最新人教版九年级数学上册期末综合检测试卷(有答案)
人教版九年级数学上册期末测试题(附参考答案)
人教版九年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。
每小题只有一个选项符合题目要求。
1.方程x2+4x+3=0的两个根为( )A.x1=1,x2=3B.x1=-1,x2=3C.x1=1,x2=-3D.x1=-1,x2=-32.一个口袋里装有4个白球,5个黑球,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽出一个球,抽到白球的概率是( )A.49B.59C.14D.193.将抛物线y=x2向右平移3个单位长度,再向上平移4个单位长度,得到的抛物线是( )A.y=(x-3)2+4 B.y=(x+3)2+4C.y=(x+3)2-4 D.y=(x-3)2-44.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D5.如图,AB切⊙O于点B,连接OA交⊙O于点C,BD∥OA交⊙O于点D,连接CD.若∠OCD=25°,则∠A的度数为( )A.25°B.35°C.40°D.45°6.若关于x的一元二次方程x2-8x+m=0的两根为x1,x2,且x1=3x2,则m的值为( )A.4 B.8C.12 D.167.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A,B,与y轴交于点C,对称轴为直线x=-1.若点A的坐标为(-4,0),则下列结论正确的是( )A.2a+b=0B.4a-2b+c>0C.x=2是关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根D.点(x1,y1),(x2,y2)在抛物线上,当x1>x2>-1时,y1<y2<08.图1是一把扇形纸扇,图2是其完全打开后的示意图,外侧两竹条OA和OB 的夹角为150°,OA的长为30 cm,贴纸部分的宽AC为18 cm,则CD⏜的长为( )A.5π cm B.10π cmC.20π cm D.25π cm9.如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是( )A.144°B.130°C.129°D.108°10.在如图所示的运算程序中,若开始输入x的值为48,我们发现第一次输出的结果为24,第二次输出的结果为12……则第2 023次输出的结果为( )A.6 B.3C.622 021D.322 022二、填空题:本题共6个小题,每小题3分,共18分。
2022—2023年人教版九年级数学(上册)期末综合检测及答案
2022—2023年人教版九年级数学(上册)期末综合检测及答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是( )A .13-B .13C .3-D .32.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )A .1B .2C .3D .43.下列计算正确的是( )A .a 2+a 3=a 5B .1=C .(x 2)3=x 5D .m 5÷m 3=m 24.若实数a 、b 满足a 2﹣8a+5=0,b 2﹣8b+5=0,则1111b a a b --+--的值是( ) A .﹣20 B .2 C .2或﹣20 D .125.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x 2>0,那么x >0.A .1个B .2个C .3个D .4个6.函数13y x =+-的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥C .3x ≠D .2x >,且3x ≠ 7.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A .B .C .D .8.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个10.已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫---+÷= ⎪⎝⎭____________. 2.因式分解:3222x x y xy +=﹣__________. 3.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 4.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a ,b ,c ,d 中的__________.5.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为__________.6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为___________cm.三、解答题(本大题共6小题,共72分)1.解分式方程:33122xx x -+=--2.先化简,再求值:2211(1)m mm m+--÷,其中m=3+1.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.4.如图,已知⊙O为Rt△ABC的内切圆,切点分别为D,E,F,且∠C=90°,AB=13,BC=12.(1)求BF的长;(2)求⊙O的半径r.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、D4、C5、A6、A7、B8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2+2、()2x x y -3、k<6且k ≠34、a ,b ,d 或a ,c ,d5、12π+. 6、15.三、解答题(本大题共6小题,共72分)1、x=12、33、(1)略;(2)略;(3)10.4、(1)BF =10;(2)r=2.5、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
新人教版九年级数学上册期末测试卷及答案【完整】
新人教版九年级数学上册期末测试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的倒数是()A. B. C. D.2. 下列分解因式正确的是()A. B.C. D.3.若正多边形的一个外角是, 则该正多边形的内角和为()A. B. C. D.4.一组数据: 1.2.2.3, 若添加一个数据2, 则发生变化的统计量是A. 平均数B. 中位数C. 众数D. 方差5.如果分式的值为0, 那么的值为()A. -1B. 1C. -1或1D. 1或06.关于x的方程(为常数)根的情况下, 下列结论中正确的是()A. 两个正根 B. 两个负根C. 一个正根, 一个负根D. 无实数根7.在以下绿色食品、回收、节能、节水四个标志中, 是轴对称图形的是()A. B. C. D.8.如图, A, B是反比例函数y= 在第一象限内的图象上的两点, 且A, B两点的横坐标分别是2和4, 则△OAB的面积是()A. 4B. 3C. 2D. 19.如图, 在矩形ABCD中, 点E是边BC的中点, AE⊥BD, 垂足为F, 则tan∠BDE的值是()A. B. C. D.10.下列所给的汽车标志图案中, 既是轴对称图形, 又是中心对称图形的是()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 化简: =____________.2. 分解因式: =________.3. 已知直角三角形的两边长分别为3.4. 则第三边长为________.4.如图1是一个由1~28的连续整数排成的“数阵”.如图2, 用2×2的方框围住了其中的四个数, 如果围住的这四个数中的某三个数的和是27, 那么这三个数是a, b, c, d中的__________.5. 如图所示, 直线a经过正方形ABCD的顶点A, 分别过正方形的顶点B.D作BF⊥a于点F, DE⊥a于点E, 若DE=8, BF=5, 则EF的长为__________.6. 如图,菱形ABCD顶点A在例函数y= (x>0)的图象上, 函.y= (k>3, x>0)的图象关于直线AC对称, 且经过点B.D两点, 若AB=2, ∠DAB=30°, 则k 的值为______.三、解答题(本大题共6小题, 共72分)1. 解方程:=12. 先化简, 再求值: , 其中.3. 如图, 已知点A(﹣1, 0), B(3, 0), C(0, 1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P, 使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上, 是否存在一点Q, 使∠BQC=∠BAC?若存在, 求出Q点坐标;若不存在, 说明理由.4. 如图, 四边形ABCD内接于⊙O, ∠BAD=90°, 点E在BC的延长线上, 且∠DEC=∠BAC.(1)求证: DE是⊙O的切线;(2)若AC∥DE, 当AB=8, CE=2时, 求AC的长.5. 我国中小学生迎来了新版“教育部统编义务教育语文教科书”, 本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对《三国演义》、《红楼梦》、《西游记》、《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查, 随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍, 请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.5. 某文具店购进一批纪念册, 每本进价为20元, 出于营销考虑, 要求每本纪念册的售价不低于20元且不高于28元, 在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系: 当销售单价为22元时, 销售量为36本;当销售单价为24元时, 销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时, 每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元, 将该纪念册销售单价定为多少元时, 才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、C2、C3、C4、D5、B6、C7、D8、B9、A10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、22.x(x+2)(x﹣2).3.5或4、a, b, d或a, c, d5、136.6+2三、解答题(本大题共6小题, 共72分)1.x=12.3.(1)抛物线的解析式为y=﹣x2+ x+1;(2)点P的坐标为(1, )或(2, 1);(3)存在, 理由略.4.(1)略;(2)AC的长为.5、(1)50;(2)见解析;(3).6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时, 才能使文具店销售该纪念册所获利润最大, 最大利润是192元.。
人教版数学九年级上册期末考试数学试卷含答案解析
人教版数学九年级上册期末考试试卷一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣12.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥17.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为cm.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.参考答案与试题解析一.选择题(每题3分,共24分)1.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣1【考点】反比例函数的性质.【分析】如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()【解答】解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.2.圆、平行四边形、等腰三角形、菱形,矩形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关.那么一次过关的概率是()A.B.C.D.【考点】概率公式;轴对称图形.【分析】由圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;直接利用概率公式求解即可求得答案.【解答】解:∵圆、平行四边形、等腰三角形、菱形,矩形中,轴对称图形的有圆、等腰三角形、菱形,矩形;∴一次过关的概率是:.故选D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3.如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是()A.9πB.27πC.6πD.3π【考点】扇形面积的计算.【分析】计算阴影部分圆心角的度数,运用扇形面积公式求解.【解答】解:根据扇形面积公式,阴影部分面积==27π.故选B.【点评】考查了扇形面积公式的运用,扇形的旋转.4.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是()A.10πB.20πC.50πD.100π【考点】圆锥的计算.【专题】压轴题.【分析】圆锥的侧面积为半径为10的半圆的面积.【解答】解:圆锥的侧面积=半圆的面积=π×102÷2=50π,故选C.【点评】解决本题的关键是把圆锥的侧面积转换为规则图形的面积.5.若mn>0,则一次函数y=mx+n与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】首先根据mn>0确定反比例函数的图象的位置,然后根据m、n异号确定答案即可.【解答】解:∵mn>0,∴m、n异号,且反比例函数y=的图象位于第一、三象限,∴排除C、D;∵当m>0时则n<0,∴排除A,∵m<0时则n>0,∴B正确,故选B.【点评】本题考查了反比例函数的性质及一次函数的性质,解题的关键是了解两种函数的性质.6.如图,反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,则﹣nx≥0的解集是()A.﹣1<x<0B.x<﹣1或0<x<1C.x≤1或0<x≤1D.﹣1<x<0或x≥1【考点】反比例函数与一次函数的交点问题.【分析】求出≥nx,求出B的坐标,根据A、B的坐标结合图象得出即可.【解答】解:∵﹣nx≥0,∴≥nx,∵反比例函数y1=和正比例函数y2=nx的图象交于A(﹣1,﹣3)、B两点,∴B点的坐标是(1,3),∴﹣nx≥0的解集是x<﹣1或0<x>1,故选B.【点评】本题考查了一次函数与反比例函数的交点问题,函数的图象的应用,主要考查学生的理解能力和观察图象的能力.7.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9cm C.cm D.cm【考点】正多边形和圆.【专题】压轴题.【分析】已知小正方形的面积即可求得边长,在直角△ACE中,利用勾股定理即可求解.【解答】解:如图,圆心为A,设大正方形的边长为2x,圆的半径为R,∵正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,∴AE=BC=x,CE=2x;∵小正方形的面积为16cm2,∴小正方形的边长EF=DF=4,由勾股定理得,R2=AE2+CE2=AF2+DF2,即x2+4x2=(x+4)2+42,解得,x=4,∴R=cm.故选C.【点评】本题利用了勾股定理,正方形的性质求解.8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2016,0)【考点】规律型:点的坐标.【专题】压轴题;规律型.【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2015÷4=503 (3)∴A2015的坐标是(2015,﹣1),故选:B.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二.填空题:(每小题3分,共21分)9.已知双曲线y=经过点(﹣1,2),那么k的值等于﹣3.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣1,2)代入双曲线y=,求出k的值即可.【解答】解:∵双曲线y=经过点(﹣1,2),∴2=,解得k=﹣3.故答案为:﹣3.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.10.一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为10πcm2.【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.【点评】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).11.一只口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,5个绿球.若任意摸出一个绿球的概率是,则任意摸出一个蓝球的概率是.【考点】概率公式.【分析】设袋中有蓝球m个,根据蓝球概率公式列出关于m的方程,求出m的值即可.【解答】解:设袋中有蓝球m个,则袋中共有球(6+5+m)个,若任意摸出一个绿球的概率是,有=,解得m=9,任意摸出一个蓝球的概率是=0.45.故答案为:0.45【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12.如图,AB是直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm,则弦CD 的长为3cm.【考点】圆周角定理;垂径定理;解直角三角形.【分析】根据∠CDB=30°,求出∠COB的度数,再利用三角函数求出CE的长.根据垂径定理即可求出CD的长.【解答】解:∵∠CDB=30°,∴∠COB=30°×2=60°.又∵⊙O的半径为cm,∴CE=sin60°=×=,∴CD=×2=3(cm).【点评】此题考查了垂径定理和圆周角定理,利用特殊角的三角函数很容易解答.13.已知点P(x1,﹣2)、Q(x2,3)、H(x3,1)在双曲线上,那么x1、x2、x3的大小关系是x3<x2<x1.【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】把三个点的坐标代入解析式,分别计算出x1、x2、x3的值,然后比较大小即可.【解答】解:把点P(x1,﹣2)、Q(x2,3)、H(x3,1)代入得x1=,x2=﹣,x3=﹣(a2+1),所以x3<x2<x1.故答案为x3<x2<x1.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为30°或150°.【考点】圆周角定理;等边三角形的判定与性质.【专题】分类讨论.【分析】首先根据题意画出图形,然后在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,易得△AOB是等边三角形,再利用圆周角定理,即可求得答案.【解答】解:如图,首先在优弧上取点C,连接AC,BC,在劣弧上取点D,连接AD,BD,∵OA=OB=6cm,AB=6cm,∴OA=AB=OB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴所对的圆周角的度数为:30°或150°.【点评】此题考查了圆周角定理以及等边三角形的判定与性质.注意根据题意画出图形,结合图形求解是关键.15.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交于点E,以点O为圆心,OC的长为半径作交OB于点D.若OA=2,则阴影部分的面积为+.【考点】扇形面积的计算.【专题】压轴题.【分析】连接OE、AE,根据点C为OC的中点可得∠CEO=30°,继而可得△AEO为等边三角形,求出扇形AOE的面积,最后用扇形AOB的面积减去扇形COD的面积,再减去S空白AEC 即可求出阴影部分的面积.【解答】解:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE==π,∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)=﹣﹣(π﹣×1×)=π﹣π+=+.故答案为:+.【点评】本题考查了扇形的面积计算,解答本题的关键是掌握扇形的面积公式:S=.三.解答题(共75分)16.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)在y=2x+2中令y=0,求得B的坐标,然后求得A的坐标,利用待定系数法求得反比例函数的解析式;(2)根据平行线的性质即可直接求得D的坐标,然后代入反比例函数的解析式判断即可.【解答】解:(1)在y=2x+2中令y=0,则x=﹣1,∴B的坐标是(﹣1,0),∵A在直线y=2x+2上,∴A的坐标是(1,4).∵A(1,4)在反比例函数y=图象上∴k=4.∴反比例函数的解析式为:y=;(2)∵四边形ABCD是平行四边形,∴D的坐标是(2,2),∴D(2,2)在反比例函数y=的图象上.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.17.有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y=上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【专题】图表型.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线上y=上的情况数,然后根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:;(2)当x=﹣1时,y==﹣2,当x=1时,y==2,当x=2时,y==1,一共有9种等可能的情况,点(x,y)落在双曲线上y=上的有2种情况,所以,P=.【点评】本题考查了列表法与树状图法,反比例函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.18.星期五晚上,小明和他的妈妈一起看《我是歌手》,歌手演唱完后要评选出名次,在已公布四到七名后,还有张杰、韩磊、邓紫棋三位选手没有公布名次.(1)求邓紫棋获第一名的概率;(2)如果小明和妈妈一起竞猜第一名,那么两人中一个人猜中另一个人却没猜中的概率是多少?(请用“树状图”或“列表”等方法写出分析过程)【考点】列表法与树状图法.【专题】计算题.【分析】(1)三个选手机会均等,得到邓紫棋获第一名的概率;(2)假设张杰为第一名,列表得出所有等可能的情况数,找出两人中一个人猜中另一个人却没猜中的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:邓紫棋获第一名的概率为;(2)假设张杰为第一名,列表如下:张韩邓张(张,张)(韩,张)(邓,张)韩(张,韩)(韩,韩)(邓,韩)邓(张,邓)(韩,邓)(邓,邓)所有等可能的情况有9种,两人中一个人猜中另一个人却没猜中的情况有4种,则P=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19.如图所示,AB是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于D,连AD.(1)求直径AB的长;(2)求阴影部分的面积(结果保留π).【考点】圆周角定理;角平分线的定义;三角形的面积;含30度角的直角三角形;勾股定理;扇形面积的计算.【分析】(1)根据直径所对的圆周角是直角推知∠ACB=90°,然后在直角三角形ABC中利用边角关系、勾股定理来求直径AB的长度;(2)连接OD.利用(1)中求得AB=4可以推知OA=OD=2;然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得阴影部分的面积=S扇形△AOD ﹣S△AOD.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,…(1分)∵∠B=30°,∴AB=2AC,…(3分)∵AB2=AC2+BC2,∴AB2=AB2+62,…(5分)∴AB=4.…(6分)(2)连接OD.∵AB=4,∴OA=OD=2,…(8分)∵CD平分∠ACB,∠ACB=90°,∴∠ACD=45°,∴∠AOD=2∠ACD=90°,…(9分)=OA•OD=•2•2=6,…(10分)∴S△AOD=•π•OD2=•π•(2)2=3π,…(11分)∴S扇形△AOD﹣S△AOD=3π﹣6.…(12分)∴阴影部分的面积=S扇形△AOD【点评】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.解答(2)题时,采用了“数形结合”的数学思想.20.如图,一次函数y=kx+2的图象与x轴交于点B,与反比例函数的图象的一个交点为A(2,3).(1)分别求出反比例函数和一次函数的解析式;(2)过点A作AC⊥x轴,垂足为C,若点P在反比例函数图象上,且△PBC的面积等于18,求P点的坐标.【考点】反比例函数与一次函数的交点问题;三角形的面积.【专题】计算题.【分析】(1)先将点A(2,3)代入反比例函数和一次函数y=kx+2,求得m、k的值,=18,即可求得x,y的值.(2)可求得点B的坐标,设P(x,y),由S△PBC【解答】解:(1)把A(2,3)代入,∴m=6.∴.(1分)把A(2,3)代入y=kx+2,∴2k+2=3.∴.∴.(2分)(2)令,解得x=﹣4,即B(﹣4,0).∵AC⊥x轴,∴C(2,0).∴BC=6.(3分)设P(x,y),==18,∵S△PBC∴y1=6或y2=﹣6.分别代入中,得x1=1或x2=﹣1.∴P1(1,6)或P2(﹣1,﹣6).(5分)【点评】本题考查了一次函数和反比例函数的交点问题,利用待定系数法求解析式是解此题的关键.21.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=5cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)【考点】扇形面积的计算;全等三角形的判定与性质;圆周角定理;切线的性质;解直角三角形.【专题】几何综合题.【分析】(1)根据切线的性质定理和平行线的性质定理得到OC⊥BD,根据垂径定理得到BE的长,再根据圆周角定理发现∠BOE=60°,从而根据锐角三角函数求得圆的半径;(2)结合(1)中的有关结论证明△DCE≌△BOE,则它们的面积相等,故阴影部分的面积就是扇形OBC的面积.【解答】解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°∵BD∥AC∴∠BEO=∠ACO=90°,∴DE=EB=BD=(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°又∵∠CED=∠BEO,BE=ED,∴△CDE≌△OBE∴,答:阴影部分的面积为.【点评】本题主要考查切线的性质定理、平行线的性质定理、垂径定理以及全等三角形的判定方法.能够熟练解直角三角形.22.已知:如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D,使∠BDC=30°.(1)求证:DC是⊙O的切线;(2)若AB=2,求DC的长.【考点】切线的判定.【专题】计算题;证明题.【分析】(1)根据切线的判定方法,只需证CD⊥OC.所以连接OC,证∠OCD=90°.(2)易求半径OC的长.在Rt△OCD中,运用三角函数求CD.【解答】(1)证明:连接OC.∵OB=OC,∠B=30°,∴∠OCB=∠B=30°.∴∠COD=∠B+∠OCB=60°.(1分)∵∠BDC=30°,∴∠BDC+∠COD=90°,DC⊥OC.(2分)∵BC是弦,∴点C在⊙O上,∴DC是⊙O的切线,点C是⊙O的切点.(3分)(2)解:∵AB=2,∴OC=OB==1.(4分)∵在Rt△COD中,∠OCD=90°,∠D=30°,∴DC=OC=.(5分)【点评】本题考查了切线的判定,证明经过圆上一点的直线是圆的切线,常作的辅助线是连接圆心和该点,证明直线和该半径垂直.23.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过M作直线MB‖x轴交y 轴于点B.过点A作直线AC∥y轴交于点C,交直线MB于点D,当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由;(4)探索:x轴上是否存在点P,使△OAP是等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.【考点】反比例函数综合题.【分析】(1)将A(3,2)分别代入y=,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)观察图象,得在第一象限内,当0<x<3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值;=S△OAC=×|k|=3,可得S矩形OBDC=12,即OC•OB=12,进而可得m、n的值,(3)由S△OMB故可得BM与DM的大小;比较可得其大小关系;(4)先求出A点坐标,再分OA=OP,OA=AP及OP=AP三种情况进行讨论.【解答】解:(1)∵将A(3,2)分别代入y=,y=ax中,得:2=,3a=2,∴k=6,a=,∴反比例函数的表达式为:y=,正比例函数的表达式为y=x.(2)∵,解得,∴C(3,2)观察图象,得在第一象限内,当0<x<3时,反比例函数的值大于正比例函数的值;(3)BM=DM理由:∵MN ∥x 轴,AC ∥y 轴,∴四边形OCDB 是平行四边形,∵x 轴⊥y 轴,∴▱OCDB 是矩形.∵M 和A 都在双曲线y=上,∴BM ×OB=6,OC ×AC=6,∴S △OMB =S △OAC =×|k|=3,又∵S 四边形OADM =6,∴S 矩形OBDC =S 四边形OADM +S △OMB +S △OAC =3+3+6=12,即OC •OB=12,∵OC=3,∴OB=4,即n=4∴m==,∴MB=,MD=3﹣=,∴MB=MD ;(4)如图,∵S △OAC =OC •AC=3,OC=3,∴AC=2,∴A (3,2),∴OA==,∴当OA=OP 时,P 1(,0);当OA=AP 时,∵AC ⊥x 轴,OC=3,∴OC=CP 2=3,∴P 2(6,0);当OP=AP 时,设P 3(x ,0),∵O (0,0),A (3,2),∴x=,解得x=,∴P 3(,0).综上所述,P 点坐标为P 1(,0),P 2(6,0),P 3(,0).【点评】此题考查的是反比例函数综合题及正比例函数等多个知识点,此题难度稍大,综合性比较强,在解答(3)时要注意进行分类讨论,不要漏解.第21页共21页。
人教版九年级上册数学期末学情评估检测试卷(含答案)
人教版九年级上册数学期末学情评估检测试卷满分:120分时间:120分钟得分:一、选择题(每小题3分,共30分)1.下列图形中,是轴对称图形,但不是中心对称图形的是( )2.下列说法中正确的是( )A.方程x(2x-1)=0的解是x=12B.关于x 的方程5x2+√3=0是一元二次方程C.方程8x²−3x−29=0无实数根D.方程x²−6x−1=0配方后为(x+3)²=103.已知x=-1是关于x 的方程x²+mx+n=0的一个根,则代数式m²+n²−2mn的值为( )A.0B.-1C.1D.±14.对于二次函数y=2x²−3,当--1≤x≤2时,y的取值范围是( )A.-1≤y≤5B.-5≤y≤5C.-3≤y≤5D.-2≤y≤55.如图,把△ABC 绕顶点C 按顺时针方向旋转得到△A'B'C,当A'B'⊥AC 于点D,∠A=47°,∠A'CB=128°时,∠B'CA 的度数为( )A.44°B.43°C.42°D.40°6.2022年第24届冬奥会期间,某网店销售的纪念品从原价20元连续两次涨价达到36元,如果每次涨价的百分率都是x,下面所列方程正确的是( )A.20(1+x)²=36B.36(1−x)²=20C.20(1+2x)=36D.36(1−2x)=207.对于抛物线y=ax²+(2a−1)x+a−3,,当x=1时,y>0,则这条抛物线的顶点一定在( )A.第一象限B.第二象限C.第三象限D.第四象限8.定义: min {a ,b }={a (a ≤b ),b (a ⟩b),若函数2x+3},则该函数的最大值为 ( ) A.0 B.2 C.3 D.49.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转 45°后得到正方形 OA₁B₁C₁,依此方式,绕点 O 连续旋转 2021 次得到正方形 OA₂₀₂₁B₂₀₂₁C₂₀₂₁,那么点 A ₂₀₂₁的坐标是 ( )A.(√22,−√22)B.(1,0)C.(−√22,−√22)D.(0,-1)10.如图为二次函数 y =ax²+bx +c 的图象,直线 y=t(t>0)与抛物线交于A ,B 两点,A ,B 两点横坐标分别为m ,n.根据函数图象信息有下列结论:①abc>0;②m+n=1;③m<-1;④若对于t>0的任意值都有m<-1,则a≥1;⑤当t 为定值时,若a 变大,则线段 AB 变长.其中,正确的结论有 ( )A.①②④B.①③⑤C.①②⑤D.①②二、填空题(每小题3分,共24分)11.若一个一元二次方程的二次项系数是2,常数项是-14,它的一个根为-7,则这个方程为 .12.抛物线 y =x²+bx +c 经过(5,3)和 (−2,3),则b=13.如图, △ABC 为等边三角形, △AO ′B 绕点 A 逆时针旋转后能与 △AOC 重合.若AO=3,则点 O′. O 之间的距离为 .14.一个两位数,十位上的数字比个位上的数字的平方小3,如果把这个数的个位数字与十位数字交换,那么所得到的两位数比原来的数小27,则原来的两位数是 .15.已知关于x 的一元二次方程 ax²+2x +2−c =0有两个相等的实数根,则 1a +c 的值等于 . 16.如图,要修建一个圆形喷水池,在池中心竖直安装一根长度为3.2m 的水管AB ,在水管的顶端A 点处安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离. BC =3m 处达到最高,水柱落地处离池中心距离. BD =8m,则抛物线形水柱的最高点到地面的距离 EC 是 m.17.一副三角板如图放置,将三角板 ADE 绕点A 逆时针旋转 α(0°<α<90°),使得三角板 ADE 的一边所在的直线与 BC 垂直,则α的度数为 .18.已知抛物线 y =x²−2ax +4的对称轴为直线. x =2.将该抛物线上下平移,使其经过点 A(-1,0),与x 轴的另一个交点为B ,点 P 是平移后抛物线上x 轴下方的一点,则 △PAB 的最大面积为 .。
2022-2023学年新人教版初中数学九年级上册期末综合素养评价测试卷(附参考答案)
2022-2023学年新人教版初中数学九年级上册期末综合素养评价测试卷一、选择题(共12小题,满分24分,每小题2分)1.(2分)(2022秋•盱眙县期中)下列方程中是一元二次方程的是( ) A .x +y =2B .2x 2+1=0C .x 2+2x +1=x 2D .xy ﹣9=02.(2分)(2022秋•新抚区期中)下列方程中,关于x 的一元二次方程是( ) A .x 2﹣x (x +3)=0 B .ax 2+bx +c =0 C .x 2﹣2y ﹣1=0D .x 2﹣2x +3=03.(2分)(2022秋•大田县期中)用公式法解方程x 2﹣2x =3时,求根公式中的a ,b ,c 的值分别是( ) A .a =1,b =﹣2,c =3 B .a =1,b =2,c =﹣3 C .a =1,b =2,c =3D .a =1,b =﹣2,c =﹣34.(2分)(2022秋•丹江口市期中)如果m 、n 是一元二次方程x 2﹣x =5的两个实数根,那么多项式m 2﹣mn +n +1的值是( ) A .12B .10C .7D .55.(2分)(2022秋•江夏区期中)抛物线y =12x 2向左平移1个单位,再向上平移2个单位后,所得抛物线的表达式是( ) A .y =12(x +1)2﹣2 B .y =12(x +1)2+2 C .y =12(x ﹣1)2﹣2D .y =12(x ﹣1)2+26.(2分)(2022秋•西湖区校级期中)关于二次函数y =ax 2+bx +c ,自变量x 与函数y 的对应值如表,下列说法正确的是( )x … ﹣3 ﹣2 0 1 … y…7﹣2﹣27…A .图象与y 轴的交点坐标为(0,2)B .图象的对称轴是直线x =1C .y 的最小值为﹣5D.图象与x轴有且只有一个交点7.(2分)(2022秋•江夏区期中)在下列图案中,属于中心对称图形的是()A.B.C.D.8.(2分)(2022秋•法库县期中)以下说法合理的是()A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是23B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率12D.小明做了3次掷均匀硬币的实验,其中有1次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是129.(2分)(2022秋•开福区校级期中)如图,圆锥的底面半径为5,高为12,则该圆锥的侧面积为()A.30πB.60πC.65πD.90π10.(2分)(2022秋•市中区期中)若点A(﹣2,1)在反比例函数y=kx的图象上,则k的值是()A.12B.−12C.2D.﹣211.(2分)(2022秋•肇源县期中)如图四个由小正方体拼成的立体图形中,从正面看是的是()A.B.C.D.12.(2分)(2022秋•奉贤区期中)已知在Rt△ABC中,∠C=90°,AC=4,BC=6,那么下列各式中正确的是()A.tan A=23B.cot A=23C.sin A=23D.cos A=23二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•招远市期中)在平面直角坐标系中,一次函数y=6x与反比例函数y=kx(k>0)的图象交于A(x1,y1),B(x2,y2)两点,则y1+y2的值是.14.(3分)(2022秋•新抚区期中)已知二次函数y=x2﹣2x+1,当﹣5≤x<3时,y的取值范围是.15.(3分)(2022秋•前郭县期中)如图所示的图形绕其中心至少旋转度就可以与原图形完全重合.16.(3分)(2022秋•源汇区校级月考)如图,在正五边形ABCDE中,在AB,BC边上分别取点M,N,使AM=BN,连接AN,EM交于点O,则∠EOA =.17.(3分)(2022秋•惠山区校级期中)如图,在平面直角坐标系xOy 中,点A 、B 、P 的坐标分别为(1,0),(2,3),(3,1).若点C 在第一象限内,且横坐标、纵坐标均为整数,P 是△ABC 的外心,则点C 的坐标为 .18.(3分)(2022秋•城阳区期中)在一个不透明的袋子中装有除颜色外其余均相同的n 个小球,其中15个黑球,从袋中随机摸出一球,记下其颜色,之后把它放回袋中,这称为一次摸球试验.搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表: 摸球试验次数 100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出n 的值是 . 三、解答题(共9小题,满分78分)19.(8分)(2022秋•大田县期中)解下列方程: (1)x 2﹣2x ﹣8=0; (2)(x ﹣1)2=2x (x ﹣1).20.(8分)(2022秋•漳州期中)已知关于x 的方程x 2﹣2x +m ﹣2=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)若3x 1+3x 2﹣x 1x 2=5,求m 值.21.(9分)(2022秋•鄞州区校级期中)如图,在Rt△ABC中,∠ABC=90°,斜边AC的垂直平分线交BC于点D,交AC于点E,连接BE.(1)若BE是△AEC外接圆的切线,求∠C的大小;(2)当AB=4,BC=8时,求△DEC外接圆的半径.22.(9分)(2022秋•莱芜区期中)北京时间2022年6月5日10时44分,神舟十四号载人飞船在酒泉发射升空,为弘扬航天精神,某校在教学楼上从楼顶位置悬挂了一幅励志条幅GF.如图,已知楼顶到地面的距离GE为18.5米,当小亮站在楼前点B处,在点B正上方点A处测得条幅顶端G的仰角为37°,然后向教学楼方向前行15米到达点D处(楼底部点E与点B,D在一条直线上),在点D正上方点C处测得条幅底端F的仰角为42°,若AB,CD均为1.7米(即四边形ABDC为矩形),请你帮助小亮计算:(1)当小亮站在B处时离教学楼的距离BE;(2)求条幅GF的长度.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(8分)(2022秋•如东县期中)某汽车4S店销售A,B两种型号的轿车,具体信息如下表:每辆进价(万元)每辆售价(万元)每季度销量(辆)A60x﹣x+100B50y﹣2y+150(注:厂家要求4S店每季度B型轿车的销量是A型轿车销量的2倍.)根据以上信息解答下列问题:(1)用含x的代数式表示y;(2)今年第三季度该4S店销售A,B两种型号轿车的利润恰好相同(利润不为0),试求x的值;(3)求该4S店第四季度销售这两种轿车能获得的最大利润.24.(9分)(2022秋•李沧区期中)如图所示为某商场的一个可以自由转动的转盘,商场规定顾客购物满100元即可获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品,如表是活动进行中的统计数据:50100200500800100020005000转动转盘的次数227110931247361211933004落在“纸巾”区的次数根据以上信息,解析下列问题:(1)请估计转动该转盘一次,获得纸巾的概率是;(精确到0.1)(2)现有若干个除颜色外都相同的白球和黑球,根据(1)的结论,在保证获得纸巾和免洗洗手液概率不变的情况下,请你设计一个可行的摸球抽奖规则,详细说明步骤;(3)小明和小亮都购买了超过100元的商品,均获得一次转动转盘的机会,根据(2)中设计的规则,利用画树状图或列表的方法求两人都获得纸巾的概率.25.(9分)(2022秋•南召县期中)如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC和△A1B1C1的位似中心M点的位置并写出M点的坐标.(2)若以点A 1为位似中心,请你帮小明在图中画出△A 1B 1C 1的位似图形△A 2B 2C 2,且△A 1B 1C 1与△A 2B 2C 2的位似比为2:1. (3)直接写出(2)中C 2点的坐标.26.(9分)(2022秋•宁波期中)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B . (1)求证:∠DF A =∠ECD ;(2)△ADF 与△DEC 相似吗?为什么?(3)若AB =4,AD =3√3,AE =3,求AF 的长.27.(9分)(2022秋•招远市期中)如图,一次函数y =kx +b 与反比例函数y =12x(x >0)的图象交于A (m ,6),B (n ,3)两点. (1)求一次函数的解析式;(2)若M 是x 轴上一点,S △MOB =S △AOB ,求点M 的坐标; (3)当x >0时,根据图象直接写出kx +b −12x>0时,x 的取值范围.参考答案一、选择题(共12小题,满分24分,每小题2分)1.B;2.D;3.D;4.A;5.B;6.C;7.A;8.D;9.C;10.D;11.C;12.B;二、填空题(共6小题,满分18分,每小题3分)13.014.0≤y≤1615.4516.72°17.(4,3)或(5,0)或(5,2)18.30;三、解答题(共9小题,满分78分)19.解:(1)∵x2﹣2x﹣8=0,∴(x+2)(x﹣4)=0,则x+2=0或x﹣4=0,解得x1=﹣2,x2=4;(2)∵(x﹣1)2=2x(x﹣1),∴(x﹣1)2﹣2x(x﹣1)=0,∴(x﹣1)(﹣x﹣1)=0,则x﹣1=0或﹣x﹣1=0,解得x1=1,x2=﹣1.20.解:(1)∵关于x的方程x2﹣2x+m﹣2=0有两个实数根x1、x2,∴Δ=(﹣2)2﹣4(m﹣2)=12﹣4m≥0,∴m≤3;(2)由题意得:x1+x2=2,x1•x2=m﹣2,∵3x1+3x2﹣x1x2=5,∴6﹣(m﹣2)=5,∴m=3.21.解:(1)设DC的中点为O,连接OE,∵DE垂直平分AC,∴∠DEC=90°,∴DC是△AEC外接圆的的直径,∵BE是⊙O的切线,∴∠OEB=90°,∴∠EBO+∠BOE=90°,在Rt△ABC中,E为斜边AC的中点,∴BE=EC=AE=12AC,∴∠EBO=∠C,由圆周角定理得:∠BOE=2∠C,∵∠EBO+∠BOE=90°,∠EBO=∠C,∴∠C+2∠C=90°,∴∠C=30°;(2)在Rt△ABC中,AC=√AB2+BC2=√42+82=4√5,则BE=12AC=2√5,∵∠CED=∠CBA=90°,∠ECD=∠BCA,∴△CED∽△CBA,∴CECB =CDCA,即2√58=4√5,解得:CD=5,则△DEC外接圆的半径为52.22.解:(1)延长AC交EG于H,则AB=CD=EH=1.7米,AC=BD,AH=BE,∵GE=18.5米,∴HG=EG﹣HE=18.5﹣1.7=16.8(米),在Rt△AGH中,∠GAH=37°,∴tan37°=GHAH =16.815+CH≈0.75,∴CH=7.4,∴BE=AH=15+7.4=22.4(米),答:小亮站在B处时离教学楼的距离BE为22.4米;(2)由(1)知CH=7.4米,在Rt△FCH中,∵∠FCH=42°,∴tan42°=FHCH =FH7.4≈0.90,∴FH=6.66,∴FG=GH﹣FH=16.8﹣6.66≈10.1(米),答:条幅GF的长度约为10.1米.23.解:(1)根据题意得:﹣2y+150=2(﹣x+100),整理得:y=x﹣25;(2)根据题意得:(x﹣60)(﹣x+100)=(y﹣50)(﹣2y+150),由(1)知,y=x﹣25,∴(x﹣60)(﹣x+100)=(x﹣75)(﹣2x+200),整理得:x2﹣190x+9000=0,解得x1=90,x2=100,∵x=100时利润为0,∴x的值为90;(3)设该4S店第四季度销售这两种轿车能获得的利润为w万元,则w=(x﹣60)(﹣x+100)+(y﹣50)(﹣2y+150)=(x﹣60)(﹣x+100)+(x﹣75)(﹣2x+200)=﹣3x2+510x﹣21000=﹣3(x﹣85)2+675,∵﹣3<0,∴当x=85时,w有最大值,最大值为675,答:该4S店第四季度销售这两种轿车能获得的最大利润为675万元.24.解:(1)估计转动该转盘一次,获得纸巾的概率约是0.6(精确到0.1);故答案为:0.6;(2)摸球抽奖规则:把3个白球和2个黑球放入一个不透明的袋子(5个球除颜色外都相同),顾客购物满100元即可获得一次摸球的机会,当摸到白球时奖品为纸巾,摸到黑球时奖品为免洗洗手液;(3)画树状图为:共有25种等可能的结果数,其中两人都获得纸巾的结果数为9,.所以两人都获得纸巾的概率为92525.解:(1)如图,点M为所作,M点的坐标为(0,2);(2)如图,△A2B2C2即为所求;(3)C2(﹣4,2).26.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠ECD=180°,∵∠AFE =∠B ,∴∠AFE +∠ECD =180°,∵∠AFE +∠AFD =180°,∴∠DF A =∠ECD .(2)解:相似,理由如下:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,CD =AB =4,∴∠ADF =∠CED ,又∵∠DF A =∠ECD ,∴△ADF ∽△DEC .(3)解:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵AE ⊥BC ,∴AE ⊥AD ,在Rt △EAD 中,DE =√AE 2+AD 2=√32+(3√3)2=6, ∵△ADF ∽△DEC ,∴AD DE =AF DC ,即3√36=AF 4. ∴AF =2√3.27.解:(1)把点A 代入y =12x 得:6=12m , 解得m =2,把点A 代入y =12x 得3=12n , 解得n =4,∴A (2,6),B (4,3),设要求的一次函数的表达式为y =kx +b ,由题意得:{6=2k +b 3=4k +b, 解之得:{k =−32b =9,∴一次函数的表达式为y=−32x+9;(2)设直线AB交x轴于点P,则0=−32x+9,∴x=6,∴P(6,0),∴S△AOB =S△AOP﹣S△BOP=12×6×6−12×6×3=18−9=9,∴S△MOB=9,设点M的坐标为(m,0),∴OM=|m|,∴12×3×|m|=9,∴|m|=6,∴m=±6,∴点M的坐标为(6,0)或(﹣6,0);(3)观察图象可知,kx+b−12x>0时x的取值范围是2<x<4.。
新人教版九年级数学上学期期末考试试题 (含答案)(共6套)
九年级数学上学期期末试题★友情提示:① 所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效; ② 试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答.题卡..的相应位置填涂) 1.在平面直角坐标系中,点M (1,-2)与点N 关于原点对称,则点N 的坐标为 A .(-2, 1) B .(1,-2) C .(2,-1) D .(-1,2) 2.用配方法解一元二次方程0122=-+x x ,可将方程配方为A .()212=+x B .()012=+x C .()212=-x D .()012=-x3.下列事件中,属于随机事件的有① 任意画一个三角形,其内角和为360°; ② 投一枚骰子得到的点数是奇数; ③ 经过有交通信号灯的路口,遇到红灯; ④ 从日历本上任选一天为星期天.A .① ② ③B .② ③ ④C .① ③ ④D .① ② ④ 4.下列抛物线中,顶点坐标为(4,-3)的是A .()342-+=x y B .()342++=x y C .()342--=x y D .()342+-=x y5.有n 支球队参加篮球比赛,共比赛了15场,每两个队之间都只比赛一场,则下列方程中符合题意的是A .()151=-n nB .()151=+n nC .()301=-n nD .()301=+n n6.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的实验最有可能的是A .袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球B .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6C .在“石头、剪刀、布”的游戏中,小宇随机出的是“剪刀”D .掷一枚质地均匀的硬币,落地时结果是“正面向上”7.如果一个正多边形的中心角为60°,那么这个正多边形的边数是 A .4 B .5 C .6 D .78.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xy 1-=的图象上的两点,若x 1<0<x 2,则下列结论正确的是A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<09.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D , 且CO =CD ,则∠PCA =A .30°B .45°C .60°D .67.5°(第6题图)DCB OAP(第9题图)10.如图,在Rt △ABC 和Rt △ABD 中,∠ADB =∠ACB =90°,∠BAC =30°,AB =4,AD =22,连接DC ,将Rt △ABC 绕点B 顺时针旋转一周,则线段DC 长的取值范围是 A .2≤DC ≤4 B .22≤DC ≤4C .222-≤DC ≤22D .222-≤DC ≤222+二、填空题(本大题共6小题,每空4分,共24分.将答案填入答题卡...的相应位置) 11.如图,在平面直角坐标系xOy 中,矩形OABC ,OA =2, OC =1, 写出一个函数()0≠=k xky ,使它的图象与矩形OABC 的边 有两个公共点,这个函数的表达式可以为 . 12.已知关于x 的方程032=++a x x 有一个根为-2,a = .13.圆锥的底面半径为7cm ,母线长为14 cm ,则该圆锥的侧面展开图的圆心角为 °. 14.设O 为△ABC 的内心,若∠A =48°,则∠BOC = °. 15.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF =CD =4 cm ,则球的半径为 cm . 16. 抛物线c bx ax y ++=2(a >0)过点(-1,0)和点(0,-3),且顶点在第四象限,则a 的取值范围是 .C A B Oy x(第11题图)CDAB(第10题图)CEFD(第15题图)三、解答题(本大题共9小题,共86分.在答题卡...的相应位置作答) 17.(每小题4分,共8分)解方程:(1)022=+x x ; (2)01232=-+x x . 18.(8分)已知关于x 的方程 )0(03)3(2≠=+++k x k kx .(1)求证:方程一定有两个实数根;(2)若方程的两个实数根都是整数,k 为正整数,求k 的值.19.(8分)有甲、乙两个不透明的布袋,甲袋中有3个完全相同的小球,分别标有数字0,1和2;乙袋中有3个完全相同的小球,分别标有数字1,2和3,小明从甲袋中随机取出1个小球,记录标有的数字为x ,再从乙袋中随机取出1个小球,记录标有的数字为y ,这样确定了点M 的坐标(x ,y ).(1)写出点M 所有可能的坐标;(2)求点M 在直线3+-=x y 上的概率.20.(8分)如图,直线y =x +2与y 轴交于点A ,与反比例函数()0≠=k xky 的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =2BO ,求反比例函数的解析式.21.(8分)如图,12×12的正方形网格中的每个小正方形的边长都是1,正方形的顶点叫做格点.矩形ABCD 的四个顶点A ,B ,C ,D 都在格点上,将△ADC 绕点A 顺时针方向旋转得到△AD ′C ′,点C 与点C ′为对应点.(1)在正方形网格中确定D ′的位置,并画出△AD ′C ′;(2)若边AB 交边C ′D ′于点E ,求AE 的长.22.(10分)在矩形ABCD 中,AB =8,BC =6,将矩形按图示方式进行分割,其中正方形AEFG 与正方形JKCI 全等,矩形GHID 与矩形EBKL 全等. (1)当矩形LJHF 的面积为43时,求AG 的长; (2)当AG 为何值时,矩形LJHF 的面积最大.(第21题图)L HI K J F EDBC AG (第22题图)23.(10分)如图,点A ,C ,D ,B 在以O 点为圆心,OA 长为半径的圆弧上,AC=CD=DB ,AB 交OC 于点E .求证:AE =CD .24.(12分)如图,在等边△BCD 中,DF ⊥BC 于点F ,点A 为直线DF 上一动点,以B 为旋转中心,把BA 顺时针方向旋转60°至BE ,连接EC .(1)当点A 在线段DF 的延长线上时,① 求证:DA =CE ;② 判断∠DEC 和∠EDC 的数量关系,并说明理由; (2)当∠DEC =45°时,连接AC ,求∠BAC 的度数.25.(14分)如图,在平面直角坐标系xOy 中,二次函数c bx ax y ++=2(0≠a )的图象经过A (0,4),B (2,0),C (-2,0)三点. (1)求二次函数的解析式; (2)在x 轴上有一点D (-4,0),将二次函数 图象沿DA 方向平移,使图象再次经过点B . ① 求平移后图象顶点E 的坐标;② 求图象 A ,B 两点间的曲线部分在平移过程中所扫过的面积.南平市2017-2018学年第一学期九年级期末质量检测数学试题参考答案及评分说明命题教师:蒋剑虹 欧光宇 王颖 曹美兰 说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分.(2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分. (3)若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分. (4)评分只给整数分.选择题和填空题不给中间分. 一、选择题(本大题共10小题,每小题4分,共40分)1.D ; 2.A ; 3.B ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B ; 9.D ; 10.D . 二、填空题(本大题共6小题,每小题4分,共24分)11.如:xy 1=(答案不唯一,0<k <2的任何一个数); 12.2; 13.180; 14.114; 15.2.5; 16.0<a <3.三、解答题(本大题共9小题,共86分) 17.(每小题4分,共8分)(第25题图)E DF B CA (第24题图) O ABC DE (第23题图)(1) 解: 0)2(=+x x ……………………………………………………………2分 ∴2,021-==x x .……………………………………………………4分(2)解:1,2,3-===c b a∴ 161-34-22=⨯⨯=∆)(∴64232162±-=⨯±-=x …………………………………………2分∴1,3121-==x x . …………………………………………………4分18.(8分)(1)证明:9634)3(22+-=⋅⋅-+=∆k k k k0)32≥-=k (,……………………………………………………2分∴方程一定有两个实数根. …………………………………………3分(2)解:3,3,=+==c k b k a ,22)3(34)3-=⋅⋅-+=∆∴k k k (,kk k k k k x 2)3(32)3()3(2-±--=-±+-=∴,kx x 3,121-=-=∴ ,………………………………………………6分∵方程的两个实数根都是整数,∴正整数31或=k .…………………………………………………8分19.(8分)解:(1)方法一:列表:从表格中可知,点1,1),(1,2),(1,3),(2,1),(2,2),(2,3).……………………………………………………………3分 方法二:从树形图中可知,点M 坐标总共有九种可能情况:(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).……………………………………………………………3分 (2)当x =0时,y=-0+3=3,当x =1时,y=-1+3=2,当x =2时,y=-2+3=1,……………………………………………………6分 由(1)可得点M 坐标总共有九种可能情况,点M 落在直线y =-x +3上(记为事 件A )有3种情况.∴P(A )3193==.…………………………………………8分20.(8分)解: 当x =0时,y =2,∴A (0,2),…………………………………2分∴A O=2,∵AO =2BO ,∴B O=1,………………………………………………4分 当x =1时,y =1+2=3,∴C (1,3), ……………………………………………6分 把C (1,3)代入xky =,解得:3=k xy 3:=∴反比例函数的解析式为…………………………………………………8分 21.(8分)解:(1)准确画出图形;…………………………………………………3分(2)方法一:∵将△ADC 绕点A 顺时针方向旋转得到△AD ′C ′,点C 与点C ′为对应点, ∴△ADC ≌△AD ′C ′,∴AC =AC ′,AD ′=AD =5,CD ′=CD =10,∠AD ′C ′=∠ADC =90°,∠AC ′D ′=∠ACD , ∵AB ∥CD ,∴∠BAC =∠ACD ,∵AB ⊥C C ′,AC =AC ′,∴∠BAC =∠C ′AB ,∴∠AC ′D ′=∠C ′AB ,∴C ′E =AE .…………………………………………………5分 222R E C BE B C BE C t '=+''∆中,在,x AE AB BE x AE -10-,===则设, 222)-105x x =+(,……………………………………………………………………7分425:=x 解得.425的长为答:AE ……………………………8分方法二:以点D 为原点,CD 所在直线为x 轴, AD 所在直线为y 轴,如图2建立平面直角坐标系.∴A (0,5),D ′(-4,2),C ′(-10,10). (4)设直线D ′C ′的解析式为:b kx y +=(k ≠0),∴⎩⎨⎧+-=+-=b k b k 101042,解得:⎪⎩⎪⎨⎧-=-=31034b k , ∴直线D ′C ′的解析式为:31034--=x y , ………………………………6分当y =5时,310345--=x ,解得:425-=x , …………………………7分∴E (425-,5),∴AE =425.………………………………………………8分22.(10分)解:(1) 正方形AEFG 和正方形JKCI 全等,矩形GHID 和矩形EBKL 全等,设AG =x ,DG =6-x ,BE =8-x ,FL=x -(6-x )=2x -6,LJ =8-2x ,(第21题答题图1)方法1: LJ FL S LIHF ⋅=矩形 ,∴43)28)(62(=--x x ………………………………………………………………2分∴415,41321==x x ,∴AG =413或AG =415.………………………………………4分方法2:AEFG DGHI ABCD LIHF S S S S 正方形矩形矩形矩形22--=)6)(8(2248432x x x ----=∴,…………………………………………………2分 ∴415,41321==x x ,∴AG =413或AG =415.………………………………………4分(2)设矩形LJHF 的面积为S ,)28)(62(x x S --=…………………………………………………………………6分482842-+-=x x1)27(42+--=x …………………………………………………………………8分04<-=a , ∴S 有最大值,∴当AG =7 时,矩形LJHF 的面积最大.………………………………………10分2-902ACO ==∠∴︒,…………5分 ACE CAE AEC ACE ∠∠=∠∆︒--180中,在)290(180AOCAOC ∠--∠-=︒︒2-90AOC∠=︒,……………………………………………………………………6分 AEC ACE ∠=∠∴, ………………………………………………………………7分 AE AC =∴, ……………………………………………………………………8分 CD AC = ,CD AE =∴.………………………………………………………10分 方法二:连接OC ,OD ,∵AC=CD=DB ,∴DB CD AC 弧弧弧==,∴BOD COD AOC ∠=∠=∠,……………………………………………………2分 ∴AOC COD DOB COD COB ∠=∠=∠+∠=∠22,∵CAE COB ∠=∠2,∴CAE AOC ∠=∠,………………………………………4分 ∵∠CAO =∠CAE +∠EAO ,∠AEC =∠AOC +∠EAO ,∴∠CAO =∠AEC ,…………………………………………………………………6分 OC OA AOC =∆中,在, ∴∠ACO =∠CAO ,∴∠ACO =∠AEC ,AE AC =∴, ………………………………………………8分 CD AC = ,CD AE =∴…………………………………………………………10分 方法三:连接AD ,OC ,OD , ∵AC=DB ,∴弧AC =弧BD ,∴∠ADC =∠DAB ,…………………………………………………………………2分 ∴CD ∥AB ,∴∠AEC =∠DCO ,…………………………………………………………………4分 ∵AC=CD ,AO=DO , ∴CO ⊥AD ,(第23题答题图)∴∠ACO =∠DCO ,…………………………………………………………………6分 ∴∠ACO =∠AEC ,∴AC =AE ,……………………………………………………8分 ∵AC=CD ,∴AE =CD .……………………………………………………………10分 24.(12分)(1)①证明:∵把BA 顺时针方向旋转60°至BE ,∴=∠=ABE BE BA ,60°, ………………………………1分 在等边△BCD 中,BC DB =∴,︒=∠60DBCFBA FBA DBC DBA ∠+︒=∠+∠=∠∴60, FBA CBE ∠+︒=∠60 ,CBE DBA ∠=∠∴,…………………………………………2分 ∴△BAD ≌△BEC , ∴DA =CE ;…………………………………………………3分②判断:∠DEC +∠EDC =90°.…………………………4分DC DB = ,BC DA ⊥,︒=∠=∠∴3021BDC BDA ,∵△BAD ≌△BEC ,∴∠BCE =∠BDA =30°,……………………………………………………………5分 在等边△BCD 中,∠BCD =60°,∴∠ACE =∠BCE +∠BCD =90°,∴∠DEC +∠EDC =90°.……………………6分 (2)分三种情况考虑:①当点A 在线段DF 的延长线上时(如图1),由(1)可得, 为直角三角形DCE ∆,︒=∠∴90DCE , ︒︒︒=∠-=∠=∠459045DEC EDC DEC 时,当, DEC EDC ∠=∠∴,CE CD =∴,由(1)得DA =CE ,∴CD =DA ,CD BD DBC =∆中,在等边,CD DA BD ==∴ ︒=∠∴60BDC ,BC DA ⊥ ,︒=∠=∠=∠∴3021BDC CDA BDA , ……………………………………………7分DA DB BDA =∆中,在,︒︒=∠=∠∴752-180BDA BAD ,DC DA DAC =∆中,在,︒︒=∠=∠∴752-180ADC DAC ,︒︒︒=+=∠+∠=∠∴1507575DAC BAD BAC . …………………………………8分②当点A 在线段DF 上时(如图2),BE BA B 至顺时针方向旋转为旋转中心,把以︒60 , 60=∠=∴ABE BE BA ,,60=∠=∆DBC BC BD BDC ,中,在等边,ABE DBC ∠=∠∴,ABC ABE ABC DBC ∠∠=∠∠--, EBC DBA ∠=∠即, DBA ∆∴≌CBE ∆,CE DA =∴, …………………………9分 90R =∠∆DFC DFC t 中,在, DF ∴<DC , ∵DA <DF ,DA =CE , ∴CE <DC ,由②可知为直角三角形DCE ∆,∴∠DEC ≠45°. ……………………………10分③当点A 在线段FD 的延长线上时(如图3),同第②种情况可得DBA ∆≌CBE ∆, ECB ADB CE DA ∠=∠=∴,,60=∠=∠∆BCD BDC BDC 中,在等边,BC DA ⊥ ,E DF B CA (第24题答题图1) ED A ED F B C A (第24题答题图2)3021=∠=∠=∠∴BDC CDF BDF ,150180=∠-=∠∴︒BDF ADB , 150=∠=∠∴ADB ECB ,90=∠-∠=∠∴BCD ECB DCE ,︒︒︒=∠-=∠=∠459045DEC EDC DEC 时,当, DEC EDC ∠=∠∴, CE CD =∴,∴AD =CD =BD ,……………………………………………11分 ∵ 150=∠=∠ADC ADB ,152-180=∠=∠∴︒ADB BAD , 152-180=∠=∠︒CDA CAD , 30=∠+∠=∠∴CAD BAD BAC ,.30150 或的度数为综上所述,BAC ∠ …………………12分25.(14分)(1)得)代入()()(把c bx ax y C B A ++=20,2-,0,2,4,0,⎪⎩⎪⎨⎧=+-=++=0240244c b a c b a c ,…………………………2分⎪⎩⎪⎨⎧==-=401:c b a 解得,42+-=∴x y .………………………………4分 (2)① 设直线DA 得解析式为y =kx +d (k ≠0), 把A (0,4),D (-4,0)代入得, ⎩⎨⎧=+-=044d k d ,⎩⎨⎧==41:d k 解得, ∴y =x +4,…………………………………………………………………………6分 设E (m ,m +4),平移后的抛物线的解析式为:4)(2++--=m m x y . 把B (2,0)代入得:04)-2-2=++m m ( 不符合题意,舍去),解得(0521==m m , ∴E (5,9). ……………………………………………………………………8分 ② 如图,连接AB ,过点B 作BL ∥AD 交平移后的抛物线于点G ,连接EG ,∴四边形ABGE 的面积就是图象A ,B 两点间的部分扫过的面积.…………10分 过点G 作GK ⊥x 轴于点K ,过点E 作EI ⊥y 轴于点I ,直线EI ,GK 交于点H . 方法一:由点A (0,4)平移至点E (5,9),可知点B 先向右平移5个单位,再向上平移5个单位至点G . ∵B (2,0),∴点G (7,5),…………………………………………………12分 ∴GK =5,OB =2,OK =7, ∴BK =OK -OB =7-2=5, ∵A (0,4),E (5,9), ∴AI =9-4=5,EI =5, ∴EH =7-5=2,HG =9-5=4,∴GBK EHG AEI AOB IOKH ABGH ∆∆∆∆=S -S -S -S -S S 矩形四边形 3025-8-635521-4221-5521-4221-97==⨯⨯⨯⨯⨯⨯⨯⨯⨯=答:图象A ,B 两点间的部分扫过的面积为30. ……………………………14分(第25题答题图)方法二:b x y BL '+=的解析式为设直线, 02:0,2='+b B )代入得(把点,2-='b ,2-=∴x y ,⎩⎨⎧+--=-=9)5(22x y x y 联立,⎩⎨⎧==02:11y x 解得,⎩⎨⎧==5722y x , ∴点G (7,5), …………………………………………………………………12分 ∴GK =5,OB =2,OK =7, ∴BK =OK -OB =7-2=5, ∵A (0,4),E (5,9), ∴AI =9-4=5,EI =5, ∴EH =7-5=2,HG =9-5=4,∴GBK EHG AEI AOB IOKH ABGH ∆∆∆∆=S -S -S -S -S S 矩形四边形3025-8-635521-4221-5521-4221-97==⨯⨯⨯⨯⨯⨯⨯⨯⨯=答:图象A ,B 两点间的部分扫过的面积为30. ……………………………14分山东省济宁市金乡县2018届九年级数学上学期期末教学质量检测试题说明:请将正确答案按照要求填写在答题卡上. 一、选择题(每小题3分,共30分)1.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )2.在Rt △ABC 中,∠C=90,sinA=,BC=6,则AB=( ) A.4 B.6 C.8 D.103.已知关于x 的一元二次方程 有两个不相等的实数根,则实数k 的取值范围是( ) A.k1 B.k1 C.k-1 D.k-14.已知点A(2,y1)、B(4,y2)都在反比例函数 的图象上,则y1、y2的大小关系为( )A. y1<y2B. y1>y2C. y1=y2D. 无法确定5.如果圆锥的母线长为5cm ,底面半径为2cm ,那么这个圆锥的侧面积是( ) A.10B.20C.10D.206.如图,小明要测量河内小鸟B到河边公路l的距离,在A点测得∠BAD=30,在C点测得∠BCD=60,又测得AC=50米,则小岛B到公路l的距离为()米A.25B.25C.D.25+257.小明想测一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米,已知斜坡的坡角为30,同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为()A.(6+米B.12米C. (4+米D.10米8.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C 为弧ABO上的一点(不与O、A两点重合),则cosC的值是()A. B. C. D.9.二次函数的图象如图,并且关于x的一元二次方程有两个不相等的实数根,下列结论:;;;,其中,正确的个数有()A.B.C.D.10.在四边形ABCD中,∠B=90,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()二、填空(每小题3分,共15分)11.sin60的值等于 .12.将抛物线向左平移3个单位,再向下平移4个单位,那么得到的抛物丝的表达式为 .13.如图,在平面直角坐标系xOy中,ABC由ABC绕点P旋转得到的,则点P的坐标为 .14.如图,RtABC中,∠ACB=90,AC=2,以点C为圆心,CB的长为半径画弧,与边AB交于点D,将BD绕点D旋转180后点B与点A恰好重合,则图中阴影部分的面积为 .15.如图,在反比例函数的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数的图象上运动,若tan∠CAB=2,则k的值为 .三、解答题(共55分,请将解答过程写在答题卡上)16.(6分)解一元二次方程:17.(6分)如图所示,在四张背面完全相同的纸牌的正面分别画有四个不同的几何图形.将这四张纸牌背面朝上洗匀后摸出一张,不放回,再摸出一张.(1)用树状图(或列表法)表示两次膜牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求膜出的两张纸牌牌面上所画几何图形既是轴对称图形又是中心对称图形的概率.18.(7分)如图,一次函数和反比例函数的图象交于点A(-1,6),B(a,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y1>y2时,x的取值范围.19.(8分)如图,小东在教学楼的窗口C处,测得正前方旗杆顶部A点的仰角为37,旗杆底部B的俯角为45,旗杆AB=14米.(1)求教学楼到旗杆的距离;(2)求AC的长度;(参考数据:sin37≈0.60,cos37≈0.80,tan37≈0.75)20.(8分)如图,已知RtABC,∠C=90,D为BC的中点,以AC为直径的⊙O交AB于点E. (1)求证:ED是⊙O的切线;(2)若AE:EB=1:2,BC=6,求AE的长.21.(9分)某超市在“元宵节”来临前夕,购进一种品牌元宵,每盒进价是20元,超市规定每盒售价不得少于25元.根据以往销售经验发现:当售价定为每盒25元时,每天可卖出250盒,每盒售价每提高1元,每天要少卖出10盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,第天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种元宵的每盒售价不得高于38元.如果超市想要每天获得不低于2000元的利润,那么超市每天至少销售元宵多少盒?22.(11分)如图:抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A、O、D、E为顶点的四边形是平行四边形,求D点的坐标;(3)P是抛物线上第一象限内的动点,过P作PM⊥x轴垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出P点的坐标;若不存在,说明理由.九年级数学上学期期末考试试题注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,全卷共8页,满分120分,考试时间120分钟。
人教版九年级上册数学期末考试试题含答案
人教版九年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列手机手势解锁图案中,是中心对称图形的是()A .B .C .D .2.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A .事件①是必然事件,事件②是随机事件B .事件①是随机事件,事件②是必然事件C .事件①和②都是随机事件D .事件①和②都是必然事件3.下列方程中,是一元二次方程的是()A .x +1x=0B .ax 2+bx +c =0C .x 2+1=0D .x ﹣y ﹣1=04.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.抛物线y=(x+2)2-3的对称轴是()A .直线x =2B .直线x=-2C .直线x=-3D .直线x=36.关于反比例函数y =﹣4x的图象,下列说法正确的是()A .经过点(﹣1,﹣4)B .图象是轴对称图形,但不是中心对称图形C .无论x 取何值时,y 随x 的增大而增大D .点(12,﹣8)在该函数的图象上7.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,若∠P=40°,则∠B 的度数为()A .20°B .25°C .40°D .50°8.若关于x 的方程kx 2﹣2x ﹣1=0有实数根,则实数k 的取值范围是()A.k>﹣1B.k<1且k≠0C.k≥﹣1且k≠0D.k≥﹣19.如图,直线y=2x与双曲线2yx在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0)B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)10.如图,是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③若(﹣5,y1),(3,y2)是抛物线上两点,则y1=y2;④4a+2b+c<0,其中说法正确的()A.①②B.①②③C.①②④D.②③④二、填空题11.点P(4,﹣6)关于原点对称的点的坐标是_____.12.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.13.已知正六边形的边长为10,那么它的外接圆的半径为_____.14.白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_____个飞机场.15.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=6x(x>0)和y=﹣8x(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.16.如图,在4×4的正方形网格中,若将△ABC绕着点A逆时针旋转得到△AB′C′,则BB'的长为_____.三、解答题17.解方程:x2﹣4x﹣12=0.18.网购已经成为一种时尚,某网络购物平台“双十一”全天交易额逐年增长,2017年交易额为500亿元,2019年交易额为720亿元,求2017年至2019年“双十一”交易额的年平均增长率.19.在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有1名男生和1名女生获得音乐奖.(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.20.如图,破残的圆形轮片上,弦AB的垂直平分线交 AB于点C,交弦AB于点D.已知CD=c m.12AB=cm,4(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.21.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CFA度数;(2)求证:AD∥BC.22.如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (1,a),B(3,b)两点.(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求△PAB的面积.23.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:DE平分∠BEP;(3)若⊙O的半径为10,CF=2EF,求BE的长.24.如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.25.已知抛物线y=1x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.2(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.参考答案1.B【分析】根据中心对称图形的概念判断即可.【详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故选B.【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.C【解析】【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【点睛】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.4.B【分析】常数项移到方程左边,两边都加上一次项系数一半的平方,最后再把左边写成完全平方式,右边化简即可.【详解】解:∵x2-2x-5=0∴x 2-2x=5∴x 2-2x+1=5+1∴()216x -=.故答案为:B .【点睛】本题考查用配方法解一元二次方程.其关键是化二次项系数为1,算准一项系数一半的平方及用准完全平方公式.当一项系数为负时,用完全平方差公式;当一项系数为正时,用完全平方和公式5.B 【详解】试题解析:在抛物线顶点式方程2()y a x h k =-+中,抛物线的对称轴方程为x =h ,2(2)3y x =+- ,∴抛物线的对称轴是直线x =-2,故选B.6.D 【分析】反比例函数()0ky k x=≠的图象k 0>时位于第一、三象限,在每个象限内,y 随x 的增大而减小;0k <时位于第二、四象限,在每个象限内,y 随x 的增大而增大;在不同象限内,y 随x 的增大而增大,根据这个性质选择则可.【详解】∵当12x =时,4842y =-=-∴点(12,﹣8)在该函数的图象上正确,故A 、B 、C 错误,不符合题意.故选:D .【点睛】本题考查了反比例函数的性质,掌握反比例函数的性质及代入求点坐标是解题的关键.7.B 【分析】连接OA ,由切线的性质可得∠OAP=90°,继而根据直角三角形两锐角互余可得∠AOP=50°,再根据圆周角定理即可求得答案.【详解】连接OA ,如图:∵PA 是⊙O 的切线,切点为A ,∴OA ⊥AP ,∴∠OAP=90°,∵∠P=40°,∴∠AOP=90°-40°=50°,∴∠B=12∠AOB=25°,故选B.【点睛】本题考查了切线的性质,圆周角定理,正确添加辅助线,熟练掌握切线的性质定理是解题的关键.8.D 【分析】根据根的判别式(240b ac =-≥△)即可求出答案.【详解】当原方程为一元一次方程时,k=0,此时方程y=-2x-1有实数解当原方程为一元二次方程时,由题意可知:440k +≥△=时,方程有实数解∴1k ≥-故选:D .【点睛】本题考查了根的判别式的应用,因为存在实数根,所以根的判别式成立,以此求出实数k 的取值范围.9.D 【解析】试题分析:联立直线与反比例解析式得:y 2x{2y x==,消去y 得到:x 2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A (1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D .10.B 【分析】根据题意和函数图象,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图象可得,0a >,0b >,0c <,则0abc <,故①正确;∵该函数的对称轴是1x =-,∴12ba-=-,得20a b -=,故②正确;∵()154---=,()314--=,∴若(﹣5,y 1),(3,y 2)是抛物线上两点,则12y y =,故③正确;∵该函数的对称轴是1x =-,过点(﹣3,0),∴2x =和4x =-时的函数值相等,都大于0,∴420a b c ++>,故④错误;故正确是①②③,故选:B .【点睛】本题考查了二次函数的性质,掌握二次函数的图像和性质是解题的关键.11.(﹣4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】点P (4,﹣6)关于原点对称的点的坐标是(﹣4,6),故答案为:(﹣4,6).【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标.12.(0,﹣7)【分析】根据题意得出0x =,然后求出y 的值,即可以得到与y 轴的交点坐标.【详解】令0x =,得7y =-,故与y 轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y 轴的交点坐标问题,掌握与y 轴的交点坐标的特点(0x =)是解题的关键.13.10【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【详解】边长为10的正六边形可以分成六个边长为10的正三角形,∴外接圆半径是10,故答案为:10.【点睛】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.14.5【分析】设共有x 个飞机场,每个飞机场都要与其余的飞机场开辟一条航行,但两个飞机场之间只开通一条航线.等量关系为:()1102x x -=⨯,把相关数值代入求正数解即可.【详解】设共有x 个飞机场.()1102x x -=⨯,解得15=x ,24x =-(不合题意,舍去),故答案为:5.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.15.7【分析】根据反比例函数比例系数k 的几何意义得到S △OQM =4,S △OPM =3,然后利用S △POQ =S △OQM +S △OPM 进行计算.【详解】解:如图,∵直线l ∥x 轴,∴S △OQM =12×|﹣8|=4,S △OPM =12×|6|=3,∴S △POQ =S △OQM +S △OPM =7.故答案为7.考点:反比例函数系数k 的几何意义.16.π【分析】根据图示知45BAB ∠'=︒,所以根据弧长公式180n r l π=求得 'BB 的长.【详解】根据图示知,45BAB ∠'=︒,∴ 'BB 的长为:454180ππ⨯=.故答案为:π.【点睛】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键.17.x 1=6,x 2=﹣2.【解析】试题分析:用因式分解法解方程即可.试题解析:()()620x x -+=,60x =﹣或20x +=,所以1262x x ==-,.18.2017年至2019年“双十一”交易额的年平均增长率为20%.【分析】设2017年至2019年“双十一”交易额的年平均增长率为x ,根据该平台2017年及2019年的交易额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设2017年至2019年“双十一”交易额的年平均增长率为x ,根据题意得:()25001720x -=,解得:10.2==20%x ,2 2.2x =-(舍去).答:2017年至2019年“双十一”交易额的年平均增长率为20%.【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键.19.(1)25;(2)12【分析】(1)直接根据概率公式求解;(2)画树状图展示所有6种等可能的结果数,再找出刚好是一男生一女生的结果数,然后根据概率公式求解.【详解】解:(1)从获得美术奖和音乐奖的5名学生中选取1名参加颁奖大会,刚好是男生的概率是25;故答案为:2 5;(2)画树状图为:共有6种等可能的结果数,其中刚好是一男生一女生的结果数为3,概率31 62 ==所以刚好是一男生一女生的概率为1 2.【点睛】本题考查了概率问题,掌握概率公式以及树状图的画法是解题的关键.20.(1)作图见解析;(2)(1)作图见解析;(2)132 cm;【分析】(1).由垂径定理知,垂直于弦的直径是弦的中垂线,因为CD垂直平分AB,故作AC的中垂线交CD延长线于点O,则点O是弧ACB所在圆的圆心;(2).在Rt△OAD中,由勾股定理可求得半径OA的长即可.【详解】(1)如图点O即为所求圆的圆心.(2)连接OA,设OA=xcm,根据勾股定理得:x2=62+(x-4)2解得:x=132 cm,故半径为:132 cm.【点睛】本题考查垂径定理,垂直于弦的直径,平分弦且平分这条弦所对的两条弧,熟练掌握垂径定理是解题关键.21.(1)75°(2)见解析【分析】(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF =90°,由等腰三角形的性质可求解;(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.【详解】解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=12(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.22.(1)反比例函数的表达式y=,(2)点P坐标(,0),(3)S△PAB=1.5.【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△P AB=S△ABD﹣S△PBD即可求出△PAB的面积.解:(1)把点A(1,a)代入一次函数y=﹣x+4,得a=﹣1+4,解得a=3,∴A(1,3),点A(1,3)代入反比例函数y=k x,得k=3,∴反比例函数的表达式y=3 x,(2)把B(3,b)代入y=3x得,b=1∴点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,∴D(3,﹣1),设直线AD的解析式为y=mx+n,把A,D两点代入得,331m nm n+=⎧⎨+=-⎩,解得m=﹣2,n=5,∴直线AD 的解析式为y =﹣2x +5,令y =0,得x =52,∴点P 坐标(52,0),(3)S △P AB =S △ABD ﹣S △PBD =12×2×2﹣12×2×12=2﹣12=1.5.点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.23.(1)见解析;(2)见解析;(3)BE =16.【分析】(1)如图,连接OE .欲证明PE 是⊙O 的切线,只需推知OE ⊥PE 即可;(2)由圆周角定理得到90AEB CED ∠=∠=︒,根据“同角的余角相等”推知34∠=∠,结合已知条件证得结论;(3)设EF x =,则2CF x =,由勾股定理可求EF 的长,即可求BE 的长.【详解】(1)如图,连接OE .∵CD 是圆O 的直径,∴90CED ∠=︒.∵OC OE =,∴12∠=∠.又∵PED C ∠=∠,即1PED ∠=∠,∴2PED ∠=∠,∴=2=90PED OED OED ∠+∠∠+∠︒,即90OEP ∠=︒,∴OE EP ⊥,又∵点E 在圆上,∴PE 是⊙O 的切线;(2)∵AB 、CD 为⊙O 的直径,∴==90AEB CED ∠∠︒,∴34∠=∠(同角的余角相等).又∵1PED ∠=∠,∴4PED ∠=∠,即ED 平分∠BEP ;(3)设EF x =,则2CF x =,∵⊙O 的半径为10,∴210OF x =-,在Rt △OEF 中,222OE OF EF +=,即()22210210x x +-=,解得8x =,∴8EF =,∴216BE EF ==.【点睛】本题考查了圆和三角形的几何问题,掌握切线的性质、圆周角定理和勾股定理是解题的关键.24.(1)y =﹣x 2+2x +3;(2)①S =﹣m 2+3m ,1≤m ≤3;②P (32,3);(3)存在,点P 的坐标为(32,3)或(﹣12﹣).【分析】(1)将点B ,C 的坐标代入2y x bx c =-++即可;(2)①求出顶点坐标,直线MB 的解析式,由PD ⊥x 轴且OD m =知P (m ,﹣2m +6),即可用含m 的代数式表示出S ;②在①的情况下,将S 与m 的关系式化为顶点式,由二次函数的图象及性质即可写出点P 的坐标;(3)分情况讨论,如图2﹣1,当90CPD ∠=︒时,推出3PD CO ==,则点P 纵坐标为3,即可写出点P 坐标;如图2﹣2,当90PCD ∠=︒时,证PDC OCD ∠=∠,由锐角三角函数可求出m 的值,即可写出点P 坐标;当90PDC ∠=︒时,不存在点P .【详解】(1)将点B (3,0),C (0,3)代入2y x bx c =-++,得09333b c =-++⎧⎨=⎩,解得23b c ì=ïí=ïî,∴二次函数的解析式为2y x 2x 3=-++;(2)①∵()222314y x x x =++=--+-,∴顶点M (1,4),设直线BM 的解析式为y kx b =+,将点B (3,0),M (1,4)代入,得304k b k b +=⎧⎨+=⎩,解得26k b =-⎧⎨=⎩,∴直线BM 的解析式为=26y x -+,∵PD ⊥x 轴且OD m =,∴P (m ,﹣2m +6),∴()21126322PCD S S PD OD m m m m -++ ====-,即23S m m =-+,∵点P 在线段BM 上,且B (3,0),M (1,4),∴13m ≤≤;②∵2239324S m m m ⎛⎫=-+=--+ ⎪⎝⎭,∵10-<,∴当32m =时,S 取最大值94,∴P (32,3);(3)存在,理由如下:①如图2﹣1,当90CPD ∠=︒时,∵90COD ODP CPD ∠=∠∠=︒=,∴四边形CODP 为矩形,∴3PD CO ==,将3y =代入直线=26y x -+,得32x =,∴P (32,3);②如图2﹣2,当∠PCD =90°时,∵3OC =,OD m =,∴22229CD OC OD m =++=,∵//PD OC ,∴PDC OCD ∠=∠,∴cos PDC cos OCD ∠=∠,∴DC OCPD DC =,∴2DC PD OC = ,∴()29326m m =+-+,解得1 3m -=-(舍去),23m +=-,∴P (3-+12-),③当90PDC ∠=︒时,∵PD ⊥x 轴,∴不存在,综上所述,点P 的坐标为(32,3)或(3-+12-.【点睛】本题考查了二次函数的动点问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.25.(1)y =12x 2﹣x ﹣4;(2)S =﹣(m ﹣2)2+16,S 的最大值为16;(3)点P 的坐标为:(1,﹣)或(1,﹣1).【分析】(1)根据交点式可求出抛物线的解析式;(2)由S=S △OBC +S △OCD +S △ODA ,即可求解;(3)∠BPC=45°,则BC 对应的圆心角为90°,可作△BCP 的外接圆R ,则∠BRC=90°,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,证明△BMR ≌△RNC (AAS )可求出点R (1,-1),即点R 在函数对称轴上,即可求解.【详解】解:(1)∵抛物线y =12x 2+bx+c 与x 轴交于A (4,0)、B (﹣2,0),∴抛物线的表达式为:y =12(x ﹣4)(x+2)=12x 2﹣x ﹣4;(2)设点D (m ,12m 2﹣m ﹣4),可求点C 坐标为(0,-4),∴S =S △OBC +S △OCD +S △ODA =211112444[(4)]2222m m m ⨯⨯+⨯+⨯---=﹣(m ﹣2)2+16,当m =2时,S 有最大值为16;(3)∠BPC =45°,则BC 对应的圆心角为90°,如图作圆R ,则∠BRC =90°,圆R 交函数对称轴为点P ,过点R 作y 轴的平行线交过点C 与x 轴的平行线于点N 、交x 轴于点M ,设点R (m ,n ).∵∠BMR+∠MRB =90°,∠MRB+∠CRN =90°,∴∠CRN =∠MBR ,∠BMR =∠RNC =90°,BR =RC ,∴△BMR ≌△RNC (AAS ),∴CN =RM ,RN =BM ,即m+2=n+4,﹣n =m ,解得:m =1,n =﹣1,即点R (1,﹣1),即点R 在函数对称轴上,,则点P的坐标为:(1,﹣)或(1,﹣1).【点睛】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.。
最新部编人教版九年级数学上册期末测试卷及答案【可打印】
最新部编人教版九年级数学上册期末测试卷及答案【可打印】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.下列二次根式中, 最简二次根式的是()A. B. C. D.2. 已知两个有理数a, b, 如果ab<0且a+b>0, 那么()A. a>0, b>0B. a<0, b>0C.a、b同号 D.a、b异号, 且正数的绝对值较大3. 等式成立的x的取值范围在数轴上可表示为()A. B. C. D.4.已知实数满足, 则代数式的值是()A. 7B. -1C. 7或-1D. -5或35. 某排球队名场上队员的身高(单位: )是: , , , , , .现用一名身高为的队员换下场上身高为的队员, 与换人前相比, 场上队员的身高()A. 平均数变小, 方差变小B. 平均数变小, 方差变大C. 平均数变大, 方差变小D. 平均数变大, 方差变大6.用配方法解方程时, 配方后所得的方程为()A. B. C. D.7. 下列各曲线中表示y是x的函数的是()A. B. C. D.8.如图, 已知是的角平分线, 是的垂直平分线, , , 则的长为()A. 6B. 5C. 4D.9.如图, 扇形OAB中, ∠AOB=100°, OA=12, C是OB的中点, CD⊥OB交于点D, 以OC为半径的交OA于点E, 则图中阴影部分的面积是()A. 12π+18B. 12π+36C. 6π+18D. 6π+3610.已知, 一次函数与反比例函数在同一直角坐标系中的图象可能()A. B.C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: =_____.2. 因式分解: _____________.3. 若代数式1﹣8x与9x﹣3的值互为相反数, 则x=__________.4. 如图, 已知△ABC的周长是21, OB, OC分别平分∠ABC和∠ACB, OD⊥BC于D, 且OD=4, △ABC的面积是__________.5. 为增强学生身体素质, 提高学生足球运动竞技水平, 我市开展“市长杯”足球比赛, 赛制为单循环形式(每两队之间赛一场). 现计划安排21场比赛, 应邀请多少个球队参赛?设邀请x个球队参赛, 根据题意, 可列方程为_______. 6.如图, 已知正方形ABCD的边长为5, 点E、F分别在AD、DC上, AE=DF=2, BE与AF相交于点G, 点H为BF的中点, 连接GH, 则GH的长为__________.三、解答题(本大题共6小题, 共72分)1. 解分式方程:(1)(2)2. 先化简, 再求值: , 且x为满足﹣3<x<2的整数.3. 如图, 在四边形中, , , 对角线, 交于点, 平分, 过点作交的延长线于点, 连接.(1)求证: 四边形是菱形;(2)若, , 求的长.4. 已知是的直径, 弦与相交, .(Ⅰ)如图①, 若为的中点, 求和的大小;(Ⅱ)如图②, 过点作的切线, 与的延长线交于点, 若, 求的大小.整的统计表.学生借阅图书的次数统计表借阅图书的次数人数7 13 a 10 3请你根据统计图表中的信息, 解答下列问题:______, ______.该调查统计数据的中位数是______, 众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;若该校共有2000名学生, 根据调查结果, 估计该校学生在一周内借阅图书“4次及以上”的人数.6. 去年在我县创建“国家文明县城”行动中, 某社区计划将面积为的一块空地进行绿化, 经投标由甲、乙两个工程队来完成. 已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍, 如果两队各自独立完成面积为区域的绿化时, 甲队比乙队少用4天. 甲队每天绿化费用是1.05万元, 乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位: )的绿化;(2)由于场地原因, 两个工程队不能同时进场绿化施工, 现在先由甲工程队绿化若干天, 剩下的绿化工程由乙工程队完成, 要求总工期不超过48天, 问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少, 最少费用是多少万元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.D3.B4.A5.A6.D7、D8、D9、C10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1.72.3.24.425. x(x﹣1)=216.三、解答题(本大题共6小题, 共72分)1.(1)无解.(2)2.-53.(1)略;(2)2.4.(1)52°, 45°;(2)26°5、17、20;2次、2次;;人.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m2、50m2;(2)甲队先做30天, 乙队再做18天, 总绿化费用最少, 最少费用是万元.。
人教版九年级上册数学期末考试试卷含答案详解
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列事件中,必然发生的是()A.某射击运动射击一次,命中靶心B.通常情况下,水加热到100℃时沸腾C.掷一次骰子,向上的一面是6点D.抛一枚硬币,落地后正面朝上3.若反比例函数y=﹣1x的图象经过点A(3,m),则m的值是()A.﹣3B.3C.﹣13D.134.如图,直线y=kx与双曲线y=﹣2x交于A(x1,y1),B(x2,y2)两点,则2x1y2﹣8x2y1的值为()A.﹣6B.﹣12C.6D.125.如图,经过原点O的⊙P与、轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定6.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm7.如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移38.抛物线y=(m﹣1)x2﹣mx﹣m2+1的图象过原点,则m的值为()A.±1B.0C.1D.-19.圆的面积公式S=πR2中,S与R之间的关系是()A.S是R的正比例函数B.S是R的一次函数C.S是R的二次函数D.以上答案都不对10.如图,P是⊙O直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A 的度数为()A.40°B.35°C.30°D.25°11.如图,一个大正方形中有2个小正方形,如果它们的面积分别是S1,S2,则()A.S2>S1B.S1=S2C.S1>S2D.S1≥S212.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题13.把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是_______;14.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.15.一个侧面积为162πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为_cm.16.关于x的一元二次方程2210ax x++=有实数解,那么实数a的取值范围是__________. 17.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为____________.18.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.三、解答题19.解方程:x2+3x﹣2=0.20.如图为桥洞的形状,其正视图是由 CD和矩形ABCD构成.O点为 CD所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F)EF为2米.求 CD所在⊙O的半径DO.21.如图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(-1,2)(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1,(2)写出A1,C1的坐标.(3)求点A旋转到A1所经过的路线长.22.如图,抛物线2=-++与x轴交于A、B两点(点A在点B的左侧),点A的y x bx c坐标为()-,,与y轴交于点()10C,,作直线BC.动点P在x轴上运动,过点P作03PM x⊥轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(Ⅰ)求抛物线的解析式和直线BC的解析式;(Ⅱ)当点P在线段OB上运动时,求线段MN的最大值;(Ⅲ)当以C、O、M、N为顶点的四边形是平行四边形时,直接写出m的值.23.有红、黄两个盒子,红盒子中装有编号分别为1、2、3、4的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.(1)试用列表或画树形图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?请说明理由.24.如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.25.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当ABBC=43时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.26.如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).27.已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN;(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;:S四边形ABQP=1:4.若存在,求出t的值;若不存在,(3)是否存在某一时刻t,使S△QMC请说明理由;(4)是否存在某一时刻t,使PQ⊥MQ.若存在,求出t的值;若不存在,请说明理由.参考答案1.D【详解】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,但不是中心对称图形,故本选项错误;C、是轴对称图形,但不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.2.B【解析】A、某射击运动射击一次,命中靶心,随机事件;B、通常加热到100℃时,水沸腾,是必然事件.C、掷一次骰子,向上的一面是6点,随机事件;D抛一枚硬币,落地后正面朝上,随机事件;故选B.3.C【解析】试题分析:把点A代入解析式可知:m=﹣1 3.故选C.考点:反比例函数图象上点的坐标特征.4.B【解析】【分析】(解法一)将一次函数解析式代入反比例函数解析式中得出关于x的一元二次方程,解方程即可得出A、B点的横坐标,再结合一次函数的解析式即可求出点A、B的坐标,将其代入2x1y2-8x2y1中即可得出结论.(解法二)根据正、反比例函数的对称性,找出x1=-x2、y1=-y2,将其代入2x1y2-8x2y1中利用反比例函数图象上点的坐标特征,即可求出结论.【详解】(解法一)将y=kx代入到y=-2x中得:kx=-2x,即kx2=-2,解得:x1,x2∴y1=kx1y2=kx2,∴2x1y2-8x2y1=2×(×()=-12.(解法二)由正、反比例函数的对称性,可知:x1=-x2,y1=-y2,∴2x1y2-8x2y1=-2x1y1+8x1y1=6x1y1.∵x1y1=-2,∴2x1y2-8x2y1=6x1y1=-12.故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及一元二次方程的解,解题的关键是:(解法一)求出点A、B的坐标;(解法二)根据对称性结合反比例函数图象上点的坐标特征求值.5.B【详解】试题分析:根据圆周角定理的推论可得:∠ACB=∠AOB=90°,故选B.考点:圆周角定理的推论6.A【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【详解】解:连接OA,过点O作OE⊥AB,交AB于点M,交圆O于点E,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴===,60cmOM∴ME=OE-OM=100-60=40cm.故选:A.考点:(1)、垂径定理的应用;(2)、勾股定理.7.A【解析】试题解析:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选A.考点:1.坐标与图形变化-旋转;2.坐标与图形变化-平移.8.D【分析】根据二次函数图象上点的坐标特征得到-m2+1=0,解得m1=1,m2=-1,然后根据二次函数的定义确定m的值.【详解】把(0,0)代入y=(m-1)x2-mx-m2+1得-m2+1=0,解得m1=1,m2=-1,而m-1≠0,所以m=-1.故选D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的定义.9.C【详解】根据二次函数的定义,易得S是R的二次函数,故选C.10.B【解析】∵PC与⊙O相切,∴∠OCP=90°.∵∠P=20°,∴∠POC=90°-20°=70°,∴∠A=70°÷2=35°.故选B.11.C【解析】【分析】设大正方形的边长为x,根据等腰直角三角形的性质知AC、BC的长,进而可求得S2的边长,由面积的求法可得答案.【详解】如图,设大正方形的边长为x ,根据等腰直角三角形的性质知,BC ,,∴AC=2CD ,CD=3x ,∴S 2x ,S 2的面积为29x 2,S 1的边长为2x ,S 1的面积为14x 2,∴S 1>S 2.故选:C .【点睛】本题考查了正方形的性质和等腰直角三角形的性质,掌握勾股定理及正方形的性质是解题的关键.12.B【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣2b a =1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误;∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.13.3x 2-10x-4=0.【解析】先把一元二次方程3x (x ﹣2)=4(x+1)的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.解:∵一元二次方程3x(x﹣2)=4(x+1)可化为3x2-6x-4x--4=0,∴化为一元二次方程的一般形式为3x2-10x-4=0.14.4 9【详解】试题分析:观察这个图形可知:黑色区域(4块)的面积占总面积(9块)的4 9,则它最终停留在黑色方砖上的概率是4 9;故答案为4 9.考点:几何概率.15.4【解析】【分析】设底面半径为r,母线为l,由轴截面是等腰直角三角形,得出l,代入S侧=πrl,求出r,l,从而求得圆锥的高.【详解】设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴,∴侧面积S侧22,解得r=4,,∴圆锥的高h=4cm,故答案为:4.【点睛】本题考查了圆锥的计算,解题的关键是能够熟练掌握有关的计算公式.16.10a a≤≠且【解析】∵关于x的一元二次方程ax2+2x+1=0有实数根,∴△=4−4a≥0且a≠0,∴a≤1且a≠0.故答案是:10a a且≤≠.17.1:4.【详解】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.考点:位似变换.18..【分析】延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=2,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=12AF=2,∴,∵FP=FC=2,∴,∴点P到边AB距离的最小值是.故答案为:.【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置.19.∴x 1=2-,x 2=32-【解析】首先找出公式中的a ,b ,c 的值,再代入求根公式求解即可.本题解析:∵a=1,b=3,c=﹣2,∴△=b 2﹣4ac=32﹣4×1×(﹣2)=17,∴x=32-±,∴x 1x 220.5米【详解】试题分析:设半径OD=r ,则由题意易得OF=OE-EF=r-2;由OE ⊥CD ,根据“垂径定理”可得DF=12CD=4,这样在Rt △ODF 中由勾股定理建立方程就可解得r.试题解析:设⊙O 的半径为r 米,则OF=(r-2)米,∵OE ⊥CD∴DF=12CD=4在Rt △OFD 中,由勾股定理可得:(r-2)2+42=r 2,解得:r=5,∴CD 所在⊙O 的半径DO 为5米.21.(1)图形见解析;(2)A 1(3,1);C 1(3,4);(3)点A 旋转到A 1所经过的路线长是52π.【详解】试题分析:(1)题目已给出了旋转中心、旋转角度和旋转方向,可连接DA 、DB 、DC,然后根据要求旋转得到对应的顶点A 1、B 1、C 1,再顺次连接三点即可.(2)由(1)得到的图形,可根据A 1、C 1的位置来确定它们的坐标.(3)点A 旋转到A 1所经过的路线长是以D 为圆心、90°为圆心角、DA 为半径的弧长,先求出DA 的长,然后根据弧长公式计算即可.试题解析:(1)(2)A 1(3,1);C 1(3,4);(3)点A 旋转到A 1所经过的路线是弧AA 1,∵AD=5,∠ADA 1=90°,∴弧AA 1的长=;∴点A 旋转到A 1所经过的路线长是.考点:1.旋转变换,2.弧长的计算.22.(1)y=﹣x 2+2x+3,y=﹣x+3;(2)当m=32时,MN 有最大值,MN 的最大值为94;(3)32+或32.【解析】(1)由A 、C 两点的坐标利用待定系数法可求得抛物线解析式,则可求得B 点坐标,再利用待定系数法可求得直线BC 的解析式;(2)用m 可分别表示出N 、M 的坐标,则可表示出MN 的长,再利用二次函数的最值可求得MN 的最大值;(3)由条件可得出MN=OC ,结合(2)可得到关于m 的方程,可求得m 的值本题解析:(1)∵抛物线过A 、C 两点,∴代入抛物线解析式可得10{3b c c --+==,解得2{3b c ==,∴抛物线解析式为y=﹣x 2+2x+3,令y=0可得,﹣x 2+2x+3=0,解x 1=﹣1,x 2=3,∵B 点在A 点右侧,∴B 点坐标为(3,0),设直线BC 解析式为y=kx+s ,把B 、C 坐标代入可得30{3k s s +==,解得1{3k s =-=,∴直线BC 解析式为y=﹣x+3;(2)∵PM ⊥x 轴,点P 的横坐标为m ,∴M (m ,﹣m 2+2m+3),N (m ,-m+3),∵P 在线段OB 上运动,∴M 点在N 点上方,∴MN=﹣m 2+2m+3﹣(﹣m+3)=﹣m 2+3m=﹣(m ﹣32)2+94,∴当m=32时,MN 有最大值,MN 的最大值为94;(3)∵PM ⊥x 轴,∴MN ∥OC ,当以C 、O 、M 、N 为顶点的四边形是平行四边形时,则有OC=MN ,当点P 在线段OB 上时,则有MN=﹣m 2+3m ,∴﹣m 2+3m=3,此方程无实数根,当点P 不在线段OB 上时,则有MN=﹣m+3﹣(﹣m 2+2m+3)=m 2﹣3m ,∴m 2﹣3m=3,解得或,综上可知当以C 、O 、M 、N 为顶点的四边形是平行四边形时,m 的值为32或32.23.(1)12;(2)公平,理由见解析.【解析】【分析】(1)首先画树状图,然后根据树状图即可求得甲获胜的概率;(2)根据树状图,求得甲、乙获胜的概率,然后比较概率,即可求得这个游戏规则对甲、乙双方是否公平.【详解】(1)画树状图得:∴一共有12种等可能的结果,两球编号之和为奇数有6种情况,∴P (甲胜)=612=12(2)公平.∵P (乙胜)=612=12,∴P (甲胜)=P (乙胜),∴这个游戏规则对甲、乙双方公平【点睛】本题考查了游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24.(1)a=4,m=﹣4;(2)双曲线与直线y=﹣2x+2另一个交点B 的坐标为(2,﹣2).【解析】试题分析:(1)将A 坐标代入一次函数解析式中即可求得a 的值,将A (﹣1,4)坐标代入反比例解析式中即可求得m 的值;(2)解方程组=−2+2=−4,即可解答.试题解析:(1)∵点A 的坐标是(﹣1,a ),在直线y=﹣2x+2上,∴a=﹣2×(﹣1)+2=4,∴点A 的坐标是(﹣1,4),代入反比例函数=,∴m=﹣4.(2)解方程组:=−2+2=−4,解得:=−1=4或=2=−2,∴该双曲线与直线y=﹣2x+2另一个交点B 的坐标为(2,﹣2).考点:反比例函数与一次函数的交点问题.25.(1)证明见解析;(2)12;(3【分析】(1)要证明△ABD ∽△AEB ,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可;(2)由于AB :BC=4:3,可设AB=4,BC=3,求出AC 的值,再利用(1)中结论可得2AB AD AE =⋅,进而求出AE 的值,所以tanE=ED AB BE AE=;(3)设AB=4x ,BC=3x ,由于已知AF 的值,构造直角三角形后利用勾股定理列方程求出x 的值,即可知道半径3x 的值.【详解】(1)证明:∵∠ABC=90°,∴90ABD DBC ∠=︒-∠,由题意知:DE 是直径,∴∠DBE=90°,∴90E BDE ∠=︒-∠,∵BC=CD ,∴∠DBC=∠BDE ,∴∠ABD=∠E ,∵∠A=∠A ,∴△ABD ∽△AEB ;(2)解:∵AB :BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC -CD=5-3=2,由(1)可知:△ABD ∽△AEB ,∴ABADBDAE AB BE ==,∴2AB AD AE =⋅,∴242AE =,∴AE=8,在Rt △DBE 中,41tan ==82BD ABE BE AE ==;(3)过点F 作FM ⊥AE 于点M ,∵:4:3AB BC =,∴设AB=4x ,BC=3x ,∴由(2)可知;AE=8x ,AD=2x ,∴DE=AE -AD=6x ,∵AF 平分∠BAC ,∴BFABEF AE =,∴4182BF xEF x ==,∵1tan 2E =,∴cos E =5,sin E =∴BD BE =∴5BE x =,∴23EF =,5BE =,∴sin 5MFE EF ==,∴85MF x =,∵1tan 2E =,∴1625ME MF x ==,∴245AM AE ME x =-=,∵222AF AM MF =+,∴22248455x x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,∴8x =,∴⊙C的半径为:3x =【点睛】本题属于圆的综合题,涉及了相似三角形判定与性质、三角函数值的知识,综合性较强,解题的关键是熟练掌握有关性质.26.(1)CD=BE .理由见解析;(2)△AMN 是等边三角形.理由见解析.【分析】(1)CD=BE .利用“等边三角形的三条边相等、三个内角都是60°”的性质证得△ABE ≌△ACD ;然后根据全等三角形的对应边相等即可求得结论CD=BE ;(2)△AMN 是等边三角形.首先利用全等三角形“△ABE ≌△ACD”的对应角相等、已知条件“M 、N 分别是BE 、CD 的中点”、等边△ABC 的性质证得△ABM ≌△ACN ;然后利用全等三角形的对应边相等、对应角相等求得AM=AN 、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一个角是60°的等腰三角形的正三角形.【详解】(1)CD=BE .理由如下:∵△ABC 和△ADE 为等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠EAD=60°,∵∠BAE=∠BAC ﹣∠EAC=60°﹣∠EAC ,∠DAC=∠DAE ﹣∠EAC=60°﹣∠EAC ,∴∠BAE=∠DAC ,在△ABE 和△ACD 中,=AB AC BAE DAC AE AD =⎧⎪∠∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS )∴CD=BE(2)△AMN 是等边三角形.理由如下:∵△ABE ≌△ACD ,∴∠ABE=∠ACD .∵M 、N 分别是BE 、CD 的中点,∴BM=CN∵AB=AC ,∠ABE=∠ACD ,在△ABM 和△ACN 中,=BM CN ABE ACD AB AC =⎧⎪∠∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ).∴AM=AN ,∠MAB=∠NAC .∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°∴△AMN 是等边三角形【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、旋转的性质.等边三角形的判定:有一个角是60°的等腰三角形是等边三角形.27.(1)t=209;(2)y=-236105t t +;(3)1:4;(4)t=32【分析】(1)当PQ ∥MN 时,可得:CP CQ PA QB =,从而得到:45t t t t -=-,解方程求出t 的值;(2)作PD BC ⊥于点D ,则可以得到CPD CBA ∽,根据相似三角形的性质可以求出3(4)5PD t =-,CQ t =,利用三角形的面积公式求出S 与t 的关系式;(3)根据S △QMC :1:4ABQP S =四边形可以得到关于t 的方程,解方程求出t 的值;(4)作ME BC ⊥于点E ,PD BC ⊥于点D ,则△CPD ∽△CBA ,利用相似三角形的性质可以得到:2123()55t -16999()()5555t t =-+,解方程求出t 的值.【详解】解:(1)如图所示,若PQ ∥MN ,则有CP CQ PA QB =,∵CQ PA t ==,4CP t =-,5QB t =-,∴45t t t t-=-,即22209t t t -+=,解得209t =(2)如图所示,作PD BC ⊥于点D ,则△CPD ∽△CBA ,∴CP PDCB BA =,∵3BA =,4CP t =-,5BC =,∴453tPD-=,∴3(4)5PD t =-又∵CQ t =,∴△QMC 的面积为:()21336425105y t t t t=⨯-=-+(3)存在2t =时,使得S △QMC :1:4ABQP S =四边形理由如下:∵PM ∥BC ∴236105PQC QMC S S t t∆∆==-+∵S △QMC :1:4ABQP S =四边形,∴S △PQC :S △ABC =1:5,∵3462ABC S ⨯== .∴236:61:5105t t ⎛⎫-+= ⎪⎝⎭∴2440t t -+=∴122t t ==∴存在当2t =时,S △QMC :1:4ABQP S =四边形;(4)存在某一时刻32t =,使PQ MQ⊥理由如下:如图所示,作ME BC ⊥于点E ,PD BC ⊥于点D ,则△CPD ∽△CBA ,∴CP PDCDCB BA CA==∵3BA =,4CP t =-,5BC =,4CA =,∴4534tPD CD-==,∴3(4)5PD t =-,4(4)5CD t =-∵PQ ⊥MQ ,∴△PDQ ∽△QEM ,∴PD DQQE EM =,即··PD EM QE DQ=∵3123(4)555EM PD t t ==-=-,4169(4)555DQ CD CQ t t t =-=--=-,4995[(4)]555QE DE DQ t t t =-=---=+,∴2123()55t -16999()()5555t t =-+,即2230t t -=,∴32t =,0t =(舍去)∴当32t =时,使PQ ⊥MQ .【点睛】本题考查相似三角形的综合运用;一元二次方程的应用.。
人教版九年级上册数学期末考试试卷含答案
人教版九年级上册数学期末考试试题一、单选题1.以下关于垃圾分类的图标中是中心对称图形的是()A .B .C .D .2.如图,在平面直角坐标系中,已知ABC 与DEF 位似图形,原点O 是它们的位似中心.且3OF OC =,则ABC 与DEF 的面积之比是()A .1:2B .1:4C .1:3D .1:93.已知圆锥的高为12,底面圆的半径为5,则该圆锥的侧面展开图的面积为()A .65πB .60πC .75πD .70π4.男篮世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,设该小组有x 支球队,则可列方程为()A .()16x x -=B .()16x x +=C .()1162x x -=D .()1162x x +=5.如图,在边长为2的等边ABC 中,D 是BC 边上的中点,以点A 为圆心,AD 为半径作圆与AB ,AC 分别交于E ,F 两点,则图中阴影部分的面积为()A .π6B .π3C .π2D .2π36.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么该直线和圆的位置关系是()A .相离B .相切C .相交D .相交或相切7.如图,在△ABC 中,∠CAB =70°,∠B =30°,在同一平面内,将△ABC 绕点A 逆时针旋转40°到△A′B′C′的位置,则∠CC′B′=()A .10°B .15°C .20°D .30°8.若关于x 的一元二次方程()22120m x x m m +-+--=有一根为0,则m 的值为()A .2B .1-C .2或1-D .1或2-9.已知两点()()126,,2,A y B y -均在抛物线2(0)y ax bx c a =++>上,若12y y >,则抛物线的顶点横坐标m 的值可以是()A .6-B .5-C .2-D .1-10.如图,在ABC ∆中,90ACB ∠=︒,4AC =,3BC =,P 是AB 边上一动点,PD AC ⊥于点D ,点E 在P 的右侧,且1PE =,连接CE ,P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动,在整个运动过程中,阴影部分面积12S S +的大小变化的情况是()A .一直减小B .一直增大C .先增大后减小D .先减小后增大二、填空题11.坐标平面内的点P(m ,﹣2)与点Q(3,n)关于原点对称,则m +n =__.12.已知,1x ,2x 是方程232x x -=的两根,则12x x ⋅的值为______.13.已知正三角形ABC ,则正三角形的边长为______cm.14.如图,PA 、PB 是O 的切线,其中A 、B 为切点,点C 在O 上,52ACB ∠=︒,则APB ∠=______︒.15.如图,AB 为O 的直径,C 为O 上一动点,将AC 绕点A 逆时针旋转120︒得AD ,若2AB =,则BD 的最大值为__.16.如图,将△ABC 绕点C 逆时针旋转得到△A′B′C ,其中点A′与A 是对应点,点B′与B 是对应点,点A′落在直线BC 上,连接AB′,若∠ACB =45°,AC =3,BC =2,则AB′的长为_____.17.如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数1y x =上,顶点B 在反比例函数4y x=上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是_____.18.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论:①0b >;②0a b c -+=;③一元二次方程200(1)ax bx c a +++=≠有两个不相等的实数根;④当1x <-或3x >时,0y >.上述结论中正确的是__________.(填上所有正确结论的序号)三、解答题19.解方程:2670x x --=20.如图,已知ABO ,点A 、B 坐标分别为()2,4、()2,1.(1)把ABO 绕着原点O 顺时针旋转90︒得11A B O ,画出旋转后的11A B O ;(2)在(1)的条件下,点B 旋转到点1B 经过的路径的长为______.(结果保留π)21.如图,AC 平分∠BAD ,∠B =∠ACD .(1)求证:△ABC ∽△ACD ;(2)若AB =2,AC =3,求AD 的长.22.如图,抛物线2y x mx =-+的对称轴为直线2x =(1)求抛物线解析式;(2)若关于x 的一元二次方程20x mx t -+-=(t 为实数)在13x <<的范围内有解,则t 的取值范围是______.23.脱贫攻坚取得重大胜利,是中国在2020年取得的最重要成就之一.家庭养猪是农村精准扶贫的重要措施之一.如图所示,修建一个矩形猪舍,猪舍一面靠墙,墙长13m ,另外三面用27m 长的建筑材料围成,其中一边开有一扇1m 宽的门(不包括建筑材料).(1)所围矩形猪舍的AB 边为多少时,猪舍面积为290m ?(2)所围矩形猪舍的AB 边为多少时(AB 为整数),猪舍面积最大,最大面积是多少?24.如图,四边形ABCD 内接于O ,4OC =,42AC =(1)求点O 到AC 的距离;(2)求出弦AC 所对的圆周角的度数.25.如图,反比例函数2m y x=和一次函数y=kx-1的图象相交于A (m ,2m ),B 两点.(1)求一次函数的表达式;(2)求出点B 的坐标,并根据图象直接写出满足不等式21m kx x<-的x 的取值范围.26.如图,在Rt △ABC 中,∠C =90°,以AC 为直径作⊙O 交AB 于点D ,线段BC 上有一点P .(1)当点P 在什么位置时,直线DP 与⊙O 有且只有一个公共点,补全图形并说明理由.(2)在(1)的条件下,当BP =2,AD =3时,求⊙O 半径.27.已知抛物线23y ax bx =++与x 轴分别交于点()30A -,,()10B ,,与y 轴交于点C ,对称轴DE 与x 轴交于点D ,顶点为E .(1)求抛物线的解析式;(2)若点P 为对称轴右侧且位于x 轴上方的抛物线上一动点(点P 与顶点E 不重合),PQ AE ⊥于点Q ,当PQE V 与ADE 相似时,求点P 的坐标;(3)对称轴DE 上是否存在一点M 使得2ACB AMD ∠=∠,若存在求出点M 的坐标,若不存在请说明理由.参考答案1.C【分析】根据中心对称图形的概念逐项判断即可.【详解】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意,故选:C.【点睛】本题考查中心对称图形,理解概念是解答的关键.2.D【分析】根据位似图形的概念得到AB∥DE,进而得到△OAB与△ODE相似,根据相似三角形的性质计算即可.【详解】解:∵△ABC与△DEF是位似图形,∴AB∥DE,∴△OAB∽△ODE,∴13 AB OADE OD==,∴221139 ABCDEFS ABS DE⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭.故选:D.【点睛】本题考查的是位似图形的概念和性质,掌握位似图形的对应边平行、相似三角形的性质是解题的关键.3.A【分析】利用勾股定理易得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【详解】∵圆锥的高为12,底面圆的半径为5,=13,∴圆锥的侧面展开图的面积为:π×13×5=65π,故选:A .【点睛】本题考查了圆锥侧面展开图的面积问题,掌握圆锥的侧面积公式是解题的关键.4.C【分析】设该小组有x 支球队,则每个队参加(1)x -场比赛,则共有1(1)2x x -场比赛,从而可以列出一个一元二次方程.【详解】解:设该小组有x 支球队,则共有1(1)2x x -场比赛,由题意得:1(1)62x x -=,故选:C .【点睛】此题考查了一元二次方程的应用,关要求我们掌握单循环制比赛的特点:如果有n 支球队参加,那么就有1(1)2n n -场比赛,此类虽然不难求出x 的值,但要注意舍去不合题意的解.5.C【分析】由等边ABC 中,D 是BC 边上的中点,可知扇形的半径为等边三角形的高,利用扇形面积公式即可求解.【详解】ABC 是等边三角形,D 是BC 边上的中点AD BC ∴⊥,60A ∠=︒AD ∴===S 扇形AEF226060(3)3603602r πππ⨯===故选C .【点睛】本题考查了等边三角形的性质,勾股定理,扇形面积公式,熟练等边三角形性质和扇形面积公式,求出等边三角形的高是解题的关键.6.D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】圆的直径是13cm ,故半径为6.5cm.圆心与直线上某一点的距离是6.5cm ,那么圆心到直线的距离可能等于6.5cm 也可能小于6.5cm ,因此直线与圆相切或相交.故选D.【点睛】本题主要考查直线与圆的位置关系,需注意圆的半径为6.5cm ,那么圆心与直线上某一点的距离是6.5cm 是指圆心到直线的距离可能等于6.5cm 也可能小于6.5cm.7.A【分析】根据旋转的性质找到对应点、对应角进行解答.【详解】解:∵在△ABC 中,∠CAB =70°,∠B =30°,∴∠ACB =180°﹣70°﹣30°=80°,∵△ABC 绕点A 逆时针旋转40°得到△AB′C′,∴∠CAC′=40°,∠AC′B′=∠ACB =80°,AC =AC′,∴∠AC′C =12(180°﹣40°)=70°,∴∠CC′B′=∠AC′B′﹣∠AC′C =10°,故选:A .【点睛】本题考查了旋转的性质,掌握旋转的性质,以及三角形的内角和是解题的关键8.A【分析】根据一元二次方程和根的定义,可得10m +≠,将0x =代入求解m 即可.【详解】解:由题意可得,10m +≠,解得1m ≠-将0x =代入得:220m m --=解得2m =或1m =-(舍去)故选A【点睛】此题考查了一元二次方程的定义和根的定义,解题的关键是掌握一元二次方程的定义和根的定义,易错点为容易忽略二次项系数不为0.9.D【分析】根据题意假设点A 、B 是抛物线()20y ax bx c a =++>上的两个对称点,则此时该抛物线的对称轴为直线6222x -+==-,然后由12y y >,开口向上离对称轴越近y 的值越小,进而问题可求解.【详解】解:∵点()()126,,2,A y B y -均在抛物线()20y ax bx c a =++>上,∴假设点A 、B 是抛物线()20y ax bx c a =++>上的两个对称点,∴此时该抛物线的对称轴为直线6222x -+==-,∵12y y >,开口向上,抛物线上的点离对称轴越近,则y 的值越小,∴该抛物线的顶点横坐标2m >-,所以选项中符合题意的只有D 选项;故选D .【点睛】本题主要考查二次函数图象与性质,熟练掌握二次函数的图象与性质是解题的关键.10.D【分析】设PD=x ,AB 边上的高为h ,想办法求出AD 、h ,构建二次函数,利用二次函数的性质解决问题即可.【详解】在Rt ABC ∆中,90ACB ∠=︒ ,4AC =,3BC =,5AB ∴===,设PD x =,AB 边上的高为h ,125AC BC h AB == ,//PD BC ,ADP ACB ∆∆∽∴,∴PD AD BC AC=,43AD x ∴=,53PA x =22121415122242333(4)2()23235353210S S x x x x x x ∴+=+-=-+=-+ ∴当302x <<时,12S S +的值随x 的增大而减小,当14x时,12S S +的值随x 的增大而增大.故选D .【点睛】本题考查相似三角形的判定和性质,动点问题的函数图象,三角形面积,勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题.11.1-【分析】利用关于原点对称点的性质得出m ,n 的值进而得出答案.【详解】解:∵点P(m ,-2)与点Q(3,n)关于原点对称,∴m =﹣3,n =2,∴m +n =﹣3+2=﹣1.故答案为:﹣1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.12.-2【分析】先将方程化为一般形式,再根据一元二次方程根与系数的关系求解即可.【详解】解:∵232x x -=∴2320x x --=∵1x ,2x 是方程232x x -=的两根,∴12=2x x ⋅-故答案为:-2.【点睛】本题主要考查了一元二次方程根与系数的关系,熟练掌握一元二次方程极好与系数的关系是解答本题的关键.13.6【分析】直接利用正三角形的性质得出,再由勾股定理求出BD 的长即可解决问题.【详解】解:如图所示:连接BO ,由题意可得,OD ⊥BC ,,∠OBD=30°,故.BC=2BD由勾股定理得,3BD ===∴6cmBC =故答案为:6.【点睛】此题主要考查了正多边形和圆,正确掌握正三角形的性质是解题关键.14.76【分析】连接OA 、OB ,根据圆周角定理求得∠AOB ,由切线的性质求出∠OAP=∠OBP=90°,再由四边形的内角和等于360°,即可得出答案【详解】解:连接OA 、OB ,52ACB ∠=︒,∴∠AOB=104°∵PA 、PB 是⊙O 的两条切线,点A 、B 为切点,∴∠OAP=∠OBP=90°∵∠APB+∠OAP+∠AOB+∠OBP=360°∴∠APB=180°-(∠OAP+∠AOB+∠OBP)=76°故答案为:76151【分析】将ABD △绕点A 顺时针旋转120︒,则D 与C 重合,'B 是定点,BD 的最大值即'B C 的最大值,根据圆的性质,可知:'B O C 、、三点共线时,BD 最大,根据勾股定理可得结论.【详解】解:如图,将ABD △绕点A 顺时针旋转120︒,则D 与C 重合,'B 是定点,BD 的最大值即'B C 的最大值,即'B O C 、、三点共线时,BD 最大,过'B 作'B E AB ⊥于点E ,由题意得:'2,'120AB AB BAB ==∠=︒,∴'60EAB ∠=︒,'Rt AEB △中,'30AB E ∠=︒,∴1'1,'2AE AB EB ==,由勾股定理得:'OB =,∴''1B C OB OC =+=.1.16【分析】证明90ACB ∠'=︒,利用勾股定理求出AB '即可.【详解】解:如图,由旋转的性质可知,2CB CB ='=,45ABC BCB ∠=∠'=︒,90ACB ∴'=︒,AB ∴'===17.3【分析】过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E ,延长BA 交y 轴于点G ,结合反比例系数k 的几何意义表达出矩形OFAG 和矩形OEBG 的面积,再结合平行四边形的性质求出平行四边形OABC 的面积.【详解】解:如图,过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E ,延长BA 交y 轴于点G ,则四边形OFAG 和四边形OEBG 是矩形,∵点A 在反比例函数y =1x 上,点B 在反比例函数y =4x上,∴S 矩形OFAG =1,S 矩形OEBG =4,∴S ▱OABC =S 矩形ABEF =S 矩形OEBG ﹣S 矩形OFAG =4﹣1=3.故答案为:3.18.②③④.【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:由图可知,对称轴1x =,与x 轴的一个交点为()3,0,∴2b a =-,与x 轴另一个交点()1,0-,①∵0a >,∴0b <;∴①错误;②当1x =-时,0y =,∴0a b c -+=;②正确;③一元二次方程210ax bx c +++=可以看作函数2y ax bx c =++与1y =-的交点,由图象可知函数2y ax bx c =++与1y =-有两个不同的交点,∴一元二次方程200(1)ax bx c a +++=≠有两个不相等的实数根;∴③正确;④由图象可知,0y >时,1x <-或3x >∴④正确;故答案为②③④.19.x 1=7,x 2=1-【分析】观察原方程,可运用二次三项式的因式分解法进行求解.【详解】解:原方程可化为:(x-7)(x+1)=0,x-7=0或x+1=0;解得:x 1=7,x 2=1-.20.(1)见解析2【分析】(1)分别作出A ,B 的对应点1A ,1B 即可.(2)利用弧长公式计算即可.(1)如图,△11A B O即为所求作.(2)∵OB=∴点B旋转到点1B经过的路径的长==..21.(1)证明见解析;(2)92.【分析】(1)根据角平分线的性质可知∠BAC=∠CAD,再根据题意∠B=∠ACD,即可证明△ABC∽△ACD.(2)利用三角形相似的性质,可知AC ADAB AC=,再根据题意AB和AC的长,即可求出AD.【详解】(1)∵AC分∠BAD,∴∠BAC=∠CAD,∵∠B=∠ACD,∴△ABC∽△ACD.(2)∵△ABC∽△ACD,∴AC AD AB AC=,∵AB=2,AC=3,∴AD=92.22.(1)y=-x 2+4x(2)3<t≤4【分析】(1)先利用抛物线的对称轴方程求出即可得到抛物线解析式为y=-x 2+4x ;(2)配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x 2+4x 与直线y=t 在1<x<3的范围内有公共点可确定t 的范围.(1)∵抛物线y=-x 2+mx 的对称轴为直线x=2,∴22(1)m -=⨯-,解得m=4,∴抛物线解析式为y=-x 2+4x ,(2)∵y=-x 2+4x=2(2)4x --+,∴抛物线的顶点坐标为(2,4),当x=1时,y=-x 2+4x=3;当x=3时,y=-x 2+4x=3,∵关于x 的一元二次方程-x 2+mx-t=0(t 为实数)在1<x<3的范围内有解,∴抛物线y=-x 2+4x 与直线y=t 在1<x<3的范围内有公共点,如图,∴3<t≤4.故答案为:3<t≤4【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.23.(1)9m(2)AB 为8m 时,面积最大,最大面积是296m .【分析】(1)设m AB x =,则()2721m AD x =-+,根据题意列式即可;(2)设m AB x =,所围矩形猪圈的面积为2m y ,列出二次函数解析式,根据二次函数性质和猪舍的AB 边的取值范围即可得出结论.(1)解:(1)设m AB x =,则()2721m AD x =-+.根据题意可得:()272190x x -+=,解得:15=x ,29x =.当5x =时,27211813x -+=>,不符合题意,舍去;当9x =时,27211013x -+=<,符合题意.答:AB 为9m 时,猪舍的面积为290m .(2)(2)设m AB x =,所围矩形猪圈的面积为2m y .()()2227212282798y x x x x x =-+=-+=--+028213x <-≤ ,7.514x ∴≤<.∵()22798y x =--+,图像开口向下,在对称轴7x =的右侧随x 增大而减小,∴当AB 为整数时,8x =,272112x -+=时,96y =最大值.答:AB 为8m 时,面积最大,最大面积是296m .【点睛】本题主要考查了二次函数与一元二次方程的应用,找准等量关系,正确列出二次函数解析式和一元二次方程是解题的关键.24.(1)(2)∠B =45°,∠D=135°.【分析】(1)连接OA ,作OH ⊥AC 于H ,根据勾股定理的逆定理得到∠AOC=90°,根据等腰直角三角形的性质解答;(2)根据圆周角定理求出∠B ,根据圆内接四边形的性质计算,得到答案.(1)连接OA ,作OH ⊥AC 于H ,∵4OA OC ==,AC =∴22224432OA OC +=+=,232AC ==,∴OA 2+OC 2=AC 2,∴△AOC 为等腰直角三角形,90,AOC ∠=︒又∵OH AC ⊥,∴AH CH =,∴OH=12AC=O 到AC 的距离为(2)90,AOC Ð=°Q ∴∠B=12∠AOC=45°,∵四边形ABCD 内接于⊙O ,∴∠D=180°-45°=135°.综上所述:弦AC 所对的圆周角∠B =45°,∠D=135°.【点睛】本题考查的是圆内接四边形的性质,圆周角定理,勾股定理的逆定理,掌握圆内接四边形对角互补是解本题的关键.25.(1)y=3x-1;(2)203x -<<或x >1.【分析】(1)把A (m ,2m )代入2m y x =,求得A 的坐标为(1,2),然后代入一次函数y=kx-1中即可得出其解析式;(2)联立方程求得交点B 的坐标,然后根据函数图象即可得出结论.【详解】(1)∵A(m ,2m)在反比例函数图象上,∴22m m m=,∴m=1,∴A(1,2).又∵A(1,2)在一次函数y=kx-1的图象上,∴2=k-1,即k=3,∴一次函数的表达式为:y=3x-1.(2)由231y x y x ⎧=⎪⎨⎪=-⎩解得B(23-,-3)∴由图象知满足21m kx x<-的x 取值范围为203x -<<或x >1.【点睛】本题考查的是反比例函数的图象与一次函数图象的交点问题,根据题意利用数形结合求出不等式的解集是解答此题的关键.26.(1)补图见解析;理由见解析;(2)2.【分析】(1)根据题意补全图形如图所示,情况一:点P 在过点D 与OD 垂直的直线与BC 的交点处,根据切线的定义即可得到结论;情况二:如图,当点P 是BC 的中点时,直线DP 与⊙O 有且只有一个公共点,连接CD ,OD ,根据圆周角定理得到∠ADC=∠BDC=90°,根据直角三角形的性质得到DP=CP ,根据切线的判定定理即可得到结论;(2)由题意可知在Rt △BCD 中,根据直角三角形的性质得到BC=2BP ,求得,根据相似三角形的性质和勾股定理即可得到结论.【详解】解:(1)补全图形如图所示,情况一:点P 在过点D 与OD 垂直的直线与BC 的交点处,理由:经过半径外端,并且垂直于这条半径的直线是圆的切线;情况二:如图,当点P 是BC 的中点时,直线DP 与⊙O 有且只有一个公共点,证明:连接CD ,OD ,如上图,∵AC 是⊙O 的直径,∴∠ADC =∠BDC =90°,∵点P 是BC 的中点,∴DP =CP ,∴∠PDC =∠PCD ,∵∠ACB =90°,∴∠PCD+∠DCO =90°,∵OD =OC ,∴∠DCO =∠ODC ,∴∠PDC+∠ODC =90°,∴∠ODP =90°,∴DP ⊥OD ,∴直线DP 与⊙O 相切;(2)在Rt △BCD 中,∵∠BDC =90°,P 是BC 的中点,∴BC =2BP ,∵BP =2,∴BC ,∵∠ACB =∠BDC =90°,∠B =∠B ,∴△ACB ∽△CDB ,∴AB BC BC BD=,∴2BC AB BD = ,设AB =x ,∵AD =3,∴BD =x ﹣3,∴x (x ﹣3)2,∴x =5(负值舍去),∴AB =5,∵∠BDC =90°,∴AC∴OC =12AC即⊙O27.(1)223y x x =--+;(2)12039P ⎛⎫ ⎪⎝⎭,;(3)存在,点M 的坐标为()11M -,或()11--,【分析】(1)利用待定系数法求出抛物线的解析式;(2)由P 的位置分析得只能是PEQ EAD △△∽,得QEP EAD ∠=∠.延长EP 交x 轴于F ,则AF EF =,设()0F m ,,由两点间距离公式可列方程得到F 点的坐标,用待定系数法求直线EF 的解析式,于抛物线联立即可求得P 点坐标;(3)当点M 在x 轴上方时,连接MA ,MB ,由抛物线的对称性可知MA=MB ,则2=AMB AMD ACB ∠=∠∠,利用圆中同弧所对圆周角相等的性质得圆心O '在对称轴上,设O '的坐标为()1,m -,根据AO CO BO MO ''''===,可列方程求得O '的坐标,从而求得M 的坐标,最后由轴对称性质可知另一点M '的坐标.【详解】解:(1)把()30A -,,()10B ,,点坐标分别代入抛物线解析式,得:933030a b a b -+=⎧⎨++=⎩解得:1a =-,2b =-∴抛物线的解析式:223y x x =--+(2)如图,只能是PEQ EAD △△∽,得QEP EAD ∠=∠.延长EP 交x 轴于F ,∴AF EF =,∴22AF EF =设()0F m ,,则()()222341m m +=++∴2m =,即()20F ,.设直线EF 的解析式为11y k x b =+,则1111420k b k b -+=⎧⎨+=⎩,解之得114383k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线EF 的解析式4833y x =-+.联立2483323y x y x x ⎧=-+⎪⎨⎪=--+⎩,解得13209x y ⎧=⎪⎪⎨⎪=⎪⎩或14x y =-⎧⎨=⎩(舍去)∴12039P ⎛⎫⎪⎝⎭,.(3)如图2,当点M 在x 轴上方时,连接MA ,MB ,设O '的坐标为()1,m -,若AO CO BO MO ''''===,则点A ,B ,C ,M 四点在以O '为圆心的圆上∴ACB AMB∠=∠∵DE 是抛物线的对称轴,∴AMD BMD ∠=∠,∴2AMB AMD ∠=∠,∴2ACB AMD ∠=∠,∵()30A -,,()03C ,,AO CO ''=,∴AO '=CO '=∴()22413m m +=+-,∴1m =,∴()11O '-,,CO AO ''=∴1MD =,∴()11M -+,当点M 在x 轴下方时,由对称知,()11M --,,即:点M 的坐标为()11M -+,或()11-,.。
人教版数学九年级上册期末考试试题附答案
人教版数学九年级上册期末考试试卷一、选择题(本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列方程中是一元二次方程的有()①=;②y(y﹣1)=x(x+1);③=;④x2﹣2y+6=y2+x2.A.①②B.①③C.①④D.①③④2.观察下列图形,是中心对称图形的是()A.B.C.D.3.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4B.y=(x﹣4)2+4C.y=(x+2)2+6D.y=(x﹣4)2+64.如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°5.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A. B. C. D.6.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元,设平均每次降价的百分率为x ,列出方程正确的是()A .580(1+x )2=1185B .1185(1+x )2=580C .580(1﹣x )2=1185D .1185(1﹣x )2=5807.10名学生的身高如下(单位:cm )159、169、163、170、166、165、156、172、165、162,从中任选一名学生,其身高超过165cm 的概率是()A .B .C .D .8.二次函数y=a(x+k)2+k(a≠0),无论k 取何值,其图象的顶点都在()A.直线y=x 上B.直线y=-x 上C.x 轴上D.y 轴上9.如图,△ABC 是一张三角形纸片,⊙O 是它的内切圆,点D 、E 是其中的两个切点,已知CD=6cm ,小明准备用剪刀沿着与⊙O 相切的一条直线MN 剪下一块三角形(△CMN ),则剪下的△CMN 的周长是()A .9cmB .12cmC .15cmD .18cm10.如图,正方形ABCD 中,分别以B,D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为()A.πaB.2πaC.21πaD.3a二、填空题(本大题共4小题,每小题5分,共20分)11.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=.12.一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为cm.13.如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若A点的坐标为(﹣1,0),则点C的坐标为.14.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是三、解答题(本大题共7小题,共68分)15.用适当的方法解方程:x2=2x+35.16.求出抛物线的开口方向、对称轴、顶点坐标。
最新部编人教版九年级数学上册期末测试卷及答案【汇编】
最新部编人教版九年级数学上册期末测试卷及答案【汇编】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 函数的自变量x的取值范围是()A. B. C. D.2.关于的一元二次方程有两个实数根, 则的取值范围是()A. B. C. 且 D. 且3.若式子有意义, 则实数m的取值范围是()A. B. 且C. D. 且4.下列各数: -2, 0, , 0.020020002…, , , 其中无理数的个数是()A. 4B. 3C. 2D. 15. 抛物线的顶点坐标是()A. (﹣1, 2)B. (﹣1, ﹣2)C. (1, ﹣2)D. (1, 2)6.已知二次函数, 则下列关于这个函数图象和性质的说法, 正确的是()A. 图象的开口向上B. 图象的顶点坐标是C. 当时, 随的增大而增大D. 图象与轴有唯一交点7.如图, ▱ABCD的周长为36, 对角线AC、BD相交于点O, 点E是CD的中点, BD=12, 则△DOE的周长为()A. 15B. 18C. 21D. 248.如图, 是函数上两点, 为一动点, 作轴, 轴, 下列说法正确的是( )①;②;③若, 则平分;④若, 则A. ①③B. ②③C. ②④D. ③④9.如图, 已知⊙O的直径AE=10cm, ∠B=∠EAC, 则AC的长为()A. 5cmB. 5 cmC. 5 cmD. 6cm10.如图, 矩形的对角线, 交于点, , , 过点作, 交于点, 过点作, 垂足为, 则的值为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: =______________.2. 分解因式: =___________.3. 若正多边形的每一个内角为, 则这个正多边形的边数是__________.4. 把长方形纸片ABCD沿对角线AC折叠, 得到如图所示的图形, AD平分∠B′AC, 则∠B′CD=__________.5. 如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O 的半径为2,则CD的长为__________.6. 如图, 已知反比例函数y= (k为常数, k≠0)的图象经过点A, 过A点作AB ⊥x轴, 垂足为B, 若△AOB的面积为1, 则K=_______.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 已知关于的一元二次方程.(1)试证明: 无论取何值此方程总有两个实数根;(2)若原方程的两根, 满足, 求的值.3. 在Rt△ABC中, ∠BAC=90°,D是BC的中点, E是AD的中点. 过点A作AF∥BC交BE的延长线于点F(1)求证: △AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4, AB=5, 求菱形ADCF 的面积.4. 如图, 以Rt△ABC的AC边为直径作⊙O交斜边AB于点E, 连接EO并延长交BC的延长线于点D, 点F为BC的中点, 连接EF和AD.(1)求证: EF是⊙O的切线;(2)若⊙O的半径为2, ∠EAC=60°, 求AD的长.5. 为了解某校九年级男生1000米跑的水平, 从中随机抽取部分男生进行测试,并把测试成绩分为D.C.B.A四个等次绘制成如图所示的不完整的统计图, 请你依图解答下列问题:(1)a= , b= , c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中, 随机选取两名男生参加全市中学生1000米跑比赛, 请用列表法或画树状图法, 求甲、乙两名男生同时被选中的概率.6. 某企业设计了一款工艺品, 每件的成本是50元, 为了合理定价, 投放市场进行试销. 据市场调查, 销售单价是100元时, 每天的销售量是50件, 而销售单价每降低1元, 每天就可多售出5件, 但要求销售单价不得低于成本. (1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时, 每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元, 且每天的总成本不超过7000元, 那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、D2、D3、D4、C5、D6、C7、A8、B9、B10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.m+2、()223.八(或8)4.30°56、-2三、解答题(本大题共6小题, 共72分)1.x=-32.(1)证明见解析;(2)-2.3.(1)略;(2)略;(3)10.4.(1)略;(2)AD=.5、(1)2.45、20;(2)72;(3)6、;(2)当时, ;(3)销售单价应该控制在82元至90元之间.。
人教版九年级上册数学期末考试试卷含答案详解
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列电视台的台标,是中心对称图形的是()A.B.C.D.2.一元二次方程x2+2x=0的根是()A.x=0或x=﹣2B.x=0或x=2C.x=0D.x=﹣23.直径分别为8和6的两圆相切,则这两圆的圆心距等于()A.14B.2C.14或2D.7或14.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1B.k≥﹣1且k≠0C.k≤﹣1D.k≤1且k≠05.若两圆的半径分别为5和2,圆心距是4,则这两圆的位置关系是()A.外离B.外切C.相交D.内含6.如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.D.7.当x0>时,函数5yx=-的图象在()A.第四象限B.第三象限C.第二象限D.第一象限8.从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为()A.12B.13C.14D.159.方程(x+1)(x-3)=5的解是A.x1=1,x2=-3B.x1=4,x2=-2C .x 1=-1,x 2=3D .x 1=-4,x 2=210.某广场绿化工程中有一块长2千米,宽1千米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地之间既周边留有宽度相等的人行通道(如图),并在这些人行通道铺上瓷砖,要求铺瓷砖的面积是矩形空地面积的12,设人行通道的宽度为x 千米,则下列方程正确的是()A .(2﹣3x )(1﹣2x )=1B .12(2﹣3x )(1﹣2x )=1C .12(2﹣3x )(1﹣2x )=1D .12(2﹣3x )(1﹣2x )=2二、填空题11.在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是________.12.已知点(m -1,y 1),(m -3,y 2)是反比例函数y =mx(m <0)图象上的两点,则y 1____y 2(填“>”“=”或“<”).13.如图,在Rt AOB 中,OA=OB=O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为_____.14.如图,在平面直角坐标系中,抛物线()22y a x k =-+(a 、k 为常数且0a ≠)与x 轴交于点A 、B ,与y 轴交于点C ,过点C 作//CD x 轴与抛物线交于点D .若点A 的坐标为()4,0-,则OBCD的值为____.15.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO为_____.161x-x的取值范围是_______.173x-x的取值范围是_______.18.边长为1的正三角形的内切圆半径为________三、解答题19.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E.(1)求证:D为BC的中点;(2)过点O作OF⊥AC,于F,若AF=74,BC=2,求⊙O的直径.20.已知x2+(a+3)x+a+1=0是关于x的一元二次方程.(1)求证:方程总有两个不相等的实数根;(2)若方程的两个实数根为x1,x2,且x12+x22=10,求实数a的值.21.如图,已知圆内接四边形ABCD的对角线AC、BD交于点N,点M在对角线BD上,且满足∠BAM=∠DAN,∠BCM=∠DCN.求证:(1)M为BD的中点;(2)AN AM CN CM=.22.一对姐弟中只能有一人参加夏季夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.试用列表法或树状图分析这种方法对姐弟俩是否公平.23.如图,已知直线PT与⊙O相交于点T,直线PO与⊙O相交于A、B两点,已知PTA B∠=∠.(1)求证:PT是⊙O的切线;(2)若PT BT==24.如图,二次函数y=﹣2x2+x+m的图象与x轴的一个交点为A(1,0),另一个交点为B,且与y轴交于点C.(1)求m 的值;(2)求点B 的坐标;(3)该二次函数图象上是否有一点D (x ,y )使S △ABD =S △ABC ,求点D 的坐标.25.如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PB 、AB ,∠PBA=∠C ,(1)求证:PB 是⊙O 的切线;(2)连接OP ,若OP ∥BC ,且OP=8,⊙O 的半径为,求BC 的长.26.如图,直线y =﹣13x +m 与x 轴,y 轴分别交于点B 、A 两点,与双曲线相交于C 、D 两点,过C 作CE ⊥x 轴于点E ,已知OB =3,OE =1.(1)求直线AB 和双曲线的表达式;(2)设点F 是x 轴上一点,使得2CEF COB S S △△=,求点F 的坐标.参考答案1.D 【详解】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合,因此,四个选项中只有D 符合.故选D .2.A 【解析】∵x 2+2x=0,∴x (x+2)=0,∴x=0或x+2=0,∴x 1=0或x 2=﹣2,故选A .3.D 【解析】当两圆外切时,则圆心距等于8÷2+6÷2=7;当两圆内切时,则圆心距等于8÷2-6÷2=1.故选D .4.A 【分析】分两种情况讨论:(1)当0k =时,方程为一元一次方程,必有实数根;(2)当0k ≠时,方程为一元二次方程,当0∆≥时,必有实数根.【详解】(1)当0k =时,方程为一元一次方程,必有实数根;(2)当0k ≠时,方程为一元二次方程,当0∆≥时,必有实数根:()4410k ∆=--≥,解得1k ≥-,综上所述,1k ≥-.故选:A .【点睛】本题考查了根的判别式,要注意,先进行分类讨论,当方程是一元一次方程时,总有实数根;当方程为一元二次方程时,根的情况要通过判别式来判定.5.C 【解析】∵两圆的半径分别为5和2,圆心距为4.则5-2=3<4<5+2=7,∴两圆相交.故选C 6.C 【详解】连接OB ,OD ,OP ,过O 作OM AB ⊥,交AB 于点M ,过O 作ON CD ⊥,交CD 于点N .∵AB =CD =8,∴BM=DN=4,由垂径定理,勾股定理得:,∵AB ,CD 是互相垂直的两条弦,∴∠DPB=90°∵OM AB ⊥,ON CD ⊥,∴∠OMP=∠ONP=90°∴四边形MONP 是正方形,∴=选C 7.A 【分析】根据反比例函数()ky k 0x=≠的性质:当k 0>时,图象分别位于第一、三象限;当k 0<时,图象分别位于第二、四象限.【详解】∵反比例函数5yx=-的系数50-<,∴图象两个分支分别位于第二、四象限.∴当x0>时,图象位于第四象限.故选A.8.C【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,其中构成三角形的有3,5,7共1种,∴能构成三角形的概率为:1 4,故选C.点睛:此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.9.B【解析】(x+1)(x-3)=5,x²-3x+x-3-5=0,x²-2x-8=0,(x+2)(x-4)=0,x1=-2,x2=4,故选B.10.A【解析】人行通道的宽度为x千米,则矩形绿地的长为:12(2﹣3x)千米,宽为(1﹣2x)千米,由题意可列方程:2×12(2﹣3x)(1﹣2x)=12×2×1,即:(2﹣3x)(1﹣2x)=1,故选A.【点睛】本题考查了一元二次方程的应用,正确分析,根据题意找到等量关系列出方程是解题的关键.11.29【详解】根据题意,画出树形图如下:∵从树形图可以看出,摸出两球出现的所有等可能结果共有9种,两个球号码之和为5的结果有2种,∴两次摸取的小球标号之和为5的概率是2 9.12.>【解析】分析:m<0,在每一个象限内,y随x的增大而增大.详解:因为m<0,所以m-3<m-1<0,这两个点都在第二象限内,所以y2<y1,即y1>y2.故答案为>.点睛:对于反比例函数图象上的几个点,如果知道横坐标去比较纵坐标的大小或知道纵坐标去比较横坐标的大小,通常的做法是:(1)先判断这几个点是否在同一个象限内,如果不在,则判断其正负,然后做出判断;(2)如果在同一个象限内,则可以根据反比例函数的性质来进行解答.13.【详解】试题分析:连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=6.∴OP=AB=3.∴.14.2【分析】由抛物线解析式可知抛物线对称轴直线x=2,由A、C的横坐标可知B、D的横坐标,进而求出OB=8,CD=4,即可解答OB.【详解】解:∵抛物线的解析式为y=a(x-2)2+k,∴抛物线的对称轴为直线x=2.∵点A的横坐标为-4,点C的横坐标为0,∴点B的横坐标为8,点D的横坐标为4,∴OB=8,CD=4,∴824OBCD==.故答案为2.【点睛】本题考查了抛物线与x轴的交点,根据抛物线的对称轴找出点B、D的横坐标是解题的关键.15.4【分析】要求圆锥的高,关键是求出圆锥的母线长,即圆锥侧面展开图中的扇形的半径.已知圆锥的底面半径就可求得底面圆的周长,即扇形的弧长,已知扇形的面积和弧长就可求出扇形的半径,即圆锥的高.【详解】解:由题意知:展开图扇形的弧长是2×3π=6π,设母线长为L,则有12×6πL=15π,解得:L=5,∵由于母线,高,底面半径正好组成直角三角形,∴在直角△AOC中高AO4.故填:4.【点睛】此题考查了圆锥体的侧面展开图的计算,揭示了平面图形与立体图形之间的关系,难度一般.x≥16.1【详解】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.∴x-1≥0,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于0.17.x≥3【分析】直接利用二次根式的有意义的条件得到关于x的不等式,解不等式即可得答案.【详解】由题意可得:x﹣3≥0,解得:x≥3,故答案为x≥3.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.18【解析】如图,∵内切圆的半径、外接圆的半径和半边组成一个30°的直角三角形,则∠OBD=30°,BD=12,∴tan∠OBD=O O=∴内切圆半径12=,【点睛】本题主要考查了三角形的内切圆,根据等边三角形的三线合一,可以发现其内切圆的半径、外接圆的半径和半边正好组成了一个30°的直角三角形是解决本题的关键.19.(1)证明见解析;(2)⊙O的直径为4.【解析】试题分析:(1)连接AD,根据直径所对的圆周角是直角,以及三线合一定理即可证得;(2)先根据垂径定理,求得AE=2AF=72;再运用圆周角定理的推论得∠ADB=∠ADC=∠BEA=∠BEC=90°,从而可证得∴△BEC∽△ADC,即CD:CE=AC:BC,根据此关系列方程求解即可得⊙O的直径.试题解析:(1)连接AD∵AB是⊙O的直径,∴AD⊥BC,又∵AB=AC,∴点D是BC的中点;(2)∵OF⊥AC于F,AF=7 4,∴AE=2AF=7 2,连接BE,∵AB为直径D、E在圆上,∴∠ADB=∠ADC=∠BEA=∠BEC=90°,∴在△BEC、△ADC中,∠BEC=∠ADC,∠C=∠C,∴△BEC∽△ADC,即CD:CE=AC:BC,∵D为BC中点,∴CD=12 BC,又∵AC=AB,∴12BC2=CE•AB,设AB=x,可得x(x﹣72)=2,解得x1=﹣12(舍去),x2=4,∴⊙O的直径为4.20.(1)证明见解析;(2)a的值为﹣或﹣2【解析】【试题分析】(1)欲证明方程总有两个不相等的实数根,只需证明根的判别式大于0即可.△=(a+3)2﹣4(a+1)=a2+6a+9﹣4a﹣4=a2+2a+5=(a+1)2+4>0,从而得证;(2)根据韦达定理,将x12+x22=10转化为两根之和与两根之积的形式,代入得到关于a的方程,从而求出a即可.x12+x22=(x1+x2)2﹣2x1x2=10,即(a+3)2﹣2(a+1)=10,解得a1=﹣2+,a2=﹣2﹣.【试题解析】(1)证明:△=(a+3)2﹣4(a+1)=a2+6a+9﹣4a﹣4=a2+2a+5=(a+1)2+4,∵(a+1)2≥0,∴(a+1)2+4>0,即△>0,∴方程总有两个不相等的实数根;(2)根据题意得x1+x2=﹣(a+3),x1x2=a+1,∵x12+x22=10,∴(x1+x2)2﹣2x1x2=10,∴(a+3)2﹣2(a+1)=10,整理得a2+4a﹣3=0,解得a1=﹣2+,a2=﹣2﹣,即a的值为﹣2+或﹣2﹣.【方法点睛】本题目是一道一元二次方程的题目,涉及到根的判别式与韦达定理.在证明一元二次方程根的情况时,通常通过证明根的判别式与0的大小关系解决问题.在涉及到两根的等量关系时,通常转化为两根之和与两根之积的形式,从而求出参数.21.(1)证明见解析;(2)证明见解析.【详解】试题分析:(1)要证M为BD的中点,即证BM=DM,由∠BAM=∠DAN,∠BCM=∠DCN,及圆周角的性质易证明△BAM∽△CBM,△DAM∽△CDM得出比例的乘积形式,可证明BM=DM;(2)欲证AN AMCN CM=,可以通过平行线的性质证明,需要延长AM交圆于点P,连接CP,证明PC∥BD,得出比例式,相应解决MP=CM的问题即可.试题解析:(1)根据同弧所对的圆周角相等,得∠DAN=∠DBC,∠DCN=∠DBA,又∵∠DAN=∠BAM,∠BCM=∠DCN,∴∠BAM=∠MBC,∠ABM=∠BCM,∴△BAM∽△CBM,∴BM AMCM BM=,即BM2=AM•CM,①又∠DCM=∠DCN+∠NCM=∠BCM+∠NCM=∠ACB=∠ADB,∠DAM=∠MAC+∠DAN=∠MAC+∠BAM=∠BAC=∠CDM,∴△DAM∽△CDM,则DM AMCM DM=,即DM2=AM•CM,②由式①、②得:BM=DM,即M为BD的中点;(2)如图,延长AM交圆于点P,连接CP,∴∠BCP=∠PAB=∠DAC=∠DBC,∵PC∥BD,∴AN AM NC PM=,③又∵∠MCB=∠DCA=∠ABD,∠DBC=∠PCB,∴∠ABC=∠MCP,而∠ABC=∠APC,则∠APC=∠MCP,有MP=CM,④由式③、④得:AN AM CN CM=.22.不公平.【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及抽取的两张卡片上的数字之和是5的倍数的情况与抽取的两张卡片上的数字之和是3的倍数的情况,再利用概率公式求得其概率,比较概率的大小,即可知这种方法对姐弟俩是否公平.试题解析:画树状图得:∵共有16种等可能的结果,抽取的两张卡片上的数字之和是5的倍数有4种情况,抽取的两张卡片上的数字之和是3的倍数有5中情况,∴P(姐姐参加)=416=14,P(弟弟参加)=516,∴不公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.(1)证明见解析;(2)6π【分析】(1)先根据圆周角定理得:∠ATB=90°,则∠B+∠OAT=90°,根据同圆的半径相等和等腰三角形的性质得:∠OAT=∠2,从而得∠PTA+∠2=90°,即∠OTP=90°,所以直线PT与⊙O 相切;(2)利用TP=TB得到∠P=∠B,而∠OAT=2∠P,所以∠OAT=2∠B,则利用∠ATB=90°可计算出∠B=30°,∠POT=60°,利用含30度的直角三角形三边的关系得到AT=12 AB,△AOT为等边三角形,然后根据扇形的面积公式和图中阴影部分的面积=S扇形OA T-S△AOT进行计算.【详解】(1)证明:连接OT,∵AB是⊙O的直径,∴∠ATB=90°,∴∠B+∠OAT=90°,∵OA=OT,∴∠OAT=∠2,∵∠PTA=∠B,∴∠PTA+∠2=90°,即∠OTP=90°,∴直线PT与⊙O相切;(2)∵PT BT==∴∠P=∠B=∠PTA,∵∠TAB=∠P+∠PTA,∴∠TAB=2∠B,∵∠TAB+∠B=90°,∴∠TAB=60°,∠B=30°,在Rt△ABT中,设AT=a,则AB=2AT=2a,∴a 22=(2a)2,解得:a=1,∴AT=1,∵OA=OT ,∠TAO=60°,∴△AOT 为等边三角形,11224AOT S ∴=⨯⨯= .∴阴影部分的面积2Δ 601360464AOT AOT S S ππ⨯=-=-=-扇形.【点睛】本题考查了切线的判定、勾股定理,此类题常与方程结合,列方程求圆的半径和线段的长,也考查了扇形的面积公式.24.(1)1;(2)B (﹣12,0);(3)D 的坐标是(12,1)或(14,﹣1)或(14,﹣1)【分析】(1)把点A 的坐标代入函数解析式,利用方程来求m 的值;(2)令y =0,则通过解方程来求点B 的横坐标;(3)利用三角形的面积公式进行解答.【详解】解:(1)把A (1,0)代入y =﹣2x 2+x+m ,得﹣2×12+1+m =0,解得m =1;(2)由(1)知,抛物线的解析式为y =﹣2x 2+x+1.令y =0,则﹣2x 2+x+1=0,故x 134-±-,解得x 1=﹣12,x 2=1.故该抛物线与x 轴的交点是(﹣12,0)和(1,0).∵点为A (1,0),∴另一个交点为B 是(﹣12,0);(3)∵抛物线解析式为y =﹣2x 2+x+1,∴C (0,1),∴OC =1.∵S △ABD =S △ABC ,∴点D 与点C 的纵坐标的绝对值相等,∴当y =1时,﹣2x 2+x+1=1,即x (﹣2x+1)=0解得x =0或x =12.即(0,1)(与点C 重合,舍去)和D (12,1)符合题意.当y =﹣1时,﹣2x 2+x+1=﹣1,即2x 2﹣x ﹣2=0解得x =14.即点(14,﹣1)和(14,﹣1)符合题意.综上所述,满足条件的点D 的坐标是(12,111).【点睛】本题考查了抛物线的图象和性质,解答(3)题时,注意满足条件的点D 还可以在x 轴的下方是解题关键.25.(1)证明见解析;(2)BC=2.【详解】试题分析:(1)连接OB ,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB ,得出∠BAC=∠OBA ,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC ∽△PBO ,得出对应边成比例,即可求出BC 的长.试题解析:(1)证明:连接OB ,如图所示:∵AC 是⊙O 的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为,∴,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴BC AC OB OP=,8=,∴BC=2.考点:切线的判定26.(1)y=﹣13x+1,y=﹣43x;(2)F(﹣7,0)或(5,0);【分析】(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)根据三角形面积公式求得EF的长,即可求得点F的坐标;【详解】解:(1)∵OB =3,OE =1,∴B (3,0),C 点的横坐标为﹣1,∵直线y =﹣13x +m 经过点B ,∴0=﹣13×3+m ,解得m =1,∴直线为:y =﹣13x +1,把x =﹣1代入y =﹣13x +1得,y =﹣13×(﹣1)+1=43,∴C (﹣1,43),∵点C 在双曲线y =kx (k ≠0)上,∴k =﹣1×43=﹣43,∴双曲线的表达式为:y =﹣43x ;(2)∵OB =3,CE =43,∴S △COB =12×3×43=2,∵S △CEF =2S △COB ,∴S △CEF =12×EF ×43=4,∴EF =6,∵E (﹣1,0),∴F (﹣7,0)或(5,0).【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知待定系数法的运用.。
人教版九年级上册数学期末考试试卷附答案
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列交通标志中,是中心对称图形的是()A .B .C .D .2.如图,点A 、B 、C 、D 在⊙O 上,120AOC ∠=︒,点B 是 AC 的中点,则D ∠的度数是A .30°B .40︒C .50︒D .60︒3.下列事件中是不可能事件.....的是()A .守株待兔B .瓮中捉鳖C .水中捞月D .百步穿杨4.一元二次方程2x ﹣16=0的解是()A .x =4B .1x =4,2x =0C .1x =4,2x =﹣4D .x =85.将抛物线y =12x 2向左平移一个单位,所得抛物线的解析式为()A .y =12x 2+1B .y =12x 2﹣1C .y =12(x+1)2D .y =12(x ﹣1)26.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是()A .110B .910C .15D .457.某班同学毕业时,都将自己的照片向全班其他同学各送一张表示留念,全班共送1892张照片,如果全班有x 名同学,根据题意,列出方程为()A .x (x+1)=1892B .x (x−1)=1892×2C .x (x−1)=1892D .2x (x+1)=18928.圆的直径是13cm ,如果圆心与直线上某一点的距离是6.5cm ,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切9.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球抛出3秒时达到最高点;②小球从抛出到落地经过的路程是80m;③小球的高度h=20时,t=1s或5s.④小球抛出2秒后的高度是35m.其中正确的有()A.①②B.②③C.①③④D.①②③10.反比例函数y=﹣3x(x<0)如图所示,则矩形OAPB的面积是()A.3B.﹣3C.32D.﹣32二、填空题11.已知点A(a,1)与点A′(5,b)是关于原点对称,则a+b=________.12.若某扇形花坛的面积为6m2,半径为3m,则该扇形花坛的弧长为_____m.13.己知正六边形的边长为2,则它的内切圆的半径为__________.14.如图, ABC的内切圆与三边分别相切于点D、E、F,若∠B=50°,则∠EDF=_____度.15.如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3),若抛物线y=ax2的图象与正方形的边有公共点,则实数a的取值范围是_____.16.如图,在△ABC 中,AB=10,AC=8,BC=6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P ,Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最小值是_______.17.如图,AB 与O 相切于点B ,AO 的延长线交O 于点C ,连接BC ,若120ABC ∠=︒,3OC =,则劣弧BC 的长为___(结果保留π).18.二次函数y =4(x ﹣3)2+7的图象的顶点坐标是_____.三、解答题19.解方程:3(x ﹣4)2=﹣2(x ﹣4)20.已知关于x 的一元二次方程(a+1)x 2+2x+1﹣a 2=0有一个根为﹣1,求a 的值.21.在下面的网格图中,每个小正方形的边长均为1, ABC 的三个顶点都是网格线的交点,已知A ,B ,C 的坐标分别为(0,2),(﹣1,﹣1),(1,﹣2),将 ABC 绕着点C 顺时针旋转90°得到A B C ''△.在图中画出A B C ''△并写出点A '、点B ′的坐标.22.甲、乙两人分别从A、B、C这3个景点随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率.(2)甲、乙两人选择的2个景点恰好相同的概率是.23.若a2+b2=c2,则我们把形如ax22=0(a≠0)的一元二次方程称为“勾系一元二次方程”.(1)当a=3,b=4时,写出相应的“勾系一元二次方程”;(2)求证:关于x的“勾系一元二次方程”ax22cx+b=0(a≠0)必有实数根.24.如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).若所用铁栅栏的长为40米,矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)求S与x的函数关系式,并求出矩形场地的最大面积.25.如图,在平面直角坐标系xOy内,函数y=12x的图象与反比例函数y=kx(k≠0)图象有公共点A,点A的坐标为(8,a),AB⊥x轴,垂足为点B.(1)求反比例函数的解析式;(2)点P在线段OB上,若AP=BP+2,求线段OP的长;(3)点D为射线OA上一点,在(2)的条件下,若S△ODP=S△ABO,求点D的坐标.26.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.27.如图,在平面直角坐标系中,抛物线l1:y=x2+bx+c过点C(0,﹣3),且与抛物线l2:y=﹣12x2﹣32x+2的一个交点为A,已知点A的横坐标为2.点P、Q分别是抛物线l1、抛物线l2上的动点.(1)求抛物线l1对应的函数表达式;(2)若点P在点Q下方,且PQ∥y轴,求PQ长度的最大值;(3)若以点A、C、P、Q为顶点的四边形为平行四边形,直接写出点P的坐标.参考答案1.D【分析】根据中心对称图形的概念判断即可.【详解】A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选D.【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.A【分析】根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理解答.【详解】连接OB,∵点B是 AC的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选:A.【点睛】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.3.C【分析】不可能事件是一定不会发生的事件,依据定义即可判断.【详解】解:A、守株待兔,不一定就能达到,是随机事件,故选项不符合;B、瓮中捉鳖是必然事件,故选项不符合;C、水中捞月,一定不能达到,是不可能事件,选项不符合;D、百步穿杨,未必达到,是随机事件,故选项不符合;故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.C【分析】先移项,写成2x=16的形式,从而把问题转化为求16的平方根.【详解】解:移项得2x=16,开方得,x=±4即1x=4,2x=﹣4.故选:C.【点睛】本题考查了直接开平方法求解一元二次方程,熟练掌握移项转化成2x=a(a≥0)是解题的关键.5.C【分析】按照“左加右减,上加下减”的规律.【详解】解:将抛物线y=12x2向左平移1个单位,得y=12(x+1)2;故选:C.【点睛】本题考查了抛物线的平移以及抛物线解析式的化规律:左加右减,上加下减.6.C【分析】直接利用概率公式求解.【详解】∵10瓶饮料中有2瓶已过了保质期,∴从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是21 105 .故选C.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.7.C【解析】试题分析:∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1892.故选C.点睛:本题考查由实际问题抽象出二元一次方程组.计算全班共送多少张,首先确定一个人送出多少张是解题关键.8.D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】圆的直径是13cm,故半径为6.5cm.圆心与直线上某一点的距离是6.5cm,那么圆心到直线的距离可能等于6.5cm也可能小于6.5cm,因此直线与圆相切或相交.故选D.【点睛】本题主要考查直线与圆的位置关系,需注意圆的半径为6.5cm,那么圆心与直线上某一点的距离是6.5cm是指圆心到直线的距离可能等于6.5cm也可能小于6.5cm.9.A【分析】由图象可知,点(0,0),(6,0),(3,40)在抛物线上,顶点为(3,40),设函数解析式为h=a(t﹣3)2+40,用待定系数法求得解析式,再逐个选项分析或计算即可.【详解】解:由图象可知,点(0,0),(6,0),(3,40)在抛物线上,顶点为(3,40),设函数解析式为h=a(t﹣3)2+40,将(0,0)代入得:0=a(0﹣3)2+40,解得:a=40 9 -,∴h=409-(t﹣3)2+40.①∵顶点为(3,40),∴小球抛出3秒时达到最高点,故①正确;②小球从抛出到落地经过的路程应为该小球从上升到落下的长度,故为40×2=80m,故②正确;③令h=20,则20=409-(t﹣3)2+40,解得t=3±2,故③错误;④令t=2,则h=409-(2﹣3)2+40=3209m,故④错误.综上,正确的有①②.故选:A.【点睛】本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握待定系数法及二次函数的性质是解题的关键.10.A【解析】解:∵点P在反比例函数3yx=-(x<0)的图象上,∴可设P(x,3x-),∴OA=﹣x,PA=3x-,∴S矩形OAPB =OA•PA=﹣x•(3x-)=3,故选A.点睛:本题主要考查反比例函数上点的坐标特征,利用P点坐标表示出矩形OABPB的面积是解题的关键.11.-6【详解】试题分析:根据关于原点对称的两点的横纵坐标分别互为相反数可知a=-5,b=-1,所以a+b=(-5)+(-1)=-6,故答案为-6.12.4【分析】直接根据扇形的面积公式计算即可.【详解】解:设弧长为l,∵扇形的半径为3m,面积是6m2,∴136 2l⨯⋅=,∴l=4(m).故答案为4.【点睛】本题主要考查扇形面积,熟练掌握扇形面积计算公式是解题的关键.13【详解】如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×2∴边长为214.65【分析】设△ABC的内切圆圆心为O,连接OE,OF,根据△ABC的内切圆与三边分别相切于点D、E、F,可得OE⊥AB,OF⊥BC,再根据四边形内角和可得∠EOF的度数,再根据圆周角定理即可得结论.【详解】解:如图,设△ABC的内切圆圆心为O,连接OE,OF,∵△ABC的内切圆与三边分别相切于点D、E、F,∴OE⊥AB,OF⊥BC,∴∠OEB=∠OFB=90°,∵∠B=50°,∴∠EOF=180°﹣50°=130°,∴∠EDF=12∠EOF=65°.故答案为:65.【点睛】本题考查切线的性质,圆周角与圆心角的关系,四边形内角和,掌握切线的性质,圆周角与圆心角的关系,四边形内角和是解题关键.15.19≤a≤3【分析】求出抛物线经过两个特殊点时的a的值即可解决问题.【详解】解:设抛物线的解析式为y=ax2,当抛物线经过(1,3)时,a=3,当抛物线经过(3,1)时,a=1 9,观察图象可知19≤a≤3,故答案为:19≤a≤3.【点睛】本题考查抛物线与正方形的交点问题,掌握抛物线与点的关系,利用待定系数方法求出抛物线张口最小时a的值与张口最大时a的值是解题关键.16.1【分析】当O、Q、P三点一线且OP⊥BC时,PQ有最小值,设AC与圆的切点为D,连接OD,分别利用三角形中位线定理可求得OD和OP的长,则可求得PQ的最小值.【详解】当O、Q、P三点一线且OP⊥BC时,PQ有最小值,设AC与圆的切点为D,连接OD,如图所示:∵AC为圆的切线,∴OD⊥AC,∵AC=8,BC=6,AB=10,∴AC2+BC2=AB2,∴∠ACB=90°,∴OD∥BC,且O为AB中点,∴OD为△ABC的中位线,∴OD=12BC=3,同理可得PO=12AC=4,∴PQ=OP-OQ=4-3=1,故答案是:1.【点睛】考查切线的性质及直角三角形的判定,先确定出当PQ最得最小值时点P的位置是解题的关键.17.2π;【分析】根据切线的性质得到∠OBA=90°,求出∠OBC,根据三角形内角和定理求出∠BOC=120°,根据弧长公式计算即可.【详解】解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC-∠ABO=30°,∵OB=OC,∴∠C=∠OBC=30°,∴∠BOC=120°,∴弧BC的长=1203=2 180ππ⨯,故答案为:2π.【点睛】本题考查的是切线的性质、弧长的计算,掌握圆的切线垂直于经过切点的半径、弧长的计算公式是解题的关键.18.(3,7)【分析】由抛物线解析式可求得答案.【详解】∵y=4(x﹣3)2+7,∴顶点坐标为(3,7),故答案为(3,7).19.x1=4,x2=10 3.【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】3(x﹣4)2=﹣2(x﹣4),3(x﹣4)2+2(x﹣4)=0,(x﹣4)[3(x﹣4)+2]=0,x﹣4=0,3(x﹣4)+2=0,x1=4,x2=10 3.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有因式分解法、公式法、配方法、直接开平方法.20.a=0或a=1【分析】将x=﹣1代入原方程可求出a的值.【详解】解:将x=﹣1代入原方程,得(a+1)﹣2+1﹣a2=0,整理得:a2﹣a=0,即:a(a﹣1)=0解得:a=0或a=1.【点睛】本题考查了一元二次方程的解,将x=-1代入原方程求出a值是解题的关键.21.见解析,(5,﹣1),(2,0)【分析】将点A、B分别绕点C顺时针旋转90°得到对应点,再与点C首尾顺次连接即可,根据点A、B、C坐标建立平面直角坐标系,从而得出点A′、B′的坐标.【详解】解:如图所示,△A′B′C即为所求,由△ABC绕点C旋转90°得△A′B′C则△ABC≌△A′B′CBC=B′C,AC=A′C设A′(m,n),B′(,a b)a-1=-1-(-2),a=2;b-(-2)=1-(-1),b=0,B′(2,0)m-1=2-(-2),m=5,n-(-2)=1-0,n=-1,A′(5,-1).【点睛】本题考查画旋转图形,求旋转后坐标,利用全等构造等式是解题关键22.(1)29;(2)1 3【分析】(1)列举出所有可能出现的结果,利用概率公式求解即可;(2)根据树状图求得恰好只有两人选择相同的情况,再根据概率公式求解即可.【详解】(1)解:用列表法表示所有可能出现的结果如下:(1)共有9种可能出现的结果,其中选择A 、B 的有2种,∴P (A 、B )=29;(2)共有9种可能出现的结果,其中选择景点相同的有3种,∴P (景点相同)=31=93.故答案为:13.【点睛】本题考查了列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的关键.23.(1)3x 22x+4=0;(2)见解析【分析】(1)由a =3,b =4,由a 2+b 2=c 2求出c =±5,从而得出答案;(2)只要根据一元二次方程根的判别式证明△≥0即可解决问题.【详解】(1)解:由a 2+b 2=c 2可得:当a =3,b =4时,c =±5,相应的勾系一元二次方程为3x 22x+4=0;(2)证明:根据题意,得2)2﹣4ab=2(a 2+b 2)﹣4ab=2(a ﹣b )2≥0∵△≥0,∴勾系一元二次方程ax 22cx+b =0(a≠0)必有实数根.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.24.(1)y=﹣2x+44(5≤x<443);(2)S=﹣2x2+44x,矩形场地的最大面积为242m2【分析】(1)根据三边铁栅栏的长度之和为40可得x+(y﹣2)+(x﹣2)=40,整理即可得出答案;(2)根据长方形面积公式列出解析式,配方成顶点即可得出答案.【详解】解:(1)根据题意,知x+(y﹣2)+(x﹣2)=40,∴y=﹣2x+44,∵墙面长为34米∴y=﹣2x+44≤34解得x≥5∵x<y∴x<﹣2x+44解得x<44 3∴自变量x的取值范围是5≤x<44 3;(2)S=xy=x(﹣2x+44)=﹣2x2+44x=﹣2(x﹣11)2+242,∴当x=11时,S取得最大值,最大值为242,即矩形场地的最大面积为242m2.【点睛】本题主要考查二次函数的应用,找到关键描述语,找到等量关系准确的列出关系式是解决问题的关键.25.(1)32yx;(2)5;(3)6432(,55【分析】(1)根据在平面直角坐标系xOy内,函数y=12x的图象与反比例函数y=kx(k≠0)图象有公共点A,点A的坐标为(8,a),可以求得点A的坐标,进而求得反比例函数的解析式;(2)根据题意和勾股定理可以求得OP的长;(3)根据题意可以求得点P的坐标,本题得以解决.【详解】解:(1)∵函数y =12x 的图象过点A (8,a ),∴a =12×8=4,∴点A 的坐标为(8,4),∵反比例函数y =k x (k≠0)图象过点A (8,4),∴4=8k ,得k =32,∴反比例函数的解析式为y =32x ;(2)设BP =b ,则AP =b+2,∵点A (8,4),AB ⊥x 轴于点B ,∴AB =4,∠ABP =90°,∴b 2+42=(b+2)2,解得,b =3,∴OP =8﹣3=5,即线段OP 的长是5;(3)设点D 的坐标为(d ,12d ),∵点A (8,4),点B (8,0),点P (5,0),S △ODP =S △ABO ,∴1258422d ⨯⨯=,解得,d =645,∴12d =325,∴点D 的坐标为(645,325).【点睛】本题考查反比例函数和一次函数的交点问题,解答本题的关键是明确题意,利用一次函数和反比例函数的性质解答.26.(1)证明详见解析;(2)163.【解析】试题分析:(1)过点D 作DF ⊥BC 于点F ,根据角平分线的性质得到AD=DF .根据切线的判定定理即可得到结论;(2)根据切线的性质得到AB=FB .根据和勾股定理列方程即可得到结论.试题解析:(1)证明:过点D 作DF ⊥BC 于点F ,∵∠BAD=90°,BD 平分∠ABC ,∴AD=DF .∵AD 是⊙D 的半径,DF ⊥BC ,∴BC 是⊙D 的切线;(2)解:∵∠BAC=90°.∴AB 与⊙D 相切,∵BC 是⊙D 的切线,∴AB=FB .∵AB=5,BC=13,∴CF=8,AC=12.在Rt △DFC 中,设DF=DE=r ,则()226412r r +=-,解得:r=103.∴CE=163.考点:切线的判定;圆周角定理.27.(1)y =x 2﹣2x ﹣3;(2)12124;(3)(﹣1,0)或(3,0)或(43-,139)或(﹣3,12)【分析】(1)将x =2代入y =﹣12x 2﹣32x+2,从而得出点A 的坐标,再将A (2,﹣3),C (0,﹣3)代入y =x 2+bx+c ,解得b 与c 的值,即可求得抛物线l 1对应的函数表达式;(2)设点P 的坐标为(m ,m 2﹣2m ﹣3),则可得点Q 的坐标为(m ,﹣12m 2﹣32m+2),从而PQ 等于点Q 的纵坐标减去点P 的纵坐标,利用二次函数的性质求解即可;(3)设点P的坐标为(n,n2﹣2n﹣3),分两类情况:第一种情况:AC为平行四边形的一条边;第二种情况:AC为平行四边形的一条对角线.分别根据平行四边形的性质及点在抛物线上,得出关于n的方程,解得n的值,则点P的坐标可得.【详解】解:(1)将x=2代入y=﹣12x2﹣32x+2,得y=﹣3,∴点A的坐标为(2,﹣3).将A(2,﹣3),C(0,﹣3)代入y=x2+bx+c,得23=2+23b cc⎧-+⎨-=⎩,解得23 bc=-⎧⎨=-⎩,∴抛物线l1对应的函数表达式为y=x2﹣2x﹣3;(2)∵点P、Q分别是抛物线l1、抛物线l2上的动点.∴设点P的坐标为(m,m2﹣2m﹣3),∵点P在点Q下方,PQ∥y轴,∴点Q的坐标为(m,﹣12m2﹣32m+2),∴PQ=﹣12m2﹣32m+2﹣(m2﹣2m﹣3),=﹣32m2+12m+5,∴当m=﹣112=3622⎛⎫⨯- ⎪⎝⎭时,PQ长度有最大值,最大值为:﹣23126⎛⎫⨯ ⎪⎝⎭+1126⨯+5=12124;∴PQ长度的最大值为121 24;(3)设点P的坐标为(n,n2﹣2n﹣3),第一种情况:AC为平行四边形的一条边.AC=2①当点Q在点P右侧时,点Q的坐标为(n+2,﹣12(n+2)2﹣32(n+2)+2),将Q的坐标代入y=﹣12x2﹣32x+2,,得n2﹣2n﹣3=﹣12(n+2)2﹣32(n+2)+2,解得,n=0或n=﹣1.∵n=0时,点P与点C重合,不符合题意,舍去,∴n =﹣1,∴点P 的坐标为(﹣1,0);②当点Q 在点P 左侧时,点Q 的坐标为(n ﹣2,﹣12(n ﹣2)2﹣32(n ﹣2)+2),将Q 的坐标代入y =﹣12x 2﹣32x+2,得n 2﹣2n ﹣3=﹣12(n ﹣2)2﹣32(n ﹣2)+2,解得n =3或n =﹣43.∴此时点P 的坐标为(3,0)或(﹣43,139);第二种情况:AC 为平行四边形的一条对角线.Q 点的纵坐标y Q ,n 2-2n-3-(-3)=-3-y Q ,y Q =-n 2+2n-3,点Q 的坐标为(2﹣n ,﹣n 2+2n ﹣3),将Q 的坐标代入y =﹣12x 2﹣32x+2,得﹣n 2+2n ﹣3=﹣12(2﹣n )2﹣32(2﹣n )+2,解得,n =0或n =﹣3.∵n =0时,点P 与点C 重合,不符合题意,舍去,∴n =﹣3,∴点P 的坐标为(﹣3,12).综上所述,点P的坐标为(﹣1,0)或(3,0)或(43 ,139)或(﹣3,12).【点睛】本题考查抛物线解析式,平行y轴线段的最值,平行四边形的性质,掌握抛物线解析式,平行y轴线段的最值,平行四边形的性质,利用平形四边形的性质构造方程是解题关键.。
最新人教版九年级数学上册期末测试卷【参考答案】
最新人教版九年级数学上册期末测试卷【参考答案】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. -2019的相反数是()A. 2019B. -2019C.D.2. 用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A. y=(x﹣4)2+7B. y=(x+4)2+7C. y=(x﹣4)2﹣25D. y=(x+4)2﹣253.如果, 那么代数式的值为()A. B. C. D.4.把函数向上平移3个单位, 下列在该平移后的直线上的点是( )A. B. C. D.5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书, 每个同学都把自己的图书向本组其他成员赠送一本, 某组共互赠了210本图书, 如果设该组共有x名同学, 那么依题意, 可列出的方程是()A. x(x+1)=210B. x(x﹣1)=210C. 2x(x﹣1)=210D. x(x﹣1)=2106.已知: 等腰直角三角形ABC的腰长为4, 点M在斜边AB上, 点P为该平面内一动点, 且满足PC=2, 则PM的最小值为()A. 2B. 2 ﹣2C. 2 +2D. 27.如图, 将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上, 若, 则的大小为()A. B. C. D.8.如图, 已知∠ABC=∠DCB, 下列所给条件不能证明△ABC≌△DCB的是()A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD9.如图, △ABC中, AD是BC边上的高, AE、BF分别是∠BAC、∠ABC的平分线, ∠BAC=50°, ∠ABC=60°, 则∠EAD+∠ACD=()A. 75°B. 80°C. 85°D. 90°10.如图, 矩形的对角线, 交于点, , , 过点作, 交于点, 过点作, 垂足为, 则的值为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: _____________.2. 分解因式: 2x3﹣6x2+4x=__________.3. 已知抛物线与x轴的一个交点为, 则代数式m²-m+2019的值为__________.4. (2017启正单元考)如图, 在△ABC中, ED∥BC, ∠ABC和∠ACB的平分线分别交ED于点G、F, 若FG=4, ED=8, 求EB+DC=________.5. 如图, AB为△ADC的外接圆⊙O的直径, 若∠BAD=50°, 则∠ACD=_____°.6. 菱形的两条对角线长分别是方程的两实根, 则菱形的面积为__________.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根.(1)求实数k的取值范围.(2)若方程两实根满足|x1|+|x2|=x1·x2, 求k的值.3. 如图, 在▱ABCD中, AE⊥BC, AF⊥CD, 垂足分别为E, F, 且BE=DF(1)求证: ▱ABCD是菱形;(2)若AB=5, AC=6, 求▱ABCD的面积.4. 周末, 小华和小亮想用所学的数学知识测量家门前小河的宽. 测量时, 他们选择了河对岸边的一棵大树, 将其底部作为点A, 在他们所在的岸边选择了点B, 使得AB与河岸垂直, 并在B点竖起标杆BC, 再在AB的延长线上选择点D竖起标杆DE, 使得点E与点C.A共线.已知:CB⊥AD, ED⊥AD, 测得BC=1m, DE=1.5m, BD=8.5m.测量示意图如图所示.请根据相关测量信息, 求河宽AB.5. 随着社会的发展, 通过微信朋友圈发布自己每天行走的步数已经成为一种时尚. “健身达人”小陈为了了解他的好友的运动情况. 随机抽取了部分好友进行调查, 把他们6月1日那天行走的情况分为四个类别: A(0~5000步)(说明: “0~5000”表示大于等于0, 小于等于5000, 下同), B(5001~10000步), C(10001~15000步), D(15000步以上), 统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中, 一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中, “A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人, 请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元, 甲种图书每本的售价是乙种图书每本售价的1.4倍, 若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者, 决定甲种图书售价每本降低3元, 乙种图书售价每本降低2元, 问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.A2.C3.A4.D5.B6.B7、A8、D9、A10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1.32.2x(x﹣1)(x﹣2).3.20204.125.406.24三、解答题(本大题共6小题, 共72分)1. .2、(1)k﹥;(2)k=2.3.(1)略;(2)S平行四边形ABCD =244.河宽为17米5.(1)30;(2)①补图见解析;②120;③70人.6、(1)甲种图书售价每本28元, 乙种图书售价每本20元;(2)甲种图书进货533本, 乙种图书进货667本时利润最大.。
新人教版九年级数学上册期末试卷(及参考答案)
新人教版九年级数学上册期末试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 下列运算正确的是()A. B. C. D.2.已知x+ =6, 则x2+ =()A. 38B. 36C. 34D. 323. 等式成立的x的取值范围在数轴上可表示为()A. B. C. D.4.如图, 数轴上有三个点A、B、C, 若点A、B表示的数互为相反数, 则图中点C对应的数是()A. ﹣2B. 0C. 1D. 45.已知平行四边形ABCD, AC.BD是它的两条对角线, 那么下列条件中, 能判断这个平行四边形为矩形的是()A. ∠BAC=∠DCAB. ∠BAC=∠DACC. ∠BAC=∠ABDD. ∠BAC=∠ADB 6.一个等腰三角形的两条边长分别是方程的两根, 则该等腰三角形的周长是()A. 12B. 9C. 13D. 12或97.如图, 在和中, , 连接交于点, 连接.下列结论:①;②;③平分;④平分.其中正确的个数为().A. 4B. 3C. 2D. 18.如图, 已知∠ABC=∠DCB, 下列所给条件不能证明△ABC≌△DCB的是()A. ∠A=∠DB. AB=DCC. ∠ACB=∠DBCD. AC=BD9.如图, 已知⊙O的直径AE=10cm, ∠B=∠EAC, 则AC的长为()A. 5cmB. 5 cmC. 5 cmD. 6cm10.如图, P为等边三角形ABC内的一点, 且P到三个顶点A, B, C的距离分别为3, 4, 5, 则△ABC的面积为()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: =______________.2. 因式分解: a3-a=_____________.3. 已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方, 则实数k的取值范围是__________.4. 如图, 已知△ABC的周长是21, OB, OC分别平分∠ABC和∠ACB, OD⊥BC于D, 且OD=4, △ABC的面积是__________.5. 如图, 点A, B是反比例函数y= (x>0)图象上的两点, 过点A, B分别作AC⊥x轴于点C, BD⊥x轴于点D, 连接OA, BC, 已知点C(2, 0), BD=2, S△BCD=3, 则S△AOC=__________.6. 现有两个不透明的袋子, 一个装有2个红球、1个白球, 另一个装有1个黄球、2个红球, 这些球除颜色外完全相同. 从两个袋子中各随机摸出1个球, 摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题, 共72分)1. 解方程:2. 先化简, 再求值: , 其中.3. 如图①,已知抛物线y=ax2+bx+c的图像经过点A(0, 3)、B(1, 0), 其对称轴为直线l: x=2, 过点A作AC∥x轴交抛物线于点C, ∠AOB的平分线交线段AC于点E, 点P是抛物线上的一个动点, 设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上, 连结PE、PO, 当m为何值时, 四边形AOPE面积最大, 并求出其最大值;(3)如图②, F是抛物线的对称轴l上的一点, 在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在, 直接写出所有符合条件的点P的坐标;若不存在, 请说明理由.4. 如图, 已知P是⊙O外一点, PO交圆O于点C, OC=CP=2, 弦AB⊥OC,劣弧AB的度数为120°, 连接PB.(1)求BC的长;(2)求证: PB是⊙O的切线.5. 某商场服装部分为了解服装的销售情况, 统计了每位营业员在某月的销售额(单位: 万元), 并根据统计的这组销售额的数据, 绘制出如下的统计图①和图②, 请根据相关信息, 解答下列问题:(1)该商场服装营业员的人数为 , 图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6. 某商店在2014年至2016年期间销售一种礼盒. 2014年, 该商店用3500元购进了这种礼盒并且全部售完;2016年, 这种礼盒的进价比2014年下降了11元/盒, 该商店用2400元购进了与2014年相同数量的礼盒也全部售完, 礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同, 问年增长率是多少?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.C2.C3.B4.C5.C6.A7、B8、D9、B10、A二、填空题(本大题共6小题, 每小题3分, 共18分)1、.2.a(a-1)(a + 1)3.k<44.425、5.6.三、解答题(本大题共6小题, 共72分)1.无解2. .3、(1)y=x2-4x+3.(2)当m= 时,四边形AOPE面积最大,最大值为.(3)P点的坐标为:P1(,),P2(,),P3(,),P4(,).4.(1)2(2)略5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)35元/盒;(2)20%.。
新人教版九年级数学上册期末测试卷【附答案】
新人教版九年级数学上册期末测试卷【附答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的相反数是()A.13-B.13C.3-D.32.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.23.下列说法正确的是()A.一个数的绝对值一定比0大 B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数 D.最小的正整数是14.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数25-的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上5.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根6.定义运算:21m n mn mn=--☆.例如2:42424217=⨯-⨯-=☆.则方程10x=☆的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根7.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5708.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.29.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23⨯=______________.2.分解因式:x 2-2x+1=__________.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a ,b ,c ,d 中的__________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G=;(1)求证:EF BC(2)若65ABC∠=︒,求FGC∠的度数.ACB∠=︒,285.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、D4、B5、A6、A7、A8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1.2、(x-1)2.3、0或14、a,b,d或a,c,d5、x=26、12三、解答题(本大题共6小题,共72分)1、x=12.3、(1)相切,略;(2).4、(1)略;(2)78°.5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【期末专题复习】人教版九年级数学上册期末综合检测试卷 学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 已知关于x 的方程x 2−kx +1=0的一个根是x =3,则实数k 的值是() A.−13 B.−103 C.13 D.1032. 若二次函数y =ax 2+bx +a 2−2(a 、b 为常数)的图象如图,则a 的值为()A.1B.√2C.−√2D.−2 3. 已知,Rt △ABC 中,∠C =90∘,斜边AB 上的高为5cm ,以点C 为圆心,4.8为半径的圆与该直线AB 的交点个数为()A.0个B.1个C.2个D.3个4. 如图,⊙O 是等边三角形ABC 的外接圆,⊙O 的半径为3,则等边三角形ABC 的边长为()A.√3B.√2C.3√3D.3√2 5. 某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3B.2.5C.2D.56. 如图,抛物线y =ax 2+bx +c 与x 轴交于点A(−1, 0),顶点坐标为(1, n),与y 轴的交点在(0, 2)、(0, 3)之间(包含端点).有下列结论: ①当x =3时,y =0;②3a +b >0;③−1≤a ≤−23;④83≤n ≤4.其中正确的有()A.1个B.2个C.3个D.4个7. 用配方法解方x 2−52x −4=0的配方过程正确是()A.将原方程配方(x −52)2=4B.将原方程配方(x −54)2=4 C.将原方程配方(x −52)2=414D.将原方程配方(x −54)2=8916 8. 如图,将边长为3的正六边形A 1A 2A 3A 4A 5A 6,在直线l 上由图1的位置按顺时针方向向右作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1所经过的路径的长为()A.(4+2√3)πB.(8+4√3)πC.(4+√3)πD.(2+√3)π9. 已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A.ac>0B.方程ax2+bx+c=0的两根是x1=−1,x2=3C.2a−b=0D.当x>0时,y随x的增大而减小10. 如图,Rt△ABC中,∠ABC=90∘,AB=BC=2,以BC为直径的圆交AC于点D,则图中阴影部分的面积为()A.2B.1+π2C.1 D.2−π4二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 方程:x(x−2)+x−2=0的解是:________.12. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为________m2.13. 有一扇形的铁皮,其半径为30cm,圆心角为60∘,若用此扇形铁皮围成一个圆锥形的教具(不计接缝),则此圆锥的高是________.14. 小华和小丽做游戏:抛掷两枚硬币,每人各抛掷10次,小华在10次抛掷中,成功率为20%,则她成功了________次,小丽成功率为10%,则她成功了________次.15. 钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过14分钟旋转了________ 度.16. 某射手在一次射击中,射中10环、9环、8环的概率分别是0.24、0.28、0.19,那么,这个射手在这次射击中,射中10环或9环的概率为________;不够8环的概率为________.17. 如图,将Rt△ABC绕点A逆时针旋转40∘,得到Rt△AB′C′,使AB′恰好经过点C,连接BB′,则∠BAC′的度数为________∘.18. 一个不透明的塑料袋中有3个小球,其中2个红球和1个白球,它们除颜色外其余都相同,摸出一个球记下颜色后放回,再摸出一个小球,则两次摸出的小球恰好颜色不同的概率是________.19. 如图,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90∘,得到△AB10,那么点A1的坐标为________.20. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a+c>0;④4a+2b+c与4a−2b+c都是负数,其中结论正确的序号是________.三、解答题(本题共计 9 小题,共计60分,)21.(12分) 解下列方程:(1)2x2+5x−3=0(2)(3−x)2+x2=9(3)2(x−3)2=x(x−3)(4)(x−1)2−5(x−1)+6=022.(5分) (原创题)如图所示,AB // CD // x轴,且AB=CD=3,A点坐标为(−1, 1),若C(1, −1):(1)写出B,D坐标;(2)你发现A,B,C,D坐标之间有何特征?23.(5分) 已知函数y=(m−1)x m2+1+4x−5是二次函数.(1)求m的值;(2)写出这个二次函数图象的对称轴和顶点坐标.x+8,点P从点A开始沿AO方向以1个单位/秒的24. (5分)如图已知直线AC的函数解析式为y=43速度运动,点Q从O点开始沿OC方向以2个单位/秒的速度运动.如果P、Q两点分别从点A、点O同时出发,经过多少秒后能使△POQ的面积为8个平方单位?BC^.25. (5分)如图,AB是⊙O的直径,BC是⊙O的弦,直径DE过BC的中点F.求证:AD^=1226.(7分) 对于抛物线y=x2−4x+3.对于抛物线y=x2−4x+3.(1)它与x轴交点的坐标为________,与y轴交点的坐标为________,顶点坐标为________;y……(3)利用以上信息解答下列问题:若关于x的一元二次方程x2−4x+3−t=0(t为实数)在−1<x<7的范围内有解,则t的取值范围是________.227. (7分)某童装店在服装销售中发现:进货价每件60元,销售价每件100元的某童装每天可售出20件.为了迎接“六一儿童节”,童装店决定采取适当的促销措施,扩大销售量,增加盈利.经调查发现:如果每件童装降价1元,那么每天就可多售出2件.(1)如果童装店想每天销售这种童装盈利1050元,同时又要使顾客得到更多的实惠,那么每件童装应降价多少元?(2)每件童装降价多少元时,童装店每天可获得最大利润?最大利润是多少元?28. (7分)如图,△ABC是⊙O的内接三角形,∠BAD是△ABC的一个外角,∠BAC,∠BAD的平分线分别交⊙O与点E、F.若连接EF,则EF与BC有怎样的位置关系?为什么?29.(7分) 某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)如果商店销售这种商品,每天要获得1500元利润,那么每件商品的销售价应定为多少元?(3)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?参考答案与试题解析【期末专题复习】人教版九年级数学上册期末综合检测试卷一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】一元二次方程的解【解析】把x=3代入方程x2−kx+1=0,得到k的一元一次方程,解出k的值即可.2.【答案】C【考点】二次函数图象上点的坐标特征【解析】根据图象开口向下可知a<0,又二次函数图象经过坐标原点,把原点坐标代入函数解析式解关于a的一元二次方程即可.3.【答案】A【考点】直线与圆的位置关系【解析】根据直线和圆的位置关系与数量之间的联系进行判断.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.4.【答案】C【考点】正多边形和圆【解析】首先连接OB,OC,过点O作OD⊥BC于D,由⊙O是等边△ABC的外接圆,即可求得∠OBC的度数,然后由三角函数的性质即可求得OD的长,又由垂径定理即可求得等边△ABC的边长.5.【答案】A【考点】一元二次方程的应用【解析】设售价为x元时,每星期盈利为6125元,那么每件利润为(x−40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出[300+20(60−x)]件,然后根据盈利为6120元即可列出方程解决问题.6.【答案】C【考点】二次函数图象与系数的关系【解析】①由抛物线的顶点坐标的横坐标可得出抛物线的对称轴为x=1,结合抛物线的对称性及点A的坐标,可得出点B的坐标,由点B的坐标即可断定①正确;②由抛物线的开口向下可得出a<0,结合抛物线对称轴为x=−b2a =1,可得出b=−2a,将b=−2a代入3a+b中,结合a<0即可得出②不正确;③由抛物线与y轴的交点的范围可得出c的取值范围,将(−1, 0)代入抛物线解析式中,再结合b=−2a即可得出a的取值范围,从而断定③正确;④结合抛物线的顶点坐标的纵坐标为4ac−b24a,结合a的取值范围以及c的取值范围即可得出n的范围,从而断定④正确.综上所述,即可得出结论.7.【答案】D【考点】解一元二次方程-配方法【解析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.8.【答案】A【考点】弧长的计算旋转的性质【解析】连A1A5,A1A4,A1A3,作A6C⊥A1A5,利用正六边形的性质分别计算出A1A4=6,A1A5=A1A3=3√3,而当A1第一次滚动到图2位置时,顶点A1所经过的路径分别是以A6,A5,A4,A3,A2为圆心,以3,3√3,6,3√3,3为半径,圆心角都为60∘的五条弧,然后根据弧长公式进行计算即可.9.【答案】B【考点】二次函数图象与系数的关系抛物线与x轴的交点【解析】根据抛物线的开口方向,对称轴,与x轴、y轴的交点,逐一判断.10.【答案】C【考点】扇形面积的计算【解析】从图中的图形关系看出阴影部分的面积可以简化成一个三角形的面积,然后通过已知条件求出面积.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】x1=2,x2=−1【考点】解一元二次方程-因式分解法【解析】通过提取公因式(x−2)对等式的左边进行因式分解,然后解方程.12.【答案】75【考点】二次函数的应用【解析】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3−3x=30−3x,表示出总面积S=x(30−3x)=−3x2+30x=−3(x−5)2+75即可求得面积的最值.13.【答案】5√35cm【考点】圆锥的计算【解析】根据题目提供的数据求出扇形的弧长,根据扇形的弧长等于圆锥地面的周长求出圆锥的半径,然后在圆锥的高、母线和底面半径构造的直角三角形中求圆锥的高.14.【答案】2,1【考点】概率的意义【解析】用抛掷次数乘以成功率即可.15.【答案】84【考点】生活中的旋转现象【解析】根据钟表面的知识,钟表上分针走过一个小格转过的度数是6∘,走过14分钟,乘以14,计算即可得解.16.【答案】0.52,0.29【考点】概率公式【解析】“射中10环或9环”意思就是射中10环和射中9环的总和,由此可得到所求的概率;“不够8环”意思就是射中1、2、3、4、5、6、7环,我们可以从反面入手,求出射中8、9、10环的概率,然后再用1减去这个概率,得到所求的概率.17.【答案】80【考点】旋转的性质【解析】先根据旋转的性质得到∠BAC=∠B′AC′=40∘,于是得到∠BAC′=∠BAC+∠B′AC′=80∘.18.【答案】49【考点】列表法与树状图法【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球恰好颜色不同的情况,再利用概率公式即可求得答案.19.【答案】(1, 3)【考点】坐标与图形变化-旋转【解析】抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90∘,通过画图得A1.20.【答案】②③【考点】二次函数图象与系数的关系【解析】根据函数的开口方向,对称轴以及与y轴的交点即可确定a,b,c的符号,从而判断①;根据对称轴的位置即可判断②;根据二次函数与x轴的交点的坐标,即可确定ca 的范围,确定ca与−1的大小,从而判断a+c的符号;根据x=2和−2时,点的坐标的符号判断④.三、解答题(本题共计 9 小题,共计60分)21.【答案】解:(1)因式分解,得(2x−1)(x+3)=0,所以2x−1=0或x+3=0,解得,x=12或x=−3;(2)移项得,(3−x)2+x2−9=0,变形得,(x−3)2+(x+3)(x−3)=0,因式分解,得(x−3)[(x−3)+(x+3)]=0,解得,x=3或x=0;(3)移项得,2(x−3)2−x(x−3)=0,因式分解得,(x−3)[2(x−3)−x]=0,解得x=3或x=6;(4)化简得:(x−1−2)(x−1−3)=0即(x−3)(x−4)=0解得x=3或x=4.【考点】解一元二次方程-因式分解法换元法解一元二次方程【解析】(1)方程左边可以利用十字相乘法进行因式分解,因此应用因式分解法解答.(2)先移项,然后把x2−9因式分解为(x+3)(x−3),然后再提取公因式,因式分解即可.(3)先移项,然后用提取公因式法对左边进行因式分解即可.(4)把(x−1)看作是一个整体,然后套用公式a2±2ab+b2=(a±b)2,进行进一步分解,故用因式分解法解答.22.【答案】解:(1)∵AB // CD // x轴,A点坐标为(−1, 1),点C(1, −1),∴点B、D的纵坐标分别是1,−1,∵AB=CD=3,∴B(2, 1),D(−2, −1).(2)∵A(−1, 1),C(1, −1)横、纵坐标互为相反数,∴关于原点对称,同理,B ,D 关于原点对称.【考点】关于原点对称的点的坐标【解析】(1)根据平行于x 轴的直线的特点、以及AB =CD =3得出B ,D 坐标;(2)对比ABCD 的坐标得出他们之间的特征.23.【答案】解:(1)由y =(m −1)x m 2+1+4x −5是二次函数,得m 2+1=2且m −1≠0.解得m =−1;(2)当m =−1时,二次函数为y =−2x 2+4x −5,a =−2,b =4,c =−5,对称轴为x =−b 2a=1,顶点坐标为(1, −3).【考点】 二次函数的定义二次函数的性质【解析】(1)根据二次函数的定义:y =ax 2+bx +c 是二次函数,可得答案;(2)根据y =ax 2+bx +c 的对称轴是x =−b 2a ,顶点坐标是(−b 2a , 4ac−b 24a ),可得答案.24.【答案】解:∵直线AC 的函数解析式为y =43x +8,∴点C(0, 8),点A(−6, 0).设运动时间为t ,则PO =|t −6|,OQ =2t ,根据题意,得:2t ×|t −6|=16,解得:t 1=2,t 2=4,t 3=3−√17(舍去),t 4=3+√17.∴经过2秒、4秒或3+√17秒后能使△POQ 的面积为8个平方单位【考点】一元二次方程的应用【解析】根据直线AC 的解析式可得出点A 、C 的坐标,设运动时间为t ,则PO =|t −6|,OQ =2t ,根据三角形的面积即可得出关于t 的一元二次方程,解方程即可得出结论.25.【答案】证明:连接OC ,∵OC =OB ,F 为BC 中点, ∴OE ⊥BC , ∵OE 过O , ∴弧BE =弧CE =12弧BC ,∵∠DOA =∠BOE , ∴弧AD =弧BE , ∴AD ^=12BC ^.【考点】11 【解析】连接OC ,根据等腰三角形性质得出OE ⊥BC ,根据垂径定理求出弧BE =弧CE =12弧BC ,求出弧AD =弧BE ,即可得出答案.26.【答案】(3, 0)(1, 0),(0, 3),(2, −1),−1≤t <8【考点】抛物线与x 轴的交点 二次函数的图象二次函数的性质【解析】据正方形的性质可以确B 坐标,先出OC 的解析式,再由B 的标就可求NM 的析;如图、图4作OH ⊥MN ,PG ⊥OB 于G ,根据定理就可以求出P 点的纵坐标从而P 点的坐,根据直角三性质就可以∠OPE 的度数,平行性就可以得∠PC 的度数.当P 在x 轴的方时如4同可以得结论. 27.【答案】童装店应该降价25元.(2)设每件童装降价x 元,可获利y 元,根据题意,得y =(100−60−x)(20+2x),化简得:y =−2x 2+60x +800 ∴y =−2(x −15)2+1250答:每件童装降价15元童装店可获得最大利润,最大利润是1250元【考点】一元二次方程的应用二次函数的应用【解析】(1)设每件童装降价m 元,利用童装平均每天售出的件数×每件盈利=每天销售这种童装利润列出方程解答即可;(2)设每件童装降价x 元,可获利y 元,利用上面的关系列出函数,利用配方法解决问题. 28.【答案】解:EF 垂直平分BC .理由如下:∵AF 平分∠BAD ,AE 平分∠BAC , ∴∠BAF =12∠BAD ,∠BAE =12∠BAC ,∴∠BAF +∠BAE =12(∠BAD +∠BAC)=12×180∘=90∘,即∠EAF =90∘,∴EF 为⊙O 的直径, ∵AE 平分∠BAC , ∴∠BAE =∠CAE , ∴BE ^=CE ^, ∴EF 垂直平分BC .【考点】圆周角定理圆心角、弧、弦的关系试卷第!异常的公式结尾页,总12页 12 先利用角平分线定义和平角定义计算出∠EAF =90∘,则利用圆周角定理的推论得到EF 为⊙O 的直径,由AE 平分∠BAC 得∠BAE =∠CAE ,根据圆周角定理得BE^=CE ^,于是根据垂径定理的推论可得EF 垂直平分BC .29.【答案】设y 与x 之间的函数关系式为y =kx +b(k ≠0),由所给函数图象可知:{130k +b =50150k +b =30,解得:{k =−1b =180 . 故y 与x 的函数关系式为y =−x +180;根据题意,得:(x −100)(−x +180)=1500,整理,得:x2−280x +19500=0,解得:x =130或x =150,答:每件商品的销售价应定为130元或150元;∵y =−x +180, ∴W =(x −100)y =(x −100)(−x +180)=−x 2+280x −18000=−(x −140)2+1600,∴当x =140时,W 最大=1600,∴售价定为140元/件时,每天最大利润W =1600元.【考点】一元二次方程的应用二次函数的应用【解析】(1)待定系数法求解可得;(2)根据“每件利润×销售量=总利润”列出一元二次方程,解之可得;(3)根据以上相等关系列出函数解析式,配方成顶点式,利用二次函数性质求解可得.。