人教A版高中数学必修2《 2.1.3 空间中直线与平面之间的位置关系习题 2.3》教案_20

合集下载

高一数学必修二2.1.3 2.1.4 直线与平面 平面与平面之间的位置关系练习题(解析版)

高一数学必修二2.1.3  2.1.4 直线与平面 平面与平面之间的位置关系练习题(解析版)

2.1.3 空间中直线与平面之间的位置关系2.1.4 空间中平面与平面之间的位置关系一、选择题1.若a ∥α,b ∥α,则直线b a ,的位置关系是 ( )A.平行B.相交C.异面D.A 、B 、C 、均有可能2.直线与平面平行式指 ( )A.直线与平面内的无数条直线都无公共点B.直线上的两点到直线的距离相等C.直线与平面无公共点D.直线不在平面内3.有下列命题:①若直线在平面外,则这条直线与平面没有公共点②若直线与一个平面平行,则这条直线与平面内的任何一条直线都平行③若直线a 与平面α的一条直线平行,则直线a 与平面α也平行④两个平面有无数个公共点,则这两个平面的位置关系为相交或重合则正确命题的个数为 ( )A.0B.1C.2D.34.若三个平面两两相交,则它们交线的条数 ( )A .1条 B.2条 C.3条 D.1条或3条5.过平面外一条直线作与平面的平行平面 ( )A.必定可以且只能作一个B.至少可以作一个C.至多可以作一个D.一定不能作6.给出下列命题:①垂直于同一条直线的两条直线互相平行②垂直于同一个平面的两个平面互相平行③若直线b a ,与同一个平面所成的角相等,则b a ,互相平行④若直线b a ,是异面直线,则与b a ,都相交的两条直线是异面直线其中假命题的个数是 ( )A.1B.2C.3D.4二、填空题7.面α∥面β,直线α⊂a ,则直线a 与平面β的位置关系是______8.两直线a ,b 相互平行,且a ∥α,则b 与α的位置关系是______9.若平面α和这个平面外的一条直线m 同时垂直于直线n ,则直线m 与面α的位置关系是 _______10.一个平面内有无数条直线平行于另外一个平面,那么两个平面的位置关系为_____三、解答题11.用符号语言表述语句:“直线l 经过平面α内一定点P,但l 在平面α外”,并画图12.a a ,α⊄已知∥a b b 求证:,,α⊂∥α13.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.答案2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系1.D2.C3.A4.D5.C6.D7.β//a 8.αα⊂b b 或// 9.平行 10.平行或相交11.略 12.略 13.略 14.略2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定1.C2.A3.A4.C5.D6.C7.相交与或ααb b ,// 8.平行或相交 9.无数 110.M D BM M A A ACE BD 111,,,//连接中点取平面证明:CE BM BMEC ME BC ////为平行四边形,故,则易证= ACE BM MD AE 平面即同理//,//1M MD BM ACE MD =11// ,又平面111,//BMD BD ACE BMD 平面又平面故平面⊂ACE BD 平面所以//111.证明:连接AC C A ,11,,,,11O BD AC Q P EF MN C A 于交于分别交设 OQ AP ACC A OQ AP //,,11中,易证在矩形连接 1111//,//,//D B EF D B MN EFDB AP 又平面从而 MN EF //所以EFDB MN 平面所以//EFDB AMN 平面所以平面//12.略13.证明:如图所示,作相交两平面分别与γβα,,相交 f b e a //,////∴γαd b c a f de c //,////,//∴同理ββ//,//b a ∴βα//∴14.略。

高中数学人教版必修二2.1.3,2.14空间中直线与平面,平面与平面之间的位置关系

高中数学人教版必修二2.1.3,2.14空间中直线与平面,平面与平面之间的位置关系

①若a∥b,b,则a∥ ②若a∥,b∥,则
a∥b ③若a∥b,b∥,则a∥ ④若a∥,
b,则a∥b 新疆 王新敞 奎屯
其中正确命题的个数是
( A)
(A)0个 (B)1个 (C)2个 (D)3个
巩固练习:
3.已知m,n为异面直线,m∥平面,n∥ 平面,∩=l,则l ( C ) (A)与m,n都相交 (B)与m,n中至少一条相交 (C)与m,n都不相交 (D)与m,n中一条相交
a
/ /
a
/
/
面//面
线//面
④ 1、下列正确的有

①直线 l 平行于平面 α 内的无数条直线,则 l∥α;
②若直线 a 在平面 α 外,则 a∥α;
③若直线 a∥b,直线 b⊂α,则 a∥α;
④若直线 a∥b,b⊂α,那么直线 a 就平行于平面 α 内的无数条直线.
B 2、若直线 a 不平行于平面 α 且 a α 内,则下列结论成立的是( )
∨ 任意一条直线都没有公共点。( )
复习引入: 1、空间两直线的位置关系 (1)相交;(2)平行;(3)异面 2.公理4的内容是什么? 平行于同一条直线的两条直线互相平行. 3.等角定理的内容是什么? 空间中如果两个角的两边分别对应平行,那么 这两个角相等或互补。 新疆
王新敞 奎屯
4.等角定理的推论是什么? 如果两条相交直线和另两条相交直线分别平行, 那么这两条直线所成的锐角(或直角)相等.
X X X
例4、判断下列命题的正确
(1)若直线 l上有无数个点不在平面 内,
则 l// 。( )
(2)若直线l与平面 平行,则l与平面 内的任
意一条直线都平行。(

(3)如果两条平行直线中的一条与一个平面平行, 那么另一条也与这个平面平行。( )

人教A版高中数学二同步学习讲义:第二章 点、直线、平面之间的位置关系2.1.3~2.1.4 含答案

人教A版高中数学二同步学习讲义:第二章 点、直线、平面之间的位置关系2.1.3~2.1.4 含答案

2。

1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系学习目标 1.掌握直线与平面的三种位置关系,会判断直线与平面的位置关系.2.学会用图形语言、符号语言表示三种位置关系.3。

掌握空间中平面与平面的位置关系.知识点一直线和平面的位置关系思考如图所示,在长方体ABCD—A1B1C1D1中线段BC1所在的直线与长方体的六个面所在的平面有几种位置关系?答案三种位置关系:(1)直线在平面内;(2)直线与平面相交;(3)直线与平面平行.梳理直线l与平面α的位置关系(1)直线l在平面α内(l⊂α).(2)直线l在平面α外l⊄α错误!知识点二两个平面的位置关系思考观察前面问题中的长方体,平面A1C1与长方体的其余各个面,两两之间有几种位置关系?答案两种位置关系:两个平面相交或两个平面平行.梳理平面α与平面β的位置关系位置关系图示表示法公共点个数两平面平行α∥β0个两平面相交α∩β=l无数个点(共线)类型一直线与平面的位置关系例1下列四个命题中正确命题的个数是()①如果a,b是两条直线,a∥b,那么a平行于经过b的任何一个平面;②如果直线a和平面α满足a∥α,那么a与平面α内的任何一条直线平行;③如果直线a,b和平面α满足a∥b,a∥α,b⊄α,那么b∥α;④如果a与平面α上的无数条直线平行,那么直线a必平行于平面α.A.0 B.1 C.2 D.3答案B解析如图,在正方体ABCD-A′B′C′D′中,AA′∥BB′,AA′在过BB′的平面ABB′A′内,故命题①不正确;AA′∥平面BCC′B′,BC⊂平面BCC′B′,但AA′不平行于BC,故命题②不正确;③中,假设b与α相交,因为a∥b,所以a与α相交,这与a∥α矛盾,故b∥α,即③正确;④显然不正确,故答案为B。

反思与感悟空间中直线与平面只有三种位置关系:直线在平面内,直线与平面相交,直线与平面平行.本题借助几何模型判断,通过特例排除错误命题.对于正确命题,根据线、面位置关系的定义或反证法进行判断,要注意多种可能情形.跟踪训练1下列命题(其中a,b表示直线,α表示平面):①若a∥b,b⊂α,则a∥α;②若a∥α,b∥α,则a∥b;③若a∥b,b∥α,则a∥α;④若a∥α,b⊂α,则a∥b.其中正确命题的个数是()A.0 B.1 C.2 D.3答案A解析如图所示,在长方体ABCD—A′B′C′D′中,AB∥CD,AB⊂平面ABCD,但CD⊂平面ABCD,故①错误;A′B′∥平面ABCD,B′C′∥平面ABCD,但A′B′与B′C′相交,故②错误;AB∥A′B′,A′B′∥平面ABCD,但AB⊂平面ABCD,故③错误;A′B′∥平面ABCD,BC⊂平面ABCD,但A′B′与BC异面,故④错误.类型二平面与平面之间的位置关系错误!例2α、β是两个不重合的平面,下面说法中,正确的是() A.平面α内有两条直线a、b都与平面β平行,那么α∥βB.平面α内有无数条直线平行于平面β,那么α∥βC.若直线a与平面α和平面β都平行,那么α∥βD.平面α内所有的直线都与平面β平行,那么α∥β答案D解析A、B都不能保证α、β无公共点,如图1所示;C中当a∥α,a∥β时,α与β可能相交,如图2所示;只有D说明α、β一定无公共点.反思与感悟判断线线、线面、面面的位置关系,要牢牢地抓住其特征与定义、要有画图的意识,结合空间想象能力全方位、多角度地去考虑问题,作出判断.跟踪训练2已知两平面α、β平行,且a⊂α,下列四个命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③直线a与β内任何一条直线都不垂直;④a与β无公共点.其中正确命题的个数是()A.1 B.2 C.3 D.4答案B解析①中a不能与β内的所有直线平行而是与无数条直线平行,有一些是异面;②正确;③中直线a与β内的无数条直线垂直;④根据定义a与β无公共点,正确.命题角度2两平面位置关系的作图例3(1)画出两平行平面;(2)画出两相交平面.解两个平行平面的画法:画两个平行平面时,要注意把表示平面的平行四边形画成对应边平行,如图a所示.两个相交平面的画法:第一步,先画表示平面的平行四边形的相交两边,如图b所示;第二步,再画出表示两个平面交线的线段,如图c所示;第三步,过b中线段的端点分别引线段,使它们平行且等于图c中表示交线的线段,如图d所示;第四步,画出表示平面的平行四边形的第四边(被遮住部分线段可画成虚线,也可不画),如图e 所示.引申探究在图中画出一个平面与两个平行平面相交.解跟踪训练3试画出相交于一点的三个平面.解如图所示(不唯一).1.下列图形所表示的直线与平面的位置关系,分别用符号表示正确的一组是()A.a⊄α,a∩α=A,a∥αB.a∉α,a∩α=A,a∥αC.a⊂α,a∩α=A,a∥αD.a∈α,a∩α=A,a∥α答案C解析直线在平面内用“⊂”,故选C.2.如图所示,用符号语言可表示为()A.α∩β=l B.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂α答案D3.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交答案B解析由题意知,直线l与平面α相交,则直线l与平面α内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.4.经过平面外两点可作该平面的平行平面的个数是________.答案0或1解析若平面外两点所在直线与平面相交时,经过这两点与已知平面平行的平面不存在.若平面外两点所在直线与已知平面平行时,此时,经过这两点有且只有一个平面与已知平面平行.5.如图,在正方体ABCD-A1B1C1D1中,分别指出直线B1C,D1B 与正方体六个面所在平面的关系.解根据图形,直线B1C⊂平面B1C,直线B1C∥平面A1D,与其余四个面相交,直线D1B与正方体六个面均相交.1.弄清直线与平面各种位置关系的特征,利用其定义作出判断,要有画图意识,并借助于空间想象能力进行细致的分析.2.长方体是一个特殊的图形,当点、线、面关系比较复杂时,可以寻找长方体作为载体,将它们置于其中,立体几何的直线与平面的位置关系都可以在这个模型中得到反映.因而人们给它以“百宝箱"之称.课时作业一、选择题1.已知直线a在平面α外,则()A.a∥αB.直线a与平面α至少有一个公共点C.a∩α=AD.直线a与平面α至多有一个公共点答案D解析因已知直线a在平面α外,所以a与平面α的位置关系为平行或相交,因此断定a∥α或断定a与α相交都是错误的,但无论是平行还是相交,直线a与平面α至多有一个公共点是正确的,故选D。

高中数学第二章空间中直线与直线之间的位置关系课时作业含解析新人教A版必修2

高中数学第二章空间中直线与直线之间的位置关系课时作业含解析新人教A版必修2

高中数学课时分层作业:课时作业9 空间中直线与直线之间的位置关系——基础巩固类——1.分别和两条异面直线平行的两条直线的位置关系是(C)A.一定平行B.一定异面C.相交或异面D.一定相交解析:在空间中分别和两条异面直线平行的两条直线的位置关系是异面或相交.故选C.2.两等角的一组对应边平行,则(D)A.另一组对应边平行B.另一组对应边不平行C.另一组对应边不可能垂直D.以上都不对解析:另一组对应边可能平行,也可能不平行,也可能垂直.注意和等角定理(若两个角的对应边平行,则这两个角相等或互补)的区别.3.长方体的一条对角线与长方体的棱所组成的异面直线有(C)A.2对B.3对C.6对D.12对解析:如图所示,在长方体中没有与体对角线平行的棱,要求与长方体体对角线AC1异面的棱所在的直线,只要去掉与AC1相交的六条棱,其余的都与体对角线异面,∴与AC1异面的棱有BB1,A1D1,A1B1,BC,CD,DD1,∴长方体的一条对角线与长方体的棱所组成的异面直线有6对.故选C.4.若直线a,b与直线l所成的角相等,则a,b的位置关系是(D)A.异面B.平行C.相交D.相交、平行、异面均可能解析:若a∥b,显然直线a,b与直线l所成的角相等;若a,b相交,则a,b确定平面α,若直线l⊥α,则l⊥a,l⊥b,此时直线a,b与直线l所成的角相等;当直线a,b异面时,同样存在直线l与a,b都垂直,此时直线a,b与直线l所成的角相等.故选D.5.如下图所示,若G,H,M,N分别是三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有(D)A .①②B .②③C .①④D .②④解析:①中GH ∥MN ;③中GM ∥HN 且GM ≠HN ,故GH ,MN 必相交,所以①③中GH ,MN 共面,故选D .6.在四面体ABCD 中,AD =BC ,且AD ⊥BC ,E ,F 分别为AB ,CD 的中点,则EF 与BC 所成的角为( B )A .30°B .45°C .60°D .90° 解析:如图,取BD 的中点G ,连接EG ,GF ,则∠EFG 即为异面直线EF 与BC 所成的角.因为EG =12AD ,GF =12BC ,且AD =BC ,所以EG =GF .因为AD ⊥BC ,EG ∥AD ,GF ∥BC ,所以EG ⊥GF ,所以△EGF 为等腰直角三角形,所以∠EFG =45°.7.已知空间两个角α,β,且α与β的两边对应平行,α=60°,则β为60°或120°. 解析:根据“等角定理”可知,α与β相等或互补,故β为60°或120°. 8.如图所示,已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AD ,AA 1的中点.(1)直线AB 1和CC 1所成的角为45°; (2)直线AB 1和EF 所成的角为60°.解析:如图.(1)因为BB1∥CC1,所以∠AB1B即为异面直线AB1与CC1所成的角,∠AB1B=45°.(2)连接B1C,易得EF∥B1C,所以∠AB1C即为异面直线AB1和EF所成的角.连接AC,则△AB1C为正三角形,所以∠AB1C=60°.9.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.其中正确结论的序号是①③.解析:把正方体的平面展开图还原成原来的正方体可知,AB⊥EF,EF与MN为异面直线,AB∥CM,MN⊥CD,所以只有①③正确.10.如图,在正方体ABCD-A1B1C1D1中,E,F,G分别是棱CC1,BB1,DD1的中点.求证:(1)GB∥D1F;(2)∠BGC=∠FD1E.证明:(1)因为E,F,G分别是正方体的棱CC1,BB1,DD1的中点,所以CE綊GD1,BF綊GD1,所以四边形CED1G与四边形BFD1G均为平行四边形.所以GC∥D1E,GB∥D1F.(2)因为∠BGC 与∠FD 1E 两边的方向都相同,所以∠BGC =∠FD 1E .11.如图,在三棱锥A -BCD 中,O ,E 分别是BD ,BC 的中点,AO ⊥OC ,CA =CB =CD =BD =2,AB =AD =2,求异面直线AB 与CD 所成角的余弦值.解:如图,取AC 的中点M ,连接OM ,ME ,OE ,由E 为BC 的中点知ME ∥AB ,OE ∥DC ,所以直线OE 与EM 所成的锐角就是异面直线AB 与CD 所成的角.EM =12AB =22,OE =12DC =1,因为OM 是Rt △AOC 斜边AC 上的中线, 所以OM =12AC =1,取EM 的中点H ,连接OH ,则OH ⊥EM ,在Rt △OEH 中,所以cos ∠OEM =EH OE =12×221=24.——能力提升类——12.已知在空间四边形ABCD 中,M ,N 分别是AB ,CD 的中点,且AC =4,BD =6,则( A )A .1<MN <5B .2<MN <10C .1≤MN ≤5D .2<MN <5解析:取AD 的中点H ,连接MH ,NH ,则MH 綊12BD ,NH 綊12AC ,且M ,N ,H 三点构成三角形.由三角形中三边关系可得|MH -NH |<MN <|MH +NH |,即1<MN <5.13.在正方体ABCD -A 1B 1C 1D 1上有一只蚂蚁从A 点出发沿正方体的棱前进,若它走进的第(n +2)条棱与第n 条棱是异面的,则这只蚂蚁走过第 2 018条棱之后的位置可能在( D )A .点A 1处B .点A 处C .点D 处 D .点B 1处解析:由图形(如图)结合正方体的性质知,与直线AB异面的直线有A1D1,B1C1,CC1,DD1,共4条.蚂蚁从A点出发,走进的第(n+2)条棱与第n条棱是异面的,如AB→BC→CC1→C1D1→D1A1→A1A,按照此走法,每次要走6条棱才回到起点.∵2 018=6×336+2,∴这只蚂蚁走过第2 018条棱之后的位置与走过第2条棱之后的位置相同.而前2条棱的走法有以下几种情况:AB→BB1,AB→BC,AD→DC,AD→DD1,AA1→A1B1,AA1→A1D1.故走过第2条棱之后的位置可能有以下几种情况:B1,C,D1.故选D.14.在长方体ABCD-A1B1C1D1中,M,N分别是棱BB1,B1C1的中点,若∠CMN=90°,则异面直线AD1与DM所成的角为90°.解析:如图所示,连接BC1,则BC1∥AD1,则异面直线AD1与DM所成的角为直线BC1与DM 所成的角.∵M,N分别是棱BB1,B1C1的中点,∴BC1∥MN.∵∠CMN=90°,∴BC1⊥MC,又MC是斜线DM在平面BCC1B1上的射影,∴DM⊥BC1,∴直线BC1与DM所成的角为90°,则异面直线AD1与DM所成的角为90°.15.在四棱柱ABCD-A1B1C1D1中,侧面都是矩形,底面四边形ABCD是菱形,且AB =BC=23,∠ABC=120°,若异面直线A1B和AD1所成的角为90°,求AA1的长.解:如图,连接CD1,AC.由题意得在四棱柱ABCD-A1B1C1D1中,A1D1∥BC,A1D1=BC=23,∴四边形A1BCD1是平行四边形,∴A1B∥CD1,∴∠AD1C为A1B和AD1所成的角.∵异面直线A1B和AD1所成的角为90°,∴∠AD1C=90°.∵在四棱柱ABCD-A1B1C1D1中,侧面都是矩形,且底面是菱形,∴△ACD1是等腰直角三角形,∴AD1=22AC.∵底面四边形ABCD是菱形且AB=BC=23,∠ABC=120°,∴AC=23×sin60°×2=6,∴AD1=22AC=32,∴AA1=AD21-A1D21= 6.。

高中数学必修二人教A版练习:2.1.3-2.1.4 空间中直线与平面之间的位置关系 平面与平面之间含解析.doc

高中数学必修二人教A版练习:2.1.3-2.1.4 空间中直线与平面之间的位置关系 平面与平面之间含解析.doc

2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系【选题明细表】1.(2018·四川泸州模拟)设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( D )(A)a∥b,b⊂α,则a∥α(B)a⊂α,b⊂β,α∥β,则a∥b(C)a⊂α,b⊂α,a∥β,b∥β,则α∥β(D)α∥β,a⊂α,则a∥β解析:A,B,C错;在D中,α∥β,a⊂α,则a与β无公共点,所以a∥β,故D正确.故选D.2.(2018·广东珠海高一月考)如图,在正方体ABCD A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( D )(A)不存在(B)有1条(C)有2条(D)有无数条解析:由题设知平面ADD1A1与平面D1EF有公共点D1,由平面的基本性质中的公理知必有过该点的公共直线l,在平面ADD1A1内与l平行的直线有无数条,且它们都不在平面D1EF内,则它们都与平面D1EF平行,故选D.3.已知a,b是异面直线,直线c平行于直线a,那么c与b( C )(A)一定是异面直线 (B)一定是相交直线(C)不可能是平行直线(D)不可能是相交直线解析:由已知得,直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a,b为异面直线相矛盾.故选C.4.给出下列几个说法:①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③过平面外一点有且只有一条直线与该平面平行;④过平面外一点有且只有一个平面与该平面平行.其中正确说法的个数为( B )(A)0 (B)1 (C)2 (D)3解析:(1)当点在已知直线上时,不存在过该点的直线与已知直线平行,故①错;(2)由于垂直包括相交垂直和异面垂直,因而过一点与已知直线垂直的直线有无数条,故②错;(3)过棱柱的上底面内的一点在上底面内任意作一条直线都与棱柱的下底面平行,所以过平面外一点与已知平面平行的直线有无数条,故③错;(4)过平面外一点与已知平面平行的平面有且只有一个,故④对.5.梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α内的直线的位置关系只能是( B )(A)平行 (B)平行或异面(C)平行或相交(D)异面或相交解析:如图所示,CD与平面α不能有交点,若有,则一定在直线AB上,从而矛盾.故选B.6.(2018·湖北武昌调研)已知直线l和平面α,无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l( C ) (A)相交(B)平行(C)垂直(D)异面解析:当直线l与平面α平行时,在平面α内至少有一条直线与直线l 垂直;当直线l⊂平面α时,在平面α内至少有一条直线与直线l垂直;当直线l与平面α相交时,在平面α内至少有一条直线与直线l垂直,所以无论直线l与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l垂直.故选C.7.如图的直观图,用符号语言表述为(1) , (2) .答案:(1)a∩b=P,a∥平面M,b∩平面M=A(2)平面M∩平面N=l,a∩平面N=A,a∥平面M8.(2018·云南玉溪模拟)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若α∥β,α∥γ,则β∥γ;②若α⊥β,m∥α,则m⊥β;③若m⊥α,m∥β,则α⊥β;④若m⊥α,m⊥n,则n∥α其中正确命题的序号是( A )(A)①③(B)①④(C)②③(D)②④解析:对于①,若α∥β,α∥γ,易得到β∥γ;故①正确;对于②,若α⊥β,m∥α,m与β的关系不确定;故②错误;对于③,若m⊥α,m∥β,可以在β内找到一条直线n与m平行,所以n ⊥α,故α⊥β;故③正确;对于④,若m⊥α,m⊥n,则n与α可能平行或者n在α内;故④错误.故选A.9.(2018·南昌调研)若α,β是两个相交平面,则在下列命题中,真命题的序号为.(写出所有真命题的序号)①若直线m⊥α,则在平面β内,一定不存在与直线m平行的直线;②若直线m⊥α,则在平面β内,一定存在无数条直线与直线m垂直;③若直线m⊂α,则在平面β内,不一定存在与直线m垂直的直线;④若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线.解析:对于①,若直线m⊥α,如果α,β互相垂直,则在平面β内,存在与直线m平行的直线,故①错误;对于②,若直线m⊥α,则直线m垂直于平面α内的所有直线,则在平面β内,一定存在无数条直线与直线m 垂直,故②正确;对于③④,若直线m⊂α,则在平面β内,一定存在与直线m垂直的直线,故③错误,④正确.答案:②④10.(2018·贵州贵阳期末)已知下列说法:①若两个平面α∥β,a⊂α,b⊂β,则a∥b;②若两个平面α∥β,a⊂α,b⊂β,则a与b是异面直线;③若两个平面α∥β,a⊂α,b⊂β,则a与b一定不相交;④若两个平面α∥β,a⊂α,b⊂β,则a与b平行或异面;⑤若两个平面α∩β=b,a⊂α,则a与β一定相交.其中正确的序号是.(将你认为正确的序号都填上)解析:①错.a与b也可能异面.②错.a与b也可能平行.③对.因为α∥β,所以α与β无公共点.又因为a⊂α,b⊂β,所以a与b无公共点.④对.由③知a与b无公共点,那么a∥b或a与b异面.⑤错.a与β也可能平行.答案:③④11.如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的关系并证明你的结论.解:a∥b,a∥β,理由:由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,因为α∥β,a⊂α,b⊂β,所以a,b无公共点.又因为a⊂γ,且b⊂γ,所以a∥b.因为α∥β,所以α与β无公共点,又a⊂α,所以a与β无公共点,所以a∥β.12.如图所示,已知平面α∩β=l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,C∉l,直线AB与l不平行,那么平面ABC与平面β的交线与l有什么关系?证明你的结论.解:平面ABC与β的交线与l相交.证明:因为AB与l不平行,且AB⊂α,l⊂α,所以AB与l一定相交,设AB∩l=P,则P∈AB,P∈l.又因为AB⊂平面ABC,l⊂β,所以P∈平面ABC,P∈β.所以点P是平面ABC与β的一个公共点,而点C也是平面ABC与β的一个公共点,且P,C是不同的两点,所以直线PC就是平面ABC与β的交线.即平面ABC∩β=PC,而PC∩l=P,所以平面ABC与β的交线与l相交.。

人教A版高中数学必修二课时作业空间中直线与平面之间的位置关系平面与平面之间的位置关系

人教A版高中数学必修二课时作业空间中直线与平面之间的位置关系平面与平面之间的位置关系

2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系选题明细表知识点、方法题号线面关系的判断3,5,6,9面面关系的判断1,5线面关系的应用2,8面面关系的应用4,7,10,11,12基础巩固1.正方体的六个面中互相平行的平面有( B )(A)2对(B)3对(C)4对(D)5对解析:作出正方体观察可知,3对互相平行的平面.故选B.2.如果直线a∥平面α,那么直线a与平面α内的( D )(A)一条直线不相交(B)两条直线不相交(C)无数条直线不相交(D)任意一条直线不相交解析:直线a∥平面α,则a与α无公共点,与α内的直线当然均无公共点.故选D.3.如果平面α外有两点A,B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是( C )(A)平行(B)相交(C)平行或相交(D)AB⊂α解析:结合图形可知选项C正确.4.平面α∥平面β,直线a⊂α,下列四个命题中,正确命题的个数是( B )①a与β内的所有直线平行;②a与β内的无数条直线平行;③a与β内的任何一条直线都不垂直;④a与β无公共点.(A)1 (B)2 (C)3 (D)4解析:借助于长方体模型,可以举出反例说明①③是错误的;利用面面平行的定义进行判断,则有②④是正确的.故选B.5.给出下列几个说法:①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③过平面外一点有且只有一条直线与该平面平行;④过平面外一点有且只有一个平面与该平面平行.其中正确说法的个数为( B )(A)0 (B)1 (C)2 (D)3解析:①当点在已知直线上时,不存在过该点的直线与已知直线平行,故①错;②由于垂直包括相交垂直和异面垂直,因而过一点与已知直线垂直的直线有无数条,故②错;③过棱柱的上底面内的一点任意作一条直线都与棱柱的下底面平行,所以过平面外一点与已知平面平行的直线有无数条,故③错;④过平面外一点与已知平面平行的平面有且只有一个,故④对.故选B.6.下列说法中,正确的个数是( C )①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②经过两条异面直线中的一条直线有一个平面与另一条直线平行;③两条相交直线,其中一条与一个平面平行,则另一条一定与这个平面平行.(A)0 (B)1 (C)2 (D)3解析:易知①正确,②正确.③中两条相交直线中一条与平面平行,另一条可能平行于平面,也可能与平面相交,故③错误.选C.7.如图所示,平面ABC与三棱柱ABC A1B1C1的其他面之间有什么位置关系?解:因为平面ABC与平面A1B1C1无公共点,所以平面ABC与平面A1B1C1平行.因为平面ABC与平面ABB1A1有公共直线AB,所以平面ABC与平面ABB1A1相交.同理可得平面ABC与平面ACC1A1及平面BCC1B1均相交.能力提升8.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线( D )(A)异面(B)相交(C)平行(D)垂直解析:若尺子与地面相交,则C不正确;若尺子平行于地面,则B不正确;若尺子放在地面上,则A不正确.所以选D.9.a,b是异面直线,A,B是a上两点,C,D是b上的两点,M,N分别是线段AC,BD的中点,则MN和a的位置关系是( A )(A)异面(B)平行(C)相交(D)以上均有可能解析:若MN与AB平行或相交,则MN与AB共面α.又知C∈直线AM, D ∈直线BD,所以C∈α,D∈α.又A∈α,B∈α,所以a⊂α,b⊂α,与a,b异面矛盾,故选A.10.如果空间的三个平面两两相交,则下列判断正确的是(填序号).①不可能只有两条交线;②必相交于一点;③必相交于一条直线;④必相交于三条平行线.解析:空间的三个平面两两相交,可能只有一条交线,也可能有三条交线,这三条交线可能交于一点.答案:①11.如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b, a 与β的关系并证明你的结论.解:a∥b,a∥β.证明如下:由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,因为α∥β,a⊂α,b⊂β,所以a,b无公共点.又因为a⊂γ且b⊂γ,所以a∥b.因为α∥β,所以α与β无公共点.又a⊂α,所以a与β无公共点,所以a∥β.探究创新12.如图,已知平面α和β相交于直线l,点A∈α,点B∈α,点C∈β,且A∉l,B∉l,直线AB与l不平行,那么,平面ABC与平面β的交线与l 有什么关系?证明你的结论.解:平面ABC与平面β的交线与l相交.证明如下:因为AB与l不平行,AB⊂α,l⊂α,所以AB与l是相交直线.设AB∩l=P,则点P∈AB,点P∈l.又因为AB⊂平面ABC,l⊂β,所以P∈平面ABC且P∈平面β,即点P是平面ABC与平面β的一个公共点.而C也是平面ABC与平面β的一个公共点,又因为P,C不重合,所以直线PC就是平面ABC与平面β的交线,即平面ABC∩平面β=直线PC.而直线PC∩l=P,所以平面ABC与平面β的交线与l相交.。

新教材人教A版高中数学必修二2.空间直线与平面的位置关系-【完整版】

新教材人教A版高中数学必修二2.空间直线与平面的位置关系-【完整版】

D1 A1
C1 B1
D A
C B
两直线异面的判别一 : 两条直线 既不相交、又不平行. 两直线异面的判别二 : 两条直线不同在任何一个平面内.
空间中直线与直线之间的位置关系
空间两条直线的位置关系有且只有三种:
相交直线:同一平面内,有且只有一个公共点; 共面直线
平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点。
D
A
C
B
D
C
A
B
有,如AB和CC’,AB和DD’.
新教材人教A版高中数学必修二2.空间 直线与 平面的 位置关 系-精 品课件p pt(实 用版)
新教材人教A版高中数学必修二2.空间 直线与 平面的 位置关 系-精 品课件p pt(实 用版)
(2)如果两条平行直线中的一条与某一条直线 垂直,那么另一条直线是否也与这条直线垂直?
( 2 ) . 若 直 线 a 、 b 相 交 , b 、 c 相 交 , 则 a 、 c 相 交 . (×)
相 交 ,异 面 , 平 行
新教材人教A版高中数学必修二2.空间 直线与 平面的 位置关 系-精 品课件p pt(实 用版)
新教材人教A版高中数学必修二2.空间 直线与 平面的 位置关 系-精 品课件p pt(实 用版)
例:如图,空间四边行ABCD中,E,F,G,H分别
是AB,BC,CD,DA的中点.求证:四边形EFGH是
平行四边形.
A
证明: 连结BD
∵ EH是△ABD的中位线
∴EH ∥BD且EH =
1 2
BD
E
同理,FG ∥BD且FG =
1
2 BD
∴EH ∥FG且EH =FG

高中数学(人教A版)必修第二册课后习题:空间点、直线、平面之间的位置关系【含答案及解析】

高中数学(人教A版)必修第二册课后习题:空间点、直线、平面之间的位置关系【含答案及解析】

第八章立体几何初步8.4空间点、直线、平面之间的位置关系8.4.2空间点、直线、平面之间的位置关系课后篇巩固提升必备知识基础练1.如图所示,用符号语言可表示为()A.α∩β=lB.α∥β,l∈αC.l∥β,l⊄αD.α∥β,l⊂α2.在长方体ABCD-A1B1C1D1的六个表面与六个对角面(平面AA1C1C、平面ABC1D1、平面ADC1B1、平面BB1D1D、平面A1BCD1及平面A1B1CD)所在的平面中,与棱AA1平行的平面共有()A.2个B.3个C.4个D.5个,结合图形可知AA1∥平面BB1C1C,AA1∥平面DD1C1C,AA1∥平面BB1D1D.3.(多选题)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,则以下四个结论正确的是()A.直线AM与CC1是相交直线B.直线AM与BN是平行直线C.直线BN与MB1是异面直线D.直线AM与DD1是异面直线AM与CC1不同在任何一个平面内,直线AM与BN不同在任何一个平面内,故A,B错误;直线BN与MB1不同在任何一个平面内,直线AM与DD1不同在任何一个平面内,故C,D正确.4.如果空间的三个平面两两相交,那么()A.不可能只有两条交线B.必相交于一点C.必相交于一条直线D.必相交于三条平行线,可能相交于一点,也可能相交于一条直线,还可能相交于三条平行线,故选A.5.若两个平面内分别有一条直线,且这两条直线是异面直线,则这两个平面的公共点()A.有有限个B.有无数个C.不存在D.不存在或有无数个,直线AB与直线CC1异面,平面ABCD与平面CDD1C1相交,有无数个公共点;平面ABB1A1与平面CDD1C1平行,没有公共点.6.以下说法正确的是()A.若直线a不平行于平面α,则直线a与平面α相交B.直线a和b是异面直线,若直线c∥a,则c与b一定相交C.若直线a和b都和平面α平行,则a和b也平行D.若点M∈l,点N∈l,N∉α,M∈α,则直线l与平面α相交a不平行于平面α,则直线a与平面α相交,或a⊂α,故A错误;若直线a和b是异面直线,若直线c∥a,则c与b相交或异面,故B错误;若直线a和b都和平面α平行,则a和b可能平行,可能相交,也可能异面,故C错误;若点M,N∈l,N∉α,M∈α,则直线l和平面α相交,故D正确.故选D.7.如图,在正方体ABCD-A1B1C1D1中,所在直线与BD1异面的棱有条.,知在正方体ABCD-A1B1C1D1中,所在直线与BD1异面的棱有CD,A1B1,AD,B1C1,AA1,CC1共6条.8.已知直线a,平面α,β,且a∥α,a∥β,则平面α与β的位置关系是.a∥α,a∥β,所以平面α与β相交(如图①)或平行(如图②).9.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有条.,与平面ABB1A1平行的直线有6条:D1E1,E1E,ED,DD1,D1E,DE1.10.如图,在长方体ABCD-A1B1C1D1中,面对角线B1D1与长方体的六个面之间的位置关系如何?B1∈平面A1B1C1D1,D1∈平面A1B1C1D1,∴B1D1⊂平面A1B1C1D1.∵B1∈平面BB1C1C,D1∉平面BB1C1C,∴直线B1D1∩平面BB1C1C=B1.同理直线B1D1与平面AA1B1B、平面AA1D1D、平面CC1D1D都相交.在平行四边形B1BDD1中,B1D1∥BD,B1D1与BD无公共点,∴B1D1与平面ABCD无公共点,∴B1D1∥平面ABCD.关键能力提升练11.若a,b是异面直线,且a∥平面α,那么b与平面α的位置关系是()A.b∥αB.b与α相交C.b⊂αD.以上三种情况都有可能a,b是异面直线,且a∥平面α,则根据空间中线面的位置关系可得,b∥a,或b⊂α,或b与α相交.12.(多选题)以下结论中,正确的是()A.过平面α外一点P,有且仅有一条直线与α平行B.过平面α外一点P,有且仅有一个平面与α平行C.过直线l外一点P,有且仅有一条直线与l平行D.过直线l外一点P,有且仅有一个平面与l平行①所示,过点P有无数条直线都与α平行,这无数条直线都在平面β内,过点P有且只有一个平面与α平行,故A错,B正确;如图②所示,过点P只有一条直线与l平行,但有无数个平面与l平行,故C正确,D错.13.(多选题)下列说法中正确的是()A.若直线a不在平面α内,则a∥αB.若直线l上有无数个点不在平面α内,则l∥αC.若l∥α,则直线l与平面α内任何一条直线都没有公共点D.平行于同一平面的两直线可以相交中,直线a也可能与平面α相交,故A错误;B中,直线l与平面α相交时,l上也有无数个点不在平面α内,故B错误;C中,当l∥α时,l与α没有公共点,所以l与α内任何一条直线都没有公共点,故C正确;D中,平行于同一个平面的直线,可以平行也可以相交,也可以是异面直线,故D正确.14.一个正方体的平面展开图如图所示,A,B,C,D为原正方体的顶点,则在原来的正方体中()A.AB∥CDB.AB与CD相交C.AB⊥CDD.AB与CD异面,则在原来的正方体中,由异面直线的定义可知AB与CD异面.故选D.15.下列命题正确的有.(填序号)①若直线与平面有两个公共点,则直线在平面内;②若直线l与平面α相交,则l与平面α内的任意直线都是异面直线;③若直线l与平面α平行,则l与平面α内的直线平行或异面;④若直线a⊂平面α,平面α∩平面β=b,a∥b,则a∥β.显然是正确的;②中,直线l和平面α内过l与α交点的直线都相交而不是异面,所以②是错误的;③中,直线l与平面α没有公共点,所以直线l与平面α内的直线没有公共点,即它们平行或异面,所以③是正确的;因为a∥b,所以a与b无公共点.又因为a⊂α,且α与β的公共点都在直线b上,所以a 与β无公共点,故a与β平行,故④是正确的.16.如图,平面α,β,γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b,a与β的关系,并证明你的结论.∥b,a∥β.证明如下.由α∩γ=a知a⊂α,且a⊂γ,由β∩γ=b知b⊂β,且b⊂γ.∵α∥β,a⊂α,b⊂β,∴a,b无公共点.又∵a⊂γ,且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点.又a⊂α,∴a与β无公共点,∴a∥β.学科素养创新练17.若直线a不平行于平面α,且a⊄α,则下列结论成立的是()A.平面α内的所有直线与a异面B.平面α内不存在与a平行的直线C.平面α内存在唯一的直线与a平行D.平面α内的直线与a都相交a与平面α相交,则平面α内的直线与a可能相交,也可能异面,不可能平行.故选B.18.(多选题)已知a,b是两条不重合的直线,α,β是两个不重合的平面,则下列说法中正确的是()A.若a∥b,b⊂α,则直线a平行于平面α内的无数条直线B.若α∥β,a⊂α,b⊂β,则a与b是异面直线C.若α∥β,a⊂α,则a∥βD.若α∩β=b,a⊂α,则a,b一定相交中,a∥b,b⊂α,则a∥α或a⊂α,所以不管a在平面内还是平面外,结论都成立,故A正确;B中,直线a与b没有交点,所以a与b可能异面,也可能平行,故B错误;C中,直线a与平面β没有公共点,所以α∥β,故C正确;D中,直线a与平面β有可能平行,所以a,b可能相交,也可能平行,故D错误.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间中的平行垂直关系(强化训练)
一:考纲解读 考情说明 二:(1)周考题重现
(第一周)
两个折叠问题(第五周)
19.(本小题满分12分)如图,四边形ABCD 是梯形,//AB CD ,四边形CDEF 是矩形,且ABCD CDEF ⊥面面,BAD CDA ∠=∠,1
22
AB AD DE CD ====,是线段AE 上的动点.
(1)确定点M 的位置,使//AC MDF 面,并说明理由; (2)在(1)的条件下,求平面MDF 将几何体ADE BCF - 分成的较小部分与较大部分的体积比.
19.(本小题满分12分)如图所示,四棱锥P ABCD -中,底面ABCD 为平行四边形,,,PA
AD PA AB AB AD ⊥⊥=,AC 与BD 交于点O .(1)求证:平面PAC ⊥平面PBD ;
(2)直线PD 与过直线AC 的平面α平行,平面α与棱PB 交于点M ,指明点M 的位置,并证明
.
(2)高考真题
1、(2016年天津高考)如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF//AB ,
AB=2,BC=EF=1,
,DE=3,∠BAD=60º,G 为BC 的中点.
(Ⅰ)求证:FG//平面BED ; (Ⅱ)求证:平面BED ⊥平面AED ;
(Ⅲ)求直线EF 与平面BED 所成角的正弦值.
3、(2016年全国II 卷高考) 如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE CF =,EF 交BD 于点H ,将D EF ∆沿EF 折到'D EF ∆的位置. (Ⅰ)证明:'AC HD ⊥;
(Ⅱ)若5
5,6,,'4
AB AC AE OD ====求五棱锥D ABCEF '-体积.
(II )在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影.
理由如下:由已知可得PB PA ⊥,⊥PB PC ,又//EF PB ,所以
E F P A E F P ,⊥⊥,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.
连结CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心. 由(I )知,G 是AB 的中点,所以D 在CG 上,故2
.3
=
CD CG 由题设可得⊥PC 平面PAB ,⊥DE 平面PAB ,所以//DE PC ,因此
21
,.33
=
=PE PG DE PC
由已知,正三棱锥的侧面是直角三角形且6=PA ,可得2,==DE PE 在等腰直角三角形EFP 中,可得 2.==EF PF 所以四面体PDEF 的体积114
222.323
=⨯⨯⨯⨯=V
3、(2016年全国II 卷高考) 如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE CF =,EF 交BD 于点H ,将D EF ∆沿EF 折到'D EF ∆的位置. (Ⅰ)证明:'AC HD ⊥;
(Ⅱ)若5
5,6,,'4
AB AC AE OD ===
=求五棱锥D ABCEF '-体积.
试题解析:(I )由已知得,,.⊥=AC BD AD CD
又由=AE CF 得
=
AE CF
AD CD
,故//.AC EF 由此得,'⊥⊥EF HD EF HD ,所以//.'AC HD . (II )由//EF AC 得
1
.4
==OH AE DO AD
由5,6==AB AC 得 4.===DO BO
所以1, 3.'===OH D H DH
于是22222
19,''+=+==OD OH D H 故.'⊥OD OH
由(I )知'⊥AC HD ,又,'⊥=AC BD BD HD H ,
所以⊥AC 平面,'BHD 于是.'⊥AC OD 又由,'⊥=OD OH AC OH O ,所以,'⊥OD 平面.ABC
又由
=
EF DH AC DO 得9
.2
=EF 五边形ABCFE 的面积11969
683.2224
=⨯⨯-⨯⨯=S
所以五棱锥'ABCEF D -体积16934=⨯⨯=V
4、(2016年全国III 卷高考)如图,四棱锥P ABC -中,PA ⊥平面ABCD ,AD BC ,
3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的
中点.
(I )证明MN
平面PAB ;
(II )求四面体N BCM -的体积.
(Ⅱ)因为⊥PA 平面ABCD ,N 为PC 的中点, 所以N 到平面ABCD 的距离为
PA 2
1
. ....9分 取BC 的中点E ,连结AE .由3==AC AB 得BC AE ⊥,522=-=BE AB AE .
由BC AM ∥得M 到BC 的距离为5,故52542
1
=⨯⨯=∆BCM S . 所以四面体BCM N -的体积3
5423
1
=⨯⨯=
∆-PA S V BCM BCM N . .....12分 10、(2016年浙江高考)如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE=EF=FC =1,BC =2,AC =3. (I )求证:BF ⊥平面ACFD ;
(II )求直线BD 与平面ACFD 所成角的余弦值
.
解析:(1)延长,,AD BE CF 相交于一点K ,如图所示,
因为平面BCFE ⊥平面ABC ,且AC BC ⊥,所以 AC ⊥平面BCK ,因此BF AC ⊥,
又因为//EF BC ,1BE EF FC ===,2BC =,所以 BCK ∆为等边三角形,且F 为CK 的中点,则BF CK ⊥, 所以BF ⊥平面ACFD .
(2)因为BF ⊥平面ACK ,所以BDF ∠是直线BD 与平面ACFD 所成的角, 在Rt BFD ∆
中,3
2
BF DF ==
,得cos BDF ∠=,
所以直线BD 与平面ACFD
. (2016年四川高考)如图,在四棱锥P-ABCD 中,PA ⊥CD ,AD ∥BC , ∠ADC=∠PAB=90°,BC=CD=
1
2
AD 。

(I )在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由; (II )证明:平面PAB ⊥平面PBD 。

【解析】
(I )取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点.理由如下:
因为AD‖BC,BC =
1
2
AD ,所以BC‖AM , 且BC =AM . 所以四边形AMCB 是平行四边形,从而CM‖AB . 又AB ⊂ 平面PAB ,CM ⊄ 平面PAB ,
所以CM∥平面PAB.
(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点) (II)由已知,PA⊥AB, PA⊥CD,
因为AD∥BC,BC=1
2
AD,所以直线AB与CD相交,
所以PA⊥平面ABCD. 从而PA⊥BD.
因为AD∥BC,BC=1
2
AD,所以BC∥MD,且BC=MD.
所以四边形BCDM是平行四边形. 所以BM=CD=1
2
AD,所以BD⊥AB.
又AB∩AP=A, 所以BD⊥平面PAB. 又BD 平面PBD,
所以平面PAB⊥平面PBD。

相关文档
最新文档