4.8正弦定理和余弦定理

合集下载

正弦定理、余弦定理

正弦定理、余弦定理

正弦定理、余弦定理在解决一些实际问题时,我们必须要用到一些数学知识。

其中,正弦定理和余弦定理是两个非常重要的定理。

在本文中,我们将详细介绍这两个定理以及它们的应用。

正弦定理也被称为“正弦规则”,它用于计算三角形中任意一个角的正弦。

具体来说,正弦定理给出了如下公式:a/sinA = b/sinB = c/sinC其中a、b、c 分别表示三角形的三条边,A、B、C 表示三个相对应的角。

根据这个公式,我们可以解决许多与三角形有关的问题。

例如,如果我们已知一个三角形的两个角和一条边的长度,那么就可以使用正弦定理来计算出另外两边的长度。

另外,如果我们已知三角形的三条边的长度,也可以使用正弦定理来计算出三个角的大小。

需要注意的是,正弦定理只适用于非直角三角形。

如果一个三角形是直角三角形,那么可以使用勾股定理来计算它的各边长度。

a² = b² + c² - 2bc cosAb² = a² + c² - 2ac cosBc² = a² + b² - 2ab cosC根据这个公式,我们可以计算出三角形中任意一个角的余弦,或是根据已知两边和一个角来计算第三边的长度。

三、应用举例下面我们来看一些具体的例子,以进一步理解正弦定理和余弦定理的应用。

例1:已知一个三角形的两条边长分别为4和5,并且这两条边的夹角为120度,求第三条边的长度。

根据余弦定理,我们可以得到:因此,第三条边的长度为√62。

设a=2x、b=2y、c=2z,则可以得到:2x/sin30 = 2y/sin45 = 2z/sin(180-30-45)化简得:x = y/√3z = 2y根据周长公式得:a +b +c = 10代入x、y、z的值化简得:解方程得:。

正弦定理和余弦定理详细讲解

正弦定理和余弦定理详细讲解

高考风向 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.学习要领 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合.基础知识梳理1. 正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin _B ∶sin _C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,解决不同的三角形问题.2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .4. 在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a =b sin Ab sin A <a <ba ≥ba >b解的个数一解两解一解一解[难点正本 疑点清源]1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B ;tanA+tanB+tanC=tanA ·tanB ·tanC ;在锐角三角形中,cos A<sinB,cosA<sinC ·2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.例1.已知在ABC ∆中,10c =,45A =,30C =,解三角形.思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b .解析:sin sin a cA C=, ∴sin 10sin 45102sin sin 30c A a C ⨯===,∴ 180()105B A C =-+=, 又sin sin b cB C=, ∴sin 10sin1056220sin 75205652sin sin 304c B b C ⨯+====⨯=+. 总结升华:1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式.举一反三:【变式1】在∆ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。

048正弦定理、余弦定理

048正弦定理、余弦定理

高三数学序号048 高三年级 8 班教师方雄飞学生正弦定理、余弦定理学习目标:了解正弦定理、余弦定理的证明过程;能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题.学习重点:正弦定理与余弦定理的正确理解和基本应用;学习难点:题目的条件满足什么形式时适合用正弦、余弦定理解决问题.学习过程一知识梳理1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2.S△ABC=12ab sin C=12bc sin A=12ac sin B=abc4R=12(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R、r.3.在△ABC中,已知a、b和A时,解的情况如下:【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.()(2)在△ABC中,若sin A>sin B,则A>B.()(3)在△ABC的六个元素中,已知任意三个元素可求其他元素.()(4)当b2+c2-a2>0时,三角形ABC为锐角三角形;当b2+c2-a2=0时,三角形为直角三角形;当b2+c2-a2<0时,三角形为钝角三角形.()(5)在三角形中,已知两边和一角就能求三角形的面积.()二典型题型和方法类型一利用正弦定理、余弦定理解三角形[例1](1)在△ABC中,已知a=2,b=6,A=45°,则满足条件的三角形有()A.1个B.2个C.0个D.无法确定(2)在△ABC中,已知sin A∶sin B=2∶1,c2=b2+2bc,则三内角A,B,C的度数依次是________.(3)设△ABC的内角A,B,C的对边分别为a,b,c.若a=3,sin B=12,C=π6,则b=________.[方法引航](1)判断三角形解的个数的两种方法①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断.②几何图形法:根据条件画出图形,通过图形直观判断解的个数.(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.变式练习1.(1)(2016·高考全国乙卷)△ABC的内角A,B,C的对边分别为a,b,c,已知a=5,c=2,cos A=23,则b=()A. 2 B. 3 C.2 D.3(2)在△ABC中,A=60°,AC=2,BC=3,则AB=________.类型二和三角形面积有关的问题[例2](2016·高考全国乙卷)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(1)求C;(2)若c=7,△ABC的面积为332,求△ABC的周长.[方法引航](1)对于面积公式S=12ab sin C=12ac sin B=12bc sin A,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.变式练习2.四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积.类型三 正弦、余弦定理的简单应用 题点1判断三角形的形状[例3] (2017·山东潍坊模拟)在△ABC 中,cos 2B 2=a +c2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形题点2 求解几何计算问题[例4] (2015·高考课标卷Ⅱ) 如图,在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin Bsin C; (2)若AD =1,DC =22,求BD 和AC 的长.[方法引航] (1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示. ②选择在某个三角形中运用正弦定理或余弦定理.变式练习3.(1)△ABC 中,三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形(2) 如,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.三 课后小结[方法与技巧]1.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2.解题中要灵活使用正弦定理、余弦定理进行边、角的互化,一般要只含角或只含边. [失误与防范]1.在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2.在解三角形或判断三角形形状时,要注意三角函数值的符号和角的范围,防止出现增解、漏解.高三数学 序号048 高三 年级 8 班 教师 方雄飞 学生课后作业1.在△ABC 中,a cos ⎝⎛⎭⎫π2-A =b cos ⎝⎛⎭⎫π2-B ,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形C .等边三角形 D .等腰直角三角形2.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a,3sin A =5sin B ,则角C 等于( )A .2π3B .π3C.3π4 D .5π63.已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于( )A.32 B .34C.36 D .384.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cosB .(1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2cos2B C --sinB ·sinC=24. (1)求A ; (2)若a =4,求△ABC 面积的最大值.6. 国庆期间,我校高三(1)班举行了社会主义核心价值观知识竞赛,某轮比赛中,要求参赛者回答全部5道题,每一道题回答正确记1分,否则记1-分.据以往统计,甲同学能答对每一道题的概率均为32.甲同学全部回答完这5道题后记他的得分为X .(1) 求1=X 的概率;(2)记随机变量X Y =,求Y 的分布列和数学期望.7. 如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,△PAD 是等边三角形,四边形ABCD 为平行四边形, ∠ADC =120°,AB =2AD .(1)求证:平面PAD ⊥平面PBD ; (2)求二面角A -PB -C 的余弦值.8.已知椭圆:C 12222=+by a x ()0>>b a 的离心率为35,且过点()2,3P(1)求椭圆C 的标准方程;(2)设与直线OP ()为坐标原点O 平行的直线l 交椭圆C 于B A ,两点,求证: 直线PB PA ,与x 轴围成一个等腰三角形.9.已知函数()xexf x e =,()2ln g x ax x a =--(,a R e ∈为自然对数的底数). (1)求()f x 的极值;(2)在区间(0,]e 上,对于任意的0x ,总存在两个不同的12,x x ,使得120()()()g x g x f x ==,求实数a 的取值范围.。

(经典)正弦定理、余弦定理知识点总结及最全证明

(经典)正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、 余弦定理,并能解决一些简单的三角形胸怀问题.2.能够运用正弦定理、 余弦定理等知识和方法解决一些与丈量和几何计算相关的实质问题.主要考察相关定理的应用、三角恒等变换的能力、运算能力及转变的数学思想.解三角形经常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一同求距离、高度以及角度等问题,且多以应用题的形式出现.1. 正弦定理(1) 正弦定理:在一个三角形中, 各边和它所对角的正弦的比相等, 即 .其 中 R 是三角形外接圆的半径.(2) 正弦定理的其余形式:, c① a = R A , b =2 sin=;a②sin A =2R , sin B =,sin C = ;③a ∶b ∶c =______________________.2. 余弦定理——王彦文 青铜峡一中(1) 余弦定理:三角形中任何一边的平方等于其余两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=,b 2=,c 2=.,即为勾若令 C =°,则 c 2=90股定理.(2) 余 弦 定 理 的 变 形 : cosA= , cosB = ,cosC = .若 C 为锐角,则 cosC>0,即 a 2+ b 2 ______c 2;若 C 为钝角,则 cosC<0,即 a 2+b 2______c 2. 故由 a 2 +b 2 与 c 2 值的大小比较,能够判断 C 为锐角、钝角或直角.(3) 正、余弦定理的一个重要作用是实现边角____________,余弦定理亦能够写成 sin 2A= sin 2B + sin 2C - 2sin Bsin CcosA ,近似地,sin 2B = ____________ ; sin 2C =__________________.注意式中隐含条件 A + B +C =π.3. 解斜三角形的种类(1) 已知三角形的随意两个角与一边,用____________定理.只有一解.(2) 已知三角形的随意两边与此中一边的对 角 , 用 ____________ 定 理 , 可 能 有___________________.如在△ ABC 中,已知 a , b 和 A 时,解的状况如表:A 为钝角A 为锐角或直角图 形关 a = b A aa ≥b a b 系 b A sin <b> 式 sin <解 的 ① ② ③ ④ 个 数(3) 已知三边,用 ____________定理.有1解时,只有一解.(4) 已知两边及夹角,用 ____________定理,必有一解.4. 三角形中的常用公式或变式(1) 三角形面积公式 S △= == ____________ = ____________ =____________.此中 R ,r 分别为三角形外接圆、内切圆半径.,(2) A + B + C =π,则 A =__________A= __________ , 从 而sin A =2____________,cosA = ____________ , tan A =____________;A Asin 2= __________, cos 2=__________,Atan 2 = ________.tan A + tan B + tan C =__________.(3) 若三角形三边 a ,b ,c 成等差数列,则b =____________? 2sin B =____________?2B A -C A + C A - C A2sin 2= cos2 ? 2cos 2 = cos 2 ? tan 2C 1tan 2=3.【自查自纠】. a bc R1(1)sin A = sin B =sin C = 2R BRC ② bc(2) ①2 si2 siRR2 2③ s in A ∶sin B ∶sin C2. (1) b 2+c 2-2bccosA c 2+a 2- 2cacosB a 2 +b 2-2abcosC a 2+ b 2b 2 +c 2-a 2c 2+a 2-b 2a 2 +b 2-c 2>(2)2ca2ab2bc<(3) 互化sin 2C +sin 2A -2sin Csin AcosBsin 2A + sin 2B -2sin Asin BcosC3.(1) 正弦 (2) 正弦 一解、两解或无解①一解 ②二解 ③一解 ④一解 (3) 余弦 (4) 余弦.11 1 abc(1) ab sin C bc s inA ac s in B2 22R412( a +b +c) rπ B +C(2) π- ( B + C)2 - 2sin( B +C-cos( B +C) )- tan( B + C cos B +CsinB + C) 2 21 B +Ctan 2A B C (3)a + csin A + sin C tan tan tan2在△ABC中, A B 是A B 的()>sin >sinA.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选 C.在△ABC中,已知 b=, c=,B=°,则61030解此三角形的结果有 ()A.无解B.一解C.两解D.一解或两解解:由正弦定理知 sin C=c·sin B5b=6,又由c>b>csin B知, C有两解.也可依已知条件,画出△ ABC,由图知有两解.应选 C.( 2013·陕西 ) 设△ ABC的内角 A, B, C所对的边分别为 a, b, c,若b cos C+ c cos B=a sin A,则△ ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确立C+解:由已知和正弦定理可得BC B =A· A ,即sin cos=sin sin sin sin( B +C cos A)sinA A,亦即sinA=A因为Aπ,sin sin sin.0< <π所以 sin A=1,所以 A= 2.所以三角形为直角三角形.应选.B( 2012·陕西 ) 在△ ABC中,角 A,B,C 所对的π边分别为 a,b,c. 若 a=2,B=6,c=23,则 b=________.解:由余弦定理知b2=a2+c2- 2accosB=π222 +( 23)-2×2×2 3×cos 6= 4, b= 2.在△ABC中,角A,B,C 所对的边分别为a,b,c,若 a= 2,b=2,sin B+cosB= 2,则角 A 的大小为 ________.解:∵ sin B+ cosB=2,ππ∴2sin B+4= 2,即 sin B+4=1.πππ又∵ B∈(0 ,π ) ,∴ B+4=2, B=4 .a b依据正弦定理sin A=sin B,可得sin A=asin B1=.b2ππ∵a<b,∴ A<B. ∴ A=6 . 故填6 .种类一正弦定理的应用△ABC的内角A,B,C的对边分别为a,b,c,已知 A- C=90°, a+ c= 2b,求 C.解:由 a+c= b 及正弦定理可得sinA2+s in C= 2sin B.又因为 A- C=90°, B=180°- ( A+ C) ,故 cosC+ sin C= sin A+sin C= 2sin( A+ C) =2sin(90 °+ 2C) = 2sin2(45 °+ C) .∴2 sin(45° +C=2 2 sin(45° +)C)cos(45 °+ C) ,41即 cos(45 °+ C) =2.又∵ 0°< C<90°,∴ 45°+ C=60°,C =15°.【评析】利用正弦定理将边边关系转变为角角关系,这是解本题的重点.( 2012·江西 ) 在△ ABC中,角 A,B,C 的对边分别为a, b,c已知 A=π,bsinπ+C -.44c sinπ+B =a4.π(1)求证: B-C=2;(2)若 a= 2,求△ ABC的面积.解:(1)证明:对bπ+C-sin4csin π+ B= a应用正弦定理得4B π+ C -sinCπ+B =sinA,sin sin4sin422即sin B2 sin C+2 cosC-sinC222,整理得 B C2 sin B+2 cosB =2sin cos -s in CcosB= 1,即 sin ( B-C)=1.3ππ因为 B,C∈ 0,4,∴ B-C=2 .3π,又由 (1)知 B-C(2) ∵ B+ C=π- A=4π=2,5ππ∴B=8,C=8.∵a=2,A=πb=,∴由正弦定理知4a Bπa Cπsin5sinsin A= 2sin8,c=sin A=2sin 8 .115ππ∴S△ABC=2bcsin A=2×2sin8×2sin 8×225ππππ2= 2sin8 sin 8= 2cos8 sin8=2π 1sin 4=2.种类二 余弦定理的应用1 3 3∴S △ABC =2acsin B = 4 .【评析】①依据所给等式的构造特色利用余弦定理将角化边进行变形是快速解答本题的 重点.②娴熟运用余弦定理及其推论,同时还 要注意整体思想、方程思想在解题过程中的运 用.在△ ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,cosBb且cosC =- 2a +c .(1) 求 B 的大小;(2) 若 b = 13,a +c =4,求△ ABC 的面积.a 2+ c 2-b 2, 解:(1) 由余弦定理知, cosB =ac2cosC = a 2+b 2- c 2cosB b 2ab ,将上式代入cos C =- a +c2 得a 2 +c 2-b 2 abb2=- a +c , ac·a 2+b 2-c22整理得 a 2+c 2- b 2=- ac.a 2+c 2-b 2 -ac 1 ∴cosB = ac = ac =- .22 22∵B 为三角形的内角,∴ B = 3π.(2) 将 b = 13,a +c =4,B =23π 代入 b 2=a 2+ c 2-2accosB ,得 13=42- 2ac -2accos 2 3π,解得 ac =3.若△ ABC 的内角 A ,B ,C 所对的边 a ,b ,c 知足( a +b) 2- c 2=4,且 C =60°,则 ab 的值为 ( )4A. 3B .8-4 3C . 12D.3解:由余弦定理得 c 2= a 2 +b 2-2abcosC =a 2+b 2-ab ,代入 ( a + b) 2- c 2 =4 中得 ( a + b) 24- ( a 2+b 2-ab) = 4,即 3ab = 4,∴ ab =3. 应选A.6种类三正、余弦定理的综合应用以用余弦定理化边后用不等式求最值.( 2013·全国新课标Ⅱ ) △ ABC的内角A、B、 C的对边分别为 a,b,c,已知 a=bcosC+ csin B.(1)求 B;(2)若 b=2,求△ ABC面积的最大值.解: (1) 由已知及正弦定理得 sin A=sin BcosC+ sin Csin B. ①又 A=π- ( B+ C) ,故sin A = sin( B + C) = sin BcosC +cosBsin C. ②由①,②和 C∈(0 ,π ) 得 sin B= cosB.π又 B∈(0 ,π ) ,所以 B=4 .12(2) △ ABC的面积 S=2acsin B=4 ac.由已知及余弦定理得 4 = a2+ c2-π2accos 4 .又 a2+ c2≥2ac,故 ac≤4,2- 2当且仅当 a=c 时,等号成立.所以△ ABC面积的最大值为2+1.【评析】(1) 化边为角与和角或差角公式的正向或反向多次联用是常用的技巧; (2) 已知边及其对角求三角形面积最值是高考取考过多次的问题,既可用三角函数求最值,也可( 2013·山东 ) 设△ ABC的内角 A,B,C 所对的边分别为a,b,c,且 a+ c= 6, b= 2, cosB7=9.(1)求 a,c 的值;(2)求 sin( A- B) 的值.解: (1) 由余弦定理 b2=a2+ c2-2accosB,得 b2=( a+c) 2-2ac(1 +cosB) ,又 a+ c =6,b=2,7cosB=9,所以 ac=9,解得 a=3,c=3.242(2) 在△ ABC中, sin B= 1-cos B=9 ,asin B 22由正弦定理得 sin A=b= 3 .因为 a=c,所以 A 为锐角,21所以 cosA=1-sin A=3.所以 sin( A-B) =sin AcosB- cosAsin B=10 227.种类四 判断三角形的形状后进行三角函数式的恒等变形,找出角之间的 关系;或将角都化成边,而后进行代数恒等变 形,可一题多解,多角度思虑问题,进而达到 对知识的娴熟掌握.在三角形 ABC 中,若 tan A ∶tan B =a 2∶b 2,试判断三角形 ABC 的形状.a 2 sin 2A解法一:由正弦定理,得 b 2=sin 2B , tan A sin 2 A所以 tan B =sin 2 B ,A Bsin 2AA = Bsin cos2 ,即sin2所以cosAsin B =sinB sin2 . 所以 A = B ,或2 A +B =π,所以 A =B2 22π或 A + B = 2 ,进而△ ABC 是等腰三角形或直角三角形.a2sin 2A解法二:由正弦定理,得 b 2= sin 2B ,所以tan A sin 2A cosB sin Atan B =sin 2B,所以 cosA = sin B,再由正、余弦a 2+ c 2 -b 2aca a 2- b2c 2-定理,得 2 22 2 )( b + c -a = b ,化简得 (2bca 2-b 2 )= ,即 a 2= b 2 或c 2= a 2 +b 2. 进而△ ABC 是等腰三角形或直角三角形.【评析】由已知条件,可先将切化弦,再联合正弦定理,将该恒等式的边都化为角,然( 2012·上海 ) 在 △ABC 中 , 若 sin 2A +sin 2B 2C ,则△ ABC 的形状是 ( )<sin A .锐角三角形 B .直角三角形C .钝角三角形D .不可以确立解:在△ ABC 中,∵ sin 2A +sin 2 B<sin 2C ,∴由正弦定理知 a 2 +b 2<c 2. ∴cos C = a 2+b 2-c 22ab<0,即∠ C 为钝角,△ ABC 为钝角三角形. 应选 C.种类五 解三角形应用举例某港口 O 要将一件重要物件用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口 O北偏西 30°且与该港口相距20 n mile的A 处,并以 30 n mile/h的航行速度沿正东方向匀速行驶.假定该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过 t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假定小艇的最高航行速度只好达到 30 n mile/h ,试设计航行方案 ( 即确立航行方向和航行速度的大小 ) ,使得小艇能以最短时间与轮船相遇,并说明原因.解法一:(1) 设相遇时小艇航行的距离为 S n mile ,则S=900t 2+400-2·30t ·20·cos(90°- 30°)=t2-t +400=900600900 t -123+300,1103故当 t =3时,S min=103,此时 v=1=3 303.即小艇以 30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在 B 处相遇,则v2 t 2=400+t 2-900 2·20·30t ·cos(90 °- 30°) ,2600400故 v = 900-t+t2.v≤,∴6004002-+≤,即∵0<30900t t900t3-t≤0,22解得 t ≥3. 又 t =3时,v=30. 故 v= 30 时,2t 获得最小值,且最小值等于3.此时,在△ OAB中,有 OA=OB=AB=20,故可设计航行方案以下:航行方向为北偏东30°,航行速度为 30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1) 若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C处相遇.在 Rt△OAC中, OC=20cos30°= 10 3,AC=20sin30 °= 10.又 AC=30t ,OC=vt ,101103此时,轮船航行时间 t =30=3,v=1=330 3.即小艇以 30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)假定 v= 30 时,小艇能以最短时间与轮船在 D处相遇,此时 AD=DO=30t .又∠ OAD=60°,所以 AD= DO=OA=20,2解得 t =3.据此可设计航行方案以下:航行方向为北偏东 30°,航行速度的大小为30 n mile/h. 这样,小艇能以最短时间与轮船相遇.证明以下:如图,由 (1) 得 OC=103, AC=10,故 OC>AC,且关于线段 AC上随意点 P,有OP≥ OC>AC.而小艇的最高航行速度只好达到30 n mile/h ,故小艇与轮船不行能在 A,C 之间 ( 包括 C) 的随意地点相遇.设∠ COD=θ (0 °<θ<90°) ,则在 Rt△COD 中,103CD=103tan θ, OD=cosθ .因为从出发到相遇,轮船与小艇所需要的10+10 3tan θ和 t =103,时间分别为 t =30vcosθ10+10 3tan θ10 3所以30=vcosθ.153由此可得,v=sin (θ+30°).3又 v≤30,故 sin( θ+30°) ≥2,进而,30°≤ θ<90°.因为θ=30°时, tan θ获得最小值,且3最小值为3 .10+103tan θ于是,当θ=30°时,t =302获得最小值,且最小值为3.【评析】①这是一道相关解三角形的实质应用题,解题的重点是把实质问题抽象成纯数学识题,依据题目供给的信息,找出三角形中的数目关系,而后利用正、余弦定理求解.②解三角形的方法在实质问题中,有宽泛的应用.在物理学中,相关向量的计算也要用到解三角形的方法.最近几年的高考取我们发现以解三角形为背景的应用题开始成为热门问题之一.③不论是什么种类的三角应用问题,解决的重点都是充足理解题意,将问题中的语言表达弄理解,画出帮助剖析问题的草图,再将其归纳为属于哪种可解的三角形.④本题用几何方法求解也较简易.10( 2012·武汉 5月模拟 ) 如图,渔船甲位于岛屿A的南偏西 60°方向的 B 处,且与岛屿 A 相距 12 海里,渔船乙以 10 海里 / 小时的速度从岛屿 A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,恰好用2 小时追上.(1)求渔船甲的速度;(2)求 sin α的值.解: (1)依题意,∠BAC=°,A B=,12012 AC=× =2,在△ ABC中,由余弦定理知 BC 1022022∠ BAC=2+2-=AB+ AC- AB·AC·12202cos2×12×20×cos120°= 784,BC= 28.所以渔船甲的速度为 v=28=14( 海里 / 小2时) .(2)在△ ABC中, AB=12,∠ BAC=120°,BC= 28,AB ∠BCA=α,由正弦定理得sinα=BC12=28,进而 sin α=,即sin120 °sin ∠ BAC sin α12sin120 °3328=14.1.已知两边及此中一边的对角解三角形时,要注意解的状况,提防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转变为角角关系 ( 注意应用 A+ B+ C=π 这个结论 ) 或边边关系,再用三角变换或代数式的恒等变形( 如因式分解、配方等 ) 求解,注意等式两边的公因式不要约掉,要移项提取公因式,不然有可能遗漏一种形状.3.要熟记一些常有结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与引诱公式联合产生的结论:sin A= sin( BA B+C +C) ,cosA=- cos( B+ C) ,sin 2=cos 2,sin2 A=- sin2( B+C) ,cos2A= cos2( B+C) 等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)剖析:理解题意,分清已知与未知,画出表示图;(2)建模:依据已知条件与求解目标,把已11知量与求解量尽量集中到一个三角形中,成立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)查验:查验上述所求得的解能否切合实际意义,进而得出实质问题的解.5.正、余弦定理是应用极为宽泛的两个定理,它将三角形的边和角有机地联系起来,进而使三角与几何产生联系,为求与三角形相关的量( 如面积、外接圆、内切圆半径和面积等 ) 供给了理论依照,也是判断三角形形状、证明三角形中相关等式的重要依照.主要方法有:化角法,化边法,面积法,运用初等几何法.注意领会此中蕴涵的函数与方程思想、等价转变思想及分类议论思想.12。

正弦定理余弦定理知识点

正弦定理余弦定理知识点

正弦定理、余弦定理1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==21ca sin B ; 2.三角形中的边角不等关系:A>B ⇔a>b,a+b>c,a-b<c ;; 3.正弦定理:A a sin =B b sin =Ccsin =2R (外接圆直径); 正弦定理的变式:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2; a ∶b ∶c =sin A ∶sin B ∶sin C .4.正弦定理应用范围:①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数. 已知两边和其中一边的对角解三角形,有如下的情况: (1)A 为锐角babaabaB1BACACA BCB2a=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角 当a>b 时有一解.5.余弦定理 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB . 若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角; (2)已知三角形的两边及夹角,可求出第三边. 7 . 三角形面积公式课堂互动知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状. 【答案】解法1:由扩充的正弦定理:代入已知式 2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bca cb b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a = 即△ABC 为等腰三角形. 巩固练习1.在∆ABC 中,若2222sin sin 2cos cos b C c B b B C +=,试判断三角形的形状.2.在ABC ∆中,已知a 2tanB=b 2tanA,试判断这个三角形的形状. 3.已知ABC ∆中,有cos 2cos sin cos 2cos sin A C BA B C+=+,判断三角形形状.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理:①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角. 例题2 在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c .【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【答案】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BC b c 当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理 B ac c a b cos 2222-+=将已知条件代入,整理:0162=+-x x 解之:226±=x 当226+=c 时2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 从而A=60︒ ,C=75︒ 当226-=c 时同理可求得:A=120︒ C=15︒. 巩固练习1.已知在ABC ∆中,,6,45=︒=∠BC AB A 在ABC ∆中,213,2tan tan +=-=c b bb c B A3.在ABC ∆中,已知A 、B 、C 成等差数列,且sin 求三边a 、b 、c .4.在ABC ∆中,已知B C A 2=+,tan tan ⋅C A 又知顶点C 的对边C 上的高等于34知识点3 例题3 已知A 、B 、C 为锐角,tanA=1,tanB=2 角的范围确定角.本题应先求出A+B 和C 式求出A+B+C .【答案】 A B C 、、为锐角 ∴<0°A tan()tan tan tan tan A B A B A B +=+-⋅=+-=-112123[]tan()tan ()A B C A B C ++=++ =所以A+B+C=πsin sin sin sin cos 22222ααββα-++-221336-+=(cos cos sin sin )αβαβ --=-25936cos()αβ∴-=cos()αβ5972巩固练习1.在∆ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,设a+c=2b,A-C=3π,求sinB 的值. 2.在∆ABC 中,a ,b ,c 分别是∠∠∠A B C ,,的对边长,已知a ,b ,c 成等比数列,且a c ac bc 22-=-,求∠A 的大小及b Bcsin 的值. 3.在ABC ∆中,若4,5==b a且3231)cos(=-B A ,求这个三角形的面积. 例题4 在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c,证明:C B A cb a sin )sin(222-=-.【分析】在用三角式的恒等变形证明三角形中的三角等式时,其解题的一般规律是:二项化积、倍角公式,提取公因式,再化积.遇有三角式的平方项,则利用半角公式降次. 【答案】证法一:由正弦定理得C A B C B A c b a 2222222sin 22cos 2cos sin sin sin -=-=-=C A B A B 2sin 2)sin()sin(2-+-=CB AC 2sin )sin(sin -=C B A sin )sin(-.证法二:由余弦定理得a 2=b 2+c 2-2bccosA,则222c b a -=22cos 2cA bc c -=1-c b 2∙cosA,又由正弦定理得c b =C Bsin sin ,∴222c b a -=1-C B sin sin 2∙cosA=C A B C sin cos sin 2sin -=C A B B A sin cos sin 2)sin(-+=C A B B A sin cos sin cos sin -=C B A sin )sin(-. 证法三:C B A sin )sin(-=CAB B A sin cos sin cos sin -. 由正弦定理得cbC B c a C A ==sin sin ,sin sin ,∴CB A sin )sin(-=cAb B a cos cos -,又由余弦定理得CB A sin )sin(-=cbc a c b b ac b c a a 22222222-+⋅--+⋅=22222222)()(c a c b b c a -+--+=222c b a -.巩固练习1.已知锐角三角形ABC 中,3sin()5A B +=,1sin()5A B -=. (1)求证tan 2tan A B =;(2)设3AB =,求AB 边上的高.【考题再现】1.(04年全国Ⅲ)在ABC ∆中,3AB =,BC =4AC =,则边AC 上的高(A (B (C )32(D )2.(05年湖南卷)已知在△ABC 中,sinA (sinB +cosB )-sinC =0,sinB +cos2C =0,求角A 、B 、C 的大小.3.( 春季北京)在△ABC 中,sin A +cos A =22,AC =2,AB =3,求tan A 的值和△ABC 的面积. 4. (05年江苏卷)ABC ∆中,3A π=,3BC =,则ABC ∆的周长为(A )33B π⎛⎫++ ⎪⎝⎭ (B )36B π⎛⎫++ ⎪⎝⎭ (C )6sin 33B π⎛⎫++ ⎪⎝⎭ (D )6sin 36B π⎛⎫++ ⎪⎝⎭5.(06年湖北卷)若ABC ∆的内角A 满足2sin 23A =,则sin cos A A +=A.3 B .3- C .53 D .53- 6. ( 安徽卷)如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则( )A .111ABC ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形 C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形【模拟训练】1.( 北京市朝阳区二模题)在∆ABC 中,cos2cos2B A >是A B >的() (A ) 充分而不必要条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件2.(04年南京市二模题)在∆ABC 中,A ,B ,C 为三角形的三个内角,且A B C <<,4sin 5B =4cos(2)5A C +=-,求cos2A 的值3.(04年华南师大附中)在∆ABC 中,,,a b c 分别为角,,A B C 的对边,且274sin cos 222B C A +-= (1)求A ∠的度数 (2)若a =3b c +=,求b 和c 的值4.(05年南通市基地学校联考) 在∆ABC 中,边AB为最长边,且sin sin A B ⋅=,则cos cos A B ⋅的最大值是5.(06年湖北八校第二次联考)已知关于x 的方程22cos cos 2sin02Cx x A B -⋅+=的两根之和等于两根之积的一半,则ABC ∆一定是(A )直角三角形(B )钝角三角形(C )等腰三角形(D )等边三角形.6.(06年黄岗市荆州市高三年级模拟)已知ABC ∆的三个内角为A 、B 、C 所对的三边为a 、b 、c ,若ABC ∆的面积为222()S a b c =--,则tan2A=__________. 教考链接在证明三角形问题或者三角恒等式时,要注意正弦定理、余弦定理的适用题型与所证结论的联系,并注意特殊正、余弦关系的应用,比如互补角的正弦值相等,互补角的余弦值互为相反数等;另外,在三角恒等式的证明或者三角形形状的判断,关键是正、余弦定理的边角互换.运用正、余弦定理求解三角形的有关问题,要非常熟悉了三角函数公式及三角形的有关性质,如三角函数的定义、勾股定理、正弦定理、余弦定理是常用的工具,同时注意三角形面积公式ah S 21=,C ab S sin 21=,还要注意三角形内角和π=++C B A 的制约关系,此外,要对常见解题方法与解题技巧的总结,这样才能不断提高三角形问题的求解能力.参考答案课堂互动例题1 巩固练习1.【答案】[解法1]:由正弦定理2sin sin sin a b cR A B C===,R 为∆ABC 外接圆的半径,将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =,sin sin 0B C ≠,sin sin cos cos B C B C ∴=. 即cos()0B C +=,90B C ∴+=,90A =. 故∆ABC 为直角三角形[解法2]:将已知等式变为2222(1cos )(1cos )2cos cos b C c B b B C -+-=,由余弦定理可得22222222222222a b c a c b b c b c ab ac ⎛⎫⎛⎫+-+-+-⋅-⋅ ⎪ ⎪⎝⎭⎝⎭222222222a c b a b c bc ac ab+-+-=⋅⋅,即22b c +22222222()()4a b c a c b a⎡⎤+-++-⎣⎦= 也即222b c a +=,故∆ABC 为直角三角形.2.【答案】解法1:由已知得A A bB B a cos sin cos sin 22=,由正弦定理得AAB B B A cos sin sin cos sin sin 22=,∵sinAsinB ≠0,∴sinAcosA=sinBcosB,即sin2A=sin2B,∴2A=2B 或2A=1800-2B,即A=B 或A+B=900.∴ABC ∆是等腰三角形或直角三角形.解法2: 由已知得A A bB B a cos sin cos sin 22=,由正弦定理得A a b b a cos cosB 22=,即Aba cos cosB =,又由余弦定理得bcac b b a 22ac b -c a 222222-+=+,整理得(a 2-b 2)(a 2+b 2-c 2)=0,∴a=b,或a 2+b 2=c 2, ∴ABC ∆是等腰三角形或直角三角形. 3.解:由已知得例题2 巩固练习1.【答案】解法1:由正弦定理,得2345sin 26sin =︒=C 因3226sin =⨯=⋅A AB 6,2==AB BC 由623<<,则有二解,即︒=∠60C 或︒=∠120C︒=︒-︒-︒=∠754560180B 或︒=︒-︒-︒=∠1545120180B故13sin sin +=⇒⋅=AC B ABC AC 或13-=AC ,︒=∠︒=∠15,120B C ︒=∠︒=∠75,60B C 解法2:令AC=b ,则由余弦定理222245cos 62)6(=︒-+b b 1302322±=⇒=+-b b b又C b b cos 222)6(222⋅-+=︒=∠±=⇒60,21cos C C 或︒=∠120C ︒=︒+︒-︒=∠⇒75)6045(180B 或︒=︒+︒-︒=∠15)12045(180B . 2【答案】由已知有bc B A 21tan tan =+,化简并利用正弦定理:B C B A B A B A sin sin 2sin cos sin cos cos sin =+ BCB A B A sin sin 2sin cos )sin(=+0cos sin 2sin =-A C C由0sin ≠,故︒=⇒=6021cos A A 由213+=cb,可设k c k b 2,)13(=+=,由余弦定理,得 k a k k k a 6)13(24)13(22222=⇒+-++=由正弦定理Cc A a sin sin =得 226232sin sin =⋅==kk a A c C 由b c <则C 是锐角,故︒=--︒=︒=75180,45C A B C3.【答案】由已知,得2C A B +=,又由︒=++180C B A ︒=⇒60B 故4160cos sin sin 2=︒=C A ①又由B c a S ABC sin 2134⋅⋅==∆164334=⇒=⇒ac ac ② 故64)sin ()sin (sin sin 22===C c A a C A ac 8sin sin ==⇒Cc A a由3460sin 8sin 8sin sin =︒⋅=⋅==B AB a b 则21260cos cos 222=-+=︒=ac b c a B即964848)(3)(222=+=+⇒=-+c a ac b c a 64=+⇒c a ③ 把③与②联立,得)26(2),26(2-=+=c a 或)26(2),26(2+=-=c a4.【答案】由已知B C A 2=+,及︒=+︒=⇒︒=++120,60180C A B C B A由CA C A C A tan tan 1tan tan )tan(-+=+及32tan tan ,3)tan(+=⋅-=+C A C A得33tan tan +=+C A ,以C A tan ,tan 为一元二次方程032)33(2=+++-x x 的两个根,解方程,得⎩⎨⎧+==32tan 1tan C A 或⎩⎨⎧=+=1tan 32tan C A ⎩⎨⎧︒=︒=⇒7545C A 或⎩⎨⎧︒=︒=4575C A 若︒=︒=75,45C A ,则860sin 34=︒=a ,6445sin 34=︒=b ,)13(445sin 75sin 8sin sin +=︒︒==A C a c若︒=︒=45,75C A ,则︒=60sin 34a ︒==75sin 34,8b )13(64-=)623(4-=)13(8sin sin -==B C b c 例题3 巩固练习1.【答案】由正弦定理和已知条件a+c=2b,得sinA+sinC=2sinB.由和差化积公式,得2sin 2C A +cos 2C A -=2sinB. 由A+B+C=π得sin 2C A +=cos 2B .又A-C=3π,得2cos 23B =sinB.∴2cos 23B=2sin 2B cos 2B ,∵0<2B <2π,∴cos 2B ≠0,∴sin2B =43.∴cos 2B =2sin 12B -=413,∴sinB=2sin 2B cos 2B =2∙43∙413=839. 2.【答案】(I ) a b c ,,成等比数列 ∴=b ac 2又a c ac bc 22-=- ∴+-=b c a bc 222 在∆ABC 中,由余弦定理得cos A b c a bc bc bc =+-==2222212∴∠=︒A 60 (II )在∆ABC 中,由正弦定理得sin sin B b Aa= ∴=︒=︒=b B c b ca sin sin sin 2606032. 3.【答案】解法1:由余弦定理得c c bc a c b A 892cos 2222-=-+= cc ac b c a B 1092cos 2222+=-+= 由正弦定理得:B A B A sin 45sin sin 4sin 5=⇒= 3231)cos 1(4510989222=-++⋅-⇒B c c c c 3231])109(1[4580812224=+-+-c c c c 63632318016282222=⇒=⇒=-⇒c c cc 故1694893689cos 2=-=-=c c A7165sin =A 4715sin 21=⋅⋅=∆A c b S ABC解法2:如图,作B A CAD -=∠,AD 交BC 于D ,令x CD = 则由5=a 知,x AD x BD -=-=5,5,在CAD ∆中由余弦定理3231)5(84)5()cos(222=--+-=-x x x B A化简得199=⇒=x x ,在CAD ∆中由正弦定理)sin(4)sin(sin )sin(sin B A B A CD ADC B A CD C AD -=-⋅=⇒-=783)(cos 142=--=B A 74158735421sin 21=⨯⨯⨯=⋅⋅=∆C BC AC S ABC例题4 巩固练习1.【答案】(1)证明:因为3sin()5A B +=,1sin()5A B -=, 所以3sin cos cos sin 51sin cos cos sin 5A B A B A B A B ⎧+=⎪⎪⎨⎪-=⎪⎩,2sin cos 51cos sin 5A B A B ⎧=⎪⎪⇒⎨⎪=⎪⎩,tan 2tan A B ⇒=.所以tan 2tan A B =(2)因为2A B ππ<+<,3sin()5A B +=, 所以3tan()4A B +=-,即tan tan 31tan tan 4A B A B +=--, 将tan 2tan A B =代入上式并整理得 22tan 4tan 10B B --=.解得tan B =tan B =tan 2tan 2A B ==. 设AB 边上的高为CD.则tan tan CD CD AB AD DB A B =+=+=AB=3,得CD= 2AB边上的高等于2考题再现1.【答案】由余弦定理,得1cos 2A =,60A ︒=,所以AC边上的高sin 2BD AB A =⋅=选B.2.【答案】解法1: 由0sin )cos (sin sin =-+C B B A 得.0)sin(cos sin sin sin =+-+B A B A B A所以.0sin cos cos sin cos sin sin sin =--+B A B A B A B A 即.0)cos (sin sin =-A A B因为),,0(π∈B 所以0sin ≠B ,从而.sin cos A A = 由),,0(π∈A 知.4π=A 从而π43=+C B . 由.0)43(2cos sin 02cos sin =-+=+B B C B π得 即.0cos sin 2sin .02sin sin =-=-B B B B B 亦即由此得.125,3,21cos ππ===C B B 所以,4π=A .125,3ππ==C B 解法2: 由).223sin(2cos sin 02cos sin C C B C B -=-==+π得由B <0、π<c ,所以.22223ππ-=-=C B C B 或即.22232ππ=-=+B C C B 或由0sin )cos (sin sin =-+C B B A 得 .0)sin(cos sin sin sin =+-+B A B A B A 所以.0sin cos cos sin cos sin sin sin =--+B A B A B A B A 即.0)cos (sin sin =-A A B 因为0sin ≠B ,所以.sin cos A A =由.4),,0(ππ=∈A A 知从而π43=+C B ,知B+2C=23π不合要求.再由π212=-B C ,得.125,3ππ==C B 所以,4π=A .125,3ππ==C B .3.【答案】解法1:∵sin A +cos A =2cos (A -45°)=22,∴cos (A -45°)=21. 又0°<A <180°,∴A -45°=60°,A =105°. ∴tan A =tan (45°+60°)=3131-+=-2-3.∴sin A =sin105°=sin (45°+60°)=sin45°cos60°+cos45°sin60°=462+. ∴S △ABC =21AC ·AB sin A =21·2·3·462+=43(2+6).4.【答案】在ABC ∆内,由正弦定理得3sin sin sin sin 3AC AB BC B C A π====∴(),3AC B AB C A B B ππ⎛⎫===-+=+⎡⎤ ⎪⎣⎦⎝⎭ ∴周长为AB AC BC ++sin sin 33B B π⎤⎛⎫=+++ ⎪⎥⎝⎭⎦3sin 32B B ⎫=+⎪⎪⎭6sin 36B π⎛⎫=++ ⎪⎝⎭ 5.【答案】由sin2A =2sinAcosA >0,可知A 这锐角,所以sinA +cosA >0,又25(sin cos )1sin 23A A A +=+=,故选A.6.【答案】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由211211211sin cos sin()2sin cos sin()2sin cos sin()2A A A B B B C C C πππ⎧==-⎪⎪⎪==-⎨⎪⎪==-⎪⎩,得212121222A A B B C C πππ⎧=-⎪⎪⎪=-⎨⎪⎪=-⎪⎩,那么,2222A B C π++=,所以222A B C ∆是钝角三角形.故选D .模拟训练1.【答案】2222cos 2cos 212sin 12sin sin sin B A B A B A >⇔->-⇔<⇔sin sin A B A B >⇔> 2.【答案】∵A B C <<,A B C π++=,∴0,022B AC ππ<<<+<,由4sin 5B =得3cos 5B =,∴4sin()5A C +=,()3cos 5A C +=- 又由4cos(2)5A C +=-得3sin(2)5A C += ∴()33447sin sin 2()555525A A C A C ⎛⎫⎛⎫=+--=⨯---⨯=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭2527cos 212sin 625A A =-=. 3.【答案】由题意得[]2721cos()2cos 12B C A -+-+= ()2721cos 2cos 12A θ+-+= ∴1cos 2A = 03A π<<2221cos 22b c a A bc +-==()223b c a bc +-=将3a b c =+=代入得2,bc =由3b c +=及2bc =,得1,2b c ==或2,1b c ==.4.【答案】因为cos cos sin sin cos()1A B A B A B ⋅+⋅=-≤,易得cos cos A B ⋅的最大值为24+. 5.【答案】由题意可知:211cos cos cos 2sin 222C CA B -=⋅⋅=,从而2cos cos 1cos()1cos cos sin sin A B A B A B A B =++=+-cos cos sin sin 1A B A B +=,cos()1A B -=又因为A B ππ-<-<所以0A B -=,所以ABC ∆一定是等腰三角形选C6.【答案】1sin 2S bc A =,222()S a b c =--,2222cos a b c bc A =+-, ∴1sin 22cos 2bc A bc bc A =-,∴22sin 11cos 2tan 4sin 22sin cos 22A A A A A A -===。

正弦定理和余弦定理

正弦定理和余弦定理

正弦定理和余弦定理1. 正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; (2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R 等形式,解决不同的三角形问题.2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,余弦定理可以变形: cos A =b 2+c 2-a 22bc ,3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .4. 在△ABC 中,已知a 、b 和A 时,解的情况如下:[难点正本 疑点清源]1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B ;2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.1. 在△ABC 中,若A =60°,a =3,则a +b +csin A +sin B +sin C =________.2. 已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________.3.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cos B =513,b =3,则c =________.4.在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.5. 已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .8 2 C. 2D.22题型一 利用正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c .已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________.题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. .已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积.题型三 正弦定理、余弦定理的综合应用例3 已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;典例:(12分)在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状.(12分)(2012·辽宁)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值.1.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2.正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C - 2sin B ·sin C ·cos A ,可以进行化简或证明.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC 等于( )A .4 3B .2 3C. 3D.322. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B 等于( )A .-12B.12C .-1D .13. 在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形4. △ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+394二、填空题(每小题5分,共15分)5. (2011·北京)在△ABC 中,若b =5,∠B =π4,sin A =13,则a =________.6. (2011·福建)若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________.7. 在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________.三、解答题(共22分)8. (10分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC →=3.(1)求△ABC 的面积; (2)若b +c =6,求a 的值.9. (12分)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin 2B +C 2-cos 2A =72.(1)求A 的度数;(2)若a =3,b +c =3,求b 、c 的值.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·上海)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定2. (2011·辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则b a等于( )A .2 3B .2 2C. 3D. 23. (2012·湖北)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sinC 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4二、填空题(每小题5分,共15分)4. 在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边长,已知a ,b ,c 成等比数列,且a 2-c 2=ac -bc ,则∠A =________,△ABC 的形状为__________.5. 在△ABC 中,若∠A =60°,b =1,S △ABC =3,则a +b +c sin A +sin B +sin C 的值为________.6. 在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若b a +a b =6cos C ,则tan C tan A +tan Ctan B 的值是______.三、解答题7. (13分)(2012·浙江)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C . (1)求tan C 的值;(2)若a =2,求△ABC 的面积.。

正弦定理和余弦定理

正弦定理和余弦定理

第3讲 正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin Aa =b sin Ab sin A <a <b a ≥ba >ba ≤b解的 个数无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°, 由正弦定理得:a sin A =c sin C ,即1032=c 22.∴c =1063.答案 C2.在△ABC 中,若sin A a =cos B b ,则B 的值为( ).A .30°B .45°C .60°D .90° 解析 由正弦定理知:sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°. 答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ). A .30° B .45° C .60° D .75° 解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 3 解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C=12×32×23×223=4 3.答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab , ∴cos C =a 2+b 2-c 22ab =-32,故C =150°为三角形的最大内角. 答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin C sin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin C sin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin Acos A=2,sin 2A +cos 2A =1,联立解得sin A =255,再由正弦定理得a sin A =bsin B ,代入数据解得a =210. 答案255210 考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. [审题视点] 由cos B cos C =-b2a +c,利用余弦定理转化为边的关系求解. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 【训练2】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2 A2+cos A =0,得1+cos A +cos A =0, 即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc , 又a =23,b +c =4, 有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. [审题视点] 首先边化角或角化边,再整理化简即可判断. 解 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C , 得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )], 即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cos B sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的内角. 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B , 即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系. 【训练3】 在△ABC 中,若a cos A =b cos B =c cos C;则△ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径). ∴sin A cos A =sin B cos B =sin C cos C. 即tan A =tan B =tan C ,∴A =B =C . 答案 B考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A . 当cos A =0,即A =π2时,B =π6,a =433,b =233;当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题. 【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.第7讲 正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B 两点的距离为().A.50 2 m B.50 3 m C.25 2 m D.2522m解析由正弦定理得ABsin∠ACB=ACsin B,又∵B=30°∴AB=AC·sin∠ACBsin B=50×2212=502(m).答案 A2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为().A .α>βB .α=βC .α+β=90°D .α+β=180° 解析 根据仰角与俯角的定义易知α=β. 答案 B3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°解析 如图.答案 B4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ). A .5海里 B .53海里 C .10海里D .103海里解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里), 于是这艘船的速度是50.5=10(海里/时).答案 C5.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°).解得BC =56(海里).答案 5 6考向一 测量距离问题【例1】►如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长. [审题视点] 在△BCD 中,求出BC ,在△ABC 中,求出AB .解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.【训练1】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离.解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =AC sin ∠ABC , 所以AB =AC sin 60°sin 15°=32+620(km), 同理,BD =32+620(km). 故B 、D 的距离为32+620km. 考向二 测量高度问题【例2】►如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .[审题视点] 过点C 作CE ∥DB ,延长BA 交CE 于点E ,在△AEC 中建立关系.解如图,设CD =x m ,则AE =x -20 m ,tan 60°=CD BD , ∴BD =CD tan 60°=x 3=33x (m). 在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m.(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理.【训练2】 如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CD sin ∠CBD , 所以BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β)在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin (α+β). 考向三 正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.[审题视点] 由于AB =5,∠ADB =45°,因此要求BD ,可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB =5,AC =9,∠ACB=30°,因此可用正弦定理求出sin ∠ABC ,再依据∠ABC 与∠BAD 互补确定sin ∠BAD 即可. 解 在△ABC 中,AB =5,AC =9,∠BCA =30°.由正弦定理,得AB sin ∠ACB =AC sin ∠ABC, sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910. ∵AD ∥BC ,∴∠BAD =180°-∠ABC ,于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910, ∠ADB =45°,由正弦定理:AB sin ∠BDA =BD sin ∠BAD, 解得BD =922.故BD 的长为922. 要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.【训练3】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°. 在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.。

正弦定理余弦定理知识点总结及最全证明

正弦定理余弦定理知识点总结及最全证明

正弦定理余弦定理知识点总结及最全证明正弦定理概述:正弦定理是三角形的一个重要定理,它描述了三角形中各边与其相对的正弦值之间的关系。

正弦定理可以用于求解任意三角形的边长或角度。

正弦定理表达式:在一个三角形ABC中,有以下正弦定理的表达式:a/sin(A) = b/sin(B) = c/sin(C)其中,a、b、c分别表示三角形的边长,A、B、C表示三角形的角度。

正弦定理表明,三角形的任意一边的长度与这条边相对的角的正弦值成正比。

正弦定理的证明:可以使用数学推导来证明正弦定理。

这里给出一种较为详细的证明方法。

证明:1. 通过三角形的边长关系:a = b * sin(A) / sin(B)和c = b *sin(C) / sin(B),可得到以下关系式:a * sin(B) = b * sin(A)和c * sin(B) = b * sin(C)2.利用向量叉积原理知识,假设D为线段BC上的一点,则由向量的垂直性知:向量BD与向量AD是垂直的,向量CD与向量AD是垂直的。

3. 记向量AD为向量a,向量BD为向量b,向量CD为向量c,由向量b与向量a的垂直性可得:向量b·向量a = ,b, * ,a, *sin(∠BA) = b * AD * sin(∠BA)。

4. 同理,由向量c与向量a的垂直性可得:向量c·向量a = ,c,* ,a,* sin(∠CA) = c * AD * sin(∠CA)。

5. 因为∠C + ∠A = ∠BA,即∠CA + ∠BA = 180°,所以sin(∠BA) = sin(∠CA)。

所以有b * AD * sin(∠BA) = c * AD *sin(∠CA)。

6. 即有b * AD * sin(∠BA) = c * AD * sin(∠BA),那么b = c,所以定理得证。

余弦定理概述:余弦定理是三角形的另一个重要定理,它描述了三角形中各边与其相对的角之间的关系。

正弦定理余弦定理

正弦定理余弦定理

03
正弦定理与余弦定理的关 联
正弦定理与余弦定理的相似之处
01
两者都是关于三角形边角关系的定理,是三角学中 的基本定理之一。
02
它们都可以用来解决与三角形相关的问题,如求角 度、边长等。
03
正弦定理和余弦定理在形式上具有一定的对称性, 反映了三角形的内在规律。
正弦定理与余弦定理的不同之处
01
02
03
正弦定理主要应用于求解三角形 的角度,特别是当已知两边及其 夹角时;而余弦定理则更常用于 求解三角形的边长,特别是当已 知两角及一边时。
正弦定理中的角度是通过正弦函 数来表达的,而余弦定理中的角 度则是通过余弦函数来表达的。
正弦定理和余弦定理在应用上有 一定的互补性,可以根据具体问 题选择使用。
总结词
余弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角余弦值之间的关系。
详细描述
余弦定理是三角学的基本定理之一,它指出在任意三角形ABC中,任意一边的平方等于其他两边的平 方和减去两倍的另一边的长度与相邻两边的乘积。数学公式表示为:a^2 = b^2 + c^2 - 2bc cos(A) 。
交流电
交流电的电压和电流是时间的正 弦函数,这使得正弦定理在电力 系统中有着广泛的应用。
声学
声音的传播和反射可以用正弦和 余弦函数来描述,这使得余弦定 理在声学中有重要应用。
三角函数在工程中的应用
1 2
结构设计
在建筑和机械设计中,正弦和余弦定理常被用来 计算角度、长度等参数,以确保结构的稳定性和 安全性。
余弦定理的应用
总结词
余弦定理在解决三角形问题中具有广泛 的应用,包括求解角度、判断三角形的 形状以及解决实际问题等。

第四章 §4.8 正弦定理、余弦定理-2025高中数学大一轮复习讲义人教A版

第四章 §4.8 正弦定理、余弦定理-2025高中数学大一轮复习讲义人教A版

§4.8正弦定理、余弦定理课标要求1.掌握正弦定理、余弦定理及其变形.2.理解三角形的面积公式并能应用.3.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理内容a sin A=b sin B =csin C=2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C 变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin A ∶sin B ∶sin Ccos A =b 2+c 2-a 22bc;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形解的判断A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解3.三角形中常用的面积公式(1)S =12ah a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论:(1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边.(3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C2;cosA +B 2=sin C 2.(5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .(6)三角形中的面积S =12(a +b +自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)三角形中三边之比等于相应的三个内角的余弦值之比.(×)(2)在△ABC 中,若sin A >sin B ,则a >b .(√)(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.(×)(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形.(×)2.(必修第二册P44T2改编)在△ABC 中,AB =5,AC =3,BC =7,则∠BAC 等于()A.π6B.π3C.2π3D.5π6答案C解析在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角,所以∠BAC =2π3.3.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,已知b =40,c =20,C =60°,则此三角形的解的情况是()A .有一解B .有两解C .无解D .有解但解的个数不确定答案C解析由正弦定理得b sin B =c sin C ,∴sin B =b sin Cc=40×3220=3>1.∴角B 不存在,即此三角形无解.4.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,B =60°,a 2+c 2=3ac ,则b =.答案22解析由题意得S △ABC =12ac sin B =34ac =3,则ac =4,所以a 2+c 2=3ac =3×4=12,所以b 2=a 2+c 2-2ac cos B =12-2×4×12=8,则b =2 2.题型一利用正弦、余弦定理解三角形例1(1)(2023·榆林模拟)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a sin A +(b +λa )sin B =c sin C ,则λ的取值范围为()A .(-2,2)B .(0,2)C .[-2,2]D .[0,2]答案A解析因为a sin A +(b +λa )sin B =c sin C ,由正弦定理得c 2=a 2+b 2+λab ,由余弦定理知c 2=a 2+b 2-2ab cos C ,所以λ=-2cos C ,因为C ∈(0,π),所以cos C ∈(-1,1),故λ∈(-2,2).(2)(2024·兰州模拟)用长度为1,4,8,9的4根细木棒围成一个三角形(允许连接,不允许折断),则其中某个三角形外接圆的直径可以是(写出一个答案即可).答案301111(答案不唯一)解析4根细木棒围成的三角形的三边长可以为5,8,9,设边长为9的边所对的角为θ,该三角形外接圆的半径为R ,由余弦定理知,cos θ=25+64-812×5×8=110,因为θ∈(0,π),所以sin θ=1-cos 2θ=31110,由正弦定理知,2R =9sin θ=931110=301111,所以其中某个三角形外接圆的直径可以是301111.思维升华解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.跟踪训练1(1)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,a =1,c =62,A =45°,则C 等于()A .30°B .60°C .120°D .60°或120°答案D解析因为a =1,c =62,A =45°,所以由正弦定理可得sin C =c sin A a =62×221=32,又因为0°<C <180°,c >a ,A =45°,所以C =60°或120°.(2)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b sin 2A =a sin B ,且c =2b ,则a b等于()A .2B .3 C.2D.3答案D解析由正弦定理及b sin 2A =a sin B ,得2sin B sin A cos A =sin A sin B ,又sin A ≠0,sin B ≠0,则cos A =12.又c =2b ,所以由余弦定理得a 2=b 2+c 2-2bc cos A =b 2+4b 2-4b 2×12=3b 2,得ab = 3.题型二正弦定理、余弦定理的简单应用命题点1三角形的形状判断例2(2023·临沂模拟)在△ABC 中,已知sin A +sin C sin B =b +ca且满足条件①a (sin A -sin B )=(c -b )(sin C +sin B );②b cos A +a cos B =c sin C 中的一个,试判断△ABC 的形状,并写出推理过程.注:如果选择多个条件分别解答,则按第一个解答计分.解由sin A +sin C sin B =b +ca及正弦定理得a +cb =b +c a ,即a 2+ac =b 2+bc ,∴a 2-b 2+ac -bc =0,∴(a -b )(a +b +c )=0,∴a =b .若选①,则△ABC 为等边三角形.推理如下:由a (sin A -sin B )=(c -b )(sin C +sin B )及正弦定理,得a (a -b )=(c -b )(c +b ),即a 2+b 2-c 2=ab .∴由余弦定理得cos C =a 2+b 2-c 22ab =12又C ∈(0,π),∴C =π3.∴△ABC 为等边三角形.若选②,则△ABC 为等腰直角三角形.推理如下:∵b cos A +a cos B =b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =2c 22c =c =c sin C ,∴sin C =1,∴C =π2,∴△ABC 为等腰直角三角形.思维升华判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A+B +C =π这个结论.命题点2三角形的面积例3(10分)(2023·新高考全国Ⅰ)已知在△ABC 中,A +B =3C ,2sin(A -C )=sin B .(1)求sin A ;[切入点:由A ,B ,C 关系求角C 及代换sin B ](2)设AB =5,求AB 边上的高.[关键点:由A ,B ,C 关系求sin B ][思路分析](1)由A ,B ,C 关系求角C →B =π-(A +C )代入化简→tan A →sin A (2)由角C ,sin A →sin B →AC →等面积法求高解(1)∵A +B =3C ,∴π-C =3C ,即C =π4,(1分)①处由A ,B ,C 关系求角C又2sin(A -C )=sin B =sin (A +C ),(2分)②处由B 与A ,C 关系代换sin B ∴2sin A cos C -2cos A sin C =sin A cos C +cos A sin C ,∴sin A cos C =3cos A sin C ,∴sin A =3cos A ,③处两角和差公式化简即tan A =3,(4分)∴0<A <π2,∴sin A =310=31010.(5分)④处由正切求正弦(2)由(1)知,cos A =110=1010,分)⑤处由B 与A ,C 关系求sin B 由正弦定理AB sin C =ACsin B,可得(8分)⑥处正弦定理求AC∴12AB ·h =12AB ·AC ·sin A ,⑦处等面积法求高∴h =AC ·sin A =210×310106.(10分)思维升华三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.命题点3与平面几何有关的问题例4(2023·梅州模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2a +b =2c cos B .(1)求角C ;(2)若CD 是角C 的平分线,AD =27,DB =7,求CD 的长.解(1)由2a +b =2c cos B ,根据正弦定理可得2sin A +sin B =2sin C cos B ,则2sin(B +C )+sin B =2sin C cos B ,所以2sin B cos C +2cos B sin C +sin B =2sin C cos B ,整理得(2cos C +1)sin B =0,因为B ,C 均为三角形内角,所以B ,C ∈(0,π),sin B ≠0,因此cos C =-12,所以C =2π3.(2)因为CD 是角C 的平分线,AD =27,DB =7,AC =5×25522=210,所以在△ACD 和△BCD 中,由正弦定理可得,AD sin π3=CD sin A ,BD sinπ3=CDsin B ,因此AD BD =sin Bsin A=2,即sin B =2sin A ,所以b =2a ,又由余弦定理可得c 2=a 2+b 2-2ab cos C ,即(37)2=a 2+4a 2+2a 2,解得a =3,所以b =6,又S △ABC =S △ACD +S △BCD ,即12ab sin ∠ACB =12b ·CD ·sin ∠ACD +12a ·CD ·sin ∠BCD ,即18=9CD ,所以CD =2.思维升华在平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题时,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,再解方程即可.若研究最值,常使用函数思想.跟踪训练2(1)(2024·西安模拟)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,a =217,b =52,cos A =45,则△ABC 的面积为()A .362B .183C .27D .36答案C解析∵a =217,b =52,cos A =45,∴由a 2=b 2+c 2-2bc cos A ,可得c 2-82c -18=(c -92)(c +2)=0,解得c =92(负值舍去).∵cos A =45,∴sin A =1-cos 2A =35,∴△ABC 的面积为12bc sin A =12×52×92×35=27.(2)(2023·聊城模拟)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a -b =c cos B -c cos A ,则△ABC 的形状一定是()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形答案D解析因为a -b =c cos B -c cos A ,所以由正弦定理得sin A -sin B =sin C cos B -sin C cos A ,因为sin A =sin(B +C )=sin B cos C +cos B sin C ,sin B =sin(A +C )=sin A cos C +cos A sin C ,所以sin B cos C +cos B sin C -sin A cos C -cos A sin C =sin C cos B -sin C cos A ,整理得sin B cos C -sin A cos C =0,所以(sin B -sin A )cos C =0,所以sin B =sin A 或cos C =0,因为A ,B ,C ∈(0,π),所以A =B 或C =π2,即△ABC 的形状一定是等腰或直角三角形.(3)(2023·宝鸡统考)在△ABC 中,AB =5,AC =7,D 为BC 的中点,AD =5,则BC 等于()A .23B .43C .22D .42答案B 解析方法一设BC =2x ,则BD =CD =x .在△ACD 中,由余弦定理的推论可得,cos ∠ADC =AD 2+CD 2-AC 22AD ·CD =25+x 2-4910x .在△ABD 中,由余弦定理的推论可得,cos ∠ADB =AD 2+BD 2-AB 22AD ·BD =25+x 2-2510x .又∠ADC +∠ADB =π,所以cos ∠ADC =-cos ∠ADB ,所以有25+x 2-4910x =-25+x 2-2510x ,整理可得x 2=12,解得x =23,所以BC =4 3.方法二AD →=12(AB →+AC →),则AD →2=14(AB →2+AC →2+2AB →·AC →),即25=14(25+49+2×5×7×cos ∠BAC ),解得cos ∠BAC =1335,所以BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC =25+49-2×5×7×1335=48,所以BC =4 3.课时精练一、单项选择题1.在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于()A.35B.31C .6D .5答案B解析因为sin A =6sin B ,则由正弦定理得a =6b ,又a +2b =8,所以a =6,b =1,因为C =60°,所以由余弦定理c 2=a 2+b 2-2ab cos C ,得c 2=62+12-2×6×1×12,解得c =31.2.在△ABC 中,内角A ,B ,C 的对边a ,b ,c 依次成等差数列,且B =π3,则△ABC 的形状为()A .等边三角形B .直角边不相等的直角三角形C .等腰直角三角形D .钝角三角形答案A解析因为a ,b ,c 依次成等差数列,所以b =a +c2.由余弦定理可得cos B =a 2+c 2-b 22ac =12,将b =a +c2代入上式整理得(a -c )2=0,所以a =c .又B =π3,所以△ABC 为等边三角形.3.(2023·红河模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为12b (b sin B -a sin A -c sin C ),则B 等于()A.π6B.5π6C.π3D.2π3答案D 解析由题知,△ABC 的面积为12b (b sin B -a sin A -c sin C ),所以12ab sin C =12b (b sin B -a sin A -c sin C ),即a sin C =b sin B -a sin A -c sin C ,所以由正弦定理得ac =b 2-a 2-c 2,即a 2+c 2-b 2=-ac ,所以cos B =a 2+c 2-b 22ac=-12,因为B ∈(0,π),所以B =2π3.4.(2023·宜宾模拟)如图,在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .点D 为BC的中点,AD =1,B =π3,且△ABC 的面积为32,则c 等于()A .1B .2C .3D .4答案A 解析∵B =π3,∴在△ABD 中,由余弦定理得c 2-2c ×a 2cos π3=1,即a 2+4c 2-2ac =4,又S △ABC =12ac sin B =34ac =32,解得ac =2,①∴a 2+4c 2-2ac =4=2ac ,即4c 2-4ac +a 2=0,∴(2c -a )2=0,即a =2c ,②将②代入①得2c 2=2,解得c =1或c =-1(舍去).5.(2023·潍坊模拟)如图,平面四边形ABCD 的内角B +D =π,AB =6,DA =2,BC =CD ,且AC =27.则角B 等于()A.π6B.π4C.π3D.5π12答案C解析设BC =CD =x >0,在△ABC 中,由余弦定理,得AC 2=36+x 2-2×6x cos B =28,即x 2+8=12x cos B ,①又在△ACD 中,由余弦定理,得AC 2=4+x 2-2×2x cos D =28,即x 2-24=4x cos D ,②因为B +D =π,则cos D =cos(π-B )=-cos B ,联立①②可得x =4,cos B =12,因为B ∈(0,π),所以B =π3.6.(2022·乐山统考)已知△ABC 中,AB →·AC →=-3,AB =2,cos 2A +sin 2B +sin 2C +sin B sin C =1,D 是边BC 上一点,∠CAD =3∠BAD .则AD 等于()A.65B.334C.62D.637答案B 解析设△ABC 中,角A ,B ,C 的对边为a ,b ,c ,∵cos 2A +sin 2B +sin 2C +sin B sin C =1,即sin 2B +sin 2C +sin B sin C =sin 2A ,∴b 2+c 2+bc =a 2,∴cos A =b 2+c 2-a 22bc=-12,又A ∈(0,π),∴A =2π3,又AB →·AC →=-3,AB =2,∴AB →·AC →=2b cos A =2b 3,即b =3,∴a 2=b 2+c 2+bc =32+22+3×2=19,故a =19,∴cos C =a 2+b 2-c 22ab =19+9-4619=419,sin C =319,tan C =34,又∠CAD =3∠BAD ,A =2π3,∴∠CAD =π2,AD =AC tan C =3×34=334.二、多项选择题7.(2024·南京模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则B 的值为()A.π6B.π3C.5π6D.2π3答案BD 解析根据余弦定理可知a 2+c 2-b 2=2ac cos B ,代入(a 2+c 2-b 2)tan B =3ac ,可得2ac cos B ·sin B cos B =3ac ,即sin B =32,因为0<B <π,所以B =π3或B =2π3.8.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,下列四个命题中正确的是()A .若a cos A =b cos B ,则△ABC 是等腰三角形B .若b cosC +c cos B =b ,则△ABC 是等腰三角形C .若a cos A =b cos B =c cos C ,则△ABC 是等边三角形D .若B =60°,b 2=ac ,则△ABC 是直角三角形答案BC 解析对于A ,若a cos A =b cos B ,则由正弦定理得sin A cos A =sin B cos B ,∴sin 2A =sin 2B ,则2A =2B 或2A +2B =180°,即A =B 或A +B =90°,则△ABC 为等腰三角形或直角三角形,故A 错误;对于B ,若b cos C +c cos B =b ,则由正弦定理得sin B cos C +sin C cos B =sin(B +C )=sin A =sin B ,即A =B ,则△ABC 是等腰三角形,故B 正确;对于C ,若a cos A =b cos B =c cos C ,则由正弦定理得sin A cos A =sin B cos B =sin C cos C,则tan A =tan B =tan C ,即A =B =C ,即△ABC 是等边三角形,故C 正确;对于D ,由于B =60°,b 2=ac ,由余弦定理可得b 2=ac =a 2+c 2-ac ,可得(a -c )2=0,解得a =c ,故△ABC 是等边三角形,故D 错误.三、填空题9.(2023·上饶模拟)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,2cos A bc =cos B ab +cos C ac,则A =.答案π3解析因为2cos A bc =cos B ab +cos C ac 所以2a ·cos A =c ·cos B +b ·cos C ,由正弦定理得2sin A cos A =sin C cos B +sin B cos C ,即2sin A cos A =sin(B +C )=sin A ,因为sin A >0,所以cos A =12,因为A 为三角形内角,则A =π3.10.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五的“田域类”中写道:问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.意思是已知三角形沙田的三边长分别为13里、14里、15里,求三角形沙田的面积.则该沙田的面积为平方里.答案84解析由题意画出△ABC (图略),且AB =13里,BC =14里,AC =15里,在△ABC 中,由余弦定理得,cos B =AB 2+BC 2-AC 22AB ·BC =132+142-1522×13×14=513,所以sin B =1-cos 2B =1213,则该沙田的面积S =12AB ·BC ·sin B =12×13×14×1213=84(平方里).11.已知△ABC 的面积为S =14(b 2+c 2)(其中b ,c 为△ABC 的边长),则△ABC 的形状为.答案等腰直角三角形解析依题意,△ABC 的面积为S =14(b 2+c 2),则12bc sin A =14(b 2+c 2),即2bc sin A =b 2+c 2,由于0<A <π,所以0<sin A ≤1,所以0<2bc sin A ≤2bc ,由基本不等式可知b 2+c 2≥2bc ,当且仅当b =c 时等号成立,所以sin A =1,A =π2,△ABC 是等腰直角三角形.12.(2023·沈阳模拟)在△ABC 中,∠BAC =120°,D 在BC 上,AD ⊥AC ,AD =1,则1AC +2AB =.答案3解析在△ADC 中,AD ⊥AC ,AD =1,所以1AC =AD AC=tan C ,因为B =180°-∠BAC -C =60°-C ,在△ABC 中,由正弦定理得,AB sin C =AC sin B ,则AB =AC sin C sin B =1tan C ·sin C sin (60°-C )=cos C 32cos C -12sin C ,所以1AB =32-12·sin C cos C =32-12tan C ,所以1AC +2AB=tan C +(3-tan C )= 3.四、解答题13.记△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,已知b sin C =c sin B 2.(1)求角B 的大小;(2)若点D 在边AC 上,BD 平分∠ABC ,a =2,b =7,求线段BD 的长.解(1)已知b sin C =c sin B 2,由正弦定理,得sin B sin C =sin C sinB 2,因为C ∈(0,π),所以sin C ≠0,故sin B =sin B 2,即2sin B 2cos B 2=sin B 2,因为B 2∈sin B 2≠0,则cos B 2=12,所以B 2=π3,则B =2π3.(2)依题意,得12a ·BD ·sin π3+12c ·BD ·sin π3=12ac sin 2π3,即a ·BD +c ·BD =ac ,即2BD +c ·BD =2c ,所以BD =2c 2+c.在△ABC 中,由余弦定理,得b 2=a 2+c 2-2ac cos2π3=a 2+c 2+ac ,即7=4+c 2+2c ,解得c =1或c =-3(舍去),所以BD =2c 2+c =23.14.(2023·新高考全国Ⅱ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为3,D 为BC 的中点,且AD =1.(1)若∠ADC =π3,求tan B ;(2)若b 2+c 2=8,求b ,c .解(1)方法一在△ABC 中,因为D 为BC 的中点,∠ADC =π3,AD =1,则S △ADC =12AD ·DC sin ∠ADC =12×1×12a ×32=38a =12S △ABC =32,解得a =4.在△ABD 中,∠ADB =2π3,由余弦定理得c 2=BD 2+AD 2-2BD ·AD cos ∠ADB ,即c 2=4+1-2×2×17,解得c =7.在△ABD 中,则cos B =AB 2+BD 2-AD 22AB ·BD =7+4-127×2=5714,sin B =1-cos 2B =2114,所以tan B =sin B cos B =35.方法二在△ABC 中,因为D 为BC 的中点,∠ADC =π3,AD =1,则S △ADC =12AD ·DC sin ∠ADC =12×1×12a ×32=38a =12S △ABC =32,解得a =4.在△ACD 中,由余弦定理得b 2=CD 2+AD 2-2CD ·AD cos ∠ADC ,即b 2=4+1-2×2×1×12=3,解得b =3,又AC 2+AD 2=4=CD 2,则∠CAD =π2,C =π6,过A 作AE ⊥BC 于点E ,如图所示,于是CE =AC cos C =32,AE =AC sin C =32,BE =52,所以在Rt △AEB 中,tan B =AE BE =35.(2)方法一在△ABD 与△ACD 中,由余弦定理得2=14a 2+1-2×12a ×1×cos (π-∠ADC ),2=14a 2+1-2×12a ×1×cos ∠ADC ,整理得12a 2+2=b 2+c 2,而b 2+c 2=8,则a =23,又S △ADC =12×3×1×sin ∠ADC =32,解得sin ∠ADC =1,而0<∠ADC <π,于是∠ADC =π2,所以b =c =AD 2+CD 2=2.方法二在△ABC 中,因为D 为BC 的中点,则2AD →=AB →+AC →,又CB →=AB →-AC →,于是4AD →2+CB →2=(AB →+AC →)2+(AB →-AC →)2=2(b 2+c 2)=16,即4+a 2=16,解得a =23,又S △ADC =12×3×1×sin ∠ADC =32,解得sin ∠ADC =1,而0<∠ADC <π,于是∠ADC =π2,所以b =c =AD 2+CD 2=2.15.(2023·渝中模拟)如图,设在△ABC 中,AB =BC =AC ,从顶点A 连接对边BC 上两点D ,E ,使得∠DAE =30°,若BD =16,CE =5,则边长AB 等于()A .38B .40C .42D .44答案B 解析方法一设AB =x ,∠BAD =α,在△BAD 中,由正弦定理得x sin (60°+α)=16sin α,可以化简得x 16=32cos αsin α+12,在△EAC 中,由正弦定理得x sin (90°+α)=5sin (30°-α),可以化简得5x =-32sin αcos α+12,=-34,可以化简得x2-42x+80=0,解得x=40,x=2(舍去).方法二设AB=x,利用余弦定理得AD2=x2+162-16x,AE2=x2+52-5x,而△ADE的面积S=12DE·AB×sin60°=12(x-21)32x=12AD·AE×sin30°,则AD·AE=3x(x-21),则在△ADE中,由余弦定理得(x-21)2=AD2+AE2-2AD·AE cos30°,x2-42x+212=x2+162-16x+x2+52-5x-3x(x-21),化简整理得x2-42x+80=0,即x=40,x=2(舍去).16.(2024·大庆模拟)设△ABC的三边长为BC=a,CA=b,AB=c,若tan A2=ab+c,tan B 2=ba+c,则△ABC是() A.等腰三角形B.直角三角形C.等腰直角三角形D.以上说法都不对答案B解析利用tan A2=sin A1+cos A,tanB2=sin B1+cos B及正弦定理和题设条件,得sin A1+cos A=sin Asin B+sin C,①sin B1+cos B=sin Bsin A+sin C,②所以1+cos A=sin B+sin C,③1+cos B=sin A+sin C,④由③和④得1+cos A-sin B=1+cos B-sin A,即sin A+cos A=sin B+cos B,因为A,B为三角形内角,所以A+π4=B+π4或A+π4=π-B-π4,即A =B 或A +B =π2.(1)若A =B ,由C =π-A -B =π-2A ,将其代入③,得1+cos A =sin A +sin 2A.变形得(sin A -cos A )2-(sin A -cos A )=0,即(sin A -cos A )(sin A -cos A -1)=0,⑤由A =B 知A 为锐角,从而知sin A -cos A -1≠0.所以由⑤,得sin A -cos A =0,即A =π4,从而B =π4,C =π2.因此,△ABC 为等腰直角三角形.(2)若A +B =π2,即C =π2,此时③④恒成立,综上,△ABC 为直角三角形.。

平面几何中的正弦定理与余弦定理

平面几何中的正弦定理与余弦定理

平面几何中的正弦定理与余弦定理正弦定理和余弦定理是平面几何中的两个重要定理,它们为我们解决三角形中的边长和角度提供了便捷的方法。

本文将详细介绍正弦定理和余弦定理的概念、公式以及应用。

一、正弦定理正弦定理是指在任意三角形ABC中,三条边a、b、c与它们对应的角A、B、C之间的关系。

其数学表达式为:a/sinA = b/sinB = c/sinC其中,a、b、c分别为三角形ABC的边长,A、B、C为对应的角度。

该定理说明了三角形的边长与对应的角度之间的比例关系。

通过正弦定理,我们可以求解已知三角形两边边长及其对应角度的情况下,第三边边长或者未知角度的值。

例如,已知三角形的两边长分别为5和8,它们对应的角度为30°和60°,我们可以利用正弦定理计算第三边的长度。

二、余弦定理余弦定理是指在任意三角形ABC中,已知三边a、b、c之间的关系以及它们对应的角A、B、C。

其数学表达式为:c^2 = a^2 + b^2 - 2abcosC该定理给出了三角形的边长和角度之间的关系。

通过余弦定理,我们可以求解已知三角形的三边边长,或者已知两边和夹角情况下的第三边边长。

余弦定理中的cosC表示了角C的余弦值,而cosC可以通过已知的边长和夹角计算得出。

如果我们已知两边长为5和8,夹角为30°,则可以利用余弦定理计算第三边的长度。

三、应用举例1. 已知两边边长和夹角,求第三边的长度假设我们知道一个三角形的两边边长分别为6和9,夹角为45°。

根据余弦定理,可以计算第三边的长度:c^2 = 6^2 + 9^2 - 2 * 6 * 9 * cos45°c^2 = 36 + 81 - 108 * 0.7071c^2 = 117 - 76.7421c^2 ≈ 40.2579c ≈ 6.35因此,第三边的长度约为6.35。

2. 已知三边边长,求角度的度数假设一个三角形的三边边长分别为7、8和9。

三角公式总结正弦定理余弦定理诱导公式二倍角公式半角公式积化和差公式和差化积公式

三角公式总结正弦定理余弦定理诱导公式二倍角公式半角公式积化和差公式和差化积公式

三角公式总结正弦定理余弦定理诱导公式二倍角公式半角公式积化和差公式和差化积公式三角公式是解决三角形问题的基本工具,包括正弦定理、余弦定理、诱导公式、二倍角公式、半角公式、积化和差公式和和差化积公式等。

下面我们详细介绍这些公式。

1. 正弦定理(Sine Rule):在一个三角形ABC中,边长a、b、c与其对应的角A、B、C满足如下关系:a/sinA = b/sinB = c/sinC这个公式可以用于求解已知三角形任意两边及其夹角,求解三角形内外角和的问题。

2. 余弦定理(Cosine Rule):在一个三角形ABC中,边长a、b、c 与其对应的角A、B、C满足如下关系:a^2 = b^2 + c^2 - 2bc*cosAb^2 = a^2 + c^2 - 2ac*cosBc^2 = a^2 + b^2 - 2ab*cosC这个公式可以用于求解已知三角形两边及其夹角,求解三角形内外角和的问题。

3. 诱导公式(Tangent Addition Formula):对于角A和角B,有如下关系:tan(A+B) = (tanA + tanB) / (1 - tanA*tanB)tan(A-B) = (tanA - tanB) / (1 + tanA*tanB)这个公式可以用于求解角的和与差的正切值。

4. 二倍角公式(Double Angle Formula):对于角A,有如下关系:sin(2A) = 2*sinA*cosAcos(2A) = cos^2(A) - sin^2(A)tan(2A) = 2*tanA / (1 - tan^2(A))这个公式可以用于求解角的两倍角的正弦、余弦和正切值。

5. 半角公式(Half Angle Formula):对于角A,有如下关系:sin(A/2) = ±√[(1 - cosA) / 2]cos(A/2) = ±√[(1 + cosA) / 2]tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]这个公式可以用于求解角的半角的正弦、余弦和正切值。

2013届高考北师大版数学总复习课件:4.8正弦定理、余弦定理的应用举例

2013届高考北师大版数学总复习课件:4.8正弦定理、余弦定理的应用举例

5.如图,为了开凿隧道,要测量隧道上 D、E 间的距离, 为此在山的一侧选取适当点 C,测得 CA=400m,CB=600m, ∠ACB=60° ,又测得 A、B 两点到隧道口的距离 AD=80m,BE =40m(A、D、E、B 在一条直线上),则隧道 DE 的长是______m. [答案] 200 7-120
A.北偏东 10° C.南偏东 10°
[答案] B
[解析] 由图可知∠ACB=180° -(40° +60° )=80° , 1 ∵AC=BC,∴∠A=∠CBA= (180° -80° )=50° . 2 ∵CE∥BD,∠CBD=∠BCE=60° , ∴∠ABD=60° -50° =10° , ∴灯塔 A 在灯塔 B 的北偏西 10° .
正弦定理、余弦定理
第 八 节
的应用举例
考纲解读 能够运用正弦定理、 余弦定理等知识和方法解决一些与测量 和几何计算有关的实际问题. 考向预测 1. 对解决实际问题的能力及测量问题的考查是高考的重点. 2.在选择、填空、解答中都可能考查,属中档题.
知识梳理 1.仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角, 目标视线在水平视线__________ 上方的角 叫仰角,目标视线在水平视线
∴∠BAC=60° +70° =130° .
3.(教材改编题)有一长为 1 的斜坡,它的倾斜角为 20° ,现 高不变,将倾斜角改为 10° ,则斜坡长为( A. 1 C.2cos10° B.2sin10° D.cos20° )
[答案] C
[解析] 如图,∵∠ABC=20° ,AB=1,∠ADC=10° , ∴∠ABD=160° .
[解析] 如图所示,AB=40 2,AC=10 13,∠BAC=θ, 26 sinθ= . 26 由于 0° <θ<90° ,所以 cosθ=

几何中的正弦定理与余弦定理

几何中的正弦定理与余弦定理

几何中的正弦定理与余弦定理几何学是一门研究空间和形状的学科,其中涉及到许多重要的定理和公式。

正弦定理和余弦定理是几何学中两个基础而重要的定理,它们在解决三角形的边长和角度方面起着至关重要的作用。

一、正弦定理正弦定理是指在一个任意三角形中,三条边与其对应的角之间的关系。

根据正弦定理,我们可以得到以下公式:a/sin A = b/sin B = c/sin C其中,a、b和c分别代表三角形的三条边的长度,A、B和C分别代表三角形的三个对应角的度数。

通过正弦定理,我们可以求解一个未知边长或未知角度,只需知道其他两条边长或角度即可。

例如,当我们知道三角形的两条边长a和b,以及它们夹角C的度数,我们可以利用正弦定理计算第三条边c的长度:c = (sin C * a) / sin B通过正弦定理,我们可以方便地解决一些与三角形相关的几何问题,比如寻找缺失的边长或角度。

二、余弦定理余弦定理是描述一个三角形中的边长和角度之间的关系。

与正弦定理类似,余弦定理也是解决三角形问题的重要工具。

根据余弦定理,我们可以得到以下公式:c^2 = a^2 + b^2 - 2abcos C其中,a、b和c分别代表三角形的三条边的长度,C代表三角形的夹角的度数。

通过余弦定理,我们可以求解一个未知边长或未知角度,只需知道其他两条边长或角度即可。

例如,当我们知道三角形的两条边长a和b,以及它们夹角C的度数,我们可以利用余弦定理计算第三条边c的长度:c = √(a^2 + b^2 - 2abcos C)除了求解边长,余弦定理也可以用来求解角度。

例如,当我们已知三角形的三条边长a、b和c时,我们可以利用余弦定理求解夹角A的余弦值:cos A = (b^2 + c^2 - a^2) / 2bc通过计算余弦值的反函数,我们可以得到夹角A的度数。

综上所述,正弦定理和余弦定理是解决几何学中三角形问题的重要工具。

它们可以帮助我们计算未知的边长和角度,解决各种与三角形相关的几何问题。

(完整版)正弦定理、余弦定理知识点

(完整版)正弦定理、余弦定理知识点

正弦定理、余弦定理讲师:王光明【基础知识点】1. 三角形常用公式:A +B +C =π;S =ab sin C =bc sin A ==ca sin B ;2121212.三角形中的边角不等关系: A>B a>b,a+b>c,a-b<c ;;⇔3.【正弦定理】:===2R (外接圆直径);A a sin B b sin Ccsin 正弦定理的变式:; a ∶b ∶c =sin A ∶sin B ∶sin C .⎪⎩⎪⎨⎧===C R c B R b AR a sin 2sin 2sin 24.正弦定理应用范围: ①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况:(1)A 为锐角AABa=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角当时有一解.a>b 5.【余弦定理】 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB .若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.【习题知识点】知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状.【解析】解法1:由扩充的正弦定理:代入已知式2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bc a c b b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a =即△ABC 为等腰三角形.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理: ①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角.例题2 在△ABC 中,已知,,B=45︒ 求A 、C 及c .3=a 2=b 【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【解析】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BCb c当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理将已知条件代入,整理:解之:B ac c a b cos 2222-+=0162=+-x x 226±=x 当时 从而A=60︒ ,C=75︒226+=c 2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 当时同理可求得:A=120︒ C=15︒.226-=c 知识点3 解决与三角形在关的证明、计算问题例题3 已知A 、B 、C 为锐角,tanA=1,tanB=2,tanC=3,求A+B+C 的值. 【分析】本题是要求角,要求角先要求出这个角的某一个三角函数值,再根据角的范围确定角.本题应先求出A+B 和C 的正切值,再一次运用两角和的正切公式求出A+B+C .【解析】 A B C 、、为锐角∴<++<0270°°A B C 又,,由公式可得tan tan A B ==12tan()tan tan tan tan A B A B A B +=+-⋅=+-=-112123[]tan()tan ()A B C A B C ++=++=++-+⋅tan()tan tan()tan A B C A B C 1 =-+--⨯33133() =0所以A+B+C=π知识点4 求三角形的面积例题4 △ABC 中,D 在边BC 上,且BD =2,DC =1,∠B =60o ,∠ADC =150o ,求AC 的长及△ABC 的面积.【解析】在△ABC 中,∠BAD =150o -60o =90o ,∴AD =2sin60o =3.A在△ACD 中,AD 2=(3)2+12-2×3×1×cos150o =7,∴AC =7. ∴AB =2cos60o =1.S △ABC =21×1×3×sin60o =343.知识点4 解决实际为题例题4 如图,海中有一小岛,周围3.8海里内有暗礁。

正弦定理和余弦定理

正弦定理和余弦定理
正弦定理和余弦定理是解三角形问题的重要工具。正弦定理表达了三角形各边与其对应角的正弦值之间的关系,而余弦定理则关联了三角形的一边与其两邻边及夹角余弦值的关系。利两边和其中一边的对角求另一边的对角等问题。而余弦定理则常用于已知两边及夹角求第三边,或已知三边求内角的情况。在解题过程中,需要注意根据题目条件和三角形的性质合理取舍解,避免增解或漏解的错误。同时,也要结合图形和边角关系进行判断和计算。通过熟练掌握正弦定理和余弦定理的应用,我们能够更有效地解决三角形相关的数学问题。

第四章 §4.8 正弦定理、余弦定理【淘宝店:红太阳资料库】

第四章 §4.8 正弦定理、余弦定理【淘宝店:红太阳资料库】

一、单项选择题1.在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于( ) A.35 B.31 C .6 D .52.在△ABC 中,内角A ,B ,C 的对边a ,b ,c 依次成等差数列,且B =π3,则△ABC 的形状为( )A .等边三角形B .直角边不相等的直角三角形C .等腰直角三角形D .钝角三角形3.(2023·红河模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为12b (b sin B -a sin A -c sin C ),则B 等于( )A.π6B.5π6C.π3D.2π34.(2023·宜宾模拟)如图,在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .点D 为BC的中点,AD =1,B =π3,且△ABC 的面积为32,则c 等于( )A .1B .2C .3D .45.(2023·潍坊模拟)如图,平面四边形ABCD 的内角B +D =π,AB =6,DA =2,BC =CD ,且AC =27.则角B 等于( )A.π6B.π4C.π3D.5π126.(2022·乐山统考)已知△ABC 中,AB →·AC →=-3,AB =2,cos 2A +sin 2B +sin 2C +sin B sin C=1,D 是边BC 上一点,∠CAD =3∠BAD .则AD 等于( )A.65B.334C.62D.637二、多项选择题7.(2024·南京模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若(a 2+c 2-b 2)tan B =3ac ,则B 的值为( )A.π6B.π3C.5π6D.2π38.已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,下列四个命题中正确的是( )A .若a cos A =b cosB ,则△ABC 是等腰三角形B .若b cosC +c cos B =b ,则△ABC 是等腰三角形C .若a cos A =b cos B =c cos C,则△ABC 是等边三角形 D .若B =60°,b 2=ac ,则△ABC 是直角三角形三、填空题9.(2023·上饶模拟)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,2cos A bc =cos B ab +cos C ac,则A = .10.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五的“田域类”中写道:问有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.意思是已知三角形沙田的三边长分别为13里、14里、15里,求三角形沙田的面积.则该沙田的面积为 平方里.11.已知△ABC 的面积为S =14(b 2+c 2)(其中b ,c 为△ABC 的边长),则△ABC 的形状为 .12.(2023·沈阳模拟)在△ABC 中,∠BAC =120°,D 在BC 上,AD ⊥AC ,AD =1,则1AC +2AB= .四、解答题13.记△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,已知b sin C =c sin B 2. (1)求角B 的大小;(2)若点D 在边AC 上,BD 平分∠ABC ,a =2,b =7,求线段BD 的长.14.(2023·新高考全国Ⅱ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为3,D 为BC 的中点,且AD =1.(1)若∠ADC =π3,求tan B ; (2)若b 2+c 2=8,求b ,c .15.(2023·渝中模拟)如图,设在△ABC 中,AB =BC =AC ,从顶点A 连接对边BC 上两点D ,E ,使得∠DAE =30°,若BD =16,CE =5,则边长AB 等于( )A .38B .40C .42D .4416.(2024·大庆模拟)设△ABC 的三边长为BC =a ,CA =b ,AB =c ,若tan A 2=a b +c ,tan B 2=b a +c,则△ABC 是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .以上说法都不对。

正余弦定理公式大全

正余弦定理公式大全

正余弦定理公式大全正弦定理和余弦定理是解三角形问题时常用到的两个重要定理,它们可以帮助我们求解三角形的边长和角度,解决各种实际问题。

下面我们将详细介绍正弦定理和余弦定理的公式及应用。

首先,我们来看正弦定理。

对于任意三角形ABC,其三条边分别为a,b,c,对应的角分别为A,B,C。

正弦定理可以表示为:a/sinA = b/sinB = c/sinC。

其中,a/sinA = b/sinB = c/sinC这个比值关系被称为正弦定理的比值形式。

正弦定理告诉我们,一个三角形的每条边与其对立角的正弦值之比是相等的。

这个定理可以帮助我们求解三角形的边长和角度,应用非常广泛。

接下来,我们来看余弦定理。

对于任意三角形ABC,其三条边分别为a,b,c,对应的角分别为A,B,C。

余弦定理可以表示为:a^2 = b^2 + c^2 2bccosA。

b^2 = a^2 + c^2 2accosB。

c^2 = a^2 + b^2 2abcosC。

余弦定理告诉我们,一个三角形的每条边的平方与其余两条边的平方之差与对应的角的余弦值之积是相等的。

这个定理同样可以帮助我们求解三角形的边长和角度,解决各种实际问题。

在实际问题中,我们可以根据具体情况选择使用正弦定理或余弦定理来求解三角形的边长和角度。

在使用正弦定理和余弦定理时,我们需要注意角度的单位,通常情况下我们使用弧度制来计算。

在求解问题时,我们可以根据已知条件,利用正弦定理和余弦定理建立方程,然后求解方程,得到未知量的值。

在使用正弦定理和余弦定理时,我们需要注意角度的对应关系,确保计算结果的准确性。

总之,正弦定理和余弦定理是解三角形问题时常用到的两个重要定理,它们可以帮助我们求解三角形的边长和角度,解决各种实际问题。

希望本文介绍的正弦定理和余弦定理的公式及应用对您有所帮助。

正弦定理和余弦定理详细讲解

正弦定理和余弦定理详细讲解

高考风向 1. 考查正弦定理、余弦定理的推导; 2. 利用正、余弦定理判断三角形的形状和解三角形;3. 在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.学习要领 1. 理解正弦定理、 余弦定理的意义和作用; 2. 通过正弦、 余弦定理实现三角形中的边角转换,和三角函数性质相结合.基础知识梳理a =b = c= 2R ,其中 R 是三角形外接圆的半径.由正弦定理可以1. 正弦定理: sin A sin B sin C变形: (1)a ∶ b ∶ c = sin_A ∶sin_B ∶ sin_C ; (2)a = 2Rsin_A , b = 2Rsin_B ,c = 2Rsin_C ;a,sin B = b , sin C = c等形式,解决不同的三角形问题.(3)sin A = 2R2R2R2. 余弦定理: a 2= b 2+ c 2- 2bccos_A , b 2= a 2 + c 2- 2accos_B , c 2= a 2+ b 2- 2abcos_C .余弦定理可以变形: cos A =b 2+ c 2- a2a 2+ c 2- b2a 2+b 2- c2, cos B =, cos C =2ab.2bc2ac1 absin C = 11 abc 1 (a + b +c) ·r(r 是三角形内切圆的半径 ),并 3. S △ABC = 2bcsin A = acsin B = = 2 2 4R 2可由此计算 R 、 r .4. 在△ ABC 中,已知 a 、 b 和 A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a = bsin Absin A<a<ba ≥b a>b解的个数一解两解一解一解[ 难点正本疑点清源 ]1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在 △ABC 中, A>B? a>b? sin A>sin B ;tanA+tanB+tanC=tanA tanB ·tanC ·;在锐角三角形中, cosA<sinB,cosA<sinC·2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角; (2) 化角为边,并常用正弦 ( 余弦 )定理实施边、角转换.例 1.已知在ABC 中, c 10 , A 45 ,C 30 ,解三角形 .思路点拨 : 先将已知条件表示在示意图形上(如图) ,可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b .解析:a c ,sin Asin Cc sin A 10 sin 45 10 2,∴ a∴ B180( A C) 105 ,又b c,sin B sin Cc sin B10sin10562∴ b20sin 75 205652.sin C sin 304总结升华:1.正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2.数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式 .举一反三:【变式 1】在ABC 中,已知 A32.00, B81.80, a42.9cm ,解三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§4.8 正弦定理和余弦定理2014高考会这样考 1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考查.复习备考要这样做 1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转换,和三角函数性质相结合.1. 正弦定理:a sin A =b sin B =csin C=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2. 余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3. S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .4. 在△ABC 中,已知a 、b 和A 时,解的情况如下:1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.1. 在△ABC 中,若A =60°,a =3,则a +b +csin A +sin B +sin C=________.答案 2解析 由正弦定理及等比性质知a sin A =b sin B =csin C =a +b +c sin A +sin B +sin C =2R , 而由A =60°,a =3, 得a +b +c sin A +sin B +sin C=2R =a sin A =3sin 60°=2.2. (2012·福建)已知△ABC 的三边长成公比为2的等比数列,则其最大角的余弦值为________. 答案 -24解析 设三角形的三边长从小到大依次为a ,b ,c , 由题意得b =2a ,c =2a . 在△ABC 中,由余弦定理得cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22×a ×2a=-24.3. (2012·重庆)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cos B =513,b =3,则c =________. 答案145解析 在△ABC 中,∵cos A =35>0,∴sin A =45.∵cos B =513>0,∴sin B =1213.∴sin C =sin [π-(A +B )]=sin(A +B ) =sin A cos B +cos A sin B =45×513+35×1213=5665. 由正弦定理知b sin B =csin C ,∴c =b sin Csin B =3×56651213=145.4. (2011·课标全国)在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.答案 27解析 由正弦定理知AB sin C =3sin 60°=BCsin A, ∴AB =2sin C ,BC =2sin A .又A +C =120°,∴AB +2BC =2sin C +4sin(120°-C ) =2(sin C +2sin 120°cos C -2cos 120°sin C ) =2(sin C +3cos C +sin C )=2(2sin C +3cos C )=27sin(C +α), 其中tan α=32,α是第一象限角, 由于0°<C <120°,且α是第一象限角, 因此AB +2BC 有最大值27.5. 已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为________. 答案2解析 ∵a sin A =b sin B =c sin C =2R =8,∴sin C =c 8,∴S △ABC =12ab sin C =116abc =116×162= 2.题型一 利用正弦定理解三角形例1 在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c .思维启迪:已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的个数的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin Csin B =6+22; 当A =120°时,C =180°-45°-120°=15°, c =b sin C sin B =6-22.探究提高 (1)已知两角及一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________. 答案 π6解析 ∵A +C =2B 且A +B +C =π,∴B =π3.由正弦定理知:sin A =a sin B b =12,又a <b ,∴A <B ,∴A =π6.题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c.(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.思维启迪:由cos B cos C =-b2a +c ,利用余弦定理转化为边的关系求解.解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .将上式代入cos B cos C =-b2a +c得: a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2A2+cos A =0. (1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2A2+cos A =0,得1+cos A +cos A =0,即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc ,又a =23,b +c =4,有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.题型三 正弦定理、余弦定理的综合应用例3 (2012·课标全国)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sinC -b -c =0. (1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .思维启迪:利用正弦定理将边转化为角,再利用和差公式可求出A ;面积公式和余弦定理相结合,可求出b ,c .解 (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sin A sin C -sin B -sin C =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12. 又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8.解得b =c =2.探究提高 在已知关系式中,若既含有边又含有角.通常的思路是将角都化成边或将边都化成角,再结合正、余弦定理即可求角.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c .(1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C 得a 2+b 2-ab =4. 又∵△ABC 的面积为3,∴12ab sin C =3,ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由sin C +sin(B -A )=sin 2A , 得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0, 当cos A =0时,∵0<A <π, ∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A , 由正弦定理得a =b , 即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形.高考中的解三角形问题典例:(14分)(2012·辽宁)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列. (1)求cos B 的值;(2)边a ,b ,c 成等比数列,求sin A sin C 的值.考点分析 本题考查三角形的性质和正弦定理、余弦定理,考查转化能力和运算求解能力.求解策略 根据三角形内角和定理可直接求得B ;利用正弦定理或余弦定理转化到只含角或只含边的式子,然后求解. 规范解答(1)解 由已知2B =A +C ,A +B +C =180°,解得B =60°, 所以cos B =12.[6分](2)解 方法一 由已知b 2=ac ,及cos B =12,根据正弦定理得sin 2B =sin A sin C ,[10分] 所以sin A sin C =1-cos 2B =34.[14分]方法二 由已知b 2=ac ,及cos B =12,根据余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =12,解得a =c ,[12分]所以A =C =B =60°,故sin A sin C =34.[14分]解后反思 (1)在解三角形的有关问题中,对所给的边角关系式一般要先化为只含边之间的关系或只含角之间的关系,再进行判断.(2)在求解时要根据式子的结构特征判断使用哪个定理以及变形的方向.方法与技巧1.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2.正、余弦定理的公式应注意灵活运用,如由正、余弦定理结合得sin 2A =sin 2B +sin 2C - 2sin B ·sin C ·cos A ,可以进行化简或证明. 失误与防范1.在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.A 组 专项基础训练 (时间:35分钟,满分:62分)一、填空题(每小题5分,共35分)1. (2012·广东改编)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =________.答案 2 3解析 在△ABC 中,AC sin B =BCsin A, ∴AC =BC ·sin Bsin A =32×2232=2 3.2. (2011·浙江改编)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =________. 答案 1解析 ∵a cos A =b sin B ,∴sin A cos A =sin B sin B , 即sin A cos A -sin 2B =0,∴sin A cos A -(1-cos 2B )=0, ∴sin A cos A +cos 2B =1.3. 在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是________三角形. 答案 等腰解析 因为a =2b cos C ,所以由余弦定理得:a =2b ·a 2+b 2-c 22ab ,整理得b 2=c 2,因此三角形一定是等腰三角形.4. (2012·湖南改编)△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于________.答案332解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去). ∴BC 边上的高为AB ·sin B =3×32=332. 5. (2011·北京)在△ABC 中,若b =5,∠B =π4,sin A =13,则a =________.答案523解析 根据正弦定理应有a sin A =b sin B, ∴a =b sin Asin B =5×1322=523.6. (2011·福建)若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________.答案 2解析 由于S △ABC =3,BC =2,C =60°,∴3=12×2·AC ·32,∴AC =2,∴△ABC 为正三角形.∴AB =2.7. 在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________.答案 4或5解析 设BC =x ,则由余弦定理AB 2=AC 2+BC 2-2AC ·BC cos C 得5=25+x 2-2·5·x ·910,即x 2-9x +20=0,解得x =4或x =5. 二、解答题(共27分)8. (13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,AB →·AC→=3.(1)求△ABC 的面积; (2)若b +c =6,求a 的值.解 (1)∵cos A 2=255,∴cos A =2cos 2A 2-1=35,∴sin A =45.又AB →·AC →=3,∴bc cos A =3,∴bc =5.∴S △ABC =12bc sin A =12×5×45=2.(2)由(1)知,bc =5,又b +c =6, 根据余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-2bc -2bc cos A =36-10-10×35=20,∴a =2 5.9. (14分)在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,4sin 2B +C 2-cos 2A =72.(1)求A 的度数;(2)若a =3,b +c =3,求b 、c 的值. 解 (1)∵B +C =π-A ,即B +C 2=π2-A2,由4sin 2B +C 2-cos 2A =72,得4cos 2A 2-cos 2A =72,即2(1+cos A )-(2cos 2A -1)=72,整理得4cos 2A -4cos A +1=0,即(2cos A -1)2=0. ∴cos A =12,又0°<A <180°,∴A =60°.(2)由A =60°,根据余弦定理cos A =b 2+c 2-a 22bc ,即b 2+c 2-a 22bc =12,∴b 2+c 2-bc =3,① 又b +c =3,② ∴b 2+c 2+2bc =9.③ ①-③整理得:bc =2.④解②④联立方程组得⎩⎪⎨⎪⎧ b =1,c =2,或⎩⎪⎨⎪⎧b =2,c =1.B 组 专项能力提升 (时间:35分钟,满分:58分)一、填空题(每小题5分,共30分)1. (2012·上海改编)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是________三角形.答案 钝角 解析 由正弦定理知a sin A =b sin B =csin C=2R , ∴sin A =a 2R ,sin B =b 2R ,sin C =c2R .∵sin 2A +sin 2B <sin 2C , ∴a 24R 2+b 24R 2<c 24R 2,∴a 2+b 2<c 2, ∴cos C =a 2+b 2-c 22ab<0,∴C 为钝角,∴△ABC 为钝角三角形.2. (2011·辽宁改编)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2 A =2a ,则ba =________.答案2解析 ∵a sin A sin B +b cos 2A =2a , ∴sin A sin A sin B +sin B cos 2A =2sin A , ∴sin B =2sin A ,∴b a =sin Bsin A= 2.3. (2012·湖北改编)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C =__________. 答案 6∶5∶4解析 ∵A >B >C ,∴a >b >c .设a =b +1,c =b -1,由3b =20a cos A 得3b =20(b +1)×b 2+(b -1)2-(b +1)22b (b -1). 化简,得7b 2-27b -40=0.解得b =5或b =-87(舍去),∴a =6,c =4. ∴sin A ∶sin B ∶sin C =6∶5∶4.4. 在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边长,已知a ,b ,c 成等比数列,且a 2-c 2=ac -bc ,则∠A =________,△ABC 的形状为______三角形.答案 60° 正解析 ∵a ,b ,c 成等比数列,∴b 2=ac .又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc .在△ABC 中,由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12, ∴∠A =60°.由b 2=ac ,即a =b 2c , 代入a 2-c 2=ac -bc ,整理得(b -c )(b 3+c 3+cb 2)=0,∴b =c .∴△ABC 为正三角形.5. 在△ABC 中,若∠A =60°,b =1,S △ABC =3,则a +b +c sin A +sin B +sin C的值为________. 答案 2393解析 ∵S △ABC =3,即12bc sin A =3,∴c =4. 由余弦定理a 2=b 2+c 2-2bc cos A =13,∴a =13,∴a +b +c sin A +sin B +sin C =a sin A =2133=2393. 6. 在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若b a +a b =6cos C ,则tan C tan A +tan C tan B的值是______. 答案 4解析 由b a +a b=6cos C ,得b 2+a 2=6ab cos C . 化简整理得2(a 2+b 2)=3c 2,将tan C tan A +tan C tan B切化弦, 得sin C cos C ·(cos A sin A +cos B sin B )=sin C cos C ·sin (A +B )sin A sin B=sin C cos C ·sin C sin A sin B =sin 2C cos C sin A sin B.根据正、余弦定理得sin 2C cos C sin A sin B =c 2ab ·a 2+b 2-c 22ab=2c 2a 2+b 2-c 2=2c 232c 2-c 2=4. 二、解答题(共28分)7. (14分)(2012·浙江)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23, sin B =5cos C .(1)求tan C 的值;(2)若a =2,求△ABC 的面积.解 (1)因为0<A <π,cos A =23, 得sin A =1-cos 2A =53. 又5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C , 所以tan C = 5.(2)由tan C =5,得sin C =56,cos C =16. 于是sin B =5cos C =56, 由a =2及正弦定理a sin A =c sin C,得c = 3. 设△ABC 的面积为S ,则S =12ac sin B =52. 8. (14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C .(1)求角C 的大小;(2)求3sin A -cos ⎝⎛⎭⎫B +π4的最大值,并求取得最大值时角A ,B 的大小. 解 (1)由正弦定理得sin C sin A =sin A cos C .因为0<A <π,所以sin A >0,从而sin C =cos C .又cos C ≠0,所以tan C =1,则C =π4. (2)由(1)知,B =3π4-A , 于是3sin A -cos ⎝⎛⎭⎫B +π4=3sin A -cos(π-A )=3sin A +cos A =2sin ⎝⎛⎭⎫A +π6. 因为0<A <3π4,所以π6<A +π6<11π12. 从而当A +π6=π2,即A =π3时,2sin ⎝⎛⎭⎫A +π6取最大值2. 综上所述,3sin A -cos ⎝⎛⎭⎫B +π4的最大值为2,此时A =π3,B =5π12.。

相关文档
最新文档