初三数学分类试题—统计

合集下载

初三数学统计试题

初三数学统计试题

初三数学统计试题1.我市某区对参加市模拟考试的8000名学生的数学成绩进行抽样调查,抽取了部分学生的数学成绩(分数为整数)进行统计,绘制成频率分布直方图.如下图,已知从左到右五个小组的频数是之比依次是6:7:11:4:2,第五小组的频数是40.(1)本次调查共抽取了多少名学生?(2)若72分以上(含72分)为及格,96分以上(含96分)为优秀,那么抽取的学生中,及格的人数、优秀的人数各占所抽取的学生数的百分之多少?(3)根据(2)的结论,该区所有参加市模拟考试的学生,及格人数、优秀人数各约是多少人?【答案】(1)600;(2)80%,20%;(3)及格人数约为6400人,优秀人数约为1600人.【解析】(1)因总数一定;故频数的比值就是频率的比值,可得从左到右各小组的频率之比依次是6:7:11:4:2;且频率之和为1;可求得:第五小组的频率,进而求得共抽查的学生人数;(2)根据频率的计算方法,计算可得;(3)用样本估计总体,按照求得的比例,计算可得答案.试题解析:(1)∵从左到右各小组的频数之比依次是6:7:11:4:2,∴设第一小组的频数为6a,则其它小组的频数依次为7a,11a,4a,2a,∵第五小组的频数是40,∴2a=40,∴a=20,∴本次调查共抽取的学生数为6a+7a+11a+4a+2a=600(人).答:本次调查共抽取的学生数为600人.(2)由(1)知及格学生的人数为480人,优秀学生的人数为120人,∴它们各占的百分比为×100%=80%,×100%=20%.答:及格学生的人数,优秀学生的人数各占的百分比为80%和20%;(3)由(2)知:及格人数为8000×80%=6400(人),优秀人数为8000×20%=1600(人).答:8000名学生中,及格人数约为6400人,优秀人数约为1600人.【考点】1.频数(率)分布直方图;2.用样本估计总体.2.一组数据1,3,6,1,2的众数与中位数分别是A.1,6B.1,1C.2,1D.1,2【答案】D.【解析】根据众数和中位数的定义求解即可.∵数据:1,3,6,1,2中,1出现了2次,出现的次数最多,∴众数是1,把1,3,6,1,2从小到大排列为:1,1,2,3,6,最中间的数是2,则中位数是2.故选D.【考点】1.众数2.中位数.3.某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为人.【答案】120【解析】1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.【考点】扇形统计图4.4月23日是“世界读书日”,今年世界读书日的主题是“阅读,让我们的世界更丰富”.某校随机调查了部分学生,就“你最喜欢的图书类别”(只选一项)对学生课外阅读的情况作了调查统计,将调查结果统计后绘制成如下统计表和条形统计图.请根据统计图表提供的信息解答下列问题:初中生课外阅读情况调查统计表种类频数频率(1)这次随机调查了名学生,统计表中d= ;(2)假如以此统计表绘出扇形统计图,则武侠小说对应的圆心角是;(3)试估计该校1500名学生中有多少名同学最喜欢文学名著类书籍?【答案】(1)200,28;(2)90°;(3)该校1500名学生中最喜欢文学名著类书籍的同学有210名.【解析】(1)由条形统计图可知喜欢武侠小说的人数为30人,由统计表可知喜欢武侠小说的人数所占的频率为0.15,根据频率=频数÷总数,即可求出调查的学生数,进而求出d的值;(2)算出喜欢武侠小说的频率,乘以360°即可;(3)由(1)可知喜欢文学名著类书籍人数所占的频率,即可求出该校1500名学生中有多少名同学最喜欢文学名著类书籍.试题解析:(1)由条形统计图可知喜欢武侠小说的人数为30人,由统计表可知喜欢武侠小说的人数所占的频率为0.15,所以这次随机调查的学生人数为:=200名学生,所以a=200×0.45=90,b=200×0.16=32,∴d=200﹣90﹣32﹣50=28;(2)武侠小说对应的圆心角是360°×=90°;(3)该校1500名学生中最喜欢文学名著类书籍的同学有1500×=210名.【考点】1.频数(率)分布表2.用样本估计总体2.扇形统计图4.条形统计图.5.由平谷统计局2013年12月发布的数据可知,我区的旅游业蓬勃发展,以下是根据近几年我区旅游业相关数据绘制统计图的一部分:请你根据以上信息解答下列问题:(1)计算2012年平谷区旅游区点营业收入占全区旅游营业收入的百分比,并补全扇形统计图;(2)2012年旅游区点的收入为2.1万元,请你计算2012年平谷区旅游营业收入,并补全条形统计图 (结果保留一位小数);(3)如果今年我区的旅游营业收入继续保持2013年的增长趋势,请你预测我区今年的旅游营业收入 (结果保留一位小数) .【答案】(1)8.6%,补全扇形统计图见解析;(2)24.4万元,补全条形统计图见解析;(3)29.4万元.【解析】(1)利用1减去其它各组所占的百分比即可求解.(2)利用2012年旅游区点的收入2.1万元除以(1)中所求的百分比即可求解.(3)求得2012年到2013年的增长率,即2014年的增长率,据此即可求解.试题解析:(1)旅游区点营业收入占全区旅游营业收入的百分比是:1-17.6%-21.3%-16.8%-35.7%=8.6%,补全扇形统计图如下:(2)2012年平谷区旅游营业收入是:2.1÷8.6%≈24.4(万元),补全条形统计图如下:(3)∵(26.8-24.4)÷24.4≈9.8%,26.8(1+9.8%)=29.43≈29.4(万元)∴我区今年的旅游营业收入约29.4万元.【考点】1.条形统计图;2.扇形统计图.6.市交警支队对某校学生进行交通安全知识宣传,事先以无记名的方式随机调查了该校部分学生闯红灯的情况,并绘制成如图所示的统计图.请根据图中的信息回答下列问题:(1)本次共调查了多少名学生?(2)如果该校共有1500名学生,请你估计该校经常闯红灯的学生大约有多少人;(3)针对图中反映的信息谈谈你的认识.(不超过30个字)【答案】(1)100(人)(2)225(人)(3)学生的交通安全意识不强,还需要进行教育.【解析】解:(1)调查的总人数是:55+30+15=100(人);(2)经常闯红灯的人数是:1500×=225(人);(3)学生的交通安全意识不强,还需要进行教育.7.一次期中考试中,甲、乙、丙、丁、戊五位同学的数学、英语成绩等有关信息如下表所示:(单位:分)(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好,请问甲同学在本次考试中,数学与英语哪个学科考得更好?【答案】(1)70,6;(2)数学.【解析】(1)由平均数、标准差的公式计算即可;(2)代入公式:标准分=(个人成绩-平均成绩)÷成绩标准差,再比较即可.试题解析:(1)平均分=(71+72++70)÷5=70,标准差=6(2)∵数学标准分=,英语标准分=0.5∴数学更好考点: 1.标准差;2.算术平均数.8.一组数据1,0,3,5,x的极差是10,那么x的值可能是 .【答案】9或-5.【解析】根据极差的定义,分两种情况:x为最大值或最小值:当x为最大值时,;当x是最小值时,。

初三数学统计与概率试题答案及解析

初三数学统计与概率试题答案及解析

初三数学统计与概率试题答案及解析1.某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球;B乒乓球;C羽毛球;D足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)【答案】(1)200;(2)补图见解析;(3).【解析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.试题解析:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁所有等可能的结果为12种,其中符合要求的只有2种,则P=.【考点】1.条形统计图;2.扇形统计图;3.列表法与树状图法.2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1-5月新注册小型企业一共有家.请将折线统计图补充完整.(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.【答案】(1)15,将折线统计图补充完整见解析;(2).【解析】(1)根据3月份有4家,占25%,可求出某镇今年1-5月新注册小型企业一共有的家数,再求出1月份的家数,进而将折线统计图补充完整.(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业,根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙2家企业恰好被抽到的情况,再利用概率公式求解即可求得答案.试题解析:(1)根据统计图可知,3月份有4家,占25%,所以某镇今年1-5月新注册小型企业一共有:4÷25%=16(家),1月份有:16-2-4-3-2=5(家).折线统计图补充如下:(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业.画树状图得:∵共有12种等可能的结果,甲、乙2家企业恰好被抽到的有2种情况,∴所抽取的2家企业恰好都是餐饮企业的概率为:.【考点】1.折线统计图;2.扇形统计图;3.频数、频率和总量的关系;4.列表法或树状图法;5.概率.3.小伟调查了某校八年级学生和家长对“中学生不穿校服”现象的看法,制作了如下的统计图学生及家长对“中学生不穿校服”的态度统计图家长对“中学生不穿校服”的态度统计图(1)求参加这次调查的家长人数;(2)求图2中表示家长“反对”的圆心角的度数;(3)小伟随机调查了表示“赞成”的10位学生的成绩,其各科平均分如下:57,88,72,60,58,80,78,78,91,65,请写出这组数据的中位数和众数;(4)小伟从表示“赞成”的4位同学中随机选择2位进行深入调查,其中包含小明和小亮,请你利用树状图或列表的方法,求出小明和小亮被同时选中的概率.【答案】(1)400;(2)252°;(3)75,78;(4).【解析】(1)根据条形统计图,无所谓的家长有80人,根据扇形统计图,无所谓的家长占20%,据此即可求出家长总人数;(2)根据反对人数和(1)中求出的家长总人数,算出“反对”家长的百分比,即可得到表示家长“反对”的圆心角的度数;(3)先把数据从小到大排列,第五与第六个数的平均数即为这组数据的中位数,众数就是出现次数最多的数;(4)设小明和小亮分别用A、B表示,另外两个同学用C、D表示,画出树状图即可.(1)∵由条形统计图,无所谓的家长有80人,根据扇形统计图,无所谓的家长占20%,∴家长人数是80÷20%=400人;(2)表示家长“反对”的圆心角的度数为×360=252°;(3)把数据从小到大排列为,57,58,60,65,72,78,78,80,88,91,中位数是,众数是78;(4)设小明和小亮分别用A、B表示,另外两个同学用C、D表示,列树状图如下:∴一共有12种等可能的结果,同时选中小明和小亮有2种情况,∴P(小明和小亮同时被选中)=.【考点】1.条形统计图;2.扇形统计图;3.中位数;4.众数;5.列表法与树状图法.4.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?【答案】解:(1)补全频数分布直方图如下:,中位数位于第三组。

上海市2019年中考数学真题与模拟题分类 专题20 统计与概率之填空题(35道题)(解析版)

上海市2019年中考数学真题与模拟题分类 专题20 统计与概率之填空题(35道题)(解析版)

专题20 统计与概率之填空题参考答案与试题解析一.填空题(共35小题)1.(2019•上海)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.【答案】解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为,故答案为:.【点睛】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.2.(2019•上海)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约90千克.【答案】解:估计该小区300户居民这一天投放的可回收垃圾共约100×15%=90(千克),故答案为:90.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.也考查了用样本估计总体.3.(2017•上海)不透明的布袋里有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一球恰好为红球的概率是.【答案】解:∵在不透明的袋中装有2个黄球、3个红球、5个白球,它们除颜色外其它都相同,∴从这不透明的袋里随机摸出一个球,所摸到的球恰好为红球的概率是:.故答案为:.【点睛】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.4.(2019•青浦区二模)A班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图,如图所示,那么成绩高于60分的学生占A班参赛人数的百分率为77.5%.【答案】解:77.5%,故答案为:77.5%.【点睛】本题考查频数(率)直方图,解答本题的关键是明确题意,利用数形结合的思想解答.5.(2019•浦东新区二模)某校有560名学生,为了解这些学生每天做作业所用的时间,调查人员在这所学校的全体学生中随机抽取了部分学生进行问卷调查,并把结果制成如图的统计图,根据这个统计图可以估计这个学校全体学生每天做作业时间不少于2小时的人数约为160名.【答案】解:根据题意结合统计图知:估计这个学校全体学生每天做作业时间不少于2小时的人数约为560160人,故答案为:160.【点睛】本题考查的是用样本估计总体的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2019•静安区二模)为了解某校九年级男生1000米跑步的水平情况,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,那么扇形统计图中表示C 等次的扇形所对的圆心角的度数为72度.【答案】解:扇形统计图中表示C等次的扇形所对的圆心角的度数为:360°72°,故答案为:72.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.7.(2019•虹口区二模)为了了解初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,共分成4组,频率分布表(不完整)如下表所示.如果次数在110次(含110次)以上为达标,那么估计该校初三毕业生一分钟跳绳次数的达标率约为92%.【答案】解:∵样本容量为:3÷0.06=50,∴该校初三毕业生一分钟跳绳次数的达标率约为100%=92%,故答案为:92%【点睛】本题考查的是频数分布表的知识,准确读表、从中获取准确的信息是解题的关键,注意用样本估计总体的运用.8.(2019•徐汇区二模)某校九年级学生共300人,为了解这个年级学生的体能,从中随机抽取50名学生进行1分钟的跳绳测试,结果统计的频率分布如图所示,其中从左至右前四个小长方形的高依次为0.004、0.008、0.034、0.03,如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为72人.【答案】解:∵从左至右前四个小长方形的高依次为0.004、0.008、0.034、0.03,∴从左至右前四个小组的频率为:0.04,0.08,0.34,0.3;∴跳绳次数不少于135次的频率为1﹣0.04﹣0.08﹣0.34﹣0.3=0.24,∴全年级达到跳绳优秀的人数为300×0.24=72人,故答案为:72人.【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力,读懂题目信息,求出第⑤、⑥组的频率是解题的关键.9.(2019•普陀区二模)张老师对本校参加体育兴趣小组的情况进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,已知参加体育兴趣小组的学生共有80名,其中每名学生只参加一个兴趣小组,根据图中提供的信息,可知参加排球兴趣小组的人数占体育兴趣小组总人数的百分数是25%.【答案】解:由题意得,参加篮球兴趣小组的人数为:80×45%=36(人),∴参加排球兴趣小组的人数为:80﹣36﹣24=20(人),∴参加排球兴趣小组的人数占体育兴趣小组总人数的百分数为:20÷80×100%=25%,故答案为:25%.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.10.(2019•崇明区二模)为了了解全区近3600名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是1620.【答案】解:由题意可得,样本中成绩在70~80分的人数为:600﹣12﹣18﹣180﹣600×0.16﹣600×0.04=270,36001620,故答案为:1620.【点睛】本题考查频数分布表、用样本估计总体,解答本题的关键是明确题意,求出全区此次成绩在70~80分的人数.11.(2019•金山区二模)100克鱼肉中蛋白质的含量如图表,每100克草鱼、鲤鱼、花鲢鱼鱼肉的平均蛋白质含量为16.8克,那么100克鲤鱼肉的蛋白质含量是17.2克.【答案】解:∵每100克草鱼、鲤鱼、花鲢鱼鱼肉的平均蛋白质含量为16.8克,∴设100克鲤鱼肉的蛋白质含量是x克,由题意可得:(17.9+15.3+x)=16.8,解得:x=17.2.故答案为:17.2.【点睛】此题主要考查了频数分布直方图,由直方图获取正确信息是解题关键.12.(2019•黄浦区二模)秋季新学期开学时,某中学对六年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了不完整的图表(如表所示),图表中c=9.【答案】解:,c=50﹣6﹣20﹣15=9,故答案为:9【点睛】本题考查频数分布表,解题的关键是明确题意,利用表格中的数据,求出所求问题的答案.13.(2019•杨浦区二模)某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.那么,其中最喜欢足球的学生数占被调查总人数的百分比为24%.【答案】解:∵被调查学生的总数为10÷20%=50人,∴最喜欢篮球的有50×32%=16人,则最喜欢足球的学生数占被调查总人数的百分比100%=24%,故答案为:24.【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.14.(2019•宝山区二模)为了解全区5000名初中毕业生的体重情况,随机抽测了400名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为1500人.【答案】解:∵从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,∴从左至右前四组的频率依次为0.02×5=0.1、0.03×5=0.15、0.04×5=0.2、0.05×5=0.25,∴后两组的频率之和为:1﹣0.1﹣0.15﹣0.2﹣0.25=0.3,∴体重不小于60千克的学生人数约为:5000×0.3=1500人,故答案为:1500.【点睛】本题考查了频数分布图和频率分布直方图的知识,根据频率、频数及样本容量之间的关系进行正确的运算是解题的关键.15.(2019•杨浦区三模)某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为170cm.【答案】解:∵某班10名学生校服尺寸分别是160cm、165cm、165cm、165cm、170cm、170cm、175cm、175cm、180cm、180cm,∴这10名学生校服尺寸的中位数为:(170+170)÷2=340÷2=170(cm)答:这10名学生校服尺寸的中位数为170cm.故答案为:170.【点睛】此题主要考查了中位数的含义和应用,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.(2019•嘉定区二模)在一次有12人参加的测试中,得100分、95分、90分、85分、75分的人数分别是1、4、3、2、2,那么这组数据的众数是95分.【答案】解:∵95分出现了4次,出现的次数最多,∴这组数据的众数是95分;故答案为:95.【点睛】此题考查了众数,熟练掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.17.(2019•松江区二模)某校初三(1)班40名同学的体育成绩如表所示,则这40名同学成绩的中位数是28分.【答案】解:将这组数据从小到大的顺序排列后,处于中间位置的数是28分,28分,它们的平均数是28分,那么由中位数的定义可知,这组数据的中位数是28分.故答案为:28分.【点睛】本题考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.18.(2019•长宁区二模)为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是7小时.【答案】解:∵共有20名学生,把这些数从小到大排列,处于中间位置的是第10和11个数的平均数,∴这些测试数据的中位数是7小时;故答案为:7.【点睛】本题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).19.(2019•奉贤区二模)下表是某班所有学生体育中考模拟测试成绩的统计表,表格中的每个分数段含最小值,不含最大值,根据表中数据可以知道,该班这次体育中考模拟测试成绩的中位数落在的分数段是26∽30分.【答案】解:由表格中数据可得本班一共有:3+7+9+13+8=40(人),故中位数是第20个和第21个数据的平均数,则该班这次体育中考模拟测试成绩的中位数落在的分数段是26∽30分.故答案为:26∽30分.【点睛】此题主要考查了中位数,正确把握中位数的定义是解题关键.20.(2019•闵行区二模)一射击运动员在一次射击练习中打出的成绩如表所示,那么这个射击运动员这次成绩的中位数是8.5.【答案】解:由表格中数据可得射击次数为20,中位数是第10个和第11个数据的平均数,故这个射击运动员这次成绩的中位数是:(8+9)=8.5.故答案为:8.5.【点睛】此题主要考查了中位数,正确把握中位数的定义是解题关键.21.(2019•青浦区二模)将分别写有“创建”、“智慧”、“校园”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建智慧校园”的概率是.【答案】解:根据题意,画树状图如下:由树状图可知,共有6种等可能排列的方式,其中恰好排列成“创建智慧校园”的只有1种,∴恰好排列成“创建智慧校园”的概率是,故答案为.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(2019•浦东新区二模)从1、2、3这三个数中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好是偶数的概率是.【答案】解:共有6种情况,是偶数的有2种情况,所以组成的两位数是偶数的概率为,故答案为:.【点睛】此题主要考查了树状图法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),注意本题是不放回实验.23.(2019•静安区二模)从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是.【答案】解:从0,1,2,3这四个数字中任取3个数有0、1、2;0、1、3;0、2、3;1、2、3四种等可能的结果数,所以取得的3个数中不含2的概率.故答案为.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.24.(2019•虹口区二模)一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有6个.【答案】解:设红球有x个,根据题意得:0.4,解得:x=6,答:红球有6个;故答案为:6.【点睛】本题考查了概率公式,设出未知数,列出方程是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.25.(2019•嘉定区二模)不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为.【答案】解:∵袋子中共有8个小球,其中红色小球有2个,∴随机地从袋中摸取一个小球是红球的概率为,故答案为:.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.26.(2019•松江区二模)在不透明的盒子中装有4个黑色棋子和若干个白色棋子,每个棋子除颜色外其它完全相同,从中随机摸出一个棋子,摸到黑色棋子的概率是,那么白色棋子的个数是8.【答案】解:设白色棋子的个数为x,根据题意得,解得x=8,即白色棋子的个数为8.故答案为8.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.27.(2019•徐汇区二模)在不透明的盒子中装有5个黑色棋子和15个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是.【答案】解:任意摸出一个棋子,摸到黑色棋子的概率.故答案为.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.28.(2019•金山区二模)从方程x2=0,1,x2﹣2x+4=0中,任选一个方程,选出的这个方程无实数解的概率为.【答案】解:∵1,x2﹣2x+4=0无实数解,∴无实数解的概率为,故答案为:.【点睛】此题主要考查了概率公式和一元二次方程的解法,关键是掌握算术平方根具有非负性,掌握判断一元二次方程解的方法.29.(2019•普陀区二模)如图,一个大正方形被平均分成9个小正方形,其中有2个小正方形已经被涂上阴影,在剩余的7个白色小正方形中任选一个涂上阴影,使图中涂上阴影的三个小正方形组成轴对称图形,这个事件的概率是.【答案】解:如图所示:在剩余的7个白色小正方形中任选一个涂上阴影,使图中涂上阴影的三个小正方形组成轴对称图形,符合题意的有:1,2,3,4,5共5个,故这个事件的概率是:.故答案为:.【点睛】此题主要考查了概率的意义,正确把握轴对称图形的性质是解题关键.30.(2019•闵行区二模)从一副52张没有大小王的扑克牌中任意抽取一张牌,那么抽到A的概率是.【答案】解:从一副52张没有大小王的扑克牌中任意抽取一张牌,那么抽到A的概率是:.故答案为:.【点睛】此题主要考查了概率公式,正确应用概率公式是解题关键.31.(2019•黄浦区二模)掷一枚质地均匀的正方体骰子,骰子的六个面分别标有1到6的点数,向上的一面出现的点数是2的倍数的概率是.【答案】解:掷一次骰子,向上的一面出现的点数是2的倍数的有2、4,6,故骰子向上的一面出现的点数是2的倍数的概率是:.故答案为:.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.32.(2019•杨浦区二模)从﹣5,,,﹣1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为.【答案】解:在﹣5,,,﹣1,0,2,π这七个数中,为负整数的有﹣5,﹣1,共2个数,则恰好为负整数的概率为;故答案为.【点睛】本题考查随机事件的概率的计算方法,能准确找出负整数的个数,并熟悉等可能事件的概率计算公式是关键.33.(2019•长宁区二模)掷一枚材质均匀的骰子,掷得的点数为素数的概率是.【答案】解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中2、3、5是素数,所以概率为,故答案为:.【点睛】本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.34.(2019•杨浦区三模)在“石头、剪刀、布”的游戏中,两人打出相同标识手势的概率是.【答案】解:画树状图得:∵共有9种等可能的结果,两人打出相同标识手势的有3种情况,∴两人打出相同标识手势的概率是:.故答案为:.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.35.(2019•崇明区二模)从1、2、3、4、5、6、7、8这八个数中,任意抽取一个数,那么抽得的数是素数的概率是.【答案】解:∵1,2,3,4,5,6,7,8这8个数有4个素数,∴2,3,5,7;故取到素数的概率是.故答案为:.【点睛】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A);找到素数的个数为易错点.。

广东中考数学复习各地区2022年模拟试题分类(广州专版)(9)——统计与概率(含解析)

广东中考数学复习各地区2022年模拟试题分类(广州专版)(9)——统计与概率(含解析)

广东中考数学复习各地区2018-2022年模拟试题分类(广州专版)(9)——统计与概率一.选择题(共12小题)1.(2022•从化区一模)疫情无情人有情,爱心捐款传真情,新型冠状病毒感染的肺炎疫情期间,某班学生积极参加献爱心活动,该班50名学生的捐款统计情况如下表:金额/元5 10 20 50 100 人数6 17 148 5 则他们捐款金额的众数和中位数分别是( )A .100,10B .10,20C .17,10D .17,202.(2022•海珠区一模)在一次立定跳远的测试中,小娟等6位同学立定跳远的成绩分别为:1.8、2、2.2、1.7、2、1.9,那么关于这组数据的说法正确的是( )A .平均数是2B .中位数是2C .众数是2D .方差是23.(2022•越秀区校级二模)一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为( )A .30B .28C .24D .204.(2022•花都区一模)如图是一个4×4的方格,若在这个方格内投掷飞镖,则飞镖恰好落在阴影部分的概率是( )A .14B .512C .516D .13 5.(2022•天河区一模)某班级开展一种游戏互动,规则是:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖,每人有三次翻牌机会.小明同学前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么他第三次翻牌获奖的概率是( )A .14B .16C .15D .3206.(2022•越秀区一模)下列说法正确的是( )A .为了了解全国中学生的睡眠情况,应该采用普查的方式B .某种彩票的中奖机会是1%,则买100张这种彩票一定会中奖C .若甲组数据的方差s 甲2=0.1,乙组数据的方差s 乙2=0.2,则乙组数据比甲组数据稳定D .一组数据1,5,3,2,3,4,8的众数和中位数都是37.(2022•惠城区校级一模)在体育中考跳绳项目中,某小组的8位成员跳绳次数如下:175、176、175、180、179、176、180、176,这组数据的众数为( )A .175B .176C .179D .1808.(2022•白云区一模)若一组数据为:2,3,1,3,3.则下列说法错误的是( )A .这组数据的众数是3B .事件“在这组数据中随机抽取1个数,抽到的数是0.“是不可能事件C .这组数据的中位数是3D .这组数据的平均数是39.(2022•荔湾区一模)北京气象部门测得冬季某周内七天的气温如下:3,5,5,4,6,5,7(单位:℃),则这组数据的平均数和众数分别是( )A .6,5B .5.5,5C .5,5D .5,410.(2022•越秀区校级一模)小明和小华两同学某学期数学四次测试的平均成绩恰好都是87分,方差分别为S 小明2=0.75,S 小华2=2.37,则成绩最稳定的是( )A.小明B.小华C.小明和小华D.无法确定11.(2022•南沙区一模)在一次数学检测中,某学习小组七位同学的分数分别是73,85,94,82,71,85,56.以下说法正确的是()A.平均数为76 B.中位数为82C.众数为94 D.无法判断12.(2022•黄埔区一模)在一个不透明的口袋中,装有3个相同的球,它们分别写有数字1,2,3,从中随机摸出一个球,若摸出的球上的数字为2的概率记为P1,摸出的球上的数字小于4的概率记为P2,摸出的球上的数字为5的概率记为P3,则P1,P2,P3的大小关系是()A.P1<P2<P3B.P3<P2<P1C.P2<P1<P3D.P3<P1<P2二.填空题(共4小题)13.(2022•白云区一模)3张除所标数值外完全相同的卡片,它们标有的数值分别为1、2、﹣3.把这3张卡片,背面朝上放在桌面上,随机抽取2张,把抽到卡片上的数值分别作为A点的横坐标、纵坐标,则A点落在第一象限的概率是.14.(2022•荔湾区校级一模)某班50名同学在网络安全平台参加知识问答比赛的成绩如表:得分32500 47500 62500 75000人数8 10 23 9则将这组数据中的众数用科学记数法可表示为.15.(2022•新洲区模拟)掷两枚质地均匀的硬币,两枚硬币全部反面朝上的概率是16.(2022•越秀区模拟)小明手中有两张卡片分别标有3,﹣1,小华手中有三张卡片分别标有2,0,﹣1.如果两人各随机抽取一张卡片,那么和为正数的概率是.三.解答题(共26小题)17.(2022•越秀区校级二模)2022年春季在新冠疫情的背景下,全国各大中小学纷纷开设空中课堂,学生要面对电脑等电子产品上网课.某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调查结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)本次调查的学生总人数为,并补全条形统计图;(2)该校共有学生1800人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护交流,请利用树状图或列表法,求出恰好抽到一男一女的概率.18.(2022•黄埔区一模)为推进校园文化建设,某校九年级(1)班组织部分学生到“中华植物园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.(1)参观的学生总人数为人;(2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为;(3)补全条形统计图;(4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生甲被选中的概率是多少?19.(2022•海珠区一模)如图,甲袋子中有3张除数字外完全相同的卡片,乙袋子中有2张除数字外完全相同的卡片,若先从甲袋子中抽出一张数字为a的卡片,再从乙袋子中抽出一张数字为b的卡片,两张卡片中的数字,记为(a,b).(1)请用树形图或列表法列出(a,b)的所有可能的结果;(2)求在(a,b)中,使方程ax2+bx+1=0没有实数根的概率.20.(2022•天河区模拟)某校为了解初三300名学生每天做家庭作业的时间情况,从中随机抽取50名学生进行抽样调查,按做作业的时间t(单位:小时),将学生分成四类:A类(0≤t<1);B类(1≤t<2);C 类(2≤t<3);D类(3≤t<4);绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)补全条形统计图,并估计初三学生做作业时间为D类的学生共有多少人?(2)抽样调查的A类学生中有3名男生和1名女生,若从中任选2人,求这2人均是男生的概率.21.(2022•从化区一模)随着“微信运动”被越来越多的人关注和喜爱,某数学兴趣小组随机调查了我区50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<4000 8 0.164000≤x<8000 15 0.38000≤x<12000 12 a12000≤x<16000 b0.216000≤x<20000 3 0.0620000≤x<24000 2 0.04请根据以上信息,解答下列问题:(1)写出a,b的值并补全频数分布直方图;(2)我市约有5000名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,用树形图或列表法求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.22.(2022•白云区一模)为了解“停课不停学”期间,学生对线上学习方式的喜好情况,某校随机抽取40名学生进行问卷调查,其统计结果如表:最喜欢的线上学习方式(每人最人数多选一种)直播10录播a资源包 5线上答疑8合计40(1)a=;(2)若将选取各种“最喜欢的线上学习方式”的人数所占比例绘制成扇形统计图,求“直播”对应扇形的圆心角度数;(3)根据调查结果估计该校1000名学生中,最喜欢“线上答疑”的学生人数;(4)在最喜欢“资源包”的学生中,有2名男生,3名女生.现从这5名学生中随机抽取2名学生介绍学习经验,求恰好抽到1名男生和1名女生的概率.23.(2022•南沙区一模)某中学积极推进“中学生每天至少运动一小时”活动,鼓励学生利用课外活动时间积极参加体育锻炼,在训练一段时间后在全校随机抽取一部分学生进行体质健康测试,并对这些学生用A、B、C、D四个等级进行评价,根据测试结果绘制出统计图如下:请你根据上面提供的信息回答下列问题:(1)共抽取学生人,扇形图中C等级所占扇形圆心角为度;(2)将图乙中的条形统计图补充完整;(3)若某班在3名男生和1名女生中任选两名学生先进行测试,请用列举法求恰好选中两名男生的概率.24.(2022•越秀区一模)某班举行跳绳比赛,赛后整理参赛学生的成绩,将学生成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完善.请你根据统计图解答下列问题:(1)参加比赛的学生共有名;(2)在扇形统计图中,m的值为,表示D等级的扇形的圆心角为度;(3)先决定从本次比赛获得B等级的学生中,选出2名去参加学校的游园活动,已知B等级学生中男生有2名,其他均为女生,请用列表法或画树状图法求出所选2名学生恰好是一名男生一名女生的概率.25.(2022•天河区校级模拟)游泳是一项深受青少年喜爱的体育运动,某中学为了加强学生的游泳安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的4000名学生中作了抽样调查.制作了下面两个不完整的统计图.请根据这两个统计图回答以下问题:(I)这次抽样调查中,共调查了名学生;(2)补全两个统计图;(3)根据抽样调查的结果,估算该校4000名学生中大约有多少人“结伴时会下河学游泳”?26.(2022•黄埔区一模)如图,圆O的半径为1,六边形ABCDEF是圆O的内接正六边形,从A,B,C,D,E,F六点中任意取两点,并连接成线段.(1)求线段长为2的概率;(2)求线段长为√3的概率.27.(2022•白云区一模)从某校1500名学生中随机抽查了40名学生对球类运动的喜好情况.整理数据后绘制成扇形统计图,如图:(1)直接写出被抽查的40名学生中,“最喜欢篮球”的人数:人,“最喜欢乒乓球”对应扇形的圆心角度数:;根据调查结果可估计该校学生中“最喜欢足球”的人数约为.(2)在被抽查的40名学生中,“最喜欢篮球”的调查结果:只有2名女生,其余的都是男生.现从上述所有“最喜欢篮球”的学生中随机抽取2名学生进行篮球技能测试,求所抽取的2名学生中至少有1名女生的概率.28.(2022•海珠区校级模拟)调查我区某校四个年级学生暑假期间所读课外书的情况.学生分布如图(a),读书情况的条形图如图(b),已知该校四个年级共有学生1800人.(1)该校中预年级学生有人;(2)暑假期间读课外书总量最少的是年级学生,共读课外书本.29.(2022•荔湾区校级一模)甲、乙、丙三位运动员在相同条件下各射靶6次,其中甲、丙的每次射靶具体成绩如下(单位:环):甲:8,6,9,8,9,8;丙:7,6,3,7,7,6;平均数中位数方差甲8 8乙8 8 2.2丙 6 2(1)根据以上数据,直接完成表格的填写(不需要书写运算过程);(2)若要在甲、乙、丙中选一位运动员参加比赛,请依据表格数据做出选择并简要说明理由;(3)若甲、乙、丙组成队伍参加某射击比赛,该射击比赛规则如下:比赛分为两个回合,每回合从甲、乙、丙中随机选一位运动员出场(同一位运动员可重复出场两个回合).请用列表法或树状图,求在两个回合中,甲均没有出场的概率.30.(2022•荔湾区校级模拟)小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?31.(2022•越秀区校级一模)广州某校在开展“人生观、价值观”的主题班队活动后,初三(9)班数学兴趣小组提出了5个主要观点并在本班学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下统计图表,请根据统计图表解决以下问题:(1)在扇形统计图中,“和谐”观点所在扇形区域的圆心角是度;(2)如果该校有800名初三学生,利用样本估计选择“感恩”观点的初三学生约有人;(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率(设平等、进取、和谐、感恩、互助的序号依次是①②③④⑤用树状图或列表法分析解答)32.(2022•海珠区一模)海珠区某学校为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一人一球”活动计划.学生科根据自己的喜好选修一门球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球),陈老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图)(1)求出该班的总人数,并将条形统计图补充完整;(2)若该校共有学生2500名,请估计约有多少人选修足球?(3)该班班委4人中,1人选修足球,1人选修篮球,2人选修羽毛球,陈老师要从这4人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人中至少有1人选修羽毛球的概率.33.(2022•南沙区一模)每年的4月26日为“世界知识产权日”,为了树立尊重知识产权、崇尚科学和保护知识产权的意识,某校九年级开展了“知识产权知识竞赛”,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成两幅不完整的统计图,请结合图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应扇形的圆心角为度,并将条形统计图补充完整;(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁.现从这四名同学中挑选两名同学参加学校举行的“知识产权知识竞赛”,请用列表法或画树状图法,求出甲没有被选上的概率.34.(2022•花都区一模)九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”知识竞赛初赛,赛后对成绩进行分析,制作如下的频数分布表,请解答下列问题:分数段频数(人数)60≤x<70 a70≤x<80 1680≤x<90 2490≤x<100 4(1)a=;(2)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?(3)九(1)班甲、乙、丙三位同学的成绩并列第一,若在该三位同学中任选两人参加决赛,求恰好选中甲、乙两位同学的概率.35.(2022•天河区一模)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:成绩频数频率优秀45 b良好a0.3合格105 0.35不合格60 c(1)该校初三学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.36.(2022•花都区一模)广州融创乐园是国内首个以南越文化、岭南风格为主题的游乐园,自2022年6月开园以来受到了国内外游客的热捧.某旅游团组织一批游客游玩了乐园内的四个网红项目,“A.双龙飞舞”、“B.飞跃广东”、“C.云霄塔”、“D.怒海狂涛”,并进行了“我最喜欢的一个项目”的投票评选活动,投票结果绘制成以下两幅尚未完整的统计图.请你根据图中提供的信息,解答下列问题:(1)参与投票的游客总人数为人;(2)扇形统计图中B所对的圆心角度数为度,并补全条形统计图;(3)从投票给“双龙飞舞“的3名男生和1名女生中随机抽取2名了解情况,请你用列举法求恰好抽到1男1女的概率.37.(2022•白云区模拟)实施素质教育以来,某中学立足于学生的终身发展,大力开发校本课程,设立六个课外学习小组,下面是该校学生参加六个学习小组的统计表(如表)和扇形统计图(如图),请你根据图表中提供的信息回答下列问题:学习小组足球STEM课程乒乓球管弦乐队写作阅读分享人数(人)72 m36 54 18 n(1)求该校学生总人数和表中m,n的值;(2)求扇形统计图中“乒乓球”对应扇形的圆心角度数;(3)校刊计划将写作组的4份作品:A,B,C,D分两期刊登,每期刊登2份,如果每份作品被刊登在某一期的机会均等,求A,B两份作品刊登在同一期校刊的概率.38.(2022•番禺区模拟)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)求E类学生的人数,并补全条形统计图;(2)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.39.(2022•白云区二模)现需了解2022年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;(2)3月13日与10日这两天的最低气温之差是℃;(3)图③是5月份的折线统计图.用S52表示5月份的方差;用S32表示3月份的方差,比较大小:S32S52;比较3月份与5月份,月份的更稳定.40.(2022•荔湾区一模)为了解本校学生平均每天的课外学习时间情况,学校随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学习时间为t(小时):A:t<1,B:1≤t<1.5,C:1.5≤t <2,D:t≥2,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了名学生,请将条形统计图补充完整;(2)求表示B等级的扇形圆心角α的度数;(3)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,请用列表或画树状图的方法求选出的2人中至少有1人来自甲班的概率.41.(2022•白云区一模)我市某区为调查学生的视力变化情况,从全区九年级学生中抽取了部分学生,统计了每个人连续三年视力检查的结果,井将所得数据处理后,制成折线统计图(图①)和扇形统计图(图②)如下:解答下列问题:(1)该区共抽取了多少名九年级学生?(2)若该区共有9万名九年级学生,请你估计2022年该区视力不良(4.9以下)的该年级学生大约有多少人7(3)扇形统计图中B的圆心角度数为.42.(2022•荔湾区校级一模)AF初中为了提高学生综合素质,决定开设以下校本课程:A软笔书法;B经典诵读;C钢笔画;D花样跳绳;为了了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行了调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有多少人?(2)请将条形统计图(2)补充完整;(3)在平时的花样跳绳的课堂学习中,甲、乙、丙三人表现优秀,现决定从这三名同学中任选两名参加全区综合素质展示,求恰好同时选中甲、乙两位同学的概率(用树状图法或表格法解答)广东中考数学复习各地区2022-2022年模拟试题分类(广州专版)(9)——统计与概率参考答案与试题解析一.选择题(共12小题) 1.【答案】B【解答】解:捐款金额的众数为10, 中位数=20+202=20,故选:B . 2.【答案】C【解答】解:平均数=1.8+2+2.2+1.7+2+1.96≈1.9, 中位数是1.95, 众数是2,方差=16[(1.8﹣1.9)2+(2﹣1.9)2+(2.2﹣1.9)2+(1.7﹣1.9)2+(2﹣1.9)2+(1.9﹣1.9)2]≈0.027, 故选:C .3.【答案】A【解答】解:根据题意得:9n×100%=30%,解得:n =30,经检验n =30是原方程的解,所以估计盒子中小球的个数n 为30个. 故选:A . 4.【答案】C【解答】解:如图:正方形的面积为4×4=16,阴影部分占5份,飞镖落在阴影区域的概率是516;故选:C . 5.【答案】B【解答】解:在余下的18个商标牌中,还有3个商标牌的背面注明了一定的奖金额, ∴他第三次翻牌获奖的概率是318=16,故选:B . 6.【答案】D【解答】解:A 、为了解全国中学生的睡眠情况,应该采用抽样调查的方式,不符合题意; B 、某种彩票的中奖机会是1%,则买100张这种彩票可能会中奖,不符合题意; C 、若甲组数据的方差s 甲2=0.1,乙组数据的方差s 乙2=0.2,则甲组数据比乙组数据稳定,不符合题意; D 、一组数据1,5,3,2,3,4,8的众数和中位数都是3,符合题意; 故选:D . 7.【答案】B【解答】解:这组数据中176出现3次,次数最多, 所以众数为176, 故选:B . 8.【答案】D【解答】解:A 、3出现了3次,在该组数据中出现的次数最多,是该组数据的众数,不符合题意; B 、事件“在这组数据中随机抽取1个数,抽到的数是0.”是不可能事件,不符合题意;C 、将该组数据从小到大排列:1,2,3,3,3,处于中间位置的数为3,中位数为3,不符合题意;D 、这组数据的平均数为 (1+2+3+3+3)÷5=2.4,符合题意. 故选:D . 9.【答案】C【解答】解:这组数据的平均数是(3+5+5+4+6+5+7)÷7=5(℃);∵5出现了3次,出现的次数最多, ∴这组数据的众数是5; 故选:C . 10.【答案】A【解答】解:∵0.75<2.37, ∴S 小明2<S 小华2,∴成绩最稳定的是小明, 故选:A . 11.【答案】B【解答】解:这七位同学的平均成绩为73+85+94+82+71+85+567=78分,将学习小组七位同学的分数从小到大重新排列为56、71、73、82、85、85、94, 所以这组数据的中位数为82分,众数为85分, 故选:B . 12.【答案】D【解答】解:∵在1、2、3这3个小球中,数字为2的只有1个、数字小于4的有3个、数字为5的个数为0, ∴P 1=13、P 2=1、P 3=0, 则P 3<P 1<P 2, 故选:D .二.填空题(共4小题) 13.【答案】见试题解答内容 【解答】解:列表如下:12 ﹣3 1 (2,1)(﹣3,1) 2(1,2)(﹣3,2)﹣3 (1,﹣3) (2,﹣3)由表可知,共有6种等可能结果,其中A 点落在第一象限的有2种结果, 所以A 点落在第一象限的概率为26=13, 故答案为:13.14.【答案】见试题解答内容【解答】解:∵62500出现了23次,出现的次数最多, ∴这组数据中的众数是62500, 用科学记数法可表示为6.25×104; 故答案为:6.25×104. 15.【答案】见试题解答内容【解答】解:根据题意可得:掷两枚质地均匀的硬币,有4种情况,则两枚硬币全部反面朝上的概率是14.故本题答案为:14. 16.【答案】见试题解答内容【解答】解:两人各随机抽取一张卡片共有6种可能性.满足条件的有四种,因此概率为46=23.和3 ﹣1 2 5 1 0 3 ﹣1 ﹣12﹣2故答案为23.三.解答题(共26小题) 17.【答案】见试题解答内容 【解答】解:(1)本次调查的学生总人数有:16÷20%=80(人); 重视的人数有:80﹣4﹣36﹣16=24(人), 故答案为:80; 补图如图:(2)根据题意得:1800×480=90(人),答:该校对视力保护“非常重视”的学生人有90人; (3)画树状图如下:共有12种可能的结果,恰好抽到一男一女的结果有8个,则P (恰好抽到一男一女)=812=23.18.【答案】见试题解答内容 【解答】解:(1)参观的学生总人数为12÷30%=40(人); 故答案为:40; (2)喜欢“瑶文化”的学生占参观总学生数的百分比为640×100%=15%;故答案为:15%;(3)“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,条形统计图如下:(4)设最喜欢“德文化”的4个学生分别为甲、乙、丙、丁,画树状图得:∵共有12种等可能的结果,甲同学被选中的有6种情况, ∴甲同学被选中的概率为612=12.19.【答案】见试题解答内容 【解答】解:(1)画树状图如图:所有可能的结果有6个为:(1,1),(1,2),(2,1),(2,2),(3,1),(3,2); (2)在(a ,b )中,使方程ax 2+bx +1=0没有实数根的结果有5个, ∴在(a ,b )中,使方程ax 2+bx +1=0没有实数根的概率为56.20.【答案】见试题解答内容 【解答】解:(1)由题意可知D 类的人数为:50﹣4﹣13﹣25=8(人),补全条形统计图如下:估计初三学生做作业时间为D 类的学生共有850×300=48人;(2)画树状图得:∵共有12种等可能的结果,选出的2名学生中均是男生有6种情况; ∴P (两个男生)=612=12.21.【答案】见试题解答内容 【解答】解:(1)a =12÷50=0.24,b =50×0.2=10, 补全频数分布直方图如下:(2)5000×(0.2+0.06+0.04)=1500,答:估计日行走步数超过12000步(包含12000步)的教师有1500名;(3)步数超过16000步(包含16000步)的三名教师用A 、B 、C 表示,步数超过20000步(包含20000步)的两名教师用a 、b 表示, 画树状图为:共有20种等可能的结果数,其中被选取的两名教师恰好都在20000步(包含20000步)以上的结果数为2,所以被选取的两名教师恰好都在20000步(包含20000步)以上的概率=220=110.22.【答案】见试题解答内容 【解答】解:(1)a =40﹣(10+5+8)=17, 故答案为:17; (2)“直播”对应扇形的圆心角度数为360°×1040=90°; (3)最喜欢“线上答疑”的学生人数为1000×840=200(人);(4)画树状图为:共有20种等可能的结果数,其中恰好抽到1名男生和1名女生的结果数为12, ∴恰好抽到1名男生和1名女生的概率为1220=35.23.【答案】见试题解答内容【解答】解:(1)此次共抽取18÷45%=40(人),扇形图中C 等级所占扇形圆心角为360°×440=36°, 故答案为:40,36;(2)B 等级人数为40﹣(18+4+2)=16(人), 补全图形如下:。

初三数学统计与概率试题答案及解析

初三数学统计与概率试题答案及解析

初三数学统计与概率试题答案及解析1.山东省第二十三届运动会将于2014年在济宁举行.下图是某大学未制作完整的三个年级省运会志愿者的统计图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有多少名省运会志愿者,并将两幅统计图补充完整;(2)要求从一年级、三年级志愿者中各推荐一名队长候选人,二年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是二年级志愿者的概率是多少?【答案】(1)三年级有12名志愿者,两幅统计图补充完整见解析;(2)两名队长都是二年级志愿者的概率为.【解析】(1)设三年级有x名志愿者,由题意可列得方程 x=(18+30+x)×20%,求解此方程即可得到结果,二年级所占的百分比为1-50%-20%=30%,然后根据这些数据将两幅统计图补充完整即可;(2)首先根据题意画出树状图,然后由树状图可以看出,有12种等可能的结果,其中两人都是二年级志愿者的情况有两种,从而求出两名队长都是二年级志愿者的概率.试题解析:(1)设三年级有x名志愿者,由题意得 x="(18+30+x)×20%" .解得x=12.答:三年级有12名志愿者.····························1分如图所示:···········································3分(2)用A表示一年级队长候选人,B、C表示二年级队长候选人,D表示三年级队长候选人,树形图为··············5分从树形图可以看出,有12种等可能的结果,其中两人都是二年级志愿者的情况有两种,所以P(两名队长都是二年级志愿者)=.···········································7分【考点】条形统计图;扇形统计图;概率公式.2.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【答案】(1)600;(2)补图见解析;(3)3200;(4).【解析】(1)用B小组的频数除以B小组所占的百分比即可求得结论;(2)分别求得C小组的频数及其所占的百分比即可补全统计图;(3)用总人数乘以D小组的所占的百分比即可;(4)列出树形图即可求得结论.试题解析:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2)如图;(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图;(列表方法略,参照给分).P(C粽)=.答:他第二个吃到的恰好是C粽的概率是.考点: 1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.3.为迎接中招体育加试,需进一步了解九年级学生的身体素质,体育老师随机抽取九年级一个班共50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,图表如下图所示:请根据图表信息完成下列问题:(1)直接写出表中a的值;(2)请把频数分布直方图补充完整;(3)若在一分钟内跳绳次数少于120次的为测试不合格,则该班学生进行一分钟跳绳不合格的概率是多少?【答案】(1)18,(2)画图见解析;(3).【解析】分析:(1)用总数分别减去其它组的频数即可,(2)根据频数分布表把直方图补充完整即可,(3)用少于跳120次的人数除以总人数即可.试题解析:(1)根据题意得:a=50-6-8-12-6=18;(2)补充完整后的分数分布直方图如图所示(3)该班测试不合格的概率是;答:该班学生进行一分钟跳绳不合格的概率是.考点:1.频数(率)分布直方图;2.频数(率)分布表.4.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了多少学生?(2)补全统计表中所缺的数据.(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【答案】解:(1)∵较好的所占的比例是:,∴本次抽样共调查的人数是:70÷=200(人)。

初三数学统计抽样方法练习题

初三数学统计抽样方法练习题

初三数学统计抽样方法练习题一、选择题1. 下列哪个不属于概率抽样的方法?A. 简单随机抽样B. 系统抽样C. 分层抽样D. 方便抽样2. 在全年级500名学生中进行调查,为了保证数据的真实性和代表性,最好采用下列哪种抽样方法?A. 方便抽样B. 分层抽样C. 多阶段抽样D. 简单随机抽样3. 为了调查某学校学生的学习习惯,将该校分为文科和理科两个分层,然后分别从两个分层中随机抽取部分学生进行调查,这是采用了哪种抽样方法?A. 分层抽样B. 系统抽样C. 简单随机抽样D. 方便抽样4. 用数字0、1、2等表示某城市居民的收入等级,调查时采用随机数表,将表中的数字与居民住址相对应,这是采用了哪种抽样方法?A. 方便抽样B. 简单随机抽样C. 系统抽样D. 多阶段抽样5. 在某企业中,每隔5个职工抽取一个作为样本,这是属于哪种抽样方法?A. 简单随机抽样B. 系统抽样C. 分层抽样D. 多阶段抽样二、计算题1. 某学校全体学生共1000人,想要进行班级的名字调查,随机抽取了其中10个班级进行调查。

试问,这属于哪种抽样方法?并计算每个班级的抽样概率。

(题目部分参考内容)答:这属于多阶段抽样方法。

每个班级的抽样概率为 1/100。

2. 某市区有100个居民小区,希望了解居民对社区环境的评价,抽取其中5个小区进行调查。

试问,这属于哪种抽样方法?并计算每个小区的抽样概率。

(题目部分参考内容)答:这属于简单随机抽样方法。

每个小区的抽样概率为 1/20。

三、解答题1. 为了调查某中学初三学生的学习时间分配情况,先在全校300名学生中随机抽取了30名学生作为样本,接着从这30名学生中随机抽取了15名男生和15名女生。

请问,这属于哪种抽样方法?并从样本中得到学习时间的数据结果。

(题目部分参考内容)答:这属于两阶段抽样方法,第一阶段为简单随机抽样,第二阶段为分层抽样。

学习时间数据结果应该从这30名学生中随机选择样本进行调查和统计。

初三数学统计试题

初三数学统计试题

初三数学统计试题1.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的()A.众数B.中位数C.平均数D.方差【答案】B.【解析】11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.故选B.【考点】统计量的选择.2.已知数据5,3,5,4,6,5,4,下列说法正确的是()A.中位数是4B.众数是4C.中位数与众数都是5D.中位数与平均数都是5。

【答案】C.【解析】把这组数据按大小顺序排列,最中间的数是5,故中位数是5;5出现的次数最多,故众数是5;平均数为;由此可知A、B、D错误,故选C.考点: 1.中位数的意义及求解方法;2.平均数的含义及求平均数的方法;3.众数的意义及求解方法3.如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是________人.【答案】5【解析】∵参加外语小组的人数是12人,占参加课外兴趣小组人数的24%,∴参加课外兴趣小组的人数共有:12÷24%=50(人),∴绘画兴趣小组的人数是50×(1-14%-36%-16%-24%)=5(人).4.小华初中就要毕业了,她就本班同学的升学志愿进行了一次调查统计,她通过采集数据后,绘制了两幅不完整的统计图.请你根据图中提供的信息,解答下列问题:(1)求出该班的总人数;(2)通过计算请把图(1)统计图补充完整;(3)如果小华所在年级共有600名学生,请你估计该年级报考普高的学生有多少人.【答案】(1)该班的总人数50人;(2)图形见解析;(3)该年级报考普高的学生有240人.【解析】(1)利用普高的频数和百分比可求出总数;(2)利用总数可求出职高的频数补全图象即可;(3)用样本估计总体即可.试题解析:(1)25÷50%=50(人);(2)职高频数为50﹣25﹣5=20,如图:(3)600×40%=240(人).【考点】1.条形统计图,2.用样本估计总体,3.扇形统计图.5.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是环,方差分别是,,,则射箭成绩最稳定的是A.甲B.乙C.丙D.丁【答案】D.【解析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的成绩最稳定.∵,,,丁的方差最小,∴射箭成绩最稳定的是:丁.故选D.考点: 方差.6.在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是【】A.1.71B.1.85C.1.90D.2.31【答案】B。

2020年全国中考数学试题分类(16)——统计和概率(含答案)

2020年全国中考数学试题分类(16)——统计和概率(含答案)

2020年全国中考数学试题分类(16)——统计和概率一.频数(率)分布表(共1小题)1.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30 b合格9 15%不合格 3 5%合计60 60 100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为人.二.扇形统计图(共2小题)2.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<90 4B90≤x<110 15C110≤x<130 18D130≤x<150 12E150≤x<170 mF170≤x<190 5(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.3.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.5 2nB0.5≤t<1 20C1≤t<1.5 n+10D t≥1.5 5请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.三.条形统计图(共5小题)4.(2020•广州)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四5.(2020•贵港)某校对九年级学生进行“综合素质”评价,评价的结果分为A(优秀)、B(良好)、C(合格)、D(不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)B(良好)等级人数所占百分比是;(2)在扇形统计图中,C(合格)等级所在扇形的圆心角度数是;(3)请补充完整条形统计图;(4)若该校九年级学生共1000名,请根据以上调查结果估算:评价结果为A(优秀)等级或B(良好)等级的学生共有多少名?6.(2020•兰州)为培养学生正确的劳动价值观和良好劳动品质,加强新时代中学生劳动教育,某校八年级(1)班对本班35名学生进行了劳动能力量化评估和近一周家务劳动总时间调查,并对相关数据进行了收集、整理和分析,研究过程中的部分数据如下:信息一:劳动能力量化评估的成绩采用十分制,得分均为整数;信息二:信息三:近一周家务劳动时间分布表时间/小时t≤1 1<t≤2 2<t≤3 3<t≤4 t>4人数/人 5 8 12 7 3信息四:劳动能力量化成绩与近一周家务劳动总时间统计表6 7 8 9 10成绩/分人数时间/小时t≤1 4 1 0 0 01<t≤2 0 6 1 1 02<t≤3 0 0 9 3 03<t≤4 0 1 1 3 2t>4 0 0 0 1 2根据以上信息,解决下列问题:(1)直接从信息二的统计图中“读”出八年级(1)班劳动能力量化成绩的平均分为分;(2)请你判断下列说法合理吗?(请在横线上填写“合理”或“不合理”)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t≤3的时间段:.(3)结合以上信息,你认为普遍情况下参加家务劳动的时间与劳动能力之间具有怎样的关系?7.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.8.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.四.折线统计图(共4小题)9.(2020•济南)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多4510.(2020•广西)如图是A,B两市去年四季平均气温的折线统计图.观察图形,四季平均气温波动较小的城市是.(填“A”或“B”)11.(2020•德阳)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.12.(2020•台州)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为S甲2与S乙2,则S甲2S乙2.(填“>”、“=”、“<”中的一个)五.加权平均数(共2小题)13.(2020•德阳)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元14.(2020•眉山)某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:项目学习卫生纪律活动参与所占比例40% 25% 25% 10%八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为()A.81.5 B.82.5 C.84 D.86六.中位数(共2小题)15.(2020•雅安)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数 5 7 8 9 10人数 2 3 3 1 1则这10人投中次数的平均数和中位数分别是()A.3.9,7 B.6.4,7.5 C.7.4,8 D.7.4,7.516.(2020•乐山)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.七.众数(共6小题)17.(2020•西藏)格桑同学一周的体温监测结果如下表:星期一二三四五六日体温(单位:℃)36.6 35.9 36.5 36.2 36.1 36.5 36.3分析上表中的数据,众数、中位数、平均数分别是()A.35.9,36.2,36.3 B.35.9,36.3,36.6C.36.5,36.3,36.3 D.36.5,36.2,36.618.(2020•朝阳)某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300 B.300,200,200C.600,300,200 D.300,300,30019.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数和众数分别是()A.26.5和28 B.27和28 C.1.5和3 D.2和320.(2020•河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A.85,85 B.85,88 C.88,85 D.88,8821.(2020•毕节市)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表:投中次数 3 5 6 7 8 9人数 1 3 2 2 1 1则这10名队员投中次数组成的一组数据中,众数和中位数分别为()A.5,6 B.2,6 C.5,5 D.6,522.(2020•包头)两组数据:3,a,b,5与a,4,2b的平均数都是3.若将这两组数据合并为一组新数据,则这组新数据的众数为()A.2 B.3 C.4 D.5八.极差(共1小题)23.(2020•巴中)某地区一周内每天的平均气温如下:25℃,27.3℃,21℃,21.4℃,28℃,33.6℃,30℃.这组数据的极差为()A.8.6 B.9 C.12.2 D.12.6九.方差(共4小题)24.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁25.(2020•赤峰)学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是()A.平均数B.中位数C.众数D.方差26.(2020•永州)已知一组数据1,2,8,6,8,对这组数据描述正确的是()A.众数是8 B.平均数是6 C.中位数是8 D.方差是927.(2020•玉林)在对一组样本数据进行分析时,小华列出了方差的计算公式:s2= (2−x)2+(3−x)2+(3−x)2+(4−x)2x,由公式提供的信息,则下列说法错误的是()A.样本的容量是4 B.样本的中位数是3C.样本的众数是3 D.样本的平均数是3.5一十.统计量的选择(共1小题)28.(2020•大庆)在一次青年歌手比赛中,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0(单位:分).若去掉一个最高分和一个最低分.则去掉前与去掉后没有改变的一个统计量是()A.平均分B.方差C.中位数D.极差一十一.随机事件(共1小题)29.(2020•呼伦贝尔)下列事件是必然事件的是()A.任意一个五边形的外角和为540°B.抛掷一枚均匀的硬币100次,正面朝上的次数为50次C .13个人参加一个集会,他们中至少有两个人的出生月份是相同的D .太阳从西方升起一十二.概率公式(共4小题) 30.(2020•阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .1231.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .4732.(2020•葫芦岛)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( ) A .16B .13C .12D .2333.(2020•鄂尔多斯)下列说法正确的是( ) ①√5−12的值大于12; ②正六边形的内角和是720°,它的边长等于半径; ③从一副扑克牌中随机抽取一张,它是黑桃的概率是14;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s 2甲=1.3,s 2乙=1.1,则乙的射击成绩比甲稳定. A .①②③④ B .①②④ C .①④ D .②③ 一十三.列表法与树状图法(共13小题) 34.(2020•广西)九(1)班从小华、小琪、小明、小伟四人中随机抽出2人参加学校举行的乒乓球双打比赛,每人被抽到的可能性相等,则恰好抽到小华和小明的概率是( ) A .14B .15C .16D .11235.(2020•临沂)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是( ) A .112B .18C .16D .1236.(2020•广西)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A .16B .14C .13D .1237.(2020•杭州)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是 . 38.(2020•西宁)随着手机APP 技术的迅猛发展,人们的沟通方式更便捷、多样.某校数学兴趣小组为了解某社区20~60岁居民最喜欢的沟通方式,针对给出的四种APP (A 微信、BQQ 、C 钉钉、D 其他)的使用情况,对社区内该年龄段的部分居民展开了随机问卷调查(每人必选且只能选择其中一项).根据调查结果绘制了如图不完整的统计图,请你根据图中信息解答下列问题:(1)参与问卷调查的总人数是;(2)补全条形统计图;(3)若小强和他爸爸要在各自的手机里安装A,B,C三种APP中的一种,求他俩选择同一种APP的概率,并列出所有等可能的结果.39.(2020•广安)2020年6月26日是第33个国际禁毒日,为了解同学们对禁毒知识的掌握情况,从广安市某校800名学生中随机抽取部分学生进行调查,调查分为“不了解”“了解较少”“比较了解”“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有人,估计该校800名学生中“比较了解”的学生有人.(2)请补全条形统计图.(3)“不了解”的4人中有3名男生A1,A2,A3,1名女生B,为了提高学生对禁毒知识的了解,对这4人进行了培训,然后随机抽取2人对禁毒知识的掌握情况进行检测,请用画树状图或列表的方法,求恰好抽到2名男生的概率.40.(2020•兰州)某学校组织了以“纪念革命先烈,激发爱国热情”为主题的爱国主义教育研学活动,参加活动的学生可从学校提供的四个研学地点中任选一个,地点如下:A:陇南市宕昌县哈达铺红军长征纪念馆;B:陇南市两当兵变纪念馆;C:甘南州迭部县腊子口战役纪念馆;D:张掖市高台县中国工农红军西路军纪念馆.小宁和小丽决定通过抽签的方式确定本次研学活动目的地,请你用树状图或列表的方法求出小宁和小丽抽到同一地点的概率.41.(2020•日照)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.42.(2020•锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.43.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.44.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.45.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.46.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.一十四.利用频率估计概率(共4小题)47.(2020•邵阳)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m248.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160 160≤x<170 170≤x<180 x≥180人数60 260 550 130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32 B.0.55 C.0.68 D.0.8749.(2020•鞍山)在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为.50.(2020•呼和浩特)公司以3元/kg的成本价购进10000kg柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,如表是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为(精确到0.1);从而可大约估计每千克柑橘的实际售价为元时(精确到0.1),可获得12000元利润.柑橘总质量n/kg损坏柑橘质量m/kg柑橘损坏的频率xx(精确到0.001)………250 24.75 0.099 300 30.93 0.103 350 35.12 0.100 450 44.54 0.099 500 50.62 0.1012020年全国中考数学试题分类(16)——统计和概率参考答案与试题解析一.频数(率)分布表(共1小题) 1.【解答】解:根据频数分布表可知: 9÷15%=60,∴a =60×30%=18,b =1﹣30%﹣15%﹣5%=50%, ∴300×(30%+50%)=240(人).答:估计该校七年级学生身体素质良好及以上的人数为240人. 故答案为:240.二.扇形统计图(共2小题) 2.【解答】解:(1)15÷25%=60(人), m =60﹣4﹣15﹣18﹣12﹣5=6;答:本次测试随机抽取的人数是60人, 故答案为60,6; (2)C 等级所在扇形的圆心角的度数=360°×1860=108°,(3)该校七年级学生能够达到优秀的人数为 300×12+6+560=115(人). 故答案为:60,6. 3.【解答】解:(1)m =20÷40%=50, 2n +(n +10)=50﹣20﹣5, 解得,n =5,A 组所占的百分比为:2×5÷50×100%=20%, C 组所占的百分比为:(5+10)÷50×100%=30%, 补全的扇形统计图如右图所示; (2)∵A 组有2×5=10(人),B 组有20人,抽查的学生一共有50人, ∴所抽取的m 名学生平均每天课外阅读时间的中位数落在B 组; (3)1500×5+10+550=600(名), 答:该校有600名学生平均每天课外阅读时间不少于1小时.三.条形统计图(共5小题) 4.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一, 故选:A . 5.【解答】解:(1)∵被调查的人数为4÷10%=40(人), ∴B 等级人数为40﹣(18+8+4)=10(人), 则B (良好)等级人数所占百分比是1040×100%=25%,故答案为:25%;(2)在扇形统计图中,C (合格)等级所在扇形的圆心角度数是360°×840=72°,故答案为:72°;(3)补全条形统计图如下:(4)估计评价结果为A (优秀)等级或B (良好)等级的学生共有1000×18+1040=700(人). 6.【解答】解:(1)平均成绩=4×6+8×7+11×8+8×9+4×1035=8(分),故答案为8.(2)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:合理.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:不合理.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t ≤3的时间段:合理. 故答案为合理,不合理,合理.(3)参加家务劳动的时间越长,劳动能力的成绩得分越大. 7.【解答】解:(1)20÷40%=50(名); 故答案为:50; (2)15÷50×100%=30%,即m =30;1050×360°=72°;故答案为:30,72°;(3)50﹣20﹣15﹣10=5(名);(4)2000×1050=400(名).答:该校最喜欢方式D 的学生约有400名.8.【解答】解:(1)这次学校抽查的学生人数是40÷80360=180(名), 故答案为:180名;(2)C 项目的人数为180﹣46﹣34﹣40=60(名) 条形统计图补充为:(3)估计全校选择C课程的学生有900×60180=300(名).四.折线统计图(共4小题)9.【解答】解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C 错误;从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.故选:B.10.【解答】解:由折线图可知,A城市的年平均气温=14(15+26+23+12)=19℃,B城市的年平均气温=14(6+20+9+2)=9.25℃,所以A城市的方差为:S A2=14×[(15﹣19)2+(26﹣19)2+(23﹣19)2+(12﹣19)2]=32.5,B城市的方差为:S B2=14×[(6﹣9.25)2+(20﹣9.25)2+(9﹣9.25)2+(2﹣9.25)2]≈44.7,所以S A2<S B2,所以四季平均气温波动较小的城市是A.故答案为:A.11.【解答】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:9.7+9.82=9.75.故答案为:9.75. 12.【解答】解:由折线统计图得乙同学的成绩波动较大, 所以S 甲2<S 乙2. 故答案为:<.五.加权平均数(共2小题) 13.【解答】解:这天销售的四种商品的平均单价是: 50×10%+30×15%+20×55%+10×20%=22.5(元), 故选:C . 14.【解答】解:80×40%+90×25%+84×25%+70×10%=82.5(分), 即八年级2班四项综合得分(满分100)为82.5分, 故选:B .六.中位数(共2小题)15.【解答】解:这10人投中次数的平均数为5×2+7×3+8×3+9+1010=7.4,中位数为7+82=7.5,故选:D . 16.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40, 其中第四个数据为39,所以这组数据的中位数为39. 故答案为39.七.众数(共6小题) 17.【解答】解:这组数据中36.5出现了2次,次数最多,所以众数是36.5;将数据按照从小到大(或从大到小)的顺序排列为35.9,36.1,36.2,36.3,36.5,36.5,36.6,处于中间的数据是36.3,所以中位数是36.3; 平均数是x =17×(36.6+35.9+36.5+36.2+36.1+36.5+36.3)=36.3.故选:C . 18.【解答】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是300+3002=300;平均数是x =16(200+200+300+300+300+500)=300,故选:D . 19.【解答】解:共7天,中位数应该是排序后的第4天, 则中位数为:27, 28℃的有3天,最多, 所以众数为:28. 故选:B . 20.【解答】解:将数据85,90,89,85,98,88,80按照从小到大排列是:80,85,85,88,89,90,98,故这组数据的众数是85,中位数是88, 故选:B . 21.【解答】解:由表可知,这10个数据中数据5出现次数最多,所以众数为5, ∵上从小到大排序后中位数为第5、6个数据的平均数,且第5、6个数据均为6, ∴这组数据的中位数为6+62=6,故选:A .。

精品试卷沪教版(上海)九年级数学第二学期第二十八章统计初步专题测评试题(含答案解析)

精品试卷沪教版(上海)九年级数学第二学期第二十八章统计初步专题测评试题(含答案解析)

九年级数学第二学期第二十八章统计初步专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、九年级(1)班学生在引体向上测试中,第一小组6名同学的测试成绩如下(单位:个):4,5,6,7,7,8,这组数据的中位数与众数分别是()A.7,7 B.6,7 C.6.5,7 D.5,62、在某中学举行的“筑梦路上”演讲比赛中,八年级5名参赛选手的成绩分别为:90,93,89,90,88.关于这5名选手的成绩,下列说法正确的是()A.平均数是89 B.众数是93C.中位数是89 D.方差是2.83、已知小明在一次面试中的成绩为创新:87,唱功:95,综合知识:89;若三项测试得分分别赋予权重3,6,1,则小明的平均成绩是()A.90 B.90.3 C.91 D.924、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为()A.11 B.10 C.9 D.85、下列调查中,调查方式选择合理的是()A.为了了解澧水河流域饮用水矿物质含量的情况,采用抽样调查方式B.为了保证长征运载火箭的成功发射,对其所有的零部件采用抽样调查方式C.为了了解天门山景区的每天的游客客流量,选择全面调查方式D.为了调查湖南卫视《快乐大本营》节目的收视率,采用全面调查方式6、在某次比赛中,有10位同学参加了“10进5”的淘汰赛,他们的比赛成绩各不相同.其中一位同学要知道自己能否晋级,不仅要了解自己的成绩,还需要了解10位参赛同学成绩的()A.平均数B.加权平均数C.众数D.中位数7、下列调查中,其中适合采用抽样调查的是()A.调查某班50名同学的视力情况B.为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况C.为保证“神舟9号”成功发射,对其零部件进行检查D.检测中卫市的空气质量8、一个班有40名学生,在一次身体素质测试中,将全班学生的测试结果分为优秀、合格、不合格.测试结果达到优秀的有18人,合格的有17人,则在这次测试中,测试结果不合格的频率是()A.0.125 B.0.30 C.0.45 D.1.259、12名射击运动员一轮射击成绩绘制如图所示的条形统计图,则下列错误的是()A.中位数是8环B.平均数是8环C.众数是8环D.极差是4环10、八(3)班七个兴趣小组人数分别为4、4、5、x、6、6、7,已知这组数据的平均数是5,则这组数据的中位数是()A.6 B.5 C.4 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小玲家的鱼塘里养了2 500条鲢鱼,按经验,鲢鱼的成活率约为80%.现准备打捞出售,为了估计鱼塘中鲢鱼的总质量,从鱼塘中捕捞了3次进行统计,得到的数据如下表:那么,鱼塘中鲢鱼的总质量约是________kg.2、一组数据6、8、10、10,数据的众数是 ___,中位数是 ___.3、某单位拟招聘一个管理员,其中某位考生笔试、试讲、面试三轮测试得分分别为92分,85分,90分,若依次按40%,40%,20%的比例确定综合成绩,则该名考生的综合成绩为______分.4、某市今年共有12万名考生参加中考,为了了解这12万名考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析.在这次调查中,被抽取的1500名考生的数学成绩是______.(填“总体”,“样本”或“个体”)5、为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:16,9,14,11,12,10,16,8,17,19,则这组数据的极差是____.三、解答题(5小题,每小题10分,共计50分)1、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?(2)请通过计算补全条形统计图;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?2、为弘扬中华传统文化,某校开展“戏剧进课堂”活动.该校随机抽取部分学生,四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对戏剧的喜爱情况,将结果绘制成如图两幅不完整的统计图根据图中提供的信息,解决下列问题:(1)此次共调查了名学生;(2)请补全D类条形统计图;(3)扇形统计图中.B类所对应的扇形圆心角的大小为度;(4)该校共有1560名学生,估计该校表示“很喜欢”的A类的学生有多少人?3、张老师将4个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),如表是活动进行中的一组部分统计数据.(1)根据上表数据计算a=_________;估计从袋中摸出一个球是黑球的概率是_________.(精确到0.01)(2)估算袋中白球的个数.4、西安市某中学为了搞好“创建全国文明城市”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,X表示测试成绩)通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)将条形统计图补充完整;(2)本次调查测试成绩中的中位数落在______组内;(3)若测试成绩在80分以上(含80分)为优秀,有学生3600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.5、甲、乙两校参加区举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,统计学生成绩分别为7分、8分9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图和统计表:甲校成绩统计表(1)甲校参赛人数是______人,x ______;(2)请你将如图②所示的统计图补充完整;(3)请分别求出甲校和乙校学生成绩的平均数和中位数,并从平均数和中位数的角度分析哪个学校的成绩较好?-参考答案-一、单选题1、C【分析】根据中位数和众数的概念可得答案,中位数是把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据.【详解】解:在这一组数据中7是出现次数最多的,故众数是7,将这组数据从小到大的顺序排列4、5、6、7、7、8处于中间位置的那个数是6和7,则这组数据的中位数是6.5.故选:C .【点睛】本题考查了中位数和众数的概念,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.2、D【分析】根据平均数、众数、中位数的定义以及方差公式计算即可得出答案.【详解】∵八年级5名参赛选手的成绩分别为:90,93,89,90,88,从小到大排列为88,89,90,90,93, ∴平均数为8889909093905++++=,众数为90,中位数为90, 故选项A 、B 、C 错误; 方差为222221[(8890)(8990)(9090)(9090)(9390)] 2.85⨯-+-+-+-+-=, 故选项D 正确.故选:D .【点睛】本题考查平均数,众数和中位数,方差,掌握相关定义是解题的关键.3、D【分析】根据加权平均数计算.【详解】解:小明的平均成绩为87395689192361⨯+⨯+⨯=++分,故选:D.【点睛】此题考查了加权平均数,正确掌握各权重的意义及计算公式是解题的关键.4、B【分析】极差除以组距,大于或等于该值的最小整数即为组数.【详解】解:105238219999-==,∴分10组.故选:B.【点睛】本题考查了组距的划分,一般分为5~12组最科学.5、A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查所费人力、物力和时间较少,但只能得出近似的结果判断即可.【详解】A. 为了了解澧水河流域饮用水矿物质含量的情况,适合采用抽样调查方式,符合题意;B. 为了保证长征运载火箭的成功发射,对其所有的零部件适合采用全面调查方式,该选项不符合题意;C. 为了了解天门山景区的每天的游客客流量,适合选择抽样调查方式,该选项不符合题意;D. 为了调查湖南卫视《快乐大本营》节目的收视率,适合选择抽样调查方式,该选项不符合题意.故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、D【分析】根据中位数的特点,参赛选手要想知道自己是否能晋级,只需要了解自己的成绩以及全部成绩的中位数即可.【详解】解:根据题意,由于总共有10个人,且他们的成绩各不相同,第5名和第6名同学的成绩的平均数是中位数,要判断是否能晋级,故应知道中位数是多少.故选:D.【点睛】本题考查中位数,理解中位数的特点,熟知中位数是一组数据从小到大的顺序依次排列,处在最中间位置的的数(或最中间两个数据的平均数)是解答的关键.7、D【分析】抽样调查是通过对样本调查来估计总体特征,其调查结果是近似的;而全面调查得到的结果比较准确;根据对调查结果的要求对选项进行判断.【详解】A调查某班50名同学的视力情况,人数较少,应采用全面调查,故不符合要求;B为了解新型冠状病毒确诊病人同一架飞机乘客的健康状况,意义重大,应采用全面调查,故不符合要求;C为保证“神州9号”成功发射,对零部件进行检查,意义重大,应采用全面调查,故不符合要求;D检查中卫市的空气质量,应采用抽样调查,故符合要求;故选D.【点睛】本题考察了抽样调查与全面调查.解题的关键与难点在于理清对调查结果的要求.8、A【分析】先求得不合格人数,再根据频率的计算公式求得不合格人数的频率即可.【详解】解:不合格人数为4018175--=(人),∴不合格人数的频率是50.125 40=,故选:A.【点睛】本题主要考查了频率与概率,解题的关键是掌握频率是指每个对象出现的次数与总次数的比值(或者百分比).9、C【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;对于众数可由条形统计图中出现频数最大或条形最高的数据写出;极差=最大值-最小值.【详解】解:A.由于共有12个数据,排在第6和第7的数均为8,所以中位数为8环,故本选项不合题意;B.平均数为:(6+7×4+8×2+9×4+10)÷12=8(环),故本选项不合题意;C.众数是7环和9环,故本选项符合题意;D.极差为:10-6=4(环),故本选项不合题意;故选:C.【点睛】本题主要考查了确定一组数据的中位数,极差,众数以及平均数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10、B【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【详解】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7−4−4−5−6−6−7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选:B.【点睛】本题考查的是中位数和平均数的定义,熟知中位数的定义是解答此题的关键.二、填空题1、3600【分析】首先计算样本平均数,然后计算成活的鱼的数量,最后两个值相乘即可.【详解】解:每条鱼的平均重量为:20 1.610 2.210 1.81.8201010⨯+⨯+⨯=++千克,⨯=条,成活的鱼的总数为:25000.82000则总质量约是2000 1.83600⨯=千克.故答案为:3600.【点睛】本题考查了利用样本估计总体,解题的关键是注意样本平均数的计算方法:总质量÷总条数,能够根据样本估算总体.2、10 9【分析】先把数据按由小到大的顺序排列,然后根据中位数和众数的定义求解;【详解】解:由题意可把数据按由小到大的顺序排列为6、8、10、10,所以该组数据的中位数为9,众数为10;故答案为10,9【点睛】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、88.8【分析】根据加权平均数的求解方法求解即可.【详解】解:根据题意,该名考生的综合成绩为92×40%+85×40%+90×20%=88,8(分),故答案为:88.8.本题考查加权平均数,熟知加权平均数的求解方法是解答的关键.4、样本【分析】总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,根据概念分析即可得到答案.【详解】解:1500名考生的数学成绩是总体的一个样本,故答案为:样本【点睛】本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考查的事物.5、11【分析】根据极差=最大值-最小值求解可得.【详解】解:这组数据的最大值为19,最小值为8,所以这组数据的极差为19-8=11,故答案为:11.【点睛】本题主要考查极差,极差是指一组数据中最大数据与最小数据的差.三、解答题1、(1)40;(2)见解析;(3)360(1)由艺术类书籍的数量及其所占百分比可得抽取的总数量;(2)用样本容量乘以其它类书籍对应的百分比求出具体数量,从而补全图形;(3)用总数量乘以样本中科普类书籍数量所占比例可得.【详解】(1)本次抽样调查的书有8÷20%=40(本);(2)其它类的书的数量为40×15%=6(本),补全图形如下:(3)估计科普类书籍的本数为1200×1240=360(本).【点睛】本题考查的是条形统计图和扇形统计图,解决问题的关键是读懂统计图,从不同的统计图中得到必要的信息.2、(1)60;(2)补全统计图见详解;(3)150;(4)估计该校表示“很喜欢”的A类的学生有260人.【分析】(1)C类学生占比25%,根据条形统计图的数据可得C类学生有15人,由此计算总人数即可;(2)计算得出D类学生人数,根据D类学生人数补全条形统计图即可;(3)根据前面的结论,计算出B 类人数占总调查人数的比值,将计算结果乘360︒即可得出扇形圆心角的度数;(4)利用调查样本所占的百分比估计总体学生数即可.【详解】解:(1)此次调查学生总数:1525%60÷=(人),故答案为:60;(2)D 类人数为:6010251510=---(人),补全条形统计图,如图所示,(3)扇形统计图中,B 类所对应的扇形圆心角的大小为:2536015060⨯︒=︒, 故答案为:150;(4)101560=26060⨯(人). ∴估计该校表示“很喜欢”的A 类的学生有260人.【点睛】本题考查了条形统计图和扇形统计图的信息关联,求扇形统计图的圆心角,画条形统计图,由样本百分比估计总体的数量,从不同的统计图中获取需要的信息是解题关键.3、(1)0.251;0.25;(2)12个【分析】(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;(2)用概率公式列出方程求解即可.【详解】解:(1)251÷1000=0.251;∵大量重复试验事件发生的频率逐渐稳定到0.25附近,∴估计从袋中摸出一个球是黑球的概率是0.25;故答案为:0.251;0.25.(2)设袋中白球为x 个,4 0.254x=+, x =12,经检验x =12是方程的解,答:估计袋中有2个白球.【点睛】此题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.4、(1)见解析;(2)B ;(3)1620人.【分析】(1)先由A 组人数及其所占百分比求出总人数,总人数乘以B 组对应百分比即可求出其人数,从而补全图形;(2)根据中位数的定义求解;(3)总人数乘以样本A 、B 组对应百分比之和即可.【详解】解:(1)因为被调查的总人数为40÷10%=400(人)所以B组人数为400×35%=140(人),补全图形如下,(2)因为一共有400个数据,其中位数是第200,201个数据的平均数,而这两个数据均落在B组,即本次调查测试成绩中的中位数落在B组,故答案为:B;(3)估计全校学生测试成绩为优秀的总人数为3600×(10%+35%)=1620(人)答:估计全校学生测试成绩为优秀的总人数为1620人.【点睛】本题考查条形统计图与扇形统计图的综合应用、样本估计总体,难度一般,掌握相关知识是解题关键.5、(1)20;1;(2)作图见详解;(3)两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.【分析】(1)由乙校打10分的学生人数和扇形统计图中的角度可得总人数,然后用总人数减去甲校各组人数即可得;(2)先求出乙校打8分的人数,然后补全统计图即可得;(3)根据平均数及中位数的计算方法得出结果即可知哪个学校成绩好.【详解】解:(1)由乙校打10分的学生人数和扇形统计图中的角度可得:总人数为:90520360︒÷=︒人,∵两校参赛人数相等,∴甲校参赛人数为20人,∴2011081x=---=人,故答案为:20;1;(2)乙校打8分的人数为:208453---=人,作图如下:(3)甲校得分平均数为:11708198108.320⨯+⨯+⨯+⨯=,甲校得分中位数为排序后第10、11位的平均数:7772+=分;乙校得分平均数为:8738495108.320⨯+⨯+⨯+⨯=,甲校得分中位数为排序后第10、11位的平均数:787.52+=分;两校得分的平均分数一样,中位数分数乙校大于甲校,∴两学校的分数从平均数角度分析,成绩一样好;从中位数角度分析,乙校成绩好.【点睛】题目主要考查条形统计图和扇形统计图,计算平均数、中位数,从两个统计图获取相关信息是解题关键.。

初三数学统计试题答案及解析

初三数学统计试题答案及解析

初三数学统计试题答案及解析1.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()A.15,15 B.17.5,15 C.20,20 D.15,20【答案】B【解析】共有数据12个,第6个数和第7个数分别是15元,20元,所以中位数是:(15+20)÷2=17.5(元);捐款金额的众数是15元.故选B.【考点】1、中位数;2、众数2.根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为本.【答案】(1)66(2)5.01(3)4960【解析】(1)总量是100%,用100%去减就可得到先求得每年增长的本数,然后再求出平均数为0.23本,用2013年的阅读量加上这个数字即可估算出2014年的人均阅读图书的数量×成年人数990=总阅读的数量试题解析:(1)m=100-15.6-15-2.4-1.0=66(2)(3)5.01×990≈4960【考点】1、扇形图;2、估算;3、统计表3.在某校八(1)班组织了无锡欢乐义工活动,就该班同学参与公益活动情况作了一次调查统计.如图是一同学通过收集数据后绘制的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)该班共有______名学生,其中经常参加公益活动的有_____名学生;(2)将频数分布直方图补充完整;(3)若该校八年级有600名学生,试估计该年级从不参加的人数.若我市八年级有21000名学生,能否由此估计出我市八年级学生从不参加的人数,为什么?(4)根据统计数据,你想对你的同学们说些什么?【答案】(1)50,10;(2)补图见解析;(3)不能由此估计出我市八年级学生从不参加的人数,因为此样本不具有代表性;(4)建议同学们多参加一些社会公益活动.【解析】:(1)用偶尔参加的人数除以所占的百分比计算即可求出学生人数,再用学生人数乘以经常参加的学生所占的百分比,计算即可得解;(2)再求出从不参加的人数,然后补全统计图即可;(3)用该校八年级学生总人数乘以从不参加的人数所占的百分比,计算即可得解;从样本不具有代表性解答;(4)从社会积极性考虑,建议多参加社会公益活动.试题解析:(1)该班人数:15÷30%=50,经常参加:50×(1-30%-50%)=10;(2)从不参加的有:50×50%=25人,经常参加的有10人,补全统计图如图所示;(3)∵八(1)班从不参加的人数所占的比例为50%,∴该年级从不参加的人数为:600×50%=300人;不能由此估计出我市八年级学生从不参加的人数,因为此样本不具有代表性;(4)建议同学们多参加一些社会公益活动.【考点】1.条形统计图;2.用样本估计总体;3.扇形统计图.4.从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是()A.样本容量越大,样本平均数就越大B.样本容量越大,样本的方差就越大C.样本容量越大,样本的极差就越大D.样本容量越大,对总体的估计就越准确.【答案】D【解析】∵用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,∴样本容量越大,估计的越准确.故选:D.【考点】用样本估计总体.5.有19位同学参加歌咏比赛,成绩互不相同,前10名的同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的()A.平均数B.中位数C.众数D.方差【答案】B【解析】19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以.故选B.【考点】1.统计量的选择;2.中位数的意义.6.下列为某校初三参加的“迎青奥”知识能力竞赛的25位同学的成绩:78,86,98,90,95, 88,94,80,89,77, 87,73,65,84,87,96,84,74,98,86, 83,67,88,68,85.(1)完成下表:(2)补全频数分布直方图;(3)若超过均分的将获奖,请计算本次竞赛获奖的比例.【答案】(1)①8,7,3,4;②4.(2)作图见解析;(3).【解析】(1)根据题目中的乘积即可直接确定;(2)根据(1)的结果即可作出条形统计图;(3)首先计算出平均分,然后计算处超过平均分的人数,即可求得本次竞赛获奖的比例.(1)①8,7,3,4;②4.(2)(3)计算平均分=84(分).∵超过平均分的有14人,∴本次竞赛获奖的比例为.【考点】1.频数(率)分布直方图;2.频数(率)分布表.7.某中学九(1)班6个同学在课间体育活动时进行1分钟跳绳比赛,跳绳个数如下:126,144,134,118,126,152.这组数据中,众数和中位数分别是()A.126,126B.130,134C.126,130D.118,152【答案】C.【解析】众数是在一组数据中,出现次数最多的数据,这组数据中126出现2次,出现的次数最多,故这组数据的众数为126.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为118,126,126,134, 144, 152,∴中位数是按从小到大排列后第3,4个数的平均数,为:.故选C.【考点】1.众数;2.8.年月日是全国中小学安全教育日,为了让学生了解安全知识,增强安全意识,我校举行了一次“安全知识竞赛”.为了了解这次竞赛的成绩情况,从中抽取了部分学生的成绩为样本,绘制了下列统计图(说明:A级:90分——100分;B级:75分——89分;C级:60分——74分;D级:60分以下).请结合图中提供的信息,解答下列问题:(1)扇形统计图中C级所在的扇形的圆心角度数是.(2)请把条形统计图补充完整;(3)若该校共有2000名学生,请你用此样本估计安全知识竞赛中A级和B级的学生共约有多少人?【答案】(1)36°;(2)补图见解析;(3)1700.【解析】(1)圆心角的度数=360°×该部分所占百分比;(2)先求出总人数,再减去A、B、D人数即可得到C人数;(3)全校学生数×安全知识竞赛中A级和B级的学生所占百分比.(1)C级的学生百分比为10÷100=10%;∴扇形统计图中C级所在的扇形的圆心角度数是360°×10%=36°;(2)抽样总人数为49÷49%=100人,C级的学生数为100-49-36-5=10人;(3)安全知识竞赛中A级和B级的学生数为2000×(49%+36%)=1700人.考点: 1.条形统计图;2.用样本估计总体;3.扇形统计图.9.已知一组数据:12,5,9,5,14,下列说法不正确的是()A.极差是5B.中位数是9C.众数是5D.平均数是9【答案】A.【解析】∵12-5=7,极差为7,故A错误;∵按大小顺序排列,9在最中间,故中位数是9,因此B正确;数据5出现次数最多,因此C正确;(12+5+9+5+14)÷5=9,平均数是9,故选项D正确.故选A.【考点】1.极差;2.中位数;3.众数;4.平均数.10.如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是________人.【答案】5【解析】∵参加外语小组的人数是12人,占参加课外兴趣小组人数的24%,∴参加课外兴趣小组的人数共有:12÷24%=50(人),∴绘画兴趣小组的人数是50×(1-14%-36%-16%-24%)=5(人).11.某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).小宇的作业:= (9+4+7+4+6)=6,解:甲2=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]s甲= (9+4+1+4+0)=3.6(1)a=________,乙=________;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出________的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.【答案】(1)4 6 (2)见解析(3)①乙 1.6,判断见解析②乙,理由见解析【解析】解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30-7-7-5-7=4,乙=30÷5=6,所以答案为:4,6;(2)如图所示:(3)①观察图,可看出乙的成绩比较稳定,所以答案为:乙;s乙2=[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6由于s乙2<s甲2,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.12.某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185,则由这组数据中得到的结论错误的是().A.中位数为170B.众数为168C.极差为35D.平均数为171【答案】D.【解析】把数据按从小到大的顺序排列后150,164,168,168,172,176,183,185,所以这组数据的中位数是(168+172)÷2=170,168出现的次数最多,所以众数是168,极差为:185-150=35;平均数为:(150+164+168+168+172+176+183+185)÷7=170.8,故选D.考点: 1.极差;2.算术平均数;3.中位数;4.众数.13.对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得:=,S2甲=0.025,S2乙=0.026,下列说法正确的是 ( )A.甲短跑成绩比乙好B.乙短跑成绩比甲好C.甲比乙短跑成绩稳定D.乙比甲短跑成绩稳定【答案】C.【解析】根据方差的意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.观察数据可知甲队的方差小,故甲比乙短跑成绩稳定.∵S甲2<S乙2,∴甲比乙短跑成绩稳定.故选C.考点: 方差.14.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计解析,以下说法正确的是【】A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量【答案】C。

中考数学试题分类汇编

中考数学试题分类汇编

中考数学试题分类汇编
中考数学试题可以分为以下几个分类:
1. 四则运算:包括整数的加减乘除、分数的加减乘除、小数的加减乘除等。

2. 代数与方程:包括代数式的化简、方程的解法、一次方程和二次方程的求解等。

3. 几何图形:包括平面图形的性质、计算面积和周长、相似三角形、圆的性质等。

4. 概率与统计:包括概率的计算、统计图表的解读、抽样调查等。

5. 函数与图像:包括函数的定义、函数图像的绘制、函数的性质等。

6. 空间与立体几何:包括体积的计算、棱柱、棱锥、球等立体图形的性质。

7. 数据分析与运算:包括平均数、中位数、范围、百分比、比例等。

这些是常见的中考数学试题分类,不同地区和学校可能会有略微的差异。

在备考过程中,建议系统地学习和复习各个分类的试题,以全面提高自己的数学水平。

2019年中考数学试题分类汇编:统计(含答案解析,精美排版)

2019年中考数学试题分类汇编:统计(含答案解析,精美排版)

统计一.选择题1.(2019安徽)某校九年级(1)班全体学生2019年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误..的是 A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分2.(2019广东)3. 一组数据2,6,5,2,4,则这组数据的中位数是 A.2 B.4 C.5 D.6 【答案】B.【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为4,选B 。

3.(孝感)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为 20 18 17 10 15 10,,,,,.对于这组数据,下列说法错误..的是 A .平均数是15 B .众数是10C .中位数是17D .方差是3444.(湖南常德)某村引进甲乙两种水稻良种,各选6块条件相同的实验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550kg/亩,方差分别为2141.7S 甲=,2433.3S 乙=,则产量稳定,适合推广的品种为:A 、甲、乙均可B 、甲C 、乙D 、无法确定 【解答与分析】这是数据统计与分析中的方差意义的理解,平均数相同时,方差越小越稳定: 答案为B5.(衡阳)在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( C ). A .50元,30元 B .50元,40元 C .50元,50元 D .55元,50元6. )(2019•益阳)某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动平均数为:=3.8星手机的销售情况四个同学得出的以下四个结论,其中正确的为A . 4月份三星手机销售额为65万元B . 4月份三星手机销售额比3月份有所上升C . 4月份三星手机销售额比3月份有所下降D . 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额8.(野西南州)已知一组数据:-3,6,2,-1,0,4,则这组数据的中位数是A .1B .34C .0D .2 9.二.填空题1.(2019•厦门)已知一组数据1,2,3,…,n (从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n 个数是n ).设这组数据的各数之和是s ,中位数是k ,则s = nk(用只含有k 的代数式表示).2.(2019•梅州)在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图.请根据相关信息,解答下列问题:(直接填写结果)各月手机销售总额统计图三星手机销售额占该手机店 当月手机销售总额的百分比统计图(1)这次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.考点:条形统计图;用样本估计总体;中位数;众数.. 分析:(1)众数就是出现次数最多的数,据此即可判断; (2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解. 解答:解:(1)众数是:30元,故答案是:30元; (2)中位数是:50元,故答案是:50元; (3)调查的总人数是:6+12+10+8+4=40(人), 则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3.(汕尾)在“全民读书月活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图。

统计与概率初三练习题

统计与概率初三练习题

统计与概率初三练习题在初三学习统计与概率时,练习题是非常重要的一部分。

通过做题,我们可以巩固所学知识,提高解决问题的能力。

本文将提供一些统计与概率的初三练习题,并给出详细解析,希望对同学们的学习有所帮助。

一、统计题1. 某班有60名学生,他们的身高数据如下(单位:cm):155, 165, 160, 165, 155, 170, 160, 155, 170, 165, 160, 155, 155, 165, 160, 160, 155, 165, 160, 165, 170, 155, 165, 170, 165, 160, 155, 160, 170, 160, 155, 155, 165, 160, 160, 165, 155, 160, 170, 165, 160, 155, 155, 165, 160, 165, 160, 170, 155, 165, 160, 155, 160, 155, 170, 165, 155, 165, 160, 165请计算这60名学生的平均身高和中位数。

解析:要计算平均身高,只需要将所有学生的身高加起来,然后除以学生人数。

平均身高 = (155 + 165 + 160 + 165 + 155 + 170 + 160 + 155 + 170 + 165 + 160 + 155 + 155 + 165 + 160 + 160 + 155 + 165 + 160 + 165 + 170 + 155 + 165 + 170 + 165 + 160 + 155 + 160 + 170 + 160 + 155 + 155 + 165 + 160 + 160 + 165 + 155 + 160 + 170 + 165 + 160 + 155 + 155 + 165 + 160 + 165 + 160 + 170 + 155 + 165 + 160 + 155 + 160 + 155 + 170 + 165 + 155 + 165 + 160 + 165) / 60中位数是指将所有数据按照大小顺序排列,取中间的数。

中考数学试题分类汇编-概率与统计

中考数学试题分类汇编-概率与统计

概率与统计1.(2015江苏苏州3分)小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0。

1 B.0.4 C.0.5 D.0。

9【答案】D【分析】通话时间不超过15min的频数为,∴通话时间不超过15min的频率为。

【考点】频率2。

(2015江苏南京8分)为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图.(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.【答案】(1)10000, 4500(2)36000(3)2014年与2010年抽样学生相比,小学生和中学生的成绩合格率都有所提高,大学生成绩合格率下降.【分析】(1)本次检测抽取了大、中、小学生共名,其中小学生名。

(2)50米跑成绩合格的中学生人数为名。

【考点】扇形图;条形图3.(2015江苏苏州3分)某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为名.【答案】60【分析】设该校被调查的学生总人数为名,根据题意得,解得。

【考点】扇形图4.(2015江苏无锡6分)某区教研部门对本区初二年级的学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课堂上放手让学生提问和表达A.从不 B.很少 C.有时 D.常常E.总是答题的学生在这五个选项中只能选择一项.如图是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.根据以上信息,解答下列问题:(1)该区共有3200 名初二年级的学生参加了本次问卷调查;(2)请把这幅条形统计图补充完整;(3)在扇形统计图中,“总是”所占的百分比为.【答案】(1)3200(2)(3)42%【分析】(1)选择“从不”的学生共有96人,占比为3%,∴可得参加本次问卷调查的总人数为。

陕西省中考数学历年(2016-2022年)真题分类汇编专题12统计与概率及答案

陕西省中考数学历年(2016-2022年)真题分类汇编专题12统计与概率及答案

陕西省中考数学历年(2016-2022年)真题分类汇编专题12 统计与概率一、填空题1.已知一组数据:3,5,x,7,9的平均数为6,则x=.二、综合题2.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.3.某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.4.有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.5.从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的面数字恰好相同的概率.6.今年9月,第十四届全国运动会将在陕西省举行本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为,众数为;(2)求这60天的日平均气温的平均数;(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.7.王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?8.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.9.现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球。

2023年北京中考数学真题分类解析统计与概率解析版

2023年北京中考数学真题分类解析统计与概率解析版

数学精品复习资料北京市中考数学试题分类解析汇编专题7:记录与概率1. (2023年北京市4分)在抗击“非典”时期旳“课堂在线”学习活动中,李老师从5月8日至5月14日在网上答题个数旳记录如下表:日期5月8日5月9日5月10日5月11日5月12日5月13日5月14日答题个数68 55 50 56 54 48 68 在李老师每天旳答题个数所构成旳这组数据中,众数和中位数依次是【】A. 68,55B. 55,68C. 68,57D. 55,572.(2023年北京市4分)李大伯承包了一种果园,种植了100棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树旳樱桃,分别称得每棵树所产樱桃旳质量如下表:序号 1 2 3 4 5 6 7 8 9 10 质量(公14 21 27 17 18 20 19 23 19 22斤)据调查,市场上今年樱桃旳批发价格为每公斤15元.用所学旳记录知识估计今年此果园樱桃旳总产量与按批发价格销售樱桃所得旳总收入分别为【】A、200公斤,3000元B、1900公斤,28500元C、2023公斤,30000元D、1850公斤,27750元3.(2023年北京市大纲4分)某学校在开展“节省每一滴水”旳活动中,从初三年级旳240名同学中任选出20名同学汇报了各自家庭一种月旳节水状况,将有关数据整顿如下表:节水量(单位:1 1.2 1.5 2 2.5吨)同学数 4 5 6 3 2用所学旳记录知识估计这240名同学旳家庭一种月节省用水旳总量大概是【】A、240吨B、300吨C、360吨D、600吨4.(2023年北京市课标4分)小芸所在学习小组旳同学们,响应“为祖国争光,为奥运添彩”旳号召,积极到附近旳7个小区协助爷爷,奶奶们学习英语平常用语.他们记录旳各小区参与其中一次活动旳人数如下:33,32,32,31,28,26,32,那么这组数据旳众数和中位数分别是【】A、32,31B、32,32C、3,31D、3,32故选B。

初三数学统计试题答案及解析

初三数学统计试题答案及解析

初三数学统计试题答案及解析1.甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).【答案】(1)填表见解析;(2)理由见解析;(3)变小.【解析】(1)根据众数、平均数和中位数的定义求解:甲的众数为8,乙的平均数=(5+9+7+10+9)=8,乙的中位数为9.(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.(3)根据方差公式求解:如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.试题解析:解:(1)填表如下:平均数众数中位数方差(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)变小.【考点】1.方差;2.算术平均数;3.中位数;4.众数.2.为了解某校九年级女生1分钟仰卧起坐的次数,从中随机抽查了50名女生参加测试,被抽查的女生中有90%的女生次数不小于30次,并绘制成频数分布直方图(如图所示),那么仰卧的次数在40~45的频率是.【答案】0.62.【解析】解:∵被抽查的女生中有90%的女生次数不小于30次,抽查了50名女生,∴次数不小于30次的人数是50×90%=45(人),∴在40~45次之间的频数是:45-3-5-6=31,∴仰卧起坐的次数在40~45的频率是=0.62;故答案是:0.62.【考点】频数(率)分布直方图.3.一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.【答案】(1)200,补图见解析;(2)144°;(3)2.【解析】(1)用摸到红色球的次数除以占的百分比即是实验总次数,用总次数减去红黄绿球的次数即为摸蓝球的次数,再补全条形统计图即可;(2)用摸到黄色小球次数除以实验总次数,再乘以360°即可得摸到黄色小球次数所在扇形的圆心角度数;(3)先得出摸到绿色小球次数所占的百分比,再用口袋中有10个红球除以红球所占的百分比得出口袋中小球的总数,最后乘以绿色小球所占的百分比即可.试题解析:(1)50÷25%=200(次),所以实验总次数为200次,条形统计图如下:(2)=144°;(3)10÷25%×200 =2(个),答:口袋中绿球有2个.考点:1.条形统计图;2.扇形统计图;3.模拟实验4.我市党的群众路线教育实践活动不断推进并初见成效.某县督导小组为了解群众对党员干部下基层、查民情、办实事的满意度(满意度分为四个等级:A.非常满意;B.满意;C.基本满意;D.不满意),在某社区随机抽样调查了若干户居民,并根据调查数据绘制成下面两个不完整的统计图.请你结合图中提供的信息解答下列问题.(1)这次被调查的居民共有户;(2)请将条形统计图补充完整.(3)若该社区有2000户居民,请你估计这个社区大约有多少户居民对党员干部的满意度是“非常满意”.根据统计结果,对党员干部今后的工作有何建议?【答案】(1)200;(2)补充条形统计图见解析;(3)500,建议见解析.【解析】(1)利用“非常满意”的人数除以它所占的百分比即可得这次被调查的居民户数:50÷25%=200(户).(2)这次被调查的居民总户数减去非常满意、基本满意、不满意的人数求得满意的人数,再补全条形统计图即可.(3)用该社区的居民总户数乘以“非常满意”人数占的百分比即可得这个社区对党员干部的满意度是“非常满意”的人数.建议答案不唯一.试题解析:(1)200.(2)∵满意的户数为200﹣50﹣20﹣10=120(户),∴补充条形统计图如下:(3)2000×25%=500(户),答:估计这个社区大约有500户居民对党员干部的满意度是“非常满意”.根据统计结果,看出本社区党员干部下基层、察民情、办实事情况不错,要继续保持.【考点】1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.用样本估计总体.5.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为()A.8,10B.10,9C.8,9D.9,10【答案】D【解析】把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.【考点】1、众数;2、中位数6.本学期的五次数学测试中,甲、乙两同学的平均成绩一样,方差分别为1.2、0.5,由此可知( )A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲乙两人的成绩一样稳定D.无法确定谁的成绩更稳【答案】B.【解析】方差是用来衡量一组数据波动大小的量,故由甲乙的方差可作出判断.由于S乙2=0.5<S甲2=1.2,则成绩较稳定的同学是乙.故选B.【考点】方差.7.我校数学兴趣小组为了解美利达自行车的销售情况,对我市美利达专卖店第一季度A、B、C、D四种型号的销量做了统计,绘制成如下两幅统计图(均不完整)。

初三数学统计与概率试题

初三数学统计与概率试题

初三数学统计与概率试题1.下列说法:①要了解一批灯泡的使用寿命,应采用普查的方式;②若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定;④“掷一枚硬币,正面朝上”是必然事件.正确说法的序号是()A.①B.②C.③D.④【答案】C.【解析】①要了解一批灯泡的使用寿命,应采用抽样调查的方式,故①错误;②若一个游戏的中奖率是1%,则做100次这样的游戏不一定会中奖,故②错误;③甲、乙两组数据的样本容量与平均数分别相同,若方差=0.1,=0.2,则甲组数据比乙组数据稳定,故③正确;④“掷一枚硬币,正面朝上”是必然事件,说法错误,是随机事件,故④错误.故选C.【考点】1.全面调查与抽样调查;2.方差;3.随机事件;4.概率的意义.2.某校初三学子在不久前结束的体育中考中取得满意成绩,赢得2014年中考开门红.现随机抽取了部分学生的成绩作为一个样本,按A(满分)、B(优秀)、C(良好)、D(及格)四个等级进行统计,并将统计结果制成如下2幅不完整的统计图,如图,请你结合图表所给信息解答下列问题:(1)此次调查共随机抽取了名学生,其中学生成绩的中位数落在等级;(2)将折线统计图在图中补充完整;(3)为了今后中考体育取得更好的成绩,学校决定分别从成绩为满分的男生和女生中各选一名参加“经验座谈会”,若成绩为满分的学生中有3名男生和4名女生,且满分的男、女生中各有2名体育特长生,请用列表或画树状图的方法求出所选的两名学生刚好都不是体育特长生的概率.【答案】(1)20 B (2) 补全条形统计图如图;(3)P(都不是体育特长生)=.【解析】(1)由B级的人数和对应的百分比可求出总人数.由总人数和C级的人数可求出C级占得百分比,继而可得D级占的百分比.即可求出对应的人数.(3)用列表法列举出所有情况看抽到都不是体育特长生占总数的多少即可.试题解析:(1)总人数=9÷45℅=202÷20=10℅ 1-45℅-10℅-35℅=10℅20×35℅=7∴A级7人,B级9人,C级2人,D级2人.∴第10、11位是中位数,所以中位数落在B等级. (3)成绩为满分的四名女生分别为女1,女2,女3,女4,其中女1,女2是体育特长生,为满分的三名男生为男1,男2,男3,其中男1,男2是体育特长生;列出如下:由表可得共有12种情况,其中都不是体育特长生的有2种情况,所以P(都不是体育特长生)=.【考点】1.统计知识;2.概率3.今年以来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了不完整的两种统计图表.请结合统计图表,回答下列问题.(1)本次参与调查的学生共有人,m=,n=;(2)请补全图1所示数的条形统计图;(3)根据调查结果,学校准备开展关于雾霾知识竞赛,某班要从“非常了解”等级中的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,记下数字后放回袋中,另一人再从袋中中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.【答案】(1)400; 20% ; 25%.(2)补图见解析;(3).【解析】(1)根据“基本了解”的人数以及所占比例,可求得总人数;在根据频数、百分比之间的关系,可得m,n的值;(2)根据在扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心的度数与360°的比可得出统计图中D部分扇形所对应的圆心角;(3)根据D等级的人数为:400×35%=140;可得(3)的答案;(4)用树状图列举出所有可能,进而得出答案.(1)400; 20% ; 25%.(2)(3)由题意画树状图如下:所有等可能的结果共有16种:2,3,4,5,3,4,5,6,4,5,6,7,5,6,7,8.其中和为奇数的共有8种,小明去的概率为,小刚去的概率也是.所以这个游戏规则公平.【考点】1游戏公平性;2.扇形统计图;3.条形统计图;4.列表法与树状图法.4.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?【答案】解:(1)补全频数分布直方图如下:,中位数位于第三组。

初三数学统计练习题

初三数学统计练习题

初三数学统计练习题统计是数学中的一门重要的学科,它研究的是数据的收集、整理、分析和解读。

统计方法在生活中的应用非常广泛,几乎涵盖了各个领域。

在初三数学学习中,我们也需要掌握一些基本的统计知识和技巧。

下面我将为大家提供一些初三数学统计练习题,希望对大家的学习有所帮助。

【一、频数和频率计算】1.小明进行了一次调查,统计了班级中每位同学家里养的宠物情况。

以下是他的统计结果:狗:4人猫:6人鱼:2人其他:3人请计算每种宠物的频数和频率。

2.某饭店对一周内每天的客流量进行了统计,统计结果如下:星期一:120人星期二:80人星期三:90人星期四:110人星期五:100人星期六:130人星期日:140人请计算每天的频数和频率。

【二、集合和事件的统计】3.某中学有400名学生,他们中的175人擅长篮球,150人擅长足球,80人两项运动都擅长。

请回答以下问题:a.擅长篮球但不擅长足球的学生有多少人?b.至少擅长一项运动的学生有多少人?c.既不擅长篮球也不擅长足球的学生有多少人?【三、统计图表的解读】4.某班级在一学期内进行了数学模拟考试,统计了每个学生的成绩,并根据成绩制作了柱状图。

以下是该班级成绩的分布情况:90-100分:5位同学80-89分:15位同学70-79分:10位同学60-69分:8位同学60分以下:2位同学请回答以下问题:a.该班级一共有多少名学生?b.成绩在70分以上的学生有多少人?c.成绩在80分以下的学生有多少人?5.某电商平台进行了一次促销活动,统计了销售额的情况,并制作了折线图。

以下是该平台一周内的销售额数据:星期一:2000元星期二:1500元星期三:1800元星期四:2200元星期五:1900元星期六:2500元星期日:2800元请回答以下问题:a.一周内的总销售额是多少?b.哪一天的销售额最高?c.哪两天的销售额相差最大?【四、数据分析与解决问题】6.某电影院调查了一天内观众的年龄分布情况,以下是统计结果:20岁以下:80人20-30岁:120人30-40岁:90人40岁以上:60人请回答以下问题:a.总共调查了多少观众?b.20岁以下观众占比是多少?c.40岁以上观众占比是多少?7.某学校统计了学生家庭收入的情况,以下是统计结果:低于5000元:80人5000-10000元:120人10000-20000元:90人20000元以上:60人请回答以下问题:a.总共调查了多少学生?b.低于10000元的学生占比是多少?c.20000元以上的学生占比是多少?通过以上的练习题目,我们可以巩固和拓展在初三数学统计方面的知识。

九年级数学下册综合算式专项练习题统计与数据的分析

九年级数学下册综合算式专项练习题统计与数据的分析

九年级数学下册综合算式专项练习题统计与数据的分析一、引言数学作为一门科学,广泛应用于各个领域中,其中统计与数据分析是一项重要的研究内容。

九年级数学下册综合算式专项练习题中的统计与数据分析部分,帮助学生更好地理解和运用统计学知识,从而提升数学解题能力。

本文将根据综合算式专项练习题中的题目,对统计与数据的分析进行探讨。

二、样本与总体在统计与数据的分析中,常常会涉及样本与总体的概念。

样本是指从总体中选取的一部分个体,而总体则是指研究对象的全部个体。

例如,某班级的学生是总体,而从该班级中随机选取的十个学生就可以构成一个样本。

通过对样本的研究,可以推断出总体的一些特征。

三、频数和频率在统计与数据的分析中,频数和频率是常用的统计量。

频数指某一数值在样本或总体中出现的次数,而频率则是某一数值出现的次数与样本或总体数之比。

频数和频率可以反映数据分布的情况,对于理解和分析数据具有重要作用。

四、平均数和中位数在综合算式专项练习题中,常常需要计算一组数据的平均数和中位数。

平均数是指所有数据之和除以数据的个数,用于表示数据的集中趋势。

中位数是将一组数据按照大小顺序排列后,位于中间位置的数值,用于表示数据的中间位置。

通过计算平均数和中位数,可以对数据的整体特征进行描述和分析。

五、极差和四分位数除了平均数和中位数,极差和四分位数也是常用的统计量。

极差是一组数据中最大值与最小值的差,用于表示数据的离散程度。

四分位数将一组数据按照大小顺序排列后,将数据分为四等份,其中第一四分位数表示整体数据的前25%,第二四分位数表示中间50%,第三四分位数表示后25%。

通过计算极差和四分位数,可以对数据的离散程度和分布形态进行分析。

六、误差与精度在统计与数据的分析中,误差和精度的概念非常重要。

误差是指测量值与真实值之间的差异,而精度则是对误差的度量。

通过对误差和精度的分析,可以评估数据的可靠性和准确性,为后续的数据处理提供参考。

七、统计图表在综合算式专项练习题中,经常会用到各种统计图表来展示数据。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学分类试题—统计西城1.为了解“校本课程”开展情况,某校科研室随机选取了若干学生进行问卷调查(要求每位学生只能填写一种自己喜欢的课程),并将调查的结果绘制成如下两幅不完整的统计图:调查结果的条形统计图调查结果的扇形统计图请根据以上信息回答下列问题:(1) 参加问卷调查的学生共有人;(2) 在扇形统计图中,表示“C”的扇形的圆心角为度;(3) 统计发现,填写“喜欢手工制作”的学生中,男生人数∶女生人数=1∶6.如果从所有参加问卷调查的学生中随机选取一名学生,那么这名学生是填写“喜欢手工制作”的女生的概率为.海淀2.北京市近年来大力发展绿地建设,2010年人均公共绿地面积比2005年增加了4平方米,以下是根据北京市常住人口调查数据和绿地面积的有关数据制作的统计图表的一部分.北京市人均公共绿地面积调查规划统计图北京市常住人口统计表(1)补全条形统计图,并在图中标明相应数据;(2)按照2013年的预测,预计2020年北京市常住人口将达到多少万人?(3)按照2013年的北京市常住人口预测,要完成2020年的北京市人均公共绿地面积规划,从2005年到2020年,北京市的公共绿地总面积需增加多少万平方米?东城3.某中学九(1)班同学为了解2013年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.月均用水量x(吨) 频数(户) 频率x<≤ 6 0.1205<≤0.24510x1015<≤16 0.32x<≤10 0.201520x<≤ 42025x<≤ 2 0.04x2530请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15吨的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20吨的家庭大约有多少户?朝阳4.今年“五一”假期,小翔参加了学校团委组织的一项社会调查活动,了解他所在小区家庭的教育支出情况.调查中,小翔从他所在小区的500户家庭中,随机调查了40个家庭,并将调查结果制成了部分统计图表.教育支出频数分布表教育支出频数分布直方图分组频数频率1100~1300 2 0.0501300~1500 6 0.1501500~170018 0.4501700~19009 0.2251900~2100 a b(注:每组数据含最小值,不含最大值)根据以上提供的信息,解答下列问题: (1)频数分布表中的a = ,b = ; (2)补全频数分布直方图;(3)请你估计该小区家庭中,教育支出不足1500元的家庭大约有多少户?房山5. 某学校为了进一步丰富学生的体育活动,欲增购一些体育器材,为此对该校一部分学生进行了一次“你最喜欢的体育活动”的问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整)请根据图中提供的信息,完成下列问题:2100~23002 0.050 合计401.0001100 1300 1500 1700 1900 2100 2300 0 4 8 1216 20(户数) (元)图1 球类 40%跳绳其它踢毽15%第21题图1 100 90 80 70 60 50 40 30 20 10 0球类 跳绳 踢毽 其它类别304080人数图2 第21题图2(1)在这次问卷调查中,一共抽查了 名学生; (2)请将上面两幅统计图补充完整;(3)在图1中,“踢毽”部分所对应的圆心角为 度;(4)如果全校有1860名学生,请问全校学生中,最喜欢“球类”活动的学生约有多少人?门头沟6.某校为了了解该校初二年级学生阅读课外书籍的情况,随机抽取了该年级的部分学生,对他们某月阅读课外书籍的情况进行了调查,并根据调查的结果绘制了如下的统计图表.请你根据以上信息解答下列问题:分组 阅读课外书籍时间n (小时) 人数 A0≤n <3 3 B 3≤n <6 10 C 6≤n <9 a D 9≤n <12 13 E 12≤n <15 b F15≤n <18c表1 阅读课外书籍人数分组统计表阅读课外书籍人数分组统计图图1人数组别F E D C B A 02015105阅读课外书籍人数分组所占百分比统计图图26%26%30%20%AB C D E F(1)这次共调查了学生多少人?E 组人数在这次调查中所占的百分比是多少?(2)求出表1中a 的值,并补全图1;(3)若该年级共有学生300人,请你估计该年级在这月里阅读课外书籍的时间不少于12小时的学生约有多少人. 怀柔7.第九届中国(北京)国际园林博览会2013年5月18日正式开幕,,前往参观的人非常多.为了解游客进园前等候检票的时间,赵普同学利用5月19日周末的时间,在当天9:00-10:00,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min 而小于20min ,其它类同.(1)这里采用的调查方式是 ; (2)求表中a 的值,并请补全频数分布直方图;(3)在调查人数里,等候时间少于40min 的有 人; (4)此次调查中,中位数所在的时间段是 min .解:(1)这里采用的调查方式是 ; (2)a = ,补全频数分布直方图在图上; (3) 人; (4) min .时间分段/min频数/人频率 10~20 8 0.200 20~3014 a 30~40 10 0.250 40~50 b 0.125 50~60 3 0.075 合计 401.000阅读课外书籍人数分组统计图 0 10 20 30 40 50 60 48 12 16 等候时间(min ) 人数大兴8.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :50分;B :49~45分;C :44~40分;D :39~30分;E :29~0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,a 的值为 ,b 的值为 ,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内? (填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该区今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?丰台9.6月5日是世界环境日,某城市在宣传“绿色环境城市”活动中,发布了一份2013年1至5月份空气质量抽样调查报告,随机抽查的30天中,空气质量的相关信息如下:分数段人数(人) 频率A 48 0.2B a 0.25C 84 0.35D 36 b E120.05空气污 染指数 0~50 51~100 101~150 151~200 201~250 空气质优良轻微轻度中度学业考试体育成绩(分数段)统计表学业考试体育成绩(分数段)统计图12243648607284人数分数段A B C D E学业考试体育成绩(分数段)统计表%请你根据统计图表提供的信息,解答以下问题(结果均取整数): (1)请将图表补充完整;(2)请你根据抽样数据,通过计算,预测该城市一年(365天)中空气质量级别为优和良的天数大约共有多少天? 石景山10.为了解某区九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A :40分; B :39-35分; C :34-30分; D :29-20分;E :19-0分)统计如下:分数段 人数(人)频率A 48 0.2B a 0.25 C84b量级别 污染 污染 污染 天数154250% 良优13% %7% 轻微污染轻度污染 中度污染15轻度优良轻微中度3 y 2y天数 级别学业考试体育成绩(分数段)统计图12243648607284人数分数段A B C D ED 36 0.15E 12 0.05根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为_____,b的值为______,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?______(填相应分数段的字母)(3)如果把成绩在30分以上(含30分)定为优秀,那么该区今年2400名九年级学生中体育成绩为优秀的学生人数有多少名?解:昌平11. 某中学艺术节期间,向全校学生征集书画作品. 美术社团从九年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.4个班征集到的作品数量分布统计图4个班征集到的作品数量统计图150°DCBA12345ABCD252班级作品(件)图1 图2(1)直接回答美术社团所调查的4个班征集到作品共 件,并把图1补充完整;(2)根据美术社团所调查的四个班征集作品的数量情况,估计全年级共征集到作品的数量为 ;(3)在全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生. 现在要在其中抽两人去参加学校总结表彰座谈会,用树状图或列表法,求恰好抽中一男生一女生的概率.密云 12.在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具 分为A 、B 、C 三种型号,它们的数量比例以及每人每小时组装各种 型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同, 根据以上信息,完成下列填空:(1)从上述统计图可知,A 型玩具有____________套,B 型玩具 有____________套,C 型 玩具有____________套.(2)若每人组装A 型玩具16套与组装C 型玩具12套所花的时间相同, 那么a 的值为____________,每人每小时能组装C 型玩具____________套.顺义13.甲、乙两学校都选派相同人数的学生参加综合素质测试,测试结束后,发现每名参赛学生的成绩都是70分、80分、90分、100分这四种成绩中的一种,并且甲、乙两学校的学生获得100分的人数也相等. 根据甲学校学生成绩的条形统计图和乙学校学生成绩的扇形统计图,解答下列问题:(1)求甲学校学生获得100分的人数,并补全统计图;(2)分别求出甲、乙两学校学生这次综合素质测试所得分数的中位数和平均数,以此比较哪个学校的学生这次测试的成绩更好些.甲学校学生成绩的条形统计图乙学校学生成绩的扇形统计图207080134人数分数59010060°90°120°90°100分90分80分70分参考答案1.解:(1) 80;……………………………………………………………………1分 (2) 54;……………………………………………………………………3分(3) 320.2. 解:(1)如下图:-------------------2分(2)205575%=2740÷(万人).答:预计2020年北京市常住人口将达到2740万人.----------3分(3)274018154011=32380⨯-⨯(万平方米).答:从2005年到2020年,北京市的公共绿地总面积需增加32380万平方米.3.解:(1)表格:从上往下依次是:12,0.08;图略;……3分(2)68%;……4分(3)120户. ……5分4.解:(1)a=3,b=0.075;……………………………………………………………2分(2)…………………………3分⨯+=.(3)500(0.050.15)100所以该小区家庭中,教育支出不足1500元的家庭大约有100户.…………5分5. 解:(1)200 ………1分(2)图略………3分(3)54 ………4分(4)744人………5分6.解:(1)这次共调查了学生50人,E组人数在这次调查中所占的百分比是8%.(2)表1中a的值是15,补全图1.(3)54人.7.解:(1)抽样调查或抽查(填“抽样”也可以)…………………………1分(2)a=0.350频数分布直方图如下………………………3分(3)32 …………………………………………………………………4分 (4)20~30…………………………………………………………………5分 8.解:(1) 60 , 0.15 (图略) ………………………………3分 (2) C ………………………………………………………4分 (3)0.8×10440=8352(名) ……………………………………5分 答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.9. 解:(1)20 %-------------3分 如图,画图基本准确,每个统计图全部正确得1分. (2)365×(20%+50%)≈256.答:该城市一年为优和良的天数大约共有256天.天数 6 15 4 3 215轻度优良轻微中度3 y 2y天数 级别4650% 良优13% 10 %7% 轻微污染轻度污染 中度污染10.解:(1) 60 , 0.35 ,补充后如右图:………………………… 3分 (2) C ; ……………4分(3)0.8×2400=1920(名) 答:该区九年级考生中体育成绩 为优秀的学生人数有1920名.…………………………5分1119.解:(1) 12. …………………………………………………………… 1分如图所示. ………………………………………………… 2分4个班征集到的作品数量统计图作品(件)班级2352DCBA543210(2)42. ………………………………………………………………3分男1 男2 男3 女1 女2 男1 男1男2 男1男3 男1女1 男1女 2 男2 男2男1 男2男3 男2女1 男2女2 男3男3男1男3男2男3女1男3女260学业考试体育成绩(分数段)统计图12243648607284人数分数段A B C D E(3)列表如下: ……………………………………………………4分共有20种机会均等的结果,其中一男生一女生占12种,∴ P (一男生一女生)=123205=. ……………………5分 即恰好抽中一男生一女生的概率为35.12. (每空1分)(1)132,48,60;(2)4,6.13.解:(1)设甲学校学生获得100分的人数为x .由题意和甲、乙学校学生成绩的统计图得12356x x =+++ 得2x =所以甲学校学生获得100分的人数有2人.图(略) …………………………………2分 (2)由(1)可知:女1 女1男1 女1男2 女1男3 女1女2 女2女2男1女2男2女2男3女2女1分数708090100甲学校的学生得分与 相应人数为:乙学校的学生得分与 相应人数为:所以,甲学校学生分数的中位数为90(分).甲学校学生分数的平均数为 270380590210051585.823526x ⨯+⨯+⨯+⨯==≈+++甲(分)…………3分乙学校学生分数的中位数为80(分) 乙学校学生分数的平均数为 370480390210050025083.3343263x ⨯+⨯+⨯+⨯===≈+++乙(分) …4分由于甲学校学生分数的中位数和平均数都大于乙学校学生分数的中位数和平均 数,所以甲学校学生的数学竞赛成绩较好. ………人数 2 3 5 2分数 70 80 90 100 人数3432。

相关文档
最新文档