七年级数学第一学期期末考试卷_2

合集下载

七年级上册数学期末测试试卷(含答案)2套

七年级上册数学期末测试试卷(含答案)2套

七年级(上)期末数学试卷(1)一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.B.﹣C.D.﹣2.(3分)2021年10月16日0时23分,长征二号F遥十三运载火箭,在酒泉卫星发射中心按照预定时间精准点火发射,将神舟十三号送入近地点高度200000m,远地点高度356000m的近地轨道,并与天和核心舱对接.其中数字356000用科学记数法表示为()A.35.6×104B.3.56×105C.3.56×106D.0.356×1063.(3分)﹣5比﹣2()A.大3B.大7C.小3D.小﹣34.(3分)如图,分别从正面、左面、上面观察圆柱,得到的平面图形中,正确的是()A.圆、长方形、三角形B.长方形、长方形、圆C.圆、三角形、长方形D.长方形、圆、长方形5.(3分)下列等式变形正确的是()A.如果2a+1=b,那么B.如果,那么2a=3bC.如果ac=bc,那么a=bD.如果a=b,那么2a+3=2b+36.(3分)好又顺文具店中的必胜笔袋原价a元,暑假期间这种笔袋滞销,文具店降价15%,因9月初开学季,必胜笔袋供不应求,该文具店又提价10%,现在这种笔袋的价格是()A.a×(1﹣15%)×10%B.a×15%×10%C.a×(1﹣15%)×a×10%D.a×(1﹣15%)×(1+10%)7.(3分)如图,点A在点O的北偏东60°方向上,若∠BOC和∠AOD互余,在点O处观察点B,则点B所在的方向是()A.北偏东30°B.南偏西150°C.北偏西30°D.西偏北30°8.(3分)如图,数轴上从左至右依次排列的三个点A,B,C,其中A、C两点到原点的距离相等,且AC=8,BC =2AB,则点B表示的数为()A.﹣1B.1C.D.9.(3分)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”中,把“洛书”用今天的数学符号翻译出来,就是一个三阶幻方.请你探究如图洛书三阶幻方中,奇数和偶数的位置、数和数之间的数量关系所呈现的规律,根据这一规律,求出a,b,则a b=()A.16B.8C.﹣16D.﹣810.(3分)两条直角边长度分别为3cm,4cm的直角三角形,绕其中一条直角边旋转一周,得到立体图形的体积(锥体的体积公式:)较大的是()A.9πcm3B.C.16πcm3D.12πcm311.(3分)20名学生在进行一次科学实践活动时,需要组装一种实验仪器,仪器是由三个A部件和两个B部件组成.在规定时间内,每人可以组装好10个A部件或20个B部件.那么,在规定时间内,最多可以组装出实验仪器的套数为()A.50B.60C.100D.15012.(3分)在同一平面内,点O在直线AD上,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=α(0°<α<90°),则∠AOC=()A.90°﹣αB.90°+αC.D.90°±α二、填空题:本大题共6小题,每小题3分,共18分.将答案直接填写在答题卷中的横线上.13.(3分)下列各数:(﹣1)2,,0.,其中有理数有个.14.(3分)在1﹣2a,,﹣2x2y3,2022,m(n﹣1)五个代数式中,单项式有个.15.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“y”一面与相对面上的代数式相等,则有“xy2”一面与相对面上的代数式的和等于(用数字作答).16.(3分)由成都开往北京的和谐号动车上共有m人,在西安停站后,上车人数是下车人数的5倍,列车驶离西安站时动车上共有n人,那么下车的人数有(用含m,n的式子表示).17.(3分)如图,点A,O,E在同一直线上,∠AOB=38°,∠EOD=28°46',∠COE=2∠DOE,则∠COB=.18.(3分)商场元旦节促销,购物原价不超过200元打九折,超过200元立减30元,小刚的妈妈结账时付款180元,则她购买的商品原价为元.三、解答题:本大题共6个小题,共46分,解答应写出文字说明、证明过程或演算步骤.19.(7分)计算:.20.(7分)解方程:.21.(8分)先化简,再求值:A=﹣5x2+8x2﹣[8x﹣(4x﹣3)﹣x2].(1)若|x|=1,求A的值;(2)若x的平方比它本身还要大3,求A的值.22.(8分)如图,点O是直线AB上一点,OM,ON在直线AB的异侧,且∠MON=90°,OE平分∠MOB,OF 平分∠AON.(1)若∠BOM=150°,求∠BOE和∠NOF的度数;(2)设∠AOF=θ,用含θ的式子表示∠MOE.23.(8分)如图,数轴上A,B两点表示的数分别是m,n满足(m+8)2+|2n﹣20|=0.点P从点A出发以每秒2个单位的速度往点B的方向运动,点P出发1秒后,点Q从点B出发往点A的方向运动,设点Q的运动时间为t秒,点P出发3秒钟后,点Q恰好位于线段PB的中点处.(1)求m,n的值,并求线段AB的长度;(2)点Q每秒运动多少个单位长度?(3)当BQ=2PQ时,求t的值.24.(8分)有四个球队进行单循环比赛,每两队之间只比赛一场,每场比赛实行三局两胜制,即三局中获胜两局就获胜该场比赛,同时停止本场比赛.例如:表中第二行,比分2:0表示A队以2:0战胜B队.已知球队在每场比赛中都能获得积分,不同比分的积分不同,且积分为正整数.得到的比赛总积分表如下:A B C D总积分A2:02:11:29B0:21:2E mC1:22:11:27D2:1F2:1n(1)某球队要取得一场比赛的胜利,可能的比分结果是什么?(2)若比分为2:0时,净胜球为2,比分为2:1时,净胜球为1,依此类推,净胜球越多,积分也越多.请你根据表格中的数据,求出各种比分对应的积分分别是什么?(3)在(2)的条件下,若球队B战胜了球队D,但总积分m<n,求m,n的值.七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)﹣的相反数是()A.B.﹣C.D.﹣【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得﹣的相反数等于:﹣(﹣)=.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.(3分)2021年10月16日0时23分,长征二号F遥十三运载火箭,在酒泉卫星发射中心按照预定时间精准点火发射,将神舟十三号送入近地点高度200000m,远地点高度356000m的近地轨道,并与天和核心舱对接.其中数字356000用科学记数法表示为()A.35.6×104B.3.56×105C.3.56×106D.0.356×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:356000=3.56×105.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)﹣5比﹣2()A.大3B.大7C.小3D.小﹣3【分析】根据两数作差后的结果判断即可.【解答】解:∵﹣5﹣(﹣2)=﹣3,∴﹣5<﹣2,故选:C.【点评】本题考查了有理数的加减,通过作差后的结果判断,难度不大.4.(3分)如图,分别从正面、左面、上面观察圆柱,得到的平面图形中,正确的是()A.圆、长方形、三角形B.长方形、长方形、圆C.圆、三角形、长方形D.长方形、圆、长方形【分析】根据三视图的定义判断即可.【解答】解:从正面看该几何体是长方形,从左面看该几何体是长方形,从上面看该几何体是一个圆.故选:B.【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.5.(3分)下列等式变形正确的是()A.如果2a+1=b,那么B.如果,那么2a=3bC.如果ac=bc,那么a=bD.如果a=b,那么2a+3=2b+3【分析】根据等式的性质,逐一判断即可解答.【解答】解:A、如果2a+1=b,那么a=,故A不符合题意;B、如果=,那么3a=2b,故B不符合题意;C、如果ac=bc(c≠0),那么a=b,故C不符合题意;D、如果a=b,那么2a+3=2b+3,故D符合题意;故选:D.【点评】本题考查了等式的性质,熟练掌握等式的性质是解题的关键.6.(3分)好又顺文具店中的必胜笔袋原价a元,暑假期间这种笔袋滞销,文具店降价15%,因9月初开学季,必胜笔袋供不应求,该文具店又提价10%,现在这种笔袋的价格是()A.a×(1﹣15%)×10%B.a×15%×10%C.a×(1﹣15%)×a×10%D.a×(1﹣15%)×(1+10%)【分析】根据现在这种笔袋的价格=原价×(1﹣降价百分率)×(1+提价百分率),列出代数式即可求解.【解答】解:依题意有:现在这种笔袋的价格是a×(1﹣15%)×(1+10%).故选:D.【点评】本题主要考查列代数式,弄清题中的数量关系是解题的关键.7.(3分)如图,点A在点O的北偏东60°方向上,若∠BOC和∠AOD互余,在点O处观察点B,则点B所在的方向是()A.北偏东30°B.南偏西150°C.北偏西30°D.西偏北30°【分析】根据题意得出∠AON=60°,根据∠BOC和∠AOD互余求出∠BOC+∠AOD=90°,再代入∠BON=180°﹣∠AON﹣(∠BOC+∠AOD)求出∠BON即可,【解答】解:∵点A在点O的北偏东60°方向上,∴∠AON=60°,∵∠BOC和∠AOD互余,∴∠BOC+∠AOD=90°,∴∠BON=180°﹣∠AON﹣(∠BOC+∠AOD)=180°﹣60°﹣90°=30°,即点B所在的方向是北偏西30°,故选:C.【点评】本题考查了余角与补角和方向角,能求出∠AON=60°和∠BOC+∠AOD=90°是解此题的关键.8.(3分)如图,数轴上从左至右依次排列的三个点A,B,C,其中A、C两点到原点的距离相等,且AC=8,BC =2AB,则点B表示的数为()A.﹣1B.1C.D.【分析】先求出点A表示的数为﹣4,再由AC=8,BC=2AB,求出AB=,进而得到点B表示的数.【解答】解:∵A、C两点到原点的距离相等,且AC=8,∴A表示﹣4,C表示4,∵AC=8,BC=2AB,∴AB=,∴点B表示的数为﹣4+.故选:D.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.9.(3分)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”中,把“洛书”用今天的数学符号翻译出来,就是一个三阶幻方.请你探究如图洛书三阶幻方中,奇数和偶数的位置、数和数之间的数量关系所呈现的规律,根据这一规律,求出a,b,则a b=()A.16B.8C.﹣16D.﹣8【分析】观察左图,根据数字关系可得出幻方满足的条件是:每行每列和每条对角线上的数字之和都相等,然后算出右图中的a和b的值即可.【解答】解:观察左图,根据数字关系可得出幻方满足的条件是:每行每列和每条对角线上的数字之和都相等,∴右图中满足:b﹣1+3=1+2+3=5+a+3,∴a=﹣2,b=4,即a b=(﹣2)4=16,故选:A.【点评】本题主要考查数字的变化规律,总结归纳出数字的变化规律是解题的关键.10.(3分)两条直角边长度分别为3cm,4cm的直角三角形,绕其中一条直角边旋转一周,得到立体图形的体积(锥体的体积公式:)较大的是()A.9πcm3B.C.16πcm3D.12πcm3【分析】分两种情况,以4cm直角边为轴旋转一周,以3cm直角边为轴旋转一周,然后进行计算即可解答.【解答】解:分两种情况:以4cm直角边为轴旋转一周,得到立体图形的体积为:×π×32×4=12πcm3;以3cm直角边为轴旋转一周,得到立体图形的体积为:×π×42×3=16πcm3;∴体积较大的是16πcm3;故选:C.【点评】本题考查了点、线、面、体,分两种情况进行计算是解题的关键.11.(3分)20名学生在进行一次科学实践活动时,需要组装一种实验仪器,仪器是由三个A部件和两个B部件组成.在规定时间内,每人可以组装好10个A部件或20个B部件.那么,在规定时间内,最多可以组装出实验仪器的套数为()A.50B.60C.100D.150【分析】设x名学生组装A部件,则(20﹣x)名学生组装B部件,根据“仪器是由三个A部件和两个B部件组成”和“每人可以组装好10个A部件或20个B部件”列出方程并解答.【解答】解:设x名学生组装A部件,则(20﹣x)名学生组装B部件,则=.解得x=15.在规定的时间内,最多可以组装出实验仪器的套数为=50(套).故选:A.【点评】本题主要考查了一元一次方程的应用,根据题意找出等量关系是解决本题的关键.12.(3分)在同一平面内,点O在直线AD上,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=α(0°<α<90°),则∠AOC=()A.90°﹣αB.90°+αC.D.90°±α【分析】分两种情况如图①所示,当∠AOC<∠AOB时,根据角平分线的定义得∠AOM=∠AOC,∠AON=∠AOB,根据∠MON=∠AON﹣∠AOM,得∠AOB﹣∠AOC=2a,再根据已知条件∠AOC与∠AOB互补,得∠AOB=180°﹣∠AOC,进而得∠AOC=90°﹣a;如图②所示,当∠AOC>∠AOB时,根据角平分线的定义得∠AOM=∠AOC,∠AON=∠AOB,根据∠MON =∠AOM﹣∠AON,得∠AOC﹣∠AOB=2a,再根据已知条件∠AOC与∠AOB互补,得∠AOB=180°﹣∠AOC,进而得∠AOC=90°+a.【解答】解:①如图①所示,当∠AOC<∠AOB时,∵OM,ON分别为∠AOC,∠AOB的平分线,∴∠AOM=∠AOC,∠AON=∠AOB,∴∠MON=∠AON﹣∠AOM=(∠AOB﹣∠AOC),∴∠AOB﹣∠AOC=2a,∵∠AOC与∠AOB互补,∴∠AOB=180°﹣∠AOC,∴180°﹣∠AOC﹣∠AOC=2a,∴∠AOC=90°﹣a;②如图②所示,当∠AOC>∠AOB时,∵OM,ON分别为∠AOC,∠AOB的平分线,∴∠AOM=∠AOC,∠AON=∠AOB,∴∠MON=∠AOM﹣∠AON=(∠AOC﹣∠AOB),∴∠AOC﹣∠AOB=2a,∵∠AOC与∠AOB互补,∴∠AOB=180°﹣∠AOC,∴∠AOC﹣(180°﹣∠AOC)=2a,∴∠AOC=90°+a,综上所述:∠AOC=90°+a或∠AOC=90°﹣a,(0°<α<90°);故选:D.【点评】本题考查了余角和补角、角平分线的定义,掌握余角和补角、角平分线的定义的综合应用,分两种情况是解题关键.二、填空题:本大题共6小题,每小题3分,共18分.将答案直接填写在答题卷中的横线上.13.(3分)下列各数:(﹣1)2,,0.,其中有理数有3个.【分析】根据有理数的定义进行判断即可.【解答】解:根据有理数的定义知:(﹣1)2,,是有理数.故答案为:3.【点评】本题考查有理数定义的考查,解题关键是熟知有理数的定义.14.(3分)在1﹣2a,,﹣2x2y3,2022,m(n﹣1)五个代数式中,单项式有3个.【分析】数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.【解答】解:,﹣2x2y3,2022是单项式,故答案为:3.【点评】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型.15.(3分)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“y”一面与相对面上的代数式相等,则有“xy2”一面与相对面上的代数式的和等于0(用数字作答).【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端对面,判断即可.【解答】解:由图可知:y与2y﹣3相对,xy2与﹣3xy相对,由题意得:y=2y﹣3,∴y=3,∴xy2+(﹣3xy)=9x+(﹣9x)=0,∴有“xy2”一面与相对面上的代数式的和等于0,故答案为:0.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.16.(3分)由成都开往北京的和谐号动车上共有m人,在西安停站后,上车人数是下车人数的5倍,列车驶离西安站时动车上共有n人,那么下车的人数有(用含m,n的式子表示).【分析】设下车人数为x,则上车人数为5x,列出等量关系式,求出x,即可得出下车的人数.【解答】解:设下车人数为x,则上车人数为5x,m+5x﹣x=n,∴x=,∴下车的人数为.故答案为:.【点评】本题主要考查列代数式,弄清题中的数量关系是解题的关键.17.(3分)如图,点A,O,E在同一直线上,∠AOB=38°,∠EOD=28°46',∠COE=2∠DOE,则∠COB=84°28'.【分析】根据角的和差和平角的的性质进行计算即可.【解答】解:∵∠EOD=28°46',∠COE=2∠DOE,∴∠COE=2×28°46'=57°32',∴∠COB=180°﹣∠AOB﹣∠COE=180°﹣38°﹣57°32'=84°28'.故答案为:84°28'.【点评】本题考查角的计算和度分秒的转化,解题关键是熟知度分秒的转化.18.(3分)商场元旦节促销,购物原价不超过200元打九折,超过200元立减30元,小刚的妈妈结账时付款180元,则她购买的商品原价为200或210元.【分析】设她购买的商品原价为x元,分x≤200及x>200两种情况考虑,根据“购物原价不超过200元打九折,超过200元立减30元”,结合小刚的妈妈结账时付款180元,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设她购买的商品原价为x元.当x≤200时,x=180,解得:x=200;当x>200时,x﹣30=180,解得:x=210,∴她购买的商品原价为200或210元.故答案为:200或210.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题:本大题共6个小题,共46分,解答应写出文字说明、证明过程或演算步骤.19.(7分)计算:.【分析】先算括号内的式子和乘方、再算乘除法、最后算减法即可.【解答】解:=÷(﹣)××﹣=×(﹣6)××﹣=﹣﹣=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算法则和运算顺序.20.(7分)解方程:.【分析】方程整理后,去分母,去括号,移项,合并,把x系数化为1,即可求出解.【解答】解:整理得:3x﹣24﹣7=﹣(x﹣3)﹣2x,即5x﹣31=﹣(x﹣3),去分母得:15x﹣93=﹣x+3,移项得:15x+x=3+93,合并得:16x=96,系数化为1得:x=6.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1,求出解.21.(8分)先化简,再求值:A=﹣5x2+8x2﹣[8x﹣(4x﹣3)﹣x2].(1)若|x|=1,求A的值;(2)若x的平方比它本身还要大3,求A的值.【分析】(1)直接利用|x|=1,分情况讨论得出答案;(2)根据已知将原式变形,整体代入得出答案.【解答】解:A=﹣5x2+8x2﹣[8x﹣(4x﹣3)﹣x2]=﹣5x2+8x2﹣8x+(4x﹣3)+x2=﹣5x2+8x2﹣8x+4x﹣3+x2=4x2﹣4x﹣3,(1)若|x|=1,则x=±1,当x=1时,原式=4×12﹣4×1﹣3=4﹣4﹣3=﹣3;当x=﹣1时,原式=4×(﹣1)2﹣4×(﹣1)﹣3=4+4﹣3=5;综上所述:A的值为﹣3或5;(2)若x的平方比它本身还要大3,则x2﹣x=3,故原式=4x2﹣4x﹣3=4(x2﹣x)﹣3=4×3﹣3=9.【点评】此题主要考查了整式的加减——化简求值,正确掌握相关运算法则是解题关键.22.(8分)如图,点O是直线AB上一点,OM,ON在直线AB的异侧,且∠MON=90°,OE平分∠MOB,OF 平分∠AON.(1)若∠BOM=150°,求∠BOE和∠NOF的度数;(2)设∠AOF=θ,用含θ的式子表示∠MOE.【分析】解:(1)由OE平分∠BOM,可以求出∠BOE的度数,根据平角求出∠AOM30°,由∠MON=90°,求出∠AON=90°﹣30°=60°,再根据OF平分∠AON,即可求出∠NOF的度数.(2由OF平分∠AON,得到∠AON=2θ,所以∠MOA=90°﹣2θ,由平角得到∠BOM=180°﹣(90°﹣θ)=90°+θ,再根据OE平分∠MOB,即可求出∠MOE.【解答】解:(1)∵OE平分∠BOM,∠BOM=150°,∴∠BOE=,∵∠BOM=150°,∴∠AOM=180°﹣150°=30°,∵∠MON=90°,∴∠AON=90°﹣30°=60°,∵OF平分∠AON,∴∠NOF=.(2)∵∠AOF=θ,OF平分∠AON,∴∠AON=2θ,∵∠MON=90°,∴∠MOA=90°﹣2θ,∴∠BOM=180°﹣(90°﹣2θ)=90°+2θ,∵OE平分∠MOB,∴∠MOE=∠BOM=45°+θ.【点评】本题考查角的计算,角平分线的定义等知识,解题的关键是厘清各角之间的关系,属于基础题.23.(8分)如图,数轴上A,B两点表示的数分别是m,n满足(m+8)2+|2n﹣20|=0.点P从点A出发以每秒2个单位的速度往点B的方向运动,点P出发1秒后,点Q从点B出发往点A的方向运动,设点Q的运动时间为t秒,点P出发3秒钟后,点Q恰好位于线段PB的中点处.(1)求m,n的值,并求线段AB的长度;(2)点Q每秒运动多少个单位长度?(3)当BQ=2PQ时,求t的值.【分析】(1)由非负性可求解;(2)由点Q恰好位于线段PB的中点处.列出方程可求解;(3)由BQ=2PQ,列出方程可求解.【解答】解:(1)∵(m+8)2+|2n﹣20|=0,∴m=﹣8,n=10,∴AB=10﹣(﹣8)=18;(2)设点Q每秒运动x个单位长度,由题意可得:2×2x=18﹣2×3,∴x=3,答:点Q每秒运动3个单位长度;(3)由题意可得:3t=2×|18﹣2﹣5t|,∴t=或.【点评】本题考查了一元一次方程的应用,非负性,找到正确的数量关系是解题的关键.24.(8分)有四个球队进行单循环比赛,每两队之间只比赛一场,每场比赛实行三局两胜制,即三局中获胜两局就获胜该场比赛,同时停止本场比赛.例如:表中第二行,比分2:0表示A队以2:0战胜B队.已知球队在每场比赛中都能获得积分,不同比分的积分不同,且积分为正整数.得到的比赛总积分表如下:A B C D总积分A2:02:11:29B0:21:2E mC1:22:11:27D2:1F2:1n(1)某球队要取得一场比赛的胜利,可能的比分结果是什么?(2)若比分为2:0时,净胜球为2,比分为2:1时,净胜球为1,依此类推,净胜球越多,积分也越多.请你根据表格中的数据,求出各种比分对应的积分分别是什么?(3)在(2)的条件下,若球队B战胜了球队D,但总积分m<n,求m,n的值.【分析】(1)根据比赛情况可得可能的比分为2:0和2:1;(2)设比分为2:0,2:1,1:2,0:2每场的积分分别为a,b,c,d,根据表中A队、C队的积分得,,解方程组再结合a+b+c=9且整数a>b>c>d>0,可得答案;(3)根据球队B战胜了球队D,分四种情况可得答案.【解答】解:(1)某球队要取得一场比赛的胜利,可能的比分结果是2:0或2:1;(2)设比分为2:0,2:1,1:2,0:2每场的积分分别为a,b,c,d,这里的a,b,c,d都是整数,且a>b>c>d>0,根据表中A队、C队的积分得,,①﹣②,得a﹣c=2,∵a+b+c=9,且整数a>b>c>d>0,∴a+b+c≤9,而此时若b>3,不妨假设b=4,则a为满足a>b只能为5,那么c=0,与c>0矛盾,且当b>4时,a无法同时满足a>b和a+b<9,∴b≤3,∵b+2c=7,∴c≥2,∵c<b,∴c=2,b=3,∴a=4,∵a>b>c>d>0,∴d=1,∴d=1,c=2,b=3,a=4,答:比分为2:0,2:1,1:2,0:2时,每场的积分分别为4,3,2,1;(3)若E是2:0,则F是0:2,m=a+c+d=4+2+1=7,n=2b+d=2×3+1=7,符合B队战胜D队,不符合m<n,若E是2:1,则F是1:2,m=b+c+d=3+2+1=6,n=2b+c=2×3+2=8,符合B队战胜D队,符合m<n,若E是1:2,则F是2:1,m=2c+d=2×2+1=5,n=3b=3×3=9,不符合B队战胜D队,符合m<n,若E是0:2,则F是2:0,m=c+2d=2+2×1=4,m=a+2b=4+2×3=10,不符合B队战胜D队,符合m<n.综上,符合B队战胜D队,又符合m<n的m,n值是m=6,n=8.【点评】本题考查三元一次方程组的应用,根据题意设出未知数并列出方程组是解题关键.七年级(上)期末数学试卷(2)一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有-•个符合题目要求,请把你认为正确的题号填入题后面的括号内)1.(3分)如图,能用∠1、∠ABC、∠B三种方法,表示同一个角的是()A.B.C.D.2.(3分)下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b﹣3ba2=0D.5a2﹣4a2=13.(3分)方程,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是()A.2B.3C.4D.64.(3分)把弯曲的河道改直,能够缩短航程,这样做的道理是()A.两点之间,射线最短B.两点确定一条直线C.两点之间,直线最短D.两点之间,线段最短5.(3分)如果单项式5x a y5与﹣x3y b是同类项,那么a、b的值分别为()A.2,5B.3,5C.5,3D.﹣3,56.(3分)钟表在8:30时,时针与分针的夹角度数是()A.45°B.30°C.60°D.75°7.(3分)如图,将一副三角板如图放置,∠COD=20°,则∠AOB的度数为()A.140°B.150°C.160°D.170°8.(3分)设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b+c等于()A.﹣1B.0C.1D.2.(3分)如图是正方体的表面展开图,每一个面标有一个汉字,则与“美”相对的面上的字是()A.建B.设C.江D.油10.(3分)《算学启蒙》中有一道题,原文是:良马日行二百四十里,驽马日行一百二十里.驽马先行一十二日,问良马几何追及之?译文为:跑的快的马每天走240里,跑的慢的马每天走120里.慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,可列方程()A.240(x+12)=120x B.240(x﹣12)=120xC.240x=120(x+12)D.240x=120(x﹣12)11.(3分)如图,表中给出的是某月的月历,任意选取“U”型框中的5个数(如阴影部分所示),请你运用所学的数学知识来研究,在本月历中这5个数的和可能的是()A.64B.75C.86D.12612.(3分)如图,在长方形ABCD中,AB=6cm,BC=8cm,点E是AB上的一点,且AE=2BE.点P从点C出发,以2cm/s的速度沿点C﹣D﹣A﹣E匀速运动,最终到达点E.设点P运动时间为ts,若三角形PCE的面积为18cm2,则t的值为()A.或B.或或C.或6D.或6或二、填空题:(本大题共6个小题,每小题3分,共18分。

七年级数学上学期期末复习检测试卷(2)

七年级数学上学期期末复习检测试卷(2)

2018-2019学年七年级数学上学期期末复习检测试卷一、选择题(每小题3分,共30分)1.(3分)﹣3的相反数是()A.B.C.3 D.﹣32.(3分)﹣3πxy2z3的系数和次数是()A.﹣3,6 B.﹣3π,5 C.﹣3π,6 D.﹣3,5 3.(3分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段4.(3分)A看B的方向是北偏东21°,那么B看A的方向()A.南偏东69°B.南偏西69°C.南偏东21°D.南偏西21°5.(3分)如果a,b互为相反数,x,y互为倒数,则(a+b)+xy的值是()A.2 B.3 C.3.5 D.46.(3分)已知方程(m﹣1)x|m|=6是关于x的一元一次方程,则m的值是()A.±1 B.1 C.0或1 D.﹣17.(3分)我国南海海域面积约为3500000km2,用科学记数法表示正确的是()A.3.5×105 km2B.3.5×106 km2C.3.5×107 km2D.3.5×108 km28.(3分)有下列四种说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.其中正确的是()A.①②B.①③C.①②③D.①②③④9.(3分)若a,b为有理数,a>0,b<0,且|a|<|b|,那么a,b,﹣a,﹣b的大小关系是()A.b<﹣a<﹣b<a B.b<﹣b<﹣a<aC.b<﹣a<a<﹣b D.﹣a<﹣b<b<a10.(3分)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()A.1 B.5 C.4 D.3二、填空题(每小题3分,共15分)11.(3分)绝对值大于1而小于4的整数有个.12.(3分)如果x=2是方程mx﹣1=2的解,那么m= .13.(3分)9时45分时,时钟的时针与分针的夹角是.14.(3分)如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF长为cm.15.(3分)李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.三、解答题(共75分)16.(8分)计算题(1)﹣22×2+(﹣3)3×(﹣)(2)×(﹣5)+(﹣)×9﹣×8.17.(8分)解方程.(1)=1﹣(2) [(x﹣2)﹣6]=118.(9分)求代数式﹣2x2﹣ [3y2﹣2(x2﹣y2)+6]的值,其中x=﹣1,y=﹣2.19.(9分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB 的度数.20.(9分)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B 地,然后溯江而上到C地下船,共乘船4小时.已知A,C两地相距10千米,船在静水中的速度为7.5千米/时.求A,B两地间的距离.21.(12分)用火柴棒按下列方式搭建三角形:(1)填表:(2)当三角形的个数为n时,火柴棒的根数多少?(3)求当n=1000时,火柴棒的根数是多少?22.(8分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:﹣=﹣,“□”是被污染的内容.他很着急,翻开书后面的答案,这道题的解是x=2,你能帮他补上“□”的内容吗?23.(12分)某市上网有两种收费方案,用户可任选其一,A为计时制﹣﹣1元/时;B为包月制﹣﹣80元/月,此外每种上网方式都附加通讯费0.1元/时.(1)某用户每月上网40小时,选哪种方式比较合适?(2)某用户每月有100元钱用于上网,选哪种方式比较合算?(3)请你设计一个方案,使用户能合理地选择上网方式.参考答案一、选择题(每小题3分,共30分)1.(3分)﹣3的相反数是()A.B.C.3 D.﹣3【分析】根据相反数的概念解答即可.【解答】解:∵互为相反数相加等于0,∴﹣3的相反数,3.故选:C.【点评】此题主要考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)﹣3πxy2z3的系数和次数是()A.﹣3,6 B.﹣3π,5 C.﹣3π,6 D.﹣3,5【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.所有字母指数的和是次数.【解答】解:﹣3πxy2z3的系数是:﹣3π,次数是6.故选:C.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.3.(3分)如图,把弯曲的河道改直,能够缩短航程.这样做根据的道理是()A.两点之间,直线最短B.两点确定一条直线C.两点之间,线段最短D.两点确定一条线段【分析】此题为数学知识的应用,由题意弯曲的河道改直,肯定为了尽量缩短两地之间的里程,就用到两点间线段最短定理.【解答】解:因为两点之间线段最短,把弯曲的河道改直,能够缩短航程.故选:C.【点评】此题为数学知识的应用,考查知识点两点之间线段最短.4.(3分)A看B的方向是北偏东21°,那么B看A的方向()A.南偏东69°B.南偏西69°C.南偏东21°D.南偏西21°【分析】根据A看B的方向是北偏东21°,是以A为标准,反之B看A的方向是以B为标准,从而得出答案.【解答】解:A看B的方向是北偏东21°,那么B看A的方向南偏西21°;故选:D.【点评】本题主要考查了方向角的定义,在叙述方向角时一定要注意以哪个图形为参照物是本题的关键.5.(3分)如果a,b互为相反数,x,y互为倒数,则(a+b)+xy的值是()A.2 B.3 C.3.5 D.4【分析】根据相反数和倒数求出a+b=0,xy=1,代入求出即可.【解答】解:∵a,b互为相反数,x,y互为倒数,∴a+b=0,xy=1,∴(a+b)+xy=×0+×1==3.5,故选:C.【点评】本题考查了相反数、倒数和求代数式的值,能求出a+b=0和xy=1是解此题的关键.6.(3分)已知方程(m﹣1)x|m|=6是关于x的一元一次方程,则m的值是()A.±1 B.1 C.0或1 D.﹣1【分析】根据一元一次方程的定义即可求出答案.【解答】解:由题意可知:解得:m=﹣1故选:D.【点评】本题考查一元一次方程的定义,解题的关键是正确理解一元一次方程的定义,本题属于基础题型.7.(3分)我国南海海域面积约为3500000km2,用科学记数法表示正确的是()A.3.5×105 km2B.3.5×106 km2C.3.5×107 km2D.3.5×108 km2【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3500000km2用科学记数法表示为3.5×106 km2,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)有下列四种说法:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等;④锐角和钝角互补.其中正确的是()A.①②B.①③C.①②③D.①②③④【分析】要判断两角的关系,可根据角的性质,两角互余,和为90°,互补和为180°,据此可解出本题.【解答】解:①锐角的补角一定是钝角;根据补角的定义和钝角的定义可判断其正确性,故此选项正确;②一个角的补角一定大于这个角;当这个角为钝角时,它的补角小于90°,故此选项错误;③如果两个角是同一个角的补角,那么这两个角相等;利用同补角定义得出,此选项正确;④中没有明确指出是什么角,故此选项错误.故正确的有:①③,故选:B.【点评】此题主要考查了补角以及同位角定义与性质,理解补角的定义中数量关系是解题的关键.如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.9.(3分)若a,b为有理数,a>0,b<0,且|a|<|b|,那么a,b,﹣a,﹣b的大小关系是()A.b<﹣a<﹣b<a B.b<﹣b<﹣a<a C.b<﹣a<a<﹣b D.﹣a<﹣b<b<a【分析】根据a>0,b<0,且|a|<|b|,可用取特殊值的方法进行比较.【解答】解:设a=1,b=﹣2,则﹣a=﹣1,﹣b=2,因为﹣2<﹣1<1<2,所以b<﹣a<a<﹣b.故选:C.【点评】此类题目比较简单,由于a,b的范围已知,可用取特殊值的方法进行比较,以简化计算.10.(3分)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()A.1 B.5 C.4 D.3【分析】正方体的六个面分别标有1,2,3,4,5,6六个数字,这六个数字一一对应,通过三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,然后由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.【解答】解:由三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,利用三个数相邻的两个图形进行判断即可.二、填空题(每小题3分,共15分)11.(3分)绝对值大于1而小于4的整数有 4 个.【分析】求绝对值大于1且小于4的整数,即求绝对值等于2或3的整数.根据绝对值是一个正数的数有两个,它们互为相反数,得出结果.【解答】解:绝对值大于1且小于3的整数有±2,±3.故答案为:4.【点评】主要考查了绝对值的性质,绝对值规律总结:绝对值是一个正数的数有两个,它们互为相反数;绝对值是0的数就是0;没有绝对值是负数的数.12.(3分)如果x=2是方程mx﹣1=2的解,那么m= .【分析】把x=2代入方程mx﹣1=2,即可求得m的值.【解答】解:把x=2代入方程mx﹣1=2,得:2m﹣1=2,解得:m=.故答案为:.【点评】本题考查的是一元一次方程解的概念:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.13.(3分)9时45分时,时钟的时针与分针的夹角是22.5°.【分析】9点45分时,分针指向9,时针在指向9与10之间,则时针45分钟转过的角度即为9时45分时,时钟的时针与分针的夹角度数,根据时针每分钟转0.5°,计算0.5°×45即可.【解答】解:∵9点45分时,分针指向9,时针在指向9与10之间,∴时针45分钟转过的角度即为9时45分时,时钟的时针与分针的夹角度数,即0.5°×45=22.5°.故答案为22.5°.【点评】本题考查了钟面角:钟面被分成12大格,每格30°;分针每分钟转6°,时针每分钟转0.5°.14.(3分)如图已知线段AD=16cm,线段AC=BD=10cm,E,F分别是AB,CD的中点,则EF长为10cm.【分析】由已知条件可知,AC+BD=AD+BC,又因为E,F分别是AB,CD的中点,则EB+CF=0.5(AB+CD)=0.5(AD﹣BC),故EF=BE+CF+BC可求.【解答】解:由图可知BC=AC+BD﹣AD=10+10﹣16=4cm,∵E,F分别是AB,CD的中点,∴EB+CF=0.5(AB+CD)=0.5(AD﹣BC)=0.5(16﹣4)=6cm,∴EF=BE+CF+BC=6+4=10cm.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.15.(3分)李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了20或25 张电影票.【分析】本题分票价每张60元和票价每张60元的八折两种情况讨论,根据数量=总价÷单价,列式计算即可求解.【解答】解:①1200÷60=20(张);②1200÷(60×0.8)1200÷48=25(张).答:他们共买了20或25张电影票.故答案为:20或25.【点评】考查了销售问题,注意分类思想的实际运用,同时熟练掌握数量,总价和单价之间的关系..三、解答题(共75分)16.(8分)计算题(1)﹣22×2+(﹣3)3×(﹣)(2)×(﹣5)+(﹣)×9﹣×8.【分析】(1)根据幂的乘方、有理数的乘法和加法可以解答本题;(2)根据乘法分配律可以解答本题.【解答】解:(1)﹣22×2+(﹣3)3×(﹣)=﹣4×=﹣9+8=﹣1;(2)×(﹣5)+(﹣)×9﹣×8===﹣7.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.(8分)解方程.(1)=1﹣(2) [(x﹣2)﹣6]=1【分析】(1)首先去分母,再去括号移项合并同类项解方程得出答案;(2)直接去括号再移项合并同类项解方程得出答案.【解答】解:(1)=1﹣2(x+3)=12﹣3(3﹣2x),则2x+6=12﹣9+6x,故﹣4x=﹣3解得:x=;(2) [(x﹣2)﹣6]=1x﹣2﹣8=1,则x=11,解得:x=55.【点评】此题主要考查了解一元一次方程,正确掌握解题方法是解题关键.18.(9分)求代数式﹣2x2﹣ [3y2﹣2(x2﹣y2)+6]的值,其中x=﹣1,y=﹣2.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=﹣2x2﹣y2+x2﹣y2﹣3=﹣x2﹣y2﹣3,当x=﹣1,y=﹣2时,原式=﹣1﹣10﹣3=﹣14.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.(9分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠COB 的度数.【分析】根据角平分线的定义得到∠BOE=∠AOB=45°,∠COF=∠BOF=∠BOC,再计算出∠BOF=∠EOF﹣∠BOE=15°,然后根据∠BOC=2∠BOF,∠AOC=∠BOC+∠AOB进行计算.【解答】解:∵OE平分∠AOB,OF平分∠BOC,∴∠BOE=∠AOB=×90°=45°,∠COF=∠BOF=∠BOC,∵∠BOF=∠EOF﹣∠BOE=60°﹣45°=15°,∴∠BOC=2∠BOF=30°;∠AOC=∠BOC+∠AOB=30°+90°=120°.【点评】本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.20.(9分)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A地上船,沿江而下至B 地,然后溯江而上到C地下船,共乘船4小时.已知A,C两地相距10千米,船在静水中的速度为7.5千米/时.求A,B两地间的距离.【分析】由于C的位置不确定,此题要分情况讨论:(1)C地在A、B之间;(2)C地在A地上游.设A、B间的距离是x千米,则根据共用时间可列方程求解.【解答】解:设A、B两地间的距离为x千米,(1)当C地在A、B两地之间时,依题意得:+=4,解得:x=20;(2)当C地在A地上游时,依题意得:+=4,解得:x=.答:A、B两地间的距离为20千米或千米.【点评】考查了一元一次方程的应用,注意此题由于C点的位置不确定,所以一定要考虑两种情况.还要注意顺水速、静水速、水流速三者之间的关系.21.(12分)用火柴棒按下列方式搭建三角形:(1)填表:(2)当三角形的个数为n时,火柴棒的根数多少?(3)求当n=1000时,火柴棒的根数是多少?【分析】(1)按照图中火柴的个数填表即可;(2)当三角形的个数为:1、2、3、4时,火柴棒的个数分别为:3、5、7、9,由此可以看出三角形的个数每增加一个,火柴棒的个数增加2根,所以当三角形的个数为n时,三角形个数增加n ﹣1个,那么此时火柴棒的个数应该为:3+2(n﹣1);(3)当n=1000时,直接代入(2)所求的规律中即可.【解答】解:(1)由图可知:该表中应填的数依次为:3、5、7、9(2)当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;…由此可以看出:每当三角形的个数增加1个时,火柴棒的个数相应的增加2,所以,当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.(3)由(2)得出的规律:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1,所以,当n=1000时,2n+1=2×1000+1=2001.【点评】考查了规律型:图形的变化类,本题解题关键根据第一问的结果总结规律,得到规律:三角形的个数每增加一个,火柴棒的个数增加2根,然后由此规律解答第三问.22.(8分)小明在做家庭作业时发现练习册上一道解方程的题目被墨水污染了:﹣=﹣,“□”是被污染的内容.他很着急,翻开书后面的答案,这道题的解是x=2,你能帮他补上“□”的内容吗?【分析】先设□=m,再把x=2代入方程即可求出m的值.【解答】解:设□=m,则由原方程,得﹣=﹣.∵所给方程的解是x=2,∴,解得:m=4.【点评】本题考查了一元一次方程的解法,解决此题的关键是把方程的解代入原方程再求被污染的内容.23.(12分)某市上网有两种收费方案,用户可任选其一,A为计时制﹣﹣1元/时;B为包月制﹣﹣80元/月,此外每种上网方式都附加通讯费0.1元/时.(1)某用户每月上网40小时,选哪种方式比较合适?(2)某用户每月有100元钱用于上网,选哪种方式比较合算?(3)请你设计一个方案,使用户能合理地选择上网方式.【分析】(1)根据上网时间分别计算费用,比较后回答问题;(2)根据上网所用费用,分别计算出时间,比较后回答问题;(3)设每月上网x小时,收费y元,根据题意得:y A=x+0.1x=1.1x,y B=80+0.1x,分别计算出当y A=y B 时,当y A>y B时,当y A<y B时的上网时间,合理地选择上网方式.【解答】解:(1)A种上网方式:40×1+0.1×40=44(元),B种上网方式:80+40×0.1=84(元),答:每月上网40小时,选A种方式比较合适;(2)设每月上网x小时,A种上网方式:x+0.1x=100,解得:x=(小时),B种上网方式:80+0.1x=100,解得:x=200(小时);答:每月有100元钱用于上网,选B种方式比较合算;(3)设每月上网x小时,收费y元,根据题意得:y A=x+0.1x=1.1x,y B=80+0.1x,当y A=y B时,即1.1x=80+0.1x,解得:x=80,当y A>y B时,即1.1x>80+0.1x,解得:x>80,当y A<y B时,即1.1x<80+0.1x,解得:x<80,∴当每月上网为80小时时,选择两种上网方式都可以;当每月上网大于80小时时,选择乙种上网方式合算;当每月上网小于80小时时,选择甲种上网方式合算.【点评】此题考查一元一次方程的实际运用,理解两种收费方式,正确利用关系式表示,列出方程解决问题.。

七年级上册数学期末检测卷 二

七年级上册数学期末检测卷 二

第1页(共8页)xx 县20 —20 学年度第一学期期末教学质量监测义务教育七年级数 学 试 卷(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分150分,考试时间120分钟。

)题号Ⅰ Ⅱ总分 总分人一 二三 19 20 21 22 23 24 25 得分第Ⅰ卷(选择题 共48分)一、选择题(本大题12个小题,每小题4分,共48分.请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里.)1.31的相反数是( ) A .-31B .-3C .3D .31 2.下列合并同类项正确的是( ). A. 07722=-ba b aB .xy y x 725=+C .731022=-x xD .422633x x x =+ 3.下列几何体,主视图是三角形的是( )A .B .C .D .4.单项式2-ab π的系数和次数分别是 ( )A .-1,4B .π,4C .1,4D .π-,35.安岳县人口大约160万.这个数用科学记数法表示为( ) A .160×104B .2106.1⨯C .6106.1⨯D .71016.0⨯得 分 评 卷 人///////////密///////封///////线///////内///////不///////要///////答///////题///////////学校 班级 姓名 考号第2页(共8页)6.如图1,OC 是∠AOB 的平分线,OD 是∠AOC 的平分线,且∠AOD =35°,则∠AOB 等于( )A .70°B .105°C .140°D .135°7.从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成7个三角形,则n 的值为( ) A . 6 B .7 C .8 D .98.在一条直线上,依次有A ,B ,C ,D 四点,如果点B 是线段AC 的中点,点C 是线段BD 的中点.则下列说法错误..的是( ) A .AB =31AD B .AB >CD C .AB =21BD D .AD =3BC 9.已知2)3(-a 与b +2互为相反数,则a b 的值为( )A .6B .-8C .8D .-610.若有理数a 、b 在数轴上对应的点如图2所示,则下列结论中正确的是( ) A .0>-a bB .b a >C .0>+b aD .0>-b a11.下列说法正确的个数有( ).①绝对值大于2且小于5的的所有整数有5个;②如果一个角与它的余角相等,那么这个角的补角是135°;③当我们在植树的时候,要整齐地栽一行树,只要确定两端树坑的位置就可以了.这一方法用数学知识解释为“两点确定一条直线”;④用四舍五入法将1.5046精确到0.01为1.5.A. 1个B. 2个C. 3个D. 4个12.如图3,AB ∥EF ,则α、β、γ之间的关系为( ) A .γβα+=B .180=-+βγα C .90=-+αγβD .90=-+γβα图3ABCEF βγαB第3页(共8页)第Ⅱ卷(非选择题 共102分)二、填空题(本大题6个小题,每小题4分,共24分.请把答案直接填在题中的横线上.)13.-2的倒数是 .14.如果代数式)3()522+-+mx x x (中不含x 的一次项,则m = . 15.已知x x 32+的值是7,则1932++x x 的值为 .16.将如图4所示的正方体的展开图重新折叠成正方体,和“你”字相对的汉字是 . 17.如图5,∠1=∠2,DE ∥BC ,则下列结论:①BD ∥FG ,②∠ADE =∠C ,③BD 平分∠ABC ,④∠ADB +∠CFG =180°,其中正确的结论有 .(填序号)18.古希腊的毕达哥拉斯和他的学派不仅证明了“三角形内角之和等于两个直角”,还发现了完美数,即“除其本身以外全部因数之和等于本身”的数.我们把小于它本身的因数叫做这个自然数的真约数.如6的所有真约数是1,2,3,而且6=1+2+3.就把6叫做完美数.则下列数64,52,28中是完美数的是 .BC第4页(共8页)三、解答题(本大题共7个小题,共78分,解答应写出必要的文字说明、证明过程或演算步骤.)19.(本小题满分12分)计算下列各题: (1)124332125⨯⎪⎭⎫⎝⎛-- (2)180°-67°43′38″(3)415.881232223---)(---÷⎥⎦⎤⎢⎣⎡⨯20.(本小题满分10分)先化简,再求值:已知多项式A =2244y xy x +-,B =225y xy x -+ .求:(1)A -4B (2)在(1)的结论下,求当x =81,y =1时代数式的值.第5页(共8页)21.(本小题满分10分)如图6是一些棱长均为2cm 的小立方块所搭几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数.(1)请画出从正面和左面看到的这个几何体的形状图; (2)这个几何体的体积是 cm 3.22.(本小题满分10分)已知:如图7,∠1+∠2=180°,∠3=∠C ,求证:∠A =∠4. 证明:∵∠1+∠CFD =180°,(邻补角定义) ∠1+∠2=180° (已知)∴∠CFD =∠2 ( )∴CF ∥BE ( ) ∴∠C =∠BED ( ) ∵∠3=∠C (已知)∴∠3=∠BED (等量代换) ∴AB ∥CD ( ) ∴∠A =∠4 ( )得 分 评 卷 人图6主视图 左视图B432F1 G H D EA C 图7///////////密///////封///////线///////内///////不///////要///////答///////题///////////分评卷人23.(本小题满分11分)如图8,将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)比较大小:∠AOD∠BOC(填“>”、“=”、“<”)(2)若∠BOD=35°,则∠AOC= ;若∠AOC=135°,则∠BOD= ;(3)猜想∠AOC与∠BOD的数量关系,并说明理由.图8第6页(共8页)第7页(共8页)24.(本小题满分12分)某电动车厂计划平均每天生产n 辆电动车(每周工作五天),而实际产量与计划产量相比有出入,下表记录了某周五个工作日每天实际产量情况(超过计划产量记为正、少于计划产(1)用含n 的整式表示本周五天生产电动车的总数;(2)该厂实行每日计件工资制,每生产一辆车可得200元,若超额完成任务,则超过部分每辆另奖50元;少生产一辆扣80元.当n =50时,该厂工人这一周的工资总额是多少元?(3)若将上面第(2)问中“实际每日计件工资制”改为“实行每周计件工资制”,其他条件不变,当n =50时,试说明在此方式下这一周工人的工资总额与按日计件的工资总额哪一个更多?25.(本小题满分13分)如图9,已知数轴上点A表示的数为-12,点B表示的数是6.动点P从点A出发,以每秒6个单位长度的速度沿着数轴向右匀速运动;动点Q从B出发,以每秒3个单位长度的速度沿着数轴向右匀速运动,设运动时间为t(t>0)秒.(1)用含t的代数式表示点P、Q对应的数.(2)若P、Q同时出发,问当P、Q之间的距离是6个单位长度时,P、Q表示的数各是多少?(3)若P、Q同时出发,多少秒时,点P、Q到原点的距离相等?第8页(共8页)。

2014-2015年初一数学上册期末测试卷2

2014-2015年初一数学上册期末测试卷2

2014-2015年初一数学上册期末测试卷2(满分:120分,时间:90分钟)班级 姓名 学号 得分一、选择题:(每题3分,共36分 )1.你对“0”有多少了解?下列关于“0”的说法错误..的是 ( ) A .0是最小的有理数B .0是整数也是自然数C .数轴上表示0的点是原点 D .0没有倒数2.在墙壁上固定一根横放的木条,则至少需要几枚钉子。

( ) A.l B.2 C.3 D.随便多少枚3.已知a=1,b= -2,则代数式12-a 3b 2+1的值是 ( )A .2B .-2C . 1D .-14.下列方程为一元一次方程的是 ( ) A .x x 22=B .y x 32=+C .02=-yD .21=+y y5.若23(2)0m n -++=,则2m n +的值为 ( ) A .4- B .1- C .0 D .46.下列各组中的两项不是同类项的是 ( ) A .25mn -和3mn B .b a 22.7和ba 241 C .232y x 和323y x - D .125-和39 7.一天24小时共有86400秒,用科学记数法可表示为(保留两个有效数字)( ) A . 8.6×104秒 B .8.6×103秒 C . 8.7×104秒 D .0.86×105秒 8.已知2||215(1)34m x ym y -+-是三次三项式,则m 等于 ( ) A 、±1 B 、1 C 、-1 D 、以上都不对9.若13231+k y x 与7223y x -是同类项,则1+k 的值是 ( )A .2B .3C .4D .3110.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘4 人,则只有1人不能上车,有下列四个等式:①40m +10=43m -1 ②4314010+=+n n ③4314010-=-n n ④40m +10=43m +1,其中正确的是 ( ) A 、①② B 、②④ C 、②③ D 、③④11.若a ,b 为有理数,有下列结论:(1)如果a ≠b ,那么|a|≠|b|;(2)如果a>b ,那么|a|>|b|;(3)如果|a|>|b|,那么a>b ;(4)如果|a|≠|b|,那么a ≠b 。

七年级数学上册 期末试卷(2)北师大版

七年级数学上册 期末试卷(2)北师大版

七年级(上)期末数学试卷一、选择题(本题包括10小题。

)1.下列说法正确的是( )A.-5,a 不是单项式B.2abc -的系数是2-C.3y x -22的系数是31-,次数是4 D.y x 2的系数为0,次数为22.下列调查方式合适的是( )A.为了了解某电视机的使用寿命,采用普查的方式B.调查某市初中学生利用网络媒体自主学习的情况,采用普查的方式C.调查某中学七年级一班学生的视力情况,采用抽样调查的方式D.为了了解人们保护水资源的意识,采用抽样调查的方式3.从新华网获悉:商务部5月27日发布的数据显示,一季度,中国与“一带一路”沿线国家在经贸合作领域保持良好发展势头,双边货物贸易总额超过16 553亿元人民币. 16 553亿用科学记数法表示为( ) A.8103 1.655⨯ B. 11103 1.655⨯ C. 12103 1.655⨯ D. 13103 1.655⨯ 4.若有理数a ,b 在数轴上对应点的位置如图,则下列各式正确的是( )A.0<b +aB.0<b -aC.0>b a ⋅D.0>ba5.如图是某几何体从三个不同的方向看到的图形,下列判断正确的是( )A.该几何体是圆柱,高为2B.该几何体是圆锥,高为2C.该几何体是圆柱,半径为2D.该几何体是圆锥,半径为26.一个四棱柱被一刀切去一部分,剩下的部分可能是( )A.四棱柱B.三棱柱C.五棱柱D.以上都有可能7.某校在“创新素质实践行”活动中,组织学生进行社会调查,并对学生的调查报告进行了评比.如图是对某年级60篇学生的调查报告进行整理,分成5组画出的频数直方图.如果从左到右5个小长方形的高度的比为1∶2∶7∶6∶4,那么在这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀,且分数为整数)( )A.30篇B.24篇C.18篇D.27篇8.如图,⊙O 的半径为1,分别以⊙O 的直径AB 上的两个四等分点21O ,O 为圆心,21为半径作半圆,则图中阴影部分的面积为( )A. πB.21π C. 41π D.2π 9.若方程0=k +x1-2k 是关于x 的一元一次方程,则方程的解为x=( )A.-1B.1C. 21D. 21-10.观察下列算式:5616=3,187 2=3,729=3,243=3,81=3,27=3,9=3,3=387654321,….根据上述算式的规律可知,018 23的末位数字是( )A.3B.9C.7D.1二、填空题(本题包括5小题。

2021-2022学年江苏省南京市七年级上学期期末数学典型试卷2(含答案)

2021-2022学年江苏省南京市七年级上学期期末数学典型试卷2(含答案)

2021-2022学年上学期南京初中数学七年级期末典型试卷2一.选择题(共8小题)1.(2020秋•建邺区期末)下列各数中,无理数是( ) A .﹣2B .3.14C .227D .π22.(2020秋•建邺区期末)下列各式中与a ﹣b ﹣c 的值不相等的是( ) A .a ﹣(b ﹣c )B .a ﹣(b +c )C .(a ﹣b )+(﹣c )D .(﹣c )﹣(b ﹣a )3.(2010•广州)下列运算正确的是( ) A .﹣3(x ﹣1)=﹣3x ﹣1 B .﹣3(x ﹣1)=﹣3x +1C .﹣3(x ﹣1)=﹣3x ﹣3D .﹣3(x ﹣1)=﹣3x +34.(2020秋•鼓楼区期末)在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是( )A .用两颗钉子固定一根木条B .把弯路改直可以缩短路程C .用两根木桩拉一直线把树栽成一排D .沿桌子的一边看,可将桌子排整齐5.(2007•济南)已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角6.(2019秋•溧水区期末)如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是( )A .秦B .淮C .源D .头7.(2019秋•高淳区期末)下列说法错误的是( )A.同角的补角相等B.对顶角相等C.锐角的2倍是钝角D.过直线外一点有且只有一条直线与已知直线平行8.(2020秋•盱眙县期末)如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为()A.15°B.20°C.25°D.30°二.填空题(共10小题)9.(2012•鲤城区校级一模)比﹣1小2的数是.10.(2020秋•南京期末)太阳的直径大约是1 392 000千米,将1 392 000用科学记数法表示为.11.(2020秋•建邺区期末)已知代数式x﹣3y的值是4,则代数式(x﹣3y)2﹣2x+6y﹣1的值是.12.(2020秋•建邺区期末)已知x=a是关于x的方程2a+3x=﹣5的解,则a的值是.13.(2020秋•鼓楼区期末)如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示135°的点在直线b上,则∠1=°.14.(2020秋•鼓楼区期末)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为.15.(2019秋•海安市期末)正方体切去一个块,可得到如图几何体,这个几何体有条棱.16.(2020秋•沈河区期末)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是 .17.(2019秋•高淳区期末)如图,把一张长方形纸条ABCD 沿EF折叠,若∠AEG =62°,则∠DEF = °.18.(2019秋•高淳区期末)如图,直线AB 、CD 相交于点O ,OE平分∠BOD ;OF 平分∠COE ,若∠AOC =82°,则∠BOF = °.三.解答题(共8小题)19.(2020秋•南京期末)计算: (1)(23+12−56)÷(−124); (2)(﹣2)3×(﹣2+6)﹣|﹣4|.20.(2020秋•南京期末)先化简,再求值:3(2a 2b ﹣4ab 2)﹣(﹣3ab 2+6a 2b ),其中a =1,b =−13.21.(2020秋•建邺区期末)解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:魔术师能立刻说出观众想的那个数.(1)如果小玲想的数是﹣2,那么她告诉魔术师的结果应该是;(2)如果小明想了一个数计算后,告诉魔术师结果为73,那么魔术师立刻说出小明想的那个数是;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.若设观众心想的数为a,请通过计算解密这个魔术的奥妙.22.(2020秋•建邺区期末)如图,已知DB=2,AC=10,点D为线段AC的中点,求线段BC的长度.23.(2020秋•鼓楼区期末)已知:如图,O是直线AB 上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整;证明:∵O是直线AB上一点,∴∠AOB=180°.∵∠COD与∠COE互余,∴∠COD+∠COE=°.∴∠AOD+∠BOE=90°.∵OD是∠AOC的平分线,∴∠AOD=∠(理由:).∴∠BOE=∠COE(理由:).∵∠AOE+∠BOE=°.∴∠AOE+∠COE=180°.∴∠AOE与∠COE互补.24.(2020秋•鼓楼区期末)2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”.2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以3﹣0或者3﹣1取胜的球队积3分,负队积0分;而在比赛中以3﹣2取胜的球队积2分,负队积1分,前四名队伍积分榜部分信息如表所示.(1)中国队11场胜场中只有一场以3﹣2取胜,请将中国队的总积分填在表格中;(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表格,求巴西队胜场的场数.名次球队场次胜场负场总积分1中国111102美国11101283俄罗斯1183234巴西1121 25.(2019秋•溧水区期末)小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x元,请你根据题意完善表格中的信息,并列方程解答.单价数量总价今天12x明天26.(2019秋•溧水区期末)如图,已知点A、B、C是数轴上三点,O为原点,点A表示的数为﹣10.点B表示的数为6,点C为线段AB的中点.(1)数轴上点C表示的数是;(2)点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q 从点B出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为:t(t>0)秒.①当t为何值时,点O恰好是PQ的中点;②当t为何值时,点P、Q、C三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(是把一条线段平均分成三等分的点).(直接写出结果)2021-2022学年上学期南京初中数学七年级期末典型试卷2参考答案与试题解析一.选择题(共8小题)1.(2020秋•建邺区期末)下列各数中,无理数是( ) A .﹣2B .3.14C .227D .π2【考点】无理数. 【专题】实数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【解答】解:无理数是π2,故选:D .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 2.(2020秋•建邺区期末)下列各式中与a ﹣b ﹣c 的值不相等的是( ) A .a ﹣(b ﹣c )B .a ﹣(b +c )C .(a ﹣b )+(﹣c )D .(﹣c )﹣(b ﹣a )【考点】去括号与添括号. 【专题】常规题型.【分析】依据去括号法则进行判断即可.【解答】解:A 、a ﹣(b ﹣c )=a ﹣b +c ,与要求相符; B 、a ﹣(b +c )=a ﹣b ﹣c ,与要求不符; C 、(a ﹣b )+(﹣c )=a ﹣b ﹣c ,与要求不符; D 、(﹣c )﹣(b ﹣a )=﹣c ﹣b +a ,与要求不符. 故选:A .【点评】本题主要考查的是去括号法则,熟练掌握去括号法则是解题的关键. 3.(2010•广州)下列运算正确的是( ) A .﹣3(x ﹣1)=﹣3x ﹣1 B .﹣3(x ﹣1)=﹣3x +1C .﹣3(x ﹣1)=﹣3x ﹣3D .﹣3(x ﹣1)=﹣3x +3【考点】去括号与添括号.【分析】去括号时,要按照去括号法则,将括号前的﹣3与括号内每一项分别相乘,尤其需要注意,﹣3与﹣1相乘时,应该是+3而不是﹣3.【解答】解:根据去括号的方法可知﹣3(x﹣1)=﹣3x+3.故选:D.【点评】本题属于基础题,主要考查去括号法则,理论依据是乘法分配律,容易出错的地方有两处,一是﹣3只与x相乘,忘记乘以﹣1;二是﹣3与﹣1相乘时,忘记变符号.本题直指去括号法则,没有任何其它干扰,掌握了去括号法则就能得分,不掌握就不能得分.4.(2020秋•鼓楼区期末)在下列日常生活的操作中,能体现基本事实“两点之间,线段最短”的是()A.用两颗钉子固定一根木条B.把弯路改直可以缩短路程C.用两根木桩拉一直线把树栽成一排D.沿桌子的一边看,可将桌子排整齐【考点】线段的性质:两点之间线段最短.【分析】根据实际、线段的性质判断即可.【解答】解:A、用两颗钉子固定一根木条体现基本事实“两点确定一条直线”;B、把弯路改直可以缩短路程体现基本事实“两点之间,线段最短”;C、用两根木桩拉一直线把树栽成一排体现基本事实“两点确定一条直线”;D、沿桌子的一边看,可将桌子排整齐体现基本事实“线段的延长线”;故选:B.【点评】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.5.(2007•济南)已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角【考点】余角和补角;对顶角、邻补角;垂线.【专题】计算题.【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.【点评】本题考查了余角和垂线的定义以及对顶角相等的性质.6.(2019秋•溧水区期末)如图,将正方体的平面展开图重新折成正方体后,“会”字对面的字是()A.秦B.淮C.源D.头【考点】专题:正方体相对两个面上的文字.【专题】投影与视图;空间观念.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“会”字对面的字是“源”.故选:C.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.(2019秋•高淳区期末)下列说法错误的是()A.同角的补角相等B.对顶角相等C.锐角的2倍是钝角D.过直线外一点有且只有一条直线与已知直线平行【考点】余角和补角;对顶角、邻补角;平行公理及推论.【专题】线段、角、相交线与平行线;推理能力.【分析】根据平行公理,对顶角的定义,邻补角的定义,对各选项分析判断后利用排除法求解.【解答】解:A、同角的补角相等,正确;B、对顶角相等;正确;C、锐角的2倍不一定是钝角,错误;D、过直线外一点有且只有一条直线与已知直线平行,正确;故选:C.【点评】本题考查了平行公理,对顶角的定义,邻补角的定义,垂线段最短,是基础概念题.8.(2020秋•盱眙县期末)如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为()A.15°B.20°C.25°D.30°【考点】等腰直角三角形.【专题】等腰三角形与直角三角形;应用意识.【分析】求出∠2即可解决问题.【解答】解:∵∠AOB=∠COD=90°∴∠2=∠AOC=25°,∴∠1=∠EOF﹣∠2﹣∠DOF=90°﹣25°﹣35°=30°,故选:D.【点评】本题考查等腰直角三角形的性质角的和差定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二.填空题(共10小题)9.(2012•鲤城区校级一模)比﹣1小2的数是﹣3.【考点】有理数的减法.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:﹣1﹣2=﹣3.故答案为:﹣3.【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.10.(2020秋•南京期末)太阳的直径大约是1 392 000千米,将1 392 000用科学记数法表示为 1.392×106.【考点】科学记数法—表示较大的数.【专题】实数;数感.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1392000=1.392×106.故答案是:1.392×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(2020秋•建邺区期末)已知代数式x﹣3y的值是4,则代数式(x﹣3y)2﹣2x+6y﹣1的值是7.【考点】代数式求值.【专题】整体思想.【分析】把(x﹣3y)看作一个整体并代入代数式进行计算即可得解.【解答】解:∵x﹣3y=4,∴(x﹣3y)2﹣2x+6y﹣1=(x﹣3y)2﹣2(x﹣3y)﹣1,=42﹣2×4﹣1,=16﹣8﹣1,=7.故答案为:7.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.(2020秋•建邺区期末)已知x=a是关于x的方程2a+3x=﹣5的解,则a的值是﹣1.【考点】一元一次方程的解.【专题】一次方程(组)及应用;运算能力.【分析】把x=a代入方程,解关于a的一元一次方程即可.【解答】解:把x=a代入方程,得2a+3a=﹣5,所以5a=﹣5解得a=﹣1故答案是:﹣1.【点评】本题考查了一元一次方程的解.掌握一元一次方程的解法是解决本题的关键.13.(2020秋•鼓楼区期末)如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示135°的点在直线b上,则∠1=75°.【考点】对顶角、邻补角.【分析】首先计算出∠2的度数,再根据对顶角相等可得∠1的度数.【解答】解:∵∠2=135°﹣60°=75°,∴∠1=∠2=75°,故答案为:75.【点评】此题主要考查了对顶角,关键是掌握对顶角相等.14.(2020秋•鼓楼区期末)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上表示“0cm”、“8cm”的点分别对应数轴上的﹣2和x,那么x的值为6.【考点】数轴.【分析】根据直尺的长度知x为﹣2右边8个单位的点所表示的数,据此可得.【解答】解:由题意知,x的值为﹣2+(8﹣0)=6,故答案为:6.【点评】本题主要考查了数轴,解题的关键是确定x与表示﹣2的点之间的距离.15.(2019秋•海安市期末)正方体切去一个块,可得到如图几何体,这个几何体有12条棱.【考点】截一个几何体.【专题】推理填空题.【分析】通过观察图形即可得到答案.【解答】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点评】此题主要考查了认识正方体,关键是看正方体切的位置.16.(2020秋•沈河区期末)如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.【考点】线段的性质:两点之间线段最短.【专题】常规题型.【分析】直接利用线段的性质进而分析得出答案.【解答】解:田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是:两点之间线段最短.故答案为:两点之间线段最短.【点评】此题主要考查了线段的性质,正确把握线段的性质是解题关键.17.(2019秋•高淳区期末)如图,把一张长方形纸条ABCD沿EF折叠,若∠AEG=62°,则∠DEF=59°.【考点】翻折变换(折叠问题).【专题】线段、角、相交线与平行线;几何直观.【分析】由折叠的性质结合平角等于180°,即可得出∠DEF=12(180°﹣∠AEG),再代入∠AEG的度数即可求出结论.【解答】解:由折叠的性质,可知:∠DEF=∠GEF.∵∠AEG+∠GEF+∠DEF=180°,∠AEG=62°,∴∠DEF=12(180°﹣∠AEG)=12(180°﹣62°)=59°.故答案为:59.【点评】本题考查了翻折变换以及角的计算,利用折叠的性质结合平角等于180°,找出∠DEF=12(180°﹣∠AEG)是解题的关键.18.(2019秋•高淳区期末)如图,直线AB、CD相交于点O,OE平分∠BOD;OF平分∠COE,若∠AOC=82°,则∠BOF=28.5°.【考点】角平分线的定义;对顶角、邻补角.【专题】线段、角、相交线与平行线;推理能力.【分析】根据对顶角相等求得∠BOD的度数,然后根据角的平分线的定义求得∠EOD的度数,则∠COE即可求得,再根据角平分线的定义求得∠EOF,最后根据∠BOF=∠EOF ﹣∠BOF求解.【解答】解:∵∠AOC=82°∴∠BOD=∠AOC=82°,又∵OE平分∠BOD,∴∠DOE=12∠BOD=12×82°=41°.∴∠COE=180°﹣∠DOE=180°﹣41°=139°,∵OF平分∠COE,∴∠EOF=12∠COE=12×139°=69.5°,∴∠BOF =∠EOF ﹣∠BOE =69.5°﹣41°=28.5°. 故答案是:28.5.【点评】本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键. 三.解答题(共8小题) 19.(2020秋•南京期末)计算: (1)(23+12−56)÷(−124);(2)(﹣2)3×(﹣2+6)﹣|﹣4|. 【考点】有理数的混合运算. 【专题】实数;运算能力.【分析】(1)除法转化为乘法,再利用乘法分配律展开,进一步计算即可; (2)先计算乘方和绝对值、括号内的减法,再计算乘法,最后计算减法即可. 【解答】解:(1)原式=(23+12−56)×(﹣24)=﹣16﹣12+20 =﹣8;(2)(﹣2)3×(﹣2+6)﹣|﹣4|=(﹣8)×4﹣4 =﹣32﹣4 =﹣36.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.20.(2020秋•南京期末)先化简,再求值:3(2a 2b ﹣4ab 2)﹣(﹣3ab 2+6a 2b ),其中a =1,b =−13.【考点】整式的加减—化简求值. 【专题】计算题;整式;运算能力.【分析】先去括号,再合并同类项,最后代入求值. 【解答】解:原式=6a 2b ﹣12ab 2+3ab 2﹣6a 2b =﹣9ab 2; 当a =1,b =−13时, 原式=﹣9×1×(−13)2=﹣1.【点评】本题考查了整式的加减及有理数的混合运算,掌握去括号法则和合并同类项法则是解决本题的关键.21.(2020秋•建邺区期末)解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:魔术师能立刻说出观众想的那个数.(1)如果小玲想的数是﹣2,那么她告诉魔术师的结果应该是3;(2)如果小明想了一个数计算后,告诉魔术师结果为73,那么魔术师立刻说出小明想的那个数是68;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.若设观众心想的数为a,请通过计算解密这个魔术的奥妙.【考点】有理数的混合运算;解一元一次方程.【专题】实数;运算能力.【分析】(1)利用已知条件,这个数按步骤操作,直接代入即可;(2)假设这个数,根据运算步骤,求出结果等于73,得出一元一次方程,即可求出;(3)结合(2)中方程,关键是发现运算步骤的规律.【解答】解:(1)(﹣2×3﹣6)÷3+7=3;故答案为:3;(2)设这个数为x,(3x﹣6)÷3+7=73;解得:x=68,故答案为:68;(3)设观众想的数为a.3a−6+7=a+5.3因此,魔术师只要将最终结果减去5,就能得到观众想的数了.【点评】此题主要考查了有理数的运算,以及运算步骤的规律性,题目比较新颖.22.(2020秋•建邺区期末)如图,已知DB=2,AC=10,点D为线段AC的中点,求线段BC的长度.【考点】两点间的距离.【专题】线段、角、相交线与平行线;推理能力.【分析】根据线段中点的性质推出DC=AD=12AC=12×10=5,再结合图形根据线段之间的和差关系进行求解即可.【解答】解:∵AC=10,点D为线段AC的中点,∴DC=AD=12AC=12×10=5,∴BC=DC﹣DB=5﹣2=3,故BC的长度为3.【点评】本题考查两点间的距离,解题的关键是根据线段中点的性质推出DC=AD=12AC,注意数形结合思想方法的运用.23.(2020秋•鼓楼区期末)已知:如图,O是直线AB 上一点,OD是∠AOC的平分线,∠COD与∠COE互余.求证:∠AOE与∠COE互补.请将下面的证明过程补充完整;证明:∵O是直线AB上一点,∴∠AOB=180°.∵∠COD与∠COE互余,∴∠COD+∠COE=90°.∴∠AOD+∠BOE=90°.∵OD是∠AOC的平分线,∴∠AOD=∠COD(理由:角平分线的定义).∴∠BOE=∠COE(理由:等角的余角相等).∵∠AOE+∠BOE=180°.∴∠AOE+∠COE=180°.∴∠AOE与∠COE互补.【考点】角平分线的定义;余角和补角.【专题】线段、角、相交线与平行线;推理能力.【分析】根据证明过程可得答案.【解答】证明:∵O是直线AB上一点,∴∠AOB=180°.∵∠COD与∠COE互余,∴∠COD+∠COE=90°.∴∠AOD+∠BOE=90°.∵OD是∠AOC的平分线,∴∠AOD=∠COD(理由:角平分线的定义).∴∠BOE=∠COE(理由:等角的余角相等).∵∠AOE+∠BOE=180°.∴∠AOE+∠COE=180°.∴∠AOE与∠COE互补.故答案为:90;COD;角平分线的定义;等角的余角相等,180.【点评】本题考查推理证明的书写、互补(互余)及角平分线等知识,培养思维的严密性,题目较容易.24.(2020秋•鼓楼区期末)2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”.2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以3﹣0或者3﹣1取胜的球队积3分,负队积0分;而在比赛中以3﹣2取胜的球队积2分,负队积1分,前四名队伍积分榜部分信息如表所示.(1)中国队11场胜场中只有一场以3﹣2取胜,请将中国队的总积分填在表格中;(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见表格,求巴西队胜场的场数.名次球队场次胜场负场总积分1中国11110322美国11101283俄罗斯1183234巴西1121【考点】一元一次方程的应用;推理与论证.【专题】一次方程(组)及应用;应用意识.【分析】(1)依据中国队11场胜场中只有一场以3﹣2取胜,即可得到中国队的总积分.(2)设巴西队积3分取胜的场数为x场,依据巴西队总积分为21分,即可得到方程,进而得出x的值.【解答】解:(1)中国队的总积分=3×10+2=32,填表如下:名次球队场次胜场负场总积分1中国11110322美国11101283俄罗斯1183234巴西1121故答案为:32;(2)设巴西队积3分取胜的场数为x场,则积2分取胜的场数为(x﹣5)场,依题意可列方程3x+2(x﹣5)+1=21,3x+2x﹣10+1=21,5x=30,x=6,则积2分取胜的场数为x﹣5=1,所以取胜的场数为6+1=7.答:巴西队取胜的场数为7场.【点评】本题主要考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答.25.(2019秋•溧水区期末)小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x元,请你根据题意完善表格中的信息,并列方程解答.单价数量总价今天 12 x12x 明天10.8x−2410.8x ﹣24【考点】一元一次方程的应用.【专题】一次方程(组)及应用;应用意识.【分析】根据题意找出等量关系,列出方程即可求出答案. 【解答】解:表格由左至右,由上至下分别为:x 12,10.8,x−2410.8,x ﹣24,由题意可知:x−2410.8−x 12=1,解得:x =348,∴今天需要买纸杯蛋糕的数量为348÷12=29, 答:小明今天计划买29个纸杯蛋糕, 故答案为:x 12,10.8,x−2410.8,x ﹣24,【点评】本题考查一元一次方程,解题的关键是正确找出题中的等量关系,本题属于基础题型.26.(2019秋•溧水区期末)如图,已知点A 、B 、C 是数轴上三点,O 为原点,点A 表示的数为﹣10.点B 表示的数为6,点C 为线段AB 的中点. (1)数轴上点C 表示的数是 ﹣2 ;(2)点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,同时,点Q 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为:t (t >0)秒.①当t 为何值时,点O 恰好是PQ 的中点;②当t 为何值时,点P 、Q 、C 三个点中恰好有一个点是以另外两个点为端点的线段的三等分点(是把一条线段平均分成三等分的点).(直接写出结果)【考点】数轴;一元一次方程的应用.【专题】分类讨论;一次方程(组)及应用.【分析】(1)计算AB 长度,再计算BC 可确定C 表示数字; (2)用t 表示OP ,OQ ,根据OP =OQ 列方程求解; (3)分别以P 、Q 、C 为三等分点,分类讨论.【解答】解:(1)因为点A表示的数为﹣10.点B表示的数为6,所以AB=6﹣(﹣10)=16.因为点C是AB的中点,所以AC=BC=12AB=8所以点C表示的数为﹣10+8=﹣2故答案为:﹣2;(2)①设t秒后点O恰好是PQ的中点.由题意,得10﹣2t=6﹣t解得,t=4;即4秒时,点O恰好是PQ的中点.②当点C为PQ的三等分点时PC=2QC或QC=2PC,∵PC=8﹣2t,QC=8﹣t,所以8﹣2t=2(8﹣t)或8﹣t=2(8﹣2t)解得t=8 3;当点P为CQ的三等分点时(t>4)PC=2QP或QP=2PC ∵PC=2t﹣8,PQ=16﹣3t∴2t﹣8=2(16﹣3t)或16﹣3t=2(2t﹣8)解得t=5或t=32 7;当点Q为CP的三等分点时PQ=2CQ或QC=2PQ ∵PQ=3t﹣16,QC=8﹣t∴3t﹣16=2(8﹣t)或8﹣t=2(3t﹣16)解得t=325或t=407.综上,t=83,5,327,325,407秒时,三个点中恰好有一个点是以另外两个点为端点的线段的三等分点.【点评】本题考查一元一次方程应用,分类讨论是解答的关键.考点卡片1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向.(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.2.有理数的减法(1)有理数减法法则:减去一个数,等于加上这个数的相反数.即:a﹣b=a+(﹣b)(2)方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.3.有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【规律方法】有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.4.科学记数法—表示较大的数(1)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】(2)规律方法总结:①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此。

长沙七年级初一数学上册期末考试卷2套(含答案)

长沙七年级初一数学上册期末考试卷2套(含答案)
七年级上学期期末考试试卷
数学
一、选择题(共12小题,每小题3分,共36分)
1.在有理数 , , ,0中,最大的数是()
A.0B. C. D.
【答案】B
【解析】ห้องสมุดไป่ตู้
【分析】先将各数化简,进而根据有理数的大小比较即求得最大的数
【详解】 , , ,
在有理数 , , ,0中,最大的数是
故选B
【点睛】本题考查了相反数的意义,求一个数的绝对值,有理数的大小比较,掌握以上知识是解题的关键.
(1)填空:(-4,9)________“双语数对”(填“是”或“否”);
(2)若(1,b)是“双语数对”,求b的值;
(3)已知(m,n)是“双语数对”,试说明 也是“双语数对”.
28.如图1,在数轴上A、B两点对应的数分别是6,-6,∠DCE=90°(C与O重合,D点在数轴的正半轴上).
(1)如图1,若CF平分∠ACE,则∠AOF=________;
17.如图,已知线段AB=16cm,M是AB的中点,P是线段MB上一点,N为PB的中点,NB=3cm,则线段MP=________cm.
18.如图,在∠AOB的内部有3条射线OC、OD、OE,若∠AOC=70°,∠BOE= ∠BOC,∠BOD= ∠AOB,则∠DOE=________°.(用含n的代数式表示)
(1)该中学库存多少套桌椅?
(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?
27.一般情况下 不成立,但有些数可以使得它成立,例如:a=b=0,我们称使得 成立的一对数a,b为“双语数对”,记为(a,b).

2012-2013学年江城中学七年级(上)期末数学试卷2

2012-2013学年江城中学七年级(上)期末数学试卷2

2013-2014学年江城中学七年级(上)期末数学试卷班级姓名一、填空题(每小题3分,共24分)1.(3分)的倒数是_________,﹣的相反数是_________,﹣的绝对值是_________.2.(3分)我市某日的气温是﹣2℃~6℃,则该日的温差是_________℃.3.(3分)若3a m+2b3n﹣1与﹣是同类项,则mn=_________.4.(3分)若(x﹣1)2+|y+1|=0,则(xy)2013=_________.5.(3分)若代数式a﹣1与2a+10的值互为相反数,则a=_________.6.(3分)在数轴上,若A点表示数x,点B表示数﹣5,A、B两点之间的距离为7,则x=_________.7.(3分)某商品标价110元,八折后获利10%,若九折则得利_________元.8.(3分)一列数:1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和是﹣1701,则这三个数中最大的数是_________.二、选择题(每小题3分,共计24分)9.(3分)单项式﹣的系数和次数分别为()﹣,,13.(3分)从上向下看图,应是选项中的()所示..14.(3分)如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD等于()三、解答题(共72分)17.(6分)化简求值:求(3a2b﹣2a2b)﹣(ab﹣4a2)+(2ab﹣a2b)的值,其中a=﹣2,b=﹣3.18.(12分)计算(1)(2)(3)(x+5y)﹣(3y﹣4x)(4)83°46′+52°39′16″.19.(12分)解方程(1)2x﹣3=3x+2 (2)3(x﹣2)+1=x﹣(2x﹣1);(3)(4).20.(6分)如图,C、D将线段AB分成2:3:4三部分,E、F、G分别是AC、CD、DB的中点,且EG=12cm,求AF的长.21.(6分)如图所示,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE=∠EOC,∠DOE=60°,求∠EOC的度数.22.(8分)已知关于x的方程4x+2m=3x的解与方程2x+3=5x的解互为相反数,求:(1)m的值;(2)代数式(m+2)2013•(2m ﹣)2012的值.23.(10分)(2003•常州)甲、乙两个班的学生到超市上购买苹果,苹果的价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,乙班则一次购买苹果70千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?24.(12分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款_________元(用含x的代数式表示);若该客户按方案②购买,需付款_________元(用含x的代数式表示);(2)通过计算说明当购买的领带数量x为多少时两种方案购买花钱一样多?(3)若x=40,通过计算说明此时按哪种方案购买较为划算?2012-2013学年江城中学七年级(上)期末数学试卷参考答案与试题解析一、填空题(每小题3分,共24分) 1.(3分)的倒数是 2 ,﹣的相反数是,﹣的绝对值是.2.(3分)我市某日的气温是﹣2℃~6℃,则该日的温差是 8 ℃. 3.(3分)若3am+2b 3n ﹣1与﹣是同类项,则mn= 4 .4.(3分)若(x ﹣1)2+|y+1|=0,则(xy )2013= ﹣1 .5.(3分)若代数式a ﹣1与2a+10的值互为相反数,则a= ﹣3 . 6.(3分)在数轴上,若A 点表示数x ,点B 表示数﹣5,A 、B 两点之间的距离为7,则x= ﹣12或2 . 7.(3分)某商品标价110元,八折后获利10%,若九折则得利 19 元. 8.(3分)一列数:1,﹣3,9,﹣27,81,﹣243,…,其中某三个相邻数的和是﹣1701,则这三个数中最大的数是 729 .二、选择题(每小题3分,共计24分) 9.(3分)单项式﹣的系数和次数分别为( C ) ﹣,,13.(3分)从上向下看图,应是选项中的( D )所示.B.14.(3分)如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( B )三、解答题(共72分)17.(6分)化简求值:求(3a 2b ﹣2a 2b )﹣(ab ﹣4a 2)+(2ab ﹣a 2b )的值,其中a=﹣2,b=﹣3.解:原式=3a 2b ﹣2a 2b ﹣ab+4a 2+2ab ﹣a 2b=4a 2+ab ,当a=﹣2,b=﹣3时,原式=4×(﹣2)2+(﹣2)×(﹣3)=22.18.(12分)计算 (1)(2)(3)(x+5y )﹣(3y ﹣4x ) (4)83°46′+52°39′16″. 解:(1)原式=6+﹣2﹣1.5=3.9;(2)原式=﹣4﹣1﹣4+1=﹣8;(3)原式=x+5y ﹣3y+4x =5x+2y ;(4)原式=135°85′16″=136°25′16″.19.(12分)解方程(1)2x ﹣3=3x+2 (2)3(x ﹣2)+1=x ﹣(2x ﹣1); (3)(4).解:(1)移项合并得:x=﹣5;(2)去括号得:3x﹣6+1=x﹣2x+1,移项合并得:4x=6,解得:x=1.5;(3)方程去分母得:5x﹣15﹣8x﹣2=10,移项合并得:﹣3x=27,解得:x=﹣9;(4)去分母得:0.4x+0.4﹣0.6x+0.2=0.08,移项合并得:﹣0.2x=﹣0.52,解得:x=2.6.20.(6分)如图,C、D将线段AB分成2:3:4三部分,E、F、G分别是AC、CD、DB的中点,且EG=12cm,求AF的长.解:设AC=2x,则CD=3x,DB=4x,又有E、G分别平分AC、DB,故,由EG=EC+CD+DG=x+3x+2x=12,得x=2,∴.21.(6分)如图所示,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE=∠EOC,∠DOE=60°,求∠EOC的度数.解:设∠BOE为x°,则∠DOB=60°﹣x°,由OD平分∠AOB,得∠AOB=2∠DOB,故有3x+x+2(60﹣x)=180,解方程得x=30,故∠EOC=90°.22.(8分)已知关于x的方程4x+2m=3x的解与方程2x+3=5x的解互为相反数,求:(1)m的值;(2)代数式(m+2)2013•(2m ﹣)2012的值.解:(1)2x+3=5x,移项合并得:3x=3,解得:x=1,根据题意得:4x+2m=3x的解为﹣1,将x=﹣1代入方程得:﹣4+2m=﹣3,解得:m=;(2)原式=(﹣×)2012×=.23.(10分)(2003•常州)甲、乙两个班的学生到超市上购买苹果,苹果的价格如下:甲班分两次共购买苹果70千克(第二次多于第一次),共付出189元,乙班则一次购买苹果70千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?解:(1)189﹣2×70=49.乙班少付出49元;(2)设第一次买了x千克,则第二次买了(70﹣x)千克.若两次都在30﹣50之间,2.5x+2.5(70﹣x)=189,无解.若一次在0﹣30之间,二次在30﹣50之间,3x+2.5(70﹣x)=189,x=28若一次在0﹣30之间,二次在50kg以上,3x+2(70﹣x)=189,x=49没有在0﹣30之间,不符合实际,舍去.答:甲班第一次购买了28千克,第二次购买了42千克.24.(12分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款(40x+3200)元(用含x的代数式表示);若该客户按方案②购买,需付款(3600+36x)元(用含x的代数式表示);(2)通过计算说明当购买的领带数量x为多少时两种方案购买花钱一样多?(3)若x=40,通过计算说明此时按哪种方案购买较为划算?解:(1)方案①需付费为:200×20+(x﹣20)×40=(40x+3200)元;方案②需付费为:(200×20+40x)×0.9=(3600+36x)元,故答案为:(40x+3200);(3600+36x);(2)由题意得:36x+3600=40x+3200,解得:x=100答:当客户购买100条领带时,两种购买方案应付款相同.(3)36×40+3600=5040(元),40×40+3200=4800(元),∵4800<5040,∴按方案①购买较为划算.。

初一年级第一学期期末考试数学复习试题及答案(2)

初一年级第一学期期末考试数学复习试题及答案(2)

初一年级第一学期期末考试数学复习试题(2)一、填空题(每空1分,共32分)1.长方形的周长为2a ,长是宽的2倍,那么长方形的长为 ,宽为 ,面积为 。

2.某工厂的产量每月增长5%,如果第一个月的产量是x ,那么第二个月的产量 为 ,第三个月的产量为 。

3.两筐梨,从第一筐中取出5千克放入第二筐后,第二筐梨的重量就是第一筐重量的2倍,设第一筐梨重m 千克,则第二筐原有梨重n= 千克。

4.绝对值小于2.2的所有整数为 。

5.51的相反数是 ,它们的和是 ,商是 。

6.(-1)2002+(-1)2003= 。

7.一个数的75%是-1.35,这个数是 。

8.立方等于它本身的数有 。

9. 的绝对值等于它的相反数。

10.一个数的绝对值与它的倒数的和等于零,这个数是 。

11.最小的非负整数是 ,-2 3= ,( )3=-125, 的绝对值等于6,-143的倒数的相反数是 。

12.平方得81的数有 ,立方得125的数有 。

13.用“>”或“<”填空:若a<0,b>0,a >b ,则a +b 0;若a<b<0,则a -(-b) 0;若a<0,b>0,则ab 0;若a<0,则a 2a ;若a<0,则a 2n 0,a 2n+1 0(是自然数)。

14.若x x=-1,则x 为 。

15.把多项式x 5-15x 3y 2-21xy 6+8x 2y 3-y 4+4x 4y 按y 的降幂排列: 。

16.336000000用科学记数法可记作 。

17.203.20是用四舍五入法得到的近似值,它有 个有效数字。

二、选择题(每题2分,共10分)18.代数式ba 8-表示 ( ) (A )a 除以b 减去8所得的商 (B )a 除以b 减去8的差(C )b 除以a -8的商 (D )a 与8的差除以b19.下列各组不是同类项的是 ( )(A )6a 2n 与-9a 2n (B )21x 3y 与-21xy 3(C )2abx 3与2bax 3(D )12a 3y 与323ya 20.下列代数式用语言叙述,其中正确的是 ( )(A )3x -3y :x 与y 的3倍的差(B )52--x :x 的相反数的平方与5的相反数的商 (C )a 2+b 2:a ,b 两数的平方和(D )yx 11+:x 的倒数加上y 的倒数的绝对值 21.若a ,b 互为相反数,则(1)a +b=0;(2)a=-b ;(3)a =b ;(4)ab=-b 2中必定成立的有 ( )(A )1个 (B )2个 (C )3个 (D )4个22.若x 为有理数,则x +x=0成立的条件是 ( )(A )x>0 (B )x<0 (C )x ≤0 (D )x 为一切有理数三、判断题(每题1分,共10分)23.若a 是不等于零的有理数,则3a>a 。

内蒙古包头市2021版七年级上学期数学期末考试试卷(II)卷

内蒙古包头市2021版七年级上学期数学期末考试试卷(II)卷

内蒙古包头市2021版七年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)-2的倒数是().A . -2B . -C .D . 22. (1分) (2016七上·桐乡期中) 的平方根是()A . 3B . ﹣3C . ±3D . ±93. (1分)(2018·龙岗模拟) 2017年龙岗区GDP总量实现历史性突破,生产总值达386000000000元,首次跃居全市各区第二将3860000000000用科学记数法表示为 )A .B .C .D .4. (1分) (2017七下·东城期末) 下列实数中的无理数是()A . 1.414B . 0C . ﹣D .5. (1分)(2019·河北模拟) 下列计算正确的是()A . (a+b)2=a2+b2B . a2+2a2=3a4C . x2y÷ =x2(y≠0)D . (-2x2)3=-8x66. (1分)关于x的方程mx2﹣4x+4=0有解,则m的取值为()A . m≥1B . m≤1C . m≥1且m≠0D . m≤1且m≠07. (1分) (2019七上·椒江期末) 如图,点C,D为线段AB上两点,AC+BD=a,且AD+BC= AB,则CD等于().A .B .C .D .8. (1分)已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A . 30°B . 40°C . 50°D . 30°或50°9. (1分) (2019七上·和平期中) 在下列各式中① ;② ;③ ;④.其中能成立的有()A . 1个B . 2个C . 3个D . 4个10. (1分)下列计算中结果正确的是()A . 4+5ab=9abB . 6xy-x=6yC . 3a2b-3ba2=0D . 12x3+5x4=17x7二、填空题 (共6题;共6分)11. (1分) (2019八下·静安期末) 方程的根是________.12. (1分) (2016七下·柯桥期中) 在长为am,宽为bm的一块草坪上修了一条1m宽的笔直小路,则余下草坪的面积可表示为________ m2;现为了增加美感,把这条小路改为宽恒为1m的弯曲小路(如图),则此时余下草坪的面积为________ m2 .13. (1分)若|x|=7,|y|=5,且x+y>0,那么x-y的值是________.14. (1分) (2019七上·青羊期中) 已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|b﹣1|+|﹣a﹣b|=________.15. (1分)(2018·建湖模拟) 已知实数a在数轴上的位置如图所示,化简的结果是 ________.16. (1分) (2020七上·南开期末) 数轴上两点A、B所表示的数分别为a和b,且满足。

初中七年级上册数学测试卷2

初中七年级上册数学测试卷2

54D3E21C B A七年级期末复习21、若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则 点P 的坐标是 ( ) A 、(-4,3) B 、(4,-3) C 、(-3,4) D 、(3,-4)2、通过平移,可将图(1)中的福娃“欢欢”移动到图( )(图1) A B C D 3、下列每组数分别是三根小木棒的长度,其中能摆成三角形的是( ) A .cm cm cm 5,4,3 B. cm cm cm 15,8,7 C .cm cm cm 20,12,3 D. cm cm cm 11,5,5 4、如右图,下列能判定AB ∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B . A.1 B.2 C.3 D.45、两架编队飞行(即平行飞行)的两架飞机A 、B 在坐标系中的坐标分别为A (-1,2)、B (-2,3),当飞机A 飞到指定位置的坐标是(2,-1)时,飞机B 的坐标是( ) A.(l ,5); B.(-4,5); C .(1,0); D.(-5,6) 6、下列图形中,只用一种作平面镶嵌,这种图形不可能是 ( ) (A)三角形 (B)凸四边形 (C)正六边形 (D)正八边形7、如图,已知棋子“车”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( )(A) (3,2) (B) (3,1) (C)(2,2) (D)(-2,2)8、若方程组⎩⎨⎧=-=+a y x yx 224中的x 是y 的2倍,则a 等于( )A .-9B .8C .-7D .-69、点P (2,—4)关于x 轴的对称点的坐标为 ( )A .(2,4)B .(2,-4)C .(-2,4)D .(-2,-4) 10、已知点P (a ,a-1),则点p 不可能在( )A .第一象限 B.第二象限 C.第三象限 D.第四象限11、木工师傅做完门框后,为防止变形,通常在角上钉一斜条,他的根据是 ___________________.12、内角和与外角和之比是1∶5的多边形是______边形13、两边分别长4cm 和10cm的等腰三角形的周长是________cm14、五子棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜。

【典型题】初一数学上期末第一次模拟试卷含答案 (2)

【典型题】初一数学上期末第一次模拟试卷含答案 (2)

【典型题】初一数学上期末第一次模拟试卷含答案 (2)一、选择题1.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元 2.方程834x ax -=-的解是3x =,则a 的值是( ).A .1B .1-C .3-D .3 3.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个 4.下列各式的值一定为正数的是( ) A .(a +2)2B .|a ﹣1|C .a +1000D .a 2+1 5.下列计算正确的是( )A .2a +3b =5abB .2a 2+3a 2=5a 4C .2a 2b +3a 2b =5a 2bD .2a 2﹣3a 2=﹣a 6.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( )A .30.2410⨯B .62.410⨯C .52.410⨯D .42410⨯7.已知线段AB=10cm ,点C 是直线AB 上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A .7cmB .3cmC .7cm 或3cmD .5cm8.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm ,宽为6cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .16cmB .24cmC .28cmD .32cm9.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补;③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③10.已知x =y ,则下面变形错误的是( )A .x +a =y +aB .x -a =y -aC .2x =2yD .x y a a= 11.若a =2,|b |=5,则a +b =( )A .-3B .7C .-7D .-3或712.下列解方程去分母正确的是( )A .由,得2x ﹣1=3﹣3x B .由,得2x ﹣2﹣x =﹣4 C .由,得2y-15=3y D .由,得3(y+1)=2y+6二、填空题13.若关于x 的一元一次方程12018x-2=3x+k 的解为x=-5,则关于y 的一元一次方程12018(2y+1)-5=6y+k 的解y=________. 14.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.15.若13a +与273a -互为相反数,则a=________. 16.观察下列算式:222222222210101;21213;32325;43437;54549;-=+=-=+=-=+=-=+=-=+=L L若字母n 表示自然数,请把你观察到的规律用含有n 的式子表示出来:17.如图,两个正方形边长分别为a 、b ,且满足a+b =10,ab =12,图中阴影部分的面积为_____.18.若2a +1与212a +互为相反数,则a =_____. 19.已知2x+4与3x ﹣2互为相反数,则x=_____.20.已知关于x 的一元一次方程1999(x +1)﹣3=2(x +1)+b 的解为x =9,那么关于y 的一元一次方程1999y ﹣3=2y +b 的解y =_____. 三、解答题21.已知a b 、满足2|1|(2)0a a b -+++=,求代数式()221128422a ab ab a ab ⎡⎤-+--⎢⎥⎣⎦的值. 22.化简与求值:[(x ﹣2y )2+(x ﹣2y )(x+2y )﹣2x (2x ﹣y )]÷2x ,其中x=5,y=﹣6.23.如图,A ,B 分别为数轴上的两点,A 点对应的数为-20,B 点对应的数为100.(1)请写出A B 中点M 所对应的数;(2)现有一只电子蚂蚊P 从B 点出发,以6单位秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,求C 点对应的数.(3)若当电子蚂蚁P 从B 点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q 恰好从A 点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,求D 点对应的数.24.解方程:(1)14123x x -=+ (2)3(21)2(21)143x x +--= 25.如图,C 为线段AB 上的一点,AC :CB=3:2,D 、E 两点分别为AC 、AB 的中点,若线段DE 为2cm ,则AB 的长为多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得.【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.2.A解析:A【解析】【分析】把3x =代入方程834x ax -=-,得出一个关于a 的方程,求出方程的解即可.【详解】把3x =代入方程834x ax -=-得:8-9=3a-4解得:a=1故选:A .【点睛】本题考查了解一元一次方程和一元二次方程的解,能够得出关于a 的一元一次方程是解此题的关键.3.C解析:C【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】120亿个用科学记数法可表示为:101.210⨯个.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.D解析:D【解析】【分析】直接利用偶次方以及绝对值的性质分别分析得出答案.【详解】A .(a +2)2≥0,不合题意;B .|a ﹣1|≥0,不合题意;C .a +1000,无法确定符号,不合题意;D .a 2+1一定为正数,符合题意.故选:D .【点睛】此题主要考查了正数和负数,熟练掌握非负数的性质是解题关键.5.C解析:C【解析】【分析】根据合并同类项法则逐一判断即可.【详解】A .2a 与3b 不是同类项,所以不能合并,故本选项不合题意;B .2a 2+3a 2=5a 2,故本选项不合题意;C .2a 2b +3a 2b =5a 2b ,正确;D .2a 2﹣3a 2=﹣a 2,故本选项不合题意.故选:C .【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.6.B解析:B解:将2400000用科学记数法表示为:2.4×106.故选B . 点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.D解析:D【解析】【分析】先根据题意画出图形,再利用线段的中点定义求解即可.【详解】解:根据题意画图如下:∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点, ∴1115222MN MC CN AC BC AB cm =+=+==;∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点,∴1115222MN MC CN AC BC AB cm =-=-==. 故选:D .【点睛】本题考查的知识点是与线段中点有关的计算,根据题意画出正确的图形是解此题的关键. 8.B解析:B【解析】【分析】根据题意,结合图形列出关系式,去括号合并即可得到结果.【详解】设小长方形的长为xcm ,宽为ycm ,根据题意得:7-x=3y ,即7=x+3y ,则图②中两块阴影部分周长和是:2×7+2(6-3y )+2(6-x )=14+12-6y+12-2x=14+12+12-2(x+3y )=38-2×7=24(cm ).【点睛】此题考查了整式的加减,正确列出代数式是解本题的关键.9.D解析:D【解析】【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③.【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠,∴APA BPB ''∠=∠,故①正确;∵射线PA '经过刻度27,∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补,故②正确; ∵12APB APA ''∠=∠, ∴=272APA A PB '''∠∠=︒,∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′,∴射线PA '经过刻度45.故③正确.故选D .【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.10.D解析:D【解析】解:A .B 、C 的变形均符合等式的基本性质,D 项a 不能为0,不一定成立.故选D .11.D解析:D【解析】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【点睛】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.12.D解析:D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.二、填空题13.-3【解析】【分析】先把x=-5代入x-2=3x+k求出k的值再把k代入(2y+1)-5=6y+k解方程求出y值即可【详解】∵关于x的一元一次方程x-2=3x+k的解为x=-5∴-2=-15+k解得解析:-3【解析】【分析】先把x=-5代入12018x-2=3x+k求出k的值,再把k代入12018(2y+1)-5=6y+k,解方程求出y值即可.∵关于x的一元一次方程12018x-2=3x+k的解为x=-5,∴52018-2=-15+k,解得k=122013 2018,∴12018(2y+1)-5=6y+1220132018,解得y=-3.故答案为-3【点睛】本题考查了一元一次方程的解及解一元一次方程,使等式两边成立的未知数的值叫做方程的解,熟练掌握一元一次方程的解法是解题关键.14.【解析】【分析】设小长方形卡片的长为2m则宽为m观察图2可得出关于m 的一元一次方程解之即可求出m的值设盒子底部长方形的另一边长为x根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6即可得出关解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.【解析】根据题意列出方程+=0直接解出a的值即可解题解:根据相反数和为0得:+=0去分母得:a+3+2a﹣7=0合并同类项得:3a﹣4=0化系数为1得:a﹣=0故答案为解析:43【解析】 根据题意列出方程13a ++273a -=0,直接解出a 的值,即可解题. 解:根据相反数和为0得:13a ++273a -=0, 去分母得:a+3+2a ﹣7=0,合并同类项得:3a ﹣4=0,化系数为1得:a ﹣43=0, 故答案为43. 16.【解析】【分析】根据题意分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;…进而发现规律用n 表示可得答案【详解】根据题意分析可得: 解析:()221121n n n n n +-=++=+【解析】【分析】根据题意,分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;…进而发现规律,用n 表示可得答案.【详解】根据题意,分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;… 若字母n 表示自然数,则有:(n+1)2-n 2=2n+1;故答案为(n+1)2-n 2=2n+1. 17.32【解析】【分析】阴影部分面积=两个正方形的面积之和-两个直角三角形面积求出即可【详解】∵a+b=10ab=12∴S 阴影=a2+b2-a2-b (a+b )=(a2+b2-ab )=(a+b )2-3ab解析:32【解析】【分析】阴影部分面积=两个正方形的面积之和-两个直角三角形面积,求出即可.【详解】∵a+b=10,ab=12,∴S 阴影=a 2+b 2-12a 2-12b (a+b )=12(a 2+b 2-ab )=12[(a+b )2-3ab]=32, 故答案为:32.此题考查了整式混合运算的应用,弄清图形中的关系是解本题的关键.18.﹣1【解析】【分析】利用相反数的性质列出方程求出方程的解即可得到a 的值【详解】根据题意得:去分母得:a+2+2a+1=0移项合并得:3a=﹣3解得:a=﹣1故答案为:﹣1【点睛】本题考查了解一元一次解析:﹣1【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】根据题意得:a2a110 22+++=去分母得:a+2+2a+1=0,移项合并得:3a=﹣3,解得:a=﹣1,故答案为:﹣1【点睛】本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.19.【解析】试题解析:∵2x+4与3x-2互为相反数∴2x+4=-(3x-2)解得x=-故答案为-解析:2 5 -【解析】试题解析:∵2x+4与3x-2互为相反数,∴2x+4=-(3x-2),解得x=-25.故答案为-25.20.【解析】【分析】令x=y﹣1后代入(x+1)﹣3=2(x+1)+b可得:y﹣3=2y+b由题意可知y﹣1=9【详解】解:令x=y﹣1后代入(x+1)﹣3=2(x+1)+ b可得:y﹣3=2y+b该方程解析:【解析】【分析】令x=y﹣1后代入1999(x+1)﹣3=2(x+1)+b可得:1999y﹣3=2y+b,由题意可知y﹣【详解】解:令x =y ﹣1后代入1999(x +1)﹣3=2(x +1)+b , 可得:1999y ﹣3=2y +b , 该方程的解为x =9,∴y ﹣1=9,∴y =10,故答案是:10.【点睛】此题考查一元一次方程的解.解题的关键是理解一元一次方程的解的定义,注意此题涉及换元法,整体的思想.三、解答题21.31【解析】【分析】根据非负数的性质求出a ,b 的值,然后对所求式子进行化简并代入求值即可.【详解】解:∵2|1|(2)0a a b -+++=,∴10a -=,20a b ++=,∴1a =,3b =-, ∴()221128422a ab ab a ab ⎡⎤-+--⎢⎥⎣⎦ 221128222a ab ab a ab ⎛⎫=-+-- ⎪⎝⎭ 221128222a ab ab a ab =--+- 249a ab =-()241913=⨯-⨯⨯-31=.【点睛】本题考查了非负数的性质,整式的加减运算,熟练掌握运算法则是解题的关键. 22.﹣x ﹣y ,1.【解析】试题分析:原式被除数括号中第一项利用完全平方公式展开,第二项利用平方差公式化简,最后一项利用单项式乘以多项式法则计算,合并后利用多项式除以单项式法则计算得到最简结果,将x 与y 的值代入计算,即可求出值.解:原式=(x 2﹣4xy+4y 2+x 2﹣4y 2﹣4x 2+2xy )÷2x=(﹣2x 2﹣2xy )÷2x=﹣x ﹣y ,当x=5,y=﹣6时,原式=﹣5﹣(﹣6)=﹣5+6=1.考点:整式的混合运算—化简求值.23.(1)40;(2)28;(3)-260.【解析】【分析】(1)直接根据中点坐标公式求出M 点对应的数;(2)①先求出AB 的长,再设t 秒后P 、Q 相遇即可得出关于t 的一元一次方程, 求出t 的值即可; ②由①中t 的值可求出P 、Q 相遇时点P 移动的距离,进而可得出C 点对应的数;(3)此题是追及问题,可先求出P 追上Q 所需的时间, 然后可求出Q 所走的路程,根据左减右加的原则,可求出点D 所对应的数.【详解】法一:(1)()10020120AB =--=,点M 表示的数为:()12022040÷+-=,(2)它们的相遇时间是()1206412÷+=(秒),即相遇时Q 点运动的路程为:12448⨯=,因此点C 表示的数为:204828-+=.(3)两只蚂蚁相遇时的运动时间为:()1206460÷-=(秒),即相遇时Q 点运动的路程为:460240⨯=,因此点D 表示的数为:20240260--=-,方法二:(1)()201004022A B M -++===, (2)动点:1006P t -,:204Q t -+, 相遇,则P Q =,1006204t t -=-+,12t =,:10061228C -⨯=,(3)动点:1006P t '-;:204Q t '--,相遇,则P Q =,1006204t t ''-=--,60t '=,:100660260D -⨯=-.【点睛】本题主要考查的是数轴上点的运动,还有相遇问题与追及问题,解决本题的关键是要熟练掌握行程问题的等量关系.24.(1)95x =-(2)52x =-【解析】【分析】 两方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:(1)原方程去分母得:3(x-1)=8x+6,去括号得:3x-3=8x+6,整理得:-5x=9, 解得:95x =-; (2)原方程变形为:()()92112821x x +-=-,去括号得:18x+9-12=16x-8,整理得:2x=-5, 解得:52x =-. 【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.25.10cm【解析】【分析】根据比值,可得 AC 、BC ,根据线段中点的性质,可得AD ,AE ,根据线段的和差,可得关于x 的方程,根据解方程,可得x 的值,可得答案.【详解】解:设AB=x ,由已知得: AC=35x ,BC=25x , ∵D 、E 两点分别为AC 、AB 的中点,∴DC=310x ,BE=12x , DE=DC ﹣EC=DC ﹣(BE ﹣BC ), 即:310 x ﹣(12x ﹣25x )=2, 解得:x=10,则AB 的长为10cm .【点睛】本题考查两点间的距离、线段中点定义,解题关键是根据题意列出方程.。

七年级数学期末测试2

七年级数学期末测试2

七年级数学期末测试2一、选择:(每小题3分,共30分)1、在下面的四个有理数中,最小的是( ).A 、-1B 、0C 、1D 、-22、地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为( ).A 、0.149⨯610B 、1.49⨯710C 、1.49⨯810D 、14.9⨯710 3、若a 为有理数,下列结论一定正确的是( ). A 、a a >- B 、1a a>C 、a a ||=D 、2a ≥04、-2的立方与-2的平方的和是 ( ).A 、0B 、4C 、-4D 、0或-4 5、已知b am225-和437a bn-是同类项,则n m +的值是( ).A 、2B 、3C 、4D 、6 6、下列解方程步骤正确的是( ).A 、由x x 2+4=3+1,得x x 2+3=1+4B 、由7(1)x x -=2(+3),得71x x -=2+3C 、由0.5x x -0.7=5-1.3,得5x x -7=5-13D 、由136x x -+2-=2,得2212x x -2--=7、某书上有一道解方程的题:13x x++1=, 处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =-2,那么 处应该是数字( ).A 、7B 、5C 、2D 、-28、某商品进价为a 元/件,在销售旺季,该商品售价较进价高50%,销售旺季过后,又以7折(即原价的70%)的价格对商品开展促销活动,这时一件商品的售价为( ).A 、1.5a 元B 、0.7a 元C 、1.2a 元D 、1.05a 元 9、下列图形中,哪一个是正方体的展开图 ( ).10、已知线段AB=10cm ,点C 是直线..AB ..上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ).A 、7cmB 、3cmC 、7cm 或3cmD 、5cm二、填空:(每小题3分,共18分)11、若|x|=2,则318x =__________ 。

湘教版七年级数学上册期末综合测试卷二(含答案)

湘教版七年级数学上册期末综合测试卷二(含答案)

七年级数学(上册)期末综合测试卷二(含答案)一¡选择题(30分)1、下面的数中,与-3的和为0的是()A. 3;B. -3;C. ;D. ;2、据报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A. 1.94×1010;B. 0.194×1010;C. 19.4×109;D. 1.94×109;3、已知x<0,y>0,且,则x+y的值是()A. 非负数;B. 负数;C. 正数;D. 0;4、若与的和是单项式,则的值为()A. 1;B. -1;C. 2;D. 0;5、在解方程去分母真情的是()A. ;B. ;C. ;D. ;6、有苹果若干,分给小朋友吃,若每个小朋友分3个则剩1个,若每个小朋友分4个则少2个,设共有苹果x个,则可列方程为()A. 3x+4=4x-2;B. ;C.;D. ;7、一个两位数,个位数字与十位数字之和是9,如果将个位数字与十位数字对调后,所得新数比原数答9,则原来两位数是()A. 54;B. 27;C. 72;D. 45;8、已知某种商品的售价为204元,即使促销降价20﹪仍有20﹪的利润,则该商品的成本价是()A. 133;B. 134;C. 135;D. 136;9、如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD的度数是()A. 20°;B. 40°;C. 50°;D. 80°;10、已知2001年至2012年某市小学学校数量(所)和在校学生数(人)得两幅统计图(如图①,图②),由图得出如下四个结论:①学校数量2007~2012年比2001~2006年更稳定;②在校学生数有两处连续下降,两次连续增长的变化过程;③2009年的大于1000;④2009~2012年,各相邻两年的学校数量增长和在校学生人数增长最快的年份学校数(所)20012002200320042005200620072008200920102011201202004006008001000120014001600135411971044897791605437418417408409415年份在校学生数(人)200120022003200420052006200720082009201020112012430000440000435000445000450000455000460000465000470000475000············467962448960456515447971458542458729456192452143445192453897465289472613图图x y 2134567812345678x y 2134567812345678图图都是2011~2012年;其中,正确的结论是( )A. ①②③④;B. ①②③;C. ①②;D. ③④;二、填空题(24分)11、绝对值大于2.6而小于5.3的所有负数之和为 。

最全七年级(上)期末目标检测数学试卷(2)及答案

最全七年级(上)期末目标检测数学试卷(2)及答案

七年级(上)期末目标检测数学试卷(二)一、选择题(每小题3分,共30分) 1.的相反数是( )A .B .C .D . 2.如图2,在下列说法中错误的是( )A .射线OA 的方向是正西方向B .射线OB 的方向是东北方向C .射线OC 的方向是南偏东60°D .射线OD 的方向是南偏西55°3.下列方程中与方程的解相同的是( )A. B. C. D.4.下列运算正确的是( )A .B .C .D .5.已知关于的方程的解是,则的值是( ) A .2 B .-2 C . D .- 6.若,那么( )A. B. C. D.为任意有理数 7.在下午四点半钟的时候,时针和分针所夹的角度是( ) A.30度 B.45度 C.60度 D.75度8.点是直线外一点,为直线上三点,,则点到直线的距离是( )A .B .小于C .不大于D .33-31313-232+=-x x x x =-1223=-x 53+=x x 23=+x z y x z y x ---=+--)(z y x z y x --=--)()(222y z x z y x +-=-+)()(d c b a d c b a -----=+++-x 432x m -=x m =m 27270||>a 0>a 0<a 0≠a a P l C B A ,,l cm PC cm PB cm PA 2,5,,4===P l cm 2cm 2cm 2cm 49.已知,那么的值为( )A .10B .40C .80D .21010.一家三口人(父亲、母亲、女儿)准备参加旅游团外出旅游,甲旅行社告知“父母全票,女儿半价优惠”,乙旅行社告知家庭可按团体票计价,即每人均按全价收费。

若这两家旅行社每人原价相同,那么优惠条件是 ( )A .甲比乙更优惠B .乙比甲更优惠C .甲与乙相同D .与原价有关二、填空题(每空2分,共20分) 11.的倒数是 。

【鲁教版】七年级数学上期末试题(附答案)(2)

【鲁教版】七年级数学上期末试题(附答案)(2)

一、选择题1.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离; (2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个2.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =m ,CD =n ,则AB =( )A .m ﹣nB .m +nC .2m ﹣nD .2m +n3.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n +4.如图,点O 在直线AB 上,图中小于180°的角共有( )A .10个B .9个C .11个D .12个5.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( ) A .5袋 B .6袋 C .7袋 D .8袋 6.若三个连续偶数的和是24,则它们的积为( ) A .48B .240C .480D .1207.甲、乙两个工程队,甲队人,乙队人,现在从乙队抽调人到甲队,使甲队人数为乙队人数的倍.则根据题意列出的方程是( )A .B .C .D .8.某工厂一、二月份共完成生产任务吨,其中二月份比一月份的多吨,设一月份完成吨,则下列所列方程正确的是( )A .B .C .D .9.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++10.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67 D .011.下列四个式子,正确的是( )①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③12.下列说法中正确的是( ) A .a -表示的数一定是负数 B .a -表示的数一定是正数 C .a -表示的数一定是正数或负数D .a -可以表示任何有理数二、填空题13.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.14.下面的图形是某些几何体的表面展开图,写出这些几何体的名称.15.某公司销售,,A B C 三种电子产品,在去年的销售中,产品C 的销售额占总的销售额的60%,由于受新冠肺炎疫情的影响,估计今年,A B 两种产品的销售额都将比去年减少45%,公司将产品C定为今年销售的重点,要使今年的总销售额与去年持平,那么今年产品C的销售额应比去年增加__________.16.对任意四个有理数a,b,c,d,定义:a bad bcc d=-,已知24181-=xx,则x=_____.17.如图,图1是“杨辉三角”数阵;图2是(a+b)n的展开式(按b的升幂排列).若(1+x)45的展开式按x的升幂排列得:(1+x)45=a0+a1x+a2x2+…+a45x45,则a2=_____.18.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形__________个 (用含n 的代数式表示).19.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.20.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A,B对应的数分别为0和1-,若ABC绕着顶点顺时针方向在数轴上翻转1次后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.三、解答题21.已知线段10cmAB=,在直线AB上取一点C,使16cmAC=,求线段AB的中点与AC的中点的距离.22.已知点C是线段AB的中点(1)如图,若点D在线段CB上,且BD=1.5厘米,AD=6.5厘米,求线段CD的长度;(2)若将(1)中的“点D 在线段CB 上”改为“点D 在线段CB 的延长线上”,其他条件不变,请画出相应的示意图,并求出此时线段CD 的长度.23.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人? 24.解方程: (1)3x ﹣4=2x +5; (2)253164x x--+=. 25.计算:2334[28(2)]--⨯-÷- 26.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19= ;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ; (3)请用上述计算103+105+107+…+2015+2017的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据两点之间距离的定义可以判断A 、C ,根据射线的定义可以判断B ,据题意画图可以判断D . 【详解】∵线段AB 的长度是A 、 B 两点间的距离, ∴(1)错误; ∵射线没有长度, ∴(2)错误; ∵两点之间,线段最短∴(3)正确;∵在直线上取A,B,C三点,使得AB=5cm,BC=2cm,当C在B的右侧时,如图,AC=5+2=7cm当C在B的左侧时,如图,AC=5-2=3cm,综上可得AC=3cm或7cm,∴(4)错误;正确的只有1个,故选:A.【点睛】本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.2.C解析:C【分析】由已知条件可知,EC+FD=m-n,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【详解】解:由题意得,EC+FD=m-n∵E是AC的中点,F是BD的中点,∴AE+FB=EC+FD=EF-CD=m-n又∵AB=AE+FB+EF∴AB=m-n+m=2m-n故选:C.【点睛】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.3.C解析:C【分析】由条件可知EC+DF=m-n,又因为E,F分别是AC,BD的中点,所以AE+BF=EC+DF=m-n,利用线段和差AB=AE+BF+EF求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E是AC的中点,F是BD的中点,∴AE=EC,DF=BF,∴AE+BF=EC+DF=m-n,∵AB=AE+EF+FB,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.4.B解析:B【解析】【分析】利用公式:()21n n-来计算即可.【详解】根据公式:()21n n-来计算,其中,n指从点O发出的射线的条数.图中角共有4+3+2+1=10个,根据题意要去掉平角,所以图中小于180°的角共有10−1=9个.故选B.【点睛】此题考查角的的定义,解题关键在于掌握其定义性质.5.A解析:A【解析】【分析】要求驴子原来所托货物的袋数,要先设出未知数,通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,才恰好驮的一样多)=驴子原来所托货物的袋数加上1,据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得到方程:2(x-1)-1-1=x+1,解得:x=5, 答:驴子原来所托货物的袋数是5, 故选A.【点睛】本题主要考查列方程解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.C【分析】设出一个偶数,表示出另外两个数,列出方程解出这三个数,再计算它们的积.【详解】解:设中间的偶数为m,则(m-2)+m+(m+2)=24,解得m=8.故三个偶数分别为6,8,10.故它们的积为:6×8×10=480.故选:C.【点睛】本题考查了一元一次方程的应用.找到三个连续偶数间的数量关系是解题的关键.7.A解析:A【解析】【分析】分析本题题意,找到等量关系:32+甲队添加人数=2×(28-乙队减少人数),列出式子即可.【详解】解:列出的方程是32+x=2×(28-x).故答案为:32+x=2×(28-x),答案选A..【点睛】列方程解应用题的关键是找出题目中的相等关系.注意本题中甲增加的人数就是乙减少的人数.8.B解析:B【解析】【分析】由题意可知:一月份完成吨,二月份完成()吨,一、二月份共完成生产任务吨,列出方程解答即可.【详解】由题意可知:.故选:B【点睛】此题考查从实际问题中抽象出一元一次方程,找出题目蕴含的数量关系是解决问题的关键.9.B【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案. 【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形; ()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B. 【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握.10.B解析:B 【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题. 【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项, ∴6﹣7m =0,解得m =67. 故选:B . 【点睛】本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0.11.D解析:D 【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案. 【详解】①∵33 3.754⎛⎫-+=- ⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.12.D解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a-表示的数不一定是负数,当a为负数时,-a就是正数,故该选项错误;B. a-表示的数不一定是正数,当a为正数时,-a就是负数,故该选项错误;C. a-表示的数不一定是正数或负数,当a为0时,-a也为0,故该选项错误;D. a-可以表示任何有理数,故该选项正确.故选:D.【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.二、填空题13.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)解析:几何体 体 面 平 曲 【解析】 【分析】几何体又称为体,包围着体的是面,分为平的面和曲的面两种 【详解】长方体、四面体、圆柱、圆锥、球等都是几何体,几何体也简称为体,包围着体的是面,面有平面和曲面两种.故答案为:(1). 几何体(2). 体 (3). 面(4). 平(5). 曲 【点睛】此题考查认识立体图形,解题关键在于掌握其性质定义.14.正方体四棱锥三棱柱【解析】【分析】根据常见的几何体的展开图进行判断【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体四棱锥三棱柱;解析:正方体 四棱锥 三棱柱 【解析】 【分析】根据常见的几何体的展开图进行判断. 【详解】根据几何体的平面展开图的特征可知:①是正方体的展开图;②是四棱锥的展开图;③是三棱柱的展开图;故答案为:正方体 ,四棱锥 , 三棱柱; 【点睛】此题考查几何体的展开图,解题关键在于掌握其展开图.15.【分析】把去年的总销售金额看作整体1设今年产品C 的销售金额应比去年增加x 根据今年的销售总金额和去年的销售总金额相等列出方程再求解即可【详解】解:设今年产品的销售金额应比去年增加由题意得解得:答:今年 解析:30%【分析】把去年的总销售金额看作整体1.设今年产品C 的销售金额应比去年增加x ,根据今年的销售总金额和去年的销售总金额相等,列出方程,再求解即可. 【详解】解:设今年产品C 的销售金额应比去年增加x , 由题意得,60%(1)(160%)(145%)1x ++--=, 解得:30%x =.答:今年产品C 的销售金额应比去年增加30%. 故答案为:30%.【点睛】本题考查了一元一次方程的应用,关键在于设未知数,列方程,难点在于涉及百分数,运算易出错.此题注意把去年的总销售额看作整体1,即可分别表示出去年A和B的销售金额和C的销售金额.根据今年的销售总金额和去年的销售总金额相等即可列方程.16.3【分析】首先看清这种运算规则将转化为一元一次方程2x-(﹣4x)=18然后通过去括号移项合并同类项系数化为1解方程即可【详解】由题意得2x-(﹣4x)=186x=18解得:x=3故答案为:3【点睛解析:3【分析】首先看清这种运算规则,将24181-=xx转化为一元一次方程2x-(﹣4x) =18,然后通过去括号、移项、合并同类项、系数化为1,解方程即可.【详解】由题意得,2x-(﹣4x) =186x=18解得:x=3故答案为:3【点睛】本题主要考查解一元一次方程,关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.17.990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和计算得到结论【详解】解:由图2知:(a+b)1的第三项系数为0(a+b)2的第三项的系数为:1(a+b)3的解析:990【分析】根据图形中的规律即可求出(1+x)45的展开式中第三项的系数为前44个数的和,计算得到结论.【详解】解:由图2知:(a+b)1的第三项系数为0,(a+b)2的第三项的系数为:1,(a+b)3的第三项的系数为:3=1+2,(a+b)4的第三项的系数为:6=1+2+3,…∴发现(1+x)3的第三项系数为:3=1+2;(1+x)4的第三项系数为6=1+2+3;(1+x)5的第三项系数为10=1+2+3+4;不难发现(1+x)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(1+x )45=a 0+a 1x+a 2x 2+...+a 45x 45,则a 2=1+2+3+ (44)44(441)2⨯+=990; 故答案为:990.【点睛】 本题考查了完全平方式,也是数字类的规律题,首先根据图形中数字找出对应的规律,再表示展开式:对应(a+b )n 中,相同字母a 的指数是从高到低,相同字母b 的指数是从低到高.18.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个 解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 19.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a 由题意得:-1<a <3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a ,由题意得:-1<a <3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念. 20.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C 对应的数是故答案为:4【点睛】本题考查了数轴及数的【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C 在数轴上,∴点C 对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.三、解答题21.13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点, 所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论. 22.(1)CD=2.5厘米;(2)CD=4厘米.【分析】根据BD+AD=AB 可求出AB 的长,利用中点的定义可求出BC 的长,根据CD=BC-BD 求出CD 的长即可;(2)根据题意画出图形,利用线段中点的定义及线段的和差关系求出CD 的长【详解】(1)∵BD=1.5厘米,AD=6.5厘米,∴AB=BD+AD=8(厘米),∵点C 是线段AB 的中点,∴BC=12AB=4(厘米) ∴CD=BC-BD=2.5(厘米).(2)当点D 在线段CB 的延长线上时,如图所示:∵BD=1.5厘米,AD=6.5厘米,∴AB=AD-BD=5(厘米),∵点C 是线段AB 的中点,∴BC=12AB=2.5(厘米) ∴CD=BC+BD=4(厘米)【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.23.大和尚有25人,小和尚有75人【分析】设大和尚有x 人,则小和尚有(100x -)人,根据“3×大和尚人数+小和尚人数÷3=100”,即可得出关于x 的一元一次方程,此题得解.【详解】设大和尚有x 人,则小和尚有(100x -)人,根据题意得:10031003x x -+= 解得:25x =,则10075x -=,答:大和尚有25人,小和尚有75人.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 24.(1)9x = ;(2)13x =【分析】(1)通过移项,合并同类项,便可得解;(2)通过去分母,去括号,移项,合并同类项,进行解答便可.【详解】(1)3x ﹣2x =5+4,解得:x =9;(2)去分母得:2(2x ﹣5)+3(3﹣x )=12,去括号得:4x ﹣10+9﹣3x =12,移项得:4x ﹣3x =12+10﹣9,合并同类项得:x =13.【点睛】本题主要考查了解一元一次方程,熟记解一元一次方程的一般步骤是解题的关键. 25.21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.26.(1)102;(2)()22n + ;(3)1015480.【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102;(2)一共有(n+2)个连续奇数相加,所以结果应为n 2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可.【详解】(1)由图片知:第1个图案所代表的算式为:1=21;第2个图案所代表的算式为:1+3=4=22;第3个图案所代表的算式为:1+3+5=9=23;…依次类推:第n 个图案所代表的算式为:1+3+5+…+(2n-1)=2n ;1+3+5+…+19的个数为:191102+=, ∴1+3+5+…+19=210;故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122n n ++=+,∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n+,n+;故答案为:()22(3)103+105+107+…+2015+2017=(1+3+…+2015+2017)-(1+3+…+99+101)=2511009-2=1015480.【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.。

七年级上学期数学期末考试试卷第2套真题

七年级上学期数学期末考试试卷第2套真题

七年级上学期数学期末考试试卷一、单选题1. 数轴上表示﹣2和3的两点之间的距离是()A . 1B . 2C . 3D . 52. 单项式的系数和次数分别是()A . ,6B . ,5C . ,5D . ,53. 一年大约有31500000秒,用科学记数法表示31500000为()A . 3.15×106B . 3.15×107C . 3.15×108D . 3.15×1094. 如图,从A到B有三条路径,最短的路径是③,理由是()A . 两点确定一条直线B . 两点之间,线段最短C . 过一点有无数条直线D . 因为直线比曲线和折线短5. 如图,C岛在A岛的南偏东15°方向,C岛在B岛的北偏东70°方向,从C岛看A、B两岛的视角∠ACB的度数是()A . 95°B . 85°C . 60°D . 40°6. 如图,点E在BC的延长线上,则下列条件中,能判定的是()A .B .C .D .7. 如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的值为()A . ∠1+∠2﹣∠3B . ∠1+∠3﹣∠2C . 180°+∠3﹣∠1﹣∠2D . ∠2+∠3﹣∠1﹣180°二、填空题8. 92.76°=________度________分________秒;22°32′24″=________度.9. 已知,则=________.10. 平方等于16的数是________.11. 多项式3x3y﹣y4+5xy2﹣x4按x的降幂排列为________.12. 多项式2x3-x2y2-3xy+x-1是________次________项式.13. 一个角的补角比它的余角的三倍少10度,这个角是________度.14. 上午8点30分,时钟的时针和分针所构成的锐角度数为________15. 如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为________.三、解答题16. 计算题(1)﹣9×(﹣10)÷3﹣|﹣× |(2)﹣22×5﹣(﹣2)3÷4﹣|﹣2﹣(﹣3)|17. 先化简,再求值:,其中,.18. 如图,在同一平面内有四个点A、B、C、D,请按要求完成下列问题.(1)作射线AC;(2)作直线BD与射线AC相交于点O;(3)分别连接AB、AD;(4)我们容易判断出线段AB、AD、BD的数量关系式AB+AD>BD,理由是________.19. 如图,AC=10cm,AB=6cm,M、N分别为AC与AB的中点,求线段MN 的长度.20. 如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.21. 小张自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一批服装.为了缓解资金的压力,小张决定打折销售.若每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.(1)请你算一算每件服装标价多少元?每件服装成本是多少元?(2)为了尽快减少库存,又要保证不亏本,请你告诉小张最多能打几折?22. 已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从O点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?23. 直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO 的度数.24. 某商场计划用900元从生产厂家购进50台计算器,已知该厂家生产三种不同型号的计算器,出厂价分别为A种每台15元,B种每台21元,C种毎台25元.(1)商场同时购进两种不同型号的计算器50台,用去900元.①若同时购进A、B两种时,则购进A、B两种计算器各多少台?;②若同时购进A、C两种时,则购进A、C两种计算器各多少台?;(2)若商场销售一台A种计算器可获利5元,销售一台B种计算器可获利8元,销售一台C种计算器可获利12元,在同时购进两种不同型号的计算器方案中,为了使销售时获利最多,你选择哪种方案?25. 已知:射线OP∥AE(1)如图1,∠AOP的角平分线交射线AE与点B,若∠BOP=58°,求∠A的度数.(2)如图2,若点C在射线AE上,OB平分∠AOC交AE于点B,OD平分∠COP 交AE于点D,∠ADO=39°,求∠ABO﹣∠AOB的度数.(3)如图3,若∠A=m,依次作出∠AOP的角平分线OB,∠BOP的角平分线OB1,∠B1OP的角平分线OB2,∠Bn﹣1OP的角平分线OBn,其中点B,B1,B2,…,Bn﹣1,Bn都在射线AE上,试求∠ABnO的度数.。

【压轴卷】七年级数学上期末试卷及答案 (2)

【压轴卷】七年级数学上期末试卷及答案 (2)

【压轴卷】七年级数学上期末试卷及答案 (2)一、选择题1.若x 是3-的相反数,5y =,则x y +的值为( )A .8-B .2C .8或2-D .8-或2 2.将7760000用科学记数法表示为( )A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯ 3.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个4.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是( )A .不赚不亏B .赚8元C .亏8元D .赚15元5.如图,点A 、B 、C 在数轴上表示的数分别为a 、b 、c ,且OA+OB=OC ,则下列结论中: ①abc <0;②a (b+c )>0;③a ﹣c=b ;④|||c |1||a b a b c++= .其中正确的个数有 ( )A .1个B .2个C .3个D .4个6.下面结论正确的有( )①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A .0个B .1个C .2个D .3个7.已知整数a 1,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,……以此类推,则a 2018的值为( )A .﹣1007B .﹣1008C .﹣1009D .﹣2018 8.钟表在8:30时,时针与分针的夹角是( )度. A .85B .80C .75D .70 9.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣1 10.4h =2小时24分.答:停电的时间为2小时24分.故选:C .【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.11.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )A.3a+b B.3a-b C.a+3b D.2a+2b12.若a=2,|b|=5,则a+b=( )A.-3 B.7 C.-7 D.-3或7二、填空题13.如图,若输入的值为3,则输出的结果为____________.14.如图,数轴上A、B两点之间的距离AB=24,有一根木棒MN,MN在数轴上移动,当N移动到与A、B其中一个端点重合时,点M所对应的数为9,当N移动到线段AB的中点时,点M所对应的数为_____.15.若当x=1时,多项式12ax3﹣3bx+4的值是7,则当x=﹣1时,这个多项式的值为_____.16.汽车以15米/秒的速度在一条笔直的公路上匀速行驶,开向寂静的山谷,司机按一下喇叭,2秒后听到回响,问按喇叭时汽车离山谷多远?已知空气中声音传播速度为340米/秒,设按喇叭时,汽车离山谷x米,根据题意列方程为_____.17.已知A,B,C三点在同一条直线上,AB=8,BC=6,M、N分别是AB、BC的中点,则线段MN的长是_______.18.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了_______小时.19.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.20.正方体切去一块,可得到如图几何体,这个几何体有______条棱.三、解答题21.先化简,后求值:已知()21302x y -++= 求代数式()222642129xy x x xy ⎡⎤----+⎣⎦的值 22.如图1,点A 、O 、B 依次在直线MN 上,现将射线OA 绕点O 沿顺时针方向以每秒4°的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒6°的速度旋转,直线MN 保持不动,如图2,设旋转时间为t (0≤t ≤60,单位:秒).(1)当t =3时,求∠AOB 的度数;(2)在运动过程中,当∠AOB 第二次达到72°时,求t 的值;(3)在旋转过程中是否存在这样的t ,使得射线OB 与射线OA 垂直?如果存在,请求出t 的值;如果不存在,请说明理由.23.2020年元旦,某商场将甲种商品降价40%,乙种商品降价20%,开展优惠促销活动.已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙各一件,共付1000元.(1)求甲、乙两种商品原销售单价各是多少元?(2)若商场在这一次促销活动中,甲种商品亏损25%,乙种商品盈利25%.那么,商场在这次促销活动中,是盈利还是亏损了?如果是盈利件盈利了多少元?如果是亏损,亏损了多少元?24.解方程:(1)()43203x x --= (2)23211510x x -+-= 25.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,求这个多项式【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据相反数的意义可求得x 的值,根据绝对值的意义可求得y 的值,然后再代入x+y 中进行计算即可得答案.【详解】∵x 是3-的相反数,y 5=,∴x=3,y=±5, 当x=3,y=5时,x+y=8,当x=3,y=-5时,x+y=-2,故选C.【点睛】本题考查了相反数、绝对值以及有理数的加法运算,熟练掌握相关知识并运用分类思想是解题的关键.2.B解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】7760000的小数点向左移动6位得到7.76,所以7760000用科学记数法表示为7.76×106, 故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C解析:C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】120亿个用科学记数法可表示为:101.210⨯个.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.C解析:C【解析】试题分析:设盈利的进价是x 元,则x+25%x=60,x=48.设亏损的进价是y 元,则y-25%y=60,y=80.60+60-48-80=-8,∴亏了8元.故选C .考点:一元一次方程的应用.5.B解析:B【解析】【分析】根据图示,可得c <a <0,b >0,|a |+|b |=|c |,据此逐项判定即可.【详解】∵c <a <0,b >0,∴abc >0,∴选项①不符合题意.∵c <a <0,b >0,|a |+|b |=|c |,∴b +c <0,∴a (b +c )>0,∴选项②符合题意.∵c <a <0,b >0,|a |+|b |=|c |,∴-a +b =-c ,∴a -c =b ,∴选项③符合题意.∵a cba b c++=-1+1-1=-1,∴选项④不符合题意,∴正确的个数有2个:②、③.故选B.【点睛】此题主要考查了数轴的特征和应用,有理数的运算法则以及绝对值的含义和求法,要熟练掌握.6.C解析:C【解析】试题解析:∵①3+(-1)=2,和2不大于加数3,∴①是错误的;从上式还可看出一个正数与一个负数相加不一定得0,∴②是错误的.由加法法则:同号两数相加,取原来的符号,并把绝对值相加,可以得到③、④都是正确的.⑤两个负数相加取相同的符号,然后把绝对值相加,故错误.⑥-1+2=1,故正数加负数,其和一定等于0错误.正确的有2个,故选C.7.C解析:C【解析】【分析】根据前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数,即a2n=﹣n,则a2018=﹣=﹣1009,从而得到答案.【详解】解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…以此类推,经过前几个数字比较后发现:从第二个数字开始,如果顺序数为偶数,最后的数值是其顺序数的一半的相反数, 即a 2n =﹣n ,则a 2018=﹣=﹣1009,故选:C .【点睛】本题考查规律型:数字的变化类,根据前几个数字找出最后数值与顺序数之间的规律是解决本题的关键. 8.C解析:C【解析】【分析】时针转动一大格转过的角度是30°,再根据时针与分针相距的份数乘以每份的度数,即可得出答案.【详解】解:∵在8:30时,此时时针与分针相差2.5个大格,∴此时组成的角的度数为30 2.575︒⨯=︒.故选:C .【点睛】本题考查的知识点是钟面角,时针转动一大格转过的角度是30°,分针转动一小格转过的角度是6︒,熟记以上内容是解此题的关键.9.D解析:D【解析】【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】解:Q 单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.11.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.12.D解析:D【解析】【分析】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【点睛】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.二、填空题13.1【解析】【分析】把-3代入程序中计算判断结果比0小将结果代入程序中计算直到使其结果大于0再输出即可【详解】把-3代入程序中得:把-2代入程序中得:则最后输出结果为1故答案为:1【点睛】本题考查有理解析:1【解析】把-3代入程序中计算,判断结果比0小,将结果代入程序中计算,直到使其结果大于0,再输出即可.【详解】⨯==<,把-3代入程序中,得:()-33+7-9+7-20⨯==>,把-2代入程序中,得:()-23+7-6+710则最后输出结果为1.故答案为:1【点睛】本题考查有理数的混合运算,熟练掌握各运算法则是解题的关键.14.21或﹣3【解析】【分析】设MN的长度为m当点N与点A重合时此时点M 对应的数为9则点N对应的数为m+9即可求解;当点N与点M重合时同理可得点M对应的数为﹣3即可求解【详解】设MN的长度为m当点N与点解析:21或﹣3.【解析】【分析】设MN的长度为m,当点N与点A重合时,此时点M对应的数为9,则点N对应的数为m+9,即可求解;当点N与点M重合时,同理可得,点M对应的数为﹣3,即可求解.【详解】设MN的长度为m,当点N与点A重合时,此时点M对应的数为9,则点N对应的数为m+9,当点N到AB中点时,点N此时对应的数为:m+9+12=m+21,则点M对应的数为:m+21﹣m=21;当点N与点M重合时,同理可得,点M对应的数为﹣3,故答案为:21或﹣3.【点睛】此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.15.1【解析】【分析】把x=1代入代数式求出ab的关系式再把x=﹣1代入进行计算即可得解【详解】x=1时ax3﹣3bx+4=a﹣3b+4=7解得a﹣3b=3当x=﹣1时ax3﹣3bx+4=﹣a+3b+4解析:1【解析】【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【详解】x=1时,12ax3﹣3bx+4=12a﹣3b+4=7,解得12a﹣3b=3,当x=﹣1时,12ax3﹣3bx+4=﹣12a+3b+4=﹣3+4=1.故答案为:1.【点睛】本题考查了代数式的求值,整体思想的运用是解题的关键.16.2x﹣2×15=340×2【解析】【分析】设这时汽车离山谷x米根据司机按喇叭时汽车离山谷的距离的2倍减去汽车行驶的路程等于声音传播的距离列出方程求解即可【详解】设按喇叭时汽车离山谷x米根据题意列方程解析:2x﹣2×15=340×2【解析】【分析】设这时汽车离山谷x米,根据司机按喇叭时,汽车离山谷的距离的2倍减去汽车行驶的路程等于声音传播的距离,列出方程,求解即可.【详解】设按喇叭时,汽车离山谷x米,根据题意列方程为 2x﹣2×15=340×2.故答案为:2x﹣2×15=340×2.【点睛】本题考查了由实际问题抽象出一元一次方程,关键是找出题目中的相等关系,列方程.17.1或7【解析】【分析】分点C在线段AB上和点C在线段AB的延长线上两种情况讨论根据线段中点的定义利用线段的和差关系求出MN的长即可得答案【详解】①如图当点C在线段AB上时∵MN分别是ABBC的中点A解析:1或7【解析】【分析】分点C在线段AB上和点C在线段AB的延长线上两种情况讨论,根据线段中点的定义,利用线段的和差关系求出MN的长即可得答案.【详解】①如图,当点C在线段AB上时,∵M、N分别是AB、BC的中点,AB=8,BC=6,∴BM=12AB=4,BN=12BC=3,∴MN=BM-BN=1,②如图,当点C在线段AB的延长线上时,∵M、N分别是AB、BC的中点,AB=8,BC=6,∴BM=12AB=4,BN=12BC=3,∴MN=BM+BN=7∴MN的长是1或7,故答案为:1或7【点睛】本题考查线段中点的定义及线段的计算,熟练掌握中点的定义并灵活运用分类讨论的思想是解题关键.18.10【解析】∵轮船在顺水中的速度为28千米/小时在逆水中的速度为24千米/小时∴水流的速度为:(千米/时)∴水面上的漂浮物顺水漂流20千米所需的时间为:(小时)故答案为10点睛:本题解题的关键是要清解析:10【解析】∵轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,∴水流的速度为:(2824)22-÷=(千米/时),∴水面上的漂浮物顺水漂流20千米所需的时间为:20210÷=(小时).故答案为10.点睛:本题解题的关键是要清楚:在航行问题中,①顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;②水面上漂浮物顺水漂流的速度等于水流速度.19.【解析】试题解析:∵由折线统计图可知周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差解析:【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.20.12【解析】【分析】通过观察图形即可得到答案【详解】如图把正方体截去一个角后得到的几何体有12条棱故答案为:12【点睛】此题主要考查了认识正方体关键是看正方体切的位置解析:12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.三、解答题21.14【解析】【分析】根据非负数的性质分别求出x、y,根据整式的混合运算法则化简,代入计算即可.【详解】由题意得,x-3=0,y+12=0,解得,x=3,y=-12,则2xy2-[6x-4(2x-1)-2xy2]+9 =2xy2-6x+4(2x-1)+2xy2+9 =2xy2-6x+8x-4+2xy2+9=4xy2+2x+5=4×3×(-12)2+2×3+5=14.【点睛】本题考查的是整式的加减混合运算、非负数的性质,掌握整式的加减混合运算法则是解题的关键.22.(1)150°;(2)t的值为1265;(3)t的值为9、27或45.【解析】【分析】(1)将t=3代入求解即可.(2)根据题意列出方程求解即可.(3)分两种情况:①当0≤t≤18时,②当18≤t≤60时,分别列出方程求解即可.【详解】(1)当t=3时,∠AOB=180°﹣4°×3﹣6°×3=150°.(2)依题意,得:4t +6t =180+72,解得:t 1265=. 答:当∠AOB 第二次达到72°时,t 的值为1265. (3)当0≤t ≤18时,180﹣4t ﹣6t =90,解得:t =9;当18≤t ≤60时,4t +6t =180+90或4t +6t =180+270,解得:t =27或t =45.答:在旋转过程中存在这样的t ,使得射线OB 与射线OA 垂直,t 的值为9、27或45.【点睛】本题考查了一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.23.(1)甲商品原销售单价为600元,乙商品的原销售单价为800元;(2)商场在这次促销活动中盈利,盈利了8元【解析】【分析】(1)设甲商品原销售单价为x 元,则乙商品的原销售单价为(1400-x )元,根据优惠后购买甲、乙各一件共需1000元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)设甲商品的进价为a 元/件,乙商品的进价为b 元/件,根据甲、乙商品的盈亏情况,即可分别得出关于a 、b 的一元一次方程,解之即可求出a 、b 的值,再代入1000-a-b 中即可找出结论.【详解】(1)设甲商品原销售单价x 元,则乙商品原销售单价(1400﹣x )元,则(1﹣40%)x+(1﹣20%)(1400﹣x )=1000,解得:x=600,∴1400﹣x=800.答:甲商品原销售单价为600元,乙商品的原销售单价为800元.(2)设甲商品的进价为a 元/件,乙商品的进价为b 元/件,则(1﹣25%)a=(1﹣40%)×600,(1+25%)b=(1﹣20%)×800, 解得:a=480,b=512 ,∴1000﹣a ﹣b=1000﹣480﹣512=8.答:商场在这次促销活动中盈利,盈利了8元.【点睛】本题考查了一元一次方程的应用,解题的关键是找准等量关系,正确列出一元一次方程.24.(1)x=9;(2)x=8.5【解析】【分析】(1)先去括号,再移项得到移项得4x+3x=3+60,然后合并、把x 的系数化为1即可; (2)方程两边都乘以10得到()()2232110x x --+=,再去括号得462110x x ---=,然后合并得到合并得217x =,最后把x 的系数化为1即可.【详解】解:(1)()43203x x --=,46033x x -+=,763x =,9x =;(2)23211510x x -+-=, ()()2232110x x --+=,462110x x ---=,217x =,8.5x =.25.-5x-1.【解析】【分析】设所求多项式为A ,再根据A=(3x 2+4x-1)-(3x 2+9x )即可.【详解】设所求多项式为A ,则A=(3x 2+4x-1)-(3x 2+9x )=3x 2+4x-1-3x 2-9x=-5x-1.【点睛】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.。

上海市2022-2023学年七年级上学期数学期末典型试卷2

上海市2022-2023学年七年级上学期数学期末典型试卷2

2022-2023学年上学期上海七年级初中数学期末典型试卷2一.选择题(共10小题)1.(2021秋•杨浦区校级期末)小杰将5000元钱存入银行,年利率为2.75%,存满三年,那么到期后小杰可以拿到本利和(不计利息税)为( )元. A .5000×2.75% B .5000×2.75%×3 C .5000+5000×2.75%D .5000+5000×2.75%×32.(2022春•杨浦区校级期末)下列说法中,正确的是( ) A .所有正数都是整数B .若一个数的绝对值是它本身,则这个数一定是零C .负数的绝对值是它的相反数D .任何有理数都有倒数3.(2021秋•普陀区期末)下列分数中,能化成有限小数的是( ) A .76B .1352C .57D .1094.(2021秋•普陀区期末)下列说法中正确的是( ) A .a+b 3a是整式B .多项式2x 2﹣y 2+xy ﹣4x 3y 3按字母x 升幂排列为﹣4x 3y 3+2x 2+xy ﹣y 2C .2x 是一次单项式D .a 3b +2a 2b ﹣3ab 的二次项系数是35.(2019春•嘉定区期末)如果受季节影响,某种商品的原价为100元,按降价a %出售,那么该商品的售价可表示为( ) A .1001−a%B .100(1﹣a %)C .1001+a%D .100(1+a %)6.(2018秋•松江区期末)单项式﹣2x 3y 的系数与次数依次是( ) A .﹣2,3B .﹣2,4C .2,3D .2,47.(2020秋•虹口区校级期末)将方程2x−13=1−x+24去分母,得( )A .4(2x ﹣1)=1﹣3(x +2)B .4(2x ﹣1)=12﹣(x +2)C .(2x ﹣1)=6﹣3(x +2)D .4(2x ﹣1)=12﹣3(x +2)8.(2021春•徐汇区校级期末)某运输队运煤,第一天运了总量的27,第二天运煤恰好是第一天的23,还剩下14吨,设一共运煤x 吨,则可以列出方程( )A .27x +23x +14=x B .27x +27x ×23=x −14 C .27x +23(1−27)x =x −14D .27x +27x ÷23+14=x9.(2022春•杨浦区校级期末)如图,AC >BD ,比较线段AB 与线段CD 的大小( )A .AB =CDB .AB >CDC .AB <CDD .无法比较10.(2022春•杨浦区校级期末)如图,点B 在点A 的( )方向.A .北偏东35°B .北偏东55°C .北偏西35°D .北偏西55°二.填空题(共10小题)11.(2021秋•杨浦区校级期末)求比值:0.25平方米:100平方分米 . 12.(2022春•闵行区期末)比较大小:﹣|﹣358| ﹣(﹣3.62).13.(2022春•杨浦区校级期末)如果一个数的平方是14,那么这个数是 .14.(2021秋•宝山区期末)用代数式表示:x 和y 的平方和 .15.(2021秋•浦东新区期末)如果x 3y m 与﹣4x ﹣n y 是同类项,那么n 2﹣m = .16.(2021秋•普陀区期末)用代数式表示“x 的2倍与y 的差”为 .17.(2021春•松江区期末)数轴上点A 表示的数是1,点B 表示的数是﹣3,原点为O ,若点A 和点B 分别以每秒2个单位长度的速度和每秒5个单位长度的速度同时向右运动,要使OB =2OA ,要经过 秒. 18.(2021春•浦东新区校级期末)若m ﹣4与m +2互为相反数,则m = .19.(2022春•闵行区期末)如图,在长方体ABCD ﹣EFGH 中,既与平面ADHE 垂直,又与棱AD 异面的棱是 .20.(2022春•闵行区期末)有6个棱长为1的小正方体,把它们拼成一个大的长方体,那么这个长方体的表面积为 .三.解答题(共10小题)21.(2022春•杨浦区校级期末)计算:16÷(−223)2−(−12)×16−1.75.22.(2021秋•普陀区期末)一件上衣的定价为420元,后因季节性原因商家六折销售此上衣. 问:(1)打折以后这件服装的售价是多少元?(2)如果打折后这件衣服仍可盈利72元,那么该款式上衣的盈利率是多少?23.(2021秋•普陀区期末)如图,在等腰直角三角形ABC 中,∠ABC =90°,AB =AC =2,分别以AB 、AC 为直径画半圆,以点A 为圆心、AB 为半径画弧,求这三段弧所围成的图形的周长和面积.24.(2021春•虹口区校级期末)已知:A =﹣x 2﹣1,A ﹣B =﹣x 3+2x 2﹣7,求B .25.(2020秋•普陀区期末)某单位购买了30台A 、B 、C 三种型号的空调,根据下表提供的信息,解答以下问题:空调类型 A B C 购买的台数(台)12 9 每台空调的销售价(元) 18003000(1)该单位购买的A 型号的空调占购买全部空调的百分之几?(2)如果每台A 型号空调的销售价比每台C 型号空调的售价便宜10%,那么每台C 型号空调的销售价是多少元?(3)在第(2)题的条件下,为了促销,现商家搞优惠活动:若购买B 类空调的台数超过10台,超过部分,可以享受9折优惠.那么本次购买空调该单位一共需要支付多少元钱? 26.(2020秋•嘉定区期末)在某班小组学习的过程中,同学们碰到了这样的问题:“已知a+b ab =5,b+c bc=3,c+a ca=6,求ab+bc+caabc 的值”.根据已知条件中式子的特点,同学们会想起1a+1b=a+bab ,于是问题可转化为:“已知a+b ab=1a+1b=5,b+c bc=1b+1c=3,c+a ca=1c+1a=6,求ab+bc+caabc=1a+1b+1c的值”,这样解答就方便了. (1)通过阅读,试求ab+bc+caabc的值;(2)利用上述解题思路请你解决以下问题:已知m 2+1m=6,求m 4+1m 2的值.27.(2022春•杨浦区校级期末)解方程:3(y+1)4−1−y 8=1.28.(2022春•杨浦区校级期末)甲以每小时30千米的速度由A 地行驶到B 地,如果以比原速度多20%的速度行驶,则甲花了原来时间的12多20分钟到达B 地,求甲原来需要行驶的时间与A 、B 两地间的距离.29.(2022春•闵行区期末)同一天中,从9:30到10:05,分针转了几度?时针转了几度?30.(2022春•闵行区期末)如图,射线ON 、OE 、OS 、OW 分别表示从点O 出发北、东、南、西四个方向,如果∠AOE =132°,∠AOB =90°. (1)图中与∠BOE 互余的角是 . (2)①用直尺和圆规作∠AOE 的平分线OP ; ②在①所做的图形中,那么点P 在点O 方向.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学第一学期期末考试卷
七年级 数学
同学们,答题前请先看:
1、本卷共8页,七大题,共30小题,满分100分,答案一律写在答题卡上,否则无效。

考试形式为闭卷,考试时间120分钟。

2分,共20分)
1、-18
1的倒数是 。

2、如果x= -3,那么x 的相反数是 。

3、计算-2-5= 。

4、比较-54和-65的大小,结果是:-54 -6
5 5、据统计,到2005年底,某州总人口约为391万,如果用科学记数法来表示,可以表示成 人。

6、木工师傅要把一根14m 长的木头锯成七段,锯一段要用5分钟,一共需要
分钟。

7、1.45度= 分= 秒。

8、2700秒= 分 度。

9、当x= 时,代数式5
13-x —1等于零。

10、将圆分成三个扇形,其三个扇形的面积比为2:3:4,则最小那个扇形的圆心角为 度。

3分,共30分)
11、在数轴上到-3的距离等于5的数是:
A 、2
B 、-8和-2
C 、-2
D 、2和-8
12、计算(-1)2004+(-1)2005有值为:
A 、0
B 、-2
C 、2
D 、2⨯(-1)2004
13、若b<0<a ,则下列各式不成立的是:
A 、a-b>0
B 、-a+b<0
C 、ab<0
D 、|a|>|b|
14、下列说法中正确的是
A 、两点之间的所有连线中,线段最短。

B 、射线就是直线。

C 、两条射线组成的图形叫做角。

D 、小于平角的角可分为锐角和钝角两类。

15、已知线段AB ,延长AB 到C ,使BC = 3
1AB ,D 为AC 中点,DC = 2cm ,则线段AB 的长度是 A 、3 B 、6cm
C 、4cm
D 、3cm
16、元旦节期间,百货商场为了促销,每件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,
每件以60元卖出,这批夹克每件的成本价是:
A 、150元
B 、50元
C 、120元
D 、100元
17、如图,∠AOC 和∠BOD 都是直角,如果∠AOB = 150º,那么∠COD 等于
A 、30º
B 、40º
C 、50º
D 、60º
18
、如果一个数的平方等于这个数的倒数,
那么这个数是
A 、-1
B 、0
C 、1
D 、 -1
19、一条船向北偏东50方向航行到某地,
然后依原航线返回,
船返回时航行的正确方向是:
A 、南偏西400
B 、南偏西500
C 、北偏西400
D 、北偏西500
20、下列各题中合并同类项,结果正确的是
A 、2a 2+3a 2=5a 2
B 、2a 2+3a 2=6a 2
=1 D 、2x 3+3x 3=5x 6
5分,共25分)
21、计算:{1+[161-(43)2]⨯(-2)4}÷(23
1)2
22、化简:5x 2-[x 2+(5x 2-2x )- 2(x 2-3x )]
23、已知:a 、b 互为相反数,c 、d 互为倒数,x 的绝对值为2,
求:x
b a ++x 3 –cd 的值:
24、解方程:7
.0x -3.027.1x -=1
25、相信你很细心,请先化简,再求值:
7x 2y + {xy - [3x 2y-(4xy 2 +21xy )] - 4x 2y},其中x= -2
1,y= -1 5分)
26、如图,已知射线OX ,当OX 绕端点按逆时针方向旋转300到OA 时,如果线段OA 的长是2cm ,那么点A
用记号A (2,300)表示。

(1)画出两点B (3,500),C (4,1400)的位置;
(2)量出BC 的长(精确到0.1cm );
(3)求B 点的方位角。

A ·
O X A O B C D
5分)
27、已知:|a+2b-1|+(b+1)2=0,代数式22m a b +-的值比2
1b-a+m 的值大2。

求m 的值。

5分)
28、一点A 从数轴上表示+2的A 点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先
向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…...
求:(1)写出第一次移动后这个点在数轴上表示的数;
(2)写出第二次移动结果这个点在数轴上表示的数;
(3)写出第五次移动后这个点在数轴上表示的数;
(4)写出第n 次移动结果这个点在数轴上表示的数;
24小题4分,第26小题6分,共10分)
29、某人完成一份文稿的打字工作,现已完成3
2,还剩30页,求这份文稿的总页数。

30、甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增加了10%,这
样两厂共完成的产值为400万元,求去年两厂各超额完成产值多少万元?
参考答案
初一数学
一、(每小题2分,共20分)
1、-98
; 2、3; 3、-7 4、>
5、3.91⨯106
6、30 ;
7、87;5220;
8、45分; 0.75度;
9、2 ; 10、800
21、解:原式=[1+(-168
)⨯16] ⨯499
2分
=-7⨯499
4分
= - 172
5分
22、解:原式=5x 2-[x 2+5x 2-2x-2x 2+6x] 1分
=5x 2-x 2-5x 2+2x+2x 2-6x 2分
=(5x 2-x 2-5x 2+2x 2)+(2x-6x) 4分
=x 2-4x 5分
23、解:因为a 、b 互为相反数,c 、d 互为倒数,|x|=2,
所以a+b=0;cd=1,x=±2 3分
当x=2时,原式=0+8-1=7 4分
当x= - 2时,原式=0+(-8)-1= - 9; 5分
24、解:710x
- 32017x
-=1 1分
30x-7(17-20x )=21 2分
30x-119+140x=21
30x+140x=119+21 3分
170x=140 4分
x=1714
5分
25、原式化简得23
xy+4xy 2 3分
当x= -21
,y= -1时,上式=43
-2= -141
5分
四、(本题共5分)
26、(1)B 、C 如图所示; 2分 (2)BC ≈5cm ; 4分 (3)B 点的方位角是北偏东400。

5分
五、(本题共5分)
27、由已知条件知:b= -1,a=3, 2分 把b= -1,a=3代入22m
a b +--(21
b-a+m )=2,可得m= -2 5分
六、(本题共5分)
28、第一次移动后这个点在数轴上表示的数是3; 1分
第二次移动后这个点在数轴上表示的数是4; 2分
第五次移动后这个点在数轴上表示的数是7; 3分
第n 次移动后这个点在数轴上表示的数是n+2; 5分 o
X
·
A ·
B ·
C
七、(第24小题4分,第26小题6分,共10分)
29、解:设这份文稿的总页数为x 页,根据题意得 1分
x-3
2x=30 2分 解这个方程,得x=90 3分
答:这份文稿的总页数为90页。

4分
30、解:设去年甲工厂计划完成x 万元,乙工厂去年计划完成(360-x )万元,依题意得:
1分
112% x+(1+10%)(360-x )=400 3分
解方程得x=200 4分
200⨯(112%-100%)=24
160⨯10%=16
5分 答:甲工厂超额完成产值24万元,乙工厂超额完成产值16万元。

6分。

相关文档
最新文档