问题的公式知识点

植树问题的公式知识点:一、植树问题分两种情况,不封闭与封闭路线。

不封闭的植树路线.①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距三者之间的关系是:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-)株距=全长÷(棵数1-)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距;株距=全长÷棵数.③如果植树路线的两端都不植树,则棵数就比②中还少1棵.棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+).全长=株距⨯(棵数+1)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.棵数=段数=周长÷株距.二、解植树问题的三要素解决植树问题,首先要牢记三要素:总路线长、间距(棵距)长、棵数.只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题明确空心方阵和实心方阵的概念及区别.每边的个数=总数÷41 ”;每向里一层每边棋子数减少2;掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。

板块一、非封闭的植树问题【例 1】大头儿子的学校旁边的一条路长400米,在路的一边从头到尾每隔4米种一棵树,一共能种几棵树?从图上可以看出,每隔4米种一棵树,如果20米长的路的一边共种了6棵树,这是因为我们首先要在这条路的一端种上一棵,就是说种树的棵树要比间距的个数多1,所以列式为:400÷4+1=101(棵).【例 2】从小熊家到小猪家有一条小路,每隔45米种一棵树,加上两端共53棵;现在改成每隔60米种一棵树.求可余下多少棵树?【解析】该题含植树问题、相差关系两组数量关系.从小熊家到小猪家的距离是:45×(53-1)=2340(米),间隔距离变化后,两地之间种树:2340÷60+1=40(棵),所以可余下树: 53-40=13(棵) ,综合算式为:53-[45×(53-1)÷60+1]=13(棵).【例 3】马路的一边,相隔8米有一棵杨树,小强乘汽车从学校回家,从看到第一棵树到第153棵树共花了4分钟,小强从家到学校共坐了半小时的汽车,问:小强的家距离学校多远?【解析】第一棵树到第153棵树中间共有153-1=152(个)间隔,每个间隔长8米,所以第一棵树到第153棵树的距离是:152×8=1216(米),汽车经过1216米用了4分钟,1分钟汽车经过:1216÷4=304(米),半小时汽车经过:304×30=9120(米),即小明的家距离学校9120米.【例 4】一位老爷爷以匀速散步,从家门口走到第11棵树用了11分钟,这位老爷爷如果走24分钟,应走到第几棵树?(家门口没有树)【解析】从家门口走到第11棵树是走了11个间隔,走一个间隔所用时间是:11÷11=1(分钟),那么走24分钟应该走了:24÷1=24(个)间隔,所以老爷爷应该走到了第24棵树.【例 5】晶晶上楼,从第一层走到第三层需要走36级台阶.如果从第一层走到第六层需要走多少级台阶?(各层楼之间的台阶数相同)【解析】题意的实质反映的是一线段上的点数与间隔数之间的关系.线段示意图如下:解:①每相邻两层楼之间有多少级台阶?÷-=(级)36(31)18②从第一层走到第六层共多少级台阶?⨯-=(级)18(61)90【例 6】元宵节到了,实验中学学校大门上挂了红绿两种颜色的彩灯,从头到尾一共挂了21只,每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,问实验中学学校的大门有多宽?【解析】一共挂了21只彩灯说明彩灯中间的间距有:21-1=20(个),每隔30分米挂一只红灯,相邻的2只红灯之间挂了一只绿灯,说明每个间距的长是:30÷2=15(分米),所以学而思学校的大门宽度为:15×20=300(分米)【例 7】有一个报时钟,每敲响一下,声音可持续3秒.如果敲响6下,那么从敲响第一下到最后一下持续声音结束,一共需要43秒.现在敲响12下,从敲响第一下到最后一下持续声音结束,一共需要多长时间?【解析】每次敲完以后,声音持续3秒,那么从敲完第一下到敲完第6下,一共经历的时间是43340-=(个)间隔,-=(秒),而这之间只有615所以每个间隔时间是4058÷=(秒),现在要敲响12下,所以一共经历的时间是11个间隔和3秒的持续时间,一共需要时间是:118391⨯+=(秒).【例 8】小明家的小狗喝水时间很规律,每隔5分钟喝一次水,第一次喝水的时间是8点整,当小狗第20次喝水时,时间是多少?【解析】第20次喝水与第1次喝水之间有20119-=(个)间隔,因为小狗每隔5分钟喝一次,所以到第20次喝水中间间隔的时间是:19595⨯=(分钟),也就是1个小时35分钟,所以小狗第20次喝水时时间是:9时35分.【例 9】裁缝有一段16米长的呢子,每天剪去2米,第几天剪去最后一段?【解析】如果呢子有2米,不需要剪;如果呢子有4米,第一天就可以剪去最后一段,4米里有2个2米,只用1天;如果呢子有6米,第一天剪去2米,还剩4米,第二天就可以剪去最后一段,6米里有3个2米,只用2天;如果呢子有8米,第一天剪去2米,还剩6米,第二天再剪2米,还剩4米,这样第三天即可剪去最后一段,8米里有4个2米,用3天,……我们可以从中发现规律:所用的天数比2米的个数少1.因此,只要看16米里有几个2米,问题就可以解决了.16米中包含2米的个数:1628÷=(个)剪去最后一段所用的天数:817-=(天),所以裁缝第7天剪去最后一段.【例 10】有一根180厘米长的绳子,从一端开始每3厘米作一记号,每4厘米也作一记号,然后将标有记号的地方剪断,绳子共被剪成了多少段?【解析】⑴每3厘米作一记号,共有记号:1803159÷-=(个)⑵每4厘米作一记号,共有记号:1804144÷-=(个)⑶其中重复的共有: 18012114÷-=(个)⑷所以记号共有:59441489+-=(个)⑸绳子共被剪成了: 89190+=(段).【例 11】在一根长100厘米的木棍上,自左至右每隔6厘米染一个红色点,同时自右向左每隔5厘米也染一个红点,然后沿红点将木棍逐级锯开,那么长度是4厘米的短木棍有多少根?【解析】由于100是5的倍数,所以自右向左每隔5厘米染一个红点相当于自左向右每隔5厘米染一个红点.而每隔30厘米可得到2个4厘米的短木棍.最后10030310-⨯=(厘米)也可以得一个短木棍,故共有⨯+=(个)4厘米的短棍.2317【例 12】同学们做操,小林站在左起第5列,右起第3列;从前数前面有4个同学,从后数后面有6个同学.每行每列的人数同样多,做操的同学一共有多少人?【解析】带领学生画图求解.一共有几行?列式:4+6+1=11(行)一共有几列?列式:5317+-=(列)一共有多少人?列式:11777⨯=(人)【例 13】北京市国庆节参加游行的总人数有60000人,这些人平均分为25队,每队又以12人为一排列队前进.排与排之间的距离为1米,队与队之间的距离是4米,游行队伍全长多少米?【解析】这道题仍是植树问题的逆解题,它与植树问题中已知树的棵数,树间的距离,求树列的全长相当.逆解时要注意段数比树的棵数少1.所以,⑴每队的人数是:60000252400÷=(人)⑵每队可以分成的排数是:240012200÷=(排)⑶200排的全长米数是:1(2001)199⨯-=(米)⑷25个队的全长米数是:199254975⨯=(米)⑸25个队之间的距离总米数是:4(251)96⨯-=(米)⑹游行队伍的全长是:4975965071+=(米)【例 14】学而思学校三年级运动员参加校运动会入场式,组成66⨯的方块队(即每行每列都是6人),前后每行间隔为2米.他们以每分钟40米的速度,通过长30米的主席台,需要多少分钟?【解析】通过下表理清解题思路.方块队通过主席台需要多少分钟?通过的路程总长÷方块队行进的速度(40米/分钟)方块队长+主席台长(30米)?运用植树问题的逆解思路,即前后每行间隔长×间隔数=方块队长.方块队长:2(61)10⨯-= (米),方块队通过主席台行进路程总长:103040+=(米),方块队通过主席台需要:40401÷=(分钟),综合算式:[2(61)30]401⨯-+÷=(分钟).【巩固】 1一条公路的一旁连两端在内共植树91棵,每两棵之间的距离是5米,求公路长是多少米?【解析】 根据植树问题得到:()9115450-⨯=(米)【巩固】 2从甲地到乙地每隔40米安装一根电线杆,加上两端共51根;现在改成每隔60米安装一根电线杆.求还需要多少根电线杆?【解析】 该题含植树问题、相差关系两组数量关系.解:①从甲地到乙地距离多少米?40(511)2000⨯-=(米)②间隔距离变化后,甲乙两地之间安装多少根电线杆?+=(根)200020100÷=(根),1001101③还需要下多少根电线杆?-=(根)1015150综合算式:[40(511)201]5150⨯-÷+-=(根)【巩固】3马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?【解析】张军5分钟看到501棵树意味着在马路的两端都植树了;只要求出这段路的长度就容易求出汽车速度.解:5分钟汽车共走了:⨯-=(米),9(5011)4500汽车每分钟走:45005900÷=(米),汽车每小时走:=(千米)9006054000⨯=(米)54列综合式:⨯-÷⨯÷=(千米)9(5011)560100054【巩固】5丁丁和爸爸两个人比赛跑楼梯,从一层开始比赛,丁丁到四层时,爸爸到三层,如此算来,丁丁到16层时,爸爸跑到了几层?【解析】丁丁实际跑了三层的距离,爸爸跑了两层的距离,到16层需要跑15层的距离,所以丁丁跑了1535÷=(个)三层的距离,爸爸同时跑了5个两层的距离.所以爸爸跑到了52111⨯+=(层).【巩固】7有一个挂钟,每小时敲一次钟,几点钟就敲几下,六点时,5秒钟敲完,那么十二点时,几秒钟才能敲完?【解析】六点时敲6下,中间共有5个间隔,所以每个时间间隔是551÷=(秒),十二点要敲12下,中间有11个时间间隔,所以十二点要用:11111⨯=(秒)才能敲完.【巩固】8科学家进行一项试验,每隔5小时做一次记录,做第12次记录时,挂钟时针恰好指向9,问做第一次记录时,时针指向几?【解析】我们先要弄清楚从第一次记录到第十二次记录中间经过的时间是多少.第1次到第12次有11个间隔:51155⨯=(小时).然后我们要知道55小时,时针发生了怎样的变化.时针每过12小时就会转一圈回到原来的状态,所以时针转了4圈以后,又经过了7个小时.551247÷=L L(小时)而这时时针指向9点,所以原来时针指向2点.【巩固】9一根木料在24秒内被锯成了4段,用同样的速度锯成5段,需要多少秒?【解析】锯的次数总比锯的段数少1.因此,在24秒内锯了4段,实际只锯了3次,这样我们就可以求出锯一次所用的时间了,又由于用同样的速度锯成5段;实际上锯了4次,这样锯成5段所用的时间就可以求出来了.所以锯一次所用的时间:24(41)8÷-=(秒),锯5段所用的时间:⨯-=()(秒).85132【巩固】11一群小猴排成整齐的队伍做操,长颈鹿站在队伍旁边,一下子看到了他的好朋友金丝猴.长颈鹿数了数,金丝猴的左边有4只猴,右边也有4只猴,前面有5只猴,后面也有5只猴.小朋友,你能算出有多少只猴子在做操吗?【解析】一共有多少行?列式:5+5+1=11(行)【解析】一共有多少列?列式:4+4+1=9(列)【巩固】12一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。

四年级下册植树方阵问题练习题

四年级下册植树方阵问题练习题

四年级下册植树方阵问题练习题1、工人叔叔要在路的一边安装路灯,一共安装了6座。

从第一座到最后一座一共有()个间隔。

2、一排同学之间有7个间隔,这一排有()个同学。

3、工人叔叔准备在一条长200米的大桥一侧安装路灯,每隔40米安装一盏,问共需安装几盏?4、现在要在这条1000米长的公路的一侧安放垃圾桶(首尾要安装),每100米安放一个。

一共需要多少个垃圾桶?5、现在要在这条1000米长的公路的两侧安放垃圾桶(首尾要安装),每100米安放一个。

一共需要多少个垃圾桶?6、园林工人要沿一条长210米的公路一侧植数,每隔6米种一棵(两端都要植),一共要植树多少棵?7、园林工人沿公路一侧植数,每隔6米种一棵,一共种了36棵。

从第一棵到最后一棵的距离有多远?8、工人沿公路一侧植树,每隔 6米种一棵,一共种了36棵。

从第1棵到最后一棵的距离有多远?9、15个军人站成一列,每两个军人间距离为2米,这列队伍有多长?10、广场上的大钟5时敲响5下,8秒敲完。

12时敲12下,需要多长时间?11、林老师家里时钟5点敲响5下,每下相隔2秒,敲完5下需要()秒。

12、酒店里的大钟4时敲4下,6秒敲完,10时敲响10下,需要多长时间?13、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?14、小红住的楼房每上一层要走20个台阶,从二楼到四楼要走()个台阶。

4015、丁丁回家每走一层楼就有12个台阶,共要走72个台阶,丁丁住在几楼?16、一要木头长10米,要把它平均分成5段。

每锯下一段需要8分钟,锯完一共要花多少分钟?17、笔直的跑道一旁插着51面小旗,他们的间隔是2米。

现在要改为只插26面小旗,间隔应改为多少米?18、A组:一根10米长的木头,把它平均分成5段,每锯下一段需要8分钟,锯完一共需要多少分钟?B组:同学们布置教室,挂了6只红灯笼,再在每两只红灯笼中间挂了2只黄灯笼,一共挂了几只黄灯笼?19、教学楼和食堂相距60米。

四年级数学植树等问题详细图解

四年级数学植树等问题详细图解

数学广角:植树等问题(一)植树问题:1、两端要栽:总长=间距×间隔数;间隔数=总长÷间距;棵数=间隔数+1;间隔数=棵数-12、两端不栽:总长=间距×间隔数;间隔数=总长÷间距;棵数=间隔数-1;间隔数=棵数+1情况分类:1、两端都要栽①求棵数的棵数=总长度÷间距+1例题:学校门前新修一条马路长96米,要在马路一旁栽上树,每两颗树之间的相距8米(两端都要栽),一共要栽多少棵树?分析:总长度÷间距=间隔数(树与树之间的间隔数量)96 ÷8 =12(树与树之间有12个间隔)间隔数+1=棵树(为什么要加1呢?因为起点上本来就有一棵树,但是没有算)12(间隔数)+1(起点上的一棵树)=13(棵)列式:总长度÷间距+1=棵数96÷8+1=12+1=13(棵)答:一共要栽13棵树。

图解:②求总长的总长度=(棵数-1)×间距例题:学校门前新修一条马路,要在马路一旁栽上13棵树,每两颗树之间的相距8米(两端都要栽),这条马路有多长?分析:总长度=间距×间隔数这道题没有告诉你树与树之间有多少个间隔,只告诉你有13棵树。

那么间隔数就等于棵数-1。

(间隔数为什么等于棵数减1呢?这个跟两只筷子中间有一个空,三个人站成一排中间有2个空,四个人站成一排中间有3个空,五根手指中间有4个空的道理是一样的,所以要拿棵数减掉1就知道有多少个空了)所以13-1=12(算出间隔数是12个)总长度=间距(8米)×间隔数(12个)=96米完整的表达方式是:总长度=(棵数-1)×间距=(13-1)×8=96米列式:(13-1)×8=12×8=96(米)答:这条马路长96米。

图解:③求间距的间距=总长÷(棵数-1)例题:学校门前新修一条马路长96米,要在马路一旁栽上13棵树(两端都要栽),每两颗树之间相距多少米?分析:总长=间距×间隔数总长度我们已经知道是96米了,那么这个题中树与树之间的间隔数是多少呢?之前我们已经知道了间隔数=棵数-1,所以间隔数=13-1=12。

四年级奥数教程(三)植树问题

四年级奥数教程(三)植树问题

思维训练题——植树问题要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长、②间距(棵距)长、③棵数、只要知道这三个要素中任意两个要素.就可以求出第三个。

1、不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距三者之间的关系是:棵数 = 段数 + 1 = 全长÷株距 + 1 全长 = 株距×(棵数 - 1)株距 = 全长÷(棵数 - 1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长 = 株距×棵数;棵数 = 全长÷株距;株距 = 全长÷棵数。

③如果植树路线的两端都不植树,则棵数就比②中还少1棵。

棵数 = 段数– 1 = 全长÷株距 - 1 株距 = 全长÷(棵数 + 1)。

2、封闭的植树路线棵数 = 段数 = 周长÷株距.3、方阵问题学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

方阵的基本特点是:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2。

②每边人(或物)数和四周人(或物)数的关系:四周人(或物)数=[每边人(或物)数-1]×4;每边人(或物)数=四周人(或物)数÷4+1。

③方阵总人(或物)数=每边人(或物)数×每边人(或物)数。

4、打钟、爬楼、锯木头问题此类问题与不封闭线路的栽树问题有异曲同工之妙,我们主要是要弄清楚,打钟时,打2次,中间只有1个间隔,打3次,有2个间隔……爬楼时,从一楼到二楼,我们只爬了一个楼梯段,从一楼到三楼,我们爬了二个楼梯段……锯木头时,锯一次就可以把木头锯成两段,锯两次可以把木头锯成三段……搞清楚以上事实,我们的做题将变得明朗。

植树与方阵问题(1)

植树与方阵问题(1)

植树与方阵问题
植树问题三要素:
三要素之间的关系:
方阵的基本特点:
例1 有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆?
例2 马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?
例3 某校五年级学生排成一个方阵,最外一层的人数为60人.问方阵外层每边有多少人?这个方阵共有五年级学生多少人?
例4 晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.晶晶摆这个方阵共用围棋子多少个?
例5 一个圆形花坛,周长是180米.每隔6米种一棵芍药花,每相邻的两棵芍药花之间均匀地栽两棵月季花.问可栽多少棵芍药?多少棵月季?两棵月季之间的株距是多少米?
例6 一个街心花园如右图所示.它由四个大小相等的等边三角形组成.已知从每个小三角形的顶点开始,到下一个顶点均匀栽有9棵花.问大三角形边上栽有多少棵花?整个花园中共栽多少棵花?
植树问题练习题
1.一个圆形池塘,它的周长是150米,每隔3米栽种一棵树. 问:共需树苗多少株?
2.有一正方形操场,每边都栽种17棵树,四个角各种1棵,共种树多少棵?
3.在一条路上按相等的距离植树.甲乙二人同时从路的一端的某一棵树出发.当甲走到从自己这边数的第22棵树时,乙刚走到从乙那边数的第10棵树.已知乙每分钟走36米.问:甲每分钟走多少米?
4.在一根长100厘米的木棍上,从左向右每隔6厘米点一个红点.从右向左每隔5厘米点一个红点,在两个红点之间长为4厘米的间距有几段?。

植树问题(方阵问题)

植树问题(方阵问题)

2011年1月15日植树问题(方阵问题)课堂讲解1、方阵的概念:横着排叫行,竖着排叫列,若行数与列数都相等,恰好排成一个正方形,这就是一个方队,这种方队也叫做方阵(亦叫乘方问题)。

在摆放的方阵中如果是实心的,我们叫它实心方阵;如果这个方阵是空心的,我们叫它空心方阵。

2、方阵的基本特点:方阵中,里一层总比外一层的一边少2个物体,里一层物体的个数一定比个一层物体总个数少8个。

实心方阵中,物体个数二最外层的一边个数X最外层一边的个数;(每边数一1) X4二每层数;每层数4-4+1=每边数空心方阵中物体的个数二(最外层一边的个数一层数)X层数X44、方阵中其它特性问题:1、如果把最外圈形成的正方形叫第一层,再向里一圈叫第二层的话,会发现相邻的这两个正方形每边个数相差为2,相邻两层相差总个数为8。

2、每边人(或物)数和四周人(或物)数的关系:四周人(或物)数二【每边人(或物)数-1】X4:每边人(或物)数二四周人(或物)数宁4+13、中实方阵的总人数(或物)二每边人(或物)数X每边人(或物)数4、观察中空方阵,我们不难发现方阵的基本特点:中空方阵的总人(或物)数二(最外层每边人(或物)数一中空方阵的层数)X 中空方阵的层数X4课堂练习题例题1:学生排成12人一行共12行的一个队伍,如果去掉一行一列,共需要去掉多少人?解:因为根据方阵特点,去掉一行一列需要去掉“每边数X2-1”,即12X2-1=23 人。

例题2:小丁在围棋盘上摆一个方阵,其中二行二列是白子,其余都是黑子,黑子共有81枚,这个方阵共有多少枚棋子?解:可以画个图。

并且这是个特殊的方针问题,它去掉的另一边棋子是对齐的。

81枚黑子,则每边是9枚,所以黑棋每行梅列都是9枚,最上层的棋子数就是(9+2)=11 (枚),那么这个方针共有棋子:11X11=121 (枚)。

例题3:游行队伍中,少先队员在彩车周围围成每边两层的方阵,最外面一层每边15人,那么彩车周围共有少先队员多少人?解:这是个空心方阵。

植树问题(方阵)

植树问题(方阵)
方阵问题
棋盘的最外层每边能放19个棋子。
角上的棋子好像算重了
猜一猜:最外层一共可以摆放多少棋子?
19
17 19×2+17×2=72(个) 17
19
18×4=72(个)
19 × 4 - 4 = 72 (个) 边长 × 4 -4 = Байду номын сангаас外层的数目
你还有其它的方 法吗?
边长 × 边长 = 整个棋盘的总数目
五 边 形 不 是 方 阵
逆向思维
方 阵 问 题
边长×4—4 = 最外层的数目
48
(48 +4)÷ 4 =13(人)
方 阵 问 题
8 × 4 - 4 = 28(盆)
封闭图形中的植树问题
理解封闭图形:
想一想: 在封闭图形中植树, 间隔数与棵数有什么关系?
间隔数 = 棵数
• 4、圆形滑冰场的一周全长是150米。如果沿着这 一圈每隔15米安装一盏灯,一共需要装几盏灯?
总长÷ 间隔长=间隔数
间隔数 = 棵数
150÷ 15 =10(盏)
19
19×19=361(个)
方 阵 问 题
想一想:整个棋盘一共可以摆放多少棋子?
棋盘——方阵问题
边长×4—4 = 最外层的数目 边长×边长= 整个方阵的总数目
边长×4—4
方 阵 问 题
外层:15 × 4 - 4= 56(人)
整个方阵:15 × 15= 225(人)
15 × 5 - 5= 15(盆)

(完整)小学四年级奥数--植树和方阵问题

(完整)小学四年级奥数--植树和方阵问题

植树与方阵问题一、植树问题解决植树问题,首先要牢记三要素:①总路线长.②间距(棵距)长.③棵数.只要知道这三个要素中任意两个要素.就可以求出第三个。

关于植树的路线,有封闭与不封闭两种路线。

1.不封闭路线例:如图①若题目中要求在植树的线路两端都植树,则棵数比段数多1.如上图把总长平均分成5段,但植树棵数是6棵。

全长、棵数、株距三者之间的关系是:棵数=段数+1=全长÷株距+1全长=株距×(棵数-1)株距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距×棵数;棵数=全长÷株距;株距=全长÷棵数。

③如果植树路线的两端都不植树,则棵数就比②中还少1棵。

棵数=段数-1=全长÷株距-1. (如右图所示.段数为5段,植树棵数为4棵)株距=全长÷(棵数+1)。

2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。

如右图所示。

棵数=段数=周长÷株距.二、方阵问题学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

方阵可以分为实心方阵和空心方阵。

计算组成实心方阵、空心方阵的物体的个数是主要的方阵问题。

方阵的基本特点是:方阵中,里一层总比外一层的一边少2个物体,里一层物体的个数一定比外一层物体总个数少8个。

①每边数和数的关系:四周数=(每边数—1)×4;每边数=四周数÷4+1。

②实心方阵总数=每边数×每边数。

③空心方阵总数=最外层过数×最外边数-(最外边数- 层数×2)×(最外边数- 层数×2)例题详解例1 有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆,可栽多少根电线杆?例2 马路的一边每相隔9米栽有一棵柳树.张军乘汽车5分钟共看到501棵树.问汽车每小时走多少千米?例3一个圆形花坛,周长是180米.每隔6米种一棵芍药花,每相邻的两棵芍药花之间均匀地栽两棵月季花.问可栽多少棵芍药?多少棵月季?两棵月季之间的株距是多少米?例4 某校五年级学生排成一个方阵,最外一层的人数为60人.问方阵外层每边有多少人?这个方阵共有五年级学生多少人?例5 某小学有学生576人,排成一个三层的空心方阵队列训练,求这个空心方阵外层每边上的人数。

植树问题和方阵问题

植树问题和方阵问题

植树问题1.城中小学在一条大路边从头到尾栽树28棵,每隔6米栽一棵。

问这条路长多少米?2.在一条绿荫大道的一侧从头到尾每隔15米竖一根电线杆,共用电线杆86根。

问这条绿荫大道全长多少米?3.小强家附件的公园里有一个圆形池塘,它的周长是1500米,每隔3米栽种一棵树。

问共需树苗多少株?4.在一条长2500米的公路一侧架设电线杆,每隔50米架设一根,若公路两端都不架设,则共需电线杆多少根?5.在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。

问这段路长多少米?6.红领巾公园一条长200米的甬道两端各有一株桃树,现在两棵桃树之间等距离栽种了39株月季花。

问每两株月季花相隔多少米?7.一位老爷爷以匀速散步,从家门口走到第11棵树用了11分钟,如果这位老爷爷走24分钟,那么应走到第几棵树?8.从小熊家到小猪家有一条小路,每隔45米种一棵树,加上两端共53棵;现在改成每隔60米种一棵树。

问可余下多少棵树?9.马路的一边相隔8米有一棵杨树,小强乘汽车从学校回家,从看到第1棵树到第153棵树共花了4分钟,小强从家到学校共坐了半小时的汽车,问小强的家距离学校多远?10.明明要爷爷出一道趣味题,爷爷给他念了一个顺口溜:湖边春色分外娇,一株杏树一株桃,平湖周围三千米,六米一株都栽到,漫步湖畔美景色,可知桃杏各多少?11.在一座长800米的大桥两边挂彩灯,起点和终点都挂,一共挂了202盏,相邻两盏之间的距离都相等。

求相邻两盏彩灯之间的距离。

12.两棵柳树相距408米,计划在这两棵树之间补栽小树23棵,每两棵树间隔相等,则树的间隔为多少米?13.一个木工锯一根19米的木材,他先把一头损坏部分锯下来,然后锯了5此,锯成同样长的短木条。

问每根短木条长多少米?14.有一幢10层的大楼,由于停电电梯停开。

某人从1层走到3层需要30秒,照这样计算,他从3层走到10层需要多少秒?15.参加阅兵的战士有1200人,平均分成5个大队,队距是7.5米。

植树问题和方阵问题

植树问题和方阵问题

植树问题和方阵问题(四种情况:线路两端都植树、两端都不植树、只有一端植树;环状植树)一、非封闭线的两端都有“点”时,“点数”=“段数”+1=总长/间隔+1。

常见题型如:一条河堤长420米,从头到尾每隔3米栽一棵树,要栽多少棵树?420/3 +1=141二、非封闭线只有一端有“点”时,“点数”=“段数”。

常见题型如:财院东门至文劳路的小路,长700米。

要在小路一旁每隔2米栽一棵树,一共要栽多少棵树?三、非封闭线的两端都没有“点”时,“点数”=“段数”-1。

常见题型如:两座楼房之间相距30米,每隔2米栽一棵树,需要种多少棵树?四、封闭线上,“点数”=“段数”。

常见题型如:一个圆形水池的周长60米。

如果在此水池边沿每隔3米放一盆花,那么一共能放多少盆花?例1:在一条公路的两边植树,每隔3米种一棵树,从公路的东头种到西头还剩5棵树苗,如果改为每隔2.5米种一棵,还缺树苗115棵,则这条公路长多少米?()A.700 B.800 C.900 D.600【答案:C】解析:线型植树问题,公路两边都要种树。

故总棵数=每边棵数×2。

假设公路的长度为x米,则由题意可列方程:(X/3+1)*2+5=(X/2.5 +1)*2-115,解得x=900,故选C。

例2:一个四边形广场,它的四边长分别是60米、72米、84米和96米,现在要在四边上植树,四角需种树,而且每两棵树的间隔相等,那么至少要种多少棵树?A. 22B. 25C. 26D. 30【答案:C】解析此题的关键点是“四角需种树”,欲使四个角都要种树,即是要求出60、72、84和96的最大公约数,为12,然后就是环形植树问题了,套用上面的第四种情况,所求棵数为:(60+72+84+96)/12=26。

例3:为了把2022年北京奥运办成绿色奥运,全国各地都在加强环保,植树造林。

某单位计划在通往两个比赛场馆的两条路的(不相交)两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米,若每隔4米栽一棵,则少2754棵;若每隔5米栽一棵,则多396棵,则共有树苗()。

小学四年级奥数第三讲__植树问题

小学四年级奥数第三讲__植树问题

植树问题要想了解植树中的数学并学会怎样解决植树问题,首先要牢记三要素:①总路线长、②间距(棵距)长、③棵数、只要知道这三个要素中任意两个要素.就可以求出第三个。

1、不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距三者之间的关系是:棵数 = 段数 + 1 = 全长÷株距 + 1全长 = 株距×(棵数 - 1)株距 = 全长÷(棵数 - 1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长 = 株距×棵数;棵数 = 全长÷株距;株距 = 全长÷棵数。

③如果植树路线的两端都不植树,则棵数就比②中还少1棵。

棵数 = 段数– 1 = 全长÷株距 - 1 株距 = 全长÷(棵数 + 1)。

2、封闭的植树路线棵数 = 段数 = 周长÷株距.3、方阵问题学生排队,士兵列队,横着排叫做行,竖着排叫做列.如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

方阵的基本特点是:①方阵不论在哪一层,每边上的人(或物)数量都相同.每向里一层,每边上的人数就少2。

②每边人(或物)数和四周人(或物)数的关系:四周人(或物)数=[每边人(或物)数-1]×4;每边人(或物)数=四周人(或物)数÷4+1。

③中实方阵总人(或物)数=每边人(或物)数×每边人(或物)数。

一、不封闭路线的植树问题例1 有一条公路长900米,在公路的一侧从头到尾每隔10米栽一根电线杆(两端要栽),问需栽多少根电线杆?分析:要以两颗电线杆之间的距离作为分段标准,公路全长可分为若干段,由于公路两端都要求栽杆,所以电线杆的根数比分成的段数多1解:以10米为一段,公路全长可以分成900÷10 = 90(段)共需电线杆根数:90 + 1 = 91(根)答:需栽电线杆91根。

小学四年级数学广角植树问题及间隔的应用

小学四年级数学广角植树问题及间隔的应用

小学四年级数学广角植树问题及间隔的应用本文介绍了数学中关于间隔的问题,其中最常见的是植树问题。

植树问题分为封闭线路和不封闭线路两种情况,通过画图可以得出总长等于间距乘以间隔数的公式。

锯木问题和方阵问题也是常见的间隔问题。

锯木问题中,段数等于次数加一,总时间等于每次时间乘以次数。

方阵问题中,每边人(或物)数和四周人(或物)数的关系为四周人(或物)数等于每边人(或物)数减一乘以四,每边人(或物)数等于四周人(或物)数除以四加一。

最后,文章给出了两个例题进行练。

在一条路上按相等的距离植树,甲乙二人同时从路的一端的某一棵树出发。

已知甲走到从自己这边数的第二十二棵树时,乙刚走到从乙那边数的第十棵树。

已知乙每分钟走36米,问甲每分钟走多少米?甲和乙在路上按相等的距离植树,因此他们走过的距离是相等的。

设甲每分钟走x米,则甲走到第22棵树时走过的距离是21x,而乙走到第10棵树时走过的距离是10×36=360.因此,21x=360,解得x=17.14(保留两位小数)。

因此,甲每分钟走17.14米。

村庄周围栽树,要求每隔15米栽1棵杨树,每2棵杨树中间等距离栽2棵柳树。

已知村庄周长为4500米。

问需要多少棵杨树?多少棵柳树?相邻2棵柳树之间的间距是多少米?村庄周围栽树属于封闭线路问题,因此杨树的棵数等于段数,即4500÷15=300棵。

因为每2棵杨树中间等距离栽2棵柳树,所以柳树数为300×2=600棵。

为了求相邻两棵柳树之间的间距,需要先求出相邻两棵杨树之间栽了多少棵柳树。

因为2棵杨树之间等距离栽2棵柳树,所以这2棵柳树的间距为15÷(2+1)=5米;而在1棵杨树两边的柳树间距为5×2=10米。

一个圆形花坛,周长是180米。

每隔6米种一棵芍药花,每相邻的两棵芍药花之间均匀地栽两棵月季花。

问可栽多少棵芍药?多少棵月季?两棵月季之间的株距是多少米?在圆形花坛上栽花属于封闭路线问题,因此芍药花的棵数等于段数。

天下无双的公考必考题数量关系植树方阵类问题

天下无双的公考必考题数量关系植树方阵类问题

天下无双的公考必考题数量关系植树方阵类问题必考神题把每类必考题总结出来,学会一道题就能会一类题,这才是学霸的不传之秘,高效备考的方法。

01植树方阵类公式:1.单边直线型:棵树=总长÷间隔+12.单边楼间型:棵树=总长÷间隔-13.环形植树公式:棵树=总长÷间隔方阵问题3个结论:N阶方阵总人数N某N最外层人数4N-4相邻两圈相差8人【例1】为了把2023年北京奥运办成绿色奥运,全国各地都在加强环保,植树造林。

单位计划在通往两个比赛场馆的两条路的(不相交)两旁栽上树,现运回一批树苗,已知一条路的长度是另一条路长度的两倍还多6000米,若每隔4米栽一棵,则少2754棵;若每隔5米栽一棵,则多396棵,则共有树苗()。

A.8500棵B.12500棵C.12596棵D.13000棵【例2】一块三角地,在三个边上植树,三个边的长度分别为156米、186米、234米,树与树之间的距离均为6米,三个角上都必须栽一棵树,问共需植树多少棵?A.90棵B.93棵C.96棵D.99棵【例3】条道路的一侧种植了25棵杨树,其中道路两端各种有一棵,且所有相邻的树距离相等。

现在需要增种10棵树,且通过移动一部分树(不含首尾两棵)使所有相邻的树距离相等,则这25棵树中有多少棵不需要移动位置()。

A.3B.4C.5D.6【例4】若干学校联合进行团体操表演,参演学生组成一个方阵,已知方阵由外到内第二层有104人,则该方阵共有学生()人。

A.625B.841C.1024D.1369【参考答案】DCAB已有资料如何获得所有资料加入星球:考进体制内或。

植树与方阵问题

植树与方阵问题

第九页,编辑于星期二:四点 三十八分。
第十页,编辑于星期二:四点 三十八分。
第十一页,编二:四点 三十八分。
第十三页,编辑于星期二:四点 三十八分。
第十四页,编辑于星期二:四点 三十八分。
第十五页,编辑于星期二:四点 三十八分。
第十六页,编辑于星期二:四点 三十八分。
第十七页,编辑于星期二:四点 三十八分。
第十八页,编辑于星期二:四点 三十八分。
第十九页,编辑于星期二:四点 三十八分。
第二十页,编辑于星期二:四点 三十八分。
第二十一页,编辑于星期二:四点 三十八分。
第二十二页,编辑于星期二:四点 三十八分。
第二十三页,编辑于星期二:四点 三十八分。
第一页,编辑于星期二:四点 三十八分。
第二页,编辑于星期二:四点 三十八分。
第三页,编辑于星期二:四点 三十八分。
第四页,编辑于星期二:四点 三十八分。
第五页,编辑于星期二:四点 三十八分。
第六页,编辑于星期二:四点 三十八分。
第七页,编辑于星期二:四点 三十八分。
第八页,编辑于星期二:四点 三十八分。
第二十四页,编辑于星期二:四点 三十八分。
第二十五页,编辑于星期二:四点 三十八分。
第二十六页,编辑于星期二:四点 三十八分。

植树问题方阵问题

植树问题方阵问题

植树问题方阵问题【含义】按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。

【数量关系】1非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距+1棵数=全长÷间隔长+1全长=株距某(株数-1)全长=间隔长某(棵数-1)株距=全长÷(株数-1)间隔长=全长÷(棵数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距棵数=全长÷间隔长全长=株距某株数全长=间隔长某棵数株距=全长÷株数间隔长=全长÷棵数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1棵数=全长÷间隔长-1全长=株距某(株数+1)全长=间隔长某(棵数+1)株距=全长÷(株数+1)间隔长=全长÷(棵数+1)2封闭线路上的植树问题的数量关系如下此题是植树问题中植树线路是封闭的一种.在圆、正方形、长方形、闭全曲线等上面植树,因为首尾相接,两端重合在一起.株数=段数=全长÷株距棵数=全长÷间隔长全长=株距某株数全长=间隔长某棵数株距=全长÷株数间隔长=全长÷棵数线形植树环形植树棵数=距离÷棵距方形植树棵数=距离÷棵距-4三角形植树棵数=距离÷棵距-3面积植树棵数=面积÷(棵距某行距)锯木头总时间=每次用时某次数总台阶=每个楼梯的台阶数某楼梯数例1一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵?例2一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?例3一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?例4给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?例5一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?解(1)桥的一边有多少个电杆?(2)桥的两边有多少个电杆?(3)大桥两边可安装多少盏路灯?【知识运用】一、直线型植树问题(一)两端都种:I求全长1、在一条小路的一侧,每隔10米种一棵柳树,从头到尾共种20棵,则小路全长多少米?在一条小路的一侧,从头到尾共安装10根电线杆,每隔10米安装一根,则小路全长多少米?3、10路共公汽车从起点到终点共有13的车站,每两个车站相距2千米,则10路汽车全程多少千米?4、时钟报时,5时敲5下,每两下之间间隔2秒,则一共用了多少时间?6、小明家住在6层,他每上一层需要10秒种,则他从一楼到家需要多少秒?7、小明家住在6层,每个楼梯上有16级台阶,则他从一楼到家需要走多少个台阶?II求棵数1、在一条小路的一侧,每隔10米种一棵柳树,如果小路全长100米,则可种柳树多少棵?2、在一条小路的一侧,从头到尾每隔10米安装一根电线杆,如果小路全长100米,则可以安装电线杆多少根?3、10路共公汽车从起点到终点全长24千米,每两个车站相距2千米,则10路汽车全程共有多少个车站?4、一根木料锯成若干段需要40分钟,每锯一下需要4分钟,则可以把它锯成多少段?5、小明从一楼到家需要60秒,他每上一层需要10秒种,则他家住在多少层,?6、小明从一楼到家需要走80个台阶,每个楼梯上有16级台阶,则家住在几层?III求间距1、在一条小路的一侧从头到尾共种11棵树,小路全长100米,则每两棵树之间相距多少米?2、在一条小路的一侧,从头到尾共安装10根电线根,如果小路全长90米,每两根电线杆之间相距多少米?3、10路共公汽车从起点到终点全长24千米,10路车从头到尾共有13个车站,那么每两个车站之间相距多少千米?4、一根木料锯成5段需要40分钟,每锯一下需要多少分钟?5、小明从一楼到六楼需要60秒,则他每上一层需要多少秒6、小明从一楼到六楼要走80个台阶,那么每两层之间有多少个台阶?(二)只种一端I求全长1、在教学楼前小路的一侧,每隔10米种一棵柳树,共种20棵,则小路全长多少米?2、在校门前小路的一侧,共安装10根电线杆,每隔10米安装一根,则小路全长多少米?II求棵数1、在教学楼前小路的一侧,每隔10米种一棵柳树,如果小路全长100米,则可种柳树多少棵?2、在校门前小路的一侧,每隔10米安装一根电线杆,如果小路全长200米,则可以安装电线杆多少根?III求间距1、在教学楼前一侧共种11棵树,小路全长100米,则每两棵树之间相距多少米?2、在校门前小路的一侧,共安装10根电线根,如果小路全长90米,每两根电线杆之间相距多少米?(三)两端都不种I求全长1、在教学楼与图书馆之间小路的一侧,每隔10米种一棵柳树,共种20棵,则小路全长多少米?2、在校门前至公共汽车站的小路一侧,共安装10根电线杆,每隔10米安装一根,则小路全长多少米?II求棵数1、在教学楼与图书馆之间小路的一侧,每隔9米种一棵柳树,如果小路全长100米,则可种柳树多少棵?2、,在校门前至公共汽车站的小路一侧,每隔10米安装一根电线杆,如果小路全长200米,则可以安装电线杆多少根?III求间距1、在教学楼与图书馆之间小路的一侧共种9棵树,小路全长100米,则每两棵树之间相距多少米?2、在校门前至公共汽车站的小路一侧,共安装9根电线根,如果小路全长90米,每两根电线杆之间相距多少米?(四)特别问题:锯木头数量关系式:锯的次数=间隔数-1其他的一般都是干扰条件1、一根木料锯成7段,每锯一下需要4分钟,则一共需要多少分钟?2、一根木料平均锯成4段,用时12分钟,如果平均锯成6段,需要多少分钟?二、封闭型植树问题与只种一头相同棵数=间隔数1、一个池塘的周长为240米,沿池塘周围每隔4米载一棵柳树,可以植树多少棵?2、一个池塘的周长为240米,沿池塘周围共种树40棵,每两棵树相距?3、一个池塘每隔4米种一棵树,共种60棵,则这个池塘的周长是多少米?三、方阵问题一周总数=每边数量某边数-边数每边数量=一周总数÷边数+1(一)求一周的总数量1、正方形花坛,每边摆6盆花(每个顶点摆一盆),一周可以摆多少盆?一周总数=(每边数量-1)某边数2、一个正五边形花坛,每边摆6盆花(每个顶点摆一盆),一周可以摆多少盆?(二)求每边数量1、正方形花坛一周共摆放12盆花(每个顶点摆一盆),那么每边可以摆多少盆?2、一个正五边形花坛一周共摆放30盆花(每个顶点摆一盆),每边可以摆多少盆?小结:解决植树问题和方阵问题,关键要与图结合,根据题目的特点画出草图,可以帮助我们分析,从而选择适当的方法解决。

奥数知识点植树与方阵

奥数知识点植树与方阵

1.一个圆形池塘,的周长是150米,每隔3米栽种一棵树.问:共需树苗多少株?解析:由于是封闭路线栽树,所以棵数=段数,
150÷3=50(棵)。

2.有一正方形操场,每边都栽种17棵树,四个角各种1棵,共种树多少棵?解析:在正方形操场边上栽树.正方形边长都相等,四个角上栽的树是相邻的两条边公有的一棵,所以每边栽树的棵数为17-1=16(棵),共栽:(17-1)×4=64(棵)
答:共栽树64棵。

3.在一条路上按相等的距离植树.甲乙二人同时从路的一端的某一棵树出发.当甲走到从自己这边数的第22棵树时,乙刚走到从乙那边数的第10棵树.已知乙每分钟走36米.问:甲每分钟走多少米?
解析:甲走到第22棵树时走过了22-1=21(个)棵距.同样乙走过了10-1=9(个)棵距.乙走到第10棵树,所用的时间为(9×棵距÷36),这个时间也是甲走过21个棵距的时间,甲的速度为:21×棵距÷(9×棵距÷36)=84米/分。

答:甲的速度是每分钟84米。

4.在一根长100厘米的木棍上,从左向右每隔6厘米点一个红点.从右向左每隔5厘米点一个红点,在两个红点之间长为4厘米的间距有几段?
解析:①根据已知条件,从左至右每隔6厘米点一红点,不难算出共有17个点(包括起点,终点)并余4厘米。

②100厘米长的棒从右到左共点21个点,
可分为20段,而最后一点与端点重合,相当于从左到右以5厘米的间距画点.
③在5与6的公倍数30中,不难看出有2个4厘米的小段;同样在第二个和第三个30厘米中也各有2个,剩下的10厘米只有一个4厘米的小段,所以在100厘米的木棍上只能有2×3+1=7(段)4厘米长的间距.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级下册方阵、植树问题练习题分类汇总一、方阵问题
一周总数=每边数量×边数-边数一周总数=(每边数量-1)×边数
每边数量=一周总数÷边数+1
(一)求一周的总数量
1、正方形花坛,每边摆6盆花(每个顶点摆一盆),一周可以摆多少盆?
2、一个正五边形花坛,每边摆6盆花(每个顶点摆一盆),一周可以摆多少盆?
(二)求每边数量
1、正方形花坛一周共摆放12盆花(每个顶点摆一盆),那么每边可以摆多少盆?
2、一个正五边形花坛一周共摆放30盆花(每个顶点摆一盆),每边可以摆多少盆?
小结:解决植树问题和方阵问题,关键要与图结合,根据题目的特点画出草图,可以帮助我们分析,从而选择适当的方法解决
二、特别问题:锯木头
数量关系式:锯的次数=间隔数-1 总时间=每次时间×锯的次数
其他的一般都是干扰条件
1、一根木料锯成7段,每锯一下需要4分钟,则一共需要多少分钟?
2、一根木料平均锯成4段,用时12分钟,如果平均锯成6段,需要多少分钟?
三、直线型植树问题
(一)两端都种:棵数=间隔数+1 间隔数=棵数-1
1求全长
1、在一条小路的一侧,每隔10米种一棵柳树,从头到尾共种20棵,则小路全长多少米?
2、10路共公汽车从起点到终点共有13的车站,每两个车站相距2千米,则10路汽车全程多少千米?
3、时钟报时,5时敲5下,每两下之间间隔2秒,则一共用了多少时间?
4、小明家住在6层,他每上一层需要10秒种,则他从一楼到家需要多少秒?
2求棵数
1、在一条小路的一侧,从头到尾每隔10米安装一根电线杆,如果小路全长100米,则可以安装电线杆多少根?
2、10路共公汽车从起点到终点全长24千米,每两个车站相距2千米,则10路汽车全程共有多少个车站?
3、小明从一楼到家需要60秒,他每上一层需要10秒种,则他家住在多少层?
4、小明从一楼到家需要走80个台阶,每个楼梯上有16级台阶,则家住在几层?
1、在一条小路的一侧从头到尾共种11棵树,小路全长100米,则每两棵树之间相距多少米?
2、10路共公汽车从起点到终点全长24千米,10路车从头到尾共有13个车站,那么每两个车站之间相距多少千米?
3、小明从一楼到六楼需要60秒,则他每上一层需要多少秒
(二)只种一端棵数=间隔数
1求全长
在教学楼前小路的一侧,每隔10米种一棵柳树,共种20棵,则小路全长多少米?
2求棵数
在校门前小路的一侧,每隔10米安装一根电线杆,如果小路全长200米,则可以安装电线杆多少根?
3求间距
在校门前小路的一侧,共安装10根电线根,如果小路全长90米,每两根电线杆之间相距多少米?
(三)两端都不种棵数=间隔数-1 间隔数=棵数+1
1求全长
在教学楼与图书馆之间小路的一侧,每隔10米种一棵柳树,共种20棵,则小路全长多少米?
在校门前至公共汽车站的小路一侧,每隔10米安装一根电线杆,如果小路全长200米,则可以安装电线杆多少根?
3求间距
在校门前至公共汽车站的小路一侧,共安装9根电线根,如果小路全长90米,每两根电线杆之间相距多少米?
二、封闭型植树问题与只种一头相同棵数=间隔数
1、一个池塘的周长为240米,沿池塘周围每隔4米载一棵柳树,可以植树多少棵?
2、一个池塘的周长为240米,沿池塘周围共种树40棵,每两棵树相距?
3、一个池塘每隔4米种一棵树,共种60棵,则这个池塘的周长是多少米?。

相关文档
最新文档