2013年黑龙江省大庆市中考数学试卷

合集下载

139[一键打印]【解析版】2013年黑龙江省齐齐哈尔、黑河、大兴安岭中考数学试卷及答案

139[一键打印]【解析版】2013年黑龙江省齐齐哈尔、黑河、大兴安岭中考数学试卷及答案

黑龙江省齐齐哈尔、黑河、大兴安岭2013年中考数学试卷一、单项选择题(每题3分,满分30分)1.(3分)(2013•齐齐哈尔)下列数字中既是轴对称图形又是中心对称图形的有几个()=±3 ﹣=3(﹣3.(3分)(2013•齐齐哈尔)如图,是一种古代计时器﹣﹣“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间若用x 表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)()BAB,使AB⊥CD,垂足为E,若4.(3分)(2013•齐齐哈尔)CD是⊙O的一条弦,作直径CD=OC=5.(3分)(2013•齐齐哈尔)甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2=1.4,S乙2=18.8,S丙2=25,导游6.(3分)(2013•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间7.(3分)(2013•齐齐哈尔)已知二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),且﹣2<x1<﹣1,与y轴正半轴的交点在(0,2)的下方,则下列结论:①abc<0;②b22a+b+=0=,所以﹣<﹣>=0,即=<﹣﹣9.(3分)(2013•齐齐哈尔)数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x2+1与y=的交点的横坐标x0的取值范围是()y=的交点在第一象限,10.(3分)(2013•齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线④∠EAM=∠ABC,其中正确结论的个数是(),二、填空题(每题3分,满分30分)11.(3分)(2013•齐齐哈尔)某种病毒近似于球体,它的半径约为0.00000000495米,用科学记数法表示为 4.95×10﹣9米.12.(3分)(2013•齐齐哈尔)小明“六•一”去公园玩儿投掷飞镖的游戏,投中图中阴影部分有奖(飞镖盘被平均分成8分),小明能获得奖品的概率是.小明能获得奖品的概率是故答案为:.13.(3分)(2013•齐齐哈尔)函数y=﹣(x﹣2)0中,自变量x的取值范围是x≥0且x≠3且x≠2.14.(3分)(2013•齐齐哈尔)圆锥的母线长为6cm,底面周长为5πcm,则圆锥的侧面积为15πcm2.•=15.(3分)(2013•齐齐哈尔)如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是∠C=∠BAD(填一个即可)16.(3分)(2013•齐齐哈尔)若关于x的分式方程=﹣2有非负数解,则a的取值范围是a且a.x=∴﹣且.a且a17.(3分)(2013•齐齐哈尔)如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图.则这个几何体可能是由6或7或8个正方体搭成的.18.(3分)(2013•齐齐哈尔)请运用你喜欢的方法求tan75°=2+.CD=2+CD=2+19.(3分)(2013•齐齐哈尔)正方形ABCD中,AC、BD相交于点O,点E是射线AB上一点,点F是直线AD上一点,BE=DF,连接EF交线段BD于点G,交AO于点H.若AB=3,AG=,则线段EH的长为或..)F=F=,DK=,∴AC=AH+CH=3AH=AC=AN=AH=,∴,即或故答案为:.20.(3分)(2013•齐齐哈尔)如图,蜂巢的横截面由正六边形组成,且能无限无缝隙拼接,称横截面图形由全等正多边形组成,且能无限无缝隙拼接的多边形具有同形结构.若已知具有同形结构的正n边形的每个内角度数为α,满足:360=kα(k为正整数),多边形外角和为360°,则k关于边数n的函数是k=(n=3,4,6)或k=2+(n=3,4,6)(写出n的取值范围),再代入=360.==2+((三、解答题(满分60分)21.(5分)(2013•齐齐哈尔)先化简,再求值:÷(a﹣),其中a、b满足式子|a﹣2|+(b﹣)2=0.÷﹣÷•,﹣=0,=2+22.(6分)(2013•齐齐哈尔)如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)=,=23.(6分)(2013•齐齐哈尔)如图,已知二次函数y=ax2+bx+c的图象经过点A(﹣4,0),B(﹣1,3),C(﹣3,3)(1)求此二次函数的解析式;(2)设此二次函数的对称轴为直线l,该图象上的点P(m,n)在第三象限,其关于直线l 的对称点为M,点M关于y轴的对称点为N,若四边形OAPN的面积为20,求m、n的值.得:24.(7分)(2013•齐齐哈尔)齐齐哈尔市教育局非常重视学生的身体健康状况,为此在体育考试中对部分学生的立定跳远成绩进行了调查(分数为整数,满分100分),根据测试成)被抽查的学生为45人.(2)请补全频数分布直方图.(3)若全市参加考试的学生大约有4500人,请估计成绩优秀的学生约有多少人?(80分及80分以上为优秀)(4)若此次测试成绩的中位数为78分,请直接写出78.5~89.5分之间的人数最多有多少人?.25.(8分)(2013•齐齐哈尔)甲乙两车分别从A、B两地相向而行,甲车出发1小时后乙车出发,并以各自速度匀速行驶,两车相遇后依然按照原速度原方向各自行驶,如图所示是甲乙两车之间的距离S(千米)与甲车出发时间t(小时)之间的函数图象,其中D点表示甲车到达B地,停止行驶.(1 )A、B两地的距离560千米;乙车速度是100km/h;a表示.(2)乙出发多长时间后两车相距330千米?120=×=,+3=,()代入得,26.(8分)(2013•齐齐哈尔)已知等腰三角形ABC中,∠ACB=90°,点E在AC边的延长线上,且∠DEC=45°,点M、N分别是DE、AE的中点,连接MN交直线BE于点F.当点D在CB边上时,如图1所示,易证MF+FN=BE(1)当点D在CB边上时,如图2所示,上述结论是否成立?若成立,请给与证明;若不成立,请写出你的猜想,并说明理由.(2)当点D在BC边的延长线上时,如图3所示,请直接写出你的结论.(不需要证明)MF=MN=ADMN=FN=BE MF=BEADBEBEADBEBE27.(10分)(2013•齐齐哈尔)在国道202公路改建工程中,某路段长4000米,由甲乙两个工程队拟在30天内(含30天)合作完成,已知两个工程队各有10名工人(设甲乙两个工程队的工人全部参与生产,甲工程队每人每天的工作量相同,乙工程队每人每天的工作量相同),甲工程队1天、乙工程队2天共修路200米;甲工程队2天,乙工程队3天共修路350米.(1)试问甲乙两个工程队每天分别修路多少米?(2)甲乙两个工程队施工10天后,由于工作需要需从甲队抽调m人去学习新技术,总部要求在规定时间内完成,请问甲队可以抽调多少人?(3)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲乙两队需各做多少天?最低费用为多少?依题意得,,×,,28.(10分)(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B 两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.﹣(+1x+)=OB=,.S=2﹣t2。

(历年中考)黑龙江省大庆市中数学考试题 含答案

(历年中考)黑龙江省大庆市中数学考试题 含答案

2016年黑龙江省大庆市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2016•大庆)地球上的海洋面积为361 000 000平方千米,数字361 000 000用科学记数法表示为()A.36.1×107 B.0.361×109C.3.61×108 D.3.61×1072.(3分)(2016•大庆)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b|D.a﹣b>03.(3分)(2016•大庆)下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形4.(3分)(2016•大庆)当0<x<1时,x2、x、的大小顺序是()A.x2B.<x<x2C.<x D.x<x2<5.(3分)(2016•大庆)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.6.(3分)(2016•大庆)由若干边长相等的小正方体构成的几何体的主视图、左视图、俯视图如图所示,则构成这个几何体的小正方体有()个.A.5 B.6 C.7 D.87.(3分)(2016•大庆)下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.48.(3分)(2016•大庆)如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.39.(3分)(2016•大庆)已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x1+x2<010.(3分)(2016•大庆)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2016•大庆)函数y=的自变量x的取值范围是.12.(3分)(2016•大庆)若a m=2,a n=8,则a m+n=.13.(3分)(2016•大庆)甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是(填“甲”或“乙”).14.(3分)(2016•大庆)如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=.15.(3分)(2016•大庆)如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为.16.(3分)(2016•大庆)一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.17.(3分)(2016•大庆)如图,在矩形ABCD中,AB=5,BC=10,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为.18.(3分)(2016•大庆)直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为.三、解答题(本大题共10小题,共66分)19.(4分)(2016•大庆)计算(+1)2﹣π0﹣|1﹣|20.(4分)(2016•大庆)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.21.(5分)(2016•大庆)关于x的两个不等式①<1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.22.(6分)(2016•大庆)某车间计划加工360个零件,由于技术上的改进,提高了工作效率,每天比原计划多加工20%,结果提前10天完成任务,求原计划每天能加工多少个零件?23.(7分)(2016•大庆)为了了解某学校初四年级学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m值.②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.24.(7分)(2016•大庆)如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA 的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.25.(7分)(2016•大庆)如图,P1、P2是反比例函数y=(k>0)在第一象限图象上的两点,点A1的坐标为(4,0).若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点.(1)求反比例函数的解析式.(2)①求P2的坐标.②根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=的函数值.26.(8分)(2016•大庆)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x 的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.27.(9分)(2016•大庆)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB 于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=,tan∠ABC=,求⊙O的半径.(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.28.(9分)(2016•大庆)若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:u2=﹣x2+mx+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.2016年黑龙江省大庆市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2016•大庆)地球上的海洋面积为361 000 000平方千米,数字361 000 000用科学记数法表示为()A.36.1×107 B.0.361×109C.3.61×108 D.3.61×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:361 000 000用科学记数法表示为3.61×108,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)(2016•大庆)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b|D.a﹣b>0【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.【解答】解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.故选:D.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.3.(3分)(2016•大庆)下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【分析】直接利用菱形的判定定理、矩形的性质与平行四边形的判定定理求解即可求得答案.【解答】解:A、对角线互相垂直且平分的四边形是菱形;故本选项错误;B、矩形的对角线相等,菱形的对角线互相垂直;故本选项错误;C、两组组对边分别平行的四边形是平行四边形;故本选项错误;D、四边相等的四边形是菱形;故本选项正确.故选.【点评】此题考查了矩形的性质、菱形的判定以及平行四边形的判定.注意掌握各特殊平行四边形对角线的性质是解此题的关键.4.(3分)(2016•大庆)当0<x<1时,x2、x、的大小顺序是()A.x2B.<x<x2C.<x D.x<x2<【分析】先在不等式0<x<1的两边都乘上x,再在不等式0<x<1的两边都除以x,根据所得结果进行判断即可.【解答】解:当0<x<1时,在不等式0<x<1的两边都乘上x,可得0<x2<x,在不等式0<x<1的两边都除以x,可得0<1<,又∵x<1,∴x2、x、的大小顺序是:x2<x<.故选(A)【点评】本题主要考查了不等式,解决问题的根据是掌握不等式的基本性质.不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或>.5.(3分)(2016•大庆)一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取到的是一个红球、一个白球的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,取到的是一个红球、一个白球的有12种情况,∴取到的是一个红球、一个白球的概率为:=.故选C.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.(3分)(2016•大庆)由若干边长相等的小正方体构成的几何体的主视图、左视图、俯视图如图所示,则构成这个几何体的小正方体有()个.A.5 B.6 C.7 D.8【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图可知,这个几何体的底层应该有2+1+1+1=5个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是5+1=6个.故选B【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.7.(3分)(2016•大庆)下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.4【分析】根据中心对称图形的概念求解.【解答】解:第2个、第4个图形是中心对称图形,共2个.故选B.【点评】本题考查了中心对称图形的概念,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.8.(3分)(2016•大庆)如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为()A.0 B.1 C.2 D.3【分析】直接利用平行线的判定与性质分别判断得出各结论的正确性.【解答】解:如图所示:当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,即⇒③;当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,即⇒②;当③∠A=∠F,故DF∥AC,则∠4=∠C,当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,即⇒①,故正确的有3个.故选:D.【点评】此题主要考查了命题与定理,正确掌握平行线的判定与性质是解题关键.9.(3分)(2016•大庆)已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x1+x2<0【分析】根据反比例函数y=和x1<x2<x3,y2<y1<y3,可得点A,B在第三象限,点C 在第一象限,得出x1<x2<0<x3,再选择即可.【解答】解:∵反比例函数y=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,故选A.【点评】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.10.(3分)(2016•大庆)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.【点评】本题主要考查一元二次方程的解得概念及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解是根本,利用作差法比较大小是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2016•大庆)函数y=的自变量x的取值范围是x≥.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,2x﹣1≥0,解得x≥.故答案为:x≥.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(3分)(2016•大庆)若a m=2,a n=8,则a m+n=16.【分析】原式利用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵a m=2,a n=8,∴a m+n=a m•a n=16,故答案为:16【点评】此题考查了同底数幂的乘法,熟练掌握乘法法则是解本题的关键.13.(3分)(2016•大庆)甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是甲(填“甲”或“乙”).【分析】计算出乙的平均数和方差后,与甲的方差比较后,可以得出判断.【解答】解:乙组数据的平均数=(0+1+5+9+10)÷5=5,乙组数据的方差S2=[(0﹣5)2+(1﹣5)2+(9﹣5)2+(10﹣5)2]=16.4,∵S2甲<S2乙,∴成绩较为稳定的是甲.故答案为:甲.【点评】本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)(2016•大庆)如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=110°.【分析】由D点是∠ABC和∠ACB角平分线的交点可推出∠DBC+∠DCB=70°,再利用三角形内角和定理即可求出∠BDC的度数.【解答】解:∵D点是∠ABC和∠ACB角平分线的交点,∴有∠CBD=∠ABD=∠ABC,∠BCD=∠ACD=∠ACB,∴∠ABC+∠ACB=180°﹣40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°﹣70°=110°,故答案为:110°.【点评】此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识点的理解和掌握,难度不大,是一道基础题,熟记三角形内角和定理是解决问题的关键.15.(3分)(2016•大庆)如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3.【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的4倍少3个三角形,即可得出结果.【解答】解:第①是1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.16.(3分)(2016•大庆)一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.【分析】设该船行驶的速度为x海里/时,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【解答】解:如图所示:设该船行驶的速度为x海里/时,3小时后到达小岛的北偏西45°的C处,由题意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°﹣60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即该船行驶的速度为海里/时;故答案为:.【点评】本题考查了解直角三角形的应用中的方向角问题、等腰直角三角形的性质、含30°角的直角三角形的性质等知识;通过解直角三角形得出方程是解决问题的关键.17.(3分)(2016•大庆)如图,在矩形ABCD中,AB=5,BC=10,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为75﹣.【分析】设圆的半径为x,根据勾股定理求出x,根据扇形的面积公式、阴影部分面积为:矩形ABCD的面积﹣(扇形BOCE的面积﹣△BOC的面积)进行计算即可.【解答】解:设圆弧的圆心为O,与AD切于E,连接OE交BC于F,连接OB、OC,设圆的半径为x,则OF=x﹣5,由勾股定理得,OB2=OF2+BF2,即x2=(x﹣5)2+(5)2,解得,x=10,则∠BOF=60°,∠BOC=120°,则阴影部分面积为:矩形ABCD的面积﹣(扇形BOCE的面积﹣△BOC的面积)=10×5﹣+×10×5=75﹣,故答案为:75﹣.【点评】本题考查的是扇形面积的计算,掌握矩形的性质、切线的性质和扇形的面积公式S=是解题的关键.18.(3分)(2016•大庆)直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为(0,4).【分析】根据直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两个之和与两根之积,再根据OA⊥OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.【解答】解:∵直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,∴kx+b=,化简,得x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴=,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).【点评】本题考查二次函数的性质、一次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,知道两条直线垂直时,它们解析式中的k的乘积为﹣1.三、解答题(本大题共10小题,共66分)19.(4分)(2016•大庆)计算(+1)2﹣π0﹣|1﹣|【分析】直接利用完全平方公式以及零指数幂的性质、绝对值的性质分别化简求出答案.【解答】解:原式=2+2+1﹣1﹣(﹣1)=2+2﹣+1=3+.【点评】此题主要考查了完全平方公式以及零指数幂的性质、绝对值的性质等知识,正确化简各数是解题关键.20.(4分)(2016•大庆)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.【分析】先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.【解答】解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.(5分)(2016•大庆)关于x的两个不等式①<1与②1﹣3x>0(1)若两个不等式的解集相同,求a的值;(2)若不等式①的解都是②的解,求a的取值范围.【分析】(1)求出第二个不等式的解集,表示出第一个不等式的解集,由解集相同求出a 的值即可;(2)根据不等式①的解都是②的解,求出a的范围即可.【解答】解:(1)由①得:x<,由②得:x<,由两个不等式的解集相同,得到=,解得:a=1;(2)由不等式①的解都是②的解,得到≤,解得:a≥1.【点评】此题考查了不等式的解集,根据题意分别求出对应的值利用不等关系求解.22.(6分)(2016•大庆)某车间计划加工360个零件,由于技术上的改进,提高了工作效率,每天比原计划多加工20%,结果提前10天完成任务,求原计划每天能加工多少个零件?【分析】关键描述语为:“提前10天完成任务”;等量关系为:原计划天数=实际生产天数+10.【解答】解:设原计划每天能加工x个零件,可得:,解得:x=6,经检验x=6是原方程的解,答:原计划每天能加工6个零件.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.本题需注意应设较小的量为未知数.23.(7分)(2016•大庆)为了了解某学校初四年级学生每周平均课外阅读时间的情况,随机抽查了该学校初四年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m值.②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.【分析】(1)①根据2小时所占扇形的圆心角的度数确定其所占的百分比,然后根据条形统计图中2小时的人数求得m的值;②结合周角是360度进行计算;③求得总人数后减去其他小组的人数即可求得第三小组的人数;(2)利用众数、中位数的定义及平均数的计算公式确定即可.【解答】解:(1)①∵课外阅读时间为2小时的所在扇形的圆心角的度数为90°,∴其所占的百分比为=,∵课外阅读时间为2小时的有15人,∴m=15÷=60;②依题意得:×360°=120°;③第三小组的频数为:60﹣10﹣15﹣10﹣5=20,补全条形统计图为:(2)∵课外阅读时间为3小时的20人,最多,∴众数为3小时;∵共60人,中位数应该是第30和第31人的平均数,且第30和第31人阅读时间均为3小时,∴中位数为3小时;平均数为:=2.75小时.【点评】本题考查了众数、中位数、平均数及扇形统计图和条形统计图的知识,解题的关键是能够结合两个统计图并找到进一步解题的有关信息,难度不大.24.(7分)(2016•大庆)如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA 的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.【分析】根据菱形的性质得到AB∥CD,AD=CD,∠ADB=∠CDB,推出△ADG≌△CDG,根据全等三角形的性质即可得到结论;(2)由全等三角形的性质得到∠EAG=∠DCG,等量代换得到∠EAG=∠F,求得△AEG∽△FGA,即可得到结论.【解答】解:(1)∵四边形ABCD是菱形,∴AB∥CD,AD=CD,∠ADB=∠CDB,∴∠F∠FCD,在△ADG与△CDG中,,∴△ADG≌△CDG,∴∠EAG=∠DCG,∴AG=CG;(2)∵△ADG≌△CDG,∴∠EAG=∠F,∵∠AGE=∠AGE,∴△AEG∽△FGA,∴,∴AG2=GE•GF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,全等三角形的判定和性质,熟练掌握各定理是解题的关键.25.(7分)(2016•大庆)如图,P1、P2是反比例函数y=(k>0)在第一象限图象上的两点,点A1的坐标为(4,0).若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点.(1)求反比例函数的解析式.(2)①求P2的坐标.②根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=的函数值.【分析】(1)先根据点A1的坐标为(4,0),△P1OA1为等腰直角三角形,求得P1的坐标,再代入反比例函数求解;(2)先根据△P2A1A2为等腰直角三角形,将P2的坐标设为(4+a,a),并代入反比例函数求得a的值,得到P2的坐标;再根据P1的横坐标和P2的横坐标,判断x的取值范围.【解答】解:(1)过点P1作P1B⊥x轴,垂足为B∵点A1的坐标为(4,0),△P1OA1为等腰直角三角形∴OB=2,P1B=OA1=2∴P1的坐标为(2,2)将P1的坐标代入反比例函数y=(k>0),得k=2×2=4∴反比例函数的解析式为(2)①过点P2作P2C⊥x轴,垂足为C∵△P2A1A2为等腰直角三角形∴P2C=A1C设P2C=A1C=a,则P2的坐标为(4+a,a)将P2的坐标代入反比例函数的解析式为,得a=,解得a1=,a2=(舍去)∴P2的坐标为(,)②在第一象限内,当2<x<2+时,一次函数的函数值大于反比例函数的值.【点评】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是根据等腰直角三角形的性质求得点P1和P2的坐标.等腰直角三角形是一种特殊的三角形,具备等腰三角形和直角三角形的所有性质.26.(8分)(2016•大庆)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其它因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x 的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.【分析】(1)根据两点的坐标求y1(万m3)与时间x(天)的函数关系式,并把x=20代入计算;(2)分两种情况:①当0≤x≤20时,y=y1,②当20<x≤60时,y=y1+y2;并计算分段函数中y≤900时对应的x的取值.【解答】解:(1)设y1=kx+b,把(0,1200)和(60,0)代入到y1=kx+b得:解得,∴y1=﹣20x+1200当x=20时,y1=﹣20×20+1200=800,(2)设y2=kx+b,把(20,0)和(60,1000)代入到y2=kx+b中得:解得,∴y2=25x﹣500,当0≤x≤20时,y=﹣20x+1200,当20<x≤60时,y=y1+y2=﹣20x+1200+25x﹣500=5x+700,y≤900,则5x+700≤900,x≤40,当y1=900时,900=﹣20x+1200,x=15,∴发生严重干旱时x的范围为:15≤x≤40.【点评】本题考查了一次函数的应用,熟练掌握利用待定系数法求一次函数的解析式:设直线解析式为y=kx+b,将直线上两点的坐标代入列二元一次方程组,求解;注意分段函数的实际意义,会观察图象.27.(9分)(2016•大庆)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB 于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=,tan∠ABC=,求⊙O的半径.(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.【分析】(1)连接OH、OM,易证OH是△ABC的中位线,利用中位线的性质可证明△COH ≌△MOH,所以∠HCO=∠HMO=90°,从而可知MH是⊙O的切线;(2)由切线长定理可知:MH=HC,再由点M是AC的中点可知AC=3,由tan∠ABC=,所以BC=4,从而可知⊙O的半径为2;(3)连接CN,AO,CN与AO相交于I,由AC、AN是⊙O的切线可知AO⊥CN,利用等面积可求出可求得CI的长度,设CE为x,然后利用勾股定理可求得CE的长度,利用垂径定理即可求得NQ.【解答】解:(1)连接OH、OM,∵H是AC的中点,O是BC的中点,∴OH是△ABC的中位线,∴OH∥AB,∴∠COH=∠ABC,∠MOH=∠OMB,又∵OB=OM,∴∠OMB=∠MBO,∴∠COH=∠MOH,在△COH与△MOH中,,∴△COH≌△MOH(SAS),∴∠HCO=∠HMO=90°,∴MH是⊙O的切线;(2)∵MH、AC是⊙O的切线,∴HC=MH=,∴AC=2HC=3,∵tan∠ABC=,∴=,∴BC=4,∴⊙O的半径为2;(3)连接OA、CN、ON,OA与CN相交于点I,∵AC与AN都是⊙O的切线,∴AC=AN,AO平分∠CAD,∴AO⊥CN,∵AC=3,OC=2,∴由勾股定理可求得:AO=,∵AC•OC=AO•CI,∴CI=,∴由垂径定理可求得:CN=,设OE=x,由勾股定理可得:CN2﹣CE2=ON2﹣OE2,∴﹣(2+x)2=4﹣x2,∴x=,∴OE=,由勾股定理可求得:EN=,∴由垂径定理可知:NQ=2EN=.【点评】本题考查圆的综合问题,涉及垂径定理,勾股定理,全等三角形的判定与性质,切线的判等知识内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.28.(9分)(2016•大庆)若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:u2=﹣x2+mx+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.【分析】(1)先求得y1顶点坐标,然后依据两个抛物线的顶点坐标相同可求得m、n的值;(2)设A(a,﹣a2+2a+3).则OQ=x,AQ=﹣a2+2a+3,然后得到OQ+AQ与a的函数关系式,最后依据配方法可求得OQ+AQ的最值;(3)连接BC,过点B′作B′D⊥CM,垂足为D.接下来证明△BCM≌△MDB′,由全等三角形的性质得到BC=MD,CM=B′D,设点M的坐标为(1,a).则用含a的式子可表示出点B′的坐标,将点B′的坐标代入抛物线的解析式可求得a的值,从而得到点M的坐标.【解答】解:(1)∵y1=﹣2x2+4x+2=﹣﹣2(x﹣1)2+4,∴抛物线C1的顶点坐标为(1,4).∵抛物线C1:与C2顶点相同,∴=1,﹣1+m+n=4.解得:m=2,n=3.∴抛物线C2的解析式为u2=﹣x2+2x+3.(2)如图1所示:设点A的坐标为(a,﹣a2+2a+3).∵AQ=﹣a2+2a+3,OQ=a,∴AQ+OQ=﹣a2+2a+3+a=﹣a2+3a+3=﹣(a﹣)2+.。

大庆市2008-2014年中考数学试题及参考答案

大庆市2008-2014年中考数学试题及参考答案

2008年大庆市初中升学统一考试数 学 试 题考生注意:1.考试时间为120分钟,答题前,考生必须将自己的姓名、准考证号填写清楚,请认真核对条形码上的准考证号、姓名.2.全卷共三道大题,总共120分.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.3.选择题必须使用2B 铅笔填涂;非选择题必须使用黑色字迹的钢笔或签字笔书写,字体工整、笔迹清楚. 4.作图可先使用铅笔画出,确出后必须用黑色字迹的钢笔或签字笔描黑.5.答题卡保持清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题(每小题3分,共30分.下列各题所附的四个选项中,有且只有一个是正确的) 1.12-等于( ) A .12 B .12-C .2D .2-2.国家体育场呈“鸟巢”结构,是2008年第29届奥林匹克运动会的主体育场,其建筑面积为258 0002m .将258 000用科学记数法表示为( ) A .60.25810⨯ B .325810⨯C .62.5810⨯D .52.5810⨯3.使分式21xx -有意义...的x 的取值范围是( ) A .12x ≥B .12x ≤ C .12x > D .12x ≠4.实数a b ,在数轴上对应点的位置如图所示,则下列各式中正确的是( ) A .0a b -> B .0a b +> C .0a b -< D .0a b +=5.下列各图中,不是中心对称图形的是( )A .B .C .D .6.23()m 等于( ) A .5mB .6mC .8mD .9m7.已知α是等腰直角三角形的一个锐角,则sin α的值为( ) A .12B.2C.2D .1(第4题)8.已知关于x 的一元二次方程220x x m --=有两个不相等的实数根,则实数m 的取值范围是( ) A .0m < B .2m <- C .0m ≥ D .1m >-9.如图,将非等腰ABC △的纸片沿DE 折叠后,使点A 落在BC 边上的点F 处.若点D 为AB 边的中点,则下列结论:①BDF △是等腰三角形;②DFE CFE ∠=∠;③DE 是ABC △的中位线,成立的有( ) A .①② B .①③ C .②③ D .①②③10.如图,在ABC △中,AC BC AB =>,点P 为ABC △所在平面内一点,且点P 与ABC △的任意两个顶点构成PAB PBC PAC △,△,△均是..等腰三角形,则满足上述条件的所有点P 的个数为( ) A .3 B .4 C .6D .7二、填空题(每小题3分,共24分)11.计算:(2= . 12.抛物线231y x =-+的顶点坐标是 . 13.分解因式:22ab ab a -+= .14.如图,已知O 是ABC △的内切圆,且50BAC ∠=°,则BOC ∠为 度.15.为了比较甲、乙两种水稻秧苗是否出苗整齐,从每种秧苗中分别随机抽取5株并量出每株的长度记录如下表所示(单位:cm ).编号1 2 3 4 5 甲12 13 15 15 10 乙13 14 15 12 11 经计算,所抽取的甲、乙两种水稻秧苗长度的平均数都是13cm ,方差223.6cm S =甲,则出苗更整齐的是 种水稻秧苗. 16.如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm 的等边三角形ABC ,点D 是母线AC 的中点,一只蚂蚁从点B 出发沿圆锥的表面爬行到点D 处,则这只蚂蚁爬行的最短距离是 cm .17.不等式组253(2)123x x x x ++⎧⎪-⎨<⎪⎩≤的整数解的个数为 .18.如图,把边长是3的正方形等分成9个小正方形,在有阴影的两个小正方形ABCD和EFGH 内(包括边界)分别取两个动点P R ,,与已有格点Q (每个小正方形的顶点叫格点)构成三角形,则当PQR △的面积取得最大值2时,点P 和点R所在位A (第9题)C(第10题) BA (第14题)(第16题)C(第18题)置是 .三、解答题(本大题10小题,共66分) 19.(本题5分)12-. 20.(本题5分)如图,在平行四边形ABCD 中,E ,F 分别是边BC 和AD 上的点且BE=DF ,则线段AE 与线段CF 有怎样的数.量关系...和位置关系....?并证明你的结论.21.(本题6分)某文具厂加工一种文具2 500套,加工完1 000套后,由于采用了新设备,每天的工作效率变为原来的1.5倍,结果提前5天完成了加工任务.求该文具厂原来每天加工多少套这种文具. 22.(本题6分)某数学老师为了了解学生在数学学习中对常见错误的纠正情况,收集了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对她所任教的初三(1)班和(2)班进行了检测.下图表示的是从以上两个班级各随机抽取10名学生的得分情况.(1)利用上图提供的信息,补全下表. 班级 平均数(分) 中位数(分) 众数(分) (1)班24 24 (2)班24 (2)已知上述两个班级各有60名学生,若把24分以上(含24分)记为“优秀”,请估计这两个班级各有多少名学生成绩为“优秀”.(3)观察上图中点的分布情况,你认为哪个班的学生纠错的整体情况更好一些?(1)班(2)班 (第22题)A B CD F E(第20题)甲、乙两个工程队完成某项工程,假设甲、乙两个工程队的工作效率是一定的,工程总量为单位1.甲队单独做了10天后,乙队加入合作完成剩下的全部工程,工程进度如图所示. (1)甲队单独完成这项工程,需 天. (2)求乙队单独完成这项工程所需的天数.(3)求出图中x 的值.24.(本题7分)在同一时刻的物高与水平地面上的影长成正比例.如图,小莉发现垂直地面的电线杆AB 的影子落在地面和土坡上,影长分别为BC 和CD ,经测量得20m BC =,8m CD =,CD 与地面成30°角,且此时测得垂直于地面的1m 长标杆在地面上影长为2m ,求电线杆AB 的长度.25.(本题6分) 如图,反比例函数ky x=的图象与一次函数y mx b =+的图象相交于两点(13)A ,,(1)B n -,. (1)分别求出反比例函数与一次函数的函数关系式; (2)若直线AB 与y 轴交于点C ,求BOC △的面积. 26.(本题7分)如图,在Rt ABC △中,90C ∠=,BE 平分ABC ∠交AC 于点E ,点D 在AB 边上且DE BE ⊥. (1)判断直线AC 与DBE △外接圆的位置关系,并说明理由; (2)若6AD AE ==,,求BC 的长.t (天) (第23题)AB D (第24题)C(第26题)BDAE如图,河上有一座抛物线桥洞,已知桥下的水面离桥拱顶部3m 时,水面宽AB 为6m ,当水位上升.....0.5m 时.: (1)求水面的宽度CD 为多少米?(2)有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行. ①若游船宽(指船的最大宽度)为2m ,从水面到棚顶的高度为1.8m ,问这艘游船能否从桥洞下通过? ②若从水面到棚顶的高度为74m 的游船刚好能从桥洞下通过, 则这艘游船的最大宽度是多少米?28.(本题9分)如图①,四边形AEFG 和ABCD 都是正方形,它们的边长分别为a b ,(2b a ≥),且点F 在AD 上(以下问题的结果均可用a b ,的代数式表示). (1)求DBF S △;(2)把正方形AEFG 绕点A 按逆时针方向旋转45°得图②,求图②中的DBF S △;(3)把正方形AEFG 绕点A 旋转一周,在旋转的过程中,DBF S △是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.D CBA EF GG FE A C D ① ②(第28题)(第27题)2008年大庆市初中升学统一考试数 学 试 题 参 考 答 案一、选择题(每小题3分,共30分.)二、填空题(每小题3分,共24分)11.1 12.(0,1) 13.2(1)a b - 14.100 15.乙 16. 17.4 18.点P 在A 处、点R 在F 处或点P 在B 处、点R 在G 处 三、解答题(本大题10小题,共66分) 1912-1152222+=+=. 20.解:AE CF =,AE CF ∥.证明:在ABCD 中,AD BC ∥,AD BC =, 又∵BE DF =, ∴CE AF =,∴四边形AECF 是平行四边形. ∴AE CF =,AE CF ∥.21.解:设该文具厂原来每天加工这种文具x 套. 根据题意,列方程得25001000250010005 1.5x x x--=+, 解得100x =经检验,100x =是原方程的根.答:该文具厂原来每天加工这种文具100套. 22.解:(1)24,24,21; (2)估计一班优秀生人数为:60×710=42(人), 估计二班优秀生人数为:60×610=36(人), (3)一班学生纠错的整体情况更好一些. 23.解:(1)40; (2)111()(1610)2424--=÷,111244060-= 116060=÷(天) 答:乙队单独完成这项工程要60天.(3)111(1)()102846040-++=÷(天)答:图中x 的值是28.24.解:如图,过点D 作D E AB ⊥于点E ,过点DF BC ⊥交BC 的延长线于点F , ∵30DCF ∠=°,∴cos30CF CD ==×°=8m ,∴(20DE BF BC CF m ==+=+,∵垂直于地面的1m 长标杆在地面上影长为2m ,∴1(102AE DE m ==+,∴104(14AB AE BE AE DF m =+=+=+=+.25.解:(1)∵点(1,3)A 在反比例函数图象上, ∴3k =,即反比例函数关系式为3y x=; ∵点(,1)B n -在反比例函数图象上,∴3n =-,∵点(1,3)A 和(3,1)B --在一次函数y mx b =+的图象上,∴331m b m b +=⎧⎨-+=-⎩, 解得12m b =⎧⎨=⎩,∴一次函数关系式为2y x =+. (2)当0x =时,一次函数值为2, ∴2OC =,∴12332BOC S =-=△××.26.解:(1)直线AC 与DBE △外接圆相切. 理由:∵D E BE ⊥,∴ BD 为DBE △外接圆的直径,取BD 的中点O (即DBE △外接圆的圆心),连结OE , ∴OE OB =,∴OEB OBE ∠=∠, ∵BE 平分ABC ∠, ∴ OBE CBE ∠=∠, ∴ OEB CBE ∠=∠, ∵90CBE CEB ∠+∠=°,∴ 90OEB CEB ∠+∠=°, 即OE AC ⊥,∴直线AC 与DBE △外接圆相切. (2)设OD OE OB x ===, ∵OE AC ⊥,∴222(6)x x +-=, ∴3x =,∴12AB AD OD OB =++=, ∵OE AC ⊥,∴AOE ABC △∽△,∴AO OEAB BC =, 即9312BC=, ∴4BC =.27.解:(1)设抛物线形桥洞的函数关系式为2y ax c =+, ∵点(3,0)A 和(0,3)E 在函数图象上,∴903a c c +=⎧⎨=⎩ ∴133a c ⎧=-⎪⎨⎪=⎩ ∴2133y x =-+.由题意可知,点C 和点D 的纵坐标为0.5, ∴2130.53x -+=∴1x =2x =,∴CD ==. (2)①当1x =时,83y =,∵80.5>1.83- ∴这艘游船能否从桥洞下通过.②当790.544y =+=时,132x =, 232x =-,∴这艘游船的最大宽度是3米.28. 解:(1)∵点F 在AD 上,∴AF ,∴DF b=,∴2111()222DBFS DFAB b b b===△××.(2)连结AF,由题意易知AF BD∥,∴212DBF ABDS S b==△△.(3)正方形AEFG在绕A点旋转的过程中,F点的轨迹是以点A为圆心,AF为半径的圆.第一种情况:当b>2a时,存在最大值及最小值;因为BFD△的边BD=,故当F点到BD的距离取得最大、最小值时,BFD△S取得最大、最小值.如图②所示2CF BD⊥时,BFD△S的最大值=222,2BF Db ab⎫+=⋅=⎪⎪⎝⎭△SBFD△S的最小值=222,22BF Db ab⎛⎫-=⋅-=⎪⎪⎝⎭△S第二种情况:当b=2a时,存在最大值,不存在最小值;BFD△S的最大值=222b ab+.(如果答案为4a2或b2也可)2009年黑龙江省大庆市初中毕业学业考试数学试卷(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.一个数a 的倒数是-2,则a 等于 ( )A .2B .-2C .21D .-21 2.银原子的直径为0.000 3微米,把0.000 3这个数用科学记数法表示应为 ( )A .3103.0-⨯B .4103-⨯C .5103-⨯D .3×1043.解集在数轴上表示为如图所示的不等式组的是 ( )A .⎩⎨⎧≥->23x xB .⎩⎨⎧≤->23x xC .⎩⎨⎧≥-<23x xD .⎩⎨⎧≤-<23x x4.下列运算中,结果正确的是 ( )A .632a a a =⋅ B .2510a a a=÷C .a a a 34=-D .734a a a =+5.如图,已知四边形ABCD 是平行四边形,下列结论中正确的是 ( )A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是矩形 C .当∠ABC=90°时,它是菱形D .当AC=BD 时,它是正方形6.在一个不透明的口袋里装了一些红球和白球,每个球除颜色外都相同,将球摇匀,从中任意摸出一个球,则摸到红球是 ( )A .必然事件B .不可能事件C .确定事件D .随机事件7.已知三角形的面积一定,则它底边上的高h 与底边a 之间的函数关系的图象大致是 ( )8.甲、乙两名射击运动员在某场测试中各射击20次,他们的测试成绩如下表:则测试成绩比较稳定的是 ( ) A .甲B .乙C.两人成绩稳定情况相同D .无法确定9.已知二次函数c bx ax y ++=2中,函数y 与自变量x 的部分对应值如下表:则方程02=++c bx ax 的正数解1x 的范围是 ( ) A .0<1x <1B .1<1x <2C .2<1x <3D .3<1x <410.一长为5 m 、宽为4 m 的矩形钢板ABCD ,将其按(1)(2)的方法分割并焊接成扇形,要使扇形面积尽可能大,需按(3)(4)的方法将宽2等分,3等分,…,n 等分后,再把每个小矩形按(1)的方法分割并焊接成大扇形,当n 越来越大时,最后焊接成的大扇形的圆心角( )(参考数据:tan 5466.38≈︒,tan 5280.21≈︒,tan 15493.14≈︒)A .小于90°B .等于90°C .大于90°D .无法确定第Ⅱ卷(非选择题 共90分)二、填空题(本大题共8小题,每小题3分,共24分.请把答案填在题中横线上) 11.如图,若AB ∥CD ,∠1=50°,则∠2=________°.12.计算:=--+-)1()2()1(01_________.13.在一个袋子中装有除颜色外其他均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是__________.14.如图,要测量A ,B 两点间的距离,在O 点打桩,取OA 的中点C ,OB 的中点D ,测得CD=30m ,则AB=__________m .15.如图,△ABC 是⊙O 的内接三角形,∠B=50°,点P 在上移动(点P 不与A 点、C 点重合),∠POC=α,则α的变化范围是_______________________.16.若3=+b a ,1=ab ,则=+22b a ____________.17.按照如图所示的程序计算,如果输出的数2-=n ,那么输入的数m =_________.18.某中学在校内安装了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD 垂直平分BC ,AD=BC=40 cm ,则圆柱形饮水桶的底面半径的最大值是_____________cm .三、解答题(本大题共10小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分5分) 先化简1)111(2-÷-+x xx ,再从不等式组⎩⎨⎧<-≤-211x x 的整数解中选择一个恰当的数代入求值.20.(本小题满分5分)如图,梯形ABCD 中,AD//BC ,E 是CD 的中点,BE 的延长线与AD 的延长线相交于点F . (1)求证:△BCE ≌△FDE :(2)连接BD ,CF ,判断四边形BCFD 的形状并加以证明.21.(本小题满分6分)某校为了了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如下面的两幅统计图.请你结合图中所给信息解答下列问题:(说明:A 级:90分~100分;8级:75分~89分;C 级:60分~74分;D 级:60分以下) (1)求获得D 级的学生人数占全班总人数的百分比; (2)该班学生体育测试成绩的中位数落在哪个等级内;(3)已知该校九年级学生共有500人,请你估计这次测试中获得A 级和B 级的学生共有多少人.小明在解答下图所示的问题时,写下了如下解答过程:解:①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图所示的平面直角坐标系;②设抛物线水流对应的二次函数关系式为2ax y =;③根据题意可得B 点与x 轴的距离为1 m ,故B 点的坐标为(-1,1);④代入2ax y =,得11⋅=-a ,所以1-=a ;⑤所以抛物线水流对应的二次函数关系式为2x y -=. 数学老师说:“小明的解答过程是错误的”.(1)请指出小明的解答从第______步开始出现错误,错误的原因是什么? (2)请你写出完整的正确解答过程.如图,一次函数b kx y +=的图象与反比例函数xmy =的图象交于A (-2,1),B (1,a )两点. (1)分别求反比例函数与一次函数的关系式;(2)观察图象,直接写出关于x ,y 的方程组⎪⎩⎪⎨⎧=+=x my b kx y 的解.24.(本小题满分6分)如图,跷跷板AB 的一端B 碰到地面时,AB 与地面的夹角为l8°,且OA=OB=2 m . (1)求此时另一端A 离地面的距离(精确到0.1 m );(2)跷动AB ,使端点A 碰到地面,请画出点A 运动的路线(写出作法,保留作图痕迹),并求出端点A 运动路线的长(结果含π)。

2013数学中考真题

2013数学中考真题

黑龙江省龙东地区2013年初中毕业学业统一考试数学试题考生注意:1、考试时间120分钟题号一二三总分核分人21 22 23 24 25 26 27 28得分一、填空题(每小题3分,满分30分)1.“大美大爱”的龙江人勤劳智慧,2012年全省粮食总产量达到1152亿斤,夺得全国粮食总产第一,广袤的黑土地正成为保障国家粮食安全的大粮仓,1152亿斤用科学记数法表示为斤.2.在函数y=√x+1x中,自变量x的取值范围是.3.如图所示,平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:,使得平行四边形ABCD为菱形.4.风华中学七年级(2)班的“精英小组”有男生4人,女生3人,若选出一人担任班长,则组长是男生的概率为.5.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n= .6.二次函数y=﹣2(x−5)2+3的顶点坐标是.7.将半径为4cm的半圆围成一个圆锥,这个圆锥的高为cm.8.李明组织大学同学一起去看电影《致青春》,票价每张60元,20张以上(不含20张)打八折,他们一共花了1200元,他们共买了张电影票.9.梯形ABCD中,AB∥CD,AB=3,CD=8,点E是对角线AC上一点,连接DE并延长交直线AB于点F,若AFBF=2,则AEEC= .10.已知等边三角形ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边三角形AB1C1,再以等边三角形AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边三角形AB2C2,再以等边三角形AB2C2的边B2C2边上的高AB3为边作等边三角形,得到第三个等边AB3C3;…,如此下去,这样得到的第n个等边三角形A B n C n的面积为.(第3题图)(第10题图)本考场试卷序号(由监考填写)得分评卷人二、选择题(每题3分,满分30分)11.下列运算中,计算正确的是 ( ) A .(x 3)2= x 5 B .x 2+ x 2=2 x 4 C .(﹣2)-1=﹣12 D .(a ﹣b )2 = a 2﹣b 212.下列汽车标志中,既是轴对称图形又是中心对称图形的是 ( )A .B .C .D .13.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有 ( )(第13题图)A . 4B . 5C . 6D . 7 14根据表中提供的信息,这43名同学右眼视力的众数和中位数分别是 ( ) A . 4.9,4.6 B . 4.9,4.7 C . 4.9,4.65 D . 5.0,4.65 15.如图,爸爸从家(点O )出发,沿着扇形AOB 上OA →→BO 的路径去匀速散步,设爸爸距家(点O )的距离为S ,散步的时间为t ,则下列图形中能大致刻画S 与t 之间函数关系的图象是 ( )A .B .C .D . 16.已知关于x 的分式方程a+2x+1= 1的解是非正数,则a 的取值范围是 ()A . a ≤﹣1B . a ≤﹣1且a ≠﹣2C . a ≤1且 a ≠﹣2D . a ≤117.如图,△ABC 内接于△O ,AB=BC ,△ABC=120°,AD 为△O 的直径,AD=6,那么AB 的值 ( )A . 3B . 2√3C . 3√3D . 218.如图,Rt △ABC 的顶点A 在双曲线y = k x的图象上,直角边BC 在x 轴上,△ABC=90°,△ACB=30°,OC=4,连接OA ,∠AOB =60°,则k 的值是 ( ) A.4√3 B . −4√3 C .2√3 D .−2√319.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本 的方案共有( ) A . 3种 B . 4种 C . 5种 D . 6种20.如图,在直角梯形ABCD 中,AD △BC ,∠BCD =90°,△ABC=45°,AD =CD ,CE 平分∠ACB 交AB 于点E ,在BC 上截取BF =AE ,连接AF 交CE 于点G ,连接DG 交AC 于点H ,过点A 作AN ⊥BC ,垂足为N , AN 交CE 于点M .则下列结论;①CM =AF ;②CE ⊥AF ;③△ABF ∽△DAH ;④GD 平分∠AGC ,其中 正确的个 ( )A .1B .2C .3D .4(第17题图) (第18题图) (第20题图)三、简答题(满分60分)21.(本题满分5分)先化简,再求值(1−xx+1)÷x 2−1x +2x+1= 1,其中 x =2sin45°+1.22.(本题满分6分)如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC 在平面直角坐标系中的位置如图所示. (1)将△ABC 向上平移3个单位后,得到△A 1B 1C 1,请画出△A 1B 1C 1,并直接写出点A 1的坐标.(2)将△ABC 绕点O 顺时针旋转90°,请画出旋转后的△A 2B 2C 2,并求点B 所经过的路径长(结果保留x )(第22题图)如图,抛物线 y =x 2+bx +c 与x 轴交于A (﹣1,0)和B (3,0)两点,交y 轴于点E . (1)求此抛物线的解析式.(2)若直线y =x +1与抛物线交于A 、D 两点,与y 轴交于点F ,连接DE ,求△DEF 的面积.(第23题图)24.(本题满分7分)在我市开展的“阳光体育”跳绳活动中,为了了解中学生跳绳活动的开展情况,随机抽查了全市八年级部分同 学1分钟跳绳次数,将抽查结果进行统计,并绘制两个不完整的统计图.请根据图中提供的信息,解答下列问题(1) 本次共抽查了多少名学生? (2) 请补全频数分布直方图空缺部分,直接写出扇形统计图中跳绳次数范围135≤x <155所在扇形圆心角的度数.(3) 若本次抽查中,跳绳次数在125次以上(含125次)为优秀,请你估计全市8000名八年级学生中有多少名学生的成绩为优秀?(4) 请你根据以上信息,对我市开展的学生跳绳活动谈谈自己的看法或建议.(第24题图)2012年秋季,某省部分地区遭受严重的雨雪自然灾害,兴化农场34800亩的农作物面临着收割困难的局面.兴华农场积极想办法,决定采取机械收割和人工收割两种方式同时进行抢收,工作了4天,由于雨雪过大,机械收割被迫停止,此时,人工收割的工作效率也减少到原来的23,第8天时,雨雪停止附近的胜利农场前来支援,合作6天,完成了兴化农场所有的收割任务.图1是机械收割的亩数y 1(亩)和人工收割的亩数y 2(亩)与时间x (天)之间的函数图象.图2是剩余的农作物的亩数w (亩)与时间x 天之间的函数图象,请结合图象回答下列问题:(1)请直接写出:A 点的纵坐标 . (2)求直线BC 的解析式.(3)第几天时,机械收割的总量是人工收割总量的10倍?(第25题图)26.(本题满分8分)正方形ABCD 的顶点A 在直线MN 上,点O 是对角线AC 、BD 的交点,过点O 作OE △MN 于点E ,过点B 作BF ⊥MN 于点F .(1)如图1,当O 、B 两点均在直线MN 上方时,易证:AF +BF =2OE (不需证明)(2)当正方形ABCD 绕点A 顺时针旋转至图2、图3的位置时,线段AF 、BF 、OE 之间又有怎样的关系?请直接写出你的猜想,并选择一种情况给予证明.(图1) (图2) (图3)(第26题图)为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.(1)请问有几种开发建设方案?(2)哪种建设方案投入资金最少?最少资金是多少万元?(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.28.(本题满分10分)如图,在平面直角坐标系中,Rt △ABC 的斜边AB 在x 轴上,点C 在y 轴上,∠ACB =90°,OA 、OB 的长分别是一元二次方程x 2﹣25x +144=0的两个根(OA <OB ),点D 是线段BC 上的一个动点(不与点B 、C 重合),过点D 作直线DE ⊥OB ,垂足为E . (1)求点C 的坐标.(2)连接AD ,当AD 平分∠CAB 时,求直线AD 的解析式.(3)若点N 在直线DE 上,在坐标系平面内,是否存在这样的点M ,使得C 、B 、N 、M 为顶点的四边形是正方形?若存在,请直接写出点M 的坐标;若不存在,说明理由.(第28题图)。

【中考专题】黑龙江省大庆市中考数学历年真题汇总 卷(Ⅲ)(含答案详解)

【中考专题】黑龙江省大庆市中考数学历年真题汇总 卷(Ⅲ)(含答案详解)

黑龙江省大庆市中考数学历年真题汇总 卷(Ⅲ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程变形不正确的是( )A .4332x x -=+变形得:4323x x -=+B .方程110.20.5x x --=变形得:1010212x x --=C .()()23231x x -=+变形得:6433x x -=+D .211332x x -=+变形得:41318x x -=+ 2、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )A .45︒B .135︒C .75︒D .165︒ 3、如图,等腰三角形ABC 的底边BC 长为4,面积是20,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值为( ) ·线○封○密○外A .8B .10C .12D .144、如图,已知点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,那么添加下列一个条件后,仍无法判定ABC DEF ≌△△的是( )A .BF CE =B .A D ∠=∠C .AC DF ∥D .AC DF =5、如图,AB CD ∥,45A ∠=︒,30C ∠=︒,则E ∠的度数是( )A .10°B .15°C .20°D .25°6、如图,有三块菜地△ACD 、△ABD 、△BDE 分别种植三种蔬菜,点D 为AE 与BC 的交点,AD 平分∠BAC ,AD =DE ,AB =3AC ,菜地△BDE 的面积为96,则菜地△ACD 的面积是( )A .24B .27C .32D .367、生活中常见的探照灯、汽车大灯等灯具都与抛物线有关.如图,从光源P 点照射到抛物线上的光线,PA PB 等反射以后沿着与直线PF 平行的方向射出,若CAP α∠=︒,DBP β∠=︒,则APB ∠的度数为( )°A .2αB .2βC .αβ+D .5()4αβ+ 8、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )A .16B .19C .24D .36 9、如图,在ABC 中,D 是BC 延长线上一点,50B ∠=︒,80A ∠=︒,则ACD ∠的度数为( ) A .140︒ B .130︒ C .120︒ D .110︒ 10、如图,在矩形ABCD 中,6AB =,8AD =,点O 在对角线BD 上,以OB 为半径作O 交BC 于点E ,连接DE ;若DE 是O 的切线,此时O 的半径为( )·线○封○密○外A .716B .2110C .2116D .3516第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系xOy 中,P 为函数)(0m y x x=>图象上一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为M ,N .若矩形PMON 的面积为3,则m 的值为______.2、已知点P 是线段AB 的黄金分割点,AP >PB .若AB =2,则AP =_____.3、如图是正方体的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,那么在正方体的表面与“!”相对的汉字是________.4、如图,将一个边长为3的正方形纸片进行分割,部分①的面积是边长为3的正方形纸片的一半,部分②的面积是部分①的一半,部分③的面积是部分②的一半,以此类推,n 部分的面积是______.(用含n 的式子表示)5、写出n 的一个有理化因式:_______. 三、解答题(5小题,每小题10分,共计50分) 1、先把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来. ﹣212,-(﹣4),0,+(﹣1),1,﹣|﹣312|2、将两块完全相同的且含60︒角的直角三角板ABC 和AFE 按如图所示位置放置,现将Rt AEF 绕A 点按逆时针方向旋转()090αα︒<<︒.如图,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P . ·线○封○密·○外(1)在旋转过程中,连接,AP CE,求证:AP所在的直线是线段CE的垂直平分线.(2)在旋转过程中,CPN是否能成为直角三角形?若能,直接写出旋转角 的度数;若不能,说明理由.3、已知:如图,锐角∠AOB.求作:射线OP,使OP平分∠AOB.作法:①在射线OB上任取一点M;②以点M为圆心,MO的长为半径画圆,分别交射线OA,OB于C,D两点;③分别以点C,D为圆心,大于12CD的长为半径画弧,在∠AOB内部两弧交于点H;④作射线MH,交⊙M于点P;⑤作射线OP.射线OP即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接CD .由作法可知MH 垂直平分弦CD . ∴CP DP =( )(填推理依据). ∴∠COP = . 即射线OP 平分∠AOB . 4、解方程: (1)()8436x x --=; (2)232126x x +--=. 5、完成下面推理填空:如图,已知:AD BC ⊥于D ,EG BC ⊥于G ,1E ∠=∠.求证:AD 平分BAC ∠. 解:∵AD BC ⊥于D ,EG BC ⊥(已知), ∴90ADC EGC ∠=∠=︒(____①_____), ∴EG AD ∥(同位角相等,两直线平行), ∴_____②___(两直线平行,同位角相等) ∠1=∠2(____③_____), 又∵1E ∠=∠(已知), ∴∠2=∠3(_____④______), ∴AD 平分BAC ∠(角平分线的定义). ·线○封○密·○外-参考答案-一、单选题1、D【解析】【分析】根据等式的性质解答.【详解】解:A . 4332x x -=+变形得:4323x x -=+,故该项不符合题意;B . 方程110.20.5x x --=变形得:1010212x x --=,故该项不符合题意; C . ()()23231x x -=+变形得:6433x x -=+,故该项不符合题意;D . 211332x x -=+变形得:46318x x -=+,故该项符合题意;故选:D .【点睛】此题考查了解方程的依据:等式的性质,熟记等式的性质是解题的关键.2、D【解析】【分析】根据题意得出∠1=15°,再求∠1补角即可.【详解】由图形可得1453015∠=︒-︒=︒∴∠1补角的度数为18015165︒-︒=︒故选:D . 【点睛】 本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键. 3、C 【解析】 【分析】 连接AD ,由于△ABC 是等腰三角形,点D 是BC 边的中点,故AD ⊥BC ,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线可知,点C 关于直线EF 的对称点为点A ,故AD 的长为CM +MD 的最小值,由此即可得出结论. 【详解】 解:连接AD ,∵△ABC 是等腰三角形,点D 是BC 边的中点, ∴AD ⊥BC , ·线○封○密○外∴11•42022ABC S BC AD AD ==⨯⨯=,解得AD =10, ∵EF 是线段AC 的垂直平分线,∴点C 关于直线EF 的对称点为点A ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短=CM +MD +CD =AD +110410222211BC =+⨯=+=.故选:C .【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.4、D【解析】【分析】结合选项中的条件,是否能够构成,,AAS ASA SAS 的形式,若不满足全等条件即为所求;【详解】解:由AB DE 可得B E ∠=∠,判定两三角形全等已有一边和一角;A 中由BF CE =可得BC EF =,进而可由SAS 证明三角形全等,不符合要求;B 中A D ∠=∠,可由ASA 证明三角形全等,不符合要求;C 中由AC DF 可得ACB DFC ∠=∠,进而可由AAS 证明三角形全等,不符合要求;D 中无法判定,符合要求;故选D .【点睛】本题考查了三角形全等.解题的关键在于找出能判定三角形全等的条件.5、B【解析】【分析】根据平行线的性质求出关于∠DOE ,然后根据外角的性质求解.【详解】解:∵AB ∥CD ,∠A =45°, ∴∠A =∠DOE =45°, ∵∠DOE =∠C +∠E , 又∵30C ∠=︒, ∴∠E =∠DOE -∠C =15°. 故选:B 【点睛】 本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键. 6、C 【解析】 【分析】 利用三角形的中线平分三角形的面积求得S △ABD =S △BDE =96,利用角平分线的性质得到△ACD 与△ABD 的高相等,进一步求解即可. 【详解】 解:∵AD =DE ,S △BDE =96, ∴S △ABD =S △BDE =96, 过点D 作DG ⊥AC 于点G ,过点D 作DF ⊥AB 于点F , ·线○封○密○外∵AD 平分∠BAC ,∴DG=DF ,∴△ACD 与△ABD 的高相等,又∵AB =3AC ,∴S △ACD =13S △ABD =196323⨯=.故选:C .【点睛】本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.7、C【解析】【分析】根据平行线的性质可得,EPA PAC EPB PBD ∠=∠∠=∠,进而根据APB APE BPE ∠=∠+∠即可求解【详解】 解:,PF AC PF BD ∥∥ ∴,EPA PAC EPB PBD ∠=∠∠=∠∴APB APE BPE ∠=∠+∠αβ=+故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.8、C【解析】【分析】分别求出各视图的面积,故可求出表面积.【详解】 由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5 故表面积为2×(4+3+5)=24 故选C . 【点睛】 此题主要考查三视图的求解与表面积。

大庆市中考数学试卷含答案解析(Word版)

大庆市中考数学试卷含答案解析(Word版)

黑龙江省大庆市中考数学试卷一.选择题(本大题共10小题,每小题3分,共30分)1.2cos60°=()A.1B.C.D.2.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为()A.0.65×10﹣5B.65×10﹣7C.6.5×10﹣6D.6.5×10﹣53.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a.b同号D.a.b异号,且正数绝对值较大4.一个正n边形每一个外角都是36°,则n=()A.7B.8C.9D.105.某商品打七折后价格为a元,则原价为()A.a元B.a元C.30%a元D.a元6.将正方体表面沿某些棱剪开,展成如图所示平面图形,则原正方体中与“创”字所在面相对面上标字是()A.庆B.力C.大D.魅7.在同一直角坐标系中,函数y=和y=kx﹣3图象大致是()A. B. C. D.8.已知一组数据:92,94,98,91,95中位数为a,方差为b,则a+b=()A.98B.99C.100D.1029.如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°10.如图,二次函数y=ax2+bx+c图象经过点A(﹣1,0).点B(3,0).点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0两个根为﹣1和其中正确结论个数是()A.1B.2C.3D.4二.填空题(本大题共8小题,每小题3分,共24分)11.已知圆柱底面积为60cm2,高为4cm,则这个圆柱体积为cm3.12.函数y=自变量x取值范围是.13.在平面直角坐标系中,点A坐标为(a,3),点B坐标是(4,b),若点A与点B关于原点O对称,则ab=.14.在△ABC中,∠C=90°,AB=10,且AC=6,则这个三角形内切圆半径为.15.若2x=5,2y=3,则22x+y=.16.已知=+,则实数A=.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过路径为弧BD,则图中阴影部分面积为.18.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到直线与半径为6⊙O相交(点O为坐标原点),则m取值范围为.三.解答题(本大题共10小题,共66分)19.(4.00分)求值:(﹣1)2018+|1﹣|﹣20.(4.00分)解方程:﹣=1.21.(5.00分)已知:x2﹣y2=12,x+y=3,求2x2﹣2xy值.22.(6.00分)如图,一艘轮船位于灯塔P北偏东60°方向,与灯塔P距离为80海里A处,它沿正南方向航行一段时间后,到达位于灯塔P南偏东45°方向B处,求此时轮船所在B处与灯塔P距离.(参考数据:≈2.449,结果保留整数)23.(7.00分)九年级一班开展了“读一本好书”活动,班委会对学生阅读书籍情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个选项,每位同学仅选一项,根据调查结果绘制了如下不定整频数分布表和扇形统计图.类别频数(人数)频率小说16戏剧4散文a其他b合计1根据图表提供信息,解答下列问题:(1)直接写出a,b,m值;(2)在调查问卷中,甲.乙.丙.丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校戏剧兴趣小组,请用列表法或画树状图方法,求选取2人恰好乙和丙概率.24.(7.00分)如图,在Rt△ABC中,∠ACB=90°,D.E分别是AB.AC中点,连接CD,过E作EF∥DC交BC延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF周长是25cm,AC长为5cm,求线段AB长度.25.(7.00分)某学校计划购买排球.篮球,已知购买1个排球与1个篮球总费用为180元;3个排球与2个篮球总费用为420元.(1)求购买1个排球.1个篮球费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,并且篮球数量不超过排球数量2倍.求至少需要购买多少个排球?并求出购买排球.篮球总费用最大值?26.(8.00分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=图象于点P.(1)求反比例函数y=表达式;(2)求点B坐标;(3)求△OAP面积.27.(9.00分)如图,AB是⊙O直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C切线交DB延长线于点P,作AF ⊥PC于点F,连接CB.(1)求证:AC平分∠FAB;(2)求证:BC2=CE•CP;(3)当AB=4且=时,求劣弧长度.28.(9.00分)如图,抛物线y=x2+bx+c与x轴交于A.B两点,B点坐标为(4,0),与y轴交于点C(0,4).(1)求抛物线解析式;(2)点P在x轴下方抛物线上,过点P直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边直角三角形时,直接写出点D坐标;②若△BCD是锐角三角形,直接写出点D纵坐标n取值范围.参考答案与试题解析一.选择题(本大题共10小题,每小题3分,共30分)1.2cos60°=()A.1B.C.D.【分析】直接利用特殊角三角函数值进而计算得出答案.【解答】解:2cos60°=2×=1.故选:A.2.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为()A.0.65×10﹣5B.65×10﹣7C.6.5×10﹣6D.6.5×10﹣5【分析】绝对值小于1正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数科学记数法不同是其所使用是负指数幂,指数由原数左边起第一个不为零数字前面0个数所决定.【解答】解:数字0.0000065用科学记数法表示为6.5×10﹣6.故选:C.3.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a.b同号D.a.b异号,且正数绝对值较大【分析】先由有理数乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【解答】解:∵ab<0,∴a,b异号,∵a+b>0,∴正数绝对值较大,故选:D.4.一个正n边形每一个外角都是36°,则n=()A.7B.8C.9D.10【分析】由多边形外角和为360°结合每个外角度数,即可求出n值,此题得解.【解答】解:∵一个正n边形每一个外角都是36°,∴n=360°÷36°=10.故选:D.5.某商品打七折后价格为a元,则原价为()A.a元B.a元C.30%a元D.a元【分析】直接利用打折意义表示出价格进而得出答案.【解答】解:设该商品原价为:x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a(元).故选:B.6.将正方体表面沿某些棱剪开,展成如图所示平面图形,则原正方体中与“创”字所在面相对面上标字是()A.庆B.力C.大D.魅【分析】正方体表面展开图,相对面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体表面展开图,相对面之间一定相隔一个正方形,“建”与“力”是相对面,“创”与“庆”是相对面,“魅”与“大”是相对面.故选:A.7.在同一直角坐标系中,函数y=和y=kx﹣3图象大致是()A. B. C. D.【分析】根据一次函数和反比例函数特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内即为正确答案.【解答】解:分两种情况讨论:①当k>0时,y=kx﹣3与y轴交点在负半轴,过一.三.四象限,反比例函数图象在第一.三象限;②当k<0时,y=kx﹣3与y轴交点在负半轴,过二.三.四象限,反比例函数图象在第二.四象限.故选:B.8.已知一组数据:92,94,98,91,95中位数为a,方差为b,则a+b=()A.98B.99C.100D.102【分析】首先求出该组数据中位数和方差,进而求出答案.【解答】解:数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置数是94,则该组数据中位数是94,即a=94,该组数据平均数为[92+94+98+91+95]=94,其方差为[(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2] =6,所以b=6所以a+b=94+6=100.故选:C.9.如图,∠B=∠C=90°,M是BC中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°【分析】作MN⊥AD于N,根据平行线性质求出∠DAB,根据角平分线判定定理得到∠MAB=∠DAB,计算即可.【解答】解:作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,故选:B.10.如图,二次函数y=ax2+bx+c图象经过点A(﹣1,0).点B(3,0).点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0两个根为﹣1和其中正确结论个数是()A.1B.2C.3D.4【分析】利用交点式写出抛物线解析式为y=ax2﹣2ax﹣3a,配成顶点式得y=a(x ﹣1)2﹣4a,则可对①进行判断;计算x=4时,y=a•5•1=5a,则根据二次函数性质可对②进行判断;利用对称性和二次函数性质可对③进行判断;由于b=﹣2a,c=﹣3a,则方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,然后解方程可对④进行判断.【解答】解:抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∵y=a(x﹣1)2﹣4a,∴当x=1时,二次函数有最小值﹣4a,所以①正确;当x=4时,y=a•5•1=5a,∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误;∵点C(1,5a)关于直线x=1对称点为(﹣2,﹣5a),∴当y2>y1,则x2>4或x<﹣2,所以③错误;∵b=﹣2a,c=﹣3a,∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确.故选:B.二.填空题(本大题共8小题,每小题3分,共24分)11.已知圆柱底面积为60cm2,高为4cm,则这个圆柱体积为240cm3.【分析】根据圆柱体积=底面积×高,即可求出结论.【解答】解:V=S•h=60×4=240(cm3).故答案为:240.12.函数y=自变量x取值范围是x≤3.【分析】根据二次根式性质,被开方数大于等于0可知:3﹣x≥0,解得x范围.【解答】解:根据题意得:3﹣x≥0,解得:x≤3.故答案为:x≤3.13.在平面直角坐标系中,点A坐标为(a,3),点B坐标是(4,b),若点A与点B关于原点O对称,则ab=12.【分析】直接利用关于原点对称点性质得出a,b值,进而得出答案.【解答】解:∵点A坐标为(a,3),点B坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12.故答案为:12.14.在△ABC中,∠C=90°,AB=10,且AC=6,则这个三角形内切圆半径为2.【分析】先利用勾股定理计算出BC=8,然后利用直角三角形内切圆半径=(a.b为直角边,c为斜边)进行计算.【解答】解:∵∠C=90°,AB=10,AC=6,∴BC==8,∴这个三角形内切圆半径==2.故答案为2.15.若2x=5,2y=3,则22x+y=75.【分析】直接利用同底数幂乘法运算法则以及幂乘方运算法则将原式变形进而得出答案.【解答】解:∵2x=5,2y=3,∴22x+y=(2x)2×2y=52×3=75.故答案为:75.16.已知=+,则实数A=1.【分析】先计算出+=,再根据已知等式得出A.B方程组,解之可得.【解答】解:+=+=,∵=+,∴,解得:,故答案为:1.17.如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过路径为弧BD,则图中阴影部分面积为.【分析】先根据勾股定理得到AB=2,再根据扇形面积公式计算出S扇形ABD,由旋转性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【解答】解:∵∠ACB=90°,AC=BC=2,∴AB=2,∴S扇形ABD==.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故答案为:.18.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到直线与半径为6⊙O相交(点O为坐标原点),则m取值范围为m<.【分析】利用待定系数法得出直线解析式,再得出平移后得到直线,求与坐标轴交点坐标,转化为直角三角形中问题,再由直线与圆位置关系判定解答.【解答】解:把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移平移m(m>0)个单位后得到直线l所对应函数关系式为y=﹣x+m(m>0),设直线l与x轴.y轴分别交于点A.B,(如下图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m;在Rt△OAB中,AB=,过点O作OD⊥AB于D,=OD•AB=OA•OB,∵S△ABO∴OD•=×,∵m>0,解得OD=,由直线与圆位置关系可知<6,解得m<.故答案为:m<.三.解答题(本大题共10小题,共66分)19.(4.00分)求值:(﹣1)2018+|1﹣|﹣【分析】直接利用立方根性质以及绝对值性质分别化简得出答案.【解答】解:原式=1+﹣1﹣2=﹣2.20.(4.00分)解方程:﹣=1.【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2,求出方程解,再代入x (x+3)进行检验即可.【解答】解:两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣,检验:当x=﹣时,x(x+3)=﹣≠0,所以分式方程解为x=﹣.21.(5.00分)已知:x2﹣y2=12,x+y=3,求2x2﹣2xy值.【分析】先求出x﹣y=4,进而求出2x=7,而2x2﹣2xy=2x(x﹣y),代入即可得出结论.【解答】解:∵x2﹣y2=12,∴(x+y)(x﹣y)=12,∵x+y=3①,∴x﹣y=4②,①+②得,2x=7,∴2x2﹣2xy=2x(x﹣y)=7×4=28.22.(6.00分)如图,一艘轮船位于灯塔P北偏东60°方向,与灯塔P距离为80海里A处,它沿正南方向航行一段时间后,到达位于灯塔P南偏东45°方向B处,求此时轮船所在B处与灯塔P距离.(参考数据:≈2.449,结果保留整数)【分析】过点P作PC⊥AB,则在Rt△APC中易得PC长,再在直角△BPC中求出PB.【解答】解:作PC⊥AB于C点,∴∠APC=30°,∠BPC=45° AP=80(海里).在Rt△APC中,cos∠APC=,∴PC=PA•cos∠APC=40(海里).在Rt△PCB中,cos∠BPC=,∴PB===40≈98(海里).答:此时轮船所在B处与灯塔P距离是98海里.23.(7.00分)九年级一班开展了“读一本好书”活动,班委会对学生阅读书籍情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个选项,每位同学仅选一项,根据调查结果绘制了如下不定整频数分布表和扇形统计图.类别频数(人数)频率小说16戏剧4散文a其他b合计1根据图表提供信息,解答下列问题:(1)直接写出a,b,m值;(2)在调查问卷中,甲.乙.丙.丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校戏剧兴趣小组,请用列表法或画树状图方法,求选取2人恰好乙和丙概率.【分析】(1)先根据戏剧人数及其所占百分比可得总人数,再用总人数乘以散文百分比求得其人数,根据各类别人数之和等于总人数求得其他类别人数,最后用其他人数除以总人数求得m值;(2)画树状图得出所有等可能情况数,找出恰好是丙与乙情况,即可确定出所求概率.【解答】解:(1)∵被调查学生总人数为4÷10%=40人,∴散文人数a=40×20%=8,其他人数b=40﹣(16+4+8)=12,则其他人数所占百分比m%=×100%=30%,即m=30;(2)画树状图,如图所示:所有等可能情况有12种,其中恰好是丙与乙情况有2种,所以选取2人恰好乙和丙概率为=.24.(7.00分)如图,在Rt△ABC中,∠ACB=90°,D.E分别是AB.AC中点,连接CD,过E作EF∥DC交BC延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF周长是25cm,AC长为5cm,求线段AB长度.【分析】(1)由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF ∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上中线等于斜边一半得到AB=2DC,即可得出四边形DCFE周长=AB+BC,故BC=25﹣AB,然后根据勾股定理即可求得;【解答】(1)证明:∵D.E分别是AB.AC中点,F是BC延长线上一点,∴ED是Rt△ABC中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上中线,∴AB=2DC,∴四边形DCFE周长=AB+BC,∵四边形DCFE周长为25cm,AC长5cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得,AB=13cm,25.(7.00分)某学校计划购买排球.篮球,已知购买1个排球与1个篮球总费用为180元;3个排球与2个篮球总费用为420元.(1)求购买1个排球.1个篮球费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,并且篮球数量不超过排球数量2倍.求至少需要购买多少个排球?并求出购买排球.篮球总费用最大值?【分析】(1)根据购买1个排球与1个篮球总费用为180元;3个排球与2个篮球总费用为420元列出方程组,解方程组即可;(2)根据购买排球和篮球共60个,篮球数量不超过排球数量2倍列出不等式,解不等式即可.【解答】解:(1)设每个排球价格是x元,每个篮球价格是y元,根据题意得:,解得:,所以每个排球价格是60元,每个篮球价格是120元;(2)设购买排球m个,则购买篮球(60﹣m)个.根据题意得:60﹣m≤2m,解得m≥20,又∵排球单价小于蓝球单价,∴m=20时,购买排球.篮球总费用最大购买排球.篮球总费用最大值=20×60+40×120=6000元.26.(8.00分)如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=图象于点P.(1)求反比例函数y=表达式;(2)求点B坐标;(3)求△OAP面积.【分析】(1)将点A坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=5,由AB∥x轴即可得点B坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P 坐标,再利用割补法求解可得.【解答】解:(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4.AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=x,由可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2.PE=1.PD=2,则△OAP面积=×(2+6)×3﹣×6×2﹣×2×1=5.27.(9.00分)如图,AB是⊙O直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C切线交DB延长线于点P,作AF ⊥PC于点F,连接CB.(1)求证:AC平分∠FAB;(2)求证:BC2=CE•CP;(3)当AB=4且=时,求劣弧长度.【分析】(1)根据等角余角相等证明即可;(2)只要证明△CBE∽△CPB,可得=解决问题;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形性质求出BM,求出tan∠BCM值即可解决问题;【解答】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,(2)证明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∵CD是直径,∴∠CBD=∠CBP=90°,∴△CBE∽△CPB,∴=,∴BC2=CE•CP;(3)解:作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵∠MCB+∠P=90°,∠P+∠PBM=90°,∴∠MCB=∠PBM,∵CD是直径,BM⊥PC,∴∠CMB=∠BMP=90°,∴△BMC∽△PMB,∴=,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM==,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∠BOD=120°∴长==π.28.(9.00分)如图,抛物线y=x2+bx+c与x轴交于A.B两点,B点坐标为(4,0),与y轴交于点C(0,4).(1)求抛物线解析式;(2)点P在x轴下方抛物线上,过点P直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边直角三角形时,直接写出点D坐标;②若△BCD是锐角三角形,直接写出点D纵坐标n取值范围.【分析】(1)利用待定系数法求抛物线解析式;(2)易得BC解析式为y=﹣x+4,先证明△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图1,则△EPG为等腰直角三角形,PE=PG,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF.PE,所以PE+EF=2PE+PF=﹣t2+5t,然后利用二次函数性质解决问题;(3)①如图2,抛物线对称轴为直线x=﹣点D纵坐标取值范围.②由于△BCD是以BC为斜边直角三角形有4+(y﹣3)2+1+y2=18,解得y1=,y2=,得到此时D点坐标为(,)或(,),然后结合图形可确定△BCD是锐角三角形时点D纵坐标取值范围.【解答】解:(1)把B(4,0),C(0,4)代入y=x2+bx+c,得,解得,∴抛物线解析式为y=x2﹣5x+4;(2)易得BC解析式为y=﹣x+4,∵直线y=x+m与直线y=x平行,∴直线y=﹣x+4与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图1,△EPG为等腰直角三角形,PE=PG,设P(t,t2﹣5t+4)(1<t<4),则G(t,﹣t+4),∴PF=PH=t,PG=﹣t+4﹣(t2﹣5t+4)=﹣t2+4t,∴PE=PG=﹣t2+2t,∴PE+EF=PE+PE+PF=2PE+PF=﹣t2+4t+t=﹣t2+5t=﹣(t﹣)2+,当t=时,PE+EF最大值为;(3)①如图2,抛物线对称轴为直线x=,设D(,y),则BC2=42+42=32,DC2=()2+(y﹣4)2,BD2=(4﹣)2+y2=+y2,当△BCD是以BC为直角边,BD为斜边直角三角形时,BC2+DC2=BD2,即32+()2+(y﹣4)2=+y2,解得y=5,此时D点坐标为(,);当△BCD是以BC为直角边,CD为斜边直角三角形时,BC2+DB2=DC2,即32++y2=()2+(y﹣4)2,解得y=﹣1,此时D点坐标为(,﹣);综上所述,符合条件点D坐标是(,)或(,﹣);②当△BCD是以BC为斜边直角三角形时,DC2+DB2=BC2,即()2+(y﹣4)2++y2=32,解得y1=,y2=,此时D点坐标为(,)或(,),所以△BCD是锐角三角形,点D纵坐标取值范围为<y<或﹣<y<.。

【历年真题】黑龙江省大庆市中考数学真题汇总 卷(Ⅱ)(含答案及详解)

【历年真题】黑龙江省大庆市中考数学真题汇总 卷(Ⅱ)(含答案及详解)

黑龙江省大庆市中考数学真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若23m a b +和()31n a b -是同类项,且它们的和为0,则mn 的值是( )A .-4B .-2C .2D .4 2、一元二次方程240x -=的根为( ) A .2x =- B .2x = C .2x =± D.x =3、Rt ABC △和Rt CDE △按如图所示的位置摆放,顶点B 、C 、D 在同一直线上,AC CE =,90B D ∠=∠=︒,AB BC >.将Rt ABC △沿着AC 翻折,得到Rt AB C '△,将Rt CDE △沿着CE 翻折,得Rt CD E '△,点B 、D 的对应点B '、D 与点C 恰好在同一直线上,若13AC =,17BD =,则B D ''的长度为( ).A .7B .6C .5D .44、下列宣传图案中,既中心对称图形又是轴对称图形的是( ) ·线○封○密○外A .B .C .D .5、在Rt ABC △中,90C ∠=︒,4cm BC =,3cm AC =.把ABC 绕点A 顺时针旋转90︒后,得到11AB C △,如图所示,则点B 所走过的路径长为( )A .cm B .5cm π C .5cm 4π D .5cm 2π 6、如图,在梯形ABCD 中,AD ∥BC ,过对角线交点O 的直线与两底分别交于点,E F ,下列结论中,错误的是( )A .AE OE FC OF = B .AE BF DE FC = C .AD OE BC OF = D .AD BC DE BF = 7、如图,一个几何体是由六个大小相同且棱长为1的立方块组成,则这个几何体的表面积是( )A .16B .19C .24D .36 8、如图,平行四边形ABCD 的边BC 上有一动点E ,连接DE ,以DE 为边作矩形DEGF 且边FG 过点A .在点E 从点B 移动到点C 的过程中,矩形DEGF 的面积( )A .先变大后变小B .先变小后变大C .一直变大D .保持不变 9、下列现象: ①用两个钉子就可以把木条固定在墙上 ②从A 地到B 地架设电线,总是尽可能沿着线段AB 架设③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线 ④把弯曲的公路改直,就能缩短路程 其中能用“两点之间线段最短”来解释的现象有( ) A .①④ B .①③ C .②④ D .③④ 10、如图,AD ,BE ,CF 是△ABC 的三条中线,则下列结论正确的是( ) ·线○封○密○外A .2BC AD =B .2AB AF =C .AD CD = D .BE CF =第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、产品代码、和校验码”.其中,校验码是用来校验商品条形码中前12位数字代码的正确性.它的编制是按照特定的算法得来的.其算法为:步骤1:计算前12位数字中偶数位数字的和a ,即91357934a =+++++=;步骤2:计算前12位数字中奇数位数字的和b ,即60246826b =+++++=;步骤3:计算3a 与b 的和c ,即33426128c =⨯+=;步骤4:取大于或等于c 且为10的整数倍的最小数d ,即中130d =;步骤5:计算d 与c 的差就是校验码X ,即X 1301282=-=.如图,若条形码中被污染的两个数字的和是5,则被污染的两个数字中右边的数字是______.2、如图,E 是正方形ABCD 的对角线BD 上一点,连接CE ,过点E 作EF AD ⊥,垂足为点F .若3AF =,5EC =,则正方形ABCD 的面积为______.3、如图是两个全等的三角形,图中字母表示三角形的边长,则∠1的度数为________º.4、如图中给出了某城市连续5天中,每一天的最高气温和最低气温(单位:C ︒),那么最大温差是________C ︒.5、如图,将一个边长为3的正方形纸片进行分割,部分①的面积是边长为3的正方形纸片的一半,部分②的面积是部分①的一半,部分③的面积是部分②的一半,以此类推,n 部分的面积是______.(用含n 的式子表示)三、解答题(5小题,每小题10分,共计50分) 1、已知关于x 的一元二次方程x 2−(2m −2)x +(m 2−2m )=0. (1)请说明该方程实数根的个数情况; ·线○封○密○外(2)如果方程的两个实数根为x1,x2,且(x1+1)⋅(x2+1)=8,求m的值.2、如图,已知函数y1=x+1的图像与y轴交于点A,一次函数y2=kx+b的图像经过点B(0,-1),并且与x轴以及y1=x+1的图像分别交于点C、D,点D的横坐标为1.(1)求y2函数表达式;(2)在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形.如果存在,求出点P坐标;如果不存在,说明理由.(3)若一次函数y3=mx+n的图像经过点D,且将四边形AOCD的面积分成1:2.求函数y3=mx+n 的表达式.3、某商店用3700元购进A、B两种玻璃保温杯共80个,这两种玻璃保温杯的进价、标价如下表所示:(1)这两种玻璃保温杯各购进多少个?(2)已知A型玻璃保温杯按标价的8折出售,B型玻璃保温杯按标价的7.5折出售.在运输过程中有2个A型和1个B型玻璃保温杯不慎损坏,不能销售,请问在其它玻璃保温杯全部售出的情况下,该商店共获利多少元?4、小欣在学习了反比例函数的图象与性质后,进一步研究了函数11y x =+的图象与性质.其研究过程如下:(1)绘制函数图象. ①列表:下表是x 与y 的几组对应值,其中m =______;②描点:根据表中的数值描点(),x y ,请补充描出点()0,m ; ③连线:用平滑的曲线顺次连接各点,请把图象补充完整. (2)探究函数性质. 判断下列说法是否正确(正确的填“√”,错误的填“×”). ①函数值y 随x 的增大而减小; ( ) ②函数图象关于原点对称;( ) ③函数图象与直线1x =-没有交点.( ) ·线○封○密·○外(3)请你根据图象再写一条此函数的性质:______.5、数学课上,王老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积:方法1:;方法2:;(2)观察图2,请你写出代数式:(a+b)2,a2+b2,ab之间的等量关系;(3)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,(a﹣b)2=13,求ab的值;②已知(2021﹣a)2+(a﹣2020)2=5,求(2021﹣a)(a﹣2020)的值.-参考答案-一、单选题1、B【解析】【分析】根据同类项的定义得到2+m=3,n-1=-3,求出m、n的值代入计算即可.【详解】解:∵23m a b +和()31n a b -是同类项,且它们的和为0, ∴2+m =3,n -1=-3, 解得m =1,n =-2, ∴mn =-2, 故选:B . 【点睛】 此题考查了同类项的定义:含有相同的字母,且相同字母的指数分别相等,熟记定义是解题的关键. 2、C 【解析】 【分析】 先移项,把方程化为24,x = 再利用直接开平方的方法解方程即可. 【详解】 解:240x -=, 24,x ∴= 2,x ∴=± 即122,2,x x故选C【点睛】本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键. 3、A 【解析】 ·线○封○密○外【分析】由折叠的性质得ABC AB C '≅,CDE CD E '≅,故ACB ACB '∠=∠,DCE D CE '∠=∠,推出90ACB DCE ∠+∠=︒,由90B D ∠=∠=︒,推出BAC DCE ∠=∠,根据AAS 证明ABC CDE ≅,即可得AB CD CD '==,BC ED CB '==,设BC x =,则17AB x =-,由勾股定理即可求出BC 、AB ,由B D CD CB AB BC ''''=-=-计算即可得出答案.【详解】由折叠的性质得ABC AB C '≅,CDE CD E '≅,∴ACB ACB '∠=∠,DCE D CE '∠=∠,∴90ACB DCE ∠+∠=︒,∵90B D ∠=∠=︒,∴90BAC ACB ∠+∠=︒,∴BAC DCE ∠=∠,在ABC 与CDE △中,B D BAC DCE AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC CDE AAS ≅,∴AB CD CD '==,BC ED CB '==,设BC x =,则17AB x =-,∴222(17)13x x +-=,解得:5x =,∴5BC =,12AB =,∴1257B D CD CB AB BC ''''=-=-=-=.故选:A .【点睛】本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键. 4、C 【解析】 【分析】 根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形. 【详解】 解:A .是轴对称图形,不是中心对称图形,故本选项不合题意; B .不是轴对称图形,也不是中心对称图形,故本选项不合题意; C .既是轴对称图形,又是中心对称图形,故本选项符合题意; D .不是轴对称图形,也不是中心对称图形,故本选项不合题意. 故选:C . 【点睛】 本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 5、D 【解析】 【分析】 根据勾股定理可将AB 的长求出,点B 所经过的路程是以点A 为圆心,以AB 的长为半径,圆心角为90°的扇形. 【详解】 ·线○封○密○外解:在Rt △ABC 中,AB 5cm ,∴点B 所走过的路径长为=1809055cm 2ππ⨯⨯== 故选D .【点睛】本题主要考查了求弧长,勾股定理,解题关键是将点B 所走的路程转化为求弧长,使问题简化.6、B【解析】【分析】根据AD ∥BC ,可得△AOE ∽△COF ,△AOD ∽△COB ,△DOE ∽△BOF ,再利用相似三角形的性质逐项判断即可求解.【详解】解:∵AD ∥BC ,∴△AOE ∽△COF ,△AOD ∽△COB ,△DOE ∽△BOF , ∴AE AO OE FC CO OF==,故A 正确,不符合题意; ∵AD ∥BC ,∴△DOE ∽△BOF , ∴DE OE DO BF OF BO==,∴AE DE FC BF =, ∴AE FC DE BF =,故B 错误,符合题意; ∵AD ∥BC , ∴△AOD ∽△COB , ∴AD AO DO BC CO BO ==, ∴AD OE BC OF =,故C 正确,不符合题意; ∴DE AD BF BC = , ∴AD BC DE BF =,故D 正确,不符合题意; 故选:B 【点睛】 本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键. 7、C 【解析】 【分析】 分别求出各视图的面积,故可求出表面积. 【详解】 由图可得图形的正视图面积为4,左视图面积为 3,俯视图的面积为5 故表面积为2×(4+3+5)=24 故选C . 【点睛】 ·线○封○密○外此题主要考查三视图的求解与表面积。

2013年黑龙江大庆中考数学试卷及答案

2013年黑龙江大庆中考数学试卷及答案

2013年黑龙江省大庆市中考试题数学一、选择题(共10小题,每小题3分,满分30分)在每小题所给出的四个选项中,只有一项是符合题目要求的。

1.(2013黑龙江大庆,1,3分)下列运算结果正确的是()B.a2•a3=a6C.a2•a3=a5D.a2+a3=a6A a【答案】C2.(2013黑龙江大庆,2,3分)若实数a满足a﹣|a|=2a,则()A.a>0 B.a<0 C.a≥0D.a≤0【答案】D3.(2013黑龙江大庆,3,3分)已知两圆的半径分别是3和6,若两圆相交,则两圆的圆心距可以是()A.2B.5C.9D.10【答案】B4.(2013黑龙江大庆,4,3分)对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大【答案】C5.(2013黑龙江大庆5,,3分)若不等式组的解集为0<x<1,则a的值为()A.1B.2C.3D.4【答案】A6.(2013黑龙江大庆,6,3分)已知梯形的面积一定,它的高为h,中位线的长为x,则h与x的函数关系大致是()A.B.C.D.【答案】D7.(2013黑龙江大庆,7,3分)已知函数y=x2+2x﹣3,当x=m时,y<0,则m的值可能是()A.﹣4B.0C.2D.3【答案】B8.(2013黑龙江大庆,8,3分)图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是()9.(2013黑龙江大庆,9,3分)正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()A.B.C.D.【答案】B10.(2013黑龙江大庆,10,3分)已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形【答案】C二、填空题(共8小题,每小题3分,满分24分)11.(2013黑龙江大庆,11,3分)计算:sin260°+cos60°﹣tan45°=.【答案】12.(2013黑龙江大庆,12,3分)在函数y=中,自变量x的取值范围是.【答案】x≥﹣.13.(2013黑龙江大庆,13,3分)地球的赤道半径约为6 370 000米,用科学记数法记为米.【答案】6.37×10614.(2013黑龙江大庆,14,3分)圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角为.【答案】180°15.(2013黑龙江大庆,15,3分)某品牌手机降价20%后,又降低了100元,此时售价为1100元,则该手机的原价为____________元.【答案】150016.(2013黑龙江大庆,16,3分)袋中装有4个完全相同的球,分别标有数字1、2、3、4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于30的概率为.【答案】17.(2013黑龙江大庆,17,3分)已知…依据上述规律计算的结果为(写成一个分数的形式)【答案】18.(2013黑龙江大庆,18,3分)如图,三角形ABC是边长为1的正三角形,与所对的圆心角均为120°,则图中阴影部分的面积为.【答案】三、解答题(共10小题,满分46分)19.(2013黑龙江大庆,19,4分)计算:﹣++(π﹣3)0.【答案】解:原式=0.5﹣++1=0.5﹣2++1=1.20.(2013黑龙江大庆,20,4分)已知ab=﹣3,a+b=2.求代数式a3b+ab3的值.【答案】解:△a+b=2,△(a+b)2=4,△a2+2ab+b2=4,又△ab=﹣3,△a2+b2=10,△(a2+b2)ab=a3b+ab3=﹣30.21.(2013黑龙江大庆,21,6分)如图,已知一次函数y=k1x+b(k1≠0)的图象分别与x轴,y轴交于A,B两点,且与反比例函数y=(k2≠0)的图象在第一象限的交点为C,过点C作x轴的垂线,垂足为D,若OA=OB=OD=2.(1)求一次函数的解析式;(2)求反比例函数的解析式.【答案】解:(1)△OA=OB=2,△A(﹣2,0),B(0,2),将A与B代入y=k1x+b得:,解得:,则一次函数解析式为y=x+2;(2)△OD=2,△D(2,0),△点C在一次函数y=x+2上,且CD△x轴,△将x=2代入一次函数解析式得:y=2+2=4,即点C坐标为(2,4),△点C在反比例图象上,△将C(2,4)代入反比例解析式得:k2=8,则反比例解析式为y=.22.(2013黑龙江大庆,22,6分)某班同学在一次综合实践活动中,对本县居民参加“全民医保”情况进行了调查,同学们利用节假日随机调查了3000人,对调查结果进行了统计分析,绘制出两幅不完整的统计图:[注:图中A表示城镇职工基本医疗保险;B表示城镇居民基本医疗保险;C表示“新型农村合作医疗”;D表示其他情况](1)补全条形统计图;(2)在本次调查中,B类人数占被调查人数的百分比为;扇形统计图中D区域所对应的圆心角的大小为.(3)据了解,国家对B类人员每人每年补助210元.已知该县人口数约为100万,请估计该县B类人员每年享受国家补助共多少元?【答案】(1)如下图.(2)500÷2000=25%,即在本次调查中,B类人数占被调查人数的百分比为25%.D区域区域的圆心角为:=36°;(3)210×100×25%=5250(万元).答:该县B类人员每年享受国家补助共5250万元.23.(2013黑龙江大庆,23,6分)如图,把一个直角三角形ACB(△ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出△FHG的度数.【答案】(1)证明:△在△CBF和△DBG中,,△△CBF△△DBG(SAS),△CF=DG;(2)解:△△CBF△△DBG,△△BCF=△BDG,又△△CFB=△DFH,△△DHF=△CBF=60°,△△FHG=180°﹣△DHF=180°﹣60°=120°.24.(2013黑龙江大庆,24,6分)如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B两点.(1)求A,B两点的坐标;(2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.【答案】(1)过点C作CM△x轴于点M,则MA=MB,连结AC,如图△点C的坐标为(2,),△OM=2,CM=,在Rt△ACM中,CA=2,△AM==1,△OA=OM﹣AM=1,OB=OM+BM=3,△A点坐标为(1,0),B点坐标为(3,0);(2)将A(1,0),B(3,0)代入y=x2+bx+c得,解得.所以二次函数的解析式为y=x2﹣4x+3.25.(2013黑龙江大庆,25,8分)如图所示,AB是半圆O的直径,AB=8,以AB为一直角边的直角三角形ABC 中,△CAB=30°,AC与半圆交于点D,过点D作BC的垂线DE,垂足为E.(1)求DE的长;(2)过点C作AB的平行线l,l与BD的延长线交于点F,求的值.【答案】解:(1)△AB是半圆O的直径,△△ADB=90°.在Rt△ABD中,△ADB=90°,△DAB=30°,AB=8,△BD=AB=4.在Rt△BDE中,△DEB=90°,△DBE=30°,BD=4,△DE=BD=2;(2)△DE△BC,AB△BC,△DE△AB,△===,△CA=4CD,△DA=3CD.△CF△AB,△△FCD=△BAD,△DFC=△DBA,△△FCD△△BAD,△===.26.(2013黑龙江大庆,26,8分)随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a,转盘指针所指区域内的数字为b,求关于x的方程ax2+3x+=0有实数根的概率.【答案】(1)画树状图得出:总共有20种结果,每种结果出现的可能性相同,正四面体着地的数字与转盘指针所指区域的数字之积为4的有3种情况,故正四面体着地的数字与转盘指针所指区域的数字之积为4的概率为:;(2)△方程ax2+3x+=0有实数根的条件为:9﹣ab≥0,△满足ab≤9的结果共有14种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2)△关于x的方程ax2+3x+=0有实数根的概率为:=.27.(2013黑龙江大庆,27,9分)对于钝角α,定义它的三角函数值如下:sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)(1)求sin120°,cos120°,sin150°的值;(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及△A和△B的大小.【答案】(1)由题意得,sin120°=sin(180°﹣120°)=sin60°=,cos120°=﹣cos(180°﹣120°)=﹣cos60°=﹣,sin150°=sin(180°﹣150°)=sin30°=;(2)△三角形的三个内角的比是1:1:4,△三个内角分别为30°,30°,120°,①当△A=30°,△B=120°时,方程的两根为,﹣,将代入方程得:4×()2﹣m×﹣1=0,解得:m=0,△m=0符合题意;②当△A=120°,△B=30°时,两根为,,不符合题意;③当△A=30°,△B=30°时,两根为,,将代入方程得:4×()2﹣m×﹣1=0,解得:m=0,经检验不是方程4x2﹣1=0的根.综上所述:m=0,△A=30°,△B=120°.28.(2013黑龙江大庆,28,9分)如图所示,在直角梯形ABCD中,AB为垂直于底边的腰,AD=1,BC=2,AB=3,点E为CD上异于C,D的一个动点,过点E作AB的垂线,垂足为F,△ADE,△AEB,△BCE的面积分别为S1,S2,S3.(1)设AF=x,试用x表示S1与S3的乘积S1S3,并求S1S3的最大值;(2)设=t,试用t表示EF的长;(3)在(2)的条件下,当t为何值时,=4S1S3.【答案】解:(1)△S1=AD•AF=x,S3=BC•BF=×2×(3﹣x)=3﹣x,△S1S3=x(3﹣x)=(﹣x2+3x)=[﹣(x﹣)2+]=﹣(x﹣)2+(0<x<3),△当x=时,S1S3的最大值为;(2)作DM△BC,垂足为M,DM与EF交与点N,△=t,△AF=tFB,△BM=MC=AD=1,△NE=,△EF=FN+NE=1+=;(3)△AB=AF+FB=(t+1)FB=3,△FB=,△AF=tFB=,△S1=AD•AF=×=,S3=BC•FB=×2×=;S2=AB•FE=×3×=,△S1S3=,S22=,△=4×,即4t2﹣4t+1=0,解得t=.。

2008-2010大庆中考数学题集(含答案)

2008-2010大庆中考数学题集(含答案)

2008-2013大庆中考数学试题及答案2008年大庆市初中升学中考数学统一考试数 学 试 题考生注意:1.考试时间为120分钟,答题前,考生必须将自己的姓名、准考证号填写清楚,请认真核对条形码上的准考证号、姓名.2.全卷共三道大题,总共120分.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.3.选择题必须使用2B 铅笔填涂;非选择题必须使用黑色字迹的钢笔或签字笔书写,字体工整、笔迹清楚.4.作图可先使用铅笔画出,确出后必须用黑色字迹的钢笔或签字笔描黑.5.答题卡保持清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀. 一、选择题(每小题3分,共30分.下列各题所附的四个选项中,有且只有一个是正确的) 1.12-等于( ) A .12 B .12-C .2D .2-2.国家体育场呈“鸟巢”结构,是2008年第29届奥林匹克运动会的主体育场,其建筑面积为258 0002m .将258 000用科学记数法表示为( ) A .60.25810⨯ B .325810⨯C .62.5810⨯D .52.5810⨯3.使分式21xx -有意义...的x 的取值范围是( ) A .12x ≥B .12x ≤C .12x > D .12x ≠4.实数a b ,在数轴上对应点的位置如图所示,则下列各式中正确的是( ) A .0a b -> B .0a b +> C .0a b -< D .0a b +=5.下列各图中,不是中心对称图形的是( )A .B .C .D .6.23()m 等于( )(第4题)abA .5mB .6mC .8mD .9m7.已知α是等腰直角三角形的一个锐角,则sin α的值为( ) A .12B .22C .32D .18.已知关于x 的一元二次方程220x x m --=有两个不相等的实数根,则实数m 的取值范围是( ) A .0m < B .2m <- C .0m ≥ D .1m >-9.如图,将非等腰ABC △的纸片沿DE 折叠后,使点A 落在BC 边上的点F 处.若点D 为AB 边的中点,则下列结论:①BDF △是等腰三角形;②DFE CFE ∠=∠;③DE 是ABC △的中位线,成立的有( ) A .①② B .①③ C .②③ D .①②③10.如图,在ABC △中,AC BC AB =>,点P 为ABC △所在平面内一点,且点P 与ABC △的任意两个顶点构成PAB PBC PAC △,△,△均是..等腰三角形,则满足上述条件的所有点P 的个数为( ) A .3 B .4 C .6 D .7二、填空题(每小题3分,共24分)11.计算:(23)(23)-+= . 12.抛物线231y x =-+的顶点坐标是 . 13.分解因式:22ab ab a -+= .14.如图,已知O 是ABC △的内切圆,且50BAC ∠=°,则BOC ∠为 度.15.为了比较甲、乙两种水稻秧苗是否出苗整齐,从每种秧苗中分别随机抽取5株并量出每株的长度记录如下表所示(单位:cm ).编号 1 2 3 4 5 甲 12 13 15 15 10 乙1314151211经计算,所抽取的甲、乙两种水稻秧苗长度的平均数都是13cm ,方差223.6cm S =甲,则出苗更整齐的是 种水稻秧苗.16.如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm 的等边三角形ABC ,点D 是母线AC 的中点,一只蚂蚁从A BD E C F(第9题)C (第10题) B A BCAO (第14题)D A点B 出发沿圆锥的表面爬行到点D 处,则这只蚂蚁爬行的最短距离是 cm .17.不等式组253(2)123x x x x ++⎧⎪-⎨<⎪⎩≤的整数解的个数为 .18.如图,把边长是3的正方形等分成9个小正方形,在有阴影的两个小正方形ABCD 和EFGH 内(包括边界)分别取两个动点P R ,,与已有格点Q (每个小正方形的顶点叫格点)构成三角形,则当PQR △的面积取得最大值2时,点P 和点R 所在位置是 . 三、解答题(本大题10小题,共66分) 19.(本题5分) 计算:132822--+. 20.(本题5分)如图,在ABCD中,E F ,分别是边BC 和AD 上的点且BE DF =,则线段AE 与线段CF 有怎样的数量关系....和位置关系....?并证明你的结论.21.(本题6分)某文具厂加工一种文具2 500套,加工完1 000套后,由于采用了新设备,每天的工作效率变为原来的1.5倍,结果提前5天完成了加工任务.求该文具厂原来每天加工多少套这种文具. 22.(本题6分)某数学老师为了了解学生在数学学习中对常见错误的纠正情况,收集了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对她所任教的初三(1)班和(2)班进行了检测.下图表示的是从以上两个班级各随机抽取10名学生的得分情况.ABCDQEF G H R(第18题)成绩(分) 30272421 1815 129 63成绩(分) 30 27 24 21 18 15 12 9 6 3 A B CD FE (第20题)(1)利用上图提供的信息,补全下表.班级 平均数(分)中位数(分)众数(分)(1)班 24 24 (2)班24(2)已知上述两个班级各有60名学生,若把24分以上(含24分)记为“优秀”,请估计这两个班级各有多少名学生成绩为“优秀”.(3)观察上图中点的分布情况,你认为哪个班的学生纠错的整体情况更好一些? 23.(本题7分)甲、乙两个工程队完成某项工程,假设甲、乙两个工程队的工作效率是一定的,工程总量为单位1.甲队单独做了10天后,乙队加入合作完成剩下的全部工程,工程进度如图所示. (1)甲队单独完成这项工程,需 天. (2)求乙队单独完成这项工程所需的天数.(3)求出图中x 的值.24.(本题7分)在同一时刻的物高与水平地面上的影长成正比例.如图,小莉发现垂直地面的电线杆AB 的影子落在地面和土坡上,影长分别为BC 和CD ,经测量得20m BC =,8m CD =,CD 与地面成30°角,且此时测得垂直于地面的1m 长标杆在地面上影长为2m ,求电线杆AB 的长度.25.(本题6分) 如图,反比例函数ky x=的图象与一次函数y mx b =+的图象相交于两点(13)A ,,(1)B n -,.(1)分别求出反比例函数与一次函数的函数关系式; (2)若直线AB 与y 轴交于点C ,求BOC △的面积. y t (天) (工程量) 1 1214O 10 16 x (第23题) A BC D(第24题) y xOA BC26.(本题7分)如图,在Rt ABC △中,90C ∠=,BE 平分ABC ∠交AC 于点E ,点D 在AB 边上且DE BE ⊥.(1)判断直线AC 与DBE △外接圆的位置关系,并说明理由; (2)若662AD AE ==,,求BC 的长. 27.(本题8分)如图,河上有一座抛物线桥洞,已知桥下的水面离桥拱顶部3m 时,水面宽AB 为6m ,当.水位上升....0.5m 时.: (1)求水面的宽度CD 为多少米?(2)有一艘游船,它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行.①若游船宽(指船的最大宽度)为2m ,从水面到棚顶的高度为 1.8m ,问这艘游船能否从桥洞下通过?②若从水面到棚顶的高度为74m 的游船刚好能从桥洞下通过, 则这艘游船的最大宽度是多少米?28.(本题9分)如图①,四边形AEFG 和ABCD 都是正方形,它们的边长分别为a b ,(2b a ≥),且点F 在AD 上(以下问题的结果均可用a b ,的代数式表示). (1)求DBF S △;(2)把正方形AEFG 绕点A 按逆时针方向旋转45°得图②,求图②中的DBF S △; (3)把正方形AEFG 绕点A 旋转一周,在旋转的过程中,DBF S △是否存在最大值、最小值?如果存在,直接写出最大值、最小值;如果不存在,请说明理由.C(第26题)BDAED C B A EF GG FE A B C D (第27题) O CA E DB yx3 2 1 1 2 3 -3 -2 -12008年大庆市初中升学统一考试数 学 试 题 参 考 答 案一、选择题(每小题3分,共30分.)二、填空题(每小题3分,共24分)11.1 12.(0,1) 13.2(1)a b - 14.100 15.乙 16.25 17.418.点P 在A 处、点R 在F 处或点P 在B 处、点R 在G 处 三、解答题(本大题10小题,共66分) 19.解:132822--+=422211522222-+=+=. 20.解:AE CF =,AE CF ∥.证明:在ABCD中,AD BC ∥,AD BC =, 又∵BE DF =, ∴CE AF =,∴四边形AECF 是平行四边形. ∴AE CF =,AE CF ∥.21.解:设该文具厂原来每天加工这种文具x 套.根据题意,列方程得25001000250010005 1.5x x x--=+, 解得100x =经检验,100x =是原方程的根.答:该文具厂原来每天加工这种文具100套. 22.解:(1)24,24,21; (2)估计一班优秀生人数为:60×710=42(人), 估计二班优秀生人数为:60×610=36(人), (3)一班学生纠错的整体情况更好一些. 23.解:(1)40; (2)111()(1610)2424--=÷,111244060-= 题号 1 2 3 4 5 6 7 8 9 10 答案ADDCBBBDBB116060=÷(天) 答:乙队单独完成这项工程要60天.(3)111(1)()102846040-++=÷(天)答:图中x 的值是28.24.解:如图,过点D 作DE AB ⊥于点E ,过点DF BC ⊥交BC 的延长线于点F , ∵30DCF ∠=°, ∴3cos30432CF CD =⨯=×°=8m , ∴(2043)DE BF BC CF m ==+=+,∵垂直于地面的1m 长标杆在地面上影长为2m , ∴1(1023)2AE DE m ==+, ∴10234(1423)AB AE BE AE DF m =+=+=++=+.25.解:(1)∵点(1,3)A 在反比例函数图象上, ∴3k =,即反比例函数关系式为3y x=; ∵点(,1)B n -在反比例函数图象上,∴3n =-,∵点(1,3)A 和(3,1)B --在一次函数y mx b =+的图象上,∴331m b m b +=⎧⎨-+=-⎩, 解得12m b =⎧⎨=⎩,∴一次函数关系式为2y x =+. (2)当0x =时,一次函数值为2, ∴2OC =,∴12332BOC S =-=△××.26.解:(1)直线AC 与DBE △外接圆相切. 理由:∵DE BE ⊥,∴ BD 为DBE △外接圆的直径,取BD 的中点O (即DBE △外接圆的圆心),连结OE , ∴OE OB =,∴OEB OBE ∠=∠, ∵BE 平分ABC ∠, ∴ OBE CBE ∠=∠, ∴ OEB CBE ∠=∠,∵90CBE CEB ∠+∠=°, ∴ 90OEB CEB ∠+∠=°, 即OE AC ⊥,∴直线AC 与DBE △外接圆相切. (2)设OD OE OB x ===, ∵OE AC ⊥,∴222(6)(62)x x +-=, ∴3x =,∴12AB AD OD OB =++=, ∵OE AC ⊥,∴AOE ABC △∽△,∴AO OEAB BC =, 即9312BC =, ∴4BC =.27.解:(1)设抛物线形桥洞的函数关系式为2y ax c =+, ∵点(3,0)A 和(0,3)E 在函数图象上,∴903a c c +=⎧⎨=⎩∴133a c ⎧=-⎪⎨⎪=⎩ ∴2133y x =-+.由题意可知,点C 和点D 的纵坐标为0.5, ∴2130.53x -+= ∴1302x =,2302x -=,∴303030224CD =+=(米). (2)①当1x =时,83y =,∵80.5>1.83- ∴这艘游船能否从桥洞下通过.②当790.544y =+=时,132x =, 232x =-,∴这艘游船的最大宽度是3米.28. 解:(1)∵点F 在AD 上,∴2AF a =, ∴2DF b a =-,∴21112(2)2222DBF S DFAB b a b b ab ==-=-△××. (2)连结AF , 由题意易知AF BD ∥,∴212DBF ABD S S b ==△△.(3)正方形AEFG 在绕A 点旋转的过程中,F 点的轨迹是以点A 为圆心,AF 为半径的圆.第一种情况:当b >2a 时,存在最大值及最小值;因为BFD △的边2BD b =,故当F 点到BD 的距离取得最大、最小值时,BFD △S 取得最大、最小值.如图②所示2CF BD ⊥时,BFD △S 的最大值=2212222,222BF Db b ab b a ⎛⎫+=⋅+= ⎪ ⎪⎝⎭△SBFD △S 的最小值=2212222,222BF Db b ab b a ⎛⎫-=⋅-= ⎪ ⎪⎝⎭△S第二种情况:当b =2a 时,存在最大值,不存在最小值;BFD △S 的最大值=222b ab+.(如果答案为4a 2或b 2也可) F 1 ODCABG F E F 22010年黑龙江省大庆市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上.)1.有理数﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.下列运算正确的是()A.a3•a2=a5B.a10÷a2=a5C.a2+a2=2a4D.(a+3)2=a2+93.一块面积为10m2的正方形草坪,其边长()A.小于3m B.等于3m C.在3m与4m之间D.大于4m4.下列每一个不透明袋子中都装有若干红球和白球(除颜色外其他均相同).第一个袋子:红球1个,白球1个;第二个袋子:红球1个,白球2个;第三个袋子:红球2个,白球3个;第四个袋子:红球4个,白球10个.分别从中任意摸出一个球,摸到红球可能性最大的是()A.第一个袋子B.第二个袋子C.第三个袋子D.第四个袋子5.如图,将一块三角板叠放在直尺上,若∠1=20°,则∠2的度数为()A.40°B.60°C.70°D.80°6.某工程队铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x米,根据题意可列方程为()A.B.C.D.7.在直角坐标系中,⊙P、⊙Q的位置如图所示.下列四个点中,在⊙A外部且在⊙B内部的是()A.(1,2)B.(2,1)C.(2,﹣1)D.(3,1)8.如图,将一张等腰梯形纸片沿中位线剪开,直接拼成一个新的图形,这个新的图形可能为()A.三角形B.正方形C.矩形D.平行四边形9.如图,一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行一周,设蚂蚁的运动时间为t,蚂蚁到O点的距离为S,则S关于t的函数图象大致为()A.B. C.D.10.如图,等边三角形ABC的边长为3,D、E分别是AB、AC上的点,且AD=AE=2,将△ADE沿直线DE折叠,点A的落点记为A′,则四边形ADA′E的面积S1与△ABC的面积S2之间的关系是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.不等式2x﹣3≤3的正整数解是_________.12.中央电视台组织慈善晚会,共为玉树灾区募捐善款人民币约2 175 000 000元,把这个数用科学记数法表示为_________.13.如图(1),用八个同样大小的小立方体搭成一个大立方体,小明从上面的四个小立方体中取走了两个后,得到的新几何体的三视图如图(2)所示,则他拿走的两个小立方体的序号是_________(只填写满足条件的一种情况即可,答案格式如:“12”).14.如图,已知点P(1,2)在反比例函数的图象上,观察图象可知,当x>1时,y的取值范围是_________.15.如图,已知∠AOB=30°,M为OB边上一点,以M为圆心、2cm为半径作M.若点⊙M 在OB边上运动,则当OM=_________cm时,⊙M与OA相切.16.某中学推荐了甲、乙两班各50名同学参加上海世博会体操表演,经测量并计算得甲、乙两班同学身高的平均数和方差的结果为:=165(cm),=165(cm),S 甲2=75,S 乙2=21.6,世博会组委会从身高整齐美观效果来看,应选_________班参加比赛.(填“甲”或“乙”).17.如图,网格的小正方形的边长均为1,小正方形的顶点叫做格点.△ABC的三个顶点都在格点上,那么△ABC的外接圆半径是_________.18.小颖同学想用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象,取自变量x的5个值,分别计算出对应的y值,如下表:x …﹣2 ﹣10 1 2 …y …11 2 ﹣12 5 …由于粗心,小颖算错了其中的一个y值,请你指出这个算错的y值所对应的x=_________.三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)19.计算:.20.先化简,再求值:,其中a=3.21.光明中学八年级(1)、(2)班学生参加社会实践活动,图①是(1)班社会实践活动成绩的条形统计图,图②是(2)班社会实践活动成绩的扇形统计图.请你结合图①和图②中所给信息解答下列问题:(1)填写下表:平均数中位数众数八年级(1)班的社会实践活动成绩 3.5(2)计算八年级(2)班社会实践活动成绩的平均数;(3)老师认为八年级(1)班的社会实践活动成绩较好,他的理由是什么?(写出两条即可)22.2006年夏秋,我国西部重庆等地连日无雨,水库的蓄水量也随着时间的增加而减少,如图是某水库的蓄水量y(万米3)与干旱持续时间x(天)之间的函数图象,(1)求y与x之间的函数关系式;(2)按照这个规律,预计持续干旱多少天水库将干涸?23.在电视台举办的“超级女生”比赛中,甲、乙、丙三位评委对选手的综合表现,分别给出“淘汰”或“通过”的结论.(1)请用树状图表示出三位评委给出A选手的所有可能的结论;(2)比赛规则设定:三位评委中至少有两位评委给出“通过”的结论,那么这位选手才能进入下一轮比赛.试问对于选手A,进入下一轮比赛的概率是多少?24.如图,点P是正方形ABCD的对角线BD上一点,连接PA、PC.(1)证明:∠PAB=∠PCB;(2)在BC上取一点E,连接PE,使得PE=PC,连接AE,判断△PAE的形状,并说明理由.25.小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD放在每格宽度为12mm的横格纸中,恰好四个顶点都在横格线上,已知α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(精确到1mm)(参考数据:sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)26.如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B 两点.(1)求出A,B两点的坐标;(2)有一开口向下的抛物线y=a(x﹣h)2+k经过点A,B,且其顶点在⊙C上.试确定此抛物线的表达式.27.在平面内,旋转变换是指某一图形绕一个定点按顺时针或逆时针旋转一定的角度而得到新位置图形的一种变换.活动一:如图1,在Rt△ABC中,D为斜边AB上的一点,AD=2,BD=1,且四边形DECF 是正方形,求阴影部分的面积.小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图2所示),一眼就看出这题的答案,请你写出阴影部分的面积:_________.活动二:如图3,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,过点A 作AE⊥BC,垂足为点E,求AE的长.小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADG(如图4所示),则①四边形AECG是怎样的特殊四边形?答:_________.AE的长是_________.活动三:如图5,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC按逆时针方向绕点B旋转90°得到线段BE,连接AE.若AB=2,DC=4,求△ABE的面积.28.已知:如图①,正方形ABCD与矩形DEFG的边AD、DE在同一直线l上,点G在CD上.正方形ABCD的边长为a,矩形DEFG的长DE为b,宽DG为3(其中a>b>3).若矩形DEFG沿直线l向左以每秒1个单位的长度的速度运动(点D、E始终在直线l上).若矩形DEFG在运动过程中与正方形ABCD的重叠部分的面积记作S,运动时间记为t秒(0≤t≤m),其中S与t的函数图象如图②所示.矩形DEFG的顶点经运动后的对应点分别记作D′、E′、F′、G′.(1)根据题目所提供的信息,可求得b=_________,a=_________,m=_________;(2)连接AG′、CF′,设以AG′和CF′为边的两个正方形的面积之和为y,求当0≤t≤5时,y与时间t之间的函数关系式,并求出y的最小值以及y取最小值时t的值;(3)如图③,这是在矩形DEFG运动过程中,直线AG′第一次与直线CF′垂直的情形,求此时t的值.并探究:在矩形DEFG继续运动的过程中,直线AG′与直线CF′是否存在平行或再次垂直的情形?如果存在,请画出图形,并求出t的值;否则,请说明理由.2010年黑龙江省大庆市中考数学试卷参考答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上.)1.A.2.A.3.C.4.A.5.C.6.C.7.C.8.D.9.C.10.D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.1、2、3.12. 2.175×109.13.13或2414.0<y<2.15.416.乙17..18.2.三、解答题(本大题共10小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.)19.计算:.解:原式=1+3﹣=4﹣.20.先化简,再求值:,其中a=3.解:=(2分)=(3分)=(4分)当a=3时,原式=.(6分)21.解:(1)填写下表:平均数中位数众数(1)班的社会实践活动成绩 3.5 4 4(2)八年级(2)班社会实践活动成绩的平均数;(分)(3)理由是:两个班的社会实践活动成绩的平均数相同,八年级(1)班社会实践活动成绩的中位数和众数大于八年级(2)班社会实践活动成绩的中位数和众数,所以八年级(1)班的社会实践活动成绩好.(对于合理的解释都给分)22.解:(1)设y=kx+b,根据题意,可得,解可得,k=﹣20,又有b=1200,则y=﹣20x+1200;(2)当y=0时,即﹣20x+1200=0,解可得x=60,因此,持续干旱60天水库将干涸.23.解:(1)画出树状图来说明评委给出A选手的所有可能结果:(4分)(2)由上可知评委给出A选手所有可能的结果有8种.并且它们是等可能的,(5分)∴对于A选手,进入下一轮比赛的概率是.(7分)24.解答:(1)证明:∵在正方形ABCD中,BD是对角线,∴AB=CB,∠ABD=∠CBD.又∵BP=BP,∴△ABP≌△CBP.∴PA=PC,∠PAB=∠PCB.(2)解:如图,△PAE是等腰直角三角形,理由如下:∵PE=PC,∴∠PEC=∠PCB.又∵∠PAB=∠PCB,∴∠PAB=∠PEC.∵E是BC上一点,∠PEB+∠PEC=180°,∴∠PAB+∠PEB=180°.∵在四边形ABEP中,∠PAB+∠ABC+∠PEB+∠APE=360°,∠ABC=90°,∴∠APE=90°.∵PA=PC,PE=PC,∴PA=PE.∴△PAE是等腰直角三角形.(其他方法酌情给分)25.解:作BE⊥l于点E,DF⊥l于点F.∵α+∠DAF=180°﹣∠BAD=180°﹣90°=90°,∠ADF+∠DAF=90°,∴∠ADF=α=36°.根据题意,得BE=24mm,DF=48mm.在Rt△ABE中,sin,∴AB==40(mm).在Rt△ADF中,cos∠ADF=,∴AD==60(mm).∴矩形ABCD的周长=2(40+60)=200(mm).26.解:(1)过点C作CD⊥AB,垂足为D,则CD=1,CA=CB=2,∴DB=DA=.点A(1﹣,0),点B(+1,0);(2)延长DC,交⊙C于点P.由题意可知,P为抛物线的顶点,并可求得点P(1,3),∴h=1,k=3,设此抛物线的表达式为y=a(x﹣1)2+3,又∵抛物线过点B(+1,0),则0=,得a=﹣1,所以此抛物线的解析式为y=﹣(x﹣1)2+3=﹣x2+2x+2.27.小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图2所示),一眼就看出这题的答案,请你写出阴影部分的面积:1.活动二:如图3,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,过点A 作AE⊥BC,垂足为点E,求AE的长.小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADG(如图4所示),则①四边形AECG是怎样的特殊四边形?答:正方形.AE的长是4.活动三:如图5,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC按逆时针方向绕点B旋转90°得到线段BE,连接AE.若AB=2,DC=4,求△ABE的面积.解:活动一:∵四边形DECF是正方形,∴DE=DF=x,DE∥BC,DF∥AC,∴,,∵AD=2,BD=1,∴AC=3x,BC=x,∵AC2+BC2=AB2,∴9x2+(x)2=9,解得:x=,∴DE=DF=,AE=,BF=,∴S△ADE+S△BDF=1,∴S阴影=1;故答案为:1;活动二:根据题意得:∠EAG=90°,∵AE⊥BC,∴∠AEB=∠AEC=∠G=90°,∴四边形AECG是矩形,∵AE=AG,∴四边形AECG是正方形,∵BC=5,CD=3,∴设AE=x,则BE=GD=CG﹣CD=x﹣3,BE=BC﹣EC=5﹣x,∴x﹣3=5﹣x,解得:x=4,∴AE=4.故答案为:正方形,4;活动三:过点B作BG⊥DC于点G,过点E作EF⊥AB与AB的延长线交于点F.∵∠BAD=∠D=∠DGB=90°,∴四边形ABGD是矩形,∴DG=AB=2,∴CG=DC﹣DG=4﹣2=2.∵∠CBG+∠CBF=90°,∠EBF+∠CBF=90°,∴∠CBG=∠EBF.在△BCG与△BEF中,∠CBG=∠EBF,∠CGB=∠EFB=90°,BC=BE,∴△BCG≌△BEF,∴CG=EF=2.∴S△ABE=AB•EF=2.(10分)28.(1)根据题目所提供的信息,可求得b=4,a=5,m=9;(2)连接AG′、CF′,设以AG′和CF′为边的两个正方形的面积之和为y,求当0≤t≤5时,y与时间t之间的函数关系式,并求出y的最小值以及y取最小值时t的值;(3)如图③,这是在矩形DEFG运动过程中,直线AG′第一次与直线CF′垂直的情形,求此时t的值.并探究:在矩形DEFG继续运动的过程中,直线AG′与直线CF′是否存在平行或再次垂直的情形?如果存在,请画出图形,并求出t的值;否则,请说明理由.解:(1)由图②知:从第4到第5秒时,S的值恒为12,此时矩形全部落在正方形的内部,那么矩形的面积为12,即可求得DE=4;这个过程持续了1秒,说明正方形的边长为:DE+1=5;由于矩形的速度恒定,所以5~m也应该用4秒的时间,故m=5+4=9;即:b=4,a=5,m=9.(2)如图,当0≤t≤5时,∵AD′=5﹣t,D′G=3,PF′=4﹣t,CP=2,∴y=9+(5﹣t)2+4+(4﹣t)2,∴y=2(t﹣)2+,∴当t=时,y有最小值,y最小值=.(3)①当0≤t<4时,分别延长AG′和F′C;如图,由于∠1和∠2都是锐角,所以∠1+∠2<180°,所以AG′与CF′不可能平行.设AG′与F′C的延长线交于点H,当∠G′AD′=∠PCF′时,直线AG′⊥CF′;∴△AD′G′∽△CPF′,∴,∴=,解得t1=2,t2=7(不合题意,舍去).②当t=4时,由于点F′在CD上,而点G′不在直线AD上,因为AD⊥CD,所以AG′不可能也垂直于CD(因为过直线外一点有且只有一条直线与已知直线垂直).同样,由于AB∥CD,而点G′不在直线AB上,所以t=4时,AG′也不可能平行于CD(CF′)(因为过直线外一点,有且只有一条直线与已知直线平行).③4<t<5时,延长G′F′交BC于P,延长AG′交CD于Q,由于∠CF′P是锐角,所以∠CF′G是钝角,所以∠CF′G+∠QGF′≠90°,所以AG′与CF′不可能垂直;当∠G′AD′=∠CF′P时,AG′∥CF′,易得△AD′G′∽△F′PC,∴,∴,解得t=4.4.④当t=5时,AG′与CF′既不可能垂直也不可能平行,理由同②.⑤当5<t<9时,因为∠QG′F′与∠CF′G′都是钝角,所以∠QG′F′+∠CF′G′>180°,所以AG′与CF′不可能平行.延长CF′与AG′相交于点M,延长G′F′与CD相交于点P;当∠MG′F′+∠MF′G′=90°时,AG′⊥CF′;又∵∠AG′D′+∠AG′F′=90°,∠MF′G′=∠CF′P,∴∠AG′D′=∠CF′P,又∠AD′G′=∠F′PC,∴△AD ′G ′∽△CPF ′, ∴,即;解得:t 1=2(不合题意,舍去),t 2=7;所以,综上所述,当t=2或t=7时,直线AG ′与直线CF ′垂直,当t=4.4时,直线AG ′与直线CF ′平行.2011年黑龙江省大庆市中考数学试题一、选择题(本大题共10小题,每小题3分,满分30分)1.与 12互为倒数的是【 】A .-2B .- 1 2C . 12D .22.用科学记数法表示的数5.8×10-5,它应该等于【 】A .0.0058B .0.00058C .0.000058D .0.0000058 3.对任意实数a ,下列等式一定成立的是【 】A .a 2=aB .a 2=-aC .a 2=±aD .a 2=|a | 4.若一个圆锥的侧面积是10,则下列图象中表示这个圆锥母线l 与底面半径r 之间的函数关系的是【 】5.若a +b >0,且b <0,则a 、b 、―a 、―b 的大小关系为【 】 A .―a <―b <b <a B .―a <b <a <―b C .―a <b <―b <a D .b <―a <―b <a OOOOr r r r llllA .B .C .D .6.某商场为了促销开展抽奖活动,让顾客转动一次转盘,当转盘停止后,只有指针指向阴影区域时,顾客才能获得奖品,并有以下四个大小相同的转盘可供选择.能使顾客获得奖品可能性最大的是【 】7.在平面直角坐标系中,已知点A (-1,0)和B (1,2),连接AB ,平移线段AB 得到线段A 1B 1.若点A 的对应点A 1的坐标为(2,-1),则点B 的对应点B 1的坐标为【 】 A .(4,3) B .(4,1)C .(-2,3)D .(-2,1) 8.如图,某宾馆大厅要铺圆环形的地毯,工人师傅只测量了与小圆相切的大圆的弦AB 的长,就计算出了圆环的面积.若测量得AB 的长为20m ,则圆环的面积为【 】A .10m 2B .π10m 2C .100m 2D .π100m 29.若△ABC 的三边长a 、b 、c 满足:a 3+ab 2+bc 2=b 3+a 2b +ac 2,则△ABC 是【 】 A .等腰三角形 B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形10.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上的点A 作⊙O 的切线,切点为B ,则线段AB 的长度的最小值为【 】A .1B . 2C . 3D .2二、填空题(本大题共8小题,每小题3分,满分24分)11.计算:sin 230º+cos 260º-tan 245º= .12.已知下列等式:1=12,1+2+1=22,1+2+3+2+1=32,….根据以上等式,猜想:对于正整数n (n ≥4),1+2+…+(n -1)+n +(n -1)+…+2+1= .13.已知x + 1 x =2,则x 2+ 1x2= .14.已知不等式组⎩⎨⎧2x -a <1x -2b >3的解集是-1<x <1,则(a +1)(b -1)= .15.随着电子技术的发展,手机价格不断降低,某品牌手机按原价m 元后,又降低20%,此时售价为n 元,则该手机原价为 元.16.如图,已知点A (1,1)、B (3,2),且P 为x 轴上一动点,则△ABP 的周长的最小值为.17.如图是由几个相同小正方体搭成的几何体的主视图与左视图,则该几何体最少由 个小正方体搭成. 左视图主视图O BAP yx 2 -2 A .B .C .D .120º90º90º 60º 60º60º 72º 72ºA B O18.在四边形ABCD 中,已知△ABC 是等边三角形,∠ADC =30º,AD =3,BD =5,则边CD 的长为 .三、(本大题共10小题,满分66分)19.(4分)计算:|-3|+(π-1)0-62.20.(5分)已知x 、y 满足方程组⎩⎨⎧x -y =3,3x -8y =14,先将 x 2+xy x -y ÷ xyx -y 化简,再求值.21.(6分)如图,一艘轮船以30海里/小时的速度向正北方向航行,在A处测得灯塔C 在北偏西30º方向,轮船航行2小时后到达B 处,在B 处测得灯塔C 在北偏西45º方向.求当轮船到达灯塔C 的正东方向的D 处时与灯塔C 的距离(结果精确到0.1海里,参考数据:2≈1.41,3≈1.73).22.(6分)小明参观上海世博会,由于仅有一天的时间,他上午从A -中国馆、B -日本馆、C -美国馆中任选一处参观,下午从D -韩国馆、E -英国馆、F -德国馆中任选一处参观.(1)请用画树状图或列表的方法,表示小明所有可能的参观方式(用字母表示); (2)求小明上午或下午至少参观一个亚洲国家馆的概率.23.(7分)如图,制作一种产品的同时,需将原材料加热,设该材料温度为y ºC ,从加热开始计算的时间为x min .据了解,该材料在加热过程中温度y 与时间x 成一次函数关系.已知该材料在加热前的温度为15ºC ,加热5min 达到60ºC 并停止加热;停止加热后,材料温度逐渐下降,这时温度y 与时间x 成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y 与x 的函数关系,并写出x 的取值范围; CD B A45º30º 北y 601530 40 2050A B CD E A 1 (2)根据工艺要求,在材料温度不低于30ºC 的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间是多少?24.(7分)某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经过调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少时,才能使每天所获利润最大?最大利润是多少?25.(7分)如图,ABCD 是一张边AB 长为2、边AD 长为1的矩形纸片,沿过点B 的折痕将A 角翻折,使得点A 落在边CD 上的点A 1处,折痕交边AD 于点E .(1)求∠DA 1E 的大小;(2)求△A 1BE 的面积.26.(7分)甲、乙两学校都选派相同人数的学生参加数学竞赛,比赛结束后,发现每名参赛学生的成绩都是70分、80分、90分和100分这四种成绩中的一种,并且甲、乙两学校的学生获得100分的人数也相等.。

黑龙江省大庆市中考数学真题试题(无答案)

黑龙江省大庆市中考数学真题试题(无答案)

2012年大庆市初中升学统一考试数学试题考生注意:1.考生须将处己的姓名、准考证号填写到试卷和答题卡规定的位置。

2.择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改 动,用橡皮擦干净后,再选涂其他答案标号。

3,非选择题用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答无效。

4.考试时间120分钟。

5.全卷共28小题,总分120分。

—、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)l.一个实数a 的相反数是5,则a 等于( D ) A.51 B.5 C.- 51 D.-5 2.科学家测得肥皂泡的厚度约为0.000 000 7米,用科学记数法表示为( A ) A.0.7×l06-米 B.0.7×l07-米 C.7×l07-米 D.7×l06-米 3.060tan 等于( D ) A.21 B .23 C. 33 D.3 4.代数式12-x x有意义的x 取值范围是( A) A.21>x B .21≥x C.21<x D.21≠x 5.实数a 、b 在数轴上对应点的位置如图所示,则下列各式正确的是( ) A.b a > B.b a = C.b a > D. b a <6.下列哪个函数的图象不是中心对称图形( )A.x y -=2B.xy 2= C .()22-=x y D.x y 2= 7.如图所示,已知△ACD 和△ABE 都内接于同一个圆,则∠ADC+∠AEB+∠BAC=( )A.90°B.180°C.270°D.360°8.如图所示,△ABC 中,E 、F 、D 分别是边AB 、AC 、BC 上的点,且满足21==FC AF EB AE ,则 △EFD 与△ABC 的面积比为( )A .91B .92C .31D .329.平面直角坐标系中,O 为坐标原点,点A 的坐标为(,1),将OA 绕原点按逆时针方向旋转30°得OB ,则点B 的坐标为( ) A.(1,) B.( -1,3) C.(O,2) D.(2,0)10.如图所示,将一个圆盘四等分,并把四个区域分别标上I 、Ⅱ、Ⅲ、Ⅳ,只有区域I 为感应区域,中心角为60°的扇形AOB 绕点0转动,在其半径OA 上装有带指示灯的感应装置,当扇形AOB 与区域I 有重叠(原点除外)的部分时,指示灯会发光,否则不发光,当扇形AOB 任意转动时,指示灯发光的概率为( )A . 61B 41 C. 125 D. 127 二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.计算:3321--= .12.分解因式:2b bc ac ab -+-= .13.不等式组⎪⎩⎪⎨⎧≤-+<+321)1(352x x x x 的整数解是 . 14.甲、乙两名射击运动员在某场测试中各射击20次,他们的测试成绩如下表:则测试成绩比较稳定的是 .15.按照如图所示的程序计算:若输入x=8.6,则m= .16.已知二次函数y=-x 2-2x+3的图象上有两点A(-7,1y ),B(-8,2y ),则1y 2y . (用>、<、=填空).17.已知l 2=1,l12=121,l112=12321,…,则依据上述规律,211111)( 个n 的计算结果中,从左向右数第12个数字是____.18.用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2 所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是 个.三.解答题(本大题共10小题,共66分.请在答题卡指定区域内作答、解答时应写出文字 说明、证明过程或演算步骤)19.(本题4分)计算:3202)1(2)330cos (-+--︒-π.20.(本题4分)若方程012=--x x 的两实根为a 、b ,求ba 11+的值. 21.(本题6分)如图△ABC 中,BC=3,以BC 为直径的⊙O 交AC 于点D ,若D 是AC 中点,∠ABC=120°.(1)求∠ACB 的大小;(2)求点A 到直线BC 的距离.22.(本题6分)若一次数21+=kx y 和反比例函数xy 1=的图象都经过点C(1,1). (1)求一次函数的表达式;(2)已知点A 在第三象限,且同时在两个函数图象上,求点A 的坐标.23.(本题6分)将一根长为16π厘米的细铁丝剪成两段.并把每段铁丝围成圆,设所得两圆半径分别 为1r 和2r .(1)求1r 与2r 的关系式,并写出1r 的取值范围;(2)将两圆的面积和S 表示成1r 的函数关系式,求S 的最小值.24.(本题6分)已知等边△ABC 和⊙M.(l)如图l ,若⊙M 与BA 的延长线AK 及边AC 均相切,求证:∠AM ∥BC;(2)如图2,若⊙M 与BA 的延长线AK 、BC 的延长线CF 及边AC 均相切,求证:四边形ABCM 是平行四边形.25.(本题9分)甲乙两单位随机选派相同人数参加科普知识比赛;每人得分成绩只有70分、80分、90分三种结果中一种,已知两单位得80分的人数相同,根据下列统计图回答问题.(1)求甲单位得90分的人数,将甲单位职工得分条形统计图补充完整;(2)分别计算两个单位职工参加比赛成绩的平均分,由此你能估计出哪个单位职工对此次科普知识掌握较好,并说明理由;(3)现从甲单位得80分和90分的人中任选两个人,列出所有的选取结果,并求两人得分不同的概率(用大写字母代表得90分的人,小写字母代表得80分的人).26.(本题8分)已知等边△ABC的边长为3个单位,若点P由A出发,以每秒1个单位的速度在三角形的边上沿A→B→ C→A方向运动,第一次回到点A处停止运动,设AP=S,用t表示运动时间.(1)当点P由B到C运动的过程中,用t表示S;(2)当t取何值时,S等于7(求出所有的t值);<?(3)根据(2)中t的取值,直接写出在哪些时段AP727.(本题9分)在直角坐标系中,C(2,3),C′(-4,3), C″(2,1),D(-4,1),A(0,a),B(a,O)( a>0). (l)结合坐标系用坐标填空.点C与C′关于点对称; 点C与C″关于点对称; 点C与D关于点对称(2)设点C关于点(4,2)的对称点是点P,若△PAB的面积等于5,求a值.已知半径为1cm的圆,在下面三个图中AC=10cm,AB=6cm,BC=8cm,在图2中∠ABC=90°.(l)如图1,若将圆心由点A沿A→C方向运动到点C,求圆扫过的区域面积;(2)如图2,若将圆心由点A沿A→B→C方向运动到点C,求圆扫过的区域面积;(3)如图3,若将圆心由点A沿A→B→C→A方向运动回到点A.则I)阴影部分面积为_ ___;Ⅱ)圆扫过的区域面积为__ __.。

黑龙江省大庆市中考数学试卷

黑龙江省大庆市中考数学试卷

黑龙江省大庆市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共20题;共40分)1. (2分)下列四个实数中,比-1小的数是()A . -2B . 0C . 1D . 22. (2分)下列算式能用平方差公式计算的是()A . (3a+b)(3b﹣a)B . ( x﹣1)(1+ x)C . (2x﹣y)(﹣2x+y)D . (﹣s﹣t)(﹣s﹣t)3. (2分)下列各组图形中,△A'B'C'与△ABC成中心对称的是()A .B .C .D .4. (2分) (2017七上·忻城期中) 用科学记数法表示:18010000正确的是()A . 1.801×107B . 1.801×108C . 18.01×106D . 1801×1045. (2分)(2017·泰安模拟) 化简:(1+ )÷ 结果为()A . 4xB . 3xC . 2xD . x6. (2分) (2019七上·兴业期末) 下列立体图形中,从正面看,看到的图形是圆形的是(A .B .C .D .7. (2分) (2019九上·兰州期末) 一元二次方程配方后化为()A .B .C .D .8. (2分)将几张纸片分别制成圆形、等腰梯形、菱形、平行四边形、正方形纸片后放置在不透明的袋子中,从中随机抽取两个图形,则抽到的图形都呈中心对称的概率是()A .B .C .D .9. (2分)(2011·金华) 不等式组的解在数轴上表示为()A .B .C .D .10. (2分)某公司承担了制作600个上海世博会道路交通指引标志的任务,原计划每天制作x个,实际平均每天比原计划多制作了10个,因此提前5天完成任务。

根据题意,下列方程正确的是()A .B .C .D .11. (2分)(2016·柳州) 小李同学掷一枚质地均匀的骰子,点数为2的一面朝上的概率为()A .B .C .D .12. (2分) (2017九上·五莲期末) 如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC,给出下列结论:①∠DAC=∠ABC;②AD=CB;③点P是△ACQ的外心;④AC2=AE•AB;⑤CB∥GD,其中正确的结论是()A . ①③⑤B . ②④⑤C . ①②⑤D . ①③④13. (2分)给出下列四个函数:①y=-x;②y=x;③y=;④y=x2 . x<0时,y随x的增大而减小的函数有()A . 1个B . 2个C . 3个D . 4个14. (2分)(2017·宁波) 如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN的长为()A . 3B .C .D . 415. (2分)(2016·衢州) 二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是()A . 直线x=﹣3B . 直线x=﹣2C . 直线x=﹣1D . 直线x=016. (2分)(2018·泸县模拟) 某班七个兴趣小组人数分别为4,4,5,5,x,6,7,已知这组数据的平均数是5,则这组数据的众数和中位数分别是()A . 4,5B . 4,4C . 5,4D . 5,517. (2分)(2017·鞍山模拟) 如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于()A . 76°B . 38°C . 30°D . 26°18. (2分)(2019·河池模拟) 如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A . 30°B . 40°C . 50°D . 60°19. (2分) (2017八下·无锡期中) 如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.若CF=6,AC=AF+2,则四边形BDFG的周长为()A . 9.5B . 10C . 12.5D . 2020. (2分)已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A . 10B . 4C . 5D . 6二、填空题 (共4题;共4分)21. (1分)(2017·淮安) 方程 =1的解是________.22. (1分)(2018·安顺模拟) 已知关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是________.23. (1分)如图,四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3.把梯形ABCD分别绕直线AB,CD 旋转一周,所得几何体的表面积分别为,,则=________ (平方单位).24. (1分) (2016八上·湖州期中) 如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2,在BC,DE上分别找一点M,N,使△AMN的周长最小,则△AMN的最小周长为________.三、解答题 (共5题;共70分)25. (15分)(2018·成都模拟) 已知:如图1.正方形ABCD,过点A作∠EAF=90°,两边分别交直线BC于点E,交线段CD于点F,G为AE中点,连接BG(1)求证:△ABE≌△ADF(2)如图2,过点G作BG的垂线交对角线AC于点H,求证:GH=GB;(3)如图3,连接HF,若CH=3AH,AD=2 ,求线段HF的长.26. (10分)(2016·慈溪模拟) 我市某校准备组织学生及学生家长坐高铁到杭州进行社会实践,为了便于管理.所有人员必须乘坐在同一列高铁上.根据报名人数,若都买一等座单程火车票需6560元,若都买二等座单程火车票,则需3120元(学生票二等座打7.5折,一等座不打折).已知学生家长与教师的人数之比为3:1,余姚北站到杭州东站的火车票价格如表所示:运行区间票价上车站下车站一等座二等座余姚北杭州东82(元)48(元)(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买m张(m小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y(元)(用含m的代数式表示).27. (15分)(2018·贵港) 已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l的垂线段,且BM 在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证: = ;(3)若AO=2 ,且当MO=2PO时,请直接写出AB和PB的长.28. (15分)(2019·北京模拟) 在平面直角坐标系xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示的方式放置.点A1,A2,A3,…,An和点C1,C2,C3,…,Cn分别落在直线y=x+1和x轴上.抛物线L1过点A1,B1,且顶点在直线y=x+1上,抛物线L2过点A2,B2,且顶点在直线y=x+1上,……,按此规律,抛物线Ln过点An,Bn,且顶点也在直线y=x+1上,其中抛物线L2交正方形A1B1C1O的边A1B1于点D1,抛物线L3交正方形A2B2C2C1的边A2B2于点D2,…抛物线Ln+1交正方形AnBnCnCn-1的边AnBn于点Dn(其中n≥1,且n为正整数).(1)直接写出下列点B1B2,B3的坐标;(2)写出抛物线L2,L3的解析式,并写出其中一个解析式的求解过程,再猜想抛物线Ln的顶点坐标;(3)①设A1D1=k1·D1B1,A2D2=k2·D2B2,试判断k1与k2的数量关系并说明理由;②点D1,D2,…,Dn是否在一条直线上?若是,直接写出这条直线与直线y=x+1的交点坐标;若不是,请说明理由.29. (15分)(2014·来宾) 如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).(1)求抛物线的解析式;(2)若抛物线的对称轴交x轴于点E,点F是位于x轴上方对称轴上一点,FC∥x轴,与对称轴右侧的抛物线交于点C,且四边形OECF是平行四边形,求点C的坐标;(3)在(2)的条件下,抛物线的对称轴上是否存在点P,使△OCP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共20题;共40分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、二、填空题 (共4题;共4分)21-1、22-1、23-1、24-1、三、解答题 (共5题;共70分) 25-1、25-2、25-3、26-1、26-2、27-1、27-2、28-1、28-3、29-1、29-2、29-3、。

黑龙江省大庆市2013年中考数学试卷(解析版)

黑龙江省大庆市2013年中考数学试卷(解析版)

黑龙江省大庆市2013年中考数学试卷一、选择题(共10小题,每小题3分,满分30分)在每小题所给出的四个选项中,只有一项是符合题目要求的。

1.(3分)(2013•大庆)下列运算结果正确的是()A.B.a2•a3=a6C.a2•a3=a5D.a2+a3=a6考点:二次根式的性质与化简;合并同类项;同底数幂的乘法.分析:根据二次根式的化简、合并同类项、同底数幂的乘法分别进行计算,即可得出答案.解答:解:A、=a,(a≥0),故本选项错误;B、a2•a3=a5,故本选项错误;C、a2•a3=a5,故本选项错误;D、a2+a3=a6,同类项,不能合并,故本选项错误.故选C.点评:此题考查了二次根式的化简、合并同类项、同底数幂的乘法,记准法则是解题的关键,注意同底数幂的乘法与幂的乘方很容易混淆.2.(3分)(2013•大庆)若实数a满足a﹣|a|=2a,则()A.a>0B.a<0C.a≥0D.a≤0考点:绝对值.分析:先求出|a|=﹣a,再根据绝对值的性质解答.解答:解:由a﹣|a|=2a得|a|=﹣a,∴a≤0.故选D.点评:本题考查了绝对值的性质,比较简单,熟记绝对值的性质是解题的关键.3.(3分)(2013•大庆)已知两圆的半径分别是3和6,若两圆相交,则两圆的圆心距可以是()A.2B.5C.9D.10考点:圆与圆的位置关系.分析:根据两圆相交时圆心距与两圆半径之间的数量关系进行解答.解答:解:∵半径分别为3和6的两圆相交,又∵3+6=9,6﹣3=3,∴这两圆的圆心距d的取值范围是3<d<9.只有B选项符合.故选B.点评:此题考查了圆与圆的位置关系.解此题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.4.(3分)(2013•大庆)对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当x>1时,y<0D.y的值随x值的增大而增大考点:一次函数的性质.分析:根据一次比例函数图象的性质可知.解答:解:A、将点(﹣1,3)代入原函数,得y=﹣3×(﹣1)+1=4≠3,故A 错误;B、因为k=﹣3<0,b=1>0,所以图象经过一、二、四象限,y随x的增大而减小,故B,D错误;C、正确;D、当x=1时,y=﹣2<0,故C正确.故选C.点评:本题考查的是一次函数的性质,熟知一次函数的性质及函数图象平移的法则是解答此题的关键.5.(3分)(2013•大庆)若不等式组的解集为0<x<1,则a的值为()A.1B.2C.3D.4考点:解一元一次不等式组.分析:求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出方程,求出方程的解即可.解答:解:∵解不等式①,得x >,解不等式②,得x <,∴原不等式组的解集为:<x <,∵不等式组的解集为0<x<1,∴=0,=1,解得:a=1,故选A.点评:本题考查了解一元一次不等式和一元一次不等式组的应用,关键是能根据不等式组的解集得出关于a的方程.6.(3分)(2013•大庆)已知梯形的面积一定,它的高为h,中位线的长为x,则h与x的函数关系大致是()A.B.C.D.考点:梯形中位线定理;反比例函数的图象;反比例函数的应用.分析:根据梯形的中位线定理和梯形的面积的计算方法确定两个变量之间的函数关系,然后判断其图象即可.解答:解:梯形的面积=×梯形上、下底之和×高,符合k=hx,故h=(x>0,h>0)所以是反比例函数.故选D.点评:本题考查了反比例函数的图象及反比例函数的应用,解题的关键是根据实际问题列出函数关系式.7.(3分)(2013•大庆)已知函数y=x2+2x﹣3,当x=m时,y<0,则m的值可能是()A.﹣4B.0C.2D.3考点:抛物线与x轴的交点.专题:计算题.分析:根据函数图象得到﹣3<x<1时,y<0,即可作出判断.解答:解:令y=0,得到x2+2x﹣3=0,即(x﹣1)(x+3)=0,解得:x=1或x=﹣3,由函数图象得:当﹣3<x<1时,y<0,则m的值可能是0.故选B.点评:此题考查了抛物线与x轴的交点,利用了数形结合的思想,求出x的范围是解本题的关键.8.(3分)(2013•大庆)图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据图示几何体和俯视图可知该几何体底面一层有三个正方形,上面一层有一个正方形,然后找到从左面看到的图形即可.解答:解:由图示几何体和俯视图可知该几何体底面一层有三个正方形,上面一层有一个正方形,则从左面看易得图形:.故选D.点评:本题考查了三视图的知识,注意左视图是从物体的左面看得到的视图.9.(3分)(2013•大庆)正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()A.B.C.D.考点:等边三角形的判定与性质分析:依题意画出图形,过点A1作A1D∥BC,交AC于点D,构造出边长为1的小正三角形△AA1D;由AC1=2,AD=1,得点D为AC1中点,因此可求出S△AA1C1=2S△AA1D =;同理求出S△CC1B1=S△BB1A1=;最后由S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1求得结果.解答:解:依题意画出图形,如下图所示:过点A1作A1D∥BC,交AC于点D,易知△AA1D是边长为1的等边三角形.又AC1=AC﹣CC1=3﹣1=2,AD=1,∴点D为AC1的中点,∴S△AA1C1=2S△AA1D=2××12=;同理可求得S△CC1B1=S△BB1A1=,∴S△A1B1C1=S△ABC﹣S△AA1C1﹣S△CC1B1﹣S△BB1A1=×32﹣3×=.故选B.点评:本题考查等边三角形的判定与性质,难度不大.本题入口较宽,解题方法多种多样,同学们可以尝试不同的解题方法.10.(3分)(2013•大庆)已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形考点:菱形的判定;矩形的判定;正方形的判定.分析:根据平行四边形、菱形的判定与性质分别判断得出即可.解答:解:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误;B、当AB=AD,CB=CD时,无法得到,四边形ABCD是菱形,故此选项错误;C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确;D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误;故选C.点评:此题主要考查了菱形的判定以及矩形和正方形的判定,熟练掌握相关判定是解题关键.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2013•大庆)计算:sin260°+cos60°﹣tan45°=.考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入计算即可.解答:解:原式=()2+﹣1 =+﹣1=.故答案为:.点评:本题考查了特殊角的三角函数值,属于基础题,解答本题的关键是熟练掌握几个特殊角的三角函数值.12.(3分)(2013•大庆)在函数y=中,自变量x的取值范围是x≥﹣.考点:函数自变量的取值范围;二次根式有意义的条件.专题:计算题.分析:当函数表达式是二次根式时,被开方数为非负数,即2x+1≥0.解答:解:依题意,得2x+1≥0,解得x≥﹣.点评:函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.(3分)(2013•大庆)地球的赤道半径约为6 370 000米,用科学记数法记为 6.37×106米.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6 370 000用科学记数法表示为:6.37×106.故答案为:6.37×106.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)(2013•大庆)圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角为180°.考点:圆锥的计算分析:根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.解答:解:∵侧面积为2π,∴圆锥侧面积公式为:S=πrl=π×1×l=2π,解得:l=2,∴扇形面积为2π=,解得:n=180,∴侧面展开图的圆心角是180度.故答案为:180°.点评:此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键.15.(3分)(2013•大庆)某品牌手机降价20%后,又降低了100元,此时售价为1100元,则该手机的原价为1500元.考点:一元一次方程的应用.分析:首先假设原价为x元,根据降价20%后应为(1﹣20%)x,再根据又降低了100元,此时售价为1100元得出等式求出即可.解答:解:设原价为x元,根据题意得出:(1﹣20%)x﹣100=1100解得:x=1500.故答案为:1500.点评:此题主要考查了一元一次方程的应用;得到第二次降价后的价格的等量关系是解决本题的关键.16.(3分)(2013•大庆)袋中装有4个完全相同的球,分别标有数字1、2、3、4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于30的概率为.。

黑龙江省大庆市2012-2013学年七年级数学下学期期末考试试题

黑龙江省大庆市2012-2013学年七年级数学下学期期末考试试题

2012-2013学年度第二学期大庆市初一期末练习题(北师大版)一.选择题(共15小题)1.﹣5的相反数是()A.﹣5 B.5 C.﹣D.解答:解:﹣5的相反数是5.故选B.2.水平放置的下列几何体,主视图不是长方形的是()A.B.C.D.解答:解:A、C、D选项的主视图都是长方体;B选项的主视图是等腰三角形.故选B.3.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.解答:解:由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱,故选A.点评:本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.4.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N解答:解:从数轴可以看出N表示的数是﹣2,M表示的数是﹣0.5,Q表示的数是0.5,P 表示的数是2,∵﹣2的相反数是2,∴数轴上表示数﹣2的相反数是点P,故选A.5.计算﹣2a2+a2的结果为()A.﹣3a B.﹣a C.﹣3a2D.﹣a2解答:解:﹣2a2+a2,=﹣a2,故选D.6.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2012的值为()A.﹣1005 B.﹣1006 C.﹣1007 D.﹣2012解答:解:a1=0,a2=﹣|a1+1|=﹣|0+1|=﹣1,a3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a5=﹣|a4+4|=﹣|﹣2+4|=﹣2,…,所以,n是奇数时,a n=﹣,n是偶数时,a n=﹣,a2012=﹣=﹣1006.故选B.7.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是()A.60°B.80°C.120°D.150°解答:解:根据图形,8点整分针与时针的夹角正好是(12﹣8)×30°=120度.故选C.8.平面内的9条直线任两条都相交,交点数最多有m个,最少有n个,则m+n等于()A.36 B.37 C.38 D.39解答:解:三条最多交点数的情况.就是第三条与前面两条都相交:1+2 四条最多交点数的情况.就是第四条与前面三条都相交:1+2+3五条最多交点数的情况.就是第五条与前面四条都相交:1+2+3+4 六条最多交点数的情况.就是第六条与前面五条都相交:1+2+3+4+5七条最多交点数的情况.就是第七条与前面六条都相交:1+2+3+5+6八条最多交点数的情况.就是第八条与前面七条都相交:1+2+3+5+6+7九条最多交点数的情况.就是第九条与前面八条都相交:1+2+3+4+5+6+7+8=36则m+n=1+36=37故答案B.9.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是()A.B.C.D.解答:解:设他家到学校的路程是xkm,∵10分钟=小时,5分钟=小时,∴+=﹣.故选A.10.(2008•上海)如果x=2是方程x+a=﹣1的根,那么a的值是()A.0 B.2 C.﹣2 D.﹣6解答:解:∵x=2是方程x+a=﹣1的根,∴代入得:×2+a=﹣1,∴a=﹣2,故选C.11.小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是()A.羽毛球B.乒乓球C.排球D.篮球解答:解:喜欢乒乓篮球比赛的人所占的百分比最大,故该班最喜欢的球类项目是篮球.故选D.12.下列事件中是确定事件的是()A.篮球运动员身高都在2米以上B.弟弟的体重一定比哥哥的轻C.今年教师节一定是晴天D.吸烟有害身体健康解答:解:A,B,C都不一定发生,属于不确定事件.吸烟有害身体健康,是必然事件.故选D.13.如图,已知直线AB、CD相交于点O,∠1=80°,如果DE∥AB,那么∠D的度数是()A.80°B.90°C.100°D.110°解答:解:∵∠1=80°,∴∠BOD=∠1=80°∵DE∥AB,∴∠D=180﹣∠BOD=100°.故选C.14.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为()A.115°B.120°C.145°D.135°解答:解:在Rt△ABC中,∠A=90°,∵∠1=45°(已知),∴∠3=90°﹣∠1=45°(三角形的内角和定理),∴∠4=180°﹣∠3=135°(平角定义),∵EF∥MN(已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D.15.如图1,将一块正方形木板用虚线划分成36个全等的小正方形,然后,按其中的实线切成七块形状不完全相同的小木片,制成一副七巧板.用这副七巧板拼成图2的图案,则图2中阴影部分的面积是整个图案面积的()A.B.C.D.解答:解:∵由图知:小正方形的面积等于两个斜边为3的等腰直角三角形的面积之和,∴计算得小正方形的面积=,∵大正方形面积=6×6=36,∴小正方形的面积:大正方形面积的=1:8.故选A.二.填空题(共7小题)16.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是4或5或6或7 .解答:解:由题中所给出的主视图知物体共三列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多7块.故答案为:4或5或6或7.17.定义a※b=a2﹣b,则(1※2)※3=﹣2 .解答:解:根据题意可知,(1※2)※3=(1﹣2)※3=﹣1※3=1﹣3=﹣2.答案:﹣2.18.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是4n﹣2(或2+4(n﹣1))个.解答:解:由图可知:第一个图案有阴影小三角形2个.第二图案有阴影小三角形2+4=6个.第三个图案有阴影小三角形2+8=10个,那么第n个就有阴影小三角形2+4(n﹣1)=4n﹣2个,故答案为:4n﹣2(或2+4(n﹣1))个.19.直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有16073 个点.解答:解:第一次:2010+(2010﹣1)=2×2010﹣1,第二次:2×2010﹣1+2×2010﹣2=4×2010﹣3,第三次:4×2010﹣3+4×2010﹣4=8×2010﹣7.∴经过3次这样的操作后,直线上共有8×2010﹣7=16073个点.20.图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是1000 cm3.解答:解:长方体的高为xcm,然后表示出其宽为30﹣4x,根据题意得:30﹣4x=2x解得:x=5故长方体的宽为10,长为20cm则长方体的体积为5×10×20=1000cm3.故答案为1000.21.(2011•重庆)据第六次全国人口普查结果显示,重庆常住人口约为2880万人.将数2880万用科学记数法表示为 2.88×103万.解答:解:将2880万用科学记数法表示为2.88×103.故答案是:2.88×103.22.如图:AB∥CD,直线MN分别交AB、CD于点E、F,EG平分∠AEF.EG⊥FG于点G,若∠BEM=50°,则∠CFG=65°.解答:解:∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠AEF=∠BEM=50°,∴∠CFE=130°,∵EG平分∠AEF,∴∠GEF=∠AEF=25°,∵EG⊥FG,∴∠EGF=90°,∴∠GFE=90°﹣∠GEF=65°,∴∠CFG=∠CEF﹣∠GFE=65°.故答案为:65°.三.解答题(共8小题)23.某包装盒的展开图,尺寸如图所示(单位:cm).(1)这个几何体的名称是圆柱;(2)求这个包装盒的表面积.解答:解:(1)根据图形得到这个几何体为:圆柱;(2)由图形可知:圆柱的底面半径r=5cm,高h=20cm,∴S表=S侧+2S底=2πrh+2πr2=200π+50π=250π.24.某公路检修小组乘汽车沿公路检修路面,约定前进为正,后退为负.某天自A地出发,到收工时所走的线路为(单位:km):+9,﹣3,+4,﹣2,﹣8,+13,﹣3,+10,+7,+3(1)问收工时距A地多远?(2)若汽车每千米耗油0.3升,从出发到返回A地共耗油多少升?解答:解:根据题意,得:(1)(+9)+(﹣3)+(+4)+(﹣2)+(﹣8)+(+13)+(﹣3)+(+10)+(+7)+(+3)=30(千米);答:收工时距A地30千米.(2)0.3×(|+9|+|﹣3|+|+4|+|﹣2|+|﹣8|+|+13|+|﹣3|+|+10|+|+7|+|+3|),=0.3×62,=18.6(升).答:收工时共耗油18.6升.25.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.解答:解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9=10.26.有理数a,b在数轴上的位置如下图所示:(1)请在数轴上分别标出表示﹣a和﹣b的点,并把a,b﹣a,﹣b和0这五个数用“<”连接起来;(2)如果表示a的点到原点的距离为2,|b|=3,那么a= ﹣2 ;b= 3 ;(3)由(2)中求出的a,b值,根据代数式|x﹣a|+|x﹣b|的几何意义,写出它的最小值是 5 ,相应的x的取值范围是﹣2≤x≤3.解答:解:(1)在数轴上表示﹣a,﹣b如下图:﹣b<a<0<﹣a<b…(4分)(2)﹣2,3 …(7分)(3)5,﹣2≤x≤3…(10分)27.已知x=﹣3是方程的一个解,(1)求m的值;(2)求代数式(m2﹣13m+11)2013的值.解答:解:(1)∵x=﹣3是方程的一个解,∴×(﹣3)m=2×(﹣3)﹣3解得:m=12故m的值为:12.(2)将m=12代入得:(m2﹣13m+11)2013=(144﹣156+11)2013=-128. 2012年4月23日是第17个世界读书日,《教育导报》记者就四川省农村中小学教师阅读状况进行了一次问卷调查,并根据调查结果绘制了教师每年阅读书籍数量的统计图(不完整).设x表示阅读书籍的数量(x为正整数,单位:本).其中A:1≤x≤3;B:4≤x≤6; C:7≤x≤9;D:x≥10.请你根据两幅图提供的信息解答下列问题:(1)本次共调查了多少名教师?(2)补全条形统计图;(3)计算扇形统计图中扇形D的圆心角的度数.解答:解:(1)38÷19%=200(人).(2)D组的频数为:200﹣38﹣74﹣48=40,统计图如图.(3)360°×=72°.…(3分)点评:本题考查的是折线统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.29.如图,直线AB与CD相交于O,OE平分∠AOB,OF平分∠COD.(1)图中与∠COA互补的角是∠AOD或∠COB;(把符合条件的所有角都写出来)(2)如果∠AOC=35°,求∠EOF的度数.解答:解:(1)图中与∠COA互补的角是∠AOD或∠COB.故答案为:∠AOD或∠COB.(2)∵OE平分∠AOB,OF平分∠COD.∴∠AOE=90°,∠COF=90°,∵∠AOC=35°,∴∠EOF=∠AOE+∠COF﹣∠AOC=90°+90°﹣35°=145°.或∠EOF=∠AOE+∠COF+∠AOC=215°.答:∠EOF为145°或215°.30.如图,已知AB∥CD.(1)判断∠F AB与∠C的大小关系,并说明理由;(2)若∠C=35°,AB是∠FAD的平分线.①求∠FAD的度数;②若∠ADB=110°,求∠BDE的度数.解答:解:(1)∠FAB与∠C的大小关系是相等,理由是:∵AB∥CD,∴∠FAB=∠C.(2)①∵∠FAB=∠C=35°,∵AB是∠FAD的平分线,∴∠FAD=2∠FAB=2×35°=70°,答:∠FAD的度数是70°.②∵∠ADB=110°,∠FAD=70°,∴∠ADB+∠FAD=110°+70°=180°,∴CF∥BD,∴∠BDE=∠C=35°,答:∠BDE的度数是35°.附:初中学习应该注意什么首先要有目标,既要有大的目标(中考我要成功),又要有小的目标(每天甚至每节课都要给自己定一个目标)其次要有乐观的积极向上的心态,做什么事情都是自己愿意去做的而不是别人强迫你做的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年黑龙江省大庆市中考数学试卷2013年黑龙江省大庆市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)在每小题所给出的四个选项中,只有一项是符合题目要求的。

.5.(3分)(2013•大庆)若不等式组的解集为0<x<1,则a的值为().C D.28.(3分)(2013•大庆)图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是().C D.9.(3分)(2013•大庆)正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是().C D.二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2013•大庆)计算:sin260°+cos60°﹣tan45°=_________.12.(3分)(2013•大庆)在函数y=中,自变量x的取值范围是_________.13.(3分)(2013•大庆)地球的赤道半径约为6 370 000米,用科学记数法记为_________米.14.(3分)(2013•大庆)圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角为_________.15.(3分)(2013•大庆)某品牌手机降价20%后,又降低了100元,此时售价为1100元,则该手机的原价为_________元.16.(3分)(2013•大庆)袋中装有4个完全相同的球,分别标有数字1、2、3、4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于30的概率为_________.17.(3分)(2013•大庆)已知…依据上述规律计算的结果为_________(写成一个分数的形式)18.(3分)(2013•大庆)如图,三角形ABC是边长为1的正三角形,与所对的圆心角均为120°,则图中阴影部分的面积为_________.三、解答题(共10小题,满分46分)19.(2013•大庆)计算:﹣++(π﹣3)0.20.(2013•大庆)已知ab=﹣3,a+b=2.求代数式a3b+ab3的值.21.(2013•大庆)如图,已知一次函数y=k1x+b(k1≠0)的图象分别与x轴,y轴交于A,B两点,且与反比例函数y=(k2≠0)的图象在第一象限的交点为C,过点C作x轴的垂线,垂足为D,若OA=OB=OD=2.(1)求一次函数的解析式;(2)求反比例函数的解析式.22.(2013•大庆)某班同学在一次综合实践活动中,对本县居民参加“全民医保”情况进行了调查,同学们利用节假日随机调查了3000人,对调查结果进行了统计分析,绘制出两幅不完整的统计图:[注:图中A表示城镇职工基本医疗保险;B表示城镇居民基本医疗保险;C表示“新型农村合作医疗”;D表示其他情况](1)补全条形统计图;(2)在本次调查中,B类人数占被调查人数的百分比为_________;扇形统计图中D区域所对应的圆心角的大小为_________.(3)据了解,国家对B类人员每人每年补助210元.已知该县人口数约为100万,请估计该县B类人员每年享受国家补助共多少元?23.(6分)(2013•大庆)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.24.(6分)(2013•大庆)如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B 两点.(1)求A,B两点的坐标;(2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.25.(8分)(2013•大庆)如图所示,AB是半圆O的直径,AB=8,以AB为一直角边的直角三角形ABC中,∠CAB=30°,AC与半圆交于点D,过点D作BC的垂线DE,垂足为E.(1)求DE的长;(2)过点C作AB的平行线l,l与BD的延长线交于点F,求的值.26.(8分)(2013•大庆)随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a,转盘指针所指区域内的数字为b,求关于x的方程ax2+3x+=0有实数根的概率.27.(9分)(2013•大庆)对于钝角α,定义它的三角函数值如下:sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)(1)求sin120°,cos120°,sin150°的值;(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.28.(9分)(2013•大庆)如图所示,在直角梯形ABCD中,AB为垂直于底边的腰,AD=1,BC=2,AB=3,点E 为CD上异于C,D的一个动点,过点E作AB的垂线,垂足为F,△ADE,△AEB,△BCE的面积分别为S1,S2,S3.(1)设AF=x,试用x表示S1与S3的乘积S1S3,并求S1S3的最大值;(2)设=t,试用t表示EF的长;(3)在(2)的条件下,当t为何值时,=4S1S3.2013年黑龙江省大庆市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)在每小题所给出的四个选项中,只有一项是符合题目要求的。

.5.(3分)(2013•大庆)若不等式组的解集为0<x<1,则a的值为()>,原不等式组的解集为:<,不等式组∴,.C D.×(28.(3分)(2013•大庆)图1所示的几何体,它的俯视图为图2,则这个几何体的左视图是( ).CD .9.(3分)(2013•大庆)正三角形△ABC 的边长为3,依次在边AB 、BC 、CA 上取点A 1、B 1、C 1,使AA 1=BB 1=CC 1=1,. C D .;同理求出;最后由××;×=二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2013•大庆)计算:sin260°+cos60°﹣tan45°=.﹣故答案为:12.(3分)(2013•大庆)在函数y=中,自变量x的取值范围是x≥﹣.﹣13.(3分)(2013•大庆)地球的赤道半径约为6 370 000米,用科学记数法记为 6.37×106米.14.(3分)(2013•大庆)圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角为180°.=15.(3分)(2013•大庆)某品牌手机降价20%后,又降低了100元,此时售价为1100元,则该手机的原价为1500元.16.(3分)(2013•大庆)袋中装有4个完全相同的球,分别标有数字1、2、3、4,从中随机取出一个球,以该球上的数字作为十位数,再从袋中剩余3个球中随机取出一个球,以该球上的数字作为个位数,所得的两位数大于30的概率为.=.故答案为:17.(3分)(2013•大庆)已知…依据上述规律计算的结果为(写成一个分数的形式)﹣)﹣)(﹣解:∵∴)﹣)﹣)(﹣)18.(3分)(2013•大庆)如图,三角形ABC是边长为1的正三角形,与所对的圆心角均为120°,则图中阴影部分的面积为.与×与相交于点×故答案为:三、解答题(共10小题,满分46分)19.(2013•大庆)计算:﹣++(π﹣3)0.++12+20.(2013•大庆)已知ab=﹣3,a+b=2.求代数式a3b+ab3的值.21.(2013•大庆)如图,已知一次函数y=k1x+b(k1≠0)的图象分别与x轴,y轴交于A,B两点,且与反比例函数y=(k2≠0)的图象在第一象限的交点为C,过点C作x轴的垂线,垂足为D,若OA=OB=OD=2.(1)求一次函数的解析式;(2)求反比例函数的解析式.,y=22.(2013•大庆)某班同学在一次综合实践活动中,对本县居民参加“全民医保”情况进行了调查,同学们利用节假日随机调查了3000人,对调查结果进行了统计分析,绘制出两幅不完整的统计图:[注:图中A表示城镇职工基本医疗保险;B表示城镇居民基本医疗保险;C表示“新型农村合作医疗”;D表示其他情况](1)补全条形统计图;(2)在本次调查中,B类人数占被调查人数的百分比为25%;扇形统计图中D区域所对应的圆心角的大小为36°.(3)据了解,国家对B类人员每人每年补助210元.已知该县人口数约为100万,请估计该县B类人员每年享受国家补助共多少元?区域区域的圆心角为:23.(6分)(2013•大庆)如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.24.(6分)(2013•大庆)如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B 两点.(1)求A,B两点的坐标;(2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.CM=,AM==1.25.(8分)(2013•大庆)如图所示,AB是半圆O的直径,AB=8,以AB为一直角边的直角三角形ABC中,∠CAB=30°,AC与半圆交于点D,过点D作BC的垂线DE,垂足为E.(1)求DE的长;(2)过点C作AB的平行线l,l与BD的延长线交于点F,求的值.,根据平行线分线段成比例定理得出=的值.BD=AB=4DE=∴==,∴==.26.(8分)(2013•大庆)随机抛掷图中均匀的正四面体(正四面体的各面依次标有1,2,3,4四个数字),并且自由转动图中的转盘(转盘被分成面积相等的五个扇形区域).(1)求正四面体着地的数字与转盘指针所指区域的数字之积为4的概率;(2)设正四面体着地的数字为a,转盘指针所指区域内的数字为b,求关于x的方程ax2+3x+=0有实数根的概率.=0;=0+3x+有实数根的概率为:=27.(9分)(2013•大庆)对于钝角α,定义它的三角函数值如下:sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)(1)求sin120°,cos120°,sin150°的值;(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.=,=时,方程的两根为,﹣(﹣经检验﹣时,两根为,时,两根为,,(﹣不是方程28.(9分)(2013•大庆)如图所示,在直角梯形ABCD中,AB为垂直于底边的腰,AD=1,BC=2,AB=3,点E 为CD上异于C,D的一个动点,过点E作AB的垂线,垂足为F,△ADE,△AEB,△BCE的面积分别为S1,S2,S3.(1)设AF=x,试用x表示S1与S3的乘积S1S3,并求S1S3的最大值;(2)设=t,试用t表示EF的长;(3)在(2)的条件下,当t为何值时,=4S1S3.,根据=t===,根据,故可得出,根据三角形的面积公式AD xBCx)]()(时,∵∴===NE=EF=FN+NE=1+=,AF=tFB=,AD×=BC FB=×=AB FE=×=,,∴×,即t=.参与本试卷答题和审题的老师有:HLing;HJJ;星期八;caicl;sks;sjzx;Linaliu;蓝月梦;gsls;zjx111;lantin;gbl210;ZJX;sd2011;未来;zcx;zhjh(排名不分先后)菁优网2013年11月24日。

相关文档
最新文档