算法初步流程图基本算法语句考前冲刺专题练习(三)附答案人教版高中数学

合集下载

高中人教版数学必修3课本练习-习题参考答案

高中人教版数学必修3课本练习-习题参考答案

高中数学必修③课本练习,习题参考答案第一章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第一步:输入任意正实数r,第二步:计算第三步:输出圆的面积S2. 解;第一步:给定一个大于l的正整数;第二步:令;第三步:用除,得到余数;第四步:判断“”是否成立,若成立,则i是n的因数;否则,i不是n的因数;第五步:使的值增加l,仍用表示,即令;第六步,判断“”是否成立.若是,则结束算法;否则,返回第三步1.1.2程序框图与算法的基本逻辑(P19)1.解;算法步骤:第一步,给定精确地d,令i=1第二步,取出的到小数点后第i位的不足近似值,记为a;取出的到小数点后第i位的过剩近似值,记为b,第三步,计算第四步,若m<d,则执行第五步;否则,将i的值增加1,返回第二步.第五步,输出程序框图如下图所示:1.1算法与程序框图(P20)解; 题目:在国内寄平信(外埠),每封信的质量x (克)不超过60克时的邮费(单位:分)标准为,试写出计算邮费的算法并画出程序框图。

算法如下:第一步,输入质量数x 。

第二步,判断是否成立,若是,则输出y=120,否则执行第三步。

第三步,判断是否成立,若是,则输出y=240,否则,输出y=360,算法结束。

程序框图如下图所示:(注释:条件结构)2.解:算法如下:第一步,i=1,S=0.第二步,判断是否成立,若成立,则执行第三步,否则,执行第四步。

第三步,,i=i+1,返回第二步。

第四步,输出S.程序框图如下图所示:(注释:循环结构)3. 解:算法如下:第一步,输入人数x,设收取的卫生费为y元。

第二步,判断x>3是否成立,若不成立,y=5,输出y;否则,输出y.程序框图如下图所示:(注释:条件结构)1. 解:分析:我们设计对于一般的二元一次方程组(其中)的通用算法:第一步,,得(即) (3)第二步,解(3),得 (4)第三步,将(4)代入(1),得,因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可以输出x、y的值,用顺序结构即可。

2020年高中数学人教A版必修三 算法初步 练习3 Word版含答案

2020年高中数学人教A版必修三 算法初步 练习3 Word版含答案

学业分层测评(三)条件结构(建议用时:45分钟)[学业达标]一、选择题1.下列算法中含有条件结构的是()A.求点到直线的距离B.已知三角形三边长求面积C.解一元二次方程x2+bx+4=0(b∈R)D.求两个数的平方和【解析】A、B、D均为顺序结构,由于解一元二次方程时需判断判别式值的符号,故C选项要用条件结构来描述.【答案】 C2.下列关于条件结构的描述,不正确的是()A.条件结构的出口有两个,但在执行时,只有一个出口是有效的B.条件结构的判断条件要写在判断框内C.条件结构只有一个出口D.条件结构根据条件是否成立,选择不同的分支执行【解析】条件结构的出口有两个,算法的流程根据条件是否成立有不同的流向.【答案】 C3.若f(x)=x2,g(x)=log2x,则如图1-1-21所示的程序框图中,输入x=0.25,输出h(x)=() 【导学号:28750008】图1-1-21 A.0.25B.2 C.-2 D.-0.25 【解析】h(x)取f(x)和g(x)中的较小者.g(0.25)=log20.25=-2,f(0.25)=0.252=116.【答案】 C4.若输入-5,按图1-1-22中所示程序框图运行后,输出的结果是()图1-1-22A.-5 B.0C .-1D .1【解析】 因为x =-5,不满足x >0,所以在第一个判断框中执行“否”,在第2个判断框中,由于-5<0,执行“是”,所以得y =1.【答案】 D5.下列算法中,含有条件结构的是( ) A .求两个数的积 B .求点到直线的距离 C .解一元二次方程D .已知梯形两底和高求面积【解析】 解一元二次方程时,当判别式Δ<0时,方程无解,当Δ≥0时,方程有解,由于分情况,故用到条件结构.【答案】 C 二、填空题6.如图1-1-23所示,是求函数y =|x -3|的函数值的程序框图,则①处应填________,②处应填________.图1-1-23【解析】 ∵y =|x -3|=⎩⎪⎨⎪⎧x -3, x ≥3,3-x , x <3.∴①中应填x<3?又∵若x≥3,则y=x-3.∴②中应填y=x-3.【答案】x<3?y=x-37.如图1-1-24所示的算法功能是________.图1-1-24【解析】根据条件结构的定义,当a≥b时,输出a-b;当a<b时,输出b-a.故输出|b-a|的值.【答案】计算|b-a|8.如图1-1-25是求某个函数的函数值的程序框图,则满足该程序的函数的解析式为________.图1-1-25【解析】 由框图可知f (x )=⎩⎪⎨⎪⎧2x -3, x <0,5-4x , x ≥0.【答案】 f (x )=⎩⎪⎨⎪⎧2x -3,x <05-4x ,x ≥0三、解答题9.写出输入一个数x ,求分段函数y =⎩⎪⎨⎪⎧x ,e x ,(x ≥0),(x <0)的函数值的程序框图.【解】 程序框图如图所示:10.设计一个程序框图,使之能判断任意输入的数x 是奇数还是偶数.【解】 程序框图如下:[能力提升]1.根据图1-1-26中的流程图操作,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则()图1-1-26A.①框中填“是”,②框中填“否”B.①框中填“否”,②框中填“是”C.①框中填“是”,②框中可填可不填D.①框中填“否”,②框中可填可不填【解析】当x≥60时,应输出“及格”;当x<60时,应输出“不及格”.故①中应填“是”,②中应填“否”.【答案】 A2.执行如图1-1-27所示的程序框图,如果输入t∈[-1,3],则输出的s属于()图1-1-27A.[-3,4]B.[-5,2]C.[-4,3] D.[-2,5]【解析】 因为t ∈[-1,3],当t ∈[-1,1)时,s =3t ∈[-3,3);当t ∈[1,3]时,s =4t -t 2=-(t 2-4t )=-(t -2)2+4∈[3,4],所以s ∈[-3,4].【答案】 A3.(2015·太原高一检测)某程序框图如图1-1-28所示,若输出的结果是8,则输入的数是________.图1-1-28【解析】 由程序框图知,⎩⎪⎨⎪⎧x 2≥x3x 2=8或⎩⎨⎧x 2<x 3x 3=8,解得x =-22或x =2. 【答案】 -22或24.如图1-1-29所示是某函数f (x )给出x 的值,求相应函数值y 的程序框图.图1-1-29(1)写出函数f (x )的解析式;(2)若输入的x 取x 1和x 2(|x 1|<|x 2|)时,输出的y 值相同,试简要分析x 1与x 2的取值范围.【解】 (1)f (x )=⎩⎪⎨⎪⎧x 2-1,|x |≥1,1-x 2,|x |<1.(2)画出y =f (x )的图象:由图象及y =f (x )为偶函数,且|x 1|<|x 2|时,f (x 1)=f (x 2)知x 1∈(-1,1),x 2∈[-2,-1)∪(1,2]......................................使用本文档删除后面的即可致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。

高中数学必修三课后习题答案

高中数学必修三课后习题答案

高中数学必修三课后习题答案第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 1、程序:2、程序:3、程序:练习(P29) 1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF INPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c)) PRINT “s=”;s END INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序: 习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等. 第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THEN PRINT “Please input again.”ELSE IF t>0 AND t<=180 THENy=0.2ELSEIF (t -180) MOD 60=0 THENy=0.2+0.1*(t-180)/60ELSEy=0.2+0.1*((t-180)\60+1)END IFEND IFPRINT “y=”;yEND IF END INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差. 2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号. (2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生. 3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本. 练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差. 2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值(1)散点图如下: y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(2)回归直线如下图所示:(3)加工零件的个数与所花费的时间呈正线性相关关系. 4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。

人教版高中数学必修3课后解答答案

人教版高中数学必修3课后解答答案

第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.第二步,i 位的不足近似值,赋给a ;第i 位的过剩近似值,赋给b . 第三步,计算55b a m =-.第四步,若m d <,则得到5a ;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a .程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y . 程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 12、程序:3练习(P29) 12、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新4、34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.第七步,输出成绩分别在区间[0,60),[60,80),[80,100]的人数,,a b c .2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.第一章 复习参考题A 组(P50)1、(1)程序框图: 程序:1、(2)程序框图: 程序:2、见习题1.2 B 组第1题解答.34、程序框图:程序:INPUT “n=”;ni=1S=0WHILE i<=nS=S+1/ii=i+1WENDPRINT “S=”;SEND5(1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m B 组(P35)1 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,”是否成立. 若是,则n是回文数,结束算法;否则,返回第四步.第五步,判断“i m第二章统计2.1随机抽样练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62) 1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地). 习题2.1 A 组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数. (3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间. 2、调查的总体是所有可能看电视的人群. 学生A 的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A 方案抽取的样本的代表性差.学生B 的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B 方案抽取的样本的代表性差.学生C 的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C 方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率. 3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本. (2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等. (3)前面列举的两个问题都可能导致样本的统计推断结果的误差. (4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量. 用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a ,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域.比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关.(3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .G E .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值y 之间的误差的原因之一,其大小取决于e 的方差.)(1)散点图如下: 2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(3)加工零件的个数与所花费的时间呈正线性相关关系.(2)回归直线如下图所示:4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、从表中看出当把 指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标. 2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章概率3.1随机事件的概率练习(P113)1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B习题3.1 A组(P123)1、D.2、(1)0;(2)0.2;(3)1.3、(1)430.067645≈;(2)900.140645≈;(3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率练习(P140)1、(1)1;(2)38.2、如果射到靶子上任何一点是等可能的,那么大约有100个镖落在红色区域.说明:在实际投镖中,命中率可能不同,这里既有技术方面的因素,又是随机因素的影响,所以在投掷飞镖、射击或射箭比赛中不会以一枪或一箭定输赢,而是取多次成绩的总和,这就是为了减少随机因素的影响.习题3.3 A组(P142)1、(1)49;(2)13;(3)29;(4)23;(5)59.2、(1)126;(2)12;(3)326;(4)326;(5)12;(6)313.习题3.3 B 组(P142) 1、设甲到达的时间为x ,乙到达的时间为y ,则0,24x y <<. 若至少一般船在停靠泊位时必须等待,则06y x <-<或06x y <-<,必须等待的概率为:22189711241616-=-=.2、D .第三章 复习参考题A 组(P145)1、56,16,23. 2、(1)0.548; (2)0.186; (3)0.266.3、(1)38; (2)14.4、(1)813; (2)726; (3)665. 5、分别计算两球均为白球的概率、均为红球的概率、均为黑球的概率,然后相加,得1223311166666636⨯⨯⨯++=⨯⨯⨯. 6、56. 说明:利用对立事件计算会比较简单. 第三章 复习参考题B 组(P146)1、第一步,先计算出现正面次数与反面次数相等的概率46328=. 第二步,利用对称性,即出现正面的次数多于反面次数的概率与出现反面的次数多于正面次数的概率是相等的,所以出现正面的次数多于反面次数的概率为35(1)2816-÷=. 2、(1)是; (2)否; (3)否; (4)是.3、(1)45; (2)15; (3)25; (4)25. 说明:此题属于古典概型的一类“配对问题”,由于这里的数比较小,可以用列举法.4、参考教科书140页例4.。

(完整版)高中数学必修三算法初步复习(含答案).docx

(完整版)高中数学必修三算法初步复习(含答案).docx

算法初步章节复习一.知识梳理算法概念算法与程序框图顺序结构框图的逻辑结构循环结构输入语句条件结构算循环语句法初算法语句条件语句步输出语句赋值语句算法案例1、算法的特征:①有限性:算法执行的步骤总是有限的,不能无休止的进行下去②确定性:算法的每一步操作内容和顺序必须含义确切③可行性:算法的每一步都必须是可执行的,即每一步都可以通过手工或者机器在一定时间内可以完成2、程序框图的三种基本逻辑结构:顺序结构、条件结构和循环结构。

3、基本语句:输入语句: INPUT“提示内容” ;变量,兼有赋值功能输出语句: PRINT“提示内容” ;表达式,兼有计算功能赋值语句:变量=表达式,兼有计算功能条件语句: IF条件THEN IF条件THEN语句体语句体ELSE END IF语句体END IF循环语句:( 1)当型( WHILE 型)循环:(2)直到型(UNTIL型)循环:WHILE条件DO循环体循环体WEND LOOP UNTIL条件4. 常用符号运算符号:加____,减 ____,乘 ____,除 ____,乘方 ______,整数取商数 ____ ,求余数 _______.逻辑符号:且AND ,或 OR,大于 >,等于 =,小于 <,大于等于 >=,小于等于 <=,不等于 <>.常用函数:绝对值ABS() ,平方根SQR()5.算法案例(1)辗转相除法和更相减损术 : 辗转相除法和更相减损术都是求两个正整数的最大公约数的方法(2)秦九韶算法 :是求多项式值的优秀算法 .二、精1.将两个数 A =9, B= 15 交使得 A = 15, B= 9 下列句正确的一是()A. B. C. D.A =B A =C B= A C=BB = A C=B A = B B=AB =A A= C2、如所示程序,若入 8 ,下程序行后出的果是()A 、0.5B、 0.6C、 0.7 D 、0.8INPUT t a=0i=1IF t<= 4 THEN j=1WHILE i<8c=0.2WHILE j<=5i=i+2ELES a=(a+j) MOD 5s=2※I+3c=0.2+0.1(t - 3)j=j+1WENDEND IF WEND PRINT sPRINT c PRINT a ENDEND END2343. 上程序运行后出的果()A. 50B. 5C. 25D. 04、上程序运行后的出果()A.17B.19C.21D.235、如右所示 ,甲乙两程序和出果判断正确的是()甲: INPUT i=1乙: INPUT I=1000A .程序不同果不同 B. 程序不同,果相同S=0S=0WHILE i ≤ 1000DO C.程序相同果不同 D .程序同,果S=S+i S=S+ii=i+l I=i一 1WEND Loop UNTIL i<1PRINT S PRINT SEND END6.下列各数中最小的数是()A .85(9)B.210( 6)C. 1000( 4)D. 111111(2)7.二制数 111011001001 (2)的十制数是()A. 3901 B . 3902 C . 3785D. 39048、下面的中必用条件构才能的个数是()(1)已知三角形三,求三角形的面;(2)求方程 ax+b=0(a,b 常数 ) 的根;(3)求三个数 a,b,c 中的最大者;(4)求 1+2+3+⋯ +100 的。

高中数学必修三《算法初步》练习题(内含答案)

高中数学必修三《算法初步》练习题(内含答案)

2、基本算法语句:①输入语句。

输入语句的格式:INPUT “提示内容”;变量②输出语句。

输出语句的一般格式:PRINT“提示内容”;表达式③赋值语句。

赋值语句的一般格式:变量=表达式④条件语句。

(1)“IF—THEN—ELSE”语句格式:IF 条件THEN语句1ELSE语句2END IF⑤循环语句。

(1)当型循环语句当型(WHILE型)语句的一般格式为:WHILE 条件循环体WEND(2)“IF—THEN”语句格式:IF 条件THEN语句END IF(2)直到型循环语句直到型(UNTIL型)语句的一般格式为:DO循环体LOOP UNTIL 条件高中数学必修三《算法初步》练习题一、选择题1.下面对算法描述正确的一项是 ( )A .算法只能用伪代码来描述B .算法只能用流程图来表示C .同一问题可以有不同的算法D .同一问题不同的算法会得到不同的结果2.程序框图中表示计算的是 ( ).A .B CD3将两个数8,17a b ==交换,使17,8a b ==,下面语句正确一组是 ( )A B C D .4. 计算机执行下面的程序段后,输出的结果是( )1a = 3b = a a b =+ b a b =-PRINT a ,b A .1,3 B .4,1 C .0,0 D .6,05.当2=x 时,下面的程序运行后输出的结果是 ( )A .3B .7C .15D .17 6. 给出以下四个问题:①输入一个数x , 输出它的相反数 ②求面积为6的正方形的周长 ③输出三个数,,a b c 中的最大数 ④求函数1,0()2,0x x f x x x -≥⎧=⎨+<⎩的函数值其中不需要用条件语句来描述其算法的有 ( ) A .1个 B .2个 C . 3个 D .4个7.图中程序运行后输出的结果为 ( ) A. 3 43 B. 43 3 C. 18- 16 D. 16 18-8. 如果右边程序执行后输出的结果是990,那么在程序中 UNTIL 后面的“条件”应为 ( )A. i>10B. i<8C. i<=9D. i<99. INPUT 语句的一般格式是( )A. INPUT “提示内容”;表达式B.“提示内容”;变量C. INPUT “提示内容”;变量D. “提示内容”;表达式10.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是( )A . 一个算法只能含有一种逻辑结构 B. 一个算法最多可以包含两种逻辑结构 C. 一个算法必须含有上述三种逻辑结构D. 一个算法可以含有上述三种逻辑结构的任意组合11. 如右图所示的程序是用来 ( )A .计算3×10的值B .计算93的值C .计算103的值D .计算12310⨯⨯⨯⋅⋅⋅⨯的值12. 把88化为五进制数是( )A. 324(5)B. 323(5)C. 233(5)D. 332(5)13.下列判断正确的是 ( )A.条件结构中必有循环结构B.循环结构中必有条件结构C.顺序结构中必有条件结构D.顺序结构中必有循环结构14. 如果执行右边的框图,输入N =5,则输出的数等于( ) A .54B.45C. 65 D.5615.某程序框图如图所示,现输入如下四个函数,其中可以输出的函数是 ( )A .2()f x x =B .1()f x x =C .()ln 26f x x x =+-D . ()f x x =二、填空题: 16.(如右图所示)程序框图能判断任意输入的正整数x 是奇数或是偶数, 其中判断框内的条件是_____________17.执行右边的程序框图, 若0.8p =,则输出的n =18. 读下面程序 , 该程序所表示的函数是19.对任意非零实数a ,b ,若a b ⊗的运算原理如图所示,则21lg1000()2-⊗=________.20.将二进制数101 101(2) 化为八进制数,结果为 .21.用“秦九韶算法”计算多项式12345)(2345+++++=x x x x x x f ,当2x =时的值的过程中,要经过 次乘法运算和 次加法运算,其中3v 的值是 .三、解答题: 22.设计算法求S = 201614121+⋅⋅⋅+++的值, 并画出程序框图.23.(1) 用辗转相除法求840与1785的最大公约数 ;(2) 用更相减损术求612 与468的最大公约数.高中数学必修三《算法初步》练习题-----参考答案一、选择题:CABBC, BADCD, CBBDD二、填空题:16.m = 0?17.4 18.10,00,10.x xy xx x+>⎧⎪==⎨⎪-+<⎩19.1 20.55(8)21.5,5,64三、解答题:22.解:(算法略)程序框图如右图所示.23. 解:(1)105;(2)36.。

必修3第一章《算法初步》训练题(含答案)

必修3第一章《算法初步》训练题(含答案)

必修③第一章《算法初步》练习题一、选择题:1.下面对算法描述正确的一项是:( )A .算法只能用自然语言来描述B .算法只能用图形方式来表示C .同一问题可以有不同的算法D .同一问题的算法不同,结果必然不同 2. 算法的三种基本结构是 ( )A. 顺序结构、模块结构、条件结构B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构 3.用二分法求方程022=-x 的近似根的算法中要用哪种算法结构( ) A .顺序结构 B .条件结构 C .循环结构 D .以上都用 4.对赋值语句的描述正确的是 ( )①可以给变量提供初值 ②将表达式的值赋给变量 ③可以给一个变量重复赋值 ④不能给同一变量重复赋值 A .①②③ B .①② C .②③④ D .①②④5. 将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是 ( ) A. B. C. D.6、下列程序语句不正确...的是( ) A 、INPUT “MATH=”;a+b+c B 、PRINT “MATH=”;a+b+c C 、c b a += D 、1a =c b - 7.下列给变量赋值的语句正确的是( )A. 5=aB.a +2=aC. a =b =4D. a =2*a8. 给出以下四个问题,①输入一个数x ,输出它的相反数.②求面积为6的正方形的周长.③求三个数a,b,c 中的最大数. ④求函数1,0()2,0x x f x x x -≥⎧=⎨+<⎩的函数值.其中不需要用条件语句来描述其算法的有 ( )A. 1个B. 2个C. 3个D. 4个 9.给出以下四个问题: ①解不等式32-x a>23-x a(0>a 且1≠a ) .②求边长为6的正三角形的面积.③求函数21,0()43,0x x f x x x -≥⎧=⎨+<⎩的函数值 ④若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,求m 的值。

最新人教版高中数学必修3第一章《算法与程序框图1.1.1算法的概念》 三同步训练(附答案)1

最新人教版高中数学必修3第一章《算法与程序框图1.1.1算法的概念》 三同步训练(附答案)1

第一章 算法初步1.1 算法与程序框图1.1.1 算法的概念1.对于算法:第一步,输入n.第二步,判断n 是否等于2,若n =2,则n 满足条件;若n>2,则执行第三步. 第三步,依次从2到n -1检验能不能整除n ,若不能整除n ,则执行第四步;若能整除n ,则执行第一步.第四步,输出n.满足条件的n 是( )A .质数B .奇数C .偶数D .约数2.对于一般的二元一次方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2,在写此方程组的算法时,需要我们注意的是( )A .a 1≠0B .a 2≠0C .a 1b 2-a 2b 1≠0D .a 1b 1-a 2b 2≠03.已知一个学生的语文成绩为89分,数学成绩为96分,外语成绩为99分.以下是求他的总分和平均成绩的一个算法:(在横线上填入算法中缺的两个步骤)第一步,取A =89, B =96, C =99.第二步,____________________.第三步,____________________.第四步,输出计算的结果.4.鸡兔同笼问题:“一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少小兔多少鸡?”写出求解这个问题的算法.答案:1.A 此题首先要理解质数的含义,只能被1和自身整除的大于1的整数叫质数.2是最小的质数,这个算法通过对2到(n -1)一一验证,看是否有其他约数,来判断其是否为质数.2.C 在写解方程组的算法时,a 1b 2-a 2b 1是一个很重要的值,它决定着方程组解的个数.3.计算总分D =A +B +C 计算平均成绩E =D 34.解:设有x 只鸡,y 只小兔,则由题意可得⎩⎪⎨⎪⎧ x +y =17,2x +4y =48. ①②算法步骤如下:第一步,②-①×2,得2y =14,③第二步,解③,得y =7.第三步,②-①×4,得-2x =-20.④第四步,解④,得x =10.第五步,得到方程组的解为⎩⎪⎨⎪⎧x =10,y =7, 即有10只鸡,7只小兔.1.下列关于算法的说法中,正确的是( )A .算法就是某个问题的解题过程B .算法执行后可以不产生确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止2.下列语句表达中是算法的有( )①从济南到巴黎可以先乘火车到北京,再坐飞机抵达 ②利用公式S =12ah 计算底为1,高为2的三角形的面积 ③12x>2x +4 ④求M(1,2)与N(-3,-5)两点连线的方程,可先求MN 的斜率,再利用点斜式方程求得A .1个B .2个C .3个D .4个3.早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几步,从下列选项中选出最好的一种算法为( )A .第一步洗脸刷牙、第二步刷水壶、第三步烧水、第四步泡面、第五步吃饭、第六步听广播B .第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭、第五步听广播C .第一步刷水壶、第二步烧水同时洗脸刷牙、第三步泡面、第四步吃饭同时听广播D .第一步吃饭同时听广播、第二步泡面、第三步烧水同时洗脸刷牙、第四步刷水壶4.一瓶香波上写着有关使用的文字:“先将头发湿润,使用香波,出现泡沫,洗涤均匀,重复上述过程.”请问,这是不是一个算法?______.其理由是:________________________________________________________________________.5.一位商人有9枚银圆,其中有1枚略轻的是假银圆,请你设计一个算法能够用天平(不用砝码)将假银圆找出来.6.试写出找出1至1000内7的倍数的算法.答案:1.C 算法是按照一定的规则解决某一类问题的明确和有限的步骤,它具有不唯一性.2.C算法是解决问题的步骤与过程,这个问题并不仅仅限于数学问题,①②④都表达了一种算法.3.C由题意可知,A用时36 min,B用时31 min,C用时23 min,D用时23 min,而C选项更符合逻辑规律.4.不是算法必须在有限步内完成5.解:算法一:第一步,任取2枚银圆分别放在天平的两边.如果天平不平衡,则轻的一边就是假银圆;如果天平平衡,则进行第二步.第二步,取下右边的银圆,放在一边,然后把剩余的7枚银圆依次放在右边进行称量,直到天平不平衡,偏轻的那一枚就是假银圆.算法二:第一步,把银圆分成3组,每组3枚.第二步,先将两组分别放在天平的两边.如果天平不平衡,那么假银圆就在轻的那一组;如果天平左右平衡,则假银圆就在未称的第三组.第三步,取出含假银圆的那一组,从中任取两枚银圆放在天平的两边.如果左右不平衡,则轻的那一边就是假银圆;如果天平两边平衡,则未称的那一枚就是假银圆.6.解:算法一:第一步,令k=1.第二步,输出k·7的值.第三步,将k的值增加1,若k·7的值小于1000,则返回第二步,否则结束.算法二:第一步,令x=7.第二步,输出x的值.第三步,将x的值增加7,若没有超过1000,则返回第二步,否则结束.1.下列结果中,叙述不正确的是()A.算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤B.算法可以看成按要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题C.算法只是在计算机产生之后才有的算法D.描述算法有不同的方式,可以用日常语言和数学语言答案:C现代数学中的算法可以借助于计算机完成,但并不是有了计算机才有算法.2.计算下列各式中的S值,能设计算法求解的是()①S=1+2+3+…+100②S=1+2+3+…+100+…③S=1+2+3+…+n(n≥1且n∈N)A.①②B.①③C.②③D.①②③答案:B算法具有概括性、逻辑性、有穷性、不唯一性和普遍性的特点.3.写出作出y=|x|图象的算法.第一步,当x>0时,作出第一象限的角平分线.第二步,当x=0时,即为原点.第三步,______________________________.答案:当x<0时,作出第二象限的角平分线4.写出求一等腰梯形的面积的算法步骤,已知等腰梯形的腰和底边的夹角为45°,上底长为3,高为2.第一步, ______________________________________________________________. 第二步, _______________________________________________________________. 第三步, ________________________________________________________________.答案:求等腰梯形的下底长2×2+3=7 代入梯形面积公式S =12×(3+7)×2 输出结果S =105.下面给出了一个问题的算法:第一步,输入a.第二步,若a ≥4,则执行第三步,否则执行第四步.第三步,输出2a -1.第四步,输出a 2-2a +3.问题:(1)这个算法解决的问题是什么?(2)当输入的a 值为多大时,输出的数值最小?答案:解:(1)这个算法解决的问题是求分段函数f(a)=⎩⎪⎨⎪⎧2a -1,a ≥4,a 2-2a +3,a<4的函数值. (2)当输入的a 的值为1时,输出的数值最小.6.设计一个算法,求长为a ,宽为b 的长方形的面积.答案:解:算法如下:第一步,输入a ,b.第二步,计算面积S =ab.第三步,输出长方形的面积S.7.有A 、B 两个杯子,其中A 杯中盛有牛奶,B 杯中盛有水,请设计一个算法,将牛奶盛在B 杯中,水盛在A 杯中.(提示:借助第三个空杯子)答案:解:借助第三个杯子C.第一步,将A 杯中的牛奶倒入C 杯中.第二步,将B 杯中的水倒入A 杯中.第三步,将C 杯中的牛奶倒入B 杯中.8.两个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡一个大人或两个小孩,他们四人都会划船,但都不会游泳.试问他们怎样渡过河去?请写出一个渡河方案.答案:解:第一步,两个小孩同船渡过河去.第二步,一个小孩划船回来.第三步,一个大人划船过河去.第四步,对岸的小孩划船回来.第五步,两个小孩同船渡过河去.第六步,一个小孩划船回来.第七步,余下的一个大人独自划船渡过河去.第八步,对岸的小孩划船回来.第九步,两个小孩再同时划船渡过河去.9.写出一个求有限整数序列中的最大值的算法.答案:解:算法如下:第一步,先假定序列中的第一个整数为“最大值”.第二步,将序列中的下一个整数值与“最大值”比较,如果它大于此“值”,这时就假定“最大值”是这个整数.第三步,如果序列中还有其他整数,重复第二步.10.写出一个判断圆(x -a)2+(y -b)2=r 2和直线Ax +By +C =0(A 、B 不同时为零)位置关系的算法.答案:解:第一步,输入圆心的坐标(a ,b),直线方程的系数A 、B 、C 和半径r. 第二步,计算z 1=Aa +Bb +C.第三步,计算z 2=A 2+B 2.第四步,计算d =|z 1|z 2. 第五步,如果d>r 则相离,如果d =r 则相切,如果d<r 则相交.注:也可将第二、三、四步合为一步计算d =|Aa +Bb +C|A 2+B 2. 点评:算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特殊的关系,也是抽象与具体的关系.算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决.。

最新高一数学题库 必修3算法初步练习题及答案

最新高一数学题库 必修3算法初步练习题及答案

第一章算法初步1.1算法与程序框图1.1.1算法的概念1.下面的结论正确的是【】A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.下面对算法描述正确的一项是【】A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征【】A.抽象性B.精确性C.有穷性D.唯一性4.算法的有穷性是指【】A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法【】A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是【】A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x-=有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为157.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=(1)2n n+直接计算.第一步______①_______;第二步_______②________;第三步输出计算的结果.8.写出1×2×3×4×5×6的一个算法.1.1.2 程序框图1.算法的三种基本结构是【】A. 顺序结构、模块结构、条件结构 B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2.给出以下四个问题,①输入x, 输出它的相反数;②求面积为6的正方形的周长;③在三个不等实数,,a b c中,求一个数的最大数;④求函数1,0()2,0x xf xx x-≥⎧=⎨+<⎩的函数值。

新人教版必修3算法初步练习题及答案

新人教版必修3算法初步练习题及答案

第一章算法初步1.1算法与程序框图1.1.1算法的概念1.下面的结论正确的是【】A.一个程序的算法步骤是可逆的B.一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.下面对算法描述正确的一项是【】A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征【】A.抽象性B.精确性C.有穷性D.唯一性4.算法的有穷性是指【】A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法【】A.S1洗脸刷牙、S2刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是【】A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程210x-=有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为157.写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+n=(1)2n n+直接计算.第一步______①_______;第二步_______②________;第三步输出计算的结果.8.写出1×2×3×4×5×6的一个算法.1.1.2 程序框图1.算法的三种基本结构是【】A. 顺序结构、模块结构、条件结构 B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2.给出以下四个问题,①输入x, 输出它的相反数;②求面积为6的正方形的周长;③在三个不等实数,,a b c中,求一个数的最大数;④求函数1,0()2,0x xf xx x-≥⎧=⎨+<⎩的函数值。

算法初步流程图基本算法语句考前冲刺专题练习(三)带答案人教版高中数学

算法初步流程图基本算法语句考前冲刺专题练习(三)带答案人教版高中数学
16.7
17.
18.【解析】输出的
19.A.
20.
评卷人
得分
三、解答题
21.
22.
4
5
6
7
8
9
10
11
12
13
14
15
例如,用十六进制表示:E+D=1B,则A×B=()
(A)6E(B)72(C)5F(D)B0
6.(汇编全国3理)计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号 这些符号与十进制的数的对应关系如下表:
十六进制
0
1
2
3
4
5
6
7
8
9
14.根据右图的伪代码,输出的结果 为▲.
15.执行如图所示的程序框图,输出的s值为
(A)-3(B)- (C) (D)2(汇编北京理)
16.根据如图所示的算法流程图,可知输出的结果 为_______________.
17.执行如图所示的流程图,输出结果为.
18.右图是一个算法的流程图,最后输出的 ▲.
高中数学专题复习
《算法初步流程图基本算法语句》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1..(汇编年高考课标Ⅰ卷(文))执行右面的程序框图,如果输入的 ,则输出的 属于
( )
A. B. C. D.
2..(汇编年高考辽宁卷(文))执行如图所示的程序框图,若输入
( )

算法初步流程图基本算法语句考前冲刺专题练习(三)附答案人教版高中数学新高考指导

算法初步流程图基本算法语句考前冲刺专题练习(三)附答案人教版高中数学新高考指导
15.右图是一个算法流程图,则输出的S的值是▲.
16.运行如图所示的程序框图,则输出的结果S=▲.
17.如图所示的算法流程图中,输出S的值为.(汇编龙岩一中第六次月考)
答案
18.根据如图所示的算法流程图,可知输出的结果 为_______________.
19.右图程序运行结果是_____________
A. B. C. D.
5..(汇编年高考江西卷(理))阅读如下程序框图,如果输出 ,那么在空白矩形框中应填入的语句为
( )
A. B. C. D.
6..(汇编年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))如图所示,程序框图(算法流程图)的输出结果是
( )
A. B. C. D.
7.(汇编陕西理)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )
高中数学专题复习
《算法初步流程图基本算法语句》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1..(汇编年高考福建卷(文))阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数 后,输出的 ,那么 的值为( )
11.一个算法的流程图如图所示,则输出的S的值为.
12.如果执行上(右)边的程序框图,输入 ,那么输出的各个数的合等于()

算法初步流程图基本算法语句考前冲刺专题练习(一)附答案新高考高中数学

算法初步流程图基本算法语句考前冲刺专题练习(一)附答案新高考高中数学

高中数学专题复习
《算法初步流程图基本算法语句》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人得分
一、选择题
1.(汇编年高考安徽(文))如图所示,程序据图(算法流程图)的输出结果为()
A.3
4
B.
1
6
C.
11
12
D.
25
24
2.1 .(汇编年高考山东卷(文))执行右边的程序框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为。

(好题)高中数学必修三第二章《算法初步》测试题(答案解析)(3)

(好题)高中数学必修三第二章《算法初步》测试题(答案解析)(3)

一、选择题1.执行如图所示的程序框图输出的结果是( )A .8B .6C .5D .32.若执行下面的程序框图,输出S 的值为5,则判断框中应填入的条件是( )A .15?k ≤B .16?k ≤C .31?k ≤D .32?k ≤ 3.运行如图所示的程序框图,若输出S 的值为129,则判断框内可填入的条件是( )A .4?k <B .5?k <C .6?k <D .7?k < 4.执行如图所示的程序框图,若输出的结果为126,则判断框内的条件可以为( )A .5n ≤B .6n ≤C .7n ≤D .8n ≤ 5.如图给出的是计算1232018⨯⨯⨯⨯的值的一个程序框图,则其中判断框内应填入的是( )A .2018i <B .2018i =C .2018i ≤D .2018i > 6.阅读如图所示的程序框图,当输入5n =时,输出的S =( )A .6B .4615C .7D .47157.《张丘建算经》中如下问题:“今有马行转迟,次日减半,疾五日,行四百六十五里,问日行几何?”根据此问题写出如下程序框图,若输出465S =,则输入m 的值为( )A .240B .220C .280D .2608.某程序框图如图所示,其中21()g n n n =+,若输出的20192020S =,则判断框内可以填入的条件为( )A .2020?n <B .2020?nC .2020?n >D .2020?n 9.若如图所示的程序框图的输出结果为二进制数(2)10101化为十进制数(注:01234(2)101011202120212=⨯+⨯+⨯+⨯+⨯),那么处理框①内可填入( )A .2S S i =+B .S S i =+C .21S S i =+-D .2S S i =+ 10.如图给出的是计算1111246102+++⋅⋅⋅+的值的一个程序框图,其中判断框中应填入的是( )A .102i >B .102i ≤C .100i >D .100i ≤ 11.执行如图所示的程序框图,若输入的6n =,则输出S =A .514B .13C .2756D .31012.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥? 二、填空题13.如图所示的流程图中,输出n 的值为______.14.下图所示的算法流程图中,输出的S 表达式为__________.t=,则输出的k=______.15.某程序框图如图所示,若输入的416.执行如图程序框图,输出的结果为______.17.根据如图所示的算法流程图,可知输出的结果S为______.18.如下图,程序框图中,若输入4,10m n ==,则输出a 的值是________.19.执行如图所示的程序框图,输出的S 值是__________.20.某程序框图如图所示,该程序运行后输出的S 为____________.三、解答题21.如图所示的程序框图,根据该图和下列各小题的条件回答下面的几个小题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为0和4时,输出的值相等,问当输入的x的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?22.已知程序框图如图所示,用“直到型循环”写出程序框图所对应的算法语句23.如图是解决某个问题而绘制的程序框图,仔细分析各框内的内容及图框之间的关系,回答下面的问题:(1).图框①中2x =的含义是什么?(2).图框②中1y ax b =+的含义是什么?(3).图框④中2y ax b =+的含义是什么?(4).该程序框图解决的是怎样的问题?(5).当最终输出的结果是13y =,22y =-时,求()y f x =的解析式.24.下面程序的功能是输出1~100之间的所有偶数.程序:i=1DOm=iMOD2IF ①THENPRINTiENDIFLOOPUNTILi>100END(1)试将上面的程序补充完整;(2)改写为WHILE型循环结构程序.25.阅读如图所示的程序框图,回答下面的问题;(1)图框①中x=4的含义是什么?(2)图框②中y1=x3+2x+3的含义是什么?(3)图框④中y2=x3+2x+3的含义是什么?26.从某企业生产的某种产品中抽取20件,测量这些产品的一项质量指标值,由测量得到如图1的频率分布直方图,从左到右各组的频数依次记为1A,2A,3A,4A,5A.(1)求图1中a的值;(2)图2是统计图1中各组频数的一个算法流程图,求输出的结果S.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据程序框图循环结构运算,依次代入求解即可.【详解】根据程序框图和循环结构算法原理,计算过程如下:1,1,x y z x y ===+第一次循环2,1,2z x y ===第二次循环3,2,3z x y ===第三次循环5,3,5z x y ===第四次循环8z =,退出循环输一次8z =.所以选A【点睛】本题考查了程序框图的基本结构和运算,主要是掌握循环结构在何时退出循环结构,属于基础题.2.C解析:C【分析】根据流程图可知()231log 3log 4log 1k S k =⨯⨯⨯⨯+,根据输出值为5可得判断条件. 【详解】设判断条件为k m ≤,则输出值为()231log 3log 4log 1m S m =⨯⨯⨯⨯+, 而()()lg 1lg 1lg 3lg 415lg 2lg 3lg lg 2m m S m ++=⨯⨯⨯⨯==, 故31m =,故选:C.【点睛】本题考查流程图中判断条件的确定以及对数性质的应用,注意S 的计算应根据判断条件的临界值来计算,本题属于中档题.3.C解析:C【分析】最常用的方法是列举法,即依次执行循环体中的每一步,直到循环终止,但在执行循环体时要明确循环终止的条件是什么,什么时候要终止执行循环体.【详解】0S =,1k =;110121S -=+⨯=,2k =;211225S -=+⨯=,3k =;3153217S -=+⨯=,4k =;41174249S -=+⨯=,5k =;514952129S -=+⨯=,6k =,此时输出S ,即判断框内可填入的条件是“6?k <”.故选:C .【点睛】本题考查循环结构程序框图.解决程序框图填充问题的思路(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、执行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.4.B解析:B【分析】根据框图,模拟程序运行即可求解.【详解】根据框图,执行程序,12,2S n ==;1222,3S n =+=;⋯12222,1i S n i =++⋯+=+,令12222126i S =++⋯+=,解得6i =,即7n =时结束程序,所以6n ≤,故选 :B【点睛】本题主要考查了程序框图,循环结构,条件分支结构,等比数列求和,属于中档题.genju 5.D解析:D【分析】可先结合输出结果预判,满足某一条件时,输出结果s ,综合判断D 正确【详解】由输出结果判断,显然是经过多次运算的结果,运算中i 是不断递加的,满足某一条件时,输出结果,排除A ,C ;接下来计算:设001,1s i ==,不满足判断条件,100101,12s s i i i =⋅==+=;不满足判断条件,2112112,13s s i i i =⋅=⨯=+=;不满足判断条件,32232123,14s s i i i =⋅=⨯⨯=+=;直到201820172017201820171232018,12019s s i i i =⋅=⨯⨯⨯=+=,此时满足判断条件,说明20192018>,故判断语句为:2018i >故选:D【点睛】本题考查由输出值辨别判断语句,属于中档题 6.D解析:D【分析】根据程序框图,依次运行程序即可得出输出值.【详解】输入5n =时,1,1,1,5S i a i ===≤,2,3,2a S i ===,5i ≤222,5,32a S i =⨯===,5i ≤ 2442,5,4333a S i =⨯==+=,5i ≤ 42242,5,534333a S i =⨯==++=,5i ≤ 224424,5,635153315a S i =⨯==+++=, 输出424457331515S =+++= 故选:D【点睛】此题考查程序框图,关键在于读懂框图,根据结构依次运算,求出输出值,尤其注意判断框中的条件. 7.A解析:A【分析】根据程序框图,依次循环计算,可得输出的S 表达式.结合465S =,由等比数列求和公式,即可求得m 的值.【详解】由程序框图可知,0,0S i ==,1S m i ==,22m S m i =+= ,324m m S m i =++= ,4248m m m S m i =+++= ,524816m m m m S m i =++++= 此时输出S .所以46524816m m m m m ++++= 即1111146524816m ⎛⎫++++= ⎪⎝⎭由等比数列前n 项和公式可得5112465112m ⎛⎫- ⎪⎝⎭⨯=- 解得240m =故选:A【点睛】本题考查了循环结构程序框图的应用,等比数列求和的应用,属于中档题.8.A解析:A【分析】因为()()2111111g n n n n n n n ===-+++,此程序框图是对函数()g n 求和,利用裂项相消法求和,可知201912020n S n ==+,可知2019满足条件进入循环,2020不满足条件没有进入循环,根据选项得到正确结果.【详解】 由2221111111112019(1111222231112020n S n n n n n n ⎫⎛⎫⎛⎫=++⋯+=-+-+⋯+-=-==⎪ ⎪ ⎪++++++⎭⎝⎭⎝⎭,解得2019n =,可得n 的值为2019时.满足判断框内的条件,当n 的值为2020时,不满足判断框内的条件,退出循环,输出S 的值,故判断框内可以填人的条件为“2020n <?”.故选A.【点睛】本题考查根据循环框图的输出结果填写判断框的内容,关键是分析出满足输出结果时的n 值,再根据选项判断结果.9.D解析:D【解析】【分析】由二进制数化为十进制数,得出(2)1010121=,得到运行程序框输出的结果,验证答案,即可求解.【详解】由题意,二进制数()210101化为十进制数43210(2)10101120212021221=⨯+⨯+⨯+⨯+⨯=,即运行程序框输出的结果为21,经验证可得,处理框内可填入2S S i =+,故选D.【点睛】本题主要考查了二进制与十进制的转化,以及循环结构的程序框图的计算与输出,着重考查了推理与运算能力,属于基础题.10.B解析:B【解析】【分析】 根据题目所求表达式1111246102+++⋅⋅⋅+中最后一个数字1102,确定填写的语句. 【详解】 由于题目所求是1111246102+++⋅⋅⋅+,最后一个数字为1102,即当102i =时,判断是,继续循环,2104i i =+=,判断否,退出程序输出S 的值,由此可知应填102i ≤.故选B.【点睛】本小题主要考查填写程序框图循环条件,属于基础题. 11.B解析:B【解析】【分析】首先确定流程图所实现的功能,然后利用裂项求和的方法即可确定输出的数值.【详解】 由流程图可知,程序输出的值为:1111023344556S =++++⨯⨯⨯⨯, 即1111111123344556S ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111263=-=. 故选B .【点睛】本题主要考查流程图功能的识别,裂项求和的方法等知识,意在考查学生的转化能力和计算求解能力.12.C解析:C【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3=满足判断框内的条件,执行循环体,a 33=,k 5=满足判断框内的条件,执行循环体,a 170=,k 7=此时,不满足判断框内的条件,退出循环,输出a 的值为170.则分析各个选项可得程序中判断框内的“条件”应为k 6<?故选:C .【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.二、填空题13.4【分析】根据流程图依次运行直到结束循环输出n 得出结果【详解】由题:结束循环输出故答案为:4【点睛】此题考查根据程序框图运行结果求输出值关键在于准确识别循环结构和判断框语句解析:4【分析】根据流程图依次运行直到1S ≤-,结束循环,输出n ,得出结果.【详解】 由题:211,1,1log 0,211S n S n ===+==+, 22220log log ,3213S n =+==+, 222232log log log 1,43314S n =+==-=+,1S ≤-结束循环, 输出4n =.故答案为:4【点睛】此题考查根据程序框图运行结果求输出值,关键在于准确识别循环结构和判断框语句. 14.【分析】根据流程图知当满足条件执行循环体依此类推当不满足条件退出循环体从而得到结论【详解】满足条件执行循环体满足条件执行循环体满足条件执行循环体…依此类推满足条件执行循环体不满足条件退出循环体输出故 解析:112399++++【分析】根据流程图知当1i =,满足条件100i <,执行循环体,1S =,依此类推,当100i =,不满足条件100i <,退出循环体,从而得到结论.【详解】1i =,满足条件100i <,执行循环体,1S =2i =,满足条件100i <,执行循环体,12S =+3i =,满足条件100i <,执行循环体,123S =++…依此类推99i =,满足条件100i <,执行循环体,1299S =++⋯+,100i =,不满足条件100i <,退出循环体,输出1112399S S ==+++⋯+,故答案为112399++++.【点睛】 本题主要考查了循环结构应用问题,此循环是先判断后循环,属于中档题.15.【分析】根据题意执行循环结构的程序框图逐次计算即可得到答案【详解】由题意执行程序框图:可得;第一循环不满足条件;第二次循环不满足条件;第三次循环不满足条件;第四次循环不满足条件;第五次循环不满足条件 解析:【分析】根据题意,执行循环结构的程序框图,逐次计算,即可得到答案.【详解】由题意执行程序框图:可得0S =, 8k =;第一循环,不满足条件,8S =,7k =;第二次循环,不满足条件,1S =,6k =;第三次循环,不满足条件,5S =,5k =;第四次循环,不满足条件0S =,4k =;第五次循环,不满足条件4S =,3k =,第六次循环,满足条件,输出3k =.【点睛】本题主要考查了循环结构的程序框图的计算输出问题,其中解答中根据给定的程序框图,逐次循环,逐次计算,注意把握判定条件是解答的关键,着重考查了推理与运算能力,属于基础题.16.【分析】n=2018时输出S 利用三角函数的周期性即可得出【详解】n=2018时输出SS=又的周期为12由图象易知:∴S==故答案为:【点睛】本题的实质是累加满足条件的数据可利用循环语句来实现数值的累 解析:12. 【分析】n=2018时,输出S .利用三角函数的周期性即可得出.【详解】n=2018时,输出S . S=232017 6666sin sin sin sin ππππ++++ 又y sin 6x π=的周期为12,由图象易知:2312 06666sin sin sin sin ππππ++++=, ∴S=23122017 168?66666sin sin sin sin sin πππππ⎛⎫++++⨯+ ⎪⎝⎭=12 故答案为:12. 【点睛】 本题的实质是累加满足条件的数据,可利用循环语句来实现数值的累加(乘)常分以下步骤:(1)观察S 的表达式分析,确定循环的初值、终值、步长;(2)观察每次累加的值的通项公式; (3)在循环前给累加器和循环变量赋初值,累加器的初值为0,累乘器的初值为1,环变量的初值同累加(乘)第一项的相关初值;(4)在循环体中要先计算累加(乘)值,如果累加(乘)值比较简单可以省略此步,累加(乘),给循环变量加步长;(5)输出累加(乘)值.17.【解析】执行循环为点睛:算法与流程图的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环结构伪代码其次要重视循环起点条件循环次数循环终止条件更要通过循环规律明确流程图研究的解析:34【解析】执行循环为1111111131122334223344S =++=-+-+-=⨯⨯⨯ 点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.18.20【解析】模拟执行程序可得:不满足条件整除以不满足条件整除以不满足条件整除以不满足条件整除以满足条件整除以退出循环输出的值为点睛:本题主要考查的程序框图的知识点解题的关键是要读懂程序框图模拟执行程 解析:20【解析】模拟执行程序,可得:4,10m n ==,1i =,4a =不满足条件n 整除以a2i =,8a =不满足条件n 整除以a3i =,12a =不满足条件n 整除以a4i =,16a =不满足条件n 整除以a5i =,20a =满足条件n 整除以a ,退出循环,输出a 的值为20点睛:本题主要考查的程序框图的知识点.解题的关键是要读懂程序框图.模拟执行程序,依次写出每次循环得到的i ,a 的值,当20a =的时候,满足条件n 整除以a ,退出循环,即可得到输出a 的值为20.19.【解析】由框图可知其功能为因为每相邻6个值的为0所以=填【解析】 由框图可知其功能为232017sinsin sin sin 3333S ππππ=++++,因为每相邻6个值的为0,所以sin 3S π=20.【分析】列出前几次循环找出该算法循环的周期性然后利用周期性求出输出结果的值【详解】成立执行第一次循环;成立执行第二次循环;成立执行第三次循环;成立执行第四次循环;成立执行第五次循环由上可知该算法循环解析:13. 【分析】 列出前几次循环,找出该算法循环的周期性,然后利用周期性求出输出结果S 的值.【详解】12011i =≤成立,执行第一次循环,12312S +==--,112i =+=; 22011i =≤成立,执行第二次循环,()()131132S +-==---,213i =+=; 32011i =≤成立,执行第三次循环,11121312S ⎛⎫+- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭,314i =+=;42011i =≤成立,执行第四次循环,1132113S +==-,415i =+=; 52011i =≤成立,执行第五次循环,12312S +==--,516i =+=. 由上可知,该算法循环是以4次为一个循环周期,执行完最后一次循环,2012i =,201255024=⨯+,因此,输出的结果S 的值为13,故答案为13. 【点睛】本题考查算法的周期性,解题时要结合算法程序框图得出算法循环的周期性,考查推理能力与计算能力,属于中等题.三、解答题21.(1)求二次函数f (x )=-x 2+mx 的函数值(2)输入的x 的值为3时,输出的f (x )的值为3(3)2【分析】(1)模拟执行程序框图即可确定程序框图的功能是求2()f x x mx =-+的函数值.(2)由已知可得:(0)f f =(4),从而有1640m -+=,即可解得m ,即可求f (3)的值.(3)由已知可得2()(2)4f x x =--+,从而当2x =时,()4max f x =,即可得解.【详解】解:(1)该程序框图解决的是求二次函教2()f x x mx =-+的函数值的问题;(2)当输入的x 的值为0和4时,输出的值相等,即()()04f f =,因为(0)0f =, ()4164f m =-+,所以1640m -+=,所以4m =,所以2()4f x x x =-+,则()233433f =-+⨯=, 所以当输入的x 的值为3时,输出的()f x 值为3;(3)因为22()4(2)4f x x x x =-+=--+,当2x =时,()4max f x =,所以要想使输出的值最大,输入的x 的值应为2;【点睛】本题主要考查了二次函数的图象和性质,考查了程序框图和算法,属于基础题. 22.见解析【分析】根据程序框图直接写出直到型循环的算法语句得到答案.【详解】算法语句如下:【点睛】本题考查了将程序框图转化为算法语句,意在考查学生对于程序框图和算法语句的理解和掌握.23.见解析【分析】(1)根据赋值语句的意义可得结果;(2)当2x =时计算ax b +的值,并把这个值赋给1y ;(3)当3x =-时,计算ax b +的值,并把这个值赋给2y ;(4)该程序框图解决的是求函数()f x ax b =+的函数值的问题;(5)列出关于,a b 的一元一次方程组求解即可.【详解】(1)图框①中2x =表示把2赋值给变量x .(2)图框②中1y ax b =+的含义是:该图框在执行①的前提下,即当2x =时,计算ax b +的值,并把这个值赋给1y .(3)图框④中,2y ax b =+的含义是:该图框在执行③的前提下,即当3x =-时,计算ax b +的值,并把这个值赋给2y .(4)该程序框图解决的是求函数y ax b =+的函数值的问题,其中输入的是自变量x 的值,输出的是对应x 的函数值.(5)13y =,即2+=3a b .⑤22y =-,即3+2a b -=-.⑥由⑤⑥,得1a =,1b =,所以()1f x x =+.【点睛】本题主要考查了对顺序结构程序框图的理解,属于基础题.24.(1)①m=0②i=i+1;(2)见解析【分析】(1)如果除以2的余数为零,则为偶数,故填0m =.i 每次增加1,故填1i i =+.(2)根据WHILE 型循环的结构,对原有程序进行改写.【详解】(1)①m=0②i=i+1(2)改写为WHILE 型循环程序如下:i=1WHILE i<=100m=I MOD 2IF m=0 THENPRINT iEND IFi=i+1WENDEND【点睛】本小题主要考查循环结构的两种编写程序的方法,属于基础题. 25.见解析.【分析】根据课本中对赋值语句以及符号的规定,结合题意可得到每个式子的含义.【详解】(1)图框①的含义是初始化变量,将4赋值给变量x .(2)图框②中y 1=x 3+2x+3的含义是在执行①的前提下,即当x =4时,计算x 3+2x+3的值,并令y 1等于这个值.(3)图框④中y 2=x 3+2x+3的含义是在执行③的前提下,即当x =-2时,计算x 3+2x+3的值,并令y 2等于这个值.【点睛】这个题目考查了程序框图中的基本语句的含义,题目比较基础. 26.(1) 0.005a =.(2) 18S =.【解析】分析:(1)由频率分布直方图中所有频率之和为1可计算出a ; (2)模拟程序运行,程序实际上是计算234A A A ++.详解:(1)由频率直方图可知()20.020.030.04101a +++⨯=, 解得0.005a =;根据程序框图10.00510201A =⨯⨯=;20.04010208A =⨯⨯=;30.03010206A =⨯⨯=;40.02010204A =⨯⨯=;50.00510201A =⨯⨯=,所以输出的23418S A A A =++=;点睛:频率分布直方图中所有频率之和为1,即图中所有小矩形面积之和为1.。

算法初步流程图基本算法语句早练专题练习(四)附答案人教版高中数学

算法初步流程图基本算法语句早练专题练习(四)附答案人教版高中数学
16.-1
17.3
18.
19.0答案C
解析: 0
答案C
20.-8
评卷人
得分
三、解答题
21.解:(1)① ,②0.40,③ ,④ .
(2)
即在参加的 名学生中大概有192名同学获奖.
(3)由流程图
即输出 的值为81.
22.略
A.2450B.2500C.2550D.2652(汇编广东省梅州揭阳两市四校高三第三次联考数学理科试卷)
20.如图,给出一个算法的伪代码,则 .
评卷人
得分
三、解答题
21.为了让学生更多的了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有 名学生参加了这次竞赛.为分析本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为 分)进行统计.请你根据频率分布表,解答下列问题:
16.根据如图所示的流程图,若输入 的值为-7.5,则输出 的值为▲.
17.已知流程图如图所示,该程序运行后,为使输出的b值为16,
则循环体的判断框内①处应填的整数为.
18.在右面的算法流程图中,令 ,若在集合 中,给 取一个值,输出的结果是 ,则 的值所在范围是___★
19.如果执行下面的程序框图,那么输出的 ().
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.C
2.B
3.A
4.C
5.B
6.C
7.D
8.
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
9.
10.
11.20
12.121

最新人教A版高中数学必修三练习:第一章 算法初步 分层训练 进阶冲关 . 算法与程序框图试卷含答案

最新人教A版高中数学必修三练习:第一章 算法初步 分层训练 进阶冲关 . 算法与程序框图试卷含答案

分层训练·进阶冲关A组基础练(建议用时20分钟)1.下列关于算法的说法中正确的个数有 ( B )①求解某一类问题的算法是唯一的;②算法必须在有限步骤操作之后停止;③x2-x>2 019是一个算法;④算法执行后一定产生确定的结果.A.1B.2C.3D.42.下列所给问题中,不能设计一个算法求解的是( D )A.用“二分法”求方程x2-3=0的近似解(精确度0.01)B.解方程组C.求半径为2的球的体积D.求S=1+2+3+…的值3. ( B )A.输出a=10B.赋值a=10C.判断a=10D.输入a=14.如图所示的程序框图,已知a1=3,输出的结果为7,则a2的值是( C )A.9B.10C.11D.125.如图所示的流程图,当输入的值为-5时,输出的结果是 ( D )A.-3B.-2C.-1D.26.根据如图所示的程序框图,使得当成绩不低于60分时,输出“及格”,当成绩低于60分时,输出“不及格”,则( A )A.框1中填“是”,框2中填“否”B.框1中填“否”,框2中填“是”C.框1中填“是”,框2中可填可不填D.框2中填“否”,框1中可填可不填7.下面是某人出家门先打车去火车站,再坐火车去北京的一个算法,请补充完整.第一步,出家门.第二步, 打车去火车站.第三步,坐火车去北京.8.使用配方法解方程x2-4x+3=0的算法的步骤是②①④③(填序号).①配方得(x-2)2=1;②移项得x2-4x=-3;③解得x=1或x=3;④开方得x-2=±1.9.执行如图所示的程序框图,则输出的S= 0.99.10.执行如图所示的程序框图,如果输入的x,t均为2,则输出的S= 7.11.设计求1+3+5+7+…+31的算法,并画出相应的程序框图.【解析】第一步:S=0;第二步:i=1;第三步:S=S+i;第四步:i=i+2;第五步:若i不大于31,返回执行第三步,否则执行第六步;第六步:输出S值.程序框图如图.12.设计一个算法求满足10<x2<1 000的所有正整数,并画出程序框图.【解析】算法步骤如下:第一步,x=1.第二步,如果x2>10,那么执行第三步;否则执行第四步.第三步,如果x2<1 000,那么输出x;否则结束程序.第四步,x=x+1,转到第二步.程序框图如图:B组提升练(建议用时20分钟)13.执行如图所示的程序框图,若输入n=8,则输出的k= ( B )A.2B.3C.4D.514.如图所示的程序框图所表示的算法的功能是( C )A.计算1+++…+的值B.计算1+++…+的值C.计算1+++…+的值D.计算1+++…+的值15.执行如图所示的程序框图,运行相应的程序,最后输出的结果为16.若框图所示程序运行的输出结果为S=132,那么判断框中应填入的关于k的判断条件是k≤10?或k<11?.17.已知直线l1:3x-y+12=0和直线l2:3x+2y-6=0,设计一个算法,求l1和l2及y轴所围成的三角形的面积.【解析】算法如下:第一步,解方程组得l1,l2的交点为P(-2,6).第二步,在方程3x-y+12=0中,令x=0,得y=12,从而得到l1与y轴的交点为A(0,12).第三步,在方程3x+2y-6=0中,令x=0,得y=3,从而得到l2与y轴的交点为B(0,3).第四步,求出△ABP的边长AB=12-3=9.第五步,求出△ABP的边AB上的高h=2.第六步,根据三角形的面积公式计算S=·AB·h=×9×2=9.第七步,输出S.18.利用梯形的面积公式计算上底为4,下底为6,面积为15的梯形的高.请设计出该问题的算法及程序框图.【解析】根据梯形的面积公式S=(a+b)h,得h=,其中a是上底,b是下底,h是高,S是面积,只要令a=4,b=6,S=15,代入公式即可.算法如下:第一步,输入梯形的两底a,b与面积S的值.第二步,计算h=.第三步,输出h.该算法的程序框图如图所示:C组培优练(建议用时15分钟)19.执行如图所示的程序框图所表达的算法,如果最后输出的S值为,那么判断框中实数a的取值范围是[2 015,2 016).20.运行如图所示的程序框图.(1)若输入x的值为2,根据该程序的运行过程完成下面的表格,并求输出的i与x的值.【解析】(1)所以输出的i的值为5,x的值为486.(2)由输出i的值为2,则程序执行了循环体2次,即解得<x≤56.所以输入x的取值范围是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.
右图给出的是计算 的
值的一个程序框图,判断其中框内应填入
的条件是
A.i>10 B. i<10
C. i>20 D. i<20(辽宁省抚顺一中高三数学上学期第一次月考)
20.执行右边的程序框图,若 ,,则输出的
评卷人
得分
三、解答题
21.图所示是一个算法的流程图,其输出的结果为_____________
22.程序如下,该程序输出的结果是____________。
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.A
2.A
3.B
4.A
5.A
6.A
7.
8.
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
9.11
10.
11.9
12.9
13.
14.
15.D
【解析】:循环操作4次时S的值分别为 ,选D。
4
5
6
7
8
9
10
11
12
13
14
15
例如,用十六进制表示:E+D=1B,则A×B=()
(A)6E(B)72(C)5F(D)B0
6.(汇编全国3理)计算机中常用的十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号 这些符号与十进制的数的对应关系如下表:
十六进制
0
1
2
3
4
5
6
7
8
9
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
9.执行右边的伪代码,输出的结果是▲.
10.如图是一个求50名学生数学平均分的程序,在横线上应填的语句为▲.
第7题图第8题图
11.如右图是一个算法的流程图,则最后输出的
▲.
12.根据如图所示的伪代码,最后输出的i的值为___▲___.
13.(汇编年高考浙江卷(文))某程序框图如图所示,则该程序运行后输出的值等于_________.
A
B
C
D
E
F
十进制
0
1
2
3
4
5
6
78Biblioteka 91011
12
13
14
15
例如用十六进制表示:E+D=1B,则A×B=()
A.6E B.72 C.5FD.B0
7.如图给出的算法流程图中,
输出的结果s=()
A.19
B.25
C.23
D.21(汇编电白四中高三级2月测试卷)
答案D
8.(汇编福建理)
第II卷(非选择题)
( )
A. B. C. D.
2..(汇编年高考辽宁卷(文))执行如图所示的程序框图,若输入
( )
A. B. C. D.
3.(汇编年普通高等学校招生统一考试天津数学(理)试题(含答案))阅读右边的程序框图,运行相应的程序,若输入x的值为1,则输出S的值为
( )
A.64B.73C.512D.585
4..(汇编年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))阅读如图所示的程序框图,若输入的 ,则该算法的功能是( )
16.7
17.
18.【解析】输出的
19.A.
20.
评卷人
得分
三、解答题
21.
22.
高中数学专题复习
《算法初步流程图基本算法语句》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题
1..(汇编年高考课标Ⅰ卷(文))执行右面的程序框图,如果输入的 ,则输出的 属于
A.计算数列 的前10项和B.计算数列 的前9项和
C.计算数列 的前10项和D.计算数列 的前9项和
5.(汇编全国3文)计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数的对应关系如下表:
16进制
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10进制
0
1
2
3
14.根据右图的伪代码,输出的结果 为▲.
15.执行如图所示的程序框图,输出的s值为
(A)-3(B)- (C) (D)2(汇编北京理)
16.根据如图所示的算法流程图,可知输出的结果 为_______________.
17.执行如图所示的流程图,输出结果为.
18.右图是一个算法的流程图,最后输出的 ▲.
相关文档
最新文档