高一函数知识点

合集下载

高一函数知识点总结

高一函数知识点总结

高一函数知识点总结一、函数的概念1.函数的定义:函数是一个映射关系,它把一个自变量的值映射到一个因变量的值上。

2.函数的符号表示:一般情况下用f(x)表示函数,其中x称为自变量,f(x)称为因变量。

也可以用其他字母代替f(x)表示函数。

3.函数的定义域和值域:函数的定义域是自变量可能取值的集合,值域是因变量可能取值的集合。

4.函数的图像:函数的图像是由一系列点(x, f(x))在平面上的集合。

这些点表示了函数的各个自变量和因变量的对应关系。

5.基本初等函数:常见的基本初等函数包括多项式函数、指数函数、对数函数、三角函数、反三角函数和分段函数等。

二、函数的性质1.奇偶性:如果对于任何x,有f(-x) = -f(x),则称函数具有奇函数性质;如果对于任何x,有f(-x) = f(x),则函数具有偶函数性质。

2.周期性:如果存在正数T,使得对于函数中的任意x,都有f(x+T) = f(x),则称函数具有周期性。

3.单调性:如果对于函数中的任意x1和x2(x1 < x2),都有f(x1) < f(x2),则称函数单调递增;如果对于函数中的任意x1和x2(x1 < x2),都有f(x1) > f(x2),则称函数单调递减。

4.最值:函数在定义域内取得的最大值和最小值。

三、反函数1.反函数的概念:如果函数f的定义域D和值域R分别是实数集,且对每个y ∈ R,方程f(x) = y在D中有唯一实数解x,则称函数f具有反函数。

反函数常用f^(-1)(y)表示。

2.反函数的求法:考虑将f(x) = y看作一个关于x的函数,通过解出x得到反函数f^(-1)(y)。

四、复合函数1.复合函数的概念:当一个函数的自变量不再是单独的变量x,而是由另一个函数所决定时,这个函数就成为复合函数。

2.复合函数的符号表示:设有两个函数f(x)和g(x),则它们的复合函数可以表示为(f ◦g)(x),也可以表示为f(g(x))。

高一数学必修一函数概念的知识点

高一数学必修一函数概念的知识点

高一数学必修一函数概念的知识点高一数学必修一函数概念的知识点在日常过程学习中,是不是经常追着老师要知识点?知识点在教育实践中,是指对某一个知识的泛称。

哪些知识点能够真正帮助到我们呢?以下是店铺整理的高一数学必修一函数概念的知识点,仅供参考,欢迎大家阅读。

高一数学必修一函数概念的知识点 11、映射的定义2、函数的概念3、函数的三要素:定义域、值域和对应法则。

4、两个函数能成为同一函数的条件当且仅当两个函数的定义域和对应法则完全相同时,这两个函数才是同一函数。

5、区间的概念和记号6、函数的表示方法函数的表示方法有三种。

(1)解析法(2)列表法(3)图像法7、分段函数常见考法本节是段考和高考必不可少的考查部分,多以选择题和填空题的形式出现。

段考中常考查函数的定义域、值域、对应法则、同一函数、函数的解析式和分段函数。

高考中可以和高中数学的大部分章节知识联合考查,但是难度不大,属于容易题。

多考查函数的定义域、函数的表示方法和分段函数。

误区提醒1、映射是一种特殊的函数,映射中的集合A,B可以是数集,也可以是点集或其他集合,这两个集合有先后顺序。

A到B的映射与B到A的映射是不同的。

而函数是数集到数集的映射,所以函数是特殊的映射,但是映射不一定是函数。

2、函数的问题,要遵循“定义域优先”的原则。

无论是简单的函数,还是复杂的函数,无论是具体的函数,还是抽象的函数,必须优先考虑函数的定义域。

之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便。

3、分段函数是一个函数,而不是几个函数。

分段函数书写时,注意格式规范,一般在左边的区间写在上面,右边的区间写在下面,每一段自变量的取值范围的交集为空集,所有段的自变量的取值范围的并集是函数的定义域。

高一数学必修一函数概念的知识点 2一、函数的概念设A、B是非空的数集,如果按照某个确定的对应关系f,是对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A。

高一数学函数知识点

高一数学函数知识点

高一数学函数知识点
高一数学函数的知识点主要包括以下内容:
1. 函数的概念:函数是一种特殊的关系,即每个自变量都对应唯一一个因变量的规律性映射关系。

2. 函数的表示方式:函数可以用算式、图形、表格等多种方式表示,常见的表示方式包括函数表达式,函数图像和函数的对应关系表。

3. 函数的定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。

4. 常函数和恒函数:常函数的函数值对于任意自变量都相等,恒函数的函数值恒等于某个常数。

5. 线性函数和仿射函数:线性函数是一次函数,即函数的表达式为y=ax+b,其中a 和b为常数;仿射函数是一次函数的平移或伸缩,即函数的表达式为y=ax+b+c,其中a、b和c为常数。

6. 幂函数和指数函数:幂函数的函数表达式为y=x^a,其中a为常数;指数函数的函数表达式为y=a^x,其中a为常数。

7. 对数函数:对数函数是指数函数的逆函数,即函数的表达式为y=log_a(x),其中a 为常数。

8. 复合函数和反函数:复合函数是将一个函数的输出作为另一个函数的输入得到的新函数;反函数是将一个函数的自变量和因变量互换得到的新函数。

9. 函数的图像与性质:通过绘制函数的图像可以分析函数的性质,如增减性、奇偶性、单调性、极值点、图像的平移、翻折等。

10. 函数的运算:函数之间可以进行简单的四则运算,如加法、减法、乘法和除法,也可以进行函数的复合运算。

这些是高一数学函数的一些基本知识点,希望能够对你有所帮助。

如需更加详细的解析,请提供具体的问题。

高一函数知识点总结7篇

高一函数知识点总结7篇

高一函数知识点总结7篇第1篇示例:高中一年级的数学学习内容丰富多彩,其中函数是一个重要的知识点。

函数作为数学中的一种基本概念,在数学和其他学科中都有着广泛的应用。

下面我们就来总结一下高一函数知识点。

一、函数的概念和性质1. 函数的概念:函数是一个对应关系,它将一个自变量映射到一个因变量。

通俗地说,就是一个输入对应一个输出。

2. 定义域和值域:函数的定义域是所有可能的输入值组成的集合,值域是所有可能的输出值组成的集合。

3. 一次函数:一次函数的一般形式为y=ax+b,其中a和b为常数,a不为0。

4. 二次函数:二次函数的一般形式为y=ax²+bx+c,其中a、b、c为常数,a不为0。

5. 奇函数和偶函数:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

6. 单调性和极值:函数在定义域内单调递增或单调递减,当导数为0时函数取得极值。

1. 函数的图像:函数的图像是函数在坐标系中的表现,通常用曲线或者直线来表示。

2. 函数的对称性:函数图像关于y轴对称则为偶函数,关于原点对称则为奇函数。

3. 函数的周期性:周期函数可以表示为f(x+T)=f(x),其中T为函数的周期。

4. 函数的增减性:函数在某一区间上单调递增或单调递减。

5. 函数的奇偶性:函数的奇偶性可以通过f(-x)和f(x)的关系来确定。

三、函数的求导与应用1. 导数的概念:导数表示函数在某一点处的变化率,也可以理解为函数在该点处的切线斜率。

2. 导数的运算:导数的运算法则包括常数法则、幂法则、和差法则、复合函数求导等。

3. 函数的极值:函数在导数为0的点处取得极值,通过导数可判断临界点。

4. 函数的凹凸性:函数在凹和凸区间内的导数有一定的性质,通过二阶导数可判断凹凸性。

5. 泰勒展开:泰勒展开可以将一个函数在某一点处展开成无穷级数,用于近似计算。

第2篇示例:高一函数知识点总结函数是数学中一个非常重要的概念,它可以帮助我们描述数学规律和研究各种问题。

高一数学函数知识点归纳总结

高一数学函数知识点归纳总结

高一数学函数知识点归纳总结一、函数的基本概念函数的定义:对于两个非空数集A和B,如果存在某种对应关系f,使得A中的每一个元素x都能在B中找到唯一的元素y与之对应,则称f是从A到B的函数,记作y=f(x),其中x是自变量,y是因变量。

函数的定义域:函数y=f(x)中,自变量x的取值范围称为函数的定义域。

函数的值域:函数y=f(x)在定义域内所有函数值的集合称为函数的值域。

二、函数的性质单调性:如果对于定义域内的任意两个数x1和x2(x1<x2),都有f(x1)≤f(x2)或f(x1)≥f(x2),则称函数f(x)在定义域内单调递增或单调递减。

奇偶性:如果对于定义域内的任意x,都有f(-x)=f(x),则称函数f(x)为偶函数;如果对于定义域内的任意x(且x≠0),都有f(-x)=-f(x),则称函数f(x)为奇函数。

周期性:如果存在一个正数T,使得对于定义域内的任意x,都有f(x+T)=f(x),则称函数f(x)具有周期性,T为函数的周期。

三、基本初等函数幂函数:形如y=x^a(a为实数)的函数称为幂函数。

指数函数:形如y=a^x(a>0且a≠1)的函数称为指数函数。

对数函数:如果a^x=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=log_aN。

函数y=log_ax(a>0,且a≠1)叫做对数函数。

三角函数:包括正弦函数、余弦函数、正切函数等,它们与角度和弧度有关。

四、函数的应用函数模型的应用:通过建立函数模型来解决实际问题,如最优化问题、增长率问题等。

函数图像的应用:通过观察和分析函数的图像来理解函数的性质和行为,从而解决相关问题。

以上是高一数学函数的主要知识点总结。

在学习过程中,应注重理解和掌握这些基本概念和性质,并通过练习和应用来加深对知识点的理解和记忆。

高一函数知识点总结及例题

高一函数知识点总结及例题

高一函数知识点总结及例题高一函数知识点总结及例题一、函数及其性质1. 函数的定义与定义域、值域:函数是一个或多个自变量和一个因变量之间的依赖关系。

函数的定义域是自变量的取值范围,值域是因变量的取值范围。

2. 常用函数类型:常见的函数类型有一次函数、二次函数、幂函数、指数函数、对数函数、三角函数等。

3. 奇偶性:(1) 奇函数:f(-x)=-f(x),对称于原点;(2) 偶函数:f(-x)=f(x),对称于y轴;(3) 不存在奇偶性:例如二次函数f(x)=x^2或sin(x)。

4. 函数的单调性与极值:(1) 单调递增:x1 < x2,f(x1) < f(x2);(2) 单调递减:x1 < x2,f(x1) > f(x2);(3) 极大值:在一定范围内,函数值在此点左右两侧都小于此值;(4) 极小值:在一定范围内,函数值在此点左右两侧都大于此值。

5. 函数的周期性:周期函数是指函数在某一区间内具有某种规律的重复性。

二、一次函数1. 一次函数的定义:一次函数可表示为y=kx+b,其中k为斜率,b为截距。

2. 斜率与截距的意义:(1) 斜率k:代表了函数的变化速率,k越大表示变化越快,k为正表示递增,k为负表示递减;(2) 截距b:表示函数与y轴的交点在y轴上的位置。

3. 函数图像与性质:(1) 图像特征:直线;(2) 平行线性质:同斜率的直线平行,即k相同;(3) 直线交点:两条直线的交点为(x, y),满足k1x+b1=k2x+b2。

4. 求解问题:(1) 两点式:已知两点A(x1, y1)和B(x2, y2),斜率k=(y2-y1)/(x2-x1),再根据一点斜率式y-y1=k(x-x1)求解;(2) 截距式:已知截距b和斜率k,直线方程为y=kx+b;(3) 点斜式:已知直线上一点A(x1, y1)和斜率k,直线方程为y-y1=k(x-x1)。

三、二次函数1. 二次函数的定义:二次函数可表示为y=ax^2+bx+c,其中a不等于0,a为抛物线的开口方向。

高一数学必修1函数知识点

高一数学必修1函数知识点

高一数学必修1函数知识点一、函数的概念与表示函数是数学中描述变量之间依赖关系的一种基本工具。

在高中数学的学习中,函数的概念和性质是重中之重。

函数通常由两个数集之间的对应关系来定义,其中一个数集中的每一个元素都与另一个数集中的唯一元素相对应。

这种对应关系可以用一个表达式或公式来表示,我们称之为函数的解析式。

例如,y = f(x) = 2x + 3 就是一个简单的线性函数,其中x是自变量,y是因变量,函数的值是自变量x的两倍再加上3。

这个函数可以用图像的形式在坐标系中表示,它的图像是一条直线。

二、函数的性质函数的性质包括单调性、奇偶性、周期性等。

了解函数的性质有助于我们更好地理解函数的行为和特点。

1. 单调性:函数的单调性描述了函数值随自变量变化的趋势。

如果对于所有的x1 < x2,都有f(x1) ≤ f(x2),那么我们称这个函数在该区间上是增函数。

相反,如果f(x1) ≥ f(x2),那么它是减函数。

2. 奇偶性:函数的奇偶性描述了函数图像相对于y轴的对称性。

如果对于所有的x,都有f(-x) = -f(x),那么这个函数是奇函数。

如果f(-x) = f(x),那么这个函数是偶函数。

3. 周期性:周期性是指函数在某个固定的区间内重复其值的特性。

如果存在一个正数T,使得对于所有的x,都有f(x + T) = f(x),那么函数具有周期T。

三、函数的图像函数的图像是函数在坐标系中的表现形式,通过图像我们可以直观地了解函数的性质。

例如,线性函数的图像是一条直线,二次函数的图像是一个抛物线,指数函数的图像随着底数的不同会有不同的形状。

1. 线性函数:y = ax + b (a ≠ 0),其中a是斜率,b是截距。

斜率决定了直线的倾斜程度,截距决定了直线与y轴的交点位置。

2. 二次函数:y = ax^2 + bx + c (a ≠ 0),其图像是一个抛物线。

二次函数的开口方向、顶点位置和对称轴都与系数a、b、c有关。

高一函数知识点总结

高一函数知识点总结

高一函数知识点总结一、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A →B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)(见课本21页相关例2)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

高一数学必修1函数知识点总结

高一数学必修1函数知识点总结

高一数学必修1函数知识点总结一、函数的基本概念函数的定义:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

记作:y=f(x),x∈A。

其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A }叫做函数的值域。

二、函数的性质函数的奇偶性:若f(x)是偶函数,那么f(x)=f(-x);若f(x)是奇函数,且0在其定义域内,则f(0)=0;判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或f(x)≠f(-x);奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性。

函数的单调性:通过对函数求导,可以判断函数的单调性。

若导数大于0,则函数在此区间内单调递增;若导数小于0,则函数在此区间内单调递减。

三、复合函数复合函数的定义域:若已知g(x)的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;复合函数的单调性:由同增异减判定,即内外函数单调性相同时,复合函数单调性相同;内外函数单调性相反时,复合函数单调性相反。

四、对数函数对数函数的定义域为大于0的实数集合;对数函数的值域为全部实数集合;对数函数总是通过(1,0)这一点;当底数a大于1时,对数函数为单调递增函数,并且上凸;当0<a<1时,对数函数为单调递减函数,并且下凹。

五、函数图像与对称性函数图像的对称性可以通过观察图像或利用函数的性质进行判断;对于某些特定的函数,如反比例函数,其图像具有特定的对称性。

六、指数函数与幂函数指数函数的形式通常为y=a^x,其中a为底数,x为指数;幂函数的形式为y=x^n,其中n为实数。

这些知识点构成了高一数学必修1中关于函数的基本框架。

在学习过程中,需要深入理解每个知识点的概念、性质和应用,同时结合具体的例题和习题进行练习,以加深对知识点的理解和掌握。

高一数学第一章函数知识点

高一数学第一章函数知识点

高一数学第一章函数知识点函数作为高中数学的重要概念之一,是数学中的基础。

函数的理解和应用在高中数学学习中占据重要地位。

下面将对高一数学第一章函数知识点进行介绍,帮助学生更好地理解和掌握函数的概念和相关内容。

一、函数的定义和性质1. 函数的定义:函数是一个将一个集合的每个元素都对应到另一个集合的元素的规则。

常用的表示方式为y=f(x),其中x为自变量,y为因变量,f(x)表示函数。

2. 定义域:函数的自变量的取值范围称为定义域,用D表示。

3. 值域:函数的因变量的所有可能取值构成的集合称为值域,用R表示。

4. 单调性:函数在定义域内的取值随自变量的增加或减少而随之增加或减少。

5. 奇偶性:若函数满足f(x) = f(-x),则函数为偶函数;若函数满足f(x) = -f(-x),则函数为奇函数。

二、函数的表示和求解1. 函数的表达式:可以用解析式、图象、数据表等多种方式来表示函数。

2. 函数的图象:函数的图象是由函数定义域内的所有点的坐标所构成的图形。

通过观察函数图象,可以判断函数的特征和性质。

3. 函数的求解:对于给定的函数,可以通过解方程或构造方程组的方法来求解函数的零点、交点等问题。

三、函数的运算和复合函数1. 函数的四则运算:对于给定的函数f(x)和g(x),可以进行加减乘除等运算,得到新的函数。

2. 复合函数:将一个函数的输出作为另一个函数的输入,得到一个新的函数。

若函数f和g满足f(g(x))=g(f(x)),则称f和g互为逆函数。

3. 函数的反函数:如果函数f和g满足f(g(x))=x和g(f(x))=x,在定义域和值域上都成立,则称g为f的反函数。

四、常见函数的特征和性质1. 幂函数:y=x^n(n为自然数),具有一些共性特征和性质,如单调性、奇偶性等。

2. 指数函数:y=a^x(a>0且a≠1),具有指数增长或指数衰减的特点。

3. 对数函数:y=loga(x)(a>0且a≠1),具有反指数函数的特点。

高一数学函数知识点归纳

高一数学函数知识点归纳

高一数学函数知识点归纳一、函数的概念1. 函数定义:函数是从一个数集A(定义域)到另一个数集B(值域)的映射,通常表示为y=f(x)。

2. 定义域:能够输入到函数中的所有可能的x值的集合。

3. 值域:函数输出的所有可能的y值的集合。

4. 函数图像:函数在坐标系中的图形表示。

二、函数的表示法1. 公式法:用数学公式表示函数关系,如y=2x+3。

2. 表格法:用表格列出x与y的对应值。

3. 图像法:通过函数图像直观表示函数关系。

三、函数的性质1. 单调性:函数在定义域内随着x的增加,y值单调递增或递减。

2. 奇偶性:函数f(x)如果满足f(-x)=-f(x)称为奇函数;如果满足f(-x)=f(x)称为偶函数。

3. 周期性:函数如果存在一个非零常数T,使得对于所有x,都有f(x+T)=f(x),则称函数具有周期性。

4. 有界性:函数的值域在某个区间内有限,称函数在该区间内有界。

四、基本初等函数1. 线性函数:y=kx+b(k≠0),其中k为斜率,b为截距。

2. 二次函数:y=ax^2+bx+c(a≠0),顶点形式为y=a(x-h)^2+k。

3. 幂函数:y=x^n,其中n为实数。

4. 指数函数:y=a^x(a>0,a≠1)。

5. 对数函数:y=log_a(x)(a>0,a≠1)。

6. 三角函数:正弦函数y=sin(x),余弦函数y=cos(x),正切函数y=tan(x)等。

五、函数的运算1. 函数的和差:(f±g)(x)=f(x)±g(x)。

2. 函数的乘积:(f*g)(x)=f(x)g(x)。

3. 函数的商:(f/g)(x)=f(x)/g(x)(g(x)≠0)。

六、复合函数1. 复合函数定义:如果有两个函数f(x)和g(x),那么(f∘g)(x)=f(g(x))。

2. 复合函数的运算法则:(f∘g)(x)=f(g(x)),其中g(x)≠0。

七、反函数1. 反函数定义:如果函数y=f(x)在区间I上是单调的,则存在一个函数x=f^(-1)(y),使得f(f^(-1)(y))=y。

高一数学必修1函数的知识点归纳

高一数学必修1函数的知识点归纳

高一数学必修1函数的知识点归纳一、函数的概念和表示方法1.函数的定义:函数是一个数学概念,是一个输入-输出的对应关系。

2.函数的表示方法:函数可以通过集合表示法、解析式表示法、图像表示法等方式进行表示。

二、函数的性质1.定义域和值域:函数的定义域是所有能够使函数有意义的输入值的集合,值域是所有函数可能的输出值的集合。

2.奇偶性:如果对于定义域中的任意x,有f(-x)=f(x),则函数是偶函数;如果对于定义域中的任意x,有f(-x)=-f(x),则函数是奇函数。

3.增减性:如果对于定义域中的任意两个数a和b,有a<b时f(a)<f(b),则函数是增函数;如果a<b时f(a)>f(b),则函数是减函数;如果存在a和b,使得a<b但f(a)>f(b),则函数是不严格增函数。

4.周期性:如果存在一个正数T,使得对于定义域中的任意x,有f(x+T)=f(x),则函数是周期函数。

三、一次函数1. 一次函数的定义:一次函数又叫线性函数,表示为 f(x) = kx+b,其中 k 和 b 是常数,k 称为斜率,b 称为截距。

2.特殊情况下的一次函数:当k=0时,函数是与x轴平行的直线,称为常量函数;当b=0时,函数是通过原点的直线,称为比例函数。

四、二次函数1. 二次函数的定义:二次函数表示为 f(x) = ax^2+bx+c,其中 a、b、c 是常数,且 a 不等于 0。

2.二次函数的图像:二次函数的图像是一个抛物线,开口的方向和二次项系数a的正负有关。

3.二次函数的性质:二次函数的顶点坐标为(-b/2a,f(-b/2a)),是抛物线的最低点或最高点;对于任意定义域内的x,有f(x)=f(-b/2a)-D,其中D是抛物线与x轴的距离。

五、幂函数1.幂函数的定义:幂函数表示为f(x)=x^n,其中x是自变量,n是常数。

2.幂函数的图像:幂函数的图像根据n的奇偶性、正负和定义域的正负情况,分为四种情况。

高一函数知识点

高一函数知识点

函数复习主要知识点一、函数的概念与表示1、映射(1)映射:设A 、B 是两个集合,如果按照某种映射法则f ,对于集合A 中的任一个元素,在集合B 中都有唯一的元素和它对应,则这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射,记作f :A →B 。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素 ①定义域②对应法则③值域 两个函数是同一个函数的条件:三要素有两个相同二、函数的解析式与定义域 函 数 解 析 式 的 七 种 求 法待定系数法:在已知函数解析式的构造时,可用待定系数法。

例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f 解:设bax x f +=)( )0(≠a ,则bab x a b b ax a b x af x f f ++=++=+=2)()()]([∴⎩⎨⎧=+=342b ab a ∴⎩⎨⎧⎩⎨⎧=-===3212b a b a 或 32)(12)(+-=+=∴x x f x x f 或 配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

例2 已知221)1(xx xx f +=+ )0(>x ,求 ()f x 的解析式 解:2)1()1(2-+=+x x x x f , 21≥+xx2)(2-=∴x x f )2(≥x三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

例3 已知x x x f 2)1(+=+,求)1(+x f 解:令1+=x t ,则1≥t ,2)1(-=t xx x x f 2)1(+=+∴,1)1(2)1()(22-=-+-=t t t t f1)(2-=∴x x f )1(≥xx x x x f 21)1()1(22+=-+=+∴ )0(≥x四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。

高一必修1函数知识点总结

高一必修1函数知识点总结

高一必修1函数知识点总结一、函数的概念1.1 函数的定义函数是一个映射关系,它将自变量的取值映射到因变量的取值。

通俗地讲,函数就是一种"输入-输出"的关系。

1.2 函数的表示函数通常用 f(x) 或 y=f(x) 这样的形式来表示,其中 x 是自变量,f(x) 或 y 是因变量。

1.3 定义域和值域在映射的过程中,自变量的取值范围称为函数的定义域,因变量的取值范围称为函数的值域。

1.4 函数的图像函数的图像是函数在坐标系中的表示,它以自变量和因变量为横纵坐标构成图像。

1.5 基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

1.6 函数的性质包括奇偶性、周期性、单调性、最值等。

二、函数的运算2.1 函数的加减乘除函数可以进行加减乘除运算,也可以进行函数与常数的乘除运算。

2.2 复合函数复合函数是指将一个函数的结果作为另一个函数的自变量进行运算的函数。

2.3 反函数反函数是指与原函数相反的函数,其自变量与原函数的因变量互换。

三、函数的图像与性质3.1 函数的图像函数的图像可以反映函数的性质,如奇偶性、周期性、单调性等。

3.2 函数的奇偶性奇函数:f(-x)=-f(x),图像关于原点对称。

偶函数:f(-x)=f(x),图像关于y轴对称。

3.3 函数的周期性周期函数:f(x+T)=f(x),其中 T>0。

3.4 函数的单调性增函数:f(x₁)<=f(x₂),x₁<x₂。

减函数:f(x₁)>=f(x₂),x₁<x₂。

3.5 函数的最值函数的最大值和最小值。

四、函数的应用4.1 函数的建模利用函数描述实际问题,在数学中模拟现实问题。

4.2 函数的解析式函数的解析式是函数的表达式形式,通常可以从实际问题中提炼出来。

4.3 函数的应用问题利用函数解决实际问题,如求最值、求导数等。

4.4 函数的图像分析通过函数的图像分析函数的性质及实际问题。

高一必修一函数知识点

高一必修一函数知识点

高一必修一函数知识点 〖1.1〗指数函数(1)根式的概念 ①na 叫做根式,这里n 叫做根指数,a 叫做被开方数.②当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. ③根式的性质:()n na a =;当n 为奇数时,n n a a =;当n 为偶数时,(0)|| (0) nna a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mn m naa a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈(4)指数函数函数名称 指数函数定义函数(0x y a a =>且1)a ≠叫做指数函数图象1a >01a <<定义域 R值域 (0,+∞)过定点 图象过定点(0,1),即当x=0时,y=1.奇偶性 非奇非偶单调性 在R 上是增函数在R 上是减函数函数值的 变化情况y >1(x >0), y=1(x=0), 0<y <1(x <0) y >1(x <0), y=1(x=0), 0<y <1(x >0)a 变化对图象的影 响 在第一象限内,a 越大图象越高,越靠近y 轴; 在第二象限内,a 越大图象越低,越靠近x 轴. 在第一象限内,a 越小图象越高,越靠近y 轴; 在第二象限内,a 越小图象越低,越靠近x 轴.例:比较xa y =xy(0,1)O1y =xa y =xy(0,1)O1y =〖1.2〗对数函数(1)对数的定义①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N叫做真数.②对数式与指数式的互化:log (0,1,0)x a xN a N a a N =⇔=>≠>.(2)常用对数与自然对数:常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(3)几个重要的对数恒等式: log 10a =,log 1a a =,log b a a b =.(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()naa n M M n R =∈ ④log a NaN =⑤log log (0,)b na a n M Mb n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 (5)对数函数函数名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a >01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<xyO(1,0)1x =log a y x=xyO(1,0)1x =log a y x=a 变化对 图象的影响 在第一象限内,a 越大图象越靠低,越靠近x 轴 在第四象限内,a 越大图象越靠高,越靠近y 轴 在第一象限内,a 越小图象越靠低,越靠近x 轴 在第四象限内,a 越小图象越靠高,越靠近y 轴(6) 反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(7)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.即,若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.〖1.3〗幂函数(1)幂函数的图象(需要知道x=12,1,2,3与y=1x的图像)(2)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.②过定点:图象都通过点(1,1).〖1.4〗二次函数(1)二次函数解析式的三种形式 ①一般式: ②顶点式: ③两根式:(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质 ①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为 ,顶点坐标是 。

高一数学函数知识点5篇

高一数学函数知识点5篇

高一数学函数知识点5篇高一数学函数知识点11、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其(x)为内函数,f(u)为外函数.3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.高一数学函数知识点21、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x ∈[a,b],此时f(x)的定义域,即g(x)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.高一数学函数知识点31、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。

高一数学函数重点知识点

高一数学函数重点知识点

高一数学函数重点知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、致辞讲话、条据书信、合同范本、规章制度、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, policy letters, contract templates, rules and regulations, emergency plans, insights, teaching materials, essay encyclopedias, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高一数学函数重点知识点高中数学的学习难度主要在于概念的深入和方法的抽象。

数学高一函数知识点

数学高一函数知识点

数学高一函数知识点在高一数学学习中,函数是一个非常重要的概念,它是数学中的基础。

函数的概念和应用贯穿于整个高中数学学习过程中。

下面,我们来了解一下高一数学中的一些函数知识点。

一、函数的定义与性质1. 函数的定义:函数是一个数集的映射关系,它将一个数集的每个元素与另一个数集中唯一确定的元素相对应。

2. 自变量与因变量:函数中,自变量是自由选择的变量,而因变量则是通过自变量的取值决定的。

3. 定义域与值域:函数的定义域是自变量可能取值的集合,而值域则是函数所有可能取到的值所组成的集合。

4. 函数图像:函数图像是平面直角坐标系中所有满足函数关系的点的集合,通常用曲线来表示。

二、常见函数类型1. 一次函数:一次函数也称为线性函数,其函数关系可以表示为y = kx + b,其中k和b分别是常数。

一次函数的图像为一条直线,斜率k决定了直线的斜率。

当k>0时,直线上升;当k=0时,直线平行于x轴;当k<0时,直线下降。

2. 二次函数:二次函数的函数关系可以表示为y = ax^2 + bx + c,其中a、b和c为常数,a不等于零。

二次函数的图像为抛物线,抛物线的开口方向由二次项系数a的正负决定。

3. 正比例函数与反比例函数:正比例函数的函数关系可以表示为y = kx,其中k为常数。

正比例函数的图像为一条经过原点的直线。

反比例函数的函数关系可以表示为y = k / x,其中k为常数。

反比例函数的图像为一个光滑的曲线,其渐近线为x轴和y轴。

三、函数的性质与变化规律1. 函数的奇偶性:如果对于函数中的任意一点(x, y),有f(-x) =f(x),则函数称为偶函数;如果对于函数中的任意一点(x, y),有f(-x) = -f(x),则函数称为奇函数;如果函数既不满足奇函数的条件,也不满足偶函数的条件,则称为既非奇函数又非偶函数。

2. 函数的单调性:函数的单调性描述了函数在定义域上的变化规律。

如果对于函数中的任意两点(x1, y1)和(x2, y2),当x1 < x2时,有y1 < y2,则函数在该区间上是增函数;当x1 > x2时,有y1 > y2,则函数在该区间上是减函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作 a A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x =-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B① 任何一个集合是它本身的子集。

AíA②真子集:如果AíB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)③如果AíB, BíC ,那么AíC④ 如果AíB 同时BíA 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B 的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。

记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A 的元素组成的集合,叫做S中子集A的补集(或余集)记作: CSA 即 CSA ={x | x?S且 x?A}(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。

通常用U来表示。

(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。

)构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C={ P(x,y) | y= f(x) , x∈A }图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。

(2) 画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。

提高解题的速度。

发现解题中的错误。

4.快去了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.5.什么叫做映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。

记作“f:A B”给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

常用的函数表示法及各自的优点:1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.注意啊:解析法:便于算出函数值。

列表法:便于查出函数值。

图象法:便于量出函数值补充一:分段函数(参见课本P24-25)在定义域的不同部分上有不同的解析表达式的函数。

在不同的范围里求函数值时必须把自变量代入相应的表达式。

分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.补充二:复合函数如果y=f(u),(u∈M),u=g(x),(x∈A),则 y=f[g(x)]=F(x),(x∈A) 称为f、g 的复合函数。

例如: y=2sinX y=2cos(X2+1)7.函数单调性(1).增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。

区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;2 必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) 。

(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:1 任取x1,x2∈D,且x1<x2;2 作差f(x1)-f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)-f(x2)的正负);5 下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)_(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:函数单调性u=g(x)增增减减y=f(u)增减增减y=f[g(x)]增减减增注意:1、函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?8.函数的奇偶性(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

相关文档
最新文档