西南交大《高等数学IB》离线作业 完整答案培训课件
西南交通大学 高数下期末复习参考资料
2018-2019第2学期高等数学下册复习参考资料目录第一章、向量代数与空间解析几何 (1)第一节向量及其运算 (1)第二节空间的平面和直线 (2)第三节空间曲面与空间曲线 (4)习题 (5)第二章、多元函数微分法及其应用 (5)第一节偏导数 (5)第二节全微分 (6)第三节方向导数和梯度 (8)第四节多元函数的极值以求法 (9)习题 (10)第三章、重积分 (10)第一节二重积分的概念和性质(几何意义) (10)第二节二重积分的计算法 (12)第三节三重积分的概念 (13)第四节三重积分的计算 (13)第五节重积分的应用 (15)习题 (16)第四章、曲线积分与曲面积分 (16)第一节对弧长的曲线积分 (16)第二节对坐标的曲线积分 (18)第三节格林公式 (18)第四节对面积的曲面积分 (20)第五节对坐标的曲面积分 (20)习题 (22)第五章、无穷级数 (22)第一节常数项级数的概念和性质 (22)第二节常数项级数的审敛法 (23)第三节幂级数 (24)第四节傅里叶级数 (25)习题 (26)期末模拟卷 (26)参考答案 (28)第一章、向量代数与空间解析几何第一节向量及其运算1.向量的数量积(点积)向量a⃗=(a1,a2,a3)与向量b⃗⃗=(b1,b2,b3)的数量积是一个数,其值为|a⃗||b⃗⃗|cosθ,其中θ为向量a⃗与向量b⃗⃗的夹角,记作a⃗⋅b⃗⃗,若其中有一个为零向量时,则定义其值为0,数量积的坐标表达式为a⃗⋅b⃗⃗=a1b1+a2b2+a3b3,两个向量相互垂直则称它们正交,记作a⃗⊥b⃗⃗,特别的,规定零向量与任意向量垂直。
数量积有以下基本性质:(1)a⃗⋅b⃗⃗=b⃗⃗⋅a⃗(2)(λa⃗)⋅b⃗⃗=λ(a⃗⋅b⃗⃗)(3)(a⃗+b⃗⃗)⋅c⃗=a⃗⋅c⃗+b⃗⃗⋅c⃗(4)a⃗⊥b⃗⃗的充要条件为a⃗⋅b⃗⃗=02.向量的向量积(叉积)向量积,顾名思义,就是两个向量a⃗和b⃗⃗的经过特殊的法则所合成的向量,通常该向量垂直于向量a⃗与向量b⃗⃗所在的平面,记此向量为c⃗,c⃗=a⃗×b⃗⃗,通常,向量a⃗与向量b⃗⃗交换位置后要再添加一个负号才能使其值还是c⃗,c⃗的模等于|a⃗||b⃗⃗|sinθ,θ为两个向量的夹角,应注意这里的θ范围。
西南交通大学大一公共课高等数学考试卷 (2)
西南交通大学高等数学考试一、选择题(每题4分,共16分)1.函数222222 0(,)0 0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0, 0)点 .(A) 连续,且偏导函数都存在(B) 不连续,但偏导函数都存在;(C) 不连续,且偏导函数都不存在; (D) 连续,且偏导函数都不存在。
2.设f 为可微函数,(,)z f x y z xyz =++,则z x ∂=∂ 。
(A )12121f yz f f x y f ''+''+- (B )12121f x y f f yz f ''--''+ (C )12121f yz f f x y f ''+''-- (D )1212f xzf f yzf ''+''+。
3.设),(y x f 在()22:24D x y +-≤上连续,则二重积分⎰⎰D y x f σd ),(表示成极坐标系下的二次积分的形式为 。
(A ). 220 0d (cos ,sin )d f r r r rπθθθ⎰⎰;(B ). 2d (cos ,sin )d f r r r rπθθθ⎰⎰;(C ). 4cos 00d (cos ,sin )d f r r r rπθθθθ⎰⎰;(D ). 4sin 0d (cos ,sin )d f r r r rπθθθθ⎰⎰4.幂级数0(1)nn n a x ∞=+∑在3x =处条件收敛,则幂级数0nnn a x∞=∑的收敛半径为 。
(A ).3; (B ).4;(C ).1; (D ).5。
二、填空题(每题4分,共20分)1.设函数y z x =,则函数yz x =的全微分 。
2.函数222u x y z =++在点)1,1,1(0P 处沿0OP 方向的方向导数为 ,其中O 为坐标原点。
西南交通大学高等数学考试试卷
一、填空题: 1.设函数(,)z z x y =是由ln x zz y=所确定,则()0,1,1dz =dx dy + . 2.设幂级数0nn n a x ∞=∑的收敛区间为()3,3-,则幂级数()01nn n a x ∞=-∑的收敛区间为 ()2,4- .3.设函数,0()0,0x x f x x ππ--<≤⎧=⎨<≤⎩的付氏级数的和函数为()S x ,则(5)S π=2π.4.设),(xyx f z =,其中f 具有连续的二阶偏导数,则y x z∂∂∂2= 223221211f xy f x f x ''-'-'' . 5.设幂级数()01nn n a x ∞=-∑在0x =处收敛,而在2x =处发散,则幂级数0n n n a x ∞=∑的收敛域为 [1,1)-.6.函数23)(2-+=x x x f 关于x 的幂级数展开式为 110(1)1,(1,1)2n n n n x x +∞+=⎡⎤--∈-⎢⎥⎣⎦∑ . 7.设函数y z x =,则(2,1)dz = 2ln 2dx dy +8.曲线23,,x t y t z t ==-=的切线中,与平面236x y z -+=垂直的切线方程是111123x y z -+-==-. 9.设),(y x z z=是由方程sin()ln z e z xy a -= 0a >为常数所确定的二元函数,则 =dz cos()cos()sin()sin()z zyz xy xz xy dx dy e xy e xy +--. 10.旋转抛物面22zx y =+的切平面: 44810x y z -++=,平行与已知平面21x y z -+=.11.微分方程20y y y '''+-=的通解为 1212x x YC eC e -=+,2x y y y e '''+-=的通解为 121212x x x yC eC e e -=++.12.曲线:Γt tu e z t t y udu e x 301,cos sin 2,cos +=+==⎰在点()2,1,0处的切线方程为 3.函数41)(-=x x f 的麦克劳林级数的第5项为544x -,收敛域为)4,4(-.14..已知函数(,)23a b f x y x y x y =+--(其中,a b 是大于1的实数),有一个极值点(1,1), 则3,2==b a , 此时函数(,)f x y 的极大值为 3.15.试写出求解下列条件极值问题的拉格朗日函数:分解已知正数a 为三个正数z y x ,,之和,使z y x ,,的倒数之和最小()()a z y x zy x z y x L -+++++=λ111,, 16函数()x x x f -=1ln )(的麦克劳林级数的收敛域为[)1,1-∈x ,=)0()5(f-30二、单项选择题:请将正确结果的字母写在括号内。
西南交通大学期末真题及答案10-11高等数学II试题A卷答案
2010-2011高等数学Ⅱ(A 卷)参考答案一、选择题 (每题4分)1.D 2.C 3.B 4.D 二、填空题 (每题4分)5.μλ2=6.3412112242 x f xf x yf yf ''''''++-或3422121122122142x f xf x yf yf x yf x yf ''''''''''++-+- 7.π2 8.4811717- 9.⎪⎩⎪⎨⎧-=<<<<--=ππππ,0,,00,10,1)(x x x x s三、解答题 (每题8分)10.解:所求平面的法向量就是已知直线的方向向量, 于是)2,5,3()4,2,1(21-⨯-=⨯=n n n则)11,14,16(-=n, 在由平面的点法式方程,有0)3(11)0(14)2(16=++-+--z y x即065111416=---z y x .11.解:0)(1sin)(lim )0,0()0(lim)0,0(2200=∆∆∆=∆-∆+='→∆→∆xx x xf x f f x x x ,同理0)0,0(='y f 。
记22)()(y x ∆+∆=ρ,而01sinlim)0,0()0,0(lim220==∆'-∆'-∆→→ρρρρρρyf x f z y x ,由可微的定义知),(y x f 在点)0,0(的可微。
12.解:由对称性⎰⎰⎰⎰⎰⎰ΩΩ=++zdv dv z y x 2)2(⎰⎰⎰=zD dxdy zdz 12⎰=122dz z π3102233z ππ=⨯=. 13.解:原式⎰--+=Ldy y x dx y x a )()(12dxdy a D⎰⎰-=)2(12 (格林公式) ππ2)2(122-=⨯-⨯=a a.14.解:(1)设2x t =,而n n nt n 121)1(1+-∑∞=的收敛域为]1,1(-, 于是121121)1(+∞=+-∑n n nx n 的收敛域为[1,1]-. (2)设)(121)1(121x s x n n n n=+-+∞=∑,则(0)0s =, 又 2212211)()1()(x x x xx s nn nn n+-=-=-='∑∑∞=∞=, 于是,x x dx x x s x s xarctan 1)0()(022+-=+-=-⎰, 即,()arctan s x x x =-+.(3)显然,2111(1)216n nn s n π+∞=-==++∑. 15.解:函数为 tsy x y x f =),(,0,>t s ,约束条件为 M y x =+,0>M . 令 )(),,(M y x y x y x F ts-++=λλ, 则有,⎪⎩⎪⎨⎧=-+==+==+=--00011M y x F y tx F y sx F t s y t s x λλλ,解得驻点),(ts Mtt s Ms ++. 由于当),(y x 趋于边界0=x 或0=y 时,0),(→y x f , 故当t s Ms x +=,ts Mt y +=时,ts y x 取最大值. 16.(6分)解:对x x x x x f ++=3422),(求导,得164),(2),(232221++='+'x x x x f x x x f ,而221(,)221f x x x x '=-+, 则x x x x x f x 244),(22322++=', 故122),(222++='x x x x f .17.(5分)解:设a dxdy e y x zf dzdx e z y dydz ez x z z z=-++++⎰⎰∑]2),([)()(,则a xy y x f +=2),(.设0,1:22=≤+z y x D ,1∑是D 的下侧,Ω是1,∑∑所围区域,应用高斯公式与垂直性,有:dxdy e y x zf dzdx e z y dydz e z x a z z z ]2),([)()(1-++++=⎰⎰∑+∑dxdy e y x zf dzdx e z y dydz e z x z z z ]2),([)()(1-++++-⎰⎰∑⎰⎰⎰⎰⎰-++=ΩDd dv y x f z σ)2()),(2(,π2)22(-++=⎰⎰⎰Ωdv a xy z ,π2)2(-+=⎰⎰⎰Ωdv a zπ2)2(1-+=⎰⎰⎰zD dxdy dz a zππ2)1()2(21--+=⎰dz z a zππ2)1()2(21--+=⎰dz z a zππ2)3221(-+=a即,)321(23ππ--=a , 则+=xy y x f 2),()321(23ππ--. 18.(5分)解:将D 分割成1D 和2D ,其中1D 关于y 轴对称,2D 关于x 轴对称,利用对称性,有=++⎰⎰xdxdy y x yf D](1[22+⎰⎰dxdy x D 1dxdy x D ⎰⎰2dxdy y x xyf D)(22++⎰⎰ dxdy y x xyf D )(222++⎰⎰002031+++=⎰⎰--x dy xdx522014-=-=⎰-dx x .。
2009~2010学年第二学期《高等数学BII》半期试题参考答案
2009~2010学年第二学期《高等数学BII》半期试题参考答案西南交通大学2009-2010学年第(二)学期半期考试题一、单项选择题(共5个小题,每小题4分,共20分).1.累次积分cos 2(cos ,sin )d f r r rdr πθθθθ??可表示成【 D】(A )100(,)dy f x y dx ?(B )10(,)dy f x y dx(C )10(,)dx f x y dy ?(D )10(,)dx f xy dy ?解:根据该二重积分可知,积分区域为半圆域:01,0x y ≤≤≤≤,所以应选D 。
2. 两直线1112y z x λ+--==与11x y z +=-=相交,则必有【 D 】(A )1λ= (B )32λ=(C )54λ=- (D )54λ=解:直线11x y z +=-=的参数方程为:11x t y t z t =-??=+??=?,将此参数方程代入直线1112y z x λ+--==,得2122t t t λ+--==,解得654t λ=??=??,故应选(D )。
3.极限332200lim x y x y x xy y →→+-+=【 A 】(A) 0 (B) 1 (C)12(D)不存在极限解;因为33222222000000()()lim lim lim()0x x x y y y x y x y x xy y x y x xy y x xy y →→→→→→++-+==+=-+-+,故应选(A )。
4.曲面2xyz =的切平面与三个坐标面所围四面体的体积V =【 C 】 (A) 3 (B) 6 (C) 9 (D) 12解:设曲面2xyz =在第一卦限的任意一个切点为(,,)x y z ,则切平面方程为:班级学号姓名密封装订线密封装订线密封装订线()()()0yz X x xz Y y xy Z z -+-+-=,其中2xyz =,即36yzX xzY xyZ xyz ++==,则该切平面与三个坐标轴的交点分别为:6(,0,0)yz,6(0,,0)xz ,6(0,0,)xy ,则该切平面与三个坐标面所围四面体的体积221666363696()2V yz xz xy xyz ====,故应选(C )。
高等数学1B第一次作业答案 - 西南交通大学网络教育学院
lim n→∞n 2 n 2 +π = lim n→∞n 2 n 2 +nπ =1 ,
所以
lim n→∞( n n 2 +π + n n 2 +2π +⋯+ n n 2 +nπ )=1 .
(2)因为
n n 2 +n≤1 n 2 +1 + 1 n 2 +2 +⋯+ 1 n 2 +n≤n n 2 +1 ,
(4)
lim x→0 xcot x= lim x→0 x sin x cos x=1 .
(5)
lim x→0 1−cos 2x xsin x = lim x→0 1−cos 2x x 2 x sin x = lim x→0 [ sin 2x x 2 ] 2 1 1+cos 2x =2 .
(6)
lim x→+∞x( x 2 +1 −x)= lim x→+∞x x 2 +1 +x = lim x→+∞1 1+ 1 x 2 +1 = 1 2
参考答案:
解:由罗尔定理知
f′(x)=0有三个不同的实根,分布在(1,2), (2,3), (3,4).
21.设a>b>0 , n>1 ,证明: n b n−1 (a−b)< a n − b n <n a n−1 (a−b) . [本题2分]
参考答案:
证明:设
f(x)= x n ,
在
[b,a]区间上使用中值定理得:
[本题2分]
参考答案:
解:(1)
y′=8 (2x+5) 3 ,
(2)
高等数学(下)B卷参考答案
由zx zyຫໍສະໝຸດ 3 3x2 33y20 0
,得驻点 (1, 1), (1,
1), 1, 1,1,
1
2分 2分
D zxx zxy 6x 0
z yx z yy
0 6y
D1,1 36 0 , D1,1 36 0 D1,1 36 0 D1,1 36 0
zxx (1,1) 6 0 , zxx (1,1) 6 0
令
2x2 1 得
x 1
2
2分 2分
2分
收敛半径为
R 1 2
六、解答下列各题(本大题分 2 小题, 每小题 8 分, 共 16 分)
1. 方程分离变量得 ydy xdx
两边积分得
1 y2 1 x2 1 C 2 22
代入初始条件y 3 得 C 9 x0
故所求特解为
y2 x2 9
2分
2分 2分 2分 2分
成人教育&网络教育 20XX 年 9 月试题答案
课程名称: 高等数学(下) A 卷□ B 卷 √ 考试时间 100 分钟 评分教师 一、单项选择题(每小题 4 分,共 12 分)
职称
1. C. (或 D、或 C 与 D 都给分) 2. B.
3. D
二、填空题(每小题 4 分,共 8 分)
1. 9 2 105
2、 y y x 对应齐次方程的特征根为 r1 1 , r2 1
2分
齐次方程的通解为
y C1e x C2ex
1分
设原方程的一个特解为
y Ax ,
1分
代入原方程得 A 1, y x
2分
故所求方程的通解为 y C1e x C2ex x
2分
esin xy[( x x 2 y cos xy) sin(x y)]dy
西南交大《高等数学IB》离线作业 完整答案教材
一、单项选择题(只有一个选项正确,共7道小题)1. A(A) x-y+1=0(B) x+y+1=02. B(A) 1(B) 1/23. A(A) 4(B) 24. A(A) 2(B) 15. B(A) 10(B) -106. A(A) -5/2(B) -3/27. B(A) 1(B) 3四、主观题(共2道小题)8.9.计算下列极限:一、单项选择题(只有一个选项正确,共8道小题)1. A(A) 4(B) 22. A(A) 1(B) 2(C) 3(D) 43. D(A)(B)(C)(D)4. 函数的单调增加区间是()C(A)(B)(C) [-1,1](D)5. B(A) 1(B) 2(C) 3(D) 46. B(A)(B)(C)(D)7. C(A)(B)(C)(D)8. D(A)(B)(C)(D)四、主观题(共6道小题)9.证明方程至少有一个根介于1和2之间.解证明: 设f(x)= , 显然是连续的, 又f(1)=1−3−1=−3<0 ,由零点定理知存在c∈(1, 2) , 使得即方程至少有一个根介于1和2之间.10.求下列函数的导数:解:(1) (2)(3)(4)(5)(6)11.求下列函数的导数:解:(1)(2) (3)(4)12.求下列函数的二阶导数:解:(1) (2)(3)13.证明方程只有一个正根.解证明: 设则f(0)=−1<0, f(1)=1>0 , 由零点定理知方程x在0和1之间有一个(正)根. 若方程有两个正根a,b,a>b>0,则由罗尔定理知存在使得但这显然是不可能的, 所以方程只有一个正根.14.用洛必达法则求下列极限:解:(1)(2) (3)(4)一、单项选择题(只有一个选项正确,共5道小题)1. A(A) 2/3(B) 3/2(C) 5(D) 62. <> C(A)(B)(C)(D)3. B(A) 0(B) 1(C) 2(D) 34. 函数的单调递减区间是()C(A) (-∞,1)(B) [0,+∞](C) (1,+∞)(D) [-1,+∞]5. B(A)(B)(C)(D)四、主观题(共10道小题)6.验证函数满足关系式:。
《高数B》同步练习册(下)答案与提示(第7、8章)
参考答案与提示第7章 向量代数与空间解析几何§7.1 空间直角坐标系1. (1)b=c=0; c=0; 0,0,0>>>c b a . (2)222c b a ++;22b a +; c . (3) )0,0,(a ;),,0(c b (4) ),,(c b a - 2.)2,1,0(-§7.2 向量及其线性运算1.j 2;0};1,2,0{2.(1)向量与x 轴垂直,即平行于yOz 平面 (2) 向量与y 轴垂直,即平行于zOx 平面(3) 向量既与x 轴垂直又与y 轴垂直,即垂直于xOy 平面 32= ,21cos ,22cos ,21cos =-=-=γβα;3,43,32πγπβπα===,}21,22,21{021--=M M §7.3 数量积、向量积、混合积1.(1) 正确 (2) 错误 (3)正确 (4) 正确 (5) 错误 (6) 正确 (7) 错误 2.(1)C (2)C 3.3(1)1(2)2--4.105.提示:作数量积6. 2,2}±--7.(2)683§7.4 平面与直线1.(1)37540x y z -+-= (2)320x y z --= (3)5y =- (4)920y z --= 2.1,1,3-交点坐标为()3.1d =4.(1)两平面平行但不重合 (2)两平面垂直相交。
5.对称式:149710y x z --==,参数式:971104x t y t z t =⎧⎪=+⎨⎪=+⎩6.(1)143215y x z +--== (2)24231y x z --==-7.15(0,1,1),arcsin 19ϕ-=交点为夹角为8.(1)161411650x y z ---= (2)0x y z -+= 9. 024147=++y x§7.5 曲面及其方程1.22224116()(1)()339x y z +++++=2433表示的是以(-,-1,-)为球心,以半径的球面2.(1)绕x 轴:22249()36x y z -+=是一个双叶双曲面 绕y 轴:2224()936x z y +-=是一个单叶双曲面 3(1)表示母线平行于z 轴,准线为xoy 平面上的椭圆22410x y z +=⎧⎨=⎩的椭圆柱面;(2)表示母线平行于x 轴,准线为yoz 平面上的双曲线2210y z x -=⎧⎨=⎩的双曲柱面;(3)表示椭球面; (4)表示单叶双曲面; (5)表示双叶双曲面; (6)表示椭圆抛物面;(7)表示圆锥面.§7.6 空间曲线1.(1) co s sin 0x R t y R t z =⎧⎪=⎨⎪=⎩ , π20≤≤t ;(2)3sin x ty tz t⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,π20≤≤t .2.221168y x +=3.(1)222(1)90x y x z ++-=⎧⎨=⎩(2)223600z x y +-=⎧⎨=⎩4. (1) 0,122=≤+z y x ; (2) 0,222=≤+z y x .总习题七1.(1)D (2)B (3)B (4)C (5)B (6)D (7) D 2.(1)6-, (2) 23-,(3) }1,0,1{-, (4) d =, (5) 2=y ,(6) }2,2,1{, (7) )724,72,71(--, (8)334231--=-=-z y x ,(9)1, (10)224x y z +=;225x y z ++=;2240x y z +=⎧⎨=⎩3. 30±4.d =5. 111011y x z l --- ==: 6. 111-=-=-z y x第8章 多元函数微分学§8.1 多元函数的基本概念1、(1)}14),{(22≥+y x y x (2)}1),{(<+y x y x (3)}0,),,({22222≠+≥+y x z y x z y x (4)连续 (5)x y =22、提示:kx y =令3、(1) 41-(2) 0§8.2 偏导数1.(1) 1-; (2) 2e π2. (1)yxy x y z y x yxz 2csc2,2csc22-=∂∂=∂∂; (2)xyyxy z yx ++=1)1(2, ]1)1[ln()1(xyxy xy xy z y y ++++=3.22222)(2y x xy xz +=∂∂, 222222)(y x xy yx z +-=∂∂∂,22222)(2y x xy yz+-=∂∂4.(1)r zz r r y y r r x xr =∂∂=∂∂=∂∂,,, (2)322223222232222,,rz r zr ry r yr rx r xr -=∂∂-=∂∂-=∂∂§8.3 全微分及其应用1. (1)dx 2 (2) 0.25e2. (1) ))(cos(xdy ydx xy dz += (2) )ln ln (1ydz xy xzdy ydx yz y du xz ++=-§8.4 多元复合函数求导法1、(1) 212f xe f y xy '+'- (2) 12+'ϕx (3) t t t 232423-+2、(1) 321f yz f y f u x '+'+'=, 32f xz f x u y '+'=, 3f xy u z '=;(2) f x f z xx''+'=''242, f xy z xy ''=''4 (3)2231122121f yx f xy f yf yx z ''-''+'-'=∂∂∂ 3. z xyxyf 2)(2或§8.5 隐函数的求导公式1、yx y x -+ 2、zx 2sin 2sin -, zy 2s i n 2s i n -3、322224)()2(xy zy x xyz zz --- 4、 2121F y F x dy F z dx F z dz '+''+'=§8.6 多元函数的极值及其应用1、极小值2)1,21(e f -=-2. 4)1,2(,64)2,4(==-==f M f m3.两直角边边长为l 21时,周长最大.4. 140,90==y x总习题八1、(1) }10),{(22<+<y x y x ϕϕ''+'+''y f y(2) 1 (3)232)43(1123t t t-+- (4) )(2dy dx e +(5) 既非充分也非必要,充分,必要2、(1) B (2) C (3) A (4) D (5) B3、 2331213sin cos cos sin f y e f x e f x y f e y x y x y x ''-''+''-'+++ 33)(2f e y x ''++ 4.θθsin cos yu x u r u ∂∂+∂∂=∂∂,θθθcos )sin (r yu r xu u ⋅∂∂+-⋅∂∂=∂∂5、)2()2(222122112221f e f ye x f y x f e y x x f x xy xy xy''+''+''+'++' 6. 222yx e--7. yz xy z y z z x zx z+=∂∂+=∂∂2,,3222)(z x zx z +-=∂∂8. ϕϕϕϕ''+=∂∂'-=∂∂xy xz y y z x y xy x z322,9.3232)1(22---z x zz z11. 8)2,0(,0)0,0(====f M f m12. 338abc13.359m ax +=d 359m i n -=d14. 最近点)21,21,21(-,距离为632, 最远点)21,21,21(--,距离为63415.(1) 25.1,75.021==x x (2) 5.1,021==x x16.(1) 7,5,10,42211====P Q P Q 时有最大利润52=L ; (2) 4,5,82121====Q Q P P 时有最大利润49=L ,实行价格差别策略时利润较大.。
同济大学版高等数学b1教材答案
同济大学版高等数学b1教材答案第1章集合与函数1.1 集合的概念1. 一个集合是由一些确定的对象组成的整体,它们被称为该集合的元素。
2. 集合可以用列举法、描述法、区间表示法等多种方式进行表示。
3. 集合之间的相等关系是通过元素是否相同来确定的。
4. 自然数集、整数集、有理数集等是常见的数学集合。
1.2 常用数集1. 自然数集 N = {0, 1, 2, 3, ...},其中0一般包含在自然数集中,但有时可不包含。
2. 整数集 Z = {..., -3, -2, -1, 0, 1, 2, 3, ...}。
3. 有理数集 Q = {p/q | p, q ∈ Z, q ≠ 0 }。
4. 实数集 R 是包含有理数集和无理数集的集合。
5. 复数集 C = {a + bi | a, b ∈ R, i^2 = -1 }。
1.3 集合的运算1. 并集:A ∪ B = {x | x ∈ A 或 x ∈ B}。
2. 交集:A ∩ B = {x | x ∈ A 且 x ∈ B}。
3. 差集:A - B = {x | x ∈ A 且 x ∉ B}。
4. 补集:A' = {x | x 不属于 A},其中 U 为全集。
1.4 函数的概念与性质1. 函数是两个集合之间的一种对应关系,每个自变量在函数中有唯一的对应值。
2. 函数可以用映射图、解析式、函数表等方式来表示。
3. 函数可以分为定义域、值域、单调性、奇偶性等多个性质。
第2章三角函数2.1 弧度制与角度制1. 角度制是通过度数来度量角的大小。
2. 弧度制是通过弧长与半径之比来度量角的大小,常用符号为rad。
3. 180° = π rad,1° = π/180 rad。
2.2 任意角与三角函数1. 任意角是指不限于标准位置的角。
2. 边长比可以用来表示三角函数的值。
2.3 三角函数的定义1. 正弦函数:sinθ = y/r。
2. 余弦函数:cosθ = x/r。
高数课程习题全(完整资料).doc
【最新整理,下载后即可编辑】课程习题 第一章 函数与极限1.填空题 (1)设421)1(x x x x f +=+ )0(≠x ,则=)(x f 。
(2)设xxx f πsin ln )(=,则)(x f 的一个可去间断点为=x 。
(3)若x x →时,)(x α与)(x β是等价无穷小,则=++→)](1ln[)](1ln[lim0x x x x βα 。
2.单项选择题:(1)xxe x y cos sin =在(+∞∞-,)内为( )(A )周期函数。
(B) 偶函数。
(C ) 有界函数。
(D) 单调函数。
(2)当1→x 时,函数11211---x ex x 的极限( )(A) 等于2。
(B) 等于0。
(C) 为无穷大。
(D) 不存在但也不为无穷大。
(3)设)(x f 是定义在[b a ,]上的单调增加函数,),(0b a x ∈,则( )(A ))0(0-x f 存在但)0(0+x f 不一定存在。
(B ))0(0+x f 存在但)0(0-x f 不一定存在。
(C ))0(0-x f 与)0(0+x f 都存在但)(lim 0x f x x →不一定存在。
(D) )(lim 0x f x x →一定存在。
(4)当0→x 时,6(x x sin +)是3x 的( )(A )高阶无穷小。
(B )同阶但非等价无穷小。
(C )低阶无穷小。
(D )等价无穷小。
3.设⎩⎨⎧-+=21)(x x x f3111≤<<≤-x x ,b a x f x ++=)()(ϕ,试确定ba ,之值,使)(x ϕ为奇函数。
4.利用数列极限的N -ε定义231223lim=-+∞→n n n 。
5.求下列极限:(1))111)(110()110()13()12()1(lim2222--++++++++∞→x x x x x x x(2)xx x x x 23151lim20+--+→ (3)xx x x 3)1212(lim -+∞→(4)x x x 2cot )2(lim 2ππ-→(5)3442lim2+++-∞→x x x x(6)]ln sin )1ln([sin lim n n n -+∞→ (7))332211(lim 2222n n n nn n n n n n n ++++++++++++∞→6.设⎪⎪⎩⎪⎪⎨⎧+=x ax x x x f 1)1(2sin )(00><x x ,求常数a ,使)(lim 0x f x →存在 7.讨论函数极限:xxx cos 1lim0-→。
2020年7月全国网络教育统考《高等数学B》试卷及参考答案(5套)
试卷1 一、一选择题1..A.正确B.不正确答案:B2.函数在点处可导.A.正确B.不正确答案:A3.函数在内连续.A.正确B.不正确答案:B4.函数的定义域为.A.正确B.不正确答案:A二、二选择题5.是有界函数.A.正确B.不正确答案:A6.设函数,则.A.正确B.不正确答案:B7.设函数,则.A.正确B.不正确答案:B8..A.正确B.不正确答案:B9..A.正确B.不正确答案:A10.是微分方程的解.A.正确B.不正确答案:A三、三选择题11.极限().A.B.C.D.答案:B12.不定积分( ).A.B.C.D.答案:D13.设函数,则().A.B.C.D.答案:D14.定积分=().A.B.C.D.答案:A15.函数的图形如图示,则函数的单调减少区间为( ).A.B.C.D.答案:C16.设函数,则().A.B.C.D.答案:A四、四选择题17.曲线在点处切线的方程为().A.B.C.D.答案:B18.定积分=().A.B.C.D.答案:D19.微分方程的通解是().A.B.C.D.答案:A20.不定积分().A.B.C.D.答案:C试卷2 一、一选择题1.函数在处可导.A.正确B.不正确答案:A2.定积分.A.正确B.不正确答案:B3.函数在点处连续.A.正确B.不正确答案:A4.函数的定义域为.A.正确B.不正确答案:B二、二选择题5.是周期函数.A.正确B.不正确答案:A6..A.正确B.不正确答案:A7.设函数,则.A.正确B.不正确答案:B8.是微分方程的解.A.正确B.不正确答案:B9.设函数,则.A.正确B.不正确答案:A10.不定积分,其中为任意常数.A.正确B.不正确答案:B三、三选择题11.极限().A.B.C.D.答案:A12.设函数,则().A.B.C.D.答案:B13.不定积分().A.B.C.D.答案:C14.定积分=().A.B.C.D.答案:C15.函数的图形如图示,则函数的单调减少区间为( ).A.B.C.D.答案:B16.设函数,则().A.B.C.D.答案:D四、四选择题17.微分方程的通解是().A.B.C.D.答案:D18.曲线在点处切线的方程为().A.B.C.D.答案:A19.不定积分().A.B.C.D.答案:D20.定积分=().A.B.C.D.答案:B试卷3 一、一选择题1.函数的定义域为.A.正确B.不正确答案:A2.函数在内连续.A.正确B.不正确答案:B3.定积分.A.正确B.不正确答案:A4.函数在点处可导.A.正确B.不正确答案:B二、二选择题5.不是一阶微分方程.A.正确B.不正确答案:B6.设函数, 则.A.正确B.不正确答案:B7.是奇函数.A.正确B.不正确答案:A8.设函数,则.A.正确B.不正确答案:A9..A.正确B.不正确答案:B10.是函数的一个原函数.A.正确B.不正确答案:A三、三选择题11.设函数,则().A.B.C.D.答案:B12.不定积分().A.B.C.D.答案:D13.设函数,则().A.B.C.D.答案:A14.定积分=().A.B.C.D.答案:B15.函数的图形如图示,则函数( ).A.在内单调增加, 在区间内单调减少B.在内单调增加C.在内单调减少, 在区间内单调增加D.在内单调减少答案:C16.极限().A.B.C.D.答案:D四、四选择题17.定积分=().A.B.C.D.答案:D18.不定积分⑴⑵⑶则上述解法( ).A.第⑴步开始出错B.第⑵步开始出错C.第⑶步开始出错D.全部正确答案:A19.微分方程的通解是().A.B.C.D.答案:B20.曲线在点处切线的方程为().A.B.C.D.答案:C试卷4 一、一选择题1.函数的定义域为.A.正确B.不正确答案:A2.定积分.A.正确B.不正确答案:B3.函数在点处可导.A.正确B.不正确答案:B4.函数在点处连续.A.正确B.不正确答案:A二、二选择题5.设函数, 则.A.正确B.不正确答案:A6.设函数,则.A.正确B.不正确答案:B7.是偶函数.A.正确B.不正确答案:B8.不是一阶微分方程.A.正确B.不正确答案:B9..A.正确B.不正确答案:A10.不定积分,其中为任意常数.A.正确B.不正确答案:A三、三选择题11.不定积分().A.B.C.D.答案:C12.设函数,则().A.B.C.D.答案:A13.函数的图形如图示,则函数( ).A.在内单调增加, 在区间内单调减少B.在内单调增加C.在内单调减少, 在区间内单调增加D.在内单调减少答案:B14.定积分=().A.B.C.D.答案:D15.设函数,则().A.B.C.D.答案:A16.极限().A.B.C.D.答案:B四、四选择题17.不定积分⑴⑵⑶则上述解法( ).A.第⑴步开始出错B.第⑵步开始出错C.第⑶步开始出错D.全部正确答案:B18.微分方程满足的特解是().A.B.C.D.答案:A19.定积分=().A.B.C.D.答案:D20.曲线在点处切线的方程为().A.B.C.D.答案:C试卷5 一、一选择题1.函数在点处连续.A.正确B.不正确答案:A2.函数在处可导.A.正确B.不正确答案:A3.函数的定义域为.A.正确B.不正确答案:B4.定积分.A.正确B.不正确答案:B二、二选择题5.是可分离变量微分方程.A.正确B.不正确答案:A6..A.正确B.不正确答案:B7.设函数,则.A.正确B.不正确答案:A8.设函数, 则.A.正确B.不正确答案:B9.不定积分,其中为任意常数.A.正确B.不正确答案:B10.是奇函数.A.正确B.不正确答案:A三、三选择题11.设函数,则().A.B.C.D.答案:A12.定积分=().A.B.C.D.答案:D13.设函数,则().A.B.C.D.答案:B14.极限().A.B.C.D.答案:B15.不定积分().A.B.C.D.答案:C16.函数的图形如图示,则函数( ).A.在内单调增加, 在区间内单调减少B.在内单调增加C.在内单调减少, 在区间内单调增加D.在内单调减少答案:C四、四选择题17.定积分=().A.B.C.D.答案:D18.曲线在点处切线的方程为().A.B.C.D.答案:B19.不定积分⑴⑵⑶则上述解法( ).A.第⑴步开始出错B.第⑵步开始出错C.第⑶步开始出错D.全部正确答案:C20.微分方程满足的特解是().A.B.C.D.答案:A。
高等数学总习题及答案 ppt课件
原式e 3 3 a b c
2021/3/30
25
上下
9.(6) 利用第二重要极限求极限
0 lx i m 2(sinx)tanxlx i m 2 (1sinx1)sin 1 x 1 (sinx 1)tanx
lim(sinx1)tanx
x
2
lim
x
2
sin x cot
x
1
cos(
x) 1
解:f[f(x)]0f(xf)(x)f (x0)0
0
x
x 0 f(x)
x0
f[g(x)]0g(xg)(xg)(x0)0 0
2021/3/30
22
上下
9.
(3)li
m (2x3)x1;
提
示
:lim x
(1
1 )x x
e
x 2x1
1
lim (1 t ) t e
t
解:原式=
lim[1
x
2x11]x1
你所经历的课堂,是讲座式还是讨论式? 教师的教鞭
“不怕太阳晒,也不怕那风雨狂,只怕先生骂我笨, 没有学问无颜见爹娘 ……”
“太阳当空照,花儿对我笑,小鸟说早早早……”
2021/3/30
4
本章内容小结
函数 极限 连续
(函数基本初等函数初等函数)
概念 性质 计算法
连续性 法则、准则 无穷小的性质 重要极限 等价代换
(9) lxi m 1 xxm n11(m,n是 自 然) 数
分析 :此极限 0型 为 ,须消去分子分 因母 子 (x中 1),的 0
将分子分母.分解因式
解: lx 1 ix x m m n 1 1 lx 1 i( ( x x m 1 1 ) )x x ( m ( n 1 1 x x n m 2 2 x x 1 1 ) )
高等数学智慧树知到课后章节答案2023年下西安交通工程学院
高等数学智慧树知到课后章节答案2023年下西安交通工程学院西安交通工程学院第一章测试1.当时,下列无穷小中与不是等价无穷小的是().A:; B:; C:; D:.答案:.2.下列极限存在的是().A:; B: C:; D:.答案:;3.( ).A:; B:; C: D:不存在。
答案:不存在。
4.().A:; B: C: D:答案:5.函数在点的左、右极限都存在是函数在点连续的().A:无关条件.B:必要条件; C:充要条件; D:充分条件;答案:必要条件;第二章测试1.函数在点处()A:不连续 B:可导 C:连续 D:可微答案:不连续2.函数>0)的导数为()A: B: C:D:答案:3.若可导,且,则有()A: B: C:D:答案:4.已知,则()A: B:0 C:9D:答案:05.已知,则=()A: B:C: D:答案:第三章测试1.下列选项中,等式成立的是()A:;B:; C:.D:;答案:;2.设,则f(x)=()A:; B:.C:; D:;答案:.3.()A:; B:.C:; D:;答案:;4.设有连续导函数,则下列说法正确的是 ( )A:; B:.C:;D:;答案:;5.若。
则()A:.B:; C:; D:;答案:.第四章测试1.下列等式成立的是()A:;B:.C:; D:;答案:;2.设,则()。
A:.B:; C:; D:;答案:.3.()。
A:; B:.C:; D:;答案:;4.设有连续导函数,则下列命题正确的是 ( )A:.B:; C:; D:;答案:;5.若成立。
则()A:; B:.C:;D:;答案:.第五章测试1.设,则下列关系成立的是().A: B: C:D:答案:2.由曲线和直线所围成图形的平面图形的面积为()A: B:C:D:答案:3.曲线与所围成图形的平面图形的面积是()A: B:C: D:答案:4.由曲线当与直线所围成的平面图形的的面积()A: B:C:1 D:答案:5.以初速度竖直向上抛一物体,秒时刻的速度,则此物体到达最高时的高度为()A:B: C: D:答案:第六章测试1.方程的通解为()A:B: C: D:答案:2.函数是下列哪个微分方程的解()A: B: C:D:答案:3.下列方程中是可分离变量的方程是()A:B:C: D:答案:4.下列方程中是一阶线性非齐次方程的是()A: B:C: D:答案:5.已知是微分方程的一个特解,则它的通解是()A: B: C: D:答案:第七章测试1.已知向量则垂直于及轴的单位向量().A:B: C: D:答案:2.通过点且平行于平面的平面方程为().A: B:C: D:答案:3.平面().A:平行于轴; B:平行于轴; C:平行于轴; D:过原点。
AII(B卷)答案 4
设 与 1 所围区域为 ,令 P x y3 , Q y z3 , R x3 z ,则
P 1, Q 1, R 1. x y z
(2 分)
南京工程学院评分标准及参考答
利用高斯公式,有 I dv (x3 1)dxdy (4 分)
1 1
案
Dxy
dV
1 3
x y 2 z ( z ) 2 y cos(xy 2 ) 2xy3 sin(xy 2 ) (2 分)
xy y x
(2 分),
2.由题意知 A1A2 (0,2,1)
平面的法线向量为 n=
A1A2 a (0,2,1) (1,1,1)= (-1,-1,2)
(4 分)
从而可得平面的方程为 (x 1) ( y 2) 2(z 1) 0 。
所以
I
2dxdy 0 x2dx 2 (x2 )dx 8
L AO
AO
2
D
0
3
(4 分)
共 4 页第 3 页
四、综合应用题(本大题共 2 小题,共 24 分)
1.因为 f (x, y) x3 y3 3x2 3y 2 9x
所以可求出一阶偏导数并令之为 0,得
fx 3x2 6x 9 0 (1 分)
1 ( x 1)n 3 n0 3
n0
(
1 2 n1
1 3n1
)(
x
1) n
收敛域 x 1 2 ,即 x (3,1) 。
(1 分)
(2 分)
5.令 P x2 y , Q x y 2 ,则
P 1, Q 1
y
x
(2 分)
作辅助线 AO : y 0, x:2 0; (2 分)
AO 与 L 所围为 D,
高数II及微积分I-B(2)答案
∞
sin α 1 ) 2 n n n =1 ∞ ∞ sin α 1 1 sin α ≤ 2 , ∑ 2 收敛,所以 ∑ 2 收敛 解: 2 n n n =1 n n =1 n ∞ 1 ∑ ( n ) 发散 n =1
∑(
∞
所以原级数发散 六. 解: lim
…………………………(2 分)
…………………………(4 分)
…………………………(8 分)
由点 A(0, 0) 到 B (1,1) 的曲线积分 十.解: un = e
∫ ( xe
L
x
1 + f ( x)) ydx + f ( x)dy = e ………………………(10 分) 2
1 n x 令 f ( x) = e 1 x, f (0) = 0
南 京 航 空 航 天 大 学
第 1 页 (共 3 页)
二○○ 六 ~ 二○○七 课程名称: 《 命题教师:
一.填空题 1.
学年
第 2 学期
高等数学 II 及微积分 I》参考答案及评分标准
试卷类型:B 卷 试卷代号:
1 (dx dy ) + dz ; 2. 7 ; 2
3. 2π e ;
2
4. 2 x + 2 y + z = 6 ; 7. + 1
∞
…………………………(8 分)
n+2 = 1 ,收敛半径为 1, x = ±1 时原级数发散, n →∞ n + 1 …………………………(3 分) 所以收敛域为 (1,1) s ( x) = ∑ (n + 1) x n = (∑ x n +1 )′
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西南交大《高等数学I B》离线作业完整
答案
9.计算下列极限:
一、单项选择题(只有一个选项正确,共8道小题)
1. A
(A) 4
(B) 2
9.证明方程至少有一个根介于1和2之间.
解
证明: 设 f(x)= , 显然是连续的, 又
f(1)=1−3−1=−3<0 ,由零点定理知存在 c∈(1, 2) , 使得
即方程至少有一个根介于1和2之间.
10.求下列函数的导数:
解:(1) (2) (3) (4)(5) (6)
11.求下列函数的导数:
解:(1) (2) (3)
(4)
12.求下列函数的二阶导数:
解:(1) (2) (3)
13.证明方程只有一个正根.
解
证明: 设则f(0)=−1<0, f(1)=1>0 , 由零点定理知方程 x
在0和1之间有一个(正)根. 若方程有两个正根 a,b,a>b>0,则由罗尔定理知存在使得但这显然是不可能的, 所以方程
只有一个正根.
14.用洛必达法则求下列极限:
解:(1)(2) (3)
(4)。
解:
所以
7.确定下列函数的单调区间:
解:(1)
所以单增区间:
单减区间:
(2)
所以单增区间:
单减区间:
(3)
所以单增区间:
单减区间:
8.证明不等式:
证明: 设
则
所以<="" p="">
在
上单增, 从而当
时, 有<="" p="" ,="">
即.
9.求下列函数的极值:
解:(1)由
是极小值点,极小值为:2. (2)由
10.
11.
判定下列曲线的凹凸性:解:(1)由
所以函数
在定义域内是凸的。
(2)由
所以函数
在
上是凹的.
12.
求下列不定积分:解:(1) (2)
(3)
(4)
(5)
(6)
(7)
13.
计算下列各定积分:解:(1)
(2)
(3)
(4)
14.
利用函数的奇偶性计算下列积分:解:(1) 因为
是奇函数, 所以
(2)
15.
求下列图形的面积:解:(1) 所求面积
(2)所求面积。