y2章-电阻传感器
第2章 电阻应变式传感器
( 2 2 )
传感器原理与应用——第二章
电阻相对变化量为:
dR dL d dA R L A
若电阻丝是圆形的, 则A=πr ² 微分 ,对r
( 3 2 )
l
2r
2(r-dr)
F
l+ dl
得dA=2πr dr,则:
dA 2rdr dr 2 2 A r r
图2-1 金属丝的应变效应
• 应变式电阻传感器是目前测量力、力矩、 压力、加速度、重量 等参数应用最广泛的传感器。
传感器原理与应用——第二章
2.1 电阻应变片的基本原理 应变式传感器的核心元件是电阻应变片,它可将试件 上的应力变化转换成电阻变化。 2.1.1 应变效应 当导体或半导体在受到外界力的作用而不能产生位移
时,则会产生机械变形(它的几何形状和尺寸将
指 示 应 变 卸载
Δε
εi
加载 机械应变εR 图2-6 应变片的机械滞后
传感器原理与应用——第二章
产生原因:应变片在承受机械应变后的残余变形,使
敏感栅电阻发生少量不可逆变化;在制造或粘贴应变
片时,敏感栅受到的不适当的变形或粘结剂固化不充
分等。
机械滞后值还与应变片所承受的应变量有关,加载 时的机械应变愈大,卸载时的滞后也愈大。所以,通常 在实验之前应将试件预先加、卸载若干次,以减少因机 械滞后所产生的实验误差。
很宽的范围内均为线性关系。
传感器原理与应用——第二章
即:
R
R
K 或
K
R
R
( 14 2 )
K为金属应变片的灵敏系数。
测量结果表明,应变片的灵敏系数K恒小于线材的
灵敏系数KS。原因主要是胶层传递变形失真及横向效
电阻式传感器精品PPT课件
2
3
概述
电阻应变式传感器——利用电阻应变片将应变转换为电阻变
化的传感器。 主要用途——测量力、力矩、压力、加速度、重量等。
4
电阻应变式传感器的工作原理
将电阻应变片粘贴在弹性元件特 定表面上,当力、扭矩、速度、加速度 及流量等物理量作用于弹性元件时,会 导致元件应力和应变的变化,进而引起 电阻应变片电阻的变化。电阻的变化经 电路处理后以电信号的方式输出。
6
设有一段长为L,截面积为A,电阻率为ρ的导 体(如金属丝),它具有的电阻为
L
2r 2(r-dr)
F
F
R l
A
L+dL
ρ:电阻系数 l:金属导线长度 A:金属导线截面积
当它受到轴向力F而被拉伸(或压缩)时,其L、A和ρ
均发生变化。
7
R l
A
两边取对数:ln R ln L ln A ln
两边微分:dR d dA dl R Al
16
敏基粘感底结栅—剂——固— —定应 用敏变 粘感片 结栅中剂,最分并重别使要把敏的盖感部层和栅分敏与,感弹由栅性某固种 元结金 件于属 相基细 互底丝 绝;绕 缘在成 ; 栅应使形变用。计应应工变变作计计 时 时中 , ,实 基 用现底粘应起结变着剂把把-电试应阻件变转应计换变基的准底敏确 再感地 粘元传 贴件递 在。给 试敏敏 件感感 表栅栅 面 合的的金作被材用测料,部的为位选 此 ,择 基 因对 底 此所必粘制须结造很剂的薄也电,起阻一着应般传变为递计应0.0性 变2~能 的0的 作.04好 用m坏 。m起。着常决 定性的作用。
——为金属材料的泊松比
d/ —金属丝电阻率的相对变化量
代入
第2章 应变式传感器(电阻式传感器)
工艺复杂, 将逐渐被横向效应小、 其他方面性能更优越的箔式应变计所
代替。
(a)
(b)
(c)
图 2.2金属丝式应变计常见形势
第2章 应变式传感器
箔式应变计(实验中用的)的线栅是通过光刻、腐蚀等工艺制成很薄 的金属薄栅(厚度一般在0.003~0.01mm)。与丝式应变计相比有如下优 点:
(1) 工艺上能保证线栅的尺寸正确、 线条均匀, 大批量生产时, 阻值离 散程度小。 (2) 可根据需要制成任意形状的箔式应变计和微型小基长(如基长为 0.1 mm)的应变计。 (3) 敏感栅截面积为矩形, 表面积大, 散热好, 在相同截面情况下能通过 较大电流。 (4) 厚度薄, 因此具有较好的可挠性, 它的扁平状箔栅有利于形变的传 递。 (5) 蠕变小, 疲劳寿命高
式中, 应力 l T E (金属或者半导体的弹性模量) E l 其中, ε=Δl/l为轴向应变。 则有
第2章 应变式传感器
k0
R / R
1 2 E
对金属来说, πE很小, 可忽略不计, μ=0.25~0.5, 故k
因此, 将同样长的金属线材做成敏感栅后, 对同样应 变, 应变计敏感栅的电阻变化较小, 灵敏度有所降低。 这 种现象称为应变计的横向效应。
第2章 应变式传感器
下面计算横向效应引起的误差。
图为 应变片敏感栅半圆弧部分的形状。沿轴向应 变为εX ,沿横向应变为εY 。
X
θ
dl
dθ
丝绕式应变片敏感栅半圆弧形部分
第2章 应变式传感器
k0为单根导电丝的灵敏系数, 表示当发生应变时, 其电阻变 化率与其应变的比值。 k0的大小由两个因素引起, 一项是由 于导电丝的几何尺寸的改变所引起, 由(1+2μ)项表示, 另 一项是导电丝受力后, 材料的电阻率ρ发生变化而引起, 由
检测技术ppt
图2.19 变骨架高度式非线性电位器
图2.20 对称变骨架高度式非线性电位器
第2章 电阻式传感器
2.2.3 电位器式传感器应用
1.位移传感器
电位器式位移传感器常用于测量几毫米到几十米的 位移和几度到360°的角度。
电位器传感器结构简单,价格低廉,性能稳定,能 承受恶劣环境条件,输出功率大,一般不需要对输出信号 放大就可以直接驱动伺服元件和显示仪表。
电子工业出版社 《自动检测与转换技术》
第2章 电阻式传感器
2.2 电位器式传感器
电位式传感器可以测量位移、压力、加速度、容量、高度等多种物 理量。 电位器可分为线性电位器和非线性电位器。
2.2.1 线性电位器
线性电位器由绕于骨架上的电阻丝线圈和沿电位器滑动的滑臂,以 及安装在滑臂上的电刷组成。线绕电位器传感元件有直线式、旋转式或 两者相结合的形式。线性线绕电位器骨架的截面处处相等,由材料和截 面均匀的电阻丝等节距绕制而成。
后通过应变计和应变电桥,输出正比于被测位移的电量。它可用于近测或 远测静态或动态的位移量。
如图2.35(a)所示为国产YW系列应变式位移传感器结构。这种传感 器由于采用了悬臂梁-螺旋弹簧串联的组合结构,因此它适用于10~100mm 位移的测量。其工作原理如图2.35(b)所示。
1—测量头;2—弹性元件;3—弹簧;4—外壳;5—测量杆;6—调整螺母;7—应变计 图2.35 YW型应变式位移传感器
在一定的应力范围(弹性形变)内,材料的应力与应变成正比, 它们的比例常数称为弹性模量或弹性系数。对于一定的材料, 弹性模量是常数,弹性模量越大,在一定应力下,产生的弹性 变形量越小。
第2章 电阻式传感器
2.3.2 电阻的应变效应
金属的电阻应变效应:金属丝的电阻随着它所受的机械变形(拉伸 或压缩)的大小而发生相应变化。
2、电阻式传感器原理与应用
dA 2 dr Ar
x
dL L
y
dr r
r为金属丝半径
εx为金属丝轴向应变
εy为金属丝横向应变
➢ 轴向应变εx的数值一般很小, 常以微应变度量;
➢ μ为电阻丝材料的泊松比,一 般金属μ=0.3-0.5;
对金属材料,电阻率几乎不变:
λ为压阻系数,与材质有关;σ为应力值;E为材料的弹性模量;
由于空腔内传压介质的高度比被测溶 液的高度高,因而腰形筒微压传感器处 于负压状态。
为了提高测量的灵敏度,安装了两只 性能完全相同的微压传感器。
液位传感器: 当容器中液体多时,感压膜感受的压力大,将两只微压
传感器的电桥接成正向串联的形式,则输出电压为:
U0 U1 U2 (A1 A2 ) g h
料常用康铜和镍铬合金等。 目前使用的应变片大多是金属箔式应变片。
半导体应变片:分为体型和扩散型两种。
由于半导体(如单晶硅)是各向异性材料,因此 它的压阻效应不仅与掺杂浓度、温度和材料类 型有关,还与晶向有关(即对晶体的不同方向上 施加力时,其电阻的变化方式不同)。
半导体应变片的特性(与金属应变片相比较):
✓灵敏系数S:表示应变片变换性能的重要参数。
✓绝缘电阻:应变片与试件间的阻值,越大越好。 一般大于1010Ω。
✓其它性能参数(允许电流、工作温度、应变极限、 滞后、蠕变、零漂以及疲劳寿命、横向灵敏度 等)。
3.2 测量电路及温度补偿 电阻应变片将应变转换为电阻的变化量,测量电路
将电阻的变化再转换为电压或电流信号,最终实现被测 量的测量。
定义:电阻丝的灵敏度系数S0——表示单位应 变所引起的电阻相对变化。
电阻应变片灵敏度系数S称为“标称灵敏度系 数”,由实验测定。
第2章---电阻式传感器
eebbay
Uxmax / Uxm a x
n
100 %
1 n
100
%
图2-5 理想阶梯特性曲线
电阻式传感器
理论直线:
过中点并穿过阶梯线的直线。 阶梯曲线围绕其上下跳动,从 而带来一定的误差,这就是阶 梯误差。
j
(1 Umax) 2n Umax
1 2n
100%
图2-5 理想阶梯特性曲线
二、非线性电位器
电阻式传感器
2.2 电阻应变式传感器--应变片
电阻应变片工作原理是基于金属导体的应变效应,即金 属导体在外力作用下发生机械变形时,其电阻值随着所 受机械变形(伸长或缩短)的变化而发生变化。
电阻式传感器 一、 电阻应变片的工作原理
提出问题
金属丝受拉或受压时,l、r 和 R 将如
何变化?
电阻式传感器
一.线性电位器的空载特性
当被测量发生变化时,通过电刷触点在 电阻元件上产生移动,该触点与电阻元 件间的电阻值就会发生变化,即可实现 位移(被测量)与电阻之间的线性转换。
电阻式传感器
Ux
Байду номын сангаас
Rx Rmax
U max
x xmax
U max
Rx
Rmax xmax
x kRx
Ux
U max xmax
x
ku x
电阻式传感器 二、 电阻应变片的主要特性
例 如果将100 的电阻应变片贴在弹性
试件上,试件受力横截面积S=0.5×10-4 m2, 弹性模量E=2×1011 N/m2,若有F=5×104 N的
拉力引起应变片电阻变化为1 。试求该应变 片的灵敏系数。
电阻式传感器
二、 电阻应变片的主要特性
传感器原理及应用-第2章
电桥电路
力、加速度、荷重等
应变
电阻变化
电压、电流
图2-1 电阻应变式传感器典型结构与测量原理
电阻应变片:利用金属丝的电阻应变效应或半导 体的压阻效应制成的一种传感元件。
电阻应变片的分类: 金属应变片和半导体应变片。
一、电阻应变片
(一)工作原理——应变效应
导体或半导体材料在外力的作用下产生机械变形时, 其电阻值相应发生变化的现象称为应变效应。
第二章 应变式传感器
主要内容:
一、电阻应变式传感器 二、压阻式传感器
本章重点:
电阻应变式传感器的构成原理及特性 电桥测量电路的结构形式及特点 压阻式传感器的工作原理
基本要求:
掌握电阻应变式传感器的构成原理及特性, 掌握电桥测量电路的结构形式及和差特性,掌握 压阻式传感器的工作原理及设计特点。
in2x
图2-10 应变片对应变波的动态响应
应变片对正弦应变波的响应是在其栅长 l 范围内所
感受应变量的平均值 m,低于真实应变波 t ,从而
产生误差。
t 瞬时应变片中点的应变(真实应变波) 值为:
t
0
s
in2
xt
t 瞬时应变片的平均应变(实际响应波) 值为:
m
也可写成增量形式
RRKs
l l
Ks
式中,Ks——金属丝的应变灵敏系数。物理意义是单位应变 所引起的电阻相对变化量。
金属丝的灵敏系数取决于两部分:
①金属丝几何尺寸的变化, 0 .3 (1 2 ) 1 .6
②电阻率随应变而引起的变化
Hale Waihona Puke 金属丝几何尺寸 金属本身的特性C
如康铜,C≈1, Ks ≈2.0。其他金属, Ks一般在1.8~4.8范围内。
第二章 电阻式传感器
4 1
3
4
5
2
3
图1薄膜型半导体应变片 1–锗膜 2--绝缘层
3–金属箔基底 4--引线
2
1
图2扩散型半导体应变片 1--N型硅 2--P型硅扩散层 3--二氧化硅绝缘层 4–铝电极 5--引线
型号的编排规则
电阻应变计型号的编排规则如下:类别、基底材料种类、标准电阻---敏感栅 长度、敏感栅结构形式、极限工作温度、自补偿代号(温度和蠕变补偿)及接 线方式。如B F 350 -- 3 AA 80 (23) N6 – X的含义是:
而引起的(称“压阻效应”)。 εx
对金属材料,以前者为主,则KS≈ 1+2μ;对半 导体, KS值主要由电阻率相对变化所决定。实验 表明,在金属丝拉伸比例极限内,电阻相对变化与
轴向应变成正比。其它金属或合金,KS在1.8~4.8
范围内。
dR R
KS
x
(2) 半导体应变片的工作原理
的片状小条,经腐蚀压焊粘贴在基片上而成的应变片,其 结构如图所示。
2)薄膜型半导体应变片 这种应变片是利用真空沉积技术将半导体材料沉积在带有
绝缘层的试件上而制成,其结构示意图见图1。 3)扩散型半导体应变片 将P型杂质扩散到N型硅单晶基底上,形成一层极薄的P型
导电层,再通过超声波和热压焊法接上引出线就形成了扩散型 半导体应变片。图2为扩散型半导体应变片示意图。这是一种 应用很广的半导体应变片。
半导体应变片是利用半导体
材料的压阻效应而制成的一种纯
1
电阻性元件。
2 3
对一块半导体材料的某一轴 12 3
向施加一定的载荷而产生应力时,
它的电阻率会发生变化,这种物 理现象称为半导体的压阻效应。
第02章电阻式传感器
5.
光电电位器 是一种非接触式电位器,一光束代替常规的电刷。一般采用氧化铝作 基体,在其上蒸发一条带状电阻薄膜(镍铝合金或镍铁合金)和一条导电 极(鉻合金或银)。 图1是这种电位器的结构图。平时无光照时,电阻体 和导电电极之间由于光电导层电阻很大而呈现绝缘状 态。当光束照射在电阻体和导电电极的间隙上时,由 于光电导层被照射部位的亮电阻很小,使电阻体被照 射部位和导电电极导通,于是光电电位器的输出端就 有电压输出,输出电压的大小与光束位移照射到的位 置有关,从而实现了将光束位移转换为电压信号输 出。 特点:光电电位器最大的优点是非接触型,不存在磨损问题,它不会 对传感器系统带来任何有害的摩擦力矩,从而提高了传感器的精度、寿 命、可靠性及分辨率。光电电位器的缺点是接触电阻大,线性度差。由于 它的输出阻抗较高,需要配接高输入阻抗的放大器。尽管光电电位器有着 不少的缺点,但由于它的优点是其它电位器所无法比拟的,因此在许多重 要场合仍得到应用。
§2-1 电位器式传感器
电位器是一个机电传感元件,它 作为传感器可以将机械位移或其它能 转换为位移的非电量转换为与其有一 定函数关系的电阻值的变化,从而引 起输出电压的变化。
一、电位器式传感器的种类
1. 线绕电位器 由电阻系数很高的极细的导线按一定规律绕在绝缘骨架上,用电刷(活 动触点)调节阻值大小。 特点:结构简单,尺寸小,输出特性精度高(可达0.1%)且稳定,输 出信号大,受环境影响小。由于电阻元件与电刷间的摩擦,可靠性和寿命受 到影响,分辨力也较低。 2. 合成膜电位器 由电阻液(用石墨、碳黑、树脂等材料配置而成)喷涂在绝缘骨架表面 上形成电阻膜。 特点:分辨力高、阻值范围宽、耐磨性好、工艺简单、成本低,其线性 度在1%左右(经修刻后,可提高到0.1% );接触电阻大,抗潮性差,噪声 较大。 3. 金属膜电位器 在玻璃或陶瓷基体上用真空蒸发或电镀的方法涂覆一层金属复合膜而制 成。 特点:电阻系数小,分Ω~2KΩ)。
第02章 电阻式传感器
金属箔式应变片:利用光刻、腐蚀等工艺制成的一
种很:薄的金属箔栅, 其厚度一般在0.003~0.01mm。
其优点是散热条件好, 允许通过的电流较大, 可制 成各种所需的形状, 便于批量生产。
金属箔式应变片的结构形式
几种金属箔式应变片--可以根据测试物体的需要来选择各种形状的应变片
金属薄膜应变片: 采用薄膜技术(真空蒸发), 优点是灵敏系数大; 可在大温差下工作(-197--317℃) (二)应变片的粘贴技术---简单了解 粘贴剂; 粘贴工艺;
dr dl
r
l
dS 2 dr Sr
dR d (1 2) dl d (1 2)
R
l
dR 令 R K 由上式,得到
d K (1 2)
K——金属电阻丝的相对灵敏度系数。
金属电阻丝的相对灵敏度系数受两个因素影响:
(1)受力后材料的几何尺寸变化所引起的;即 (1下列材料制成: (1)康铜(铜镍合金):最常用; (2)镍鉻合金:多用于动态; (3)镍鉻铝合金:作中、高温应变片; (4)镍鉻铁合金:疲劳寿命要求高的应变片; (5)铂及铂合金:高温动态应变测量。
(二)应变片的测量原理
用应变片测量应变或应力时,把应变片粘帖在被测对象表面上, 在外力作用下, 被测对象产生机械变形时, 应变片敏感栅也随着 变形, 应变片的电阻值也发生相应变化。当测得应变片电阻值 变化量ΔR时, 便可得到被测对象的应变值ε(ΔR/R=k ε),再根据 应力σ与应变的关系(材料力学), 得到应力值σ
σ=E·ε
式中 : σ——试件的应力; ε——试件的应变;
E——试件材料的弹性模量(材料固定,是已知量)。
由此可知, 应力值σ正比于应变ε, 而试件应变ε正比于电阻 值的变化, 所以应力σ正比于电阻值的变化, 这就是利用应变片 测量试件应力σ的基本原理。
第2章2 电阻式传感器
R4 R1
U0U(R1R 1 R 1R 1R2R3R 3R4)
U
R3 R1
(1 R1 R2 )(1 R4 )
R1 R1
R3
R4 R1
根据 Uo U
R3 R1
(1 R1 R2 )(1 R4 )
R1 R1
R3
设桥臂比n = R2/R1, 由电桥平衡条件可知R4/R3 =R2/R1=n ,并且忽略分母中ΔR1/R1得到:
dKU dn
U(11nn)23
0
故 n=1时,即R1=R2,R3=R4 ,KU取得最大值。
从上面的讨论可知:当R1=R2,R3=R4时, 电桥电压 灵敏度最高, 此时有:
U0
U 4
R1 R
KU
U 4
n=1时的电桥,称为对称电桥,实际应用中常采用 这种电桥的形式。
直流电桥的优点:
高稳定度直流电源易于获得; 电桥调节平衡电路简单; 传感器及测量电路分布参数影响小等。
U 0U ( R 1 R R 11 R R 21 R 2R 3R 3R 4)
设初始时有: R1=R2=R3=R4=R, 且应变量相同即
ΔR1=ΔR2,则得:
U0
Hale Waihona Puke U 2R1 R
结论:差动电桥(半桥差动电路)消除了非线性 误差(输出电压表达式的分母不含ΔR1/R1 ), 灵敏度比单臂电桥提高了一倍。且具有温度补偿 作用。
(三)机械滞后、零漂和蠕变
加载和卸裁特性曲线之间的最大 差值称为应变片的滞后值(也就 是回程误差)。
粘贴在试件上的应变片,在温度 保持恒定没有机械应变的情况下, 电阻值随时间变化的特性称为应 变片的零漂(零点漂移)。
传感器与检测技术第2章-1_应变式传感器
E 4
R1 R
R2 R
R3 R
R4 R
EK 4
1
2
3
4
当仅桥臂AB单臂工作时,理想输出电压为
Ug E R E K
4R 4
44
电桥分类
B R1=R
A
Ug
R2=R C
R3=R’ R4=R’
E
D
第一对称电桥
2、第一对称电桥
若电桥桥臂两两相等,即R1 =R2=R , R3=R4=R′ , 则 称
16
2.1数 (二)横向效应 (三)动态特性
17
应变片的电阻值 R
• 应变片在未经安装也不受外力情况下, 于室温下测得的电阻值
• 电阻系列:60、120、200、350、500、1000 Ω
电阻值大
可以加大应变片承受电压, 输出信号大, 敏感栅尺寸也增大
18
25
设环境引起的构件温度变化为Δt(℃)时,
粘贴在试件表面的应变片敏感栅材料的电阻温度系
数为αt ,则应变片产生的电阻相对变化为
R R
1
t t
26
由于敏感栅材料和被测构件材料两者线膨胀系数不同,当
Δt 存在时,引起应变片的附加应变,其值为
2t g s t
βg—试件材料线膨胀系数;βs—敏感栅材料线膨胀系数。
金属箔式应变片
13
金属薄膜应变片
• 采用真空蒸发或真空沉积等方法在薄的绝缘基片上 形成厚度在0.1μm以下的金属电阻材料薄膜敏感栅, 再加上保护层,易实现工业化批量生产
• 优点:应变灵敏系数大,允许电流密度大,工作范 围广,易实现工业化生产
• 问题:难控制电阻与温度和时间的变化关系
15
第二章电阻式传感器
R1 R4 =R2 R3 或
R1 /R2 =R3 /R4
(2-22)
2.电压灵敏度
若R1由应变片替代,当电桥开路时,不平衡电桥
输出的电压为:
R3 R1 R4 R2 R3 RR4 R1 R1 U0 E( ) E R1 R1 R2 R3 R4 ( R1 R1 R2 )( R3 R4 ) R`1 R4 R1 R3 R1 R4 E E R1 R2 R4 ( R1 R1 R2 )( R3 R4 ) (1 )(1 ) R1 R1 R3
1 Uo 2 n ei Uo 1 100% 100% 2n
3.非线性线绕电位器结构
(1) 用曲线骨架绕制的非线性变阻器; (2) 三角函数变阻器;
D L
Uo
D L sin 2 UO L 1 1 Ui D 2 2
x
dx
b
Ui
Ui U O sin 2
碳膜电位器:是目前使用最多的一种电位器。其电 阻体是用碳黑、石墨、石英粉、有机粘合剂等配制的混合
物,涂在马蹄形胶木板或玻璃纤维板上制成的。
优点:分辨率高、阻值范围宽;缺点:滑动噪声大、耐 热耐湿性不好。
金属膜电位器:其电阻体是用金属合金膜、 金属氧化膜、金属复合膜、氧化钽膜材料通过真空 技术沉积在陶瓷基体上制成的,如铂铜、铂锗、铂铑 金等。 优点:温度系数小、分辨率高、滑动噪声较合 成碳膜电位器小;缺点:阻值范围小、耐磨性不好
出电压阶梯的最大值与最大输出电压之比的百分数。 具有理想阶梯特性线绕电位
Uo 1 Re n 100% 100% Uo n
计,其理想的电压分辨率为
电位器的电刷行程来说,又 有行程分辨率,其表达式为
第二章电阻应变式传感器
线性,灵敏度*4
9 05:14
2018/10/6
恒流源电桥补偿法: 全等臂电桥,恒流源,单臂工作:
' U 0 I
R3R1 RR1 I R1 R2 R3 R4 R1 4 R R1 U 0 I
非线性
近似线性:
R3R1 IR R1 R1 R2 R3 R4 4 R
7
相对桥臂相加 相邻桥臂相减
U R1 05:14 4 R 1
2018/10/6
单臂工作:R1-应变片,R2-补偿片,R3、R4固定电阻
U 0
(2) 交流电桥: 原理:相同 ; 输入输出:直流 平衡条件: Z1Z3 Z2 Z4
Z ze j
交流, 电阻
阻抗
z1z3 z2 z4
平衡 输出 C1R4 C2 R3
H K y / Kx
横向效应系数
2018/10/6 5 05:14
机械滞后: 粘接 --- 过热/过载 残余变形 蠕变和零漂: 粘接 内应力
不重合
预载/重复加载
滑移
固化,增大弹性膜量
应变极限:非线性误差达到10%的应变值,过载能力
(2) 动态特性: 力传导:机械应变
基底
胶层
敏感栅
滞后
正弦响应:幅值降低
非线性误差:
' U0 U0 IRR1 /(4 R) IRR1 /(4 R R1 ) R1 / R1 eL ' U0 IRR1 /(4 R R1 ) 4 R1 / R1
(4) 电桥的温度效应及其补偿: 温度效应:标准状态(t=20C,p=760mmHg,f=10mmHg),(理想) 实际温度:偏差 --- 特性改变 --- 输出改变
传感器原理与应用习题课后答案_第2章到第8章
《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书第2章 电阻式传感器2-1 金属应变计与半导体应变计在工作机理上有何异同?试比较应变计各种灵敏系数概念的不同物理意义。
答:(1)相同点:它们都是在外界力作用下产生机械变形,从而导致材料的电阻发生变化所;不同点:金属材料的应变效应以机械形变为主,材料的电阻率相对变化为辅;而半导体材料则正好相反,其应变效应以机械形变导致的电阻率的相对变化为主,而机械形变为辅。
(2)对于金属材料,灵敏系数K0=Km=(1+2μ)+C(1-2μ)。
前部分为受力后金属几何尺寸变化,一般μ≈0.3,因此(1+2μ)=1.6;后部分为电阻率随应变而变的部分。
金属丝材的应变电阻效应以结构尺寸变化为主。
对于半导体材料,灵敏系数K0=Ks=(1+2μ)+πE 。
前部分同样为尺寸变化,后部分为半导体材料的压阻效应所致,而πE>>(1+2μ),因此K0=Ks=πE 。
半导体材料的应变电阻效应主要基于压阻效应。
2-2 从丝绕式应变计的横向效应考虑,应该如何正确选择和使用应变计?在测量应力梯度较大或应力集中的静态应力和动态应力时,还需考虑什么因素?2-3 简述电阻应变计产生热输出(温度误差)的原因及其补偿办法。
答:电阻应变计的温度效应及其热输出由两部分组成:前部分为热阻效应所造成;后部分为敏感栅与试件热膨胀失配所引起。
在工作温度变化较大时,会产生温度误差。
补偿办法:1、温度自补偿法 (1)单丝自补偿应变计;(2) 双丝自补偿应变计2、桥路补偿法 (1)双丝半桥式;(2)补偿块法2-4 试述应变电桥产生非线性的原因及消减非线性误差的措施。
答:原因:)(211)(44433221144332211R R R R R R R R R R R R R R R R U U ∆+∆+∆+∆+∆-∆+∆-∆=∆ 上式分母中含ΔRi/Ri ,是造成输出量的非线性因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灵敏度变化: - /℃:±0.05% - /24小时:±0.3% 信噪比:52dB
55
电阻应变仪(续)
56
与计算机接口的多路电阻应变测量模块
57
材料应变的测量
斜拉桥上的斜拉绳 应变测试
58
第二章:第二节
一、金属热电阻
测温热电阻传感器
温度升高,金属内部原子晶格的振动 加剧,从而使金属内部的自由电子通过金 属导体时的阻碍增大,宏观上表现出电阻 率变大,电阻值增加,我们称其为正温度 系数,即电阻值与温度的变化趋势相同。
压阻式 固态压力 传感器
51
投入式液位传感器
投入式液位传感
器安装方便,适应于
深度为 几米 至 几十
米,且混有 大 量 污 物、杂质的水或其他 液体的液位测量。
52
投入式液位计液位的计算:
安装高度h0处水的表压
p1=gh1
h=h0+h1=h0+p1 /(g)
例:液位计安装高度为1m,测得压力 为98kPa,求水的深度。
应变片可分为金属应变片及半导体应变片两大类。前者 可分成金属丝式、箔式、薄膜式三种。目前箔式应变片应用 较多。金属丝式应变片使用最早,有纸基、胶基之分。由于 金属丝式应变片蠕变较大,金属丝易脱胶,有逐渐被箔式所 取代的趋势。但其价格便宜,多用于应变、应力的大批量、 一次性试验。 箔式应变片中的箔栅是金属箔通过光刻、腐蚀等工艺制 成的。箔的材料多为电阻率高、热稳定性好的铜镍合金。箔 式应变片与片基的接触面积大得多,散热条件较好,在长时 间测量时的蠕变较小,一致性较好,适合于大批量生产。还 可以对金属箔式应变片进行适当的热处理,使其线胀系数、 电阻温度系数以及被粘贴的试件的线胀系数三者相互抵消, 从而将温度影响减小到最小的程度,目前广泛用于各种应变 式传感器中。
便携式
应变式数显扭矩扳手
可用于汽车、摩托车、飞机、内燃机、机械 制造和家用电器等领域,准确控制紧固螺纹的 装配扭矩。量程2~500N.m,耗电量≤10mA, 有公制/英制单位转换、峰值保持、自动断电等 功能。
压阻式固态压力传感器
利用扩散工艺制作的四个半导体应变
电阻处于同一硅片上,工艺一致性好,灵
平衡,Uo被预调到零位,
这一过程称为调零。图
中的R5是用于减小调节
范围的限流电阻。
18
单臂电桥
全桥四臂工 作方式的灵敏 度最高,双臂 半桥次之,单 臂半桥灵敏度 最低。
19
双臂电桥
R1、 R2为应变 片, R3、R4为固定 电阻 。应变片R1 、 R2 感受到的应变 1~2以及产生的电 阻增量正负号相间, 可以使输出电压Uo 成倍地增大。
7
箔式应变片的外形
8
半导体应变片及金属 丝式应变片的结构
金属丝式应变片的 内部结构
半导体应变片 外形
9
应变片主要性能指标举例
上表中,哪几个型号是半导体应变片? 依据是什么?
10
应变片的粘贴:
1. 去污:采用 手持砂轮工具除去 构件表面的油污、 漆、锈斑等,并用 细纱布交叉打磨出 细纹以增加粘贴 力 ,用浸有酒精 或丙酮的纱布片或 脱脂棉球擦洗。
63
薄膜型及普通型铂热电阻
64
小型铂热电阻
65
防爆型铂热电阻
66
汽车用水温传感器及水温表
铜热电阻
67
学习查“铂热电阻分度表”
附录 铂热电阻分度表
68
铂电阻温度显示、变送器
69
可设定温度的温度控制箱
旋转式机械 设定开关
拨码式 设定开关
70
二、热敏电阻
热敏电阻有负温度系数(NTC)和正温度 系数(PTC)之分。 NTC又可分为两大类: 第一类用于测量温度,它的电阻值与温度之 间呈严格的负指数关系; 第二类为突变型(CTR)。当温度上升到 某临界点时,其电阻值突然下降 。
压Uo =24mV, 请估算汽车的质量。
汽车在钢板上有少许的前、后、左、右偏位,
是否会影响测量结果?为什么?
荷重传感器用于构件 的称重
荷重传感器
(共 3个,120度分布,以达到 均衡目的,另两个未拍出)
垫块
底座
电缆
电子秤
远距离 显示
磅秤
超市打印秤
电子天平
电子天平的精度 可达十万分之一
人体秤
吊钩秤
R
4
微应变(μ ε )
对于不同的金属材料,K 略微不同,一般为2左 右。而对半导体材料而言,由于其感受到应变时, 电阻率 会产生很大的变化,所以灵敏度比金属材料 大几十倍。 在材料力学中,x =/称为电阻丝的轴向应变,也称 纵向应变,是量纲为1的数。 x通常很小,常用10-6表 示之。例如,当 x 为 0.000001 时,在工程中常表示为 110-6 或 m/m 。在应变测量中,也常将之称为微应变 (με)。 对金属材料而言,当它受力之后所产生的轴向应 变最好不要大于110-3,即1000m/m,否则有可能超 过材料的极限强度而导致断裂。
21
全桥的温度补偿原理
当环境温度升高
时,桥臂上的应变片
温度同时升高,温度
引起的电阻值漂移数
值一致,可以相互抵 消,所以全桥的温漂 较小;半桥也同样能 克服温漂。
22
四、应变效应的应用
应变效应的应用十分广泛。它可以测量应 变应力、弯矩、扭矩、加速度、位移等物理量。 电阻应变片的应用可分为两大类:第一类是将 应变片粘贴于某些弹性体上,并将其接到测量 转换电路,这样就构成测量各种物理量的专用 应变式传感器。应变式传感器中,敏感元件一 般为各种弹性体,传感元件就是应变片,测量 转换电路一般为桥路;第二类是将应变片贴于 被测试件上,然后将其接到应变仪上就可直接 从应变仪上读取被测试件的应变量。
Fm U O 100 103 6 103 3 F 12.5 10 N 1.3t 3 KF Ui 2 10 24
荷重传感器应用估算
K FU i F Uo U om F Fm Fm
在上面介绍过的汽车衡示意图中,共使用了4个 荷重传感器,量程Fm =20t, 灵敏度KF =2.5mV/V, 使用4个独立的桥路电源,每一个电源电压均相等, Ui =12V,四个荷重传感器的输出串联,总的输出电
敏度相等,漂移抵消,迟滞、蠕变非常小,
动态响应快。
44
压阻式固态压力传感器的隔离、承压膜片
隔离、承压 膜片可以将腐 蚀性的气体、 液体与硅膜片 隔离开来。
45
压阻式固态 压力传感器 内部结构
信号处理电路
46
小型压阻式固态压力传感器
低压进气口
高压进气口
绝对压力传感器
47
小型压阻式固态压力传感器(续)
53
电阻应变仪
下图所示的静态应变仪测量范围:±19999με; 分辨率: 1με;电桥电压:直流2.5V; 应变片:120Ω或其他阻值; 测量点数:8/16点;
54
电阻应变仪(续)
(参考东方振动和噪声技术研究所资料)
右图所示的静动态 应变仪技术指标:
量程:1±10000με 频率范围:0-150kHz 平衡方式:手动 精度:0.3% 零点飘移: - /℃:±0.1με - /24小时:±0.5με
59
取一只 100W/220V 灯泡,用万用表测量其电阻 值,可以发现其冷态阻值只有几十欧姆,而计算得到 的额定热态电阻值应为484 。
60
易提纯、复现性好的金属材料才可用于制作热电阻
61
表2-2 热电阻的主要技术性能
62
图2-21
热敏电阻的外形、结构及符号
a)圆片型热敏电阻 b)柱型热敏电阻 c)珠型 热敏电阻 d)铠装型 e)厚膜型 f)图形符号 1—热敏电阻 2—玻璃外壳 3—引出线 4—紫铜外壳 5—传热安装孔
23
应变式力传感器
应变式力传感器
F
F
F
F
24
各种悬臂梁
25
各种悬臂梁
F
固定点
F
固定点
电缆
26
应变片在悬臂梁上的粘贴及变形
27
应变式荷重传感器的外形及 应变片的粘贴位置
F
R 2
R
4
R1
应变式荷重传感器外形及受力位置(续)
F
F
应变式荷重传感器外形及受力位置(续)
F
F
荷重传感器原理演示
荷重传 感器上的应 变片在重力 作用下产生 变形。轴向 变短,径向 变长。
呼吸、透析和注射泵设备中用的压力传感器
p1进气管
固态压力 传感器
p2进气管
48
小型压阻式固态压力传感器(续)
p1进气管
表压压力传感器
49
投入式液位计
压阻式固态压力传感器用于投入式液位计: p1的进气孔用柔性不锈钢隔离膜片隔离,并用 硅油传导压力而与液体相通。
50
投入式液位计外形(续)
橡胶 背压管 光柱 显示器
20
四臂全桥
全桥的四个桥臂都为应变片, 如果设法使试件受力后,应变 片R1 ~ R4产生的电阻增量(或 感受到的应变1~4)正负号相 间,就可以使输出电压Uo成倍 地增大。上述三种工作方式中, 全桥四臂工作方式的灵敏度最
高,双臂半桥次之,单臂半桥
灵敏度最低。采用全桥(或双 臂半桥)还能实现温度自补偿。
2
一、工作原理应变片的工作原理
金属丝受拉时,l变长、r变小,导致R变大 。
l l R 2 A r
3
二、应变片的工作原理
设有一长度为、截面积为 A 、半径为 r 、电阻率 为的金属单丝,它的电阻值R可表示为
l l R 2 A r
当沿金属丝的长度方向作用均匀拉力(或压力) 时,上式中 、r 、 l都将发生变化,从而导致电阻值 R发生变化。例如金属丝受拉时,l将变长、 r变小, 均导致 R变大;又如,某些半导体受拉时, 将变大 ,导致R变大。 实验证明,电阻丝及应变片的电阻相对变化量R R与材料力学中的轴向应变 x的关系在很大范围内是 线性的,即 R K x K—电阻应变片的灵敏度 2-1