七年级第二学期期中考试数学试卷

合集下载

吉林省长春市东北师范大学附属中学2023-2024学年七年级下学期期中数学试题(解析版)

吉林省长春市东北师范大学附属中学2023-2024学年七年级下学期期中数学试题(解析版)

2023-2024学年东北师大附中初中部初一年级数学学科试卷第二学期期中考试考试时长:120分钟试卷分值:120分一、选择题(共8小题,每题3分,共24分)1. 如图,下列四种通信标志中,其图案是轴对称图形的是( )A. B. C. D.【答案】C【解析】【分析】本题主要考查了轴对称图形的识别,根据轴对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.【详解】解:A 、不是轴对称图形,故此选项不符合题意;B 、不是轴对称图形,故此选项不符合题意;C 、是轴对称图形,故此选项符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:C .2. 已知,下列不等式成立的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了不等式的基本性质,易错在不等式的基本性质3,不等式两边同时乘以或除以同一个负数,不等号的方向改变.不等式性质:基本性质1.不等式两边同时加上或减去同一个整式,不等号的方向不变.基本性质2.不等式两边同时乘以或除以同一个正数,不等号的方向不变.基本性质3.不等式两边同时乘以或除以同一个负数,不等号的方向改变.根据性质逐一分析即可.【详解】解:A .∵,∴,故不符合题意;B . ∵,∴,a b >a b->-22a b -<-22a b <0a b -<a b >a b -<-a b >a b -<-∴,故符合题意;C .∵,∴,故不符合题意;D . ∵,∴,故不符合题意.故选:B .3. 一副三角板,按如图所示叠放在一起,则图中的度数为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了与三角板有关的运算以及三角形内角和性质,先得出,再运用三角形内角和进行列式,计算即可作答.【详解】解:如图所示:由题意得出,∴,∵,∴,故选:C .4. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;22a b -<-a b >22a b >a b >0a b ->α∠60︒65︒75︒85︒115ABD ABC ∠=∠-∠=︒6045ABD ABC ∠=︒∠=︒,1604515ABD ABC ∠=∠-∠=︒-︒=︒90D Ð=°180901575α∠=︒-︒-︒=︒B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意;故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.5. 已知是关于x ,y 的方程,x +ky =3的一个解,则k 的值为( )A. -1B. 1C. 2D. 3【答案】B【解析】【分析】把x 与y 的值代入方程计算即可求出k 的值.【详解】解:∵是关于x 、y 的方程x +ky =3的一个解,∴把代入到原方程,得1+2k =3,解得k =1,故选:B .【点睛】本题主要考查了二元一次方程的解的定义,解一元一次方程,熟知方程的解是使方程两边相等的未知数的值是解题的关键.6. 一个三角形两边的长分别是3和5,则这个三角形第三边的长可能是( )A. 1B. C. 2 D. 4【答案】D【解析】【分析】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则,即,只有选项D 符合题意.故选D .7. 不等式的解集在数轴上表示正确的是( )12x y =⎧⎨=⎩12x y =⎧⎨=⎩12x y =⎧⎨=⎩1.55353x -<<+28x <<53x -≥A.B.C.D.【答案】A【解析】【分析】本题考查的是解一元一次不等式,利用数轴表示不等式的解集.先求出不等式的解集,再在数轴上表示出来不等式的解集即可,注意大于小于用空心,大于等于小于等于用实心,大于大于等于开口向右,小于小于等于开口向左.【详解】解:,,数轴上表示:,故选:A .8. 某学校为学生配备物理电学实验器材,一个电表包内装有1个电压表和2个电流表.某生产线共60名工人,每名工人每天可生产14个电压表或20个电流表.若分配名工人生产电压表,名工人生产电流表,恰好使每天生产的电压、电流表配成套,则可列出方程组( )A. B. C. D. 【答案】D【解析】【分析】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是得到电压表数量和电流表数量的等量关系.【详解】解:若分配名工人生产电压表,名工人生产电流表,由题意,得.故选:D .二、填空题(共6小题,每小题3分,共18分)9. 已知二元一次方程,用含x 的代数式表示y ,则______.为53x -≥∴2x ≤x y 6022014x y y x+=⎧⎨⨯=⎩6014202x y x y +=⎧⎪⎨=⎪⎩601420x y x y +=⎧⎨=⎩6021420x y x y+=⎧⎨⨯=⎩x y 6021420x y y y +=⎧⎨⨯=⎩327x y +=y =【答案】【解析】【分析】本题考查了解二元一次方程,根据,将x 看成已知数,进行移项,再系数化1,即可作答.【详解】解:∵∴故答案为:10. 在通过桥洞时,往往会看到如图所示标志:这是限制车高的标志,表示车辆高度不能超过,通过桥洞的车高应满足的不等式为_____________.【答案】##【解析】【分析】根据不等式的定义列不等式即可.【详解】解:∵车辆高度不能超过,∴.故答案为.【点睛】本题主要考查列不等式,掌握不等式的定义是解答本题的关键.11. 不等式组的最小整数解为_________.【答案】【解析】【分析】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集,根据“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【详解】解:解不等式组得:,∴最小整数解为,故答案为:.的7322x -327x y +=327x y +=273y x=-7322y x =-7322x -5m m x 5x ≤5x≥5m 5x ≤5x ≤10{212x x -<-≥210{212x x -<-≥32x ≥2212. 如图,正五边形ABCDE 和正六边形EFGHMN 的边CD 、FG 在直线l 上,正五边形在正六边形左侧,两个正多边形均在l 的同侧,则的大小是___度.【答案】48【解析】【分析】利用正多边形的内角和,求出其中一个角的度数,进一步求出三角形DEF 的两个内角,最后由三角形内角和定理来求解.【详解】解:正五边形内角和为且在直线上,,正六边形内角和为且在直线上,,在中,,,,,故答案是:.【点睛】本题考查了正多边形的内角、三角形的内角和定理,解题的关键是:掌握正多边形内角和的求法.13. 我国传统数学名著九章算术记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两问牛、羊各一直金几何?”译文问题:“假设有头牛、只羊,值两银子;头牛、只羊,值两银子,问一头牛、一只羊一共值多少两银子?”则头牛、只羊一共值 ______ 两银子.【答案】【解析】【分析】设每头牛值两银子,每只羊值两银子,根据“头牛、只羊,值两银子;头牛、只羊,值两银子”,可得出关于,的二元一次方程组,利用,即可求出结论.DEF ∠ 540︒CD l 5401085EDC ︒∴∠==︒ 720︒FG l 7201206EFG ︒∴∠==︒EDF 180DEF EDF EFD ∠=︒-∠-∠18010872EDF ∠=︒-︒=︒ 18012060EFD ∠=︒-︒=︒48DEF ∴∠=︒48《》.52192516115x y 52192516x y ()7+÷①②【详解】解:设每头牛值两银子,每只羊值两银子,根据题意得:,得:,∴头牛、只羊一共值两银子,故答案为:.【点睛】本题考查了二元一次方程组的应用以及数学文化,找准等量关系,正确列出二元一次方程组是解题的关键.14. 为了更好的开展大课间活动,某班级计划购买跳绳和呼啦圈两种体育用品,已知一个跳绳8元,一个呼啦圈12元.准备用120元钱全部用于购买这两种体育用品(两种都要买且钱全部用完),则该班级的购买方案有______种.【答案】4【解析】【分析】设购买个跳绳,个呼啦圈,利用总价单价数量,即可得出关于,的二元一次方程,结合,均为正整数,即可得出购买方案的数量.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.【详解】解:设购买个跳绳,个呼啦圈,依题意得:,.,均为正整数,为3的倍数,或或或,该班级共有4种购买方案.故答案为:4.三、解答题(共10小题,共78分)15. 解方程组:(1)x y 52192516x y x y +=⎧⎨+=⎩①②()7+÷①②5x y +=1155x y =⨯x y x y x y 812120x y +=2103y x ∴=-x y x ∴∴38x y =⎧⎨=⎩66x y =⎧⎨=⎩94x y =⎧⎨=⎩122x y =⎧⎨=⎩∴23328y x x y =-⎧⎨+=⎩(2)【答案】(1) (2)【解析】【分析】本题主要考查了解二元一次方程组:(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组即可.【小问1详解】解:把①代入②得:,解得,把代入①得,∴方程组的解为;小问2详解】解:得:,解得,把代入①得:,解得,∴方程组解为.16. 解下列不等式(组):(1);(2)【的28452x y x y +=⎧⎨-=⎩21x y =⎧⎨=⎩32x y =⎧⎨=⎩23328y x x y =-⎧⎨+=⎩①②()32238x x +-=2x =2x =2231y =⨯-=21x y =⎧⎨=⎩28452x y x y +=⎧⎨-=⎩①②2⨯-①②714y =2y =2y =228x +=3x =32x y =⎧⎨=⎩()32723x +≥()313122x x x x ⎧->⎪⎨--≥⎪⎩【答案】(1) (2)无解【解析】【分析】本题考查了解一元一次不等式以及解一元一次不等式组,正确掌握相关性质内容是解题的关键.(1)先去括号,再移项合并同类项,系数化1,即可作答.(2)分别算出每个不等式组的解集,再取公共部分的解集,即可作答.【小问1详解】解:,,,;【小问2详解】解:,由,得,解得,由,得,解得,此时不等式组无解.17. 如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为顶点的,线段在网格线上.(1)画出边上的高线;(2)画出边上的中线;(3)在线段上任取一点P ,则的面积是______.【答案】(1)见详解 (2)见详解(3)513x ≥()32723x +≥62123x +≥62x ≥13x ≥()313122x x x x ⎧->⎪⎨--≥⎪⎩()31x x ->33x x ->32x >3122x x --≥243x x -≥-1x ≤ABC MN AB CD BC AE MN ABP【解析】【分析】本题考查了三角形的高,中线的定义,运用网格求面积,正确掌握相关性质内容是解题的关键.(1)过点C 作垂直于的延长线,交点为点,即可作答.(2)根据网格特征以及中线定义,进行作图即可;(3)根据平行线之间的距离处处相等的性质,得出与的距离为5,再结合三角形面积公式进行计算,即可作答.【小问1详解】解:边上的高线如图所示:【小问2详解】解: 边上的中线如图所示:【小问3详解】解:如图所示:∴的面积.CD BA D MN AB AB CD BC AE ABP 12552=⨯⨯=18. 如图,在中,是的角平分线,,,求的度数.【答案】【解析】【分析】根据三角形外角的性质,角平分线的定义以及三角形的内角和定理即可得到结论.此题主要考查了三角形外角的性质,角平分线的定义,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.【详解】解:∵.∴,∵是角平分线,∴,在中,.19.若一个多边形的内角和的比它的外角和多,那么这个多边形的边数是多少?【答案】12【解析】【分析】设这个多边形的边数是n ,根据题意,列方程求解即可.【详解】解:设这个多边形的边数是n ,由题意得:,解得:,答:这个多边形的边数是12.【点睛】本题考查了多边形的内角和和外角和定理,熟练掌握两个定理是解题的关键.20. 在长方形中,放入5个形状大小相同的小长方形(空白部分),其中,,求图中阴影部分图形的面积.ABC AN ABC 50B ∠=︒80ANC ∠=︒C ∠70︒5080ANC B BAN B ANC ∠=∠+∠∠=︒∠=︒,,805030BAN ANC B ∠∠∠=-=︒-︒=︒AN BAC ∠223060BAC BAN ∠=∠=⨯︒=︒ABC 180180506070C B BAC ∠=︒-∠-∠=︒-︒-︒=︒1490︒1(2)180360904n -⨯︒=︒+︒1(2)180360904n -⨯︒=︒+︒12n =ABCD 8cm AB =12cm BC =【答案】【解析】【分析】设小长方形的长为,宽为,根据图形中大长方形的长和宽列二元一次方程组,求出和的值,即可解决问题.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设小长方形的长为,宽为,根据题意,得:,解得:,每个小长方形的面积为,阴影部分的面积.21. 阅读下列材料:小明同学在学习二元一次方程组时遇到了这样一个问题:解方程组.小明发现,如果用代入消元法或加减消元法求解,运算量比较大,容易出错.如果把方程组中的看成一个整体,把看成一个整体,通过换元,可以解决问题.以下是他的解题过程:令,.原方程组化为,解得,把代入,,得,解得,236cm xcm ycm x y xcm ycm 3128x y x y +=⎧⎨+=⎩62x y =⎧⎨=⎩∴()22612cm ⨯=∴()281251236cm =⨯-⨯=23237432323832x y x yx y x y +-⎧+=⎪⎪⎨+-⎪+=⎪⎩()23x y +()23x y -23m x y =+23n x y =-743832m nm n ⎧+=⎪⎪⎨⎪+=⎪⎩6024m n =⎧⎨=-⎩6024m n =⎧⎨=-⎩23m x y =+23n x y =-23602324x y x y +=⎧⎨-=-⎩914x y =⎧⎨=⎩原方程组的解为.(1)学以致用:运用上述方法解方程组:(2)拓展提升:已知关于x ,y 的方程组的解为,请直接写出关于m 、n 的方程组的解是______.【答案】(1) (2)【解析】【分析】本题主要考查了换元法解二元一次方程组:(1)结合题意,利用整体代入法求解,令,得,解得即即可求解;(2)结合题意,利用整体代入法求解,令,,则可化为,且解为则有,求解即可.【小问1详解】解:令,,原方程组化为,解得,∴914x y =⎧⎨=⎩()()()()213211224x y x y ⎧++-=⎪⎨+--=⎪⎩111222a xb yc a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩()()1112222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩11x y =⎧⎨=⎩143m n =⎧⎪⎨=-⎪⎩1m x =+2n y =-23124m n m n +=⎧⎨-=⎩21m n =⎧⎨=-⎩1221x y +=⎧⎨-=-⎩2x m =+3y n =-()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩121222a x b y c a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩2334m n +=⎧⎨-=⎩1m x =+2n y =-23124m n m n +=⎧⎨-=⎩21m n =⎧⎨=-⎩,解得:,∴原方程组的解为 ;【小问2详解】解:在中,令,,则可化为,∵方程组解为,∴,,故答案为:.22. “粮食生产根本在耕地、出路在科技”.为提高农田耕种效率,今年开春某农村合作社计划投入资金购进甲、乙两种农耕设备,已知购进2台甲种农耕设备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元.(1)求甲种农耕设备和乙种农耕设备单价各是多少万元;(2)若该合作社决定购买甲、乙两种农耕设备共7台,且购进甲、乙两种农耕设备总资金不超过10万元,求最多可以购进甲种农耕设备多少台.【答案】(1)1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元; (2)5台【解析】【分析】(1)设购进1台甲种农耕设备需万元,1台乙种农耕设备需万元,根据“购进2台甲种农耕设1221x y +=⎧∴⎨-=-⎩11x y =⎧⎨=⎩11x y =⎧⎨=⎩()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩2x m =+3y n =-()()1212222323a m b n c a m b n c ⎧+-=⎪⎨+-=⎪⎩121222a x b y c a x b y c +=⎧⎨+=⎩121222a x b y c a x b y c +=⎧⎨+=⎩34x y =⎧⎨=⎩2334m n +=⎧⎨-=⎩143m n =⎧⎪∴⎨=-⎪⎩143m n =⎧⎪⎨=-⎪⎩x y备和1台乙种农耕设备共需4.2万元;购进1台甲种农耕设备和3台乙种农耕设备共需5.1万元”,可得出关于,的二元一次方程组,解之即可得出结论;(2)设购进甲种农耕设备台,则购进乙种农耕设备台,利用总价单价数量,结合总价不超过10万元,可得出关于的一元一次不等式,解之可得出的取值范围,再取其中的最大整数值,即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.【小问1详解】解:设购进1台甲种农耕设备需万元,1台乙种农耕设备需万元,根据题意得:,解得:.答:购进1台甲种农耕设备需1.5万元,1台乙种农耕设备需1.2万元;【小问2详解】解:设购进甲种农耕设备台,则购进乙种农耕设备台,根据题意得:,解得:,又为正整数,的最大值为5.答:最多可以购进甲种农耕设备5台.23. 【探究】如图①,在中,点D 是延长线上一点,的平分线与的平分线相交于点P .则有,请补全下面证明过程:证明:平分,平分,,______(______).______(三角形的一个外角等于与它不相邻的两个内角的和),.x y m ()7m -=⨯m m x y 2 4.23 5.1x y x y +=⎧⎨+=⎩1.51.2x y =⎧⎨=⎩m ()7m -()1.5 1.2710m m +-≤153m ≤m m ∴ABC BC ABC ∠BP ACD ∠CP 12P A ∠=∠BP ABC ∠CP ACD ∠2ABC PBC ∴∠=∠2ACD ∠=∠ACD A ∠=∠+∠ 22PCD A PBC ∴∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角的和),.【应用】如图②,在四边形中,设,,若,四边形的内角与外角的角平分线相交于点P .为了探究的度数与和的关系,小明同学想到将这个问题转化图①的模型,因此,延长了边与交于点A .如图③,若,,则,因此.【拓展】如图④,在四边形中,设,,若,四边形的内角与外角的角平分线所在的直线相交于点P ,请直接写出______.(用含有和的代数式表示)【答案】探究:;角平分线的定义;;;应用:;;拓展:【解析】【分析】本题主要考查了三角形内角和定理,三角形外角的性质,角平分线的定义:探究:根据三角形外角的性质和角平分线的定义结合已给推理过程求解即可;应用:先利用平角的定义和三角形内角和定理求出的度数,再有探究的结论即可得到答案;拓展:延长交的延长线于A ,则由三角形内角和定理可得;再由题意可得分别平分,则.【详解】解:探究:证明:平分,平分,,(角平分线的定义).(三角形的一个外角等于与它不相邻的两个内角的和),._____PCD PBC ∠=∠+∠ 12P A ∴∠=∠MNCB M α∠=N β∠=180αβ+>︒MBC ∠NCD ∠BP CP ,P ∠αβBM CN 106BMN∠=︒124MNC ∠=︒______A ∠=︒______P ∠=︒MNCB M α∠=N β∠=180αβ+<︒MBC ∠NCD ∠P ∠=αβPCD PBC P 50︒25︒121902αβ︒--A ∠MB NC 180A αβ=︒--∠PB PC ,ABH ACB ∠,∠11190222P A αβ==︒--∠BP ABC ∠CP ACD ∠2ABC PBC ∴∠=∠2ACD PCD ∠=∠ACD A ABC ∠=∠+∠Q 22PCD A PBC ∴∠=∠+∠(三角形的一个外角等于与它不相邻的两个内角的和),,故答案为:;角平分线的定义;;;应用:延长了边与交于点A .如图③,∵,,∴,∴,∴,故答案:;.拓展:如图,延长交的延长线于A ,∵,,∴;∵四边形的内角与外角的角平分线所在的直线相交于点P ,∴分别平分,∴,故答案为:.24. 如图①,点O 为数轴原点,,正方形的边长为6,点P 从点O 出发,沿射线方向运动,速度为每秒2个单位长度,设运动时间为t 秒,请回答下列问题.为PCD P PBC ∠=∠+∠ 12P A ∴∠=∠PCD PBC P BM CN 106BMN∠=︒124MNC ∠=︒1807418056AMN BMN ANM MNC =︒-=︒=︒-=︒∠∠,∠∠18050A AMN ANM =︒--=︒∠∠∠1252P A ∠=∠=︒50︒25︒MB NC M α∠=N β∠=180180A M N αβ=︒--=︒--∠∠∠MBC ∠NCD ∠PB PC ,ABH ACB ∠,∠11190222P A αβ==︒--∠121902αβ︒--3OA =ABCD OA(1)点A 表示的数为______,点D 表示的数为______.(2)的面积为6时,求t 的值.(3)如图②,当点P 运动至D 点时,立即以原速返回,到O 点后停止.在点P 运动过程中,作线段,点E 在数轴上点P 右侧,以为边向上作正方形,当与面积和为16时,直接写出t 的值.【答案】(1)3,9(2)t的值为秒或秒 (3)或或或.【解析】【分析】(1)根据线段的长和正方形的边长可以求解.(2)根据点的运动速度与运动时间得出运动路程,对应数数轴得出结论.(3)根据点运动确定正方形的位置再去讨论与面积和为16时的值.本题考查了数轴与动点的结合,表示出点的运动距离是本题的解题关键.【小问1详解】解: ,且为数轴原点,在的右侧,表示的数为3,正方形的边长为6,,表示的数为9.故答案是3,9;【小问2详解】解:∵的面积为6,∴,解得,点从点开始运动且速度为每秒2个单位长度,,APC △3PE =PE PEFG DPF ABG 12521318t =23631614918OA P P DPF ABG t P 3OA = O O A ∴ 639OD ∴=+=D ∴APC △116622APC S AP CD AP =⨯=⨯⨯=△2AP =P O 2OP t ∴=∵,∴当点在之间时,则,解得,∴当点在的延长线上时,则,解得,∴的面积为6时,t 的值为秒或秒;【小问3详解】解:①当P 点在A 点左侧时,,由题意得:连接,如图所示:∵,∴,∵速度为每秒2个单位长度,设运动时间为t 秒,∴,∴,∴,,∵与面积和为16,∴,解得,当P 点在A 点右侧时,连接,如图所示:3OA =P AO 3322AP OP t =-=-=12t =P OA 3232AP OP t =-=-=52t =APC △12522OP t =BG AG PF FD ,,,36OA AD ==,9OD =902t ≤≤32PA OA OP t =-=-()11279233222DPF S PD EF t t =⨯⨯=-⨯=- ()116329622ABGS AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 27396162DPF ABG S S t t +=-+-= 1318t =BG AG PF FD ,,,同理得,,∵与面积和为16,∴,解得,②点从向运动时,则,连接,如图所示:∴此时,,∵与面积和为16,∴,()11279233222DPF S PD EF t t =⨯⨯=-⨯=- ()116236922ABGS AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 27369162DPF ABG S S t t +=-+-= 236t =P D O 9999222t <≤+=BG AG PF FD ,,,9926222PD t AP AD PD t ⎛⎫⎛⎫=⨯-=-=-- ⎪ ⎪⎝⎭⎝⎭,119272332222DPF S PD EF t t ⎛⎫=⨯⨯=⨯-⨯=- ⎪⎝⎭ 119662456222ABG S AB AP t t ⎡⎤⎛⎫=⨯⨯=⨯⨯--=- ⎪⎢⎥⎝⎭⎣⎦ DPF ABG 273456162DPF ABG S S t t +=-+-=解得,当P 点在A 点左侧时,由题意得:连接,如图所示:∴,此时,,∵与面积和为16,∴,解得,综上:或或或.316t =BG AG PF FD ,,,92292962152PD t t AP PD AD t t ⎛⎫=⨯-=-=-=--=- ⎪⎝⎭,119272332222DPF S PD EF t t ⎛⎫=⨯⨯=⨯-⨯=- ⎪⎝⎭ ()11621564522ABG S AB AP t t =⨯⨯=⨯⨯-=- DPF ABG 273645162DPF ABG S S t t +=-+-= 14918t =1318t =23631614918。

河南省洛阳市嵩县2023-2024学年七年级下学期期中考试数学试卷(含答案)

河南省洛阳市嵩县2023-2024学年七年级下学期期中考试数学试卷(含答案)

2023 2024学年第二学期期中考试七年级数学试卷注意事项:1.本试卷共三个大题,23个小题,满分120分,考试时间100分钟;2.本试卷上不要答题,请按答题卷上注意试卷的要求直接把答案填写在答题卷上㊂答在试卷上的答案无效㊂一㊁选择题(每小题3分,共30分)下列各小题均有四个选项,其中有且只有一个选项是正确的㊂1.交通法则人人遵守,交通安全人人防范㊂如图所示为某桥洞的限高标志,则能通过此桥洞的车辆高度是A.6.5m㊀㊀㊀㊀㊀B.6m㊀㊀㊀㊀㊀C.5.5m㊀㊀㊀㊀㊀D.4.5m2.若3m-5x3+m>4是关于x的一元一次不等式,则m的值是A.-3B.-2C.0D.13.下列变形错误的是A.若a=b,则3-2a=3-2bB.若a=b,则ac=bcC.若ac=bc,则a=bD.若a c=b c,则a=b4.下列说法中,错误的是A.x=1是不等式x<2的解B.-2是不等式2x-1<0的一个解C.不等式-3x>9的解集是x=-3D.不等式x<10的整数解有无数个5. x比它的12大4 可用方程描述为A.12x-x=4B.x+12x=4C.x-12x=4D.12+4=x6.老师和同学们玩猜数游戏.老师在心里想一个100以内的数字,同学们可以提问,老师只能点头或者摇头回应对错.甲问: 小于50吗? 老师摇头.乙问: 不大于75吗? 老师点头.丙问: 不小于60吗? 老师点头.老师心里想的数字所在的范围为A.50<xɤ75B.60ɤxɤ75C.50<x<60D.50ɤxɤ60{是二元一次方程y=kx-9的一个解,则k的值为7.若x=2y=-1A.-3B.3C.-4D.4七年级数学㊀第1页㊀(共4页)8.不等式3(x -1)ɤ5-x 的非负整数解有A.1个B.2个C.3个D.4个9.‘孙子算经“中有一道题,原文是: 今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何? 意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为A.y -x =4.5y -12x =1ìîíïïïï B.x -y =4.5y -12x =1ìîíïïïï C.x -y =4.512x -y =1ìîíïïïï D.y -x =4.512x -y =1ìîíïïïï10.若关于x,y 的方程组2x -3y =9,ax -by =-5{和3x -2y =11,bx -ay =1{有相同的解,则(a +b)2023的值为A.-1B.0C.1D.2021二㊁填空题:(每小题3分,共15分)11.请写出一个满足不等式2x -1<6的正整数x 的值:㊀㊀㊀㊀.12.若x<y,且(m -2)x>(m -2)y,则m 的取值范围是㊀㊀㊀㊀.13.已知x +y =37,y +z =33,x +z =20,ìîíïïïï则x +y +z 的值是㊀㊀㊀㊀.14.用代入法解方程组2x +3y =8①3x -5y =5②{的过程如下:(1)由①,得x =8-3y2③;(2)把③代入②,得3ˑ8-3y2-5y =5;(3)去分母,得24-9y -10y =5;(4)解得y =1,再由③,得x =2.5.其中,开始出现错误的一步是㊀㊀㊀㊀.(填序号)15.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.7㊃为例进行说明:设0.7㊃=x,由0.7㊃=0.777 可知,10x =7.777 ,所以10x -x =7,解方程,得x =79,于是,得0.7㊃=79,将0.7㊃03㊃写成分数的形式是㊀㊀㊀㊀.三㊁解答题(共8小题,共75分)16.(10分)解方程:(1)3-(5-2x)=x +2;(2)x +22-2x +33=1.七年级数学㊀第2页㊀(共4页)17.(9分)解不等式x2-1<5x+24并把它的解集在数轴上表示出来.18.(9分)(1)x取何值时,代数式4x-5与3x-6的值互为相反数?(2)k取何值时,代数式k+13的值比3k+12的值小1?19.(9分)在某次体育比赛中,一名34岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:根据对话内容,请你用方程的知识帮记者求出哥哥和妹妹的年龄.20.(9分)用一根60厘米的铁丝围成一个长方形.(1)如果长方形的宽是长的23,求这个长方形的长和宽.(2)如果长方形的宽比长少4厘米,求这个长方形的面积.(3)比较(1)和(2)所得的两个长方形的面积的大小,还能围出面积更大的长方形吗?如果能,请写出一个符合条件的长方形的面积值(数值为整数),如果不能,请说明理由.21.(9分)某古镇为发展旅游产业,吸引更多的游客前往游览,助力乡村振兴,决定在 五一 期间对团队旅游实行门票特价优惠活动,价格如下表:购票人数m10ɤmɤ5051ɤmɤ100m>100每人门票价/元605040㊀㊀现有甲㊁乙两个团队共102人,计划利用 五一 假期到该古镇旅游,其中甲团队不足七年级数学㊀第3页㊀(共4页)50人,乙团队多于50人.如果两个团队联合起来作为一个 大团队 购票,比两个团队各自购票节省的费用不少于1200元,问甲团队最少多少人?22.(10分)(1)我国古代数学著作‘孙子算经“中有个著名的鸡兔同笼问题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何㊂请你分别计算出鸡和兔的只数㊂(2)如果鸡和兔共有A 只头,B 只足,请用A 和B 表示鸡和兔的只数,并利用(1)中的数据检验其正确性㊂(3)如果鸡兔的总足数B 为94,请直接写出鸡兔的总头数A 的最大值和最小值分别是多少?(笼子里面鸡和兔都有)23.(10分)阅读材料:善于思考的小明在解方程组2x +5y =3,①4x +11y =5,②{时,采用了一种 整体代换 的解法:解:将②变形得4x +10y +y =5,即2(2x +5y)+y =5,把①代入③得2ˑ3+y =5,所以y =-1.将y =-1代入①得x =4,所以原方程组的解为x =4,y =-1.{解决问题:(1)模仿小明的 整体代换 法解方程组3x -2y =5,9x -4y =19;{(2)已知关于x,y 的方程组3x 2-2xy +12y 2=50,x 2+xy +4y 2=25,{求x 2+4y 2的值.七年级数学㊀第4页㊀(共4页)2023 2024学年第二学期期中考试七年级数学参考答案及评分意见一㊁选择题(每题3分,共30分)1.D㊀2.B㊀3.C㊀4.C㊀5.C㊀6.B㊀7.D㊀8.C㊀9.B㊀10.A二㊁填空题(每题3分,共15分)11.答案不唯一,如3.㊀12.m<2㊀13.40㊀14.(3)㊀15.703999三㊁解答题(共8小题)16.(10分)解:(1)3-5+2x=x+2,2x-x=2-3+5x=4; 5分(2)3(x+2)-2(2x+3)=6,3x+6-4x-6=63x-4x=6+6-6-x=6,x=-6. 10分17.(9分)解:去分母,得:2x-4<5x+2, 2分移项㊁合并同类项,得-3x<6,解得x>-2,所以,原不等式的解集为x>-2, 5分把解集在数轴上表示出来如下:9分18.(9分)解:(1)令(4x-5)+(3x-6)=0,则7x-11=0,解得x=117 4分(2)由题可知:k+13+1=3k+12, 5分所以2(k+1)+6=3(3k+1). 7分化简得:2k+2+6=9k+3即:7k=5 8分七年级数学答案㊀第1页㊀(共3页)解得:k =579分19.(9分)解:设今年妹妹的年龄为x 岁,哥哥的年龄为y 岁,1分根据题意,得x +y =16,3(x +2)+(y +2)=34+2,{5分解得x =6,y =10.{8分故今年妹妹6岁,哥哥10岁.9分20.(9分)解:(1)设长方形的长为x 厘米,则宽为23x 厘米,则2(x +23x)=60解得:x =18,23x =12.故长方形的长为18厘米,宽为12厘米,3分(2)设长方形的长为y 厘米,则宽为(y -4)厘米,有2(y +y -4)=60,解得:y =17,y -4=1317ˑ13=221故长方形的面积为221平方厘米.6分(3)(1)中的长方形面积为216平方厘米,(2)中的长方形面积为221平方厘米㊂(2)中面积比(1)中面积大.还可以围出更大面积的长方形,比如长为16厘米,宽为14厘米,此时长方形面积为224平方厘米.9分21.(9分)解:设甲团队有x 人,乙团队有(102-x)人;1分甲㊁乙团队一起购票价格:102ˑ40=4080(元); 3分甲㊁乙团队分开购票价格:[60x +50(102-x)]元;5分所以60x +50(102-x)-4080ȡ1200; 7分解得xȡ18.8分答:甲团队最少18人.9分22.(10分)解:(1)设x 为鸡数,y 为兔数,则x +y =352x +4y =94{2分解得:x =23y =12{答:共有23只鸡,12只兔㊂4分七年级数学答案㊀第2页㊀(共3页)(2)设x 为鸡数,y 为兔数,则x +y =A2x +4y =B{解得:x =2A -B2y =B 2-A ìîíïïïï 7分当A =35,B =94时,代入可得x =2ˑ35-942=70-47=23,y =942-35=12经检验,此结论是正确的㊂ 8分(3)最大值是46,最小值是24. 10分23.(10分)解:(1)3x -2y =5,①9x -4y =19,②{将②变形得3(3x -2y)+2y =19,③把①代入③得3ˑ5+2y =19,解得y =2.将y =2代入①得x =3,所以原方程组的解为x =3,y =2.{5分(2)原方程组可变形为3(x 2+4y 2)-2xy =50,①xy =25-(x 2+4y 2).②{,把②代入①得3(x 2+4y 2)-50+2(x 2+4y 2)=50,整理得5(x 2+4y 2)=100,解得x 2+4y 2=20. 10分其它解法亦可七年级数学答案㊀第3页㊀(共3页)。

人教版七年级下册数学期中考试试卷

人教版七年级下册数学期中考试试卷

人教版七年级下册数学期中考试试题一、选择题:(本题共10个小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的)1.下列实数是无理数的是()C. D.A.3.14B.12.下列所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中看作由“基本图案”经过平移得到的是()3.实数9)A.3±B.C.D.34.点A(-2,1)所在象限为()A. B.第二象限 C.第三象限 D.第四象限5.的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间6.下列图形中,由∠1=∠2,能得到AB//CD的是()7.如图,下列说法不正确的是()A.∠AFE与∠EGC是同位角B.∠AFE与∠FGC是内错角C.∠C与∠FGC是同旁内角D.∠A与∠FGC是同位角8.交换下列命题的题设和结论,得到的新命题是假命题的是()A.两直线平行,内错角相等;B.相等的角是对顶角;C.所有的直角都是相等的;D.若a=b,则a-1=b-1.9.已知N(﹣3,﹣4),则点N到y轴的距离是()A.3B.4C.﹣3D.﹣410.在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60元,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.B.C.D.二、填空题:(本题共6个小题,每小题4分,共24分)11.若电影院中的6排2号记为(6,2),则8排5号记为.12.把命题“邻补角是互补的角”改写成“如果…那么…”的形式.13.如果是方程kx﹣2y=4的一个解,那么k=_______.14.已知32=++-ba,则______)(2=-ba.15.如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠EGF=___°.16.按下面程序计算:输入x=3,则输出的答案是_______.三、解答题(一)(本大题3小题,每小题6分,共18分)17.解方程组18.计算:2+3﹣5﹣319.计算:2+-四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.解:∵EF∥AD,∴∠2=(),∵∠1=∠2,∴∠1=∠3(等量代换),∴AB∥(),∴∠BAC+=180°(),∵∠BAC=70°,∴∠AGD=°21.晓章和爸爸、妈妈周末到公园游玩,回到家后,他利用平面直角坐标系画出了公园的景区地图,如图所示.可是他忘记了在图中标出原点和x轴、y轴.只知道牡丹园的坐标为(3,3),请你帮他建立平面直角坐标系(画在图中)并求出其它各景点的坐标?22.已知一个正数的两个不同平方根分别是m+3和2m﹣15.(1)这个正数是多少?(2)的平方根又是多少?五、解答题(三)(本大题3小题,每小题9分,共27分)23.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(﹣2,2)、B(2,0),C(﹣4,﹣2).(1)在平面直角坐标系中画出△ABC;(2)若将(1)中的△ABC平移,使点B的对应点B′坐标为(6,2),画出平移后的△A′B′C′;(3)求△A′B′C′的面积.24.如图,直线AE、CF分别被直线EF、AC所截,已知,∠1=∠2,AB平分∠EAC,CD平分∠ACG.证明:AB∥CD25.x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b4.(1)直接写出点A、B、C的坐标;(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ 的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.。

2022-2023学年度第二学期初一年级期中考试 (数学)(含答案)082340

2022-2023学年度第二学期初一年级期中考试 (数学)(含答案)082340

2022-2023学年度第二学期初一年级期中考试 (数学)试卷考试总分:115 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1. 在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A. B. C. D.2. 如图,下列各点在阴影区域内的是( )A.B.C.D.3. ,,,,,中,无理数的个数是( )A.个B.个C.个D.个4. 在一次数学活动课上,老师让同学们借助一副三角板画平行线,.下面是小曼同学的作法,老师说:“小曼的作法正确”,请回答:小曼的作图依据是( )(3,2)(−3,2)(3,−2)(−3,−2)π227−3–√343−−−√3 3.14160.3˙1234AB CDA.内错角相等,两直线平行B.两直线平行,内错角相等C.过直线外一点有且只有一条直线与已知直线平行D.同位角相等,两直线平行5. 下列命题:①圆的切线垂直于经过切点的半径;②掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是;③相等的圆心角所对的弧相等;④某种彩票的中奖率为,佳佳买张彩票一定能中奖.其中,正确的命题是( )A.①②B.①②③C.①②④D.①②③④6. 在平面直角坐标系中,对于点,我们把点叫做点的友好点.已知点的友好点为,点的友好点为,点的友好点为…,这样依次得到点,,,…,,若点的坐标为,则点的坐标为( )A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7. 比较大小:________(填“”,“”或“”).8. 已知是一个正整数,是整数,则的最小值为________.9. 如图,,与,分别交于点,,为的平分线.若,,那么的值是________.10. 如图,若菱形的顶点,的坐标分别为,点在轴上,则点的坐标是________.0.511010xOy P(x,y)P'(1−y,x−1)P A 1A 2A 2A 3A 3A 4A 1A 2A 3A n A 1(2,1)A 2019(2,1)(0,1)(0,−1)(2,−1)10−−√3><=n 135n−−−−√n AC//BD AB AC BD A B BC ∠ABD ∠1=(x+15)∘∠2=(2x+70)∘x ABCD A B (3,0),(−2,0)D y C11. 如图,,, ,则________度.12. 将含有角的三角板的直角顶点放置于互相平行的两条直线中的一条上(如图),如果 ,那么_______.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13. 计算:.14. 如图,直线,被直线,所截,,直线分别交和于点,.点在直线上,,求证:.请在下列括号中填上理由:证明;因为(已知),所以(________).又因为 (已知),所以,即,所以________(同位角相等,两直线平行),所以(________).15. 如图,在中, ,,点从点出发沿方向以秒的速度向点匀速运动,同时点从点出发沿方向以秒的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点,运动的时间是秒.过点作于点,连接,.用含的代数式式表示________,________.AB//CD ∠BAP =120∘∠APC =40∘∠PCD =30∘∠1=40∘∠2=∘+×−|−1|(−3)28–√3–√6–√AB CD MN PM AB//CD MN AB CD E F Q PM ∠AEP =∠CFQ ∠EPQ +∠FQP =180∘AB//CD ∠AEM =∠CFM ∠AEP =∠CFQ ∠AEM +∠AEP =∠CFM +∠CFQ ∠MEP =∠MFQ ∠EPQ +∠FQP =180∘Rt △ABC ∠B =90∘,AC =20cm ∠A =60∘D C CA 2cm/A E A AB 1cm/B D E t (0<t ≤10)D DF ⊥BC F DE EF (1)t AD =DF =四边形能够成为菱形吗?如果能,请求出相应的值;如果不能,请说明理由;当为何值时,的面积为,请说明理由;当为何值时,为直角三角形.(请直接写出值)16. 小明和爸爸、妈妈到汉字公园游玩,回到家后,他利用平面直角坐标系画出了公园景区地图,如图所示.可是他忘记了在图中标出原点,轴及轴.只知道长廊的坐标为和农家乐的坐标为,请你帮他画出平面直角坐标系,并写出其他各点的坐标. 17. 已知点是直线上一点,,为从点引出的两条射线,,.如图,求的度数;如图,在的内部作,请直接写出与之间的数量关系________;在的条件下,若为的角平分线,试说明.18. 如图,已知,.求证:.19. 如图,已知点在 的边上.利用三角板根据要求画图:①过点作线段,垂足为点;②过点作直线,垂足为点,交于点;结合所画图形,写出与相等的所有角.20. 通过《实数》一章的学习,我们知道是一个无限不循环小数,因此的小数部分我们不可能全部写出来.聪明的小丽认为的整数部分为,所以减去其整数部分,差就是的小数部分,所以用来表示的小数部分.根据小丽的方法请完成下列问题:的整数部分为________,小数部分为________ ;AEFD t (2)t △DEF c 93–√2m 2(3)t △DEF t x y E (4,−3)B (−5,3)O AB OC OD O ∠BOD =30∘∠COD =∠AOC 87(1)1∠AOC (2)2∠AOD ∠MON =90∘∠AON ∠COM (3)(2)OM ∠BOC ∠AON =∠CON DE//AF ∠CDA =∠DAB ∠1=∠2P ∠AOB OA (1)P PC ⊥OB C P MN ⊥OA P OB D (2)∠CPO 2–√2–√2–√12–√2–√−12–√2–√(1)33−−√−−√8−–√已知的整数部分, 的整数部分为,求的立方根.21. 在平面直角坐标系中,已知点.当点在轴的左侧时,求的取值范围;若点到两坐标轴的距离相等,求点的坐标.22.如图,直线,点是,之间(不在直线,上)的一个动点.若与都是锐角,如图甲,写出与,之间的数量关系并说明原因;若把一块三角尺(,)按如图乙方式放置,点,,是三角尺的边与平行线的交点,若,求的度数;将图乙中的三角尺进行适当转动,如图丙,直角顶点始终在两条平行线之间,点在线段上,连接,且有,求与之间的数量关系.23. 如图,在直角坐标系中,已知,,将线段平移至,点在轴正半轴上(不与点重合),连接,,,.写出点的坐标;当的面积是的面积的倍时,求点的坐标;设,,,判断,,之间的数量关系,并说明理由.(2)10−−√a 8−5–√b a +b Q(4−2n,n−1)(1)Q y n (2)Q Q PQ//MN C PQ MN PQ MN (1)∠1∠2∠C ∠1∠2(2)∠A =30∘∠C =90∘D E F ∠AEN =∠A ∠BDF (3)C G CD EG ∠CEG =∠CEM ∠GEN ∠BDF xOy A(6,0)B(8,6)OA CB D x A OC AB CD BD (1)C (2)△ODC △ABD 3D (3)∠OCD =α∠DBA =β∠BDC =θαβθ参考答案与试题解析2022-2023学年度第二学期初一年级期中考试 (数学)试卷一、 选择题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )1.【答案】D【考点】生活中的平移现象【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是.【解答】解:图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.观察图形可知图案通过平移后可以得到.故选.2.【答案】A【考点】点的坐标【解析】先判断出阴影区域在第一象限,且长宽为的矩形,进而判断在阴影区域内的点.【解答】解:观察图形可知:阴影区域在第一象限,是长宽为的正方形,、在第一象限,且,,所以点在阴影区域内,故正确;、在第二象限,故错误;、在第四象限,故错误;、在第三象限,故错误.故选.3.【答案】B【考点】无理数的判定【解析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:,等;开方开不尽的数;以及…,等有这样规律的数.由此即可判定选择项.D D D 44A (3,2)3<42<4(3,2)B (−3,2)C (3,−2)D (−3,−2)A π2π0.1010010001【解答】解:在,,,,,中,无理数是:,共个.故选.4.【答案】A【考点】平行线的判定【解析】本题考查了作图-复杂作图和平行线的判定方法.【解答】解:,(内错角相等,两直线平行),故选.5.【答案】A【考点】命题与定理真命题,假命题【解析】根据切线的性质对①进行判断;根据概率公式对②进行判断;根据圆心角、弧、弦的关系对③进行判断;根据概率的意义对④进行判断.【解答】解:圆的切线垂直于经过切点的半径,所以①正确;掷一枚有正反面的均匀硬币,正面和反面朝上的概率都是,所以②正确;在同圆或等圆中,相等的圆心角所对的弧相等,所以③错误;某种彩票的中奖率为,佳佳买张彩票不一定能中奖,所以④错误.故选.6.【答案】C【考点】规律型:点的坐标【解析】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每个点为一个循环组依次循环是解题的关键,也是π227−3–√343−−−√3 3.14160.3˙π−3–√2B ∵∠ABC =∠DCB =90°∴AB ∥CD A 0.511010A 4本题的难点.【解答】解:观察发现:,,,,,依次类推,每个点为一个循环组依次循环,余,点的坐标与的坐标相同,为.故选.二、 填空题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )7.【答案】【考点】实数大小比较算术平方根【解析】根据,再比较即可.【解答】解:∵,∴,故答案为:.8.【答案】【考点】实数的运算【解析】【解答】解:∵,∴的最小值是.故答案为:.9.【答案】【考点】平行线的性质角的计算【解析】(2,1)A 1(0,1)A 2(0,−1)A 3(2,−1)A 4(2,1)A 5(0,1)A 6…∴5∵2019÷4=5043∴A 2019A 3(0,−1)C >3=9–√32=9<10>310−−√>15135=×3×5=×153232n 151520由平行线的性质可得,再由角平分线的定义得出,得出方程即可解答.【解答】解:,∴,∵平分,∴,∵,,∴,.故答案为:.10.【答案】【考点】坐标与图形性质【解析】【解答】解:∵菱形的顶点,的坐标分别为,,点在轴上,∴,∴,∴由勾股定理知:,∴点的坐标是:,故答案为.11.【答案】【考点】平行线的性质【解析】过点作,由平行线的性质结合的度数可求解的度数,根据可得,即可求解的度数.【解答】解:如图,过点作,∴.∵,∴.∵,∠2+∠ABD =180∘∠ABD =2∠1∵AC//BD ∠2+∠ABD =180∘BC ∠ABD ∠ABD =2∠1∠1=(x+15)∘∠2=(2x+70)∘2+=(x+15)∘(2x+70)∘180∘∴x =2020(−5,4)ABCD A B (3,0)(−2,0)D y AB =5AD =5OD ===4A −O D 2A 2−−−−−−−−−−√−5232−−−−−−√C (−5,4)(−5,4)160P PE//AB ∠APC ∠CPE CD//AB CD//PE ∠C P PE//AB ∠A+∠APE =180∘∠A =120∘∠APE =−=180∘120∘60∘∠APC =40∘∴.∵,∴ ,∴,∴.故答案为:.12.【答案】【考点】平行线的判定与性质【解析】作出辅助线,利用平行线的性质即可得出答案.【解答】解:过点作,如图,∵, ,∴,∴,,∵,∴.故答案为:.三、 解答题 (本题共计 11 小题 ,每题 5 分 ,共计55分 )13.【答案】解:原式 .【考点】实数的运算【解析】【解答】解:原式 . 14.【答案】两直线平行,同位角相等,,两直线平行,同旁内角互补∠CPE =∠APE−∠APC =−=60∘40∘20∘AB//CD CD//PE ∠C +∠CPE =180∘∠C =−=180∘20∘160∘16020E EF//AB EF//AB AB//CD EF//AB//CD ∠1=∠GEF =40∘∠2=∠HEF ∠GEF +∠HEF =60∘∠2=−=60∘40∘20∘20=9+−(−1)24−−√6–√=9+2−+16–√6–√=10+6–√=9+−(−1)24−−√6–√=9+2−+16–√6–√=10+6–√EP//FQ【考点】平行线的判定与性质【解析】根据平行线的判定与性质证明即可.【解答】证明:因为(已知),所以(两直线平行,同位角相等).又因为 (已知),所以,即,所以(同位角相等,两直线平行),所以(两直线平行,同旁内角互补).故答案为:两直线平行,同位角相等;;两直线平行,同旁内角互补.15.【答案】解:由题可得,在中,,则,∵,又,,∴,∴四边形为平行四边形,∴当时,四边形是菱形,∴,∴.依题意可得,,,又,∴,∴和中,,,∴,∵,∴,∴,,∴当或时,的面积为.当,则四边形中,,∴,∴,∴,∴∴,当,则四边形中,,,∴,∴,∴,∴,当时,点,点重合于点,不存在.∴或.【考点】AB//CD ∠AEM =∠CFM ∠AEP =∠CFQ ∠AEM +∠AEP =∠CFM +∠CFQ ∠MEP =∠MFQ EP//FQ ∠EPQ +∠FQP =180∘EP//FQ (1)AD =20−2t Rt △CDF ∠C =30∘DF =CD =t12DF =AE =t DF ⊥BC AB ⊥BC DF//AB DFEA DF =AD DFEA t =20−2t t =203(2)CD =2t AD =20−2t AE =t ∠C =−∠A =−=90∘90∘60∘30∘AB =AC =×20=101212Rt △CDF Rt △ACB CF ==t D −D C 2F 2−−−−−−−−−−√3–√BC ==10A −A C 2B 2−−−−−−−−−−√3–√BF =10−t 3–√3–√△DFE =DF ⋅BF 12=t(10−t)=123–√3–√93–√2t(10−t)=9=1t 1=9t 2t =1t =9△DFE c 93–√2m 2(3)∠FDE =90∘DFEA DF//AB ∠DEA =∠FDE =90∘∠ADE =−=90∘60∘30∘AD =2AE 20−2t =2tt =5∠DEF =90∘DFEA AD//EF ∴∠ADE =∠DEF ∠AED =−=90∘60∘30∘AE =2AD t =2(20−2t)t =8∠DFE =90∘F E B △DEF t =5t =8一元二次方程的应用——其他问题动点问题动点问题的解决方法三角形的面积平行四边形的判定平行四边形的性质勾股定理含30度角的直角三角形【解析】此题暂无解析【解答】解:由题可得,在中,,则,∵,又,,∴,∴四边形为平行四边形,∴当时,四边形是菱形,∴,∴.依题意可得,,,又,∴,∴和中,,,∴,∵,∴,∴,,∴当或时,的面积为.当,则四边形中,,∴,∴,∴,∴∴,当,则四边形中,,,∴,∴,∴,∴,当时,点,点重合于点,不存在.∴或.16.【答案】(1)AD =20−2t Rt △CDF ∠C =30∘DF =CD =t12DF =AE =t DF ⊥BC AB ⊥BC DF//AB DFEA DF =AD DFEA t =20−2t t =203(2)CD =2t AD =20−2t AE =t ∠C =−∠A =−=90∘90∘60∘30∘AB =AC =×20=101212Rt △CDF Rt △ACB CF ==t D −D C 2F 2−−−−−−−−−−√3–√BC ==10A −A C 2B 2−−−−−−−−−−√3–√BF =10−t 3–√3–√△DFE =DF ⋅BF 12=t(10−t)=123–√3–√93–√2t(10−t)=9=1t 1=9t 2t =1t =9△DFE c 93–√2m 2(3)∠FDE =90∘DFEA DF//AB ∠DEA =∠FDE =90∘∠ADE =−=90∘60∘30∘AD =2AE 20−2t =2tt =5∠DEF =90∘DFEA AD//EF ∴∠ADE =∠DEF ∠AED =−=90∘60∘30∘AE =2AD t =2(20−2t)t =8∠DFE =90∘F E B △DEF t =5t =8解:由题意可知,本题是以点为坐标原点,为轴的正半轴,建立平面直角坐标系,如图所示,则,,的坐标分别为:,,.【考点】位置的确定【解析】此题暂无解析【解答】解:由题意可知,本题是以点为坐标原点,为轴的正半轴,建立平面直角坐标系,如图所示,则,,的坐标分别为:,,.17.【答案】解:由题意可知:,,,∵,,∴,∴.证明:∵,,∴,∵是的角平分线∴,∵,∴,∵,∴,∴.【考点】角的计算角平分线的定义【解析】D (0,0)DA y A C F A(0,4)C(−3,−2)F (5,5)D (0,0)DA y A C F A(0,4)C(−3,−2)F (5,5)(1)∠AOB =180∘∠BOD =30∘∠AOD =∠AOB−∠BOD =150∘∠AOD =∠AOC +∠COD ∠COD =∠AOC 87∠AOC +∠AOC =87150∘∠AOC =70∘∠AON +=∠COM20∘(3)∠AOC =70∘∠AOB =180∘∠BOC =∠AOB−∠AOC =110∘OM ∠BOC ∠COM =∠BOC =1255∘∠MON =90∘∠CON =∠MON −∠COM =35∘∠AOC =70∘∠AON =∠AOC −∠CON =35∘∠AON =∠CON AOC +∠AOC8(1)由题意可知:=,即∴=,即可求解;(2)由图可见:=;(3)是的角平分线,可以求出==,而==,∴=.【解答】解:由题意可知:,,,∵,,∴,∴.解:由题知,,,所以,即.故答案为:.证明:∵,,∴,∵是的角平分线∴,∵,∴,∵,∴,∴.18.【答案】证明:∵,∴.∵,∴,∴.【考点】平行线的性质【解析】此题暂无解析【解答】证明:∵,∴.∵,∴,∴.19.【答案】解:如图所示:直线,点,即为所求;∠AOD ∠AOC +∠COD ∠AOC +∠AOC 87150∘∠AON +20∘∠COM OM ∠BOC ∠CON ∠MON −∠COM 35∘∠AON ∠AOC −∠CON 35∘∠AON ∠CON (1)∠AOB =180∘∠BOD =30∘∠AOD =∠AOB−∠BOD =150∘∠AOD =∠AOC +∠COD ∠COD =∠AOC 87∠AOC +∠AOC =87150∘∠AOC =70∘(2)∠AOM =∠AOC +∠COM =∠AOC +70∘∠AOM =∠AON +∠MON =∠AON +90∘∠AOC +=∠AON +70∘90∘∠AON +=∠COM 20∘∠AON +=∠COM 20∘(3)∠AOC =70∘∠AOB =180∘∠BOC =∠AOB−∠AOC =110∘OM ∠BOC ∠COM =∠BOC =1255∘∠MON =90∘∠CON =∠MON −∠COM =35∘∠AOC =70∘∠AON =∠AOC −∠CON =35∘∠AON =∠CON DE//AF ∠EDA =∠DAF ∠CDA =∠DAB ∠CDA−∠EDA =∠DAB−∠DAF∠1=∠2DE//AF ∠EDA =∠DAF ∠CDA =∠DAB ∠CDA−∠EDA =∠DAB−∠DAF∠1=∠2(1)MN C D∵,,∴,又∵与是对顶角,∴,∴与相等的角有 ,.【考点】作图—复杂作图垂线余角和补角【解析】此题暂无解析【解答】解:如图所示:直线,点,即为所求;∵,,∴,又∵与是对顶角,∴,∴与相等的角有 ,.20.【答案】,∵,∴,∴的整数部分.∵,∴的整数部分,∴,∴的立方根为.【考点】估算无理数的大小立方根的应用(2)∠PDO +∠O =∠DPO =90∘∠CPO +∠O =∠PCO =90∘∠CPO =∠PDO ∠BDM ∠PDO ∠BDM =∠CPO ∠CPO ∠PDO ∠BDM (1)MN C D (2)∠PDO +∠O =∠DPO =90∘∠CPO +∠O =∠PCO =90∘∠CPO =∠PDO ∠BDM ∠PDO ∠BDM =∠CPO ∠CPO ∠PDO ∠BDM 5−533−−√(2)9<10<163<<410−−√10−−√a =32<<35–√8−5–√b =5a +b =88=28–√3【解析】此题暂无解析【解答】解:∵,∴,即的整数部分为,小数部分为.故答案为:; .∵,∴,∴的整数部分.∵,∴的整数部分,∴,∴的立方根为.21.【答案】解:根据题意得,,即,解得.若点到两坐标距离相等,∴,∴,即或,解得或,∴或.【考点】点的坐标【解析】无无【解答】解:根据题意得,,即,解得.若点到两坐标距离相等,∴,∴,即或,解得或,∴或.22.【答案】解:.理由如下:如图,过作,∵,(1)25<33<365<<633−−√33−−√5−533−−√5−533−−√(2)9<10<163<<410−−√10−−√a =32<<35–√8−5–√b =5a +b =88=28–√3(1)4−2n <02n >4n >2(2)Q |4−2n|=|n−1|4−2n =±(n−1)4−2n =n−14−2n =−n+1n =53n =3Q(,)2323Q(−2,2)(1)4−2n <02n >4n >2(2)Q |4−2n|=|n−1|4−2n =±(n−1)4−2n =n−14−2n =−n+1n =53n =3Q(,)2323Q(−2,2)(1)∠C =∠1+∠2C CD//PQ PQ//MN∴,∴,,∴,即.∵,∴,由可得,,∴,∴.设,则,由可得,,∴,∴,∴.即.【考点】平行线的判定与性质平行线的性质角的计算【解析】无无无【解答】解:.理由如下:如图,过作,∵,∴,∴,,∴,即.∵,∴,由可得,,∴,∴.设,则,由可得,,∴,∴,∴.即.23.【答案】解:如图,PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF (1)∠C =∠1+∠2C CD//PQ PQ//MN PQ//CD//MN ∠1=∠ACD ∠2=∠BCD ∠ACB =∠ACD+∠BCD =∠1+∠2∠C =∠1+∠2(2)∠AEN =∠A =30∘∠MEC =30∘(1)∠C =∠MEC +∠PDC =90∘∠PDC =−∠MEC =90∘60∘∠BDF =∠PDC =60∘(3)∠CEG =∠CEM =x ∠GEN =−2x 180∘(1)∠C =∠CEM +∠CDP ∠CDP =−∠CEM =−x 90∘90∘∠BDF =−x 90∘==2∠GEN ∠BDF −2x 180∘−x 90∘∠GEN =2∠BDF (1)1∵,,∴,,∴;设,当的面积是的面积的倍时,若点在线段上,∵,∴,∴,∴;若点在线段延长线上,∵,∴,∴,∴.∴的坐标为或;如图,过点作,由平移的性质知.∴.∴,.若点在线段上,,即;若点在线段延长线上,,即.故数量关系为或.【考点】几何变换综合题坐标与图形性质【解析】(1)由点的坐标的特点,确定出,,得出;(2)分点在线段和在延长线两种情况进行计算;(3)分点在线段上时,和在延长线两种情况进行计算;【解答】解:如图,A(6,0)B(8,6)FC =AE =8−6=2OF =BE =6C(2,6)(2)D(x,0)△ODC △ABD 3D OA OD =3AD ×6x =3××6(6−x)1212x =92D(,0)92D OA OD =3AD ×6x =3××6(x−6)1212x =9D(9,0)D (,0)92(9,0)(3)2D DE//OC OC//AB OC//AB//DE ∠OCD =∠CDE ∠EDB =∠DBA D OA ∠CDB =∠CDE+∠EDB =∠OCD+∠DBAα+β=θD OA ∠CDB =∠CDE−∠EDB =∠OCD−∠DBAα−β=θα+β=θα−β=θFC =2OF =6C(2,6)D OA OA D OA α+β=θOA α−β=θ(1)1∵,,∴,,∴;设,当的面积是的面积的倍时,若点在线段上,∵,∴,∴,∴;若点在线段延长线上,∵,∴,∴,∴.∴的坐标为或;如图,过点作,由平移的性质知.∴.∴,.若点在线段上,,即;若点在线段延长线上,,即.故数量关系为或.A(6,0)B(8,6)FC =AE =8−6=2OF =BE =6C(2,6)(2)D(x,0)△ODC △ABD 3D OA OD=3AD ×6x =3××6(6−x)1212x =92D(,0)92D OA OD =3AD×6x =3××6(x−6)1212x =9D(9,0)D (,0)92(9,0)(3)2D DE//OC OC//AB OC//AB//DE ∠OCD =∠CDE ∠EDB =∠DBA D OA ∠CDB =∠CDE+∠EDB =∠OCD+∠DBA α+β=θD OA ∠CDB =∠CDE−∠EDB =∠OCD−∠DBA α−β=θα+β=θα−β=θ。

广东省珠海市香洲区文园中学2023-2024学年七年级下学期期中数学试题(解析版)

广东省珠海市香洲区文园中学2023-2024学年七年级下学期期中数学试题(解析版)

珠海市文园中学(集团)2023-2024学年第二学期期中考试七年级数学试卷说明:本试卷共4页,答题卷共4页,满分120分,考试时间为120分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.)1. 数学课上老师用双手形象的表示了“三线八角”图形,如图所示(两大拇指代表被截直线,食指代表截线).从左至右依次表示( )A. 同位角、内错角、同旁内角B. 同旁内角、同位角、内错角C. 同位角、对顶角、同旁内角D. 同位角、内错角、对顶角【答案】A【解析】【分析】两条线a 、b 被第三条直线c 所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角;两个角分别在截线的异侧,且夹在两条被截线之间,具有这样位置关系的一对角互为内错角;两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.据此作答即可.【详解】解:根据同位角、内错角、同旁内角的概念,可知第一个图是同位角,第二个图是内错角,第三个图是同旁内角.故选:A .【点睛】本题考查了同位角、内错角、同旁内角,解题关键是掌握同位角、内错角、同旁内角,并能区别它们.2. 下列各式中,是二元一次方程的是( )A. B. C. D. 【答案】A【解析】【分析】根据二元一次方程的定义逐项判断即得答案.【详解】解:A 、是二元一次方程;的455x y -=1xy y -=45x y +2517x y +=455x y -=B 、不是二元一次方程;C 、不是方程;D、不是二元一次方程;故选:A .【点睛】本题主要考查了二元一次方程的定义.含有两个未知数,且含未知数的项的最高次数都是一次的整式方程叫做二元一次方程.3. 下列四个数中,是无理数的是( )A. 3.14B. C. D. 0【答案】C【解析】【分析】本题考查了无理数的概念,解题的关键是掌握无理数的概念.根据无限不循环小数为无理数逐项分析即可.【详解】解:3.14是有限的小数,不是无理数,故A 不符合题意.是分数,不是无理数,故B 不符合题意.是无理数,故C 符合题意.0为整数,不是无理数,故D 不符合题意.故选:C .4. 如图,下列条件不能判定的是( )A. B. C. D. 【答案】D【解析】【分析】根据平行线的判定进行判断即可.【详解】解;∵和是同位角,当时,,故A 错误;1xy y -=45x y +2517x y +=227227AD EF ∥A CBE∠=∠180A ABE ∠+∠=︒D DBE ∠=∠D CBE∠=∠A ∠CBE ∠A CBE ∠=∠AD EF ∥∵和是同旁内角,当时,,故B 错误;∵和是内错角,当时,,故C 错误;∵和不是同位角,也不是内错角,当时,不能证明,故D 正确,故选:D .【点睛】本题考查平行线的判定,熟练掌握平行线的判定是解题的关键.5. 下列命题是真命题的是( )A. 相等的角是对顶角B. 两直线平行,同旁内角相等C. 两点之间直线最短D. 邻补角互补【答案】D【解析】【分析】本题考查了判断命题的真假,根据对顶角相等,两直线平行同旁内角互补,两点之间线段最短,邻补角互补可得到答案,掌握各个选项所包含的知识点是解题的关键.【详解】解:A 、对顶角相等,但相等的角不一定是对顶角,原说法错误,故该选项是假命题;B 、两直线平行,同旁内角互补,原说法错误,故该选项是假命题;C 、两点之间线段最短,原说法错误,故该选项是假命题;D 、邻补角互补是指两个相邻的角,它们的互为补角,该说法正确,故该选项是真命题;故选:D .6. 在下列各式中正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了算术平方根, 根据算术平方根的定义求解即可.【详解】解:A .,原计算错误,故该选项不符合题意;B,原计算错误,故该选项不符合题意;C,原计算错误,故该选项不符合题意;D,原计算正确,故该选项符合题意;故选:D .7. 如图,将沿直线折叠,使点A 落在边上的点F 处,,若,则( )A ∠ABE ∠180A ABE ∠+∠=︒AD EF ∥D ∠DBE ∠D DBE ∠=∠AD EF ∥D ∠CBE ∠D CBE ∠=∠AD EF ∥3=2=-8=2=3=±2=4=2=ADE V DE BC DE BC ∥70C ∠=︒FEC ∠=A. B. C. D. 【答案】B【解析】【分析】本题考查了平行线的性质,折叠的性质;根据平行线的性质可得,根据折叠的性质求出,进而可计算的度数.详解】解:∵,,∴,由折叠得:,∴,故选:B .8. 二元一次方程的正整数解有( )A. 组B. 组C. 组D. 组【答案】C【解析】【分析】把y 看作已知数表示出x ,确定出方程的正整数解即可.【详解】解:方程2x +y =7,解得:,当y =1时,x =3;当y =3时,x =2;当y =5时,x =1,则方程的正整数解有3组,故选:C .【点睛】此题考查了解二元一次方程,解题的关键是将y 看作已知数求出x .9.,则x 为( ).A. 214B. C. 2140 D. 【答案】A 【50︒40︒30︒20︒70AED C ∠=∠=︒DEF ∠FEC ∠DE BC ∥70C ∠=︒70AED C ∠=∠=︒70DEF AED ∠=∠=︒180180707040FEC AED DEF ∠=︒-∠-∠=︒-︒-︒=︒27x y +=123472y x -=0.5981= 5.981=214±2140±【解析】变形为,,∴,,,∴.故选:A .【点睛】本题考查立方根的应用,解题关键是借助已知等式求解.10. 如图,已知,点C 在上,,平分,且.则下列结论:①;②;③.其中正确的个数有( )A. ①②B. ①③C. ②③D. ①②③【答案】D【解析】【分析】由平行线的性质得出,证出,由角平分线定义得出,得出,证出,即可证明①;证出即可证明②;由即可证明③.【详解】解:∵,110==10=110=0.5981=0.5981110=5.981=5.981=214x =AB EF ∥EF EAC ECA =∠∠BC DCF ∠ACBC ⊥AE CD ∥190B ∠+∠=︒21BDC ∠=∠,ECA BAC BCF B ∠∠∠∠==190,90BCD ECA BCF ∠∠∠∠+=︒+=︒BCD BCF ∠=∠1ECA ∠=∠1EAC ∠=∠B BCD ∠=∠1,1ECA BAC BDC BAC ∠∠∠∠∠∠===+AB EF ∥∴∵∴∵平分,∴∴∵∴∴,故①正确;∵∴∴,故②正确;∵∴,故③正确;故选:D .【点睛】本题考查了平行线的判定与性质、三角形的外角性质等知识:熟练掌握平行线的判定与性质是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分.)11. 已知是二元一次方程的一个解,则a 的值为_______.【答案】2【解析】【分析】本题主要考查了二元一次方程解的定义,二元一次方程的解是使方程左右两边相等的未知数的值,据此把代入原方程求出a 的值即可.【详解】解:∵是二元一次方程的一个解,∴,∴,故答案为:2.,ECA BAC BCF B∠∠∠∠==AC BC⊥190,90BCD ECA BCF ∠∠∠∠+=︒+=︒BC DCF ∠BCD BCF∠=∠1ECA∠=∠EAC ECA=∠∠1EAC ∠=∠AE CD ∥,BCF B BCD BCF∠∠∠∠==B BCD∠=∠190B ∠+∠=︒1,1ECA BAC BDC BAC ∠∠∠∠∠∠===+21BDC ∠=∠21x y =⎧⎨=⎩5ax y +=21x y =⎧⎨=⎩21x y =⎧⎨=⎩5ax y +=215a +=2a =12. 若的平方根是±3,则__________.【答案】5【解析】【分析】根据平方根的定义先得到(±3)2=2a-1,解方程即可求出a .【详解】解:∵2a-1的平方根为±3,∴(±3)2=2a-1,解得a=5.故答案为:5.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13. 如图,已知直线,相交于点O ,平分,,则的度数是_______.【答案】60【解析】【分析】本题考查角的和差,涉及角平分线的性质、对顶角、邻补角等知识,是重要考点,掌握相关知识是解题关键.由邻补角定义解得,再由角平分线的性质解得,由对顶角相等求解即可.【详解】解:∵∴∵平分,∴∴.故答案为:60.14. 已知关于x 、y 的方程组,则的值为_______.21a -=a AB CD OE BOC ∠150∠=︒AOE AOD ∠︒30BOE ∠=︒260BOC BOE ︒∠=∠=150∠=︒AOE 18030BOE AOE ∠=︒-∠=︒OE BOC ∠260BOC BOE ︒∠=∠=60AOD BOC ∠=∠=︒322233x y a x y a +=+⎧⎨+=-⎩x y +【答案】1【解析】【分析】本题主要考查了解二元一次方程组,另方程组中的两个方程相加,即可得出,即可求出的值.【详解】解:由①+②可得出:,整理得:,∴,故答案为:1.15. 一副三角板按图示摆放,点E 恰好落在的延长线上,使,则的大小为_______°.【答案】15【解析】【分析】本题主要考查了平行线的性质,由平行的性质可得出,由三角板可知,然后根据角的和差关系即可得出.【详解】解:∵,,∴,∵,∴,故答案为:15.16. 如图(一)所示这种拼图(宽度设为)我们小时候可能都玩过,已知有若干片相同的拼图,且拼图依相同方向排列时可紧密拼成一行,如图(二)所示,当4片拼图紧密拼成一行时长度为 ;如图(三)所示,当10片拼图紧密拼成一行时长度为,则这样一片拼图的宽度a 为______.的()55x y +=x y +322233x y a x y a +=+⎧⎨+=-⎩①②5523x y a a +=++-()55x y +=1x y +=CB FD BC ∥BDE ∠60ABC BDF ∠=∠=︒45EDF ∠=︒BDE ∠FD BC ∥60ABC ∠=︒60ABC BDF ∠=∠=︒45EDF ∠=︒15BDE BDF EDF ∠=∠-∠=︒cm a 19cm 46cm cm【答案】【解析】【分析】本题考查了二元一次方程组的应用,解题的关键是读懂题意,根据已知求出,的值.根据“当4片拼图紧密拼成一行时长度为,当10片拼图紧密拼成一行时长度为”,即可得出关于,的二元一次方程组,解之求得,的值,进而得到结论.【详解】设小半圆半径为b ,则由题意得:依题意得:,解得:,∴这样一片拼图的宽度a 为,故答案为:.三、解答题(一)(本大题共3小题,每小题7分,共21分.)17. 解方程组:.【答案】【解析】【分析】将方程②进行变形,用代入法即可解答.【详解】解:由②得: ③把代入 ①,得:,把代入 ③,得:,112a b 19cm 46cm a b a b ()()4191046a b b a b b ⎧-+=⎪⎨-+=⎪⎩1121a b ⎧=⎪⎨⎪=⎩11cm 211234225x y x y +=⎧⎨-=⎩21x y =⎧⎨=-⎩34225x y x y +=⎧⎨-=⎩①②25y x =-25y x =-2x =2x =1y =-∴方程组的解为:【点睛】本题考查的是二元一次方程组的解法,解题的关键是用代入消元法和加减消元法进行消元.18. 如图,已知,直线分别交于点E 、F ,,求证:.【答案】见详解【解析】【分析】本题主要考查了平行线的判定以及性质,由两直线平行,同位角相等,可得出,进一步得出,即可证明.【详解】证明:∵∴又∵,∴∴.19. 如图,直线与直线相交于,请完成下列各题:(1)过点画,交于点(2)过点画,垂足;(3)连接,比较线段与的长短,用“”连接,并说明依据.【答案】(1)见解析 (2)见解析(3),垂线段最短为21x y =⎧⎨=-⎩AB CD MN AB CD ,12∠=∠EP FQ ∥MEB MFD ∠=∠∠=∠MEP MFQ EF FQ ∥AB CDMEB MFD ∠=∠12∠=∠∠=∠MEP MFQEF FQ ∥CD AB C P PQ CD ∥AB QP PR CD ⊥R PC PC PR <PR PC <【解析】【分析】本题考查了作图复杂作图、垂线、垂线段最短、平行线的性质(1)过点画,交于点即可;(2)过点画,垂足为;(3)连接,根据垂线段最短即可判断与的大小.【小问1详解】解:如图,,交于点;【小问2详解】解:如图【小问3详解】解:与的大小为:.因为垂线段最短.四、解答题(二)(本大题共3小题,每小题9分,共27分.)20. 某班为奖励在校运动会上取得好成绩的同学,花了200元购买甲、乙两种奖品共30件,其中甲种奖品每件8元,乙种奖品每件6元.求购买的甲、乙两种奖品各有多少件?【答案】购买了甲种奖品10件,乙种奖品20件【解析】【分析】本题主要考查了二元一次方程组的应用,设购买甲种奖品x 件,乙种奖品y 件,列出二元一次方程组求解即可.【详解】解:设购买甲种奖品x 件,乙种奖品y 件,则: 解得:答:购买了甲种奖品10件,乙种奖品20件.21. 如图,在中,点D 、F 在边上,点E 在边上,点G 在边上,与的延长线交于点H ,,.-P PQ CD ∥AB Q P PR CD ⊥R PC PC PR PQ CD ∥AB Q PR CD⊥PC PR PR PC <3086200x y x y +=⎧⎨+=⎩1020x y =⎧⎨=⎩ABC BC AB AC EF GD 1B ∠=∠23180∠+∠=︒(1)判断和的位置关系,并说明理由;(2)若,且,求的度数.【答案】(1),理由见解析(2)【解析】【分析】(1)先根据平行线的判定可得,根据平行线的性质得,等量代换得到,即可得出答案;(2)由平行线的性质得到,,根据角的和差得出,再根据,即可得解.【小问1详解】解:,理由如下:∵,∴,∴,又∵,∴,∴;【小问2详解】解:由(1)得,∴,,∵,∴,∵,∴,∴,EH AD 60DGC ∠=︒44H ∠-∠=︒H ∠EH AD ∥32︒AB GD ∥2BAD ∠=∠3180BAD ∠+∠=︒2BAD H ∠=∠=∠60DGC BAC ∠=∠=︒4460BAC BAD H ∠=∠+∠=∠+∠=︒44H ∠-∠=︒EH AD ∥1B ∠=∠AB GD ∥2BAD ∠=∠23180∠+∠=︒3180BAD ∠+∠=︒EH AD ∥AB GD ∥2BAD ∠=∠DGC BAC ∠=∠60DGC ∠=︒60BAC ∠=︒EH AD ∥2H ∠=∠H BAD ∠=∠∴,∵,∴.【点睛】此题考查了平行线的判定与性质,熟记“同位角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,内错角相等”、“两直线平行,同位角相等”是解题的关键.22. 如图两个4×4网格都是由16个边长为1的小正方形组成.(1)图①中的阴影正方形的顶点在网格的格点上,这个阴影正方形的面积为______,若这个正方形的边长为a ,则______.(2)观察图②,请先写出阴影部分的面积为______,并在阴影部分的基础上将其补全为面积是5的正方形(顶点都在网格的格点上),若这个正方形的边长为b ,则______(3)请你利用以上结论,在图③数轴上表示实数a 和的大概位置.【答案】(1)10(2)2(3)见解析【解析】【分析】本题主要考查了实数与数轴,算术平方根:(1)用小正方形的面积加上三角形的面积即可求出阴影部分的面积;根据正方形面积公式即可求出a 的值;(2)仿照题意作图,然后根据正方形面积公式求出b 的值即可;(3)根据(1)(2)所求,在数轴上表示出2个数,即可.【小问1详解】解:这个阴影正方形的面积, 若这个正方形的边长为a ,则;故答案为:10【小问2详解】的4460BAC BAD H ∠=∠∠=∠∠=︒++44H ∠-∠=︒32H ∠=°=a b =b -144413102=⨯-⨯⨯⨯=a =解:如图,四边形即为所求;阴影部分的面积为;∵这个正方形的边长为b ,面积是5,∴故答案为:2【小问3详解】解:,∴,如图,即为所求.五、解答题(三)(本大题共2小题,每小题12分,共24分.)23. 已知中,,将边沿着边所在直线平移得到线段(D 与A 为对应点且点D 不与重合),连接.(1)如图1,当时,求的度数;(2)在整个平移过程中,当时,求的度数;(3)在整个平移过程中,直接写出之间的等量关系.【答案】(1)1111222⨯+⨯⨯=b =34,23<<<<43,23b a -<-<-<<ABC 70B ∠=︒AB AC DE A C 、CE BC CE ⊥E ∠2E BCE ∠=∠E ∠B E BCE ∠∠∠、、20︒(2)或 (3)当平移到点A 上方时,;当平移到点A 和C 之间时,;当平移到点C 下方时,【解析】【分析】本题考查平行线的性质,平移的性质(1)作,由平移得,可得,由,即可求得;(2)当平移到点A 和C 之间时,当平移到点A 上方时,两种情况进行讨论即可;(3)由(1)(2)可以得到当平移到点A 上方时,当平移到点A 和C 之间时,当平移到点C 下方时,三种情况进行讨论.【小问1详解】解:如图,作,由平移得,∴∴又∵∴,即,∴∴【小问2详解】由(1)可知,当平移到点C 下方时,,不存在;①当平移到点A 和C 之间时,如图,作,由题意,设,则∵且∴又∵∴1403︒140︒DE E B BCE ∠=∠+∠DE E B BCE ∠=∠+∠DE BCE B E∠=∠+∠CF AB ∥DE AB ∥CF AB DE ∥∥70B BC CE ∠=︒⊥,DE DE DE DE DE CF AB ∥DE AB ∥CF AB DE∥∥21B E ∠=∠∠=∠,70B BC CE∠=︒⊥,90BCE ∠=︒1290∠+∠=︒90B E ∠+∠=︒90907020E B ∠=︒-∠=︒-︒=︒DE E BCE ∠<∠2E BCE ∠=∠DE CF AB ∥CF AB DE∥∥BCE x ∠=2E x∠=CF AB ∥70B ∠=︒70BCF B ∠=∠=︒DE CF∥2ECF E x ∠=∠=∴∴x =,= ②当平移到点A 上方时,如图,作,由题意,设,则∵且∴又∵∴∴∴综上所述,∠E 的度数为【小问3详解】解:由(2)得:当平移到点A 上方时,;当平移到点A 和C 之间时,;由(1)得:当平移到点C 下方时,24. 任意一个无理数介于两个整数之间,我们定义,若无理数T :,(其中m 为满足不等式的最大整数,n 为满足不等式的最小整数),则称无理数T 的“麓外区间”为,如的麓外区间为.(1的“麓外区间”是______;(2)实数x ,y ,m 满足关系式:,求m 的算术平方根的“麓外区间”.370BCF BCE ECF x ∠=∠+∠==︒703⎛⎫︒ ⎪⎝⎭2E x ∠=1403⎛⎫︒ ⎪⎝⎭DE CF AB ∥CF AB DE ∥∥BCE x ∠=2E x∠=CF AB ∥70B ∠=︒70BCF B ∠=∠=︒DE CF∥2ECF E x∠=∠=70BCF BCE ECF x ∠=∠-∠==︒2140E x ∠==︒1401403⎛⎫︒︒ ⎪⎝⎭或DE E B BCE ∠=∠+∠DE B E BCE ∠=∠+∠DE BCE B E∠=∠+∠m T n <<(),m n 12<<()1,20=(3)若某一个无理数T 的“麓外区间”为,其中是关于x ,y 的二元一次方程的一组正整数解,请求出m 、n 的值,并写出一个符合题意的无理数T .【答案】(1)(2)(3)(答案不唯一)【解析】【分析】本题考查无理数的估算,解三元一次方程组以及二元一次方程组的应用.熟练掌握相关知识点,并灵活运用,是解题的关键.(1的取值范围,即可得出结果;(2)结合算术平方根的非负性得到求出m 的值,进而求出求m 的算术平方根的“麓外区间”即可.(3)根据二元一次方程组的解代入方程,组成新的二元一次方程组,从而求得m ,n 的值,然后根据“麓外区间”定义写出一个符合题意的无理数即可.【小问1详解】解:∵,的“麓外区间”是,故答案为:.【小问2详解】∴, 联立得:∴,(),m n x m y n=⎧⎨=⎩211y x +=()4,5()11,1234m n =⎧⎨=⎩23034201230x y m x y m x y +-=+-=+-=,,45<<()4,5()4,50=23034201230x y m x y m x y +-=+-=+-=,,1232303420x y x y m x y m +=⎧⎪+-=⎨⎪+-=⎩123m =<<∴,∴m 的算术平方根的“麓外区间”是【小问3详解】∵是关于 x ,y 的二元一次方程的一组正整数解,∴又由题意,有,∴,解得 ∴符合题意的无理数T(答案不唯一)1112<<()11,12x m y n=⎧⎨=⎩211y x +=211n m +=1n m -=2111n m n m +=⎧⎨-=⎩34m n =⎧⎨=⎩。

七年级第二学期期中考试数学试卷

七年级第二学期期中考试数学试卷

七年级第二学期期中质量检测数 学 试 题(满分:100分 考试时间: 90分钟)★友情提示:所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效。

所有作图痕迹都必须用黑色签字笔描黑。

一、选择题(每小题3分,共30分)1. 在实数0,-2, , 2中,最大的数是 A.0 B.-2 C. D.22. 如图,已知a//b,直角三角板的直角顶点在直线a 上,若∠2=20°, 则∠1等于A.40°B.50°C.60°D.70°3. 若方程3)2(1=-+-y a x a 是二元一次方程,则a 为A.a>2 B .a=2 C .a=-2 D .a<-24.下列命题是真命题的是A.内错角相等B.如果一个数能被4整除,那么它能被2整除C.相等的角是对顶角D.两个锐角的和是锐角5.我校运动员为迎接市赛决定进行分组训练,若每组7人,余3人;若每组8人,则缺5人,设运动员人数为x 人,组数为y 组,则可列方程组得A.⎩⎨⎧=++=x y x y 5837B.⎩⎨⎧=-+=x y x y 5837C.⎩⎨⎧+=-=5837x y x yD.⎩⎨⎧-=-=5837x y x y6.实数1-3a 有平方根,则a 可以取的值为A.0B.1C.2D.37. 小刚从学校出发往东走500m 是一家书店,继续往东走1000m ,再向南走1000m 即可到家。

若选书店所在的位置为原点,分别以正东,正北方向为x 轴,y 轴正方向建立平面直角坐标系。

规定一个单位长度代表1m 长,若以点A 表示小刚家的位置,则点A 的坐标是A. (1500,-1000)B.(1500,1000)55C.(1000,-1000)D.(-1000,1000)8.已知点A (2,-3),线段AB 与坐标轴没有交点,则点B 的坐标可能是A.(-1,-2)B.(3,-2)C.(-2,3)D.(1,2)9.若 ,则 的值是( ) A. B.8 C.1 D.-1 10.如图所示,在平面直角坐标系中,有若干个整数点,其 顺序按图中箭头方向排列,如(1,0),(2, 0),(2, 1),(3, 2),(3,1),(3, 0),•,根据这个规律探索可得,第2019个点的坐标为A.(64,2)B.(63,0)C.(63,2) D .(64,3)二、填空题(每题3分,共18分)11.161的算术平方根是 . 12.若===253600,159066.253,036.536.25则 .13.如图,直线a∥b,∠1=50°,∠2=30°,则∠3= .14.如图,AC ⊥BC 于C ,CD ⊥AB 于D ,DE ⊥BC 于E ,比较四条线段DE 、DC 、AC 、AB 的大小(用“<”连接) .15. 如图,在平面直角坐标系中,∆ABC 的三个顶点的坐标分别是A (m,6),B (8,0),C(-m,-6),且AC 经过原点O ,BH ⊥AC 于H 点,则AC •BH= .16.如图a ,四边形ABCD 是长方形纸条(AD//BC ),∠DEF=17°,将纸条沿EF 折叠成图b,再沿BF 折叠成图c ,图c 中的∠CFE 的度数是 .三、解答题(8小题,共52分)⎪⎩⎪⎨⎧=--=-211c a b a 8522)(3++--c b c b 8717.(4分)计算:3109.041813--++-18.(4分)解方程19.(4分)解方程组:20.(8分)在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC 的三个顶点的位置如图所示,现将△ABC 平移后得△DEF ,使点A 的对应点为点D ,点B 的对应点为点E .(1)画出△DEF ;(2)连接AD 、BE ,则线段AD 与BE 的关系是 ;(3)求△DEF 的面积.21. (6分)求证:在同一平面内,垂直于同一条直线的两直线平行.(现将文字语言转换为几何符号语言,并画出图形,再证明)22. (6分)我国古代数学著作《九章算术》中记载有这样一个问题:“今有甲、乙二人, 持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题目大意是:今有甲、乙二人,各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的32,那么乙也共有钱50.问甲、乙二人各带了多少钱?23.(10分)如图,点E 在四边形ABCD 的边BA 的延长线上,CE 与AD 交于点F ,∠DCE=∠AEF ,∠B=∠D.(1)求证:AD ∥BC;(2)如图,若点P 在线段BC 上,点Q 在线段BP 上,且∠FQP=∠QFP ,EM 平分∠EFP ,试探究∠MFQ 与∠DFC 的数量关系,并说明理由. ⎪⎩⎪⎨⎧-=+=+y x y x 18)1(422324.(10分)在同一个平面内,若一个点到一条直线的距离不大于1,则这个点是该直线的的“和谐点”。

陕西省西安未央区经开第一学校2023-2024学年七年级下学期期中数学试题(含解析)

陕西省西安未央区经开第一学校2023-2024学年七年级下学期期中数学试题(含解析)

2023-2024学年度第二学期期中质量检测七年级数学试卷(考试时间:100分钟 分值:120分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列计算中,正确的是( )A .326a a a ⋅=B .22122a a -=C .633422a a a ÷=D .224a a a +=2.下列不能用平方差公式计算的是( )A .()()x y x y +-B .()()x y x y -+-C .()()x y x y -+--D .()()x y x y -++3.俗话说:“水滴石穿”,水滴不断地落在一块石头的同一个位置,经过几年后,石头上形成了一个深度为0.0039的小洞,数据0.0039用科学记数法表示为( )A .33.910-⨯B .33910-⨯C .20.3910-⨯D .23910-⨯4.如图,直线a ∥b ,直角三角板ABC 的直角顶点C 在直线b 上,若∠1=55°,则∠2=( )A .55°B .45°C .35°D .25°5.如图在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是( )A .a 2﹣2ab +b 2=(a ﹣b )2B .a 2﹣ab =a (a ﹣b )C .a 2﹣b 2=(a ﹣b )2D .a 2﹣b 2=(a +b )(a ﹣b )6.如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的解析式为( ).A .32y x =B .23y x =C .12y x =D .18=y x7.车库的电动门栏杆如图所示,BA 垂直于地面AE 于A ,CD 平行于地面AE ,则∠ABC +∠BCD 的大小是( )A .150︒B .180︒C .270︒D .360︒8.小明一家自驾车到离家500km 的某景点旅游,出发前将油箱加满油.下表记录了行驶路程()km x 与油箱余油量()L y 之间的部分数据:行驶路程()km x 050100150200…油箱余油量()L y 4541373329…下列说法不正确的是( )A .该车的油箱容量为45LB .该车每行驶100km 耗油8LC .油箱余油量()L y 与行驶路程()km x 之间的关系式为458y x=-D .当小明一家到达景点时,油箱中剩余5L 油9.(x -m )2=x 2+nx +36,则n 的值为( )A .12B .-12C .-6D .±1210.如图,两个正方形的边长分别为a ,b ,且满足10a b +=,12ab =,图中阴影部分的面积为( )A .100B .32C .144D .36二、填空题(共6小题,每小题3分,计18分)11.比较大小:334 443.12.如图,直线AB 与直线EF 相交于点O ,CD AB OG ⊥,平分EOB ∠,若60AOF ∠=︒,则DOG ∠的度数为 .13.在三角形ABC 中,90BAC ∠=︒,AD BC ⊥垂足为D ,则有=B CAD ∠∠,其理由是 .14.若()()23x m x x n +-+的展开式中不含x 项、2x 项(,m n 为常数),则m n ⋅= .15.一个角的补角比它的余角的3倍少20︒,这个角的度数是 度.16.南宋数学家杨辉在其著作《详解九章算法》中揭示了()n a b +(n 为非负整数)展开式的项数及各项系数的有关规律如下,后人也将右表称为“杨辉三角”.当代数式43242644816a a a a +⨯+⨯+⨯+的值为1时,则a 的值为 .三、解答题(共8小题,计72分)17.计算下列各题:(1)20211( 2.74)()3π--+-+;(2)23332(3)(4)a a a a --⋅+;(3)2(5)(2)(3)x x x ----;(4)()()a b c a b c +-++.18.利用整式乘法公式计算(1)3994011⨯+(2)210319.如图,已知三角形ABC ,点P 是AB 边上一点,利用尺规在AC 上求作一点Q ,使PQ BC ∥(不写作法,保留作图痕迹).20.先化简,再求值:()()()()222222x y x y x y y y ⎡⎤---+-÷-⎣⎦;其中2x =-,1y =.21.如图,若AB DE ∥,180A D ∠+∠=︒,求证:AC DF ∥.(请补全下面的解答过程,括号内填写依据)证明:∵AB DE ∥,A ∴∠= ① ( ② )180A D ∠+∠=︒ ( ③ )D ∴∠+ ④ 180=︒( ⑤ )AC DF ∴∥( ⑥ )22.动点H 以每秒1cm 的速度沿图1中的长方形ABCD 按从A B C D ---的路径匀速运动,相应的三角形HAD 的面积()2cm S 与时间()s t 的关系图象如图2,已知4cm AD =,设点H 的运动时间为t 秒.(1)AB =______,=a ______,b =______;(2)当三角形HAD 的面积为28cm 时,求点H 的运动时间t 的值.23.“数形结合”是一种非常重要的研究数学问题的思想方法.结合图形我们可以通过两种不同的方法计算面积,从而可以得到一个数学等式.(1)如图1,用两种不同的方法计算阴影部分的面积,可以得到的数学等式是______.(2)我们可以利用(1)中的关系进行求值,则3a b +=-.则227a b +=,ab =______;(3)小玲想利用图2中x 张A 纸片,y 张B 纸片,z 张C 纸片拼出一个面积为()()3a b a b ++的大长方形,则x y z ++=______;(4)如图3,已知正方形ABCD 的边长为x ,,E F 分别是AD DC 、上的点,且1AE =,3CF =,长方形EMFD 的面积是24,分别以MF DF 、为边作正方形,求阴影部分的面积.24.如图,已知AB CD ∥,E F 、分别在AB CD 、上,点P 在AB CD 、之间,连接PE PF 、.(1)如图1,若50AEP ∠=︒,20CFP ∠=︒,则EPF ∠=______;(2)如图2,点G 是AB CD 、之间另外一点,40BEG ∠=︒且EP 平分BEG ∠,FP 平分DFG ∠:①若GE GF ⊥,求P ∠的度数;②如图3,在CD 的下方有一点,Q EG 平分BEQ ∠,FD 平分GFQ ∠,求2Q P ∠+∠的度数.参考答案与解析1.C【分析】本题考查了同底数幂的乘法,负整数指数幂,单项式除以单项式,合并同类项.根据同底数幂的乘法,负整数指数幂,单项式除以单项式,合并同类项法则分别计算判断即可.【详解】解:A 、3256a a a a ⋅=≠,故此选项不符合题意;B 、2222122a a a-=≠,故此选项不符合题意;C 、633422a a a ÷=,故此选项符合题意;D 、22242a a a a +=≠,故此选项不符合题意;故选:C .2.B【分析】本题考查平方差公式:()()22a b a b a b +-=-,解题的关键是掌握平方差公式的结构特征:左边是两个二项式相乘,且两个二项式中有一项相同,另一项互为相反数;右边是两项的平方差(相同项的平方减去相反项的平方);公式中的a 和b 可以是单项式,也可以是多项式.据此依次对各选项逐一分析即可作出判断.【详解】解:A .()()22x y x y x y +-=-,能用平方差公式计算,故此选项不符合题意;B .()()()()222x y x y x y x y x xy y -+-=---=-+-,不能用平方差公式计算,故此选项符合题意;C .()()()2222x y x y x y x y -+--=--=-,能用平方差公式计算,故此选项不符合题意;D .()()()()22x y x y y x x y y x -++=-+=-,能用平方差公式计算,故此选项不符合题意.故选:B .3.A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:30.0039 3.910-=⨯,故选:A .【点睛】本题考查了用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.C【分析】先由平行线的性质求出∠3,再由直角和角的和差关系求出∠2.【详解】解:∵a ∥b ,∴∠1=∠3.∵∠1=55°,∴∠3=55°.∵∠2+∠3=∠ACB =90°,∴∠2=90°-∠3=35°.故选:C .【点睛】本题主要考查了平行线的性质,掌握“两直线平行,同位角相等”是解决本题的关键.5.D【分析】这个图形变换可以用来证明平方差公式:已知在左图中,大正方形减小正方形剩下的部分面积为a 2﹣b 2;因为拼成的长方形的长为(a +b ),宽为(a ﹣b ),根据“长方形的面积=长×宽”代入为:(a +b )×(a ﹣b ),因为面积相等,进而得出结论.【详解】解:由图可知,大正方形减小正方形剩下的部分面积为:a 2﹣b 2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.【点睛】此题主要考查了平方差公式的几何背景,解题的关键是求出第一个图的阴影部分面积,进而根据长方形的面积计算公式求出拼成的长方形的面积,根据面积不变得出结论.6.A【分析】首先求出每支平均售价,即可得出y与x之间的关系.【详解】∵每盒圆珠笔有12支,售价18元,∴每只平均售价为:1812=1.5(元),∴y与x之间的关系是:32y x ,故选:A.【点睛】此题主要考查了列函数关系式,求出圆珠笔的平均售价是解题关键.7.C【分析】过B作BF∥AE,则CD∥BF∥AE.根据平行线的性质即可求解.【详解】解:过B作BF∥AE,则CD∥BF∥AE.∴∠BCD+∠1=180°;又∵AB⊥AE,∴AB⊥BF.∴∠ABF=90°.∴∠ABC+∠BCD=90°+180°=270°故选C.【点睛】本题主要考查了平行线的性质,两直线平行,同旁内角互补.正确作出辅助线是解题的关键.8.C【分析】根据表格中信息逐一判断即可.【详解】解:A、由表格知:行驶路程为0km时,油箱余油量为45L,故A正确,不符合题意;B 、0——100km 时,耗油量为45378L -= ;100——200km 时,耗油量为37298L -= ;故B 正确,不符合题意;C 、有表格知:该车每行驶50km 耗油4L ,则∴44550y x =-,故C 错误,符合题意;D 、当500x = 时,44454550055050y x L =-=-⨯=,故D 正确,不符合题意,故选:C .【点睛】本题主要考查了函数的表示方法,明确题意,弄懂表格中的信息是解题的关键.9.D【详解】222()2x m x mx m -=-+ , (x -m )2=x 2+nx +36,222236x mx m x nx ∴-+=++,2236,m n m -=⎧∴⎨=⎩解得:121266,1212.m m n n ==-⎧⎧⎨⎨=-=⎩⎩ 故选D.10.B【分析】用含有a 、b 的代数式表示阴影部分的面积,再根据完全平方公式进行代数式的变形,进而求出答案.【详解】解:∵两个正方形的边长分别为a ,b ,∴()2221122S a b a a b b =+--+⋅阴影2222111222a b a ab b =+---22111222a ab b =-+()2212a ab b =-+()221232a ab b ab =++-()2132a b ab ⎡⎤=+-⎣⎦,∵10a b +=,12ab =,∴原式()2110312322=⨯-⨯=.故选:B .【点睛】本题考查完全平方公式的应用,求代数式的值.正确的表示阴影部分的面积和适当的变形,是得到正确答案的关键.11.<##小于【分析】本题主要考查了幂的乘方的逆运算,根据幂的乘方的逆运算法则得到()11333114464==,()11444113381==,据此可得答案.【详解】解;()11333114464==,()11444113381==,∵11116481<,∴334443<,故答案为:<.12.120°##120度【分析】首先垂直的定义可得90BOD ∠=︒,根据对顶角相等可得60BOE AOF ∠=∠=︒, 再根据角平分线的定义以及角的和差关系算出DOG ∠的度数.【详解】∵CD AB ⊥,∴∠90BOD =︒,∵60AOF ∠=︒,∴60BOE AOF ∠=∠=︒,∵OG 平分BOE ∠,1302BOG BOE ∴∠=∠=︒,∴3090120DOG BOG BOD ∠=∠+∠=︒+︒=︒ ,故答案为:120︒.【点睛】此题主要考查了角平分线的定义,垂线和对顶角,关键是掌握对顶角相等,垂直定义,角平分线的性质.13.同角的余角相等【分析】此题考查了直角三角形的性质.根据直角三角形的性质得出90B C ∠+∠=︒,90C CAD ∠+∠=︒,再根据同角的余角相等求解即可.【详解】解:90BAC ∠=︒ ,90B C ∴∠+∠=︒,AD BC ⊥ ,90C CAD ∴∠+∠=︒,B CAD ∴∠=∠(同角的余角相等),故答案为:同角的余角相等.14.27【分析】利用多项式乘多项式的法则对式子进行运算,再结合条件进行求解即可.【详解】解:()()23x m x x n +-+32233x x nx mx mx mn=-++-+()()3233x m x n m x mn=+-++-+∵展开式中不含x 项,2x 项,∴30n m -=,30m -+=,解得:3m =,9n =,∴3927m n ⋅=⨯=.故答案为:27.【点睛】本题主要考查多项式乘多项式,解答的关键是对相应的运算法则的掌握.15.35【分析】设这个角为x 度.根据一个角的补角比它的余角的3倍少20°,构建方程即可解决问题.【详解】解:设这个角为x 度.则180°-x=3(90°-x )-20°,解得:x=35°.答:这个角的度数是35°.故答案为:35.【点睛】本题考查余角、补角的定义,一元一次方程等知识,解题的关键是学会用方程分思想思考问题,属于中考常考题型.16.1-或3-【分析】本题考查了多项式乘法中的规律问题.当2b =时,4432(2)426448161a a a a a +=+⨯+⨯+⨯+=,再计算求值即可.【详解】解:根据有关规律,可得,4322344()464a b a a b a b ab b +=++++,当2b =时,++++432234a 4ab 6a b 4ab b 43242644816a a a a =+⨯+⨯+⨯+4(2)a =+,43242644816a a a a +⨯+⨯+⨯+ 的值为1,4(2)1a ∴+=,即21a +=±,1a ∴=-或3-.故答案为:1-或3-.17.(1)9(2)6411a a --(3)519x -+(4)2222a b ab c ++-【分析】(1)根据乘方运算法则、零指数幂运算法则以及负整数指数幂运算法则求解,再相加减即可;(2)根据积的乘方法则、同底数幂乘法法则进行运算,再合并同类项即可;(3)根据完全平方公式以及多项式乘以多项式法则求解,再合并同类项即可;(4)根据平方差公式和完全平方公式求解即可.【详解】(1)解:原式1199=-++=;(2)解:原式64664271611a a a a a =--+=--;(3)解:原式22221025(56)102556519x x x x x x x x x =-+--+==-+-+-=-+;(4)解:原式22222()2a b c a b ab c =+-=++-.【点睛】本题主要考查了实数运算和整式运算,熟练掌握相关运算法则是解题关键.18.(1)160000(2)10609【分析】本题考查了平方差公式,完全平方公式.(1)利用平方差公式进行计算,即可解答;(2)利用完全平方公式进行计算,即可解答.【详解】(1)解:3994011⨯+(4001)(4001)1=-⨯++240011=-+160000=;(2)解:21032(1003)+=10000210039=+⨯⨯+10609=.19.见解析【分析】本题考查了尺规作图能力—过直线外一点作已知直线的平行线.过点P 作APQ B ∠=∠,与AC 交于点Q ,即可.【详解】解:如图,点Q 即为所求..20.522x y -,7-【分析】本题考查了整式的化简求值.先根据完全平方公式,多项式乘多项式法则进行计算,再合并同类项,算除法,最后代入求出答案即可.【详解】解:()()()()222222x y x y x y y y ⎡⎤---+-÷-⎣⎦()()22222442222x xy y x xy xy y y y =-+--++-÷-()()2542xy y y =-+÷-522x y =-,当2x =-,1y =时,原式5(2)212=⨯--⨯52=--7=-.21.DPC ∠;两直线平行,同位角相等;已知;DPC ∠;等量代换;同旁内角互补,两直线平行【分析】此题考查了平行线的判定与性质.根据平行线的判定与性质求解即可.【详解】证明:∵AB DE ∥,A DPC ∴∠=∠(两直线平行,同位角相等),180A D ∠+∠=︒ (已知),180D DPC ∴∠+∠=︒(等量代换),∴AC DF ∥(同旁内角互补,两直线平行),故答案为:DPC ∠;两直线平行,同位角相等;已知;DPC ∠;等量代换;同旁内角互补,两直线平行.22.(1)5cm ,14,10(2)点H 的运动时间为4s 或10s .【分析】本题考查了动点问题的函数图象,能结合图象得到有用条件,利用动点的运动求出相关线段是本题的解题关键.(1)根据图2函数分别分析出当点H 运动到点B 、C 、D 处的路程,求出AB ,再求出当点H 在BC 上时的面积即可;(2)当三角形HAD 的面积为28cm 时,点H 在AB 或CD 上,分别计算求出高,再依题意求出路程即可.【详解】(1)解:由图2得,当05t <≤时,S 随t 的增大而增大,∴当点H 运动到点B 时,5s =t ,5cm AB ∴=,当59<≤t 时,S 的值不变,∴当点H 运动到点C 时,9t s =,此时三角形HAD 的面积为长方形面积的一半,2110cm 2S AD AB ∴=⋅=,即10b =,当点H 运动到点D 处时,0S =,9514cm a ∴=+=,故答案为:5cm ,14,10;(2)解:当点H 在AB 上时,三角形HAD 的面积12AD AH =⋅,当28cm S =时,182AD AH ⋅=,4cm AH ∴=,4t s ∴=,当点H 在CD 上时,三角形HAD 的面积12AD DH =⋅,当28cm S =时,182AD DH ⋅=,4cm DH ∴=,1cm CH =,()10cm AB BC CH ++=10s t ∴=,综上,点H 的运动时间为4s 或10s .23.(1)()2222a b a b ab+=+-(2)1(3)8(4)阴影部分的面积为20.【分析】(1)方法一是直接将两个正方形的面积相加,方法二是用大的正方形面积减去两个长方形的面积,即可得到等式;(2)根据(1)中得到的关系式直接代入即可得到结果;(3)根据得到的大长方形的面积展开,可以得到一个关系式,由关系式中可知道用的纸张分别是多少,计算其和即可;(4)先根据阴影部分构造出来等式,然后根据两次完全平方公式得到结果.【详解】(1)解:方法一:阴影部分是两个正方形的面积和,即22a b +;方法二:阴影部分也可以看作边长为()a b +的面积减去两个长为a ,宽为b 的长方形面积,即()22a b ab +-,两种方法可得出:()2222a b a b ab +=+-;故答案为:()2222a b a b ab +=+-;(2)解:由(1)可得()2222a b a b ab +=+-,∵3a b +=-,227a b +=,∴()2732ab =--,∴1ab =;故答案为:1;(3)解:()()222233334a b a b a ab ab b a ab b ++=+++=++,A 纸片的面积为2a ,B 纸片面积为2b ,C 纸片面积为ab ,根据2234a ab b ++可知要拼出一个面积为()()3a b a b ++的大长方形,需要3张A 纸片,1张B 纸片,4张C 纸片,则3148x y z ++=++=;故答案为:8;(4)解:由图知1ED x =-,3DF x =-,∴()()2213S x x =---阴影,∵长方形EMFD 的面积是24,∴()()1324x x --=,设1x a -=,3x b -=,则2a b -=,24ab =,由()()224a b a b ab +=-+,得()222424100a b +=+⨯=,∴10a b +=,∴()()2210220a b a b a b -=+-=⨯=,即()()221320x x ---=,∴阴影部分的面积为20.【点睛】本题考查了完全平方公式在几何图形中的应用、多项式乘多项式、完全平方公式的变形适用,熟练掌握完全平方公式是解题的关键.24.(1)70︒(2)①45︒;②120︒【分析】本题考查了平行线的性质与判定,角平分线的定义,掌握平行线的性质与判定是解题的关键.(1)作PM AB ∥,根据平行线的性质与判定,以及角平分线的定义,即可求解;(2)①作GN AB ∥,PM AB ∥,根据平行线的性质与判定,以及角平分线的定义,可得()1122EPE BEG GFD EGF ∠=∠+∠=∠,根据垂直的定义可得90EGF ∠=︒,进而即可求解;②过点Q 作QK CD ∥,设GFD QFD αÐ=Ð=,根据平行线的性质以及角平分线的定义,可得80FQE αÐ=°-,由(1)可知,240G P BEG GFD α∠=∠=∠+∠=︒+,即可求解.【详解】(1)解:作PM AB ∥,∵AB CD ∥,∴AB CD PM ∥∥,∴AEP EPM CFP FPM ∠=∠∠=∠,,∵50AEP ∠=︒,20CFP ∠=︒,∴502070EPF EPM FPM ∠=∠+∠=︒+︒=︒,故答案为:70︒;(2)解:①如图,分别过点G ,P 作GN AB ∥,PM AB ∥,∵AB CD ∥,∴AB CD GN PM ∥∥∥,∴BEG EGN BEP EPM ∠=∠∠=∠,,NGF GFD MPF PFD ∠=∠∠=∠,,EGF EGN NGF BEG GFD ∠=∠+∠=∠+∠,EPF EPM MPF BEP PFD ∠=∠+∠=∠+∠,∵EG FG ⊥,∴90EGF ∠=︒,∵EP 平分BEG ∠,FP 平分DFG ∠,∴1122BEP BEG PFD DFG ∠=∠∠=∠,,∴()114522EPE BEG GFD EGF ∠=∠+∠=∠=︒;②如图,分别过点G ,P 作GN AB ∥,PM AB ∥,过点Q 作QK CD ∥,∵AB CD ∥,∴AB CD GN PM ∥∥∥,∴,BEG EGN BEP EPM ∠=∠∠=∠,,NGF GFD MPF PFD ∠=∠∠=∠,∴EGF EGN NGF BEG GFD ∠=∠+∠=∠+∠,EPF EPM MPF BEP PFD ∠=∠+∠=∠+∠,∵EP 平分BEG ∠,FP 平分DFG ∠,∴1122BEP BEG PFD DFG ∠=∠∠=∠,,∴()1122EPF BEG GFD EGF ∠=∠+∠=∠,∵40BEG ∠=︒,EG 平分BEQ ∠,FD 平分GFQ ∠,∴40,GEQ BEG GFD QFD ∠=∠=︒∠=∠,设GFD QFD αÐ=Ð=,∵,QK CD AB CD ∥∥,∴QK AB ∥,∴280EQK BEQ BEG ∠=∠=∠=︒,FQK QFD Ð=Ð,设FQK QFD αÐ=Ð=,∴80FQE αÐ=°-,∵12EPF EGF ∠=∠,∴240EGF EPF BEG GFD α∠=∠=∠+∠=︒+,∴28040120FQE P αα∠+∠=︒-+︒+=︒.。

七年级数学下册期中考试试卷(附带答案)

七年级数学下册期中考试试卷(附带答案)

七年级数学下册期中考试试卷(附带答案)(试卷满分:150分;考试时间:120分钟)学校:___________姓名:___________班级:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm黑色签字笔在答题卡上题号所提示的答题区域作答,答案写在试卷上无效.第I卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算正确的是()A.a2·a4=a8B.a4+a4=a8C.(ab)3= a³b3D.(a2)4=a62.泉城广场鲜花盛放,数郁金香最为耀眼,某品种郁金香花粉直径约为0,000000032米,数据0.000000032用科学记数法表示为()A.0.32x10-7B.3.2x10-8C.3.2x10-7D.32x10-93.研究表明,雾霾的程度随城市中心区立体绿化面积的增大而减小,在这个问题中,自变量是()A.雾霾的程度B.城市中心C.雾霾D.城市中心区立体绿化面积4.在下列四组线段中,能组成三角形的是( )A.2,2,5B.3,7,10C.3,5,9D.4,5,75.如图AB ∥CD,若∠1=40°,则∠2=()A.100°B.120°C.140°D.150°(第5题图)(第6题图)(第9题图)(第10题图)6.如图,从人行横道线上的点P处过马路,沿线路PB行走距离最短,其依据的几何学原理是()A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.在同一平面内,过一点有且只有一条直线与已知直线垂直7.下列各式中,可以用平方差公式计算的是( )A.(a-b)(a-b)B.(3a+2b)(3a-2b)C.(a+b)(2a-b)D.(2a+b)(-2a-b )8.已知x2+mx+25是一个完全平方式,则m的值为( )A.±5B.10C.﹣10D.±109.如图:OB=OD,添加下列条件后不能保证△AOB≌△COD的是()A.OA=OCB.AB=CDC.∠A=∠CD.∠B=∠D10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息,已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了36分钟:③乙用16分钟追上甲:④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分)11.若一个角是38°,则这个角的余角为.12.4m2n÷(-2m)= .13.在△ABC中,∠A:∠B:∠C=5:6:7,则△ABC是(填入"锐鱼三角形"、"直角三角形"或"钝角三角形").14.农村"雨污分流"工程是"美丽乡村"战略的重要组成部分,我县某村要铺设一条全长为1000米的"雨污分流"管道,现在工程队铺设管道施工x天与铺设管道y米之间的关系用表格表示如下,则施工8天后,未铺设的管道长度为米.15.如图,AD是△ABC的中线,已知△ABD的周长为16cm,AB比AC长3cm,则△ACD的周长为。

江苏省苏州市立达中学校2023-2024学年七年级下学期期中数学试题(解析版)

江苏省苏州市立达中学校2023-2024学年七年级下学期期中数学试题(解析版)

苏州市立达中学校2023-2024学年度第二学期期中考试试卷初一数学一、选择题1. 下列等式从左到右的变形中,属于因式分解的是( )A. x 2-6x =x (x -6)B. (x +3)2=x 2+6x +9C. x 2-4+4x =(x +2)(x -2)+4xD. 8a 2b 4=2ab 2·4ab 2【答案】A【解析】【详解】分析:直接利用因式分解的定义分析得出答案.详解:A 、x 2-6x=x (x-6),正确;B 、(x+3)2=x 2+6x+9,是多项式的乘法运算,故此选项错误;C 、x 2-4+4x=(x+2)(x-2)+4x ,不符合因式分解的定义,故此选项错误;D 、8a 2b 4=2ab 2·4ab 2,不符合因式分解的定义,故此选项错误.故选A .点睛:此题主要考查了分解因式的定义,正确把握定义是解题关键.2. 下列运算正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查整式混合运算,涉及同底数幂的乘法、单项式乘以单项式、积的乘方、幂的乘方及同底数幂的除法运算等知识,根据整式相关运算法则逐项验证即可得到答案,熟记底数幂的乘法、单项式乘以单项式、积的乘方乘方、幂的乘方及同底数幂的除法运算法则是解决问题的关键.【详解】解:A 、由同底数幂的乘法运算法则可知,,计算错误,不符合题意;B 、由单项式乘以单项式运算法则可知,,计算错误,不符合题意;C 、由积乘方、幂的乘方运算法则可知,,计算错误,不符合题意;D 、由同底数幂的除法运算法则可知,,计算正确,符合题意;故选:D .的326a a a ⋅=236m n m n ⋅=+()32528b b -=-()32()a a a -÷-=3256a a a a ⋅=≠2366m n mn m n ⋅=≠+()3265288b b b -=-≠-()32()a a a -÷-=3. 若二次三项式是一个完全平方式,则的值为( )A. 6B. C. D. 12【答案】C【解析】【分析】本题主要考查了完全平方式,根据题意可知两平方项分别为,据此可得一次项可以为,由此可得答案.【详解】解:∵二次三项式是一个完全平方式,∴,∴,故选:C .4. 若等腰三角形的两边长分别为和,则它的周长为( )A. B. 或 C. D. 以上都不对【答案】C【解析】【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【详解】解:当是腰时,3+3<8,不符合三角形三边关系,故舍去;当是腰时,周长;故它的周长为.故选:C .【点睛】本题考查等腰三角形,三角形三边的关系,注意分类讨论思想的应用和三角形三边关系是解题的关键.5. 一个多边形的边数每增加一条,这个多边形的( )A. 内角和增加360°B. 外角和增加360°C. 对角线增加一条D. 内角和增加180°【答案】D【解析】【详解】因为n 边形的内角和是(n ﹣2)•180°,当边数增加一条就变成n +1,则内角和是(n ﹣1)•180°,236x mx ++m 6±12±226x ,12x ±222366x mx x mx ++=++2612mx x x =±⋅⋅=±12m =±3cm 8cm 14cm14cm 19cm 19cm 3cm 8cm ()88319cm =++=19cm内角和增加:(n ﹣1)•180°﹣(n ﹣2)•180°=180°;故选D .6. 若一个三角形的3个外角的度数之比,则与之对应的3个内角的度数之比为( )A. B. C. D. 【答案】C【解析】【分析】本题考查了三角形的外角及其性质及三角形的外角与它相邻的内角互补的知识,设三角形的3个外角度数分别为、、,根据三角形的外角及其性质解出三角形的3个外角度数分别为、、,再求出对应的内角,即可得出对应的3个内角的度数之比.【详解】解:设三角形的3个外角度数分别为、、,根据题意得,解得,所以三角形的3个外角度数分别为、、,则对应的三角形的3个内角度数分别为、、,所以对应的3个内角的度数之比为.故选:C .7. 某小区有一正方形草坪,如图所示,小区物业现对该草坪进行改造,将该正方形草坪边方向的长度增加4米,边方向的长度减少4米,则改造后的长方形草坪面积与原来正方形草坪面积相比( )A. 增加8平方米B. 增加16平方米C. 减少16平方米D. 保持不变【答案】C【解析】【分析】本题考查根据图形列代数式解决实际问题,涉及平方差公式、整式减法运算等知识,读懂题意,准确表示出改造前后的长方形草坪面积与原来正方形草坪面积,利用整式运算求解即可得到答案,利用代数式表示出图形面积是解决问题的关键.【详解】解:如图所示:2:3:43:2:44:3:25:3:13:1:52x 3x 4x 80︒120︒160︒2x 3x 4x 234360x x x ++=︒40x =︒80︒120︒160︒100︒60︒20︒100:60:205:3:1︒︒︒=ABCD AB AD设正方形草坪的边长为米,则由题意可知,,,,,即改造后的长方形草坪面积与原来正方形草坪面积相比减少16平方米,故选:C .8. 在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“”.如记;.已知,则的值是( )A. 4B. 5C. D. 【答案】B【解析】【分析】本题考查多项式乘以多项式、整式的加减,由系数可知,再根据题中新定义,将已知等式左边展开化简,然后使常数项相等即可求解.【详解】解:∵系数为5,∴,∴,ABCD x 4AE x =-4AG x =+2S x ∴=正方形()()24416S x x x =+-=-矩形()221616S S x x ∴-=--=正方形矩形∑1123...(1)n k k n n ==++++-+∑()()()()334...n k x k x x x n =+=+++++∑()()221570n k x k x k xmx =⎡⎤+-+=+-⎣⎦∑m 5-4-2x 6n =2x 6n =()()21nk x k x k =⎡⎤+-+⎣⎦∑(2)(1)(3)(2)(4)(3)(5)(4)(6)(5)x x x x x x x x x x =+-++-++-++-++-()()()()2222226122030x x x x x x x x x x =+-++-++-++-++-25570x x =+-∵,∴,故选:B .二、填空题9. 微电子技术使半导体材料的精细加工尺寸大幅度缩小,某种电子元件的面积大约为平方毫米,数据用科学记数法表示为 _____________.【答案】【解析】【分析】绝对值小于1正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解.故答案为:【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10. 计算的结果是______.【答案】【解析】【分析】本题主要考查了同底数幂乘法的逆运算,积的乘方的逆运算,把原式先变形为,进一步变形得到,据此求解即可.【详解】解:的()()221570nk x k x k x mx =⎡⎤+-+=+-⎣⎦∑5m =0.000000650.0000006576.510-⨯10n a -⨯70.00000065 6.510-=⨯76.510-⨯10n a -⨯110a ≤<()2021202320222 1.513⎛⎫⨯⨯- ⎪⎝⎭1.5-()202120212113.5.51⎛⎫⎝⨯⨯⨯- ⎪⎭()20212 1.51153.⎛⎫⨯⨯- ⎪⨯⎝⎭()2021202320222 1.513⎛⎫⨯⨯- ⎪⎝⎭()202120212113 1.5.5⎛⎫=⨯⨯⨯- ⎪⎝⎭()20212 1.511.53⎛⎫=⨯⨯- ⎪⨯⎝⎭,故答案为:.11. 若,则的取值范围是______.【答案】【解析】【分析】本题主要考查了零指数幂,根据零指数幂有意义的条件是底数不为0进行求解即可.【详解】解:∵,∴,∴,故答案为;.12. 若2x ﹣y =3,xy =3,则=_____.【答案】21【解析】【分析】首先将已知条件平方,进而将已知代入求出答案.【详解】解:∵2x ﹣y =3,∴,∵xy =3;∴=9+4xy =21;故答案为:21.【点睛】本题主要考查完全平方公式,熟记公式及用整体代入求值是解题的关键.13. 已知,则的值为______.【答案】【解析】【分析】本题主要考查了整式的化简求值,先求出,再利用平方差公式,完全平方公式和单项式乘以多项式的计算法则去括号后,合并同类项,最后利用整体代入法代值计算即可得到答案.【详解】解:∵,()20211511.⨯=⨯-1.5=- 1.5-()021b +=b 2b ≠-()021b +=20b +≠2b ≠-2b ≠-224y x +()2222494x y x xy y --+==224y x +230x x --=()()()()2215222x x x x x +-+++-823-=x x 230x x --=∴,∴.14. 如图,是的中线,是的中线,于点.若,,则长为______.【答案】9【解析】【分析】本题考查了三角形的面积、三角形的中线的性质等知识,由,,推出再根据三角形的面积公式即可得出答案【详解】解:∵是的中线,∴,∵是的中线,∴,∴,,∴,23-=x x ()()()()2215222x x x x x +-+++-222441524x x x x x =++--+-25x x =-+35=+8=AD ABC BE ABD △EFBC ⊥F 36ABC S =△4EF =BC 12ABD ABC S S = 12BDE ABD S S = 1136944BDE ABC S S ==⨯=△△AD ABC 12ABD ABC S S = BE ABD △12BDE ABD S S = 1136944BDE ABC S S ==⨯=△△12BDE S BD EF =⋅△192BD EF ⋅=即,解得:,∴,故答案为:9.15. 如图,AB ∥DE ,∠ABC =80°,∠CDE =150°,则∠BCD 的度数为_____°.【答案】50【解析】【分析】过点C 作FG ∥AB ,根据平行线的传递性得到FG ∥DE ,根据平行线的性质得到∠B =∠BCF ,∠CDE+∠DCF =180°,根据已知条件等量代换得到∠BCF =80°,由等式性质得到∠DCF =30°,于是得到结论.【详解】解:如图,过点C 作FG ∥AB ,因为FG ∥AB ,AB ∥DE ,所以 FG ∥DE ,所以∠B =∠BCF ,(两直线平行,内错角相等 )∠CDE+∠DCF =180°,(两直线平行,同旁内角互补)又因为∠B =80°,∠CDE =150°,所以∠BCF =80°,(等量代换)∠DCF =30°,(等式性质)所以∠BCD =50°.故答案为:50.【点睛】本题主要考查平行线的性质,关键是根据平行线的性质得到角之间的等量关系.16. 如图,将纸片沿折叠,使点落在四边形内点的位置,则与之间的数量关系为______.1492BD ⨯⨯=92BD =9BC =ABC DE A BCDE A 'A ∠12∠+∠【答案】【解析】【分析】本题主要考查了折叠的性质,三角形外角的性质,先由折叠的性质,再由三角形外角的性质可得,,由此即可得到.【详解】解:由折叠的性质知:.由三角形的外角性质知:,;∴,即.故答案为:.17. 如图,在同一平面内,于点于点,连接平分交于点,点为延长线上一点,连接,下列结论:①;②;③;④;⑤若,则,正确的有______.【答案】①②③④【解析】【分析】本题主要考查了平行线的性质与判定,三角形外角的性质,三角形内角和定理,由垂直可得,即可证明①;根据条件证明,即可证明②;根据角平分线的性质和第②问的结论即可证明③;根据角平分线的性质和即可证明④;根据题中条件找到即可证明⑤.【详解】解:∵,,∴,∴,故①正确;122A∠+∠=∠DAE DA E '∠=∠1EAA EA A ''∠=∠+∠2DAA DA A ''∠=∠+∠122A ∠+∠=∠DAE DA E '∠=∠1EAA EA A ''∠=∠+∠2DAA DA A ''∠=∠+∠122DAE DA E DAE '∠+∠=∠+∠=∠122A ∠+∠=∠122A ∠+∠=∠AB BC ⊥,B DC BC ⊥C ,AD DE ADC ∠BC E F CD ,AF BAF EDF ∠=∠BAD ADF ∠=∠AF ED ∥2ADC F ∠=∠1902CED ADC ∠+∠=︒13ADE BAD ∠=∠160AFD BED ∠+∠=︒AB CD EDA DAF ∠=∠DC BC ⊥23ADC BAD ∠=∠AB BC ⊥DC BC ⊥AB CD BAD ADF ∠=∠∵,,∴,∴,故②正确;∴,∵平分,∴,∴,∴,故③正确;∵,∴,∵平分,∴,∴,故④正确;∵,∴,∵,平分,∴,∴,∴,∴,∵,平分,∴,,∴,∴,故⑤错误;故答案为;①②③④.BAF EDF ∠=∠BAD ADF ∠=∠EDA DAF ∠=∠AF ED ∥CDE F ∠=∠DE ADC ∠CDE ADE ∠=∠ADE F ∠=∠2ADC F ∠=∠DC BC ⊥90CED CDE ∠+∠=︒DE ADC ∠CDE ADE ∠=∠1902CED ADC ∠+∠=︒AB CD 180BAD CDA ∠+∠=︒13ADE BAD ∠=∠DE ADC ∠23ADC BAD ∠=∠21803BAD BAD ∠+∠=︒108BAD ∠=︒72ADC ∠=︒2ADC F ∠=∠DE ADC ∠36ADE CDE ∠==︒∠36F ∠=︒126BED CDE DCE ∠=+=︒∠∠162AFD BED ∠+∠=︒18. 当______时,代数式的值为1.【答案】或或【解析】【分析】本题主要考查了有理数的乘方计算和零指数幂,根据1的任何次方都为1,负1的偶次方为1 ,非零底数的零指数结果为1进行求解即可.【详解】解:当,即时,原式,符合题意;当,即时,原式,符合题意;当,即时,原式,符合题意;综上所述,当或或时,代数式的值为1.故答案为:或或.三、解答题19. 计算:(1)(2)(3)(4)【答案】(1)(2)(3)(4)【解析】【分析】本题主要考查了乘法公式,零指数幂,负整数指数幂,积的乘方和同底数幂乘除法计算:(1)先计算积的乘方,同底数幂乘除法,最后合并同类项即可得到答案;(2)先计算零指数幂,负整数指数幂和乘方,再计算加减法即可得到答案;(3)先根据完全平方公式和平方差公式去括号,然后合并同类项即可得到答案;(4)先把原式变形为,然后利用完全平方公式和平方差公式进行计算即可得到x =()201623x x ++1-2-2016-231x +==1x -120162015111-+===231x +=-2x =-()()220162014111-+=-=-=20160x +=2016x =-()02016231=-⨯+==1x -2x =-2016x =-()201623x x ++1-2-2016-()32248232a a a a a -+⋅-÷()30202213.1412π-⎛⎫--- ⎪⎝⎭()()()2223a b b a a b +---()()33x y x y +--+626a -8-22568a ab b -+-2269x y y -+-()()33x y x y +---⎡⎤⎡⎤⎣⎦⎣⎦答案.【小问1详解】解:;【小问2详解】解:;【小问3详解】解;;【小问4详解】解:.20. 把下列各式因式分解:(1);(2);(3)(4)()32248232a a a a a -+⋅-÷666272a a a =-+-626a =-()30202213.1412π-⎛⎫--- ⎪⎝⎭181=--8=-()()()2223a b b a a b +---()2222469a b a ab b =-+--+2222469a b a ab b =-+-+-22568a ab b =-+-()()33x y x y +--+()()33x y x y =+---⎡⎤⎡⎤⎣⎦⎣⎦()223x y =--()2269x y y =--+2269x y y =-+-2425x -269a a -+2464x -22344ab a b b --【答案】(1)(2)(3)(4)【解析】【分析】本题主要考查了分解因式:(1)直接利用平方差公式分解因式即可;(2)直接利用完全平方公式分解因式即可;(3)先提取公因数4,再利用平方差公式分解因式即可;(4)先提取公因式,再利用完全平方公式分解因式即可.【小问1详解】解:;【小问2详解】解:;【小问3详解】解:;【小问4详解】解:.21. 如图,在每个小正方形边长为1的方格纸内将经过一次平移后得到,图中标出了点的对应点.根据下列条件,利用格点和直尺画图:()()2525x x +-()23a -()()444x x +-()22--b a b b -2425x -()()2525x x =+-269a a -+()23a =-2464x -()2416x =-()()444x x =+-22344ab a b b --()2244b a ab b =--+()22b a b =--ABC A B C ''' B B '(1)补全;(2)利用格点在图中画出边上的高线;【答案】(1)见解析(2)见解析【解析】【分析】本题考查作图—平移变换,画三角形的高:(1)根据点B 和点的位置确定平移方式为向左平移5个单位长度,向下平移2个单位长度,据此找到A 、C 对应点的位置,然后顺次连接即可得到答案;(2)根据网格的特点结合三角形高的定义作图即可.【小问1详解】解:如图所示,即为所求;【小问2详解】解:如图所示,即为所求;22. (1)已知,求的值.(2)已知,求的值.【答案】(1);(2)【解析】【分析】本题主要考查了幂的乘方及其逆运算,同底数幂乘法及其逆运算:A B C ''' AC BE B 'A C ''、A B C '''、、A B C ''' BE 233m n +=927m n ⋅105,106x y ==3210x y +274500(1)根据幂的乘方的逆运算法则得到,进而根据同底数幂乘法计算法则把原式变形为,据此代值计算即可;(2)先由幂的乘方计算法则得到,再根据同底数幂乘法的逆运算法则得到,据此代值计算即可.详解】解:(1)∵,∴;解:∵,∴,∴,∴.23. 如图,AD ⊥BC ,垂足D ,点E 、F 分别在线段AB 、BC 上,∠1=∠2,∠C +∠ADE =90°.(1)求证:DE ∥AC ;(2)判断EF 与BC 的位置关系,并证明你的猜想.【答案】(1)详见解析;(2)EF ⊥BC ,证明详见解析.【解析】【分析】(1)根据垂直的定义得到∠1+∠C =90°,等量代换得到∠1=∠ADE ,于是得到结论;(2)等量代换得到∠2=∠ADE ,根据平行线的性质即可得到结论.【为2392733m n m n ⋅=⋅233m n +321012536x y ==,1022331100x x y y +=⋅10233m n +=927m n⋅()()2333m n=⋅2333m n=⋅233m n+=33=27=105,106x y ==()()3232105106x y ==,321012536x y ==,1022331101253645000x y x y +⋅=⨯==10【详解】(1)证明:∵AD ⊥BC ,∴∠1+∠C =90°,∵∠C +∠ADE =90°,∴∠1=∠ADE ,∴DE ∥AC ;(2)解:EF ⊥BC ,理由:∵∠1=∠2,∠1=∠ADE ,∴∠2=∠ADE ,∴EF ∥AD ,∴∠EFD =∠ADC =90°,∴EF ⊥BC .【点睛】本题主要考查了垂直的定义及平行线的性质与判定,关键是根据“同角的余角相等”来得到角的等量关系,进而求证问题.24. (1)填空:,,,……(2)探索(1)中式子的规律,试写出第个等式,并说明第个等式成立;(3)计算【答案】(1)见解析;(2)详见解析;(3)【解析】【分析】此题主要考查了探寻数列规律问题.(1)根据乘方的运算法则计算即可;(2)根据式子规律可得,然后利用提公因式可以证明这个等式成立;(3)设题中的表达式为,再根据同底数幂的乘法得出的表达式,相减即可.【详解】(1).(2)第个等式为:左边右边左边右边.(3)设( )1022___2-==( )2122___2-==( )3222___2-==n n 0123100022222++++⋯+100121-11222n n n ---=12n -a 2a 10021132222212,22422,22842-=-=-=-=-=-=n 11222n n n ---= ()111222212n n n n ---=-=-=12n -=∴=11222n n n --∴-=0123100022222a =++++⋯+则②-①得:故:.25. 先阅读后解题:若,求m 和n 的值.解:等式可变形为:即,因为,,所以,即,.像这样将代数式进行恒等变形,使代数式中出现完全平方式的方法叫做“配方法”.请利用配方法,解决下列问题:(1)已知的三边长a ,b ,c 都是正整数,且满足,则的周长是______;(2)求代数式的最小值是多少?并求出此时a ,b 满足的数量关系;(3)请比较多项式与的大小,并说明理由.【答案】(1)9(2)3, (3),理由见解析【解析】【分析】(1)根据配方法,可得a ,b 的值,在根据三角形三边的关系,可得c 的值,根据三角形的周长,可得答案;(2)根据配方法,可得非负数的和,根据非负数的性质,可得答案;(3)根据多项式的减法计算,然后根据配方法化简多项式的差,可得结论.【小问1详解】123100122222a =+++⋯+100121a =-0123100010012222221a =++++⋯+=-2226100m m n n ++-+=2221690m m n n +++-+=()()22130m n ++-=()210m +≥()230n -≥10m +=30n -=1m =-3n =ABC 222216330a b a b +--+=ABC 2244487a b ab a b ++--+234x x +-2223x x +-22b a +=234x x +-<2223x x +-222216330a b a b +--+= ()()221240a b ∴-+-=已知的三边长a ,b ,c 都是正整数,的周长是故答案为:【小问2详解】当时,的最小值为3【小问3详解】【点睛】本题考查了非负数的性质,利用配方法得出非负数的和是解题关键.26. 数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性,形(几何)侧重研究物体形的方面,具有直观性.“以形释数”是利用数形结合思想证明代数问题的一种体现,做整式的乘法运算时,利用几何直观的方法和面积法获取结论,在解决整式运算问题时经常运用.()()210240a b -≥-≥ ,()10240a b ∴-=-=,14a b ∴==, ABC 35c ∴<<4c ∴=∴ABC 1449++=92244487a b ab a b ++--+()()22427b a b a =+-++()2223b a =+-+()220b a +-≥ ∴22b a +=2244487a b ab a b ++--+234x x +-()2223x x +--2234223x x x x =+---+21x x =-+-213024x ⎛⎫=---< ⎪⎝⎭∴234x x +-<2223x x +-【问题探究】探究1:如图1所示,大正方形的边长是,它是由两个小正方形和两个长方形组成,所以大正方形的面积等于这四个图形的面积之和.根据等积法,我们可以得出结论:探究2:请你根据探究1所使用的等积法,从图2中探究出的结果.【形成结论】(1)探究2中 ;【应用结论】(2)利用(1)问所得到的结论求解:已知,,求的值;【拓展应用】(3)在(2)的条件下,求的值.【答案】(1) ;(2);(3)【解析】【分析】本题主要考查了完全平方公式在几何图形中的应用,熟练掌握完全平方公式,采用数形结合的思想,准确进行计算是解此题的关键.(1)根据大正方形的面积为大正方形边长的平方,也可以表示为几个小正方形和长方形的面积之和,由此即可得出答案;(2)结合(1)中的公式进行计算即可;(3)先求出,再结合,进行计算即可得出答案.【详解】解:(1)由图可得:()a b +()2222a b a ab b +=++()2a b c ++()2a b c ++=0a b c ++=2224a b c ++=ab bc ca ++22222222a b b c c a a ab b ++++222222a b c ab bc ac +++++2ab bc ca ++=-222222222a b b c c a a ab b ++=++2222224a b b c c a ++=c a b =--大正方形的边长为,故大正方形的面积为,大正方形的面积还可以表示为,,故答案为:;(2),,,;(3) ,,,,,,即,,.27. 已知,如图,,直线交于点,交于点,点是线段上一点,分别在射线上,连接平分平分.()a b c ++()2a b c ++222222a b c ab bc ac +++++()2222222a b c a b c ab bc ac ∴++=+++++222222a b c ab bc ac +++++0a b c ++= 2224a b c ++=()()()22222044ab bc ca a b c a b c ∴++=++-++=-=-2ab bc ca ∴++=-()2222222222222ab bc ca a b b c c a ab c abc a bc ++=+++++ ()2222222222222a b b c c a ab bc ca ab c abc a bc∴++=++---()()222abc a b c =--++420abc =-⨯4=0a b c ++= c a b ∴=--2224a b c ++=Q ()2224a b a b ∴++--=222224a b ab ++=222a b ab ∴++=22222222422a b b c c a a ab b ++∴==++AB CD MN AB M CD N E MN ,P Q ,MB ND ,,PE EQ PF ,MPE QF ∠DQE ∠(1)如图1,当时,求的度数;(2)如图2,求与之间的数量关系,并说明理由.【答案】(1)(2),理由见解析【解析】【分析】(1)延长交于,设,交于点,设,则,根据可表示出,进而根据三角形内角和推论表示出,进而表示出,在和中,由三角形内角和得出关系式,进一步得出结果;(2)类比(1)的方法过程,即可得出结果.【小问1详解】解:延长交于,设,交于点,如图所示:平分,设,则,,,,,,平分,,在和中,,,PE QE ⊥PFQ ∠PEQ ∠PFQ ∠135︒2180PFQ PEQ ∠∠-=︒PE CD G PE FQ H 2APE α∠=12FPH APE ∠∠α==AB CD PGQ ∠EQD ∠EQH ∠EQH △PFH △PE CD G PE FQ H PF Q MPE ∠2APE α∠=12FPH APE ∠∠α==∥ AB CD 2PGQ APE ∠∠α∴==PE QE ⊥ 90QEH QEG ∠∴==︒902EQD QEG PGQ ∠∠∠α∴=+=︒+QF DQE ∠1452EQH EQD ∠∠α∴==︒+EQH △PFH △=180HEQ HQE EHQ ∠+∠+∠︒180FPH FHP PFH ∠∠∠++=︒,,即,,故答案为:;【小问2详解】解:延长交于,设,交于点,如图所示:平分,设,则,,,,,平分,,和中,,,,,即,.【点睛】本题考查了平行线性质,角平分线定义,三角形内角和定理及其推论等知识,解决问题的关键数形结合,准确找出各个角度之间的和差倍分关系列方程.在PHF EHQ ∠∠=HEQ HQE FPH PFH ∠∠∠∠∴+=+9045PFH αα∠︒+︒+=+135PFH ∠∴=︒135︒PE CD G PE FQ H PF Q MPE ∠2APE α∠=12FPH APE ∠∠α==∥ AB CD 2PGQ APE ∠∠α∴==180GEQ PEQ ∠∠=︒- 1802EQD QEG PGQ PEQ ∠∠∠∠α∴=+=︒-+QF DQE ∠119022HQE EQD PEQ ∠∠α∠∴==︒+-EQH △PFH △=180PEQ HQE EHQ ∠+∠+∠︒180FPH FHP PFH ∠∠∠++=︒PHF EHQ ∠∠=PEQ HQE FPH PFH ∠∠∠∠∴+=+1902PEQ PEQ PFQ ∠α∠α∠+︒+-=+2180PFQ PEQ ∠∠∴-=︒。

吉林省长春市朝阳区长春外国语学校2023-2024学年七年级下学期期中数学试题(解析版)

吉林省长春市朝阳区长春外国语学校2023-2024学年七年级下学期期中数学试题(解析版)

长春外国语学校2023-2024学年第二学期期中考试七年级数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.考试结束后,将答题卡交回.注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题(本大题共8道小题,每小题3分,共24分)1. 下列漂亮的图案中既是中心对称图形又是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形绕某个点旋转180度能与原图形重合,这个图形叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】解:A:既是中心对称图形,也是轴对称图形,故A选项符合题意;B:是轴对称图形,但不是中心对称图形,故B选项不符合题意;C:是轴对称图形,但不是中心对称图形,故C选项不符合题意;D:是轴对称图形,但不是中心对称图形,故D选项不符合题意,故选:A.【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.2. 如图,数轴上A 、B 两点到原点的距离是三角形两边的长,则该三角形第三边长可能是( )A. 1B. 4C. 7D. 8【答案】B【解析】【分析】直接利用数轴得出三角形的两边长,进而得出第三边取值范围,进而得出答案.【详解】解:由数轴可得:A 到原点距离为3,B 到原点距离为4,∵数轴上A 、B 两点到原点的距离是三角形两边的长,∴设该三角形第三边长为x ,则x 的取值范围是:,∴该三角形第三边长可能是4.故选:B .【点睛】此题考查了三角形的三边关系,注意要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.3. 下列各数中,为不等式组解的是( )A. B. 0 C. 2 D. 4【答案】C【解析】【分析】本题考查了不等式组的解集与解,先求出不等式组的解集,再逐项判断是否在原不等式组的解集内即可,解题关键是掌握一元一次不等式组的解法.【详解】解:,解得,解得,原不等式组的解集为,A 、,不在原不等式组的解集内,故不是原不等式组的解,不符合题意;B 、,不在原不等式组的解集内,故0不是原不等式组的解,不符合题意;C 、,在原不等式组的解集内,故2是原不等式组的解,符合题意;D 、4不在原不等式组的解集内,故4不是原不等式组的解,不符合题意;17x <<23040x x -⎧⎨-⎩><1-23040x x -⎧⎨-⎩>①<②①32x >②4x <∴342x <<312-<1-302<3242<<4. 下列四组多边形中,能密铺地面的是( )①正六边形与正三角形;②正十二边形与正三角形;③正八边形与正方形;④正三角形与正方形.A. ①②③④B. ②③④C. ②③D. ①②③【答案】A【解析】【分析】本题考查能铺满地面的图形组合,掌握正多边形的内角和公式,会求正多边形的每个内角,抓住围绕一点的各个角的和为是解题关键.根据围绕一点的各个角的和为进行一一判断即可.【详解】解∶①正六边形与正三角形,正六边形每个内角,正三角形每个内角,, 能铺满地面;②正十二边形与正三角形,正十二边形每个内角,正三角形每个内角,, 能铺满地面;③正八边形与正方形,正八边角形每个内角,正方形每个内角,, 能铺满地面,④正三角形与正方形,正三角形每个内角,正方形每个内角,,能铺满地面;其中能铺满地面的是①②③④.故选:A .5. 若一个多边形的内角和与外角和之和是1800°,则此多边形是( )边形.A. 八B. 十C. 十二D. 十四【答案】B【解析】【分析】任意多边形的一个内角与相邻外角的和为180°,然后根据题意可求得答案.【详解】解:∵多边形的一个内角与它相邻外角的和为180°,∴1800°÷180°=10.故选B .【点睛】此题考查多边形内角(和)与外角(和),解题关键在于掌握其定理和运算公式.6. 我国明代数学读本《算法统宗》中有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人分9两,还美8两.问银有几两?设银有两,则可列方程为( )A B. C. D. .360︒360︒120︒60︒2602120360⨯︒+⨯︒=︒150︒60︒2150160360⨯︒+⨯︒=︒135︒90︒2135190360⨯︒+⨯︒=︒60︒90︒360290360⨯︒+⨯︒=︒x 7498x x +=-7498x x -=+4879x x -+=4879x x +-=【解析】【分析】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.根据“每人7两,还剩4两;每人9两,还差8两”,结合分银子的人数不变,即可得出关于x 的一元一次方程,此题得解.【详解】解:∵银子共有x 两,每人7两,还剩4两,∴分银子的人共∵银子共有x 两,每人9两,还差8两,∴分银子的人共人.又∵分银子的人数不变,∴可列方程组.故选:C .7. 如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是( )A. B. C. D. 【答案】C【解析】【分析】根据SSS ,SAS ,ASA 逐一判定,其中SSA 不一定符合要求.【详解】A. .根据SSS 一定符合要求;B. .根据SAS 一定符合要求;C. .不一定符合要求;47x -⎛⎫ ⎪⎝⎭89x +⎛⎫ ⎪⎝⎭4879x x -+=ABC ∆,,AB BC CA,,AB BC B ∠,,AB AC B ∠,,∠∠A B BC,,AB BC CA ,,AB BC B ∠,,AB AC B ∠D. .根据ASA 一定符合要求.故选:C .【点睛】本题考查了三角形全等的判定,解决问题的关键是熟练掌握判定三角形全等的SSS ,SAS ,ASA 三个判定定理.8. 如图,在四边形中,P 是边上的一个动点,要使的值最小,则点P 应满足( )A. B. C. D. 【答案】D【解析】【分析】作点B 关于的对称点,连接,则交点P 即为符合题意的点,根据轴对称的性质解答即可.【详解】解:如图所示,作点B 关于的对称点,连接,交于点P ,连接,则的最小值为的长,点P 即为所求.∵点与点B 关于对称,∴,∵,∴,故D 符合题意;由图可知,选项A 和选项B 不成立,而C 只有在时成立,条件不充分.故选:D .【点睛】此题考查轴对称的性质,明确轴对称的相关性质并正确作图,是解题的关键二、填空题(本大题共6道小题,每小题3分,共18分),,∠∠A B BC ABCD AB CD AD AB ⊥ ,,AD PC PB +PB PC=PA PD =90BPC ∠=︒APB DPC∠∠=AD B ''B C AD B 'B C 'AD BP PC PB +B C 'B 'AD APB APB '∠=∠DPC B PA ∠=∠'DPC APB ∠=∠PD PC =9. 已知关于x 的方程的解是,则a 的值为____________.【答案】6【解析】【分析】本题考查了方程的解,解一元一次方程,解题关键是将方程的解代入原方程,使原方程转化为关于的一元一次方程.将代入原方程,得到关于的一元一次方程,求解即可.【详解】解:是方程的解,将代入原方程得,解得,故答案为: 6.10. 若将二元一次方程写成用含的代数式表示的形式,则_________.【答案】【解析】【分析】本题考查了代入消元法,利用等式的基本变形,移项、系数化为即可,掌握等式的基本性质是解题的关键.【详解】解:移项得,,系数化为得,,故答案为:.11. 若关于x ,y 的二元一次方程组的解x ,y 满足,则满足题意的最大整数a 是____________.【答案】2【解析】【分析】本题考查了解一元一次不等式,二元一次方程组的解,先利用整体的思想求出,从而可得:,然后根据已知,可得,最后进行计算即可解答.【详解】解:,得:,240x a +-==1x -a 1x =a 1x =240x a +-=1x =240a -+-=6a =25x y -=x y y =1522x -125y x -=-+11522y x =-1522x -2477525x y a x y a +=+⎧⎨+=-⎩1x y +<9932x y a +=+329a x y ++=1x y +<3219a +<2477525x y a x y a +=+⎧⎨+=-⎩①②①②+9932x y a +=+解得:,∵,∴,解得,,∴满足题意的最大整数a 是2,故答案为:2.12. 如图,正五边形与正方形有公共的顶点A ,与相交于点M ,,则______.【答案】##94度【解析】【分析】首先根据正五边形内角和求出内角为,然后根据角的和差四边形内角和求解即可.【详解】∵五边形是正五边形,∴正五边形的内角∵∴∵四边形是正方形∴∵四边形内角和为∴.故答案为:.【点睛】此题考查了正多边形的内角和,解题的关键是熟练多边形内角和公式.13. 某商品每件进价100元,每件标价150元,为了促销,商家决定打折销售,但其利润率不能低于的329a x y ++=1x y +<3219a +<73a <ABCDE AFGH DE H G 40BAH ∠=︒EMH ∠=94︒108︒ABCDE ABCDE ()521801085BAE E -⨯︒∠=∠==︒40BAH ∠=︒1084068HAE BAE BAH ∠=∠-∠=︒-︒=︒AFGH 90H ∠=︒MHAE 360︒36094EMH H HAE E ∠=︒-∠-∠-∠=︒94︒,则这种商品最多可以打 _____折.【答案】8【解析】【分析】设这种商品打折,利用利润售价进价,结合利润率不低于,可得出关于的一元一次不等式,解之取其中的最小值,即可得出结论.【详解】解:设这种商品打折,根据题意得:,解得:,∴的最小值为8,∴这种商品最多可以打8折.故答案为:8.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.14. 如图,在中,,,点D 在边上,且,点E 、F 在线段上.,的面积为18,则与的面积之和___________.【答案】12【解析】【分析】本题考查了三角形全等的判定与性质,和三角形的面积求法,能够证明是解题的关键.先根据与等高,底边值为,得出与面积比为1∶2,再证,即可得出和的面积和,即可选出答案.【详解】标记角度如下:20%x =-20%x x 150********%10x ⨯-≥⨯8x ≥x ABC AB AC =AB BC >BC 2CD BD =AD CFD BED BAC ∠=∠=∠ABC ABE CDF ABE ACF V V ≌ABD △ADC △12∶ABD △ADC △ABE CAF V V ≌ABE CDF∵在等腰中,,,∴与等高,底边比值为∴与的面积比为,∵的面积为18∴的面积为6,的面积为12,∵,即,∴,∵,,,∴,∴∴与的面积相等,∴,故答案为:12.三、解答题(本大题共10小题,共78分)15. 解方程组:.【答案】【解析】【分析】本题考查加减消元法,根据加减消元法的一般步骤求解即可.【详解】解:,得:,解得:,ABC AB AC =2CD BD =ABD △ADC △12∶ABD △ADC △12∶ABC ABD △ADC △CFD BED ∠=∠12∠=∠BEA AFC ∠=∠13ABE ∠∠∠=+34BAC ∠+∠=∠1BAC ∠=∠=4ABE ∠∠()AAS ABE ACF ≌ABE ACF △12ABE CDF ACF CDF ADC S S S S S +=+== 3202790x y x y -=-⎧⎨+=⎩1010x y =⎧⎨=⎩3202790x y x y -=-⎧⎨+=⎩①②2-⨯②①13130y =10y =将代入得:,解得:,∴原方程组的解是:.16.解方程:.【答案】【解析】【分析】本题考查解一元一次方程,按照解一元一次方程的一般步骤求解即可.【详解】解:去分母得:,去括号得:,移项得:,合并得:,系数化为1得:.17. 解不等式组:并将解集在数轴上表示.【答案】,数轴上表示见解析【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】 解不等式①,得,解不等式②,得,∴原不等式组的解集为,解集在数轴上表示为:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答10y =②271090x +⨯=10x =1010x y =⎧⎨=⎩213134x x +--=x =15-()()4213312x x +--=843+912x x +-=831249x x -=--51x =-x =15-22,121,3x x x x -≤⎧⎪+⎨-<⎪⎩24x -≤<221213x x x x -≤⎧⎪⎨+-<⎪⎩①②2x ≥-4x <24x -≤<此题的关键.18. 如图,在中,于点D ,是的角平分线,交于点E ,,,求的度数.【答案】【解析】【分析】此题考查了三角形外角的性质,角平分线的概念和三角形内角和定理,解题的关键是熟练掌握以上知识点.首先根据三角形外角的性质得到,然后利用角平分线的概念和三角形内角和定理求解即可.【详解】解:∵∴∵,∴∵是的角平分线∴∵∴.19. 如图所示的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1个单位长度,的三个顶点均在格点上,点O 、M 也在格点上.要求只用无刻度的直尺,在给定的网格中按要求画图.ABC BD AC ⊥AE CAB ∠BD 120AEB ∠=︒40CBA ∠=︒C ∠80︒30DAE AEB ADE ∠=∠-∠=︒BD AC⊥90ADB ∠=︒120AEB ∠=︒30DAE AEB ADE ∠=∠-∠=︒AE CAB ∠260DAB DAE ∠=∠=︒40CBA ∠=︒180180604080C CAB CBA ∠=︒-∠-∠=︒-︒-︒=︒ABC(1)画出先向右平移5个单位长度,再向下平移5个单位长度后得到的.(2)画出关于直线对称的.(3)画出绕点O 按顺时针方向旋转后得到的.(4)的面积是 .【答案】(1)见解析(2)见解析 (3)见解析(4)【解析】【分析】(1)根据平移方式找出原三角形顶点平移后的对应点,再连线即可;(2)找出原三角形顶点关于对称的对应点,再连线即可;(3)找出原三角形顶点绕点O 按顺时针方向旋转后的对应点,再连线即可;(4)利用割补法求面积即可.【小问1详解】解:如下图所示:即为所求做的三角形;ABC 111A B C △ABC OM 222A B C △ABC 90︒333A B C △ABC 32OM 90︒111A B C △【小问2详解】如下图所示:即为所求做的三角形;【小问3详解】如下图所示:即为所求做的三角形;222A B C △333A B C △【小问4详解】的面积为:,故答案为:.20. 对于,定义一种新运算,规定(其中,均为非零常数),例如:.(1)___________(用含有,的代数式表示).(2)已知,且.①求,的值;②直接写出的值为___________.【答案】(1)(2)①的值为1,的值为1;②【解析】【分析】本题考查了解二元一次方程组,新定义,弄清题中的新定义是解本题的关键.(1)根据定义公式代入运算即可;(2)①按照定义代入计算得出方程组,解方程组即可求出,的值;②将a 、b 的值代入化简,再代入求值即可.【小问1详解】解:∵,ABC 1113222121112222⨯-⨯⨯-⨯⨯-⨯⨯=32x y ()()(),3T x y ax by x y =-+a b ()()()1,11113144T a b a b =⨯-⨯⨯+⨯=-()1,2T =a b ()0,13T =-()2,13T -=-a b ()2,3T 714a b -a b 11-a b (),T x y ()()(),3T x y ax by x y =-+∴,故答案为:;【小问2详解】解:①根据题意可得:,,整理得:,解得:,的值为1,的值为1;②的值为1,的值为1∴∴,故答案为:.21. 如图,Rt △ABC 中,∠ACB =90°,点D ,F 分别在AB ,AC 上,CF =CB .连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CE ,连接EF .(1)求证:△BCD ≌△FCE ;(2)若EF ∥CD .求∠BDC 的度数.【答案】(1)证明见解析;(2)90°.【解析】【分析】(1)根据旋转图形的性质可得:CD =CE ,∠DCE =90°,根据∠ACB =90°得出∠BCD =90°-∠ACD =∠FCE ,结合已知条件得出三角形全等;(2)根据全等得出∠BDC =∠E ,∠BCD =∠FCE ,从而得出∠DCE =90°,然后根据EF ∥CD 得出∠BDC =90°.【详解】解:(1)∵将线段CD 绕点C 按顺时针方向旋转90°后得CE ,在()()()1,22132714T a b a b =-+⨯=-714a b -()()()0,100313T a b =⨯-+⨯=-()()()2,122313T a b -=---+⨯=-3323b a b -=-⎧⎨--=-⎩11a b =⎧⎨=⎩∴a b a b ()()(),3T x y x y x y =-+()()()2,32323311T =-+⨯=-11-∴CD =CE ,∠DCE =90°,∵∠ACB =90°,∴∠BCD =90°-∠ACD =∠FCE ,在△BCD 和△FCE 中,∵CD =CE ,∠BCD =∠FCE , CB =CF ,∴△BCD ≌△FCE (SAS ).(2)由(1)可知△BCD ≌△FCE ,∴∠BDC =∠E ,∠BCD =∠FCE ,∴∠DCE =∠DCA +∠FCE =∠DCA +∠BCD =∠ACB =90°,∵EF ∥CD ,∴∠E =180°-∠DCE =90°,∴∠BDC =90°.22. 教材呈现:华师版义务教育教科书数学七下第82页部分内容.如图,在中,,,平分,平分,求的度数.解:∵平分(已知),∴.同理可得________°.∵(),∴(等式的性质)________________.(1)对于上述问题,在解答过程的空白处填上适当的内容(理由或数学式).问题推广:(2)如图,在中,、的角平分线交于点P ,将沿折叠使得点A 与点P 重合,若,则________度.ABC 80ABC ∠=︒50∠=°ACB BP ABC ∠CP ACB ∠BPC ∠BP ABC ∠11804022PBC ABC ∠︒⨯︒=∠==PCB ∠=180B P C P B C P C B ∠+∠+∠=︒180BPC PBC PCB ∠=︒-∠-∠18040=︒-︒-=ABC ABC ∠ACB ∠ABC DE 1296∠+∠=︒BPC ∠=(3)如图,在中,的角平分线与的外角的角平分线交于点P ,过点B 作于点H ,若,则________度.【答案】(1)25;三角形的内角和等于;;;(2)114;(3)49【解析】【分析】本题主要考查了三角形内角和定理,角平分线的定义,平行线的性质,垂线的定义,熟知相关知识是解题的关键.(1)根据三角形内角和定理和角平分线的定义求解即可;(2)先由折叠的性质和平角的定义得到,进而求出,同(1)即可得到答案;(3)先由角平分线的定义得到,,再由三角形外角的性质得到,继而得到,再由垂线的定义得到,则;【详解】解:(1)∵平分(已知),∴.同理可得.∵(三角形内角和定理),∴(等式的性质)ABC BAC ∠ABC CBM ∠BH AP ⊥82ACB ∠=︒PBH ∠=180︒25︒115︒132AED ADE ∠+∠=︒48A ∠=︒2BAC BAP ∠=∠2CBM PBM ∠=∠41PBM BAP ∠=∠+︒41P PBM BAP ∠=∠-∠=︒90BHP ∠=︒18049PBH P BHP ∠=︒-∠-∠=︒BP ABC ∠11804022PBC ABC ∠︒⨯︒=∠==PCB ∠=25︒180B P C P B C P C B ∠+∠+∠=︒180BPC PBC PCB ∠=︒-∠-∠1804025=︒-︒-︒故答案为:,三角形内角和定理,,;(2)由折叠的性质可得,,,,,,,,,平分,平分,,,,即,,故答案为:;(3)平分,平分,,,,即,,,,,即,;故答案为:49;23. 某中学计划购买A 型和B 型课桌凳共200套,经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用低于40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?【答案】(1)A 型180元,B 型220元(2)二种方案:①A 型79套,B 型121套;②A 型80套,B 型120套;购买A 型80套,B 型120套总费25︒25︒115︒AED PED ∠=∠ADE PDE ∠=∠1180AEP ∠+∠=︒ 2180ADP ∠+∠=︒1296∠+∠=︒22264AED ADE ∴∠+∠=︒132AED ADE ∴∠+∠=︒18048A AED ADE ∴∠=︒-∠-∠=︒180132ABC ACB A ∴∠+∠=︒-∠=︒BP ABC ∠CP ACB ∠2ABC PBC ∴∠=∠2ACB PCB ∠=∠22132PBC PCB ∴∠+∠=︒66PBC PCB ∠+∠=︒180114BPC PBC PCB ∴∠=︒-∠-∠=︒114AP BAC ∠BP CBM ∠2BAC BAP ∴∠=∠2CBM PBM ∠=∠CBM BAC ACB ∠=∠+∠ 22PBM BAP ACB ∠=∠+∠82ACB ∠=︒1412PBM BAP ACB BAP ∴∠=∠+∠=∠+︒41P PBM BAP ∴∠=∠-∠=︒BH AP ⊥ 90BHP ∠=︒18049PBH P BHP ∴∠=︒-∠-∠=︒23【解析】【分析】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是能找准等量关系,(1)找准等量关系,正确列出二元一次方程组求解即可;(2)根据各数量之间的关系,正确列出一元一次不等式组并求解即可.【小问1详解】设A 型课桌凳a 元/套,B 型课桌凳b 元/套则,解得答:购买A 型需180元/套,B 型需220元/套.【小问2详解】设购买A 型x 套,B 型套.则,解得∴又∵x 是整数,∴,80.∴共有两种方案:①A 型79套,B 型121套;②A 型80套,B 型120套;方案①:费用为:元;方案②:费用为:40800元;答:共有2套购买方案:①A 型79套,B 型121套;②A 型80套,B 型120套;当购买A 型80套,B 型120套时,费用最低.24. 如图,在长方形中,,.点P 从点A 出发,沿折线AB -BC 以每秒3个单位的速度向终点C 运动,同时点Q 从点C 出发,沿以每秒1个单位的速度向终点B 运动.设点Q 的运动时间为t 秒.40451820a b a b =-⎧⎨+=⎩180220a b =⎧⎨=⎩()200x -()()1802202004088022003x x x x ⎧+-<⎪⎨≤-⎪⎩7880x x >⎧⎨≤⎩7980x <≤x =791807922012140840⨯+⨯=180********⨯+⨯=ABCD 9AB =12BC =CB(1)①当点P 在边上运动时,;当点P 在BC 边上运动时, .(点P 在运动时,用含t 的代数式表示)②当时,的面积是 .(2)当点P 与点Q 重合时,求t 的值.(3)当直线将矩形的面积分成1∶3两部分时,求t 值.(4)若点P 关于点B 的中心对称点为点,直接写出面积是面积的倍时t 的值.【答案】(1)①,;②(2) (3)或5 (4)或5或10【解析】【分析】(1)①判断出时间t 的取值范围,根据线段的和差定义求解;②当时,点P 在上,求出,在运用直角三角形面积公式计算即可;(2)根据,构建方程求解;(3)分①当点P 在上时和②当点P 在上时两种情况讨论,运用三角形面积公式构建方程求解即可;(4)分①当点P 在上时,②当点P 在上且未到达点C 时,③当到达点C ,点Q 继续运动时三种情况讨论,运用三角形面积公式构建方程求解即可.【小问1详解】在长方形中,,,①当点P 在边上运动时,,,当点P BC 边上运动时, ,,故答案为:,;②当时,点P 在上,,在AB PB =PB =2t =PBC DP ABCD P 'PDP '△QDC 2.493t -39t -1821432t =30132t =AB PB BP CQ BC +=AB BC AB BC ABCD 9AB CD ==12BC AD ==AB 3AP t =()9303PB AB AP t t =-=-≤≤3AB BP t +=()()3937PB AB BP AB t t =+-=-≤≤93t -39t -2t =AB 9323PB =-⨯=又∵,故的面积是:,故答案为:18;【小问2详解】当P ,Q 重合时,点P 在上,∴,即,∴ ;【小问3详解】①当点P 在上时,∵直线将矩形的面积分成1∶3两部分∴的面积是矩形的面积的,即,∴,解得:②当点P 在上时,,,∵直线将矩形的面积分成1∶3两部分,12BC =PBC 113121822PB BC ⋅=⨯⨯=BC BP CQ BC +=3912t t -+=214t =AB DP ABCD APD △ABCD 141124AP AD AB BC ⋅=⋅1131291224t ⨯⋅=⨯⨯32t =BC 39PB t =-()1239213PC BC PB t t =-=--=-DP ABCD∴的面积是矩形的面积的,即,∴,解得:,综上所述:或5;小问4详解】①当点P 在上时,在的延长线上取,则点与点P 关于点B 中心对称,则,,∵面积是面积的倍,即,∴,解得:;②当点P 在上且未到达点C 时,在的延长线上取,则点与点P 关于点B 中心对称,则,,【CPD △ABCD 141124PC CD AB BC ⋅=⋅()11213991224t ⨯-⋅=⨯⨯5t =32t =AB 03t ≤≤PB PB P B '=P '()2293186PP PB t t =-=-'=CQ t =PDP '△QDC 2.411 2.422PP AD CQ CD '⋅=⋅⋅()11186129 2.422t t -⋅=⋅⨯3013t =BC 37t ≤<CB PB P B '=P '()2239618PP PB t t ==-=-'CQ t =∵面积是面积的倍,即,∴,解得:;③当到达点C ,点Q 继续运动时,,在的延长线上取,则点与点P 关于点B 中心对称,则,,∵面积是面积的倍,即,∴,解得:,综上所述:t 的值为或5或10.【点睛】本题属于动点问题,考查了长方形的性质,三角形的面积、一元一次方程的应用等知识,解题的关键是学会利用分类讨论的思想思考问题,属于中考常考题型.PDP '△QDC 2.411 2.422PP CD CQ CD '⋅=⋅⋅()1161899 2.422t t -⋅=⋅⨯5t =7t ≥CB PB P B '=P '224PP BC '==CQ t =PDP '△QDC 2.411 2.422PP CD CQ CD '⋅=⋅⋅112499 2.422t ⨯⨯=⋅⨯10t =3013。

七年级第二学期数学期中考试试题含答案

七年级第二学期数学期中考试试题含答案

七年级第二学期数学期中考试(考试总分:100 分)一、单选题(本题共计10小题,总分30分)1.(3分)1.医学研究发现一种新病毒的直径约为0.000043毫米,则这个数用科学记数法表示为()A.0.43×10﹣4B.0.43×104C.4.3×10﹣5D.0.43×1052.(3分)2.观察下面图案,在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是()A.B.C.D.3.(3分)3.下列运算正确的是()A.a4•a2=a8B.a6÷a2=a3C.(2ab2)2=4a2b⁴D.(a3)2=a54.(3分)4.下列各题可以用平方差公式计算的是()A.(2x+y)(y﹣2x)B.(x+2)(2+x)C.(x﹣y)(﹣x+y)D.(x﹣2)(x+1)5.(3分)5.下列分解因式中,正确的是()A.3m2﹣6m=3m(m﹣3)B.a2b+ab+a=a(ab+b)C.x2+y2=(x+y)2D.﹣x2+2xy﹣y2=﹣(x﹣y)26.(3分)6.二元一次方程5x﹣y=2的一个解为()A.B.C.D.7.(3分)7.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数()A.28°B.22°C.32°D.38°8.(3分)8.已知3a=10,9b=5,则3a﹣2b的值为()A.5 B.C.D.29.(3分)9.小明到药店购买了一次性医用口罩和N95口罩共40个,其中一次性医用口罩数量比N95口罩数量的3倍多4个,设购买一次性医用口罩x个,N95口罩y个,根据题意可得方程组()A.B.C.D.10.(3分)10.如图,从边长为(a+4)的正方形纸片中剪去一个边长为(a+1)的正方形(a>0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为()A.2a+5B.2a+8C.2a+3D.2a+2二、填空题(本题共计6小题,总分18分)11.(3分)11.计算:x(x﹣2y)=.12.(3分)12.如图,直线a∥b,直线c与直线a、b相交,∠1=135°,∠2=.13.(3分)13.已知是二元一次方程7x+2y=10的一组解,则m的值是.14.(3分)14.若关于x,y的二元一次方程组,则x+y=.15.(3分)15.如图,将△ABC沿BC方向平移至△DEF处,若EC=2BE=4,则CF的长为.16.(3分)16.(x﹣a)(x2+ x +b)的结果中不含x的一次项,则a-b的值是.三、解答题(本题共计8小题,总分52分)17.(6分)17.(6分)计算:(1)(﹣2)2﹣20200+3﹣2;(2)2x3y2•(﹣9x2)÷(6x4y).18.(6分)18.(6分)如图所示,已知AD∥BC,BE平分∠ABC,∠A=110°.求∠ADB的度数.19.(6分)19.(6分)如图,点M是△ABC外的一点,请你在网格内完成作图:(1)作过点M且平行于BC的直线.(2)画出△ABC先向左平移2个单位,再向上平移1个单位后的△A'B'C'.20.(6分)20.(6分)解方程:(1)(2)21.(6分)21.(6分)先化简再求值:[(2x+y)(2x﹣y)﹣(2x﹣3y)2]÷(﹣2y),其中x=1,y=﹣2.22.(6分)22.(6分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A 型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.23.(6分)23.(6分)教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);例如求代数式2x2+4x﹣6的最小值.2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:m2﹣4m + 4=.(2)分解因式:x2+6x﹣7=.(3)当a,b为何值时,多项式a2+b2﹣4a+6b+18有最小值,并求出这个最小值.24.(10分)24.(10分)已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度数.答案一、单选题(本题共计10小题,总分30分)1.(3分)1.【解答】解:将0.000 043用科学记数法表示为4.3×10﹣5.故选:C.2.(3分)2.【解答】解:因为平移不改变图形的形状和大小,只改变图形的位置,所以在(A)(B)(C)(D)四幅图案中,能通过图案(1)平移得到的是C选项的图案,故选:C.3.(3分)3.【解答】解:A.a4•a2=a6,故本选项不合题意;B.a6÷a2=a4,故本选项不合题意;C.(2ab2)2=4a2b4,正确;D.(a3)2=a6,故本选项不合题意;故选:C.4.(3分)4.【解答】解:由平方差公式判断:A答案:(2x+y)(y﹣2x)=y2﹣(2x)2=y2﹣4x2,满足条件;B答案:(x+2)(2+x)不满足条件;C答案:(x﹣y)(﹣x+y)=﹣(x﹣y)(x﹣y)不满足条件;D答案:(x﹣2)(x+1)不满足条件;故选:A.5.(3分)5.【解答】解:A、3m2﹣6m=3m(m﹣2),故此选项错误;B、a2b+ab+a=a(ab+b+1),故此选项错误;C、x2+y2,无法分解因式,不合题意;D、﹣x2+2xy﹣y2=﹣(x﹣y)2,正确.故选:D.6.(3分)6.【解答】解:是方程5x﹣y=2的一个解,故选:D.7.(3分)7.【解答】解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC﹣∠1=22°,∵GH∥EF,∴∠2=∠AEC=22°,故选:B.8.(3分)8.【解答】解:∵9b=5,∴32b=5,又∵3a=10,∴3a﹣2b=3a÷32b=10÷5=2.故选:D.9.(3分)9.【解答】解:依题意,得:.故选:D.10.(3分)10.【解答】解:如图所示:由题意可得:拼成的长方形一边的长为3,另一边的长为:AB+AC=a+4+a+1=2a+5.故选:A.二、填空题(本题共计6小题,总分18分)11.(3分)11.【解答】解:x(x﹣2y)=x2﹣2xy.故答案为:x2﹣2xy.12.(3分)12.【解答】解:∵直线a∥b,∴∠2+∠3=180°,而∠3=∠1=135°,∴∠2=180°﹣135°=45°.故答案为45°.13.(3分)13.【解答】解:把代入方程7x+2y=10,得,28+2m=10,解得m=﹣9,故答案为:﹣9.14.(3分)14.【解答】解:,①+②,得3x+3y=6,∴3(x+y)=6,∴x+y=2,故答案为:2.15.(3分)15.【解答】解:∵△ABC沿BC方向平移至△DEF处.∴BE=CF,∵EC=2BE=4,∴BE=2,∴CF=2.故答案为:2.16.(3分)16.【解答】解:(x﹣a)(x2+ x +b)=x3+ x2+bx- ax2﹣ax-ab =x3+(1+a) x2 -(a-b)x﹣ab,∵(结果中不含x的一次项,∴a﹣b=0,故答案为:0.三、解答题(本题共计8小题,总分52分)17.(6分)17.【解答】解:(1)(﹣2)2﹣20200+3﹣2=4﹣1+=3;(2)2x3y2•(﹣9x2)÷(6x4y)=﹣18x5y2÷6x4y=﹣3xy.18.(6分)18.【解答】解:如图所示:∵AD∥BC,∴∠A+∠ABC=180°,∠ADB=∠CBD,又∵∠A=110°,∴∠ABC=180°﹣110°=70°,又∵BE平分∠ABC,∴∠CBD=∴∠CBD=×70°=35°∴∠ADB=35°.19.(6分)19.【解答】解:(1)如图,直线l即为所求;(2)如图,△A'B'C'即为所求.20.(6分)20.【解答】解:方程组的解为{x=2y=1;(2)方程组的解为{x=32y=−1.21.(6分)21.【解答】解:原式=(4x2﹣y2﹣4x2+12xy﹣9y2)÷(﹣2y)=(12xy﹣10y2)÷(﹣2y)=﹣6x+5y,当x=1,y=﹣2时,原式=﹣6﹣10=﹣16.22.(6分)22.【解答】解:(1)设1辆A型车载满脐橙一次可运送x吨,1辆B型车载满脐橙一次可运送y吨,依题意,得:,解得:.答:1辆A型车载满脐橙一次可运送3吨,1辆B型车载满脐橙一次可运送4吨.(2)依题意,得:3a+4b=31,∵a,b均为正整数,∴或或.∴一共有3种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆.(3)方案一所需租金为100×1+120×7=940(元);方案二所需租金为100×5+120×4=980(元);方案三所需租金为100×9+120×1=1020(元).∵940<980<1020,∴最省钱的租车方案是方案一,即租A型车1辆,B型车7辆,最少租车费为940元.23.(6分)23.【解答】解:(1)m2﹣4m+4=(m﹣2)2故答案为(m﹣2)2(2)分解因式:x2+6x﹣7=(x+7) ( x—1) .(3)∵a2+b2﹣4a+6b+18=(a﹣2)2+(b+3)2+5,∴当a=2,b=﹣3时,多项式a2+b2﹣4a+6b+18有最小值5;24.(10分)24.【解答】(1)证明:如图1,∵∠AGE+∠DHE=180°,∠AGE=∠BGF.∴∠BGF+∠DHE=180°,∴AB∥CD;(2)证明:如图2,过点M作MR∥AB,又∵AB∥CD,∴AB∥CD∥MR.∴∠GMR=∠AGM,∠HMR=∠CHM.∴∠GMH=∠GMR+∠RMH=∠AGM+∠CHM.(3)解:如图3,令∠AGM=2α,∠CHM=β,则∠N=2α,∠M=2α+β,∵射线GH是∠BGM的平分线,∴,∴∠AGH=∠AGM+∠FGM=2α+90°﹣α=90°+α,∵,∴,∴∠FGN=2β,过点H作HT∥GN,则∠MHT=∠N=2α,∠GHT=∠FGN=2β,∴∠GHM=∠MHT+∠GHT=2α+2β,∠CHG=∠CHM+∠MHT+∠GHT=β+2α+2β=2α+3β,∵AB∥CD,∴∠AGH+∠CHG=180°,∴90°+α+2α+3β=180°,∴α+β=30°,∴∠GHM=2(α+β)=60°.。

七年级第二学期期中考试数学试卷(含答案)-

七年级第二学期期中考试数学试卷(含答案)-

D BC EA M七年级第二学期期中考试数学试卷一、填空:(2'×10=20')1、如果y x a -22与y x 34-是同类项,则=a 。

2、若方程124+=y x ,则用含x 的代数式表示y 为 。

3、已知4=+y x 且2=-y x ,则=xy 2 。

4、在3×( )+5×( )=9的括号内分别填上一个数,使这两个数互为相反数。

5、在一个三角形中,至少有 个锐角。

6、在△ABC 中,BO 、CO 分别平分∠ABC 和∠ACB ,如果∠BOC=120°,则∠A= °。

7、不等边△ABC 的三边长分别是3、4、x ,周长为偶数,则整数=x 。

8、正多边形中有的可以用来铺设地面,有的则不行,一般地, 当正多边形的每一个内角是周角︒360的约数时,可以铺设,否则不可以,例如 可以铺设,而 不可以铺设。

(各举一例即可)9、如图:四边形ABCD 中,α∠、β∠分别是B ∠、D ∠的 外角,且︒=∠+∠205C A ,那么=∠+∠βα 。

10、如图:周长为68cm 的矩形ABCD 是由7个相同的小矩形组合而成,则矩形ABCD 的面积为 。

A 、0B 、1-C 、1D 、2- 12、若()6232=--m xm 是关于x 的一元一次方程,则m 的值是( )A 、任何数B 、1C 、2D 、1或213、已知a 是一个一位数,b 是一个两位数,若将a 置于b 的左边组成一个三位数,则此三位数为( ) A 、ab B 、b a +10 C 、()b a +10 D 、b a +100 14、有4根木条,长度分别为12cm 、10cm 、8cm 、4cm ,选其中三根组成三角形,则选择的方法只有( )A 、1种 B 、2种 C 、3种 D 、4种 15、如图AB ∥CD ,︒=∠38A ,︒=∠80C ,则=∠M ( ) A 、︒52 B 、︒42 C 、︒40 D 、︒10C D Aβ αCDBC AE D 16、具备下列条件的三角形中,不是直角三角形的是( ) A 、C B A ∠=∠+∠;B 、C B A ∠=∠=∠21;C 、B A ∠-︒=∠90;D 、︒=∠-∠90B A 17.锐角三角形中最大角α的取值范围是( ) A 、︒<<︒900α B 、︒<<︒9060α C 、︒<<︒18060α D 、︒<≤︒9060α 18.如图C B ∠=∠,则ADC ∠和AEB ∠的大小关系是( )A 、AEB ADC ∠>∠ B 、AEB ADC ∠=∠C 、AEB ADC ∠<∠D 、大小关系不能确定 19、某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( )A 、不赔不赚B 、赚了9元C 、赚了18元D 、赔了18元 20、过多边形的一个顶点的所有对角线把这个多边形分成6个三角形,则此多边形是( ) A 、六边形 B 、七边形 C 、八边形 D 、九边形 三、解答题:21、解方程163242=--+x x (4') 22、解方程组⎩⎨⎧-=+=-154653y x y x (4')23、甲、乙两人同时解方程组⎩⎨⎧-=-=+232y cx by ax ,甲正确解得⎩⎨⎧-==11y x ,乙因抄错c ,而解得⎩⎨⎧-==62y x ,试求a 、b 、c 的值。

七年级第二学期初一数学期中考试试卷

七年级第二学期初一数学期中考试试卷

2022-2023学年第二学期期中考试试卷初一数学一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卷相对应的位置上)1.下列生活现象中,属于平移的是()A.卫星绕地球运动B.钟表指针的运动C.电梯从底楼升到顶楼D.教室门从开到关2.下列运算正确的是()A.x 2+x 3=x 6B.x 2·x 3=x 6C.(3x )3÷3x =9x 2D.(-xy 2)2=-x 2y 43.下列计算正确的是()A.(x -y )2=x 2+2xy -y 2B.(x +y )2=x 2+y 2C.(x +y )(x -y )=x 2-y 2D.(-x +y )(x -y )=x 2-y 24.下列各组线段能组成三角形的是()A.3cm 、4cm 、5cmB.4cm 、6cm 、10cmC.3cm 、3cm 、6cmD.5cm 、12cm 、18cm5.下列由左边到右边的变形,属于因式分解的是()A.a 2+2a +1=a (a +2)+1B.(x +1)(x -1)=x 2-1C.a 2+2a +4=(a +2)2D.-a 2+4a -4=-(a -2)26.当x 2-3x =1时,代数式2x 2-6x +3的值为()A.2B.3C.4D.57.下列图形中,由∠1+∠2=180°能推理得到AB ∥CD 的是()8.如图,长为y ,宽为x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为5,下列说法中正确的是()①小长方形的较长边为y -15;②阴影A 的较短边和阴影B 的较短边之和为x -y +5:③若x 为定值,则阴影A 和阴影B 的周长和为定值:④当x =15时,阴影A 和阴影B 的面积和为定值.A.①③④ B.②④C.①③D.①④二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相对应位置上.)9.每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,则0.0000002cm 用科学记数法可表示为cm .10.计算:3-2=.A B CD12A.AB CD12B.ABCD12C.12D.y x5第8题图11.因式分解:x 2-6x +9=.12.若一个多边形的每个外角都相同且为72°,则这个多边形有条边.13.若3m =8,3n =2,则3m +n =.14.如图所示,直线a 、直线b 被直线c 所截,且直线a ∥b ,∠1=125°,则∠2=°.15.如图,点M 是AB 的中点,点P 在MB 上.分别以AP ,PB 为边,作正方形APCD 和正方形PBEF ,连接MD 和ME .设AP =a ,BP =b ,如果a +b =10, ab =15.则阴影部分的面积为.16.阅读材料:求1+2+22+23+24+⋯+22013的值.解:设S =1+2+22+23+24+⋯+22012+22013,将等式两边同时乘以2得:2S =2+22+23+2425+⋯+22013+22014将下式减去上式得2S -S =22014-1即S =22014-1即1+2+22+23+24+⋯+22013=22014-1请你仿照上述方法,计算1+2-1+2-2+2-3+2-4+2-5+2-6=.三、三、解答题(本大题共11小题,共82分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.)17.(本题共3小题,每小题4分,共12分)计算(1)(-1)2-32+(π-3.14)0(2)(-3a 3)2-2a 2·a 4+(a 2)3(3)(x +6)2+(1+x )(1-x )18.(本题共2题,每小题4分,共8分)因式分解(1)ax 2+5a(2)3x 2+6xy +3y 219.(本题共4分)先化简,再求值:(x +4)(x -4)+(x -3)2,其中x =1.abc 12第14题图A BC DEFP M 第15题图20.(本题共6分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC 的三个顶点的位置如图所示,现将△ABC 平移,使点A 与点D 重合,点E 、F 分别是B 、C 的对应点.(1)请画出平移后的△DEF ,并画出AB 边上的中线CG ;(2)若连接AD 、BE ,则这两条线段之间的关系是_________;(3)△DEF 的面积为_________;21.(本题共6分)如图,已知∠1+∠4=180°,∠3=∠B ,试证明DE ∥BC .完成以下解答过程中的空缺部分:解:∵∠1+∠4=180°(已知)∠1=∠2( )∴_______=180°(等量代换)∴EG ∥AB ( )∴∠B =∠EGC ( )∵∠3=∠B (已知)∴∠3=∠EGC (  )∴________(内错角相等,两直线平行)22.(本题共6分)在ax +1与bx +1的乘积中,x 2的系数为-3,x 的系数为-6,求a 2+b 2的值.23.(本题共6分)我们可以将一些形如ax 2+bx +c (a ≠0)的多项式变形为a (x +m )2+n 的形式,例如x 2+4x -5=x 2+4x +22-22-5=(x +2)2-9,我们把这样的变形叫做多项式ax 2+bx +c (a ≠0)的配方法;已知关于a ,b 的代数式满足a 2+b 2+2a -4b +5=0,请你利用配方法求a +b 的值.A BCD24.(本题共7分)如图,长方形ABCD 中,∠BAD =∠B =∠D =∠C =90°,AD ∥BC ,E 为边BC 上一点,将长方形沿AE 折叠(AE 为折痕),使点B 与点F 重合, EG 平分∠CEF 交CD 于点G ,过点G 作HG ⊥EG 交AD 于点H .(1)请判断HG 与AE 的位置关系,并说明理由.(2)若∠CEG =20°,求∠DHG 的度数.25.(本题共7分)规定两数a ,b 之间的一种运算,记作(a ,b );如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,9)=,(,16)=2,(-2,-8)=;(2)有同学在研究这种运算时发现一个现象:(3n ,4n )=(3,4),他给出了如下的证明:设(3n ,4n )=x ,∴(3n )x =4n 即(3x )n =4n ∵3x >0∴3x =4即(3,4)=x ,∴(3n ,4n )=(3,4).①若(4,5)=a ,(4,6)=b ,(4,30)=c ,请你尝试运用上述这种方法证明a +b =c .②猜想[(x -1)n ,(y +1)n +[(x -1)n ,(y -2)n =(,)(结果化成最简形式).ABCDEFGH26.(本题共10分)在几何问题中,当求几个角之间的等量关系时,可以设未知数,通过“设而不解”的方法,以它们为中间量,结合三角形的性质和已知条件,构建所求角之间的等量关系;当需要求出某个角的具体度数时,我们可以通过设未知数的方式,根据问题中的等量关系列方程,并将方程进行求解,最后得到所求角的度数。

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)

最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。

北京市顺义区仁和中学2023-2024学年七年级下学期期中数学试题(解析版)

北京市顺义区仁和中学2023-2024学年七年级下学期期中数学试题(解析版)

仁和中学2023-2024学年度第二学期期中考试初一年级数学试卷一、选择题(每题2分,共20分)1. 不等式的解集在数轴上表示正确的是( )A. B.C.D.【答案】D【解析】【分析】本题主要考查了一元一次不等式的求解,在数轴上表示不等式解集;解不等式,即可得出合适的选项.【详解】解:解不等式,可得,故不等式解集在数轴上表示为:故选:D .2. 下列命题中,假命题是( )A. 同角的补角相等B. 同一平面内,过一点有且只有一条直线与已知直线垂直C. 如果,,那么D. 两条直线被第三条直线所截,同旁内角互补【答案】D【解析】【分析】利用同角的补角的性质、垂直的定义、平行线的性质等知识分别判断后即可.【详解】解:A 、同角的补角相等,是真命题,故本选项不符合题意;B 、同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故本选项不符合题意;C 、如果,,那么,是真命题,故本选项不符合题意;D、两条平行直线被第三条直线所截,同旁内角互补,故原命题是假命题,故本选项符合题意;的10x +<10x +<10x +<1x <-10x +<a b =b c =a c=a b =b c =a c =【点睛】考查了命题与定理的知识,解题的关键是了解同角的补角的性质、垂直的定义、平行线的性质等知识,难度不大.3. 下列各组数值中,哪个是方程的解( )A. B. C. D. 【答案】B【解析】【分析】将四个选项分别代入原方程,能使方程左右两边相等的未知数的值是方程的解.【详解】解:将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项符合题意;将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项不符合题意.故选:.【点睛】本题主要考查了二元一次方程的解.正确利用二元一次方程的解的意义是解题的关键.4. 如图,,射线在内部,下列说法一定成立的是( )A. 和互余B. 和互补C. 和互为对顶角D. 和相等21x y +=21x y =⎧⎨=⎩13x y =-⎧⎨=⎩13x y =⎧⎨=-⎩22x y =⎧⎨=-⎩ 21x y =⎧⎨=⎩5=≠A ∴ 13x y =-⎧⎨=⎩1==B ∴13x y =⎧⎨=-⎩1=-≠C ∴ 22x y =⎧⎨=-⎩2=≠D ∴B AO OB ⊥OC AOB ∠1∠2∠1∠2∠1∠2∠1∠2∠【解析】【分析】本题考查了角的互余概念、对顶角的定义,准确理解角的互余概念,对顶角的定义是解题的关键.【详解】解:∵,∴,又∵射线在内部,∴,∴和互余,故选A5. 如图,下列条件中,能判断的是( )A. B. C. D. 【答案】A【解析】【分析】由平行线的判定方法,即可判断.【详解】解:A.,由内错角相等,两直线平行,能判断,故A 符合题意;B.不是被截成的内错角,不能判断,故B 不符合题意;C. 不是被截成的内错角,不能判断,故C 不符合题意;D.不是被截成的同旁内角,不能判断,故D 不符合题意;故选:A .【点睛】本题考查平行线的判定,熟练掌握:①内错角相等,两直线平行;②同位角相等,两直线平行;③同旁内角互补,两直线平行,是解题的关键.6. 如图,由可以得到的结论是( )AO OB ⊥90AOB ∠=︒OC AOB ∠1290∠∠+=︒1∠2∠AB CD 12∠=∠13∠=∠14∠=∠13180∠+∠=︒12∠=∠AB CD 13∠∠、AB CD 、()AD BC AB CD 14∠∠、AB CD 、()AD BC AB CD 13∠∠、AB CD 、()AD BC AB CD AB CD ∥A. B. C. D. 【答案】B【解析】【分析】由平行线的性质,角平分线的定义逐项判断可求解【详解】解:A .当平分时,,故此选项不符合题意;B .当时,,故此选项符合题意;C .当时,,故此选项不符合题意;D .当平分时,,故此选项不符合题意.故选:B .【点睛】本题考查平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.掌握平行线的性质是解题的关键.也考查了角平分线的定义.7. 将一个长方形的长减少,宽变成现在的2倍,设这个长方形的长为,宽为,则下列方程中正确的是( )A. B. C. D. 【答案】C【解析】【分析】根据长方形的长减少宽变成现在的2倍,列出方程即可.【详解】解:设这个长方形的长为,宽为,根据题意得:,故C 正确.故选:C .【点睛】本题主要考查了列二元一次方程,解题的关键是找出题目中的等量关系.8. 实数,对应的位置如图所示,下列式子正确的是( )A. B. C. D. 【答案】D【解析】【分析】根据数轴得出a 和b 的范围,进而得出,,根据有理数运算法则逐一判断即可.【详解】解:由数轴可得:,,∴,,12∠=∠14∠=∠23∠∠=34∠∠=AC BAD ∠12∠=∠AB CD ∥14∠=∠AD BC ∥23∠∠=AC BCD ∠34∠∠=5cm cm x cm y 52x y+=52x y +=+52x y -=52x y -=+5cm=cm x cm y 52x y -=a b 22a b <22a b -<-50a +<44a b +<+a b <a b >54a -<<-3<<4b a b <a b >∴,,,,故A 、B 、C 错误,D 正确,故选:D .【点睛】本题考查了利用数轴判断式子的正负,有理数运算和符号之间的关系,乘、除法注意:同号得正,异号得负.9. 如图为小丽和小欧依次进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已知当电梯乘载的重量超过400千克时警示音响起,且小丽、小欧的重量分别为50千克、70千克.若小丽进入电梯前,电梯内已乘载的重量为千克,则的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】由图可得,小丽的重量为50千克,且进入电梯后,警示音没有响起,小欧的重量分别为70千克.且进入电梯后,警示音响起,分别列出不等式即可求解.【详解】由题意可知:当电梯乘载的重量超过400千克时警示音响起,小丽进入电梯前,电梯内已乘载的重量为x 千克,由图可知:小丽的重量为50千克,且进入电梯后,警示音没有响起,所以此时电梯乘载的重量,解得因为小欧的重量为70千克.且进入电梯后,警示音响起,所以此时电梯乘载的重量,解得因此的取值范围是故选:A【点睛】本题考查了一元一次不等式组的应用,解决本题的关键是根据题意找到不等关系.22a b >22a b ->-50a +>44a b +<+x x 280350x <≤280400x <≤330350x <≤330400x <≤50400x +≤350x ≤5070400x ++>280x >x 280350x <≤10. 已知关于的不等式组有以下说法:①当时,则不等式组的解集是;②若不等式组的解集是,则;③若不等式组无解,则;④若不等式组的整数解只有,0,1,2,则.其中正确的说法有( )A. ①③B. ②④C. ①②③D. ①②③④【答案】C【解析】【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:关于的不等式组,①当时,则不等式组的解集是,故本小题正确,符合题意;②若不等式组的解集是,则,故本小题正确,符合题意;③若不等式组无解,则,故本小题正确,符合题意;④若不等式组的整数解只有,0,1,2,则,故本小题错误,不符合题意;故选:C .【点睛】本题考查的是由不等式组的解集情况求参数,熟知解一元一次不等式组的基本步骤是解题的关键.二、填空题(每题2分,共20分)11. 用不等式表示“的3倍与7的差小于11”为______.【答案】【解析】【分析】首先表示“的3倍”为,再表示“与7的差”为,最后再表示“小于11”为.【详解】解:∵“的3倍”为,再表示“与7的差”为,∴用不等式表示“的3倍与7的差小于11”为:,故答案为:.【点睛】本题考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”、“至少”、“最多”等等,正确选择不等号.x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-2m =x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-23m <≤m 3711m -<m 3m 37m -3711m -<m 3m 37m -m 3711m -<3711m -<12. 已知方程的三个解为方程的三个解为则方程组的解为______.【答案】【解析】【分析】根据方程组解的定义,能够同时满足方程组中的两个方程的解是方程组的解观察得出两个方程的解中相同的解为方程组的解.【详解】解:根据方程组的解的定义,能够同时满足方程组中的两个方程的解是方程组的解,可知是这两个方程中所有的解中能同时满足两个方程的解,∴方程组的解为,故答案为:.【点睛】此题主要是考查了方程组的解的定义,能够熟练掌握同时满足方程组中的两个方程的解是方程组的解是解答此题的关键.13. 如图,利用工具测量角,则的大小为______.【答案】##30度【解析】【分析】根据对顶角的性质解答即可.【详解】解:量角器测量的度数为,根据对顶角相等的性质,可得,故答案为:.【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.的24x y -+=1,2;x y =-⎧⎨=⎩0,4;x y =⎧⎨=⎩1,6,x y =⎧⎨=⎩1x y +=2,3;x y =-⎧⎨=⎩1,2;x y =-⎧⎨=⎩0,1.x y =⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩1∠30︒30︒130∠=︒30︒14. 如图,将含有的直角三角板的两个顶点分别放在直尺的一组对边上,如果,那么______°.【答案】40【解析】【分析】首先根据题意求出,然后根据平行线的性质求解即可.【详解】解:如图,∵∴ ∵∴.故答案为:40.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.15. 下列命题中,①对顶角相等;②内错角相等;③平行于同一条直线的两条直线平行;④若,则.是真命题的是______.【答案】①③【解析】【分析】根据对顶角的性质判断①;根据平行线的性质判断②;根据平行公理的推论判断③;根据平方根定义判断④.【详解】解:①对顶角相等,是真命题;②内错角不一定相等,是假命题;③平行于同一条直线的两条直线互相平行,是真命题;60︒120∠=︒2∠=140EBC ABC ∠=∠-∠=︒120∠=︒140EBC ABC ∠=∠-∠=︒EB CD∥240EBC ∠=∠=︒22a b >a b >④若,则a 不一定大于b ,是假命题;故答案为:①③.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16. 如果关于的不等式的解集为,则的值是___________.【答案】1【解析】【分析】解不等式得,结合关于的不等式的解集为,得出,解之可得答案.详解】解:∵,∴,则, ∵关于的不等式的解集为,∴, 解得,故答案为:1.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17. 在一本书上写着方程组的解是,其中的值被墨渍盖住了,但我们可解得的值为___________.【答案】【解析】【分析】根据,代入中,解得;把,代入中,即可求出的值.【22a b >x 3223x a a +≤-1x ≤-a 253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-3223x a a +≤-325x a ≤-253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-1a =43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩y p 321x =3x y +=2y =1x =2y =4x py +=p【详解】解:∵方程组的解是,∴代入中,解得,把,代入,得解得.故答案为:.【点睛】本题考查二元一次方程组的知识,解题的关键是代入中,求出.18. 如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A 是135°,则第二次的拐角∠B 是________, 根据是________________.【答案】①. 135° ②. 两直线平行,内错角相等【解析】【分析】由两次转弯后,和原来的方向相同可知拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:如图:∵两次转弯后,和原来的方向相同,∴AC∥BD,∴∠B=∠A=135°(两直线平行,内错角相等).故答案为135°;两直线平行,内错角相等.【点睛】本题考查了平行线性质的应用,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.19. 如图,四边形纸片,.折叠纸片,使点D 落在上的点处,点C 落在点处,折痕为.若,则______.43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩1x =3x y +=2y =1x =2y =4x py +=124p +=32p =321x =3x y +=2y =ABCD AD BC ∥ABCD AB 1D 1C EF 102EFC ∠=︒1AED ∠=︒【答案】24【解析】【分析】根据平行线的性质可得,再根据折叠的性质可得,然后利用平角的定义求解即可.【详解】∵,∴,∵,∴,∵折叠纸片,使点D 落在上的点处,∴,∴,故答案为:24.【点睛】本题考查了折叠的性质,平行线的性质,平角的定义等知识点,熟练掌握其性质是解决此题的关键.20. 某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:累计工作时长最多件数(时)种类(件)12345678甲类件305580100115125135145乙类件1020304050607080(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为_____元;180EFC DEF ∠+∠=︒178DEF D EF ∠=∠=︒AD BC ∥180EFC DEF ∠+∠=︒102EFC ∠=︒18010278DEF ∠=︒-︒=︒ABCD AB 1D 178DEF D EF ∠=∠=︒1180787824AED ∠=︒-︒-︒=︒(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为_____元.【答案】①. 160②. 180【解析】【分析】(1)根据表格数据得出答案即可;(2)根据x+y=8,x,y均为正整数,把所有收入可能都计算出,即可得出最大收入.【详解】解:(1)由统计表可知:如果该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填:160;180.【点睛】本题主要考查二元一次方程的应用,在给定的“x+y=8,x,y均为正整数”的条件下,分情况讨论出最大收入即可.三、解答题(共60分,第21-24题,每题3分,第25题5分,第26-27题,每题4分,第28题6分,第29-31题,每题5分,第32-33题7分)21. 解方程组【答案】【解析】【分析】利用加减消元法求解可得;【详解】解:,得∴把代入①,得∴所以,原方程组的解为【点睛】此题考查了解二元一次方程组,利用了消元的思想,解决本题的关键是要掌握消元的方法,即代入消元法与加减消元法.22. 解方程组:【答案】【解析】【分析】方程组整理后,方程组利用加减消元法求解即可.【详解】整理得,得,解得,将代入①得:342,328.x y x y +=⎧⎨-=⎩21x y =⎧⎨=-⎩342,328.x y x y +=⎧⎨-=⎩①②-①②66y =-1y =-1y =-()3412x +⨯-=2x =2,1.x y =⎧⎨=-⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩12x y =⎧⎨=⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩24321x y x y +=⎧⎨-=-⎩①②2⨯+①②77x =1x =1x =214y ⨯+=∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.23. 解不等式,并把解集在数轴上表示出来.【答案】,图见解析【解析】【分析】先去括号,再移项、合并同类项、最后系数化为1即可,再在数轴上把解集表示出来.【详解】解:去括号得,,去括号得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:【点睛】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,是基础知识要熟练掌握.24. 解不式组:并求出它的整数解.【答案】,整数解为3或4【解析】【分析】本题考查了解一元一次不等式组,不等式组的整数解.熟练掌握解一元一次不等式组,不等式组的整数解是解题的关键.先分别求出两个不等式的解集,进而可得不等式组的解集,最后求整数解即可.【详解】解:,,,12x y =⎧⎨=⎩()3157x x +-≤2x ≥-3357x x +-≤3573x x -≤-24x -≤2x ≥-()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩24x <≤()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩()224x x -->224x x -+>,,,,解得,,∴不等式组的解集为,整数解为3或4.25. 完成下列计算,并在括号内填写推理依据.如图,,直线分别交、于点E 和点F ,过点E 作交直线于点G .若,计算的度数.解:∵,∴ ( ).∵,∴ ().∴ .【答案】;两直线平行,内错角相等;垂直定义;;;【解析】【分析】由平行线的性质得,由垂直的定义得,进而可求的度数.【详解】解:∵,∴(两直线平行,内错角相等).∵,∴(垂直定义).∴.1213x x +≥-()1231x x +≥-1233x x +≥-4x -≥-4x ≤24x <≤AB CD MN AB CD EG MN ⊥CD 60EGF ∠=︒MEB ∠AB CD 60EGF ︒=∠=EG MN ⊥90MEG ∠=︒MEB ∠=-906030=︒-︒=︒BEG ∠MEG ∠BEG ∠60BEG EGF ︒∠=∠=90MEG ∠=︒MEB ∠AB CD 60BEG EGF ︒∠=∠=EG MN ⊥90MEG ∠=︒906030MEB MEG BEG ︒︒︒∠=∠-∠=-=故答案为:;两直线平行,内错角相等;垂直定义;;.【点睛】本题考查了平行线的性质,垂直的定义,数形结合是解答本题的关键.26. 如图,在三角形中,平分,求的度数.【答案】【解析】【分析】根据平行线的性质可得,根据角平分线的性质可得,则,最后根据三角形的一个外角定于与它不相邻两个内角之和,即可解答.【详解】解:∵,∴,∵平分,∴,∴,∵,∴.【点睛】本题主要考查了平行线的性质,角平分线的定义,三角形的外角定理,解题的关键是掌握两直线平行,内错角相等;三角形的一个外角定于与它不相邻两个内角之和.27. 如图,点B 、C 在线段异侧,E 、F 分别是线段、上的点,和分别交于点G 和点H .已知,,.求证:.BEG ∠MEG ∠BEG ∠ABC CD ,,80ACB DE BC AED ∠∠=︒∥EDC ∠40︒BCD EDC ∠=∠ECD BCD ∠=∠ECD EDC ∠=∠DE BC ∥BCD EDC ∠=∠CD ACB ∠ECD BCD ∠=∠ECD EDC ∠=∠80AED ∠=︒180402EDC ∠=⨯︒=︒AD AB CD EC BF AD AEG AGE ∠=∠DGC C ∠=∠180BEC BFD ∠+∠=︒EC BF ∥【答案】见解析【解析】【分析】先证明出,从而得到,得到,再根据条件,得出,再根据平行线的判定求解即可.【详解】证明:证明:∵,,又∵∴,∴∴∵∴∴.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.28. 围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.某商家销售A 、B 两种材质的围棋,每套进价分别为200元、170元,下表是近两个月的销售情况:销售数量销售时段A 种材质B 种材质销售收入第一个月3套5套1800元第二个月4套10套3100元(1)求A 、B 两种材质的围棋每套的售价.(2)若商家准备用不多于5400元的金额再采购A 、B 两种材质的围棋共30套,求A 种材质的围棋最多能采购多少套?(3)在(2)的条件下,商店销售完这30套围棋能否实现利润为1300元的目标?请说明理由.【答案】(1)A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;(2)A 种材质的围棋最多能采购10套;(3)商店销售完这30套围棋能实现利润为1300元的目标;理由见解析.【解析】AEG C ∠=∠AB CD ∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD ∠=∠AEG AGE ∠=∠DGC C ∠=∠DGC AGE∠=∠AEG C ∠=∠AB CD∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD∠=∠EC BF ∥【分析】(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,根据表格中的销量和收入列方程组求解即可;(2)设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,根据“用不多于5400元的金额再采购A 、B 两种材质的围棋共30套”列不等式求解即可;(3)设销售利润为w ,根据题意列出一次函数解析式,然后利用一次函数的性质求解.【小问1详解】解:设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,由题意得:,解得:,答:A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;【小问2详解】解:设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,由题意得:,解得:,所以a 的最大值为10,答:A 种材质的围棋最多能采购10套;【小问3详解】解:商店销售完这30套围棋能实现利润为1300元的目标;理由:设销售利润为w ,由题意得:,∵,∴w 随a 的增大而增大,∵a 的最大值为10,∴当时,w 取最大值1300,即商店销售完这30套围棋能实现利润为1300元的目标.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用以及一次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列出方程组、不等式以及一次函数解析()30a -3518004103100x y x y +=⎧⎨+=⎩250210x y =⎧⎨=⎩()30a -()200170305400a a +-≤10a ≤()()()25020021017030101200w a a a =-+--=+100>10a =式.29. 已知:如图,点D 在线段上,过点D 作交线段于点E ,连接,过点D 作于点F ,过点F 作交线段于点G .(1)依题意补全图形;(2)用等式表示与的数量关系,并证明.【答案】(1)见解析;(2),证明见解析.【解析】【分析】(1)根据题意画出图形即可;(2)根据平行线的性质得出,,等量代换得出,根据,可知,进而可得出结论.【小问1详解】解:图形如下:【小问2详解】解:,证明:∵,∴,∵,∴,∴,∵,∴,∴,AB DE BC ∥AC CD DF BC ⊥FG CD ∥AB CDE ∠DFG ∠90CDE DFG ∠+∠=︒12∠=∠23∠∠=13∠=∠DF BC ⊥3490∠+∠=°90CDE DFG ∠+∠=︒DE BC ∥12∠=∠CD FG ∥23∠∠=13∠=∠DF BC ⊥3490∠+∠=°1490∠+∠=︒即.【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.30. 解答题:解方程组时,由于,的系数及常数项的数值较大,如果用常规的代入消元法、加减消元法来解,不仅计算量大,而且易出现运算错误,而采用下面的解法则比较简单:①②得,所以③,③①得,解得,从而,所以原方程组的解是.请你运用上述方法解方程组:.【答案】【解析】【分析】仿照例子,利用加减消元法可解方程组求解.【详解】解:,得:,∴③,③①得:,解得:,将代入③得:,∴原方程组的解为.90CDE DFG ∠+∠=︒323538303336x y x y +=⎧⎨+=⎩①②x y -222x y +=1x y +=35⨯-33x =-=1x -2y =12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩①②-②①333x y +=1x y +=2018⨯-22x =-=1x -=1x -2y =12x y =-⎧⎨=⎩【点睛】本题主要考查二元一次方程组解法,解二元一次方程组由代入消元法和加减消元法.31. 先阅读绝对值不等式和的解法,再解答问题:①因为,从数轴上(如图1)可以看出只有大于而小于6的数的绝对值小于6,所以的解集为.②因为,从数轴上(如图2)可以看出只有小于的数和大于6的数的绝对值大于6,所以的解集为或.(1)的解集为_________,的解集为_________;(2)已知关于x ,y 的二元一次方程组的解满足,其中m 是负整数,求m 的值.【答案】(1),或(2)【解析】【分析】本题考查了绝对值的意义,不等式组的解集,加减消元法解二元一次方程组等知识.理解题意是解题的关键.(1)根据题意求解集即可;(2)加减消元法解二元一次方程组得,由题意知,,即,,可求,然后作答即可.【小问1详解】解:由题意知,的解集为,的解集为或;故答案为:,或;【小问2详解】解:,的||6x <||6x >||6x <6-||6x <66x -<<||6x >6-||6x >6x <-6x >||2x <||5x >254482x y m x y m -=+⎧⎨+=-+⎩||3x y +≤22x -<<5x <-5x >1-42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩472333m m +-≤23m -≤323m -≤-≤15m -≤≤||2x <22x -<<||5x >5x <-5x >22x -<<5x <-5x >254482x y m x y m -=+⎧⎨+=-+⎩①②得,,解得,,将代入①得,,解得,,∴,∵,∴,即,∴,解得,,∵m 是负整数,∴m 的值为.32. 已知:如图,直线,点A 、B 在直线a 上(点A 在点B 左侧),点C 、D 在直线b 上(点C 在点D 左侧),和相交于点E .(1)求证:;(2)分别作和的角平分线相交于点F .① 结合题意,补全图形;② 用等式表示和的数量关系,并证明.【答案】(1)见解析(2)①见解析;②;见解析【解析】【分析】(1) 过点E 作,证明 ,,可得,从而可得答案;2⨯-②①921y m =-73y m =-73y m =-72543x m m ⎛⎫--=+ ⎪⎝⎭423x m =+42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩||3x y +≤472333m m +-≤23m -≤323m -≤-≤15m -≤≤1-a b ∥AD BC BED BAD BCD ∠=∠+∠BAD ∠BCD ∠AFC ∠BED ∠12AFC BED ∠=∠EM AB ∥BAD AEM ∠=∠BCD MEC ∠=∠AEC BAD BCD ∠=∠+∠(2)①根据题意补全图形即可;②过点F 作,可得 ,证明,可得,结合、分别平分和,可得,结合,从而可得答案.【小问1详解】过点E 作,∴ ,∵,∴,∴,∵,∴,∵,∴.【小问2详解】①补全图形如图所示:②;证明:过点F 作,∴∵,∴,FN AB ∥AFN BAF ∠=∠NFC FCD ∠=∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠EM AB ∥BAD AEM ∠=∠AB CD ∥EM CD ∥BCD MEC ∠=∠AEC AEM MEC ∠=∠+∠AEC BAD BCD ∠=∠+∠AEC BED ∠=∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠FN AB ∥AFN BAF ∠=∠AB CD ∥FN CD ∥∴,∵,∴,∵、分别平分和,∴,∵,∴.【点睛】本题考查的是平行公理的应用,平行线的性质,角平分线的定义,熟练的利用平行线的性质进行证明是解本题的关键.33. 给出如下定义:如果一个未知数的值使得方程和不等式(组)同时成立,那么这个未知数的值称为该方程与不等式(组)的“关联解”.例如:已知方程和不等式,对于未知数,当时,使得,同时成立,则称是方程与不等式 的“关联解”.(1)判断是否是方程与不等式的“关联解”_____(填是或否);判断是方程与不等式(组)①,②,③中_______的“关联解”;(只填序号)(2)如果是关于的方程与关于的不等式组的“关联解”,那么____,的取值范围是_______;(3)如果是关于方程与关于的不等式组的“关联解”,求的取值范围.【答案】(1)否;①;(2);;(3).【解析】的NFC FCD ∠=∠AFC AFN NFC ∠=∠+∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠321x -=40x +>x 1x =3121⨯-=41450x +=+=>1x =321x -=40x +>3x =260x -=()234x +<=1x -231x +=1322x -<132x ->2050x x ->⎧⎨-<⎩2x =x 20x a -=x ()11212x x a b +⎧>-⎪⎨⎪+-≤⎩=a b x m =x 24x n -=x 121n m x m n x ⎧-+>-⎪⎨⎪-->-⎩m 4a =3b ≥-36m <<【分析】(1)根据“关联解”的定义求解即可;(2)根据“关联解”的定义,将代入方程即可求出,再解不等式得:,即可得出答案;(3)根据“关联解”的定义得出不等式组,求解即可【小问1详解】解:当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,成立,则是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式组 的“关联解”;故答案为:否;①;【小问2详解】解:根据题意可得:,解得:,不等式组解不等式得:,即,解得:;故答案为:;;【小问3详解】2x =4a =②8122b +-≥4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩3x =2360⨯-=()2334+<3x =260x -=()234x +<=1x -()2131⨯-+=13122--<=1x -231x +=1322x -<=1x -()2131⨯-+=1132-->=1x -231x +=132x ->=1x -()2131⨯-+=120150-->⎧⎨--<⎩=1x -231x +=2050x x ->⎧⎨-<⎩220a ⨯-=4a =()11212x x a b +⎧>-⎪⎨⎪+-≤⎩①②②212b a x +-≤8122b +-≥3b ≥-4a =3b ≥-解:根据题意可得:,∴,不等式组为,化简得:,解不等式组得:.【点睛】本题考查解一元一次不等式组,方程的解,正确理解新定义是解题的关键.24m n -=42-=m n 4122412m m m m m m -⎧-+>-⎪⎪⎨-⎪-->-⎪⎩4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩36m <<。

七年级下册数学期中考试试卷【含答案】

七年级下册数学期中考试试卷【含答案】

七年级下册数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是多少?A. 32厘米B. 36厘米C. 26厘米D. 30厘米二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。

()2. 所有的等边三角形都是锐角三角形。

()3. 一个数的因数一定比这个数小。

()4. 两个长方形的面积相等,它们的长和宽也相等。

()5. 一个等腰直角三角形的两个腰长相等。

()三、填空题(每题1分,共5分)1. 一个正方形的边长是6厘米,那么它的面积是________平方厘米。

2. 如果一个数的因数有1、2、3、4、6,那么这个数是________。

3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是________立方分米。

4. 两个质数的积一定是________。

5. 如果一个等腰三角形的底边长是10厘米,腰长是13厘米,那么这个三角形的周长是________厘米。

四、简答题(每题2分,共10分)1. 请简述质数和合数的区别。

2. 请简述等边三角形的特点。

3. 请简述长方体的体积公式。

4. 请简述最简分数的定义。

5. 请简述等腰直角三角形的特点。

五、应用题(每题2分,共10分)1. 一个长方形的面积是36平方厘米,长是9厘米,那么宽是多少厘米?2. 一个等腰三角形的周长是26厘米,底边长是10厘米,那么腰长是多少厘米?3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是多少立方分米?4. 两个质数的积是56,那么这两个质数分别是多少?5. 一个等腰直角三角形的腰长是10厘米,那么它的面积是多少平方厘米?六、分析题(每题5分,共10分)1. 请分析并解答以下问题:一个长方形的面积是长和宽的乘积,那么如果一个长方形的面积是60平方厘米,长和宽可能是多少厘米?2. 请分析并解答以下问题:一个等腰三角形的周长是28厘米,底边长是8厘米,那么这个三角形的面积是多少平方厘米?七、实践操作题(每题5分,共10分)1. 请用硬纸板制作一个长方体,长、宽、高分别是2dm、3dm、4dm,并计算它的体积。

北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)

北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)

北师大实验中学2023—2024学年度第二学期初一年级数学期中考试试卷试卷说明:1.本试卷考试时间为100分钟,总分数为120分.2.本试卷共8页,四道大题,31道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(本大题共10道小题,每小题3分,共30分)1. 5的平方根是()A. 25B. C. D. 【答案】C【解析】【分析】本题考查平方根的定义,关键在于牢记定义,注意平方根与算术平方根的区别.根据平方根定义求出即可.解:5的平方根是故选:C .2. 在平面直角坐标系中,点在第()象限.A. 一B. 二C. 三D. 四【答案】D【解析】【分析】本题考查判断点所在的象限.熟练掌握象限内点的符号特征,第一象限,第二象限,第三象限,第四象限,是解题的关键.根据象限内点的符号特征,进行判断即可.解:∵,∴点在第四象限,故选D .()2,4-(),++(),-+(),--(),+-20,40>-<()2,4A -3. 下列命题中,错误的是()A. 若,则B. 若且,则C. 若且,则D. 若,则【答案】D【解析】【分析】本题考查不等式的性质,熟练掌握不等式的性质是解题的关键.根据不等式的性质判断即可.解:对于A 选项,若,则,正确,不符合题意;对于B 选项,若且,则,正确,不符合题意;对于C 选项,若且,则,正确,不符合题意;对于D 选项,当,,,则,错误,符合题意;故选D .4. 如图,直线直线,与相等的角是()A. B. C. D. 【答案】A【解析】【分析】本题考查了平行线的性质,对顶角相等,由,得到,又因为,所以,掌握平行线的性质是解题的关键.解:∵,∴,∵,∴,故选:A .5. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道a b >a c b c->-a b >0c ≠22ac bc >a b >0c <ac bc<a b >22a b >a b >a c b c ->-a b >0c ≠22ac bc >a b >0c <ac bc <1a =-2b =-a b >22a b <a ∥b 1∠3∠5∠7∠8∠a b ∥21∠=∠23∠∠=31∠=∠a b ∥21∠=∠23∠∠=31∠=∠AB在点O 的南偏东的方向上,则点A 在点B 的()的方向上.A. 南偏东B. 南偏西C. 北偏西D. 北偏东【答案】C【解析】【分析】本题考查方位角的定义,熟练掌握方位角的定义是解题的关键.根据方位角的定义解答即可.解:在点O 的南偏东的方向上,点A 在点B 的北偏西的方向上,故选C .6. 若是关于、的方程组的解,则有序数对是()A. B. C. D. 【答案】A【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,把代入原方程组,得到关于、的方程组,解方程组即可.解题关键是明确方程解的概念,熟练的解二元一次方程组.】解:把代入方程得:,解得:,故选:A .7. 下列说法中,正确的是()A. 同旁内角相等,两直线平行B. 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离C.如果两个角互补,那么这两个角互为邻补角70︒70︒70︒70︒70︒AB 70︒∴70︒11x y =⎧⎨=-⎩x y 221ax by bx ay +=-⎧⎨-=⎩(),a b ()1,1-()1,1-()2,2-()2,2-11x y =⎧⎨=-⎩a b 11x y =⎧⎨=-⎩221a b b a -=-⎧⎨+=⎩11a b =-⎧⎨=⎩D. 过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】本题考查平行公理,点到直线的距离,邻补角的定义,平行线的判定,熟练掌握有关定理是解题的关键.根据平行公理,点到直线的距离,邻补角的定义,平行线的判定逐一分析即可.解:A 、同旁内角互补,两直线平行,原说法错误,不符合题意;B 、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,正确,符合题意;C 、如果两个角互补,那么这两个角互为邻补角,错误,不符合题意;D 、平面内,过一点有且只有一条直线与已知直线垂直,原说法错误,不符合题意;故选:B .8. 不等式组的解集为,则的取值范围是()A. B. C. D. 【答案】C【解析】【分析】根据不等式组的解集“大大取大”的原则确定a 的取值范围解:由题意可得故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.9. 某种商品的进价为500元,标价为750元,商店要求以利润率不低于的售价打折出售.设商店在标价的基础上打x 折出售商品,那么x 满足的条件是()A. B. C. D. 【答案】B【解析】【分析】本题考查一元一次不等式的应用,读懂题意是解题关键.根据题意列出不等式即可.2x x a>⎧⎨>⎩2x >a 2a >2a <2a ≤2a ≥2a ≤5%7505005%10x ⋅⨯≥()75050015%10x ⋅⨯+≥7505005%10x ⋅⨯≤()75050015%10x ⋅⨯+≤解:根据题意可得:,故选B .10. 在平面直角坐标系中,对于点,若点Q 的坐标为,则称点Q 为点P 的“单向2倍点”.例如:点的“单向2倍点”为.如图,正方形四个顶点分别为、、、,则正方形的边上及内部所有点的“单向2倍点”组成的图形是( )A. B.C. D.【答案】C【解析】【分析】本题考查新定义单向2倍点,理解单向2倍点的定义是解题的关键.根据单向2倍点的定义分别找出正方形四个顶点的单向2倍点即可得出答案.解:正方形四个顶点分别为、、、,()75050015%10x ⋅⨯+≥(),P x y ()()()()2,,,2,x y x y x y x y ⎧≥⎪⎨<⎪⎩()3,5-()3,10-ABCD ()1,1A ()1,1B -()1,1C --()1,1D -ABCD ABCD ABCD ()1,1A ()1,1B -()1,1C --()1,1D -的单向2倍点为,的单向2倍点为,的单向2倍点为,的单向2倍点为,故正方形的边上及内部所有点的“单向2倍点”组成的图形为:故选C .二、填空题(本大题共10道小题,每小题2分,共20分)11. 写出一个2到3之间的无理数______.【解析】无理数是无限不循环小数,本题答案不唯一,只要在2到3.故答案为(答案不唯一,符合要求即可).12.,则_______.【答案】【解析】【分析】本题考查算术平方根的非负性,结合已知条件求得的值是解题的关键.根据算术平方根的非负性确定的值,再将其代入中计算即可.,,解得:,则,故答案为:.13. 能说明“如果,那么”是假命题的反例是:____,____.【答案】 ①. ; ②. .()1,1A ∴()2,1()1,1B -()2,1-()1,1C --()2,1--()1,1D -()2,1-ABCD 0+=a b +=1-,a b ,a b a b +0=30,20a b ∴+=-=3,2a b =-=321a b +=-+=-1-a b >a b >=a b =1-0【解析】【分析】本题考查了举反例,举一组例子说明时有即可求解,掌握举反例的定义是解题的关键.解:要说明“如果,那么”是假命题,只需要举一组例子说明时有就可以,当,时,有,但,∴,是假命题的反例,故答案为:;.14. 图中用五角星标记了北京师范大学附属实验中学本校、国际部、初二校区、初三校区的旗杆的位置.如果初二校区旗杆的坐标为,国际部旗杆的坐标为,那么初三校区旗杆的坐标是_______.【答案】【解析】【分析】本题考查了坐标确定位置,确定出坐标原点的位置是解题的关键.根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,然后找出初三校区旗杆的坐标即可.解:根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,如图所示:的a b <a b >a b >a b >a b <a b >1a =0b =a b >a b <1a =0b =1-0()4,9-()0,14-()11,16-()4,9-()0,14-()4,9-()0,14-由图可得初三校区旗杆的坐标为,故答案为:.15.________.【答案】【解析】【分析】本题考查了当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的移动一位,熟练掌握此知识点是解题的关键.根据当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的值.解:,.故答案为:.16. 在平面直角坐标系中,点在x 轴上,则m 的值为____.【答案】2【解析】【分析】根据平面直角坐标系中的点在x 轴的特点纵坐标为0来求解.解:∵点在x 轴上,∴,()11,16-()11,16- 3.606≈11.40≈≈36.063.606≈36.06=≈36.06()3,2A m m +-()3,2A m m +-20m -=故答案为:2.【点睛】本题主要考查了在坐标上点的坐标特征,理解点在坐标轴上的坐标特征是解答关键.17. 如图,已知OA ⊥OB ,,BOC =40°,OD 平分AOC ,则BOD =________.【答案】25°【解析】【分析】根据题意:因为OD 平分∠AOC ,可以先求∠AOC ,再求∠COD ,利用角和差关系求∠BOD 的度数.解:∵OA ⊥OB ,∠BOC =40°,∴∠AOC =∠AOB +∠BOC =130°,∵OD 平分∠AOC ,∴∠AOD =∠AOC ÷2=65°,∴∠BOD =∠AOB -∠AOD =25°.故答案为:25°.【点睛】本题主要考查了垂线和角平分线的定义,难度较小.18. 光从一种透明介质斜射入另一种透明介质时,传播方向一般会发生改变.如图,两束平行的光线从烧杯底部斜射入水面,然后折射到空气中,由于折射率相同,射入空气后的两束光线也平行.若,,则________°,________°.【答案】①. 45 ②. 58【解析】【分析】本题考查了平行线的判定与性质、同位角以及同旁内角,解题的关键是:①能够找出一个角的同位角以及同旁内角;②熟悉各平行线的性质.根据平行线的性质即可求解.的∠∠∠145∠=︒2122∠=︒3∠=6∠=∵,∴,∵,∴,∴,∵,∴,故答案为:45;58.19. 在平面直角坐标系中,点的坐标为,轴,且,则点的坐标为_______.【答案】或【解析】【分析】此题考查坐标与图形,在平面直角坐标系中与轴平行,则它上面的点纵坐标相同,可求点纵坐标;与轴平行,相当于点左右平移,可求点横坐标,掌握平面直角坐标系内点的坐标特定,利用数形结合和分类讨论思想解题是关键.解:轴,点纵坐标与点纵坐标相同,为1,,当点位于点右侧时,点的横坐标为;当点位于点的左侧时,点的横坐标为,点坐标为或.故答案为:或.20. 在平面直角坐标系中,一个动点从原点出发移动:当其所在位置横、纵坐标之和是3的倍数时就向右平移一个单位长度;当其所在位置的横、纵坐标之和除以3余1时就向上平移一个单位长度;当其所在位的,145∠=︒AC BD ∥3145∠=∠=︒CD EF ∥25180+=︒∠∠518012258∠=︒-︒=︒CE DF ∥6558∠=∠=︒A ()2,1-AB x 3AB =B ()5,1-()1,1x B x A B AB x ∴B A 3AB = ∴B A B 231-+=B A B 235--=-B ∴()5,1-()1,1()5,1-()1,1置的横、纵坐标之和除以3余2时就向下平移两个单位长度.即起点坐标为,第一次平移到,第二次平移到,第三次平移到,……,这个动点第2024次平移到_______.【答案】【解析】【分析】本题考查点的坐标规律问题,熟练找到点的坐标规律是解题的关键.根据题意找出点的坐标规律即可得出答案.解:第一次平移到,第二次平移到,第三次平移到,第四次平移到,第五次平移到,第六次平移到,第七次平移到,第八次平移到,第九次平移到,……,由此可得每三次得到一个循环,,第2024次平移到,故答案为:.三、解答题(本大题共50分,第21、22题各8分,第23题5分,第24题7分,第25、26题各4分,第27、28题各7分)21. (1;(2)解方程组:.【答案】(1)2)【解析】【分析】(1)先计算算术平方根、立方根及绝对值,再进行实数的混合运算即可;(2)利用加减消元法解二元一次方程组即可.本题考查实数的混合运算、算术平方根、立方根、绝对值及解二元一次方程组,熟练掌握运算法则是解题的关键.(1)解:原式;()0,0()1,0()1,1()1,1-()675,673-()1,0()1,1()1,1-()2,1-()2,0()2,2-()3,2-()3,1-()3,3-202436742÷= ∴()675,673-()675,673-3-243213x y x y +=⎧⎨-=⎩232x y =⎧⎨=-⎩)4343=-++2=+(2)解:,得:,解得,把代入①,得:,解得,∴原方程组的解为.22. (1)解不等式,并在数轴上表示解集;(2)求不等式组的整数解.【答案】(1),在数轴上表示解集见解析;(2)整数解为【解析】【分析】本题考查解一元一次不等式及不等式组,在数轴上表示不等式的解集,不等式的整数解.(1)根据解一元一次不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行求解,再在数轴上表示解集即可;(2)先分别求出各个不等式的解集,它们的公共部分即为不等式组的解集,进而可得整数解.(1)解:去分母,得,去括号,得,移项并合并同类项,得,系数化为1,得,该不等式的解集在数轴上表示为:(2)解:解不等式①得:,243213x y x y +=⎧⎨-=⎩①②2⨯+①②721x =3x =3x =234y ⨯+==2y -32x y =⎧⎨=-⎩131124x x -+->-()3434242x x x x +≤+⎧⎨-<+⎩1x <3,2,1,0,1x =---131124x x -+->-()()21314x x --+>-22314x x --->-1x ->-1x <()3434242x x x x +≤+⎧⎪⎨-<+⎪⎩①②1x ≤解不等式②得:,把不等式①和②的解集在数轴上表示为∴原不等式组的解集为.又∵整数,∴.23. 如图,点在的边上,按要求作图并回答问题:(1)过点作边的垂线;(2)过点作边的垂线段;(3)过点作的平行线交直线于点;(4)比较、、三条线段的长度,并用“>”连接:__________,得此结论的依据是_____________.【答案】(1)见解析(2)见解析(3)见解析(4);垂线段最短【解析】【分析】该题主要考查了-基本作图,垂线,平行线的判定,以及线段比较大小,解题的关键是理解题意.(1)根据题意作图即可;(2)根据题意作图即可;(3)根据题意作图即可;(4)根据垂线段最短判断即可;【小问1】如图,垂线即为所求;是103x >-1013x -<≤x 3,2,1,0,1x =---B MAN ∠AM B AM B AN BC A BC D AB BC AD AD AB BC >>【小问2】如图,线段即为所求;【小问3】如图,即为所求;【小问4】根据图象即可得出:;得此结论的依据是:垂线段最短.24. 已知:如图,,,平分,,,求的大小.解:,,.,,.又,,.平分,.【答案】;两直线平行,内错角相等;;平行于同一直线的两直线平行;;;BC AD AD AB BC >>AB CD AB EF ∥EG BED ∠45B ∠=︒30D ∠=︒GEF ∠AB EF ∥45B ∠=︒()45B ∴∠=∠=︒①②∥ AB CD AB EF ∥()∴③④30D ∠=︒ 30DEF D ∴∠=∠=︒BED BEF DEF ∴∠=∠+∠=︒⑤EG BED ∠12DEG BED ∴∠=∠=︒⑥GEF DEG DEF ∴∠=∠-∠=︒⑦BEF ①②EF CD ③④75⑤37.5⑥7.5⑦【解析】【分析】本题考查了平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.先根据两直线平行,内错角相等得出,再根据平行于同一直线的两直线平行得出,最后根据角平分线的定义和角的等量关系即可得出答案.解:,,(两直线平行,内错角相等),,,(平行于同一直线的两直线平行),又,,.平分,..25. 如图,在平面直角坐标系中,三角形的三个顶点的坐标分别为,,.将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,其中点,,分别为点,,的对应点.(1)请在所给坐标系中画出三角形,点的坐标为_______;(2)若边上一点经过上述平移后的对应点为,则点的坐标为_______;(用含、的式子表示)(3)三角形的面积是_______.45BEF B ∠=∠=︒EF CD AB EF ∥45B ∠=︒45BEF B ∴∠=∠=︒∥ AB CD AB EF ∥EF CD ∴ 30D ∠=︒ 30DEF D ∴∠=∠=︒75BED BEF DEF ∴∠=∠+∠=︒EG BED ∠137.52DEG BED ∴∠=∠=︒7.5GEF DEG DEF ∴∠=∠-∠=︒ABC ()5,1A -()1,5B -()1,1C --ABC A B C '''A 'B 'C 'A B C A B C '''C 'AB (),P x y P 'P 'x y ABC【答案】(1)画图见解析,(2)(3)12【解析】【分析】本题主要考查了坐标与图形变化—平移,坐标与图形:(1)根据所给的平移方式确定A 、B 、C 对应点的坐标,在坐标系中描出,再顺次连接即可;(2)根据“上加下减,左减右加”的平移规律求解即可;(3)根据三角形面积计算公式结合网格的特点进行求解即可.【小问1】解:如图所示,即为所求,∴点的坐标为;【小问2】解:∵将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,边上一点经过上述平移后的对应点为,∴点的坐标为,故答案为:;【小问3】解:.26. 已知:如图,,,.求证:.()45-,()5,4x y +-A B C '''、、A B C '''、、A B C '''、、A B C ''' C '()45-,ABC A B C '''AB (),P x y P 'P '()5,4x y +-()5,4x y +-164122ABC S =⨯⨯= AB CD 12∠=∠34∠∠=AD BE【答案】见解析【解析】【分析】本题考查了平行线的性质和判定的应用,根据平行线的性质求出,求出,推出,根据平行线的判定推出即可.注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.证明:∵,∴,∵,∴,即,∴,∵,∴,∴.27. 列方程(组)或不等式(组)解应用题:为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台设备的价格、月处理污水量如下表:A 型型价格(万元/台)处理污水量(吨/月)240200经调查:购买一台A 型设备比购买一台型设备多2万元,购买2台A 型设备比购买3台型设备少6万元.(1)求、的值;(2)如果每月要求处理流溪河两岸污水量不低于2040吨,并且市治污公司购买污水处理设备的资金不超过105万元,求该公司最省钱的设备购买方案.43BAF ∠=∠=∠DAC BAF ∠=∠3CAD ∠=∠AB CD 4BAE ∠=∠12∠=∠12CAE CAE ∠+∠=∠+∠BAE DAC ∠=∠4DAC ∠=∠34∠∠=3DAC ∠=∠AD BE B a b B B a b【答案】(1)(2)选择购买型设备1台、型设备9台最省钱【解析】【分析】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系,同时要注意分类讨论思想的运用.(1)根据“购买一台型设备比购买一台型设备多2万元,购买2台型设备比购买3台型设备少6万元”即可列出方程组,继而进行求解;(2)因为每月要求处理流溪河两岸的污水量不低于2040吨,可列不等式,再根据市治污公司购买污水处理设备的资金不超过105万元,列不等式,解不等式组即可由的值确定方案,然后进行比较,作出选择.【小问1】解:根据题意,得:,解得;【小问2】解:设公司购买型设备台.根据题意,得:,解得∴公司可购买型设备1台、型设备9台或型设备2台、型设备8台.∵型设备比型设备贵,∴型设备应尽量少购买,故选择购买型设备1台、型设备9台最省钱.28. 将两副三角板、按图1方式摆放,其中,,,、分别在直线、上,直线.(1)从图1的位置开始,保持三角板不动,将三角板绕点以每秒的速度顺时针旋转(如图2,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.1210a b =⎧⎨=⎩A B A B A B x 2326a b b a -=⎧⎨-=⎩1210a b =⎧⎨=⎩A x ()()240200102040121010105x x x x ⎧+-≥⎪⎨+-≤⎪⎩512x ≤≤A B A B A B A A B ABC DEF 90EDF ACB ∠=∠=︒45E ∠=︒30BAC ∠=︒AB DF GH MN GH MN ABC DEF D 2︒0180t ≤≤①当边与边平行时,_______;②当边与边平行时,求所有满足条件的的值.(2)从图1的位置开始,将三角板绕点以每秒的速度顺时针旋转,同时三角板绕点以每秒的速度顺时针旋转(如图3,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.当与垂直时,______.【答案】(1)①15或105;②或172.5(2)165【解析】【分析】(1)①延长交于点P ,则,然后根据平行线的性质求出旋转角,然后计算时间即可;②延长交于点,过点作,则,然后根据平行线的性质求出旋转角,然后计算时间即可;(2)由旋转可得,,设于点P ,过P 点作,过点E 作,即可得到,计算得到,然后根据解题即可.【小问1】①解:延长交于点P ,则,当时,如图,则,∴;如图,,∴旋转角为,即旋转时间为;DF AC t =EF BC ABC A 1︒DEF D 2︒0180t ≤≤AC EF t =82.5t =AC MN 30APM BAC ∠=∠=︒BC MN P D DQ BC 60BPN ABP ∠=∠=︒180BAG t ∠=︒-︒3602MDF t ∠=︒-︒CA EF ⊥PQ GH ET MN PQ GH ET MN 4052240PET t QPF t ∠=︒-︒∠=︒-︒,PET QPF ∠=∠AC MN 30APM BAC ∠=∠=︒DF AC 30FDM APD ∠=∠=︒3015s 2t ==30FDM APD ∠=∠=︒18030210︒+︒=︒210105s 2t ==故答案为:或;②如图,延长交于点,过点作,∵,∴,∵,∴,∴,,∴,∴旋转时间为;如图,由上题解答可得:,,∴∴旋转角度为,时间为;综上所述,当或时,边与边平行;【小问2】15105BC MN P D DQ BC GH MN 60BPN ABP ∠=∠=︒BC EF DH BC EF 180********MDQ BPN ∠=︒-∠=︒-︒=︒45QDF F ∠=∠=︒12045165MDF MDQ QDF ∠=∠+∠=︒+︒=︒16582.5s 2t ==60MDQ BPN ∠=∠=︒45QDF F ∠=∠=︒604515MDF MDQ QDF ∠=∠-∠=︒-︒=︒,36015345︒-︒=︒345172.5s 2t ==82.5s t =172.5s t =EF BC如图,由旋转可得:,,∴,,设于点P ,过P 点作,过点E 作,∵,∴,∴,,∴∵,∴,∴,∵,∴,解得:,故答案为:.【点睛】本题考查平行线的性质,解决本题的关键是掌握平行线的性质、添加恰当的辅助线、采用分类讨论的思想解决问题.B 卷四、填空题(本卷共20分,第29、30题每题6分,第31题8分)29. (1)关于的不等式有________个整数解;(2)若关于的不等式组(为常数,且为整数)恰有5个整数解,则的取值为180BAG t ∠=︒-︒3602MDF t ∠=︒-︒()30180t 150CAG CAB BAG t ∠=∠-∠=︒-︒-︒=︒-︒()909036022270EDM MDF t t ∠=︒-∠=︒-︒-︒=︒-︒CA EF ⊥PQ GH ET MN GH MN PQ GH ET MN 150CAG APQ t ∠=∠=︒-︒QPE PET ∠=∠2270TED EDM t ∠=∠=︒-︒,()1801804522704052PET FED TED t t ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒,CA EF ⊥90CPF ∠=︒()9090150240QPF CPQ t t ∠=︒-∠=︒-︒-︒=︒-︒QPE PET ∠=∠2404052t t ︒-︒=︒-︒165t =165x 23x -<<x 4223x k k x x k-<+⎧⎨<-⎩k k________;(3)若关于的不等式(和为常数,且为整数)恰有6个整数解,则共有________组满足题意的和.【答案】①. 4 ②. 2 ③. 4【解析】【分析】本题考查了一元一次不等式,不等式组的整数解问题,解一元一次方程,正确理解题意,熟练掌握知识点是解题的关键.(1)直接找出的范围内的整数即可;(2)先求出不等式组的解集为,满足题意得,解方程即可;(3)由题意得:,化简得到,由于和为常数,且为整数,分类讨论即可.(1)解:在的范围内整数为,∴有4个,故答案为:4.(2)解:由①得:;由②得:,则不等式组的解集为:,∵方程组恰有5个整数解,∴,解得:,故答案为:2.(3)解:由题意得:,化简得:,∵和为常数,且为整数,∴只有或,∴有,∴有4组满足题意的和,x ()33k x a k <<+k a k a 23x -<<352k x k <<+5236k k +-=()337a k k +-=7ak =k a 23x -<<1,012-,,4223x k k x x k -<+⎧⎨<-⎩①②52x k <+3x k >352k x k <<+5236k k +-=2k =()337a k k +-=7ak =k a 177⨯=()()177-⨯-=1177,,,7711a a a a k k k k ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-==-⎩⎩⎩⎩k a故答案为:4.30. 定义“[ ]”是一种取整运算新符号,即表示不超过的最大整数.例如:,.(1)请计算:_______,_______;(2)若和满足方程,则当时,请直接写出的取值范围:________;(3)在平面直角坐标系中,如果坐标为的点都在第一象限,且满足,则所有符合条件的点所构成图形面积为_______.【答案】 ①. 1 ②. ③. ④. 4【解析】【分析】本题考查了取整函数的定义,根据定义正确列出不等式是解题的关键.(1)根据取整函数的定义即可求解;(2)根据取整函数的定义即可求解;(3)根据取整函数的定义即可求解.解:(1)的最大整数,,故;∵表示不超过的最大整数,故,故答案为:;(2),,,,,,故答案为:.(3)∵的点都在第一象限,[]a a []1.22-=-[]3π==[]3.14-=m n [][]1m n +=1n =-m (),p q [][]3p q +=(),p q 4-12m ≤<1.414≈1=[ 3.14]- 3.14-[ 3.14]4-=-1;4-[][]1,1+==Q m n n 12<<Q 011∴<<[]0∴=n []1[]1∴=-=m n 12m ∴≤<12m ≤<(),p q∴,又∵,都是整数,或或或,则所有符合条件的点所构成图形如图所示,故所有符合条件的点所构成图形面积.故答案为:4.31. 平面直角坐标系中,从点分别向轴、轴作垂线,两条垂线分别与坐标轴交于点,,与一、三象限角平分线交于,,则记点的长度差为,例如.(1)请直接写出:_____,______;(2)若点的长度差,则______;0,0p q >>[][]3p q +=[][],p q ∴[][]03p q ⎧=⎪⎨=⎪⎩[][]12p q ⎧=⎪⎨=⎪⎩[][]21p q ⎧=⎪⎨=⎪⎩[][]30p q ⎧=⎪⎨=⎪⎩(),p q (),p q 144=⨯=(),x y x y 1X 1Y 2X 2Y (),x y ()1212,x y d X X YY =-()1,2121d =-=()2,3d =()2,1d -=()3,m ()3,4m d =m =(3)若整点的长度差,且,,则所有满足条件的整点共有_____个.【答案】(1)1,1(2)(3)36【解析】【分析】本题考查了平面直角坐标系中坐标与图形性质,等腰直角三角形的性质,两点之间的距离,熟练掌握知识点是解题的关键.(1)先证明出,再根据新定义即可求解;(2)根据新定义得到,分类讨论解方程即可;(3)分类讨论,根据,且,这些范围,列举出所有的情况即可.【小问1】解:如图,∵直线是第一、三象限角平分线,∴,∵点向轴作垂线,∴,∴,∴,∴,∴,同理,故答案为:1,1.【小问2】(),p q (),2p q d ≥4p ≤4q ≤7±121X O X X =34m -=(),2p q d ≥4p ≤4q ≤2OX 2145X OX ∠=︒(),x y x 2190X X O ∠=︒21904545OX X ∠=︒-︒=︒2121X OX OX X ∠=∠121X O X X =()2,3231d =-=()2,1211d -=-=解:由题意得:,则或解得或(舍),∴,故答案为:.【小问3】解:当点P 在第一象限及坐标轴时,则,由得:,∴满足题意得点有,共12个;当点P 在第二象限及坐标轴时,则,由得:,∴满足题意的点有共9个;当个点P 在第三象限及坐标轴时,则由得:,∴满足题意的点有,共9个;当个点P 在第四象限及坐标轴时,则由得:,∴满足题意的有:共6个,∴共计36个,故答案为:36.34m -=34m -=34m -=-7m =1m =-7m =±7±04,04p q ≤≤≤≤(),2p q d ≥2p q -≥()()()()()()2,0,3,0,4,0,3,14,1,4,2()()()()()()0,2,0,3,0,4,1,31,4,2,440,04p q -≤≤≤≤(),2p q d ≥2p q -≥()()()()()()()()()2,0,3,0,4,0,3,14,1,4,2,2,4,1,3,1,4---------40,40p q -≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()()3,1,1,3,4,1,1,4,4,2,2,4,0,4-------------()()0,3,0,2--04,40p q ≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()1,3,1,4,2,4,3,1,4,1,4,2--。

山东省潍坊市潍城区2023-2024学年七年级下学期期中数学试题(含答案)

山东省潍坊市潍城区2023-2024学年七年级下学期期中数学试题(含答案)

试卷类型:A2023—2024学年度第二学期期中质量检测七年级数学试题注意事项:1.考试时间120分钟,试卷满分150分;2.答卷前,请将试卷密封线内和答题纸上的项目填涂清楚;3.请在答题纸相应位置作答,不要超出答题区域,不要答错位置.第Ⅰ卷(选择题共52分)一、单选题(本大题共8小题,共32分.在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得4分,错选、不选均记0分)1.巨噬细胞是人体的“清道夫”,它是由单核细胞演变而来,一直在为我们的身体做清洁工作,其直径可达0.00008米.将0.00008用科学记数法可表示为()A .B .C .D .2.如图,已知OB 是内部的一条射线,下列说法一定正确的是()A .B .C .可以用表示D .与表示同一个角3.下列方程是二元一次方程的是()A .B .C .D .4.如图,从旗杆AB 的顶端A 处向地面拉一条绳子,绳子底端恰好在地面P 处,若旗杆的高度为13.8米,则绳子AP的长度不可能是()40.810-⨯50.810-⨯4810-⨯5810-⨯AOC ∠2AOC BOC ∠=∠BOC AOB∠<∠AOC ∠O ∠1∠AOB ∠20x y -=10xy +=223x x +=8y x=A .16米B .15米C .14米D .13米5.光在不同介质中的传播速度是不同的,因此光从水中射向空气时,要发生折射.已知在水中平行的光线射向空气中时也是平行的.如图,,则的值为()A .B .C .D .6.小亮在做“化简,并求时的值”一题时,错将看成了,但结果却和正确答案一样.由此可知k 的值是()A .2B .3C .4D .57.某校预安排若干间宿舍给七年级男寄宿生住,若每间宿舍住6人,则有4人住不下,若每间住7人,则有1间只住2人且空余8间宿舍.设该校七年级男寄宿生有x 人,预安排给七年级男寄宿生的宿舍有y 间,则下列方程组正确的是()A .B .C .D .8.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB 、CD ,若,且,则的度数是()A .B .C .D .二、多选题(本大题共4小题,共20分.在每个小题给出的四个选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,错选、多选均记0分)9.如图,下列说法正确的是()140,2120∠=︒∠=︒34∠+∠160︒150︒100︒90︒()()()23263516x k x x x x +⋅+-⋅+++6x =6x =6x =-()647812y x y x +=⎧⎪⎨--+=⎪⎩()64782y x y x -=⎧⎪⎨-+=⎪⎩()64782y x y x +=⎧⎪⎨-+=⎪⎩()647812y x y x-=⎧⎪⎨---=⎪⎩CD BE ∥125∠=︒2∠60︒75︒80︒85︒A .与是对顶角B .与是内错角C .与是同位角D .与是同旁内角10.下列运算正确的是()A .B .C .D .11.解方程组时,下列消元方法正确的是()A .②×3-①,消去xB .①×3+②×2,消去yC .②×2-①×3,消去yD .由②得:,然后代入①中消去x12.如图,的平分线BE 交AC 于点E ,的平分线CD 交AB 于点D ,BE ,CD 相交于点F ,,且于点G ,下列结论中正确的是()A .B .CA 平分C .D .第Ⅱ卷(非选择题共98分)三、填空题(本大题共6小题,共24分.只要求填写最后结果,每小题填对得4分)13.计算:________.14.如图,点O 在直线AB 上,,OE 平分,则的度数为_____°.1∠2∠1∠4∠1∠B ∠4∠D ∠2327a a a a -⋅÷=22(2)(2)222b a b a b ab a ---⋅+=2336(3)27ab a b ---=()122112323nn n n n n a a aa a a a --+⋅-+=-+3216331x y x y +=⎧⎨-=⎩①②313x y =+ABC ∠ACB ∠90,A EG BC ∠=︒∥CG EG ⊥2CEG DCB ∠=∠BCG ∠ADC GCD ∠=∠45DFB ∠=︒109287031︒'-︒'=118,AOC OC OD ∠=︒⊥BOC ∠DOE ∠15.对任意有理数x ,等式总成立,那么________.16.如图,直线,一块三角板ABC ()按如图所示放置.若,则的度数为________°.17.如图,在四边形ABCD 中,,对角线AC ,BD 交于点O ,若三角形AOB 的面积为6,且,则三角形AOD 的面积是_________.18.如图,将一个大长方形ABCD 分割成5个正方形①②③④⑤和1个小长方形⑥,若,则大长方形ABCD 的面积是_______.()()236x x n x mx -+=+-m n =a b ∥60,90A C ∠=︒∠=︒150∠=︒2∠AD BC ∥:1:2AO OC =3,4GF EF ==四、解答题(本题共7小题,满分74分.解答应写出文字说明、证明过程或推演步骤)19.(本题满分8分)计算下列各题:(1);(2).20.(本题满分8分)解下列方程组:(1),(2)21.(本题满分9分)按下列要求画图并填空.如图,P 是的边OB 上一点,(1)过点P 作射线OA 的垂线,垂足为H ;(2)过点P 作射线OB 的垂线,交OA 于点C ;(3)过点P 作直线(点D 在点P 的右侧);(4)与的数量关系是_________.(5)线段PC ,PH ,OC 这三条线段大小关系是________(用“<”号连接),依据是________.22.(本题满分10分)我们知道,一般的数学公式,法则、定义可以正向运用,也可以逆向运用.例如,“同底数幂的乘法”“幂的乘方”“积的乘方”这几个法则的逆向运用表现为:;;;其中m ,n 为正整数.结合以上材料解决下列问题.(1)已知,请把a ,b ,c 用“<”连接起来;(2)若,求的值;(3)化简:.23.(本题满分12分)如图,已知射线,连接AB ,点P 是射线AM 上的一个动点(与点A 不重合),BC ,BD 分别平分和,分别交射线AM 于点C ,D.()23155a a b ⎛⎫-⋅- ⎪⎝⎭()()21241x x x -⋅-+-21327x y x y -=⎧⎨+=⎩()111231211x y x y ⎧+=-⎪⎨⎪+-=⎩AOB ∠PD OA ∥HPC ∠DPC ∠m n m n a a a +=⋅()nmn m a a =()m mm a b ab =5544332,3,4a b c ===2,5a b x x ==32a b x +1031001021384⎛⎫⨯⨯ ⎪⎝⎭AM BN ∥ABP ∠PBN ∠(1)当时,求的度数;(2)试判断与之间的数量关系,并说明理由.24.(本题满分13分)已知用2辆A 型车和1辆B 型车载满货物—次可运货10吨;用3辆A 型车和2辆B 型车载满货物一次可运货17吨.某物流公司现有货物35吨,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金130元/次,请选出最省钱的租车方案,并求出最少租车费.25.(本题满分14分)已知,直线,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB ,CD 之间,当时,求的度数;(2)如图2,点P 在直线AB ,CD 之间,与的角平分线相交于点K ,写出与之间的数量关系,并说明理由;(3)如图3,点P 落在直线CD 的下方,与的角平分线相交于点K ,与有何数量关系?请说明理由.40A ∠=︒CBD ∠APB ∠ADB ∠AB CD ∥56,24BAP DCP ∠=︒∠=︒APC ∠BAP ∠DCP ∠AKC ∠APC ∠BAP ∠DCP ∠AKC ∠APC ∠2023-2024学年度第二学期期中学情诊断七年级数学试题参考答案及评分标准一、单选题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来每小题选对得4分,错选、不选均记0分)题号12345678答案DDADCBAC二、多项选择题(共4小题,每小题5分,共20分.每小题的四个选项中,有多项正确,全部选对得5分,部分选对得3分,错选、多选均记0分)题号9101112答案ADADABDACD三、填空题(本大题共6小题,每小题4分,共24分.只填写最后结果)13.14.15.16.17.318.99四、解答题(本题共6小题,共74分.请写出必要的文字说明、证明过程或演算步骤)19.解:(本题8分,1、2小题每题4分)(1) 4分(2)6分8分20.解:(本题8分,1、2小题每题4分)(1)①+②得:1分解得:2分将代入①得:3分解得:,所以4分(4)化简方程组得:①×2得:③③-②得: 6分将代入①得:3857︒'59︒12110︒()()23627211525555a a b a a b a b ⎛⎫⎛⎫-⋅-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()()2322124124241x x x x x x x x --+-=-+-+-+⋅322651x x x =-+-+48x =2x =2x =221y -=12y =212x y =⎧⎪⎨=⎪⎩24328x y x y -=-⎧⎨-=⎩①②428x y -=-16x =-16x =-()2164y ⨯--=-解得:7分所以 8分21.解:(本题9分)(1)如图所示 1分(2)如图所示 2分(3)如图所示3分(4)互余5分(5),垂线段最短9分22.解:(本题10分)(1)∵3分∴ 4分(2 6分∵∴原式7分(3)10分23.解:(本题12分)(1)∵∴,1分28y =-6281x y =-=-⎧⎨⎩PH PC OC <<()55511112232a ===44411113(3)81b ===()13331114464c ===a c b <<()()323232a baba b xx x xx +=⋅=⋅2,5a b x x ==3225200=⨯=1031003100102100100211138388444⎛⎫⎛⎫⎛⎫⨯⨯=⨯⨯⨯⨯ ⎪⎪⎪⎝⎭⎝⎭⎝⎭100310010010021001113883816444⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯⨯⨯=⨯⨯⨯=⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,40AM BN A ∠=︒∥180140ABN A ∠=︒-∠=︒∵BC ,BD 分别平分和,∴,3分∴5分(2),7分∵BD 平分,∴,9分∵,∴,∴.12分24.解:(本题13分)(1)设每辆A 型车、B 型车都载满货物一次可以分别运货x 吨、y 吨,根据题意,得,2分解得,3分经检验,方程组的解符合题意.答:1辆A 型车载满货物一次可运3吨,1辆B 型车载满货物一次可运4吨.(2)由(1),得,5分∴,∵a ,b 都是正整数,∴,或,或,∴有3种租车方案:方案一:A 型车9辆,B 型车2辆;方案二:A 型车5辆,B 型车5辆:8分方案三:A 型车1辆,B 型车8辆.(3)∵A 型车每辆需租金100元/次,B 型车每辆需租金130元/次,∴方案一需租金:(元);方案二需租金:(元);方案三需租金:(元). 11分∵12分∴最省钱的租车方案是方案三答:租A 型车1辆,B 型车8辆,最少租车费为1140元.25.解:(本题14分)(1)如图1,过P 作,ABP ∠PBN ∠11,22CBP ABP DBP PBN ∠=∠∠=∠1111140702222CBD CBP DBP ABP PBN ABN ∠=∠+∠=∠+∠=∠=⨯︒=︒2APB ADB ∠=∠PBN ∠2PBN DBN ∠=∠AM BN ∥,APB PBN BDP DBN ∠=∠∠=∠2APB ADB ∠=∠2103217x y x y +=⎧⎨+=⎩34x y =⎧⎨=⎩3435a b +=3543ba -=92a b =⎧⎨=⎩55a b =⎧⎨=⎩ 1 8a b =⎧⎨=⎩910021301160⨯+⨯=510051301150⨯+⨯=110081301140⨯+⨯=116011501140>>PE AB ∥∵,∴,∴, 2分∵∴4分(2).理由如下: 5分如图2,过K 作,∵,∴,∴,∴,过P 作,同理可得,,∵与的角平分线相交于点K ,∴, 8分∴,∴;9分(3).理由如下:10分如图3,过K 作,AB CD ∥PE AB CD ∥∥,APE BAP CPE DCP ∠=∠∠=∠56,24BAP DCP ∠=︒∠=︒562480APC APE CPE BAP DCP ∠=∠+∠=∠+∠=︒+︒=︒2AKC APC ∠=∠KE AB ∥AB CD ∥KE AB CD ∥∥,AKE BAK CKE DCK ∠=∠∠=∠AKC AKE CKE BAK DCK ∠=∠+∠=∠+∠PF AB ∥APC BAP DCP ∠=∠+∠BAP ∠DCP ∠11,22DCK DCP BAK BAP ∠=∠∠=∠11112222()BAK DCK BAP DCP BAP DCP APC ∠+∠=∠+∠=∠+∠=∠2AKC APC ∠=∠2AKC APC ∠=∠KE AB ∥∵,∴,∴,∴,…分过P 作同理可得,,12分∵与的角平分线相交于点K ,∴,3分∴,∴.14分AB CD ∥KE AB CD ∥∥,BAK AKE DCK CKE ∠=∠∠=∠AKC AKE CKE BAK DCK ∠=∠-∠=∠-∠PF AB∥APC BAP DCP ∠=∠-∠BAP ∠DCP ∠11,22BAK BAP DCK DCP ∠=∠∠=∠()11112222BAK DCK BAP DCP BAP DCP APC ∠-∠=∠-∠=∠-∠=∠2AKC APC ∠=∠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五河县曹顾张初中2011—2012学年度第二学期
期中考试七年级数学试卷
一、选择题(每小题3分,共30分) ( )1、在数-3.14, 2, 0, π, 16,
7
22
,0.1010010001……中无理数的个数有
A 、3个
B 、2个
C 、1个
D 、4个
( )2.81的平方根是
A 、9
B 、3
C 、± 3 D、±9
( )3、下列关系不正确的是
A 、若a -5>b -5,则a >b
B 、若x 2>1,则x >
x
1 C 、若2a >-2b ,则a >-b D 、若a >b ,c >d ,则a + c >b + d
( )4、有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是
有理数;③负数没有立方根;④17-是17的平方根.其中正确的有
A. 0个
B.1个
C. 2个
D. 3个
( )5、不等式组213
3
x x +⎧⎨>-⎩≤的解集在数轴上表示正确的是
( )6、若对于任意x 值,等式(2x -5)(mx-2)=4x 2+nx +10恒成立,则m + n
的值为
A 、20
B 、12
C 、-20
D 、-12 ( )7、下列各式中,能用平方差公式分解因式的式子是
A 162+a
B a b a 422-
C 27)(32-+b a D
33b a -
( )8、下列各式中, 与a 4·a 4
运算结果相同的是
A 、a 2·a 8
B 、(a 2)4
C 、(a 4)4
D 、a 8÷a 2
( )9、(-2a -b )2的计算结果为
A 、-4a 2-b 2
B 、4a 2 + b 2
C 、4a 2 + b 2-4ab
D 、4a 2 + b 2 +
4ab
( )10、若a >0,且a x = 2, a y = 3,则y x a -的值为
A 、-1
B 、1
C 、
32 D 、2
3 二、填空题(每小题3分,共24分)
11、分解因式:1-a 2+2ab-b 2=_________________________.
A .
B .
C .
D .
12、家庭使用的保鲜膜的厚度大约为0.0000402m ,用科学记数法表示是____________m .
13、若关于x 的不等式组⎩⎨⎧≤-<-1270
x m x 的整数解共有4个,则m 的取值范围是
____________
14、若a 2 + ma + 64是完全平方式,则m = ______________ 15、
10
在两个连续整数a 和b 之间,a<
10
<b, 那么a , b 的值分别是 .
16、若(2x -1)0 = 1,则x 的取值范围是_______________ 17、若2-a + | b 2
-9 | = 0,则ab = ____________
18、22008·(-
2
1)2009
= ____________ 三、解答题(共66分)
19、计算或化简(每小题6分,计18分)
(1)计算 031220088)2
1
()2()
(--+---
(2) 2342(2)(612)(3)x x x x -+-÷
(3)()()()3232942x x x +--
20、解方程和不等式(每小题5分,计10分)
(1)解方程:4(x+1)2=16 (2)解不等式: 8
1
)3(41)2(21+->-x x
21、(本题12分):已知x+y=8,xy=12,求:(1)x 2y+xy 2的值(2)x 2+y 2的值。

22、(本题12分)某房地产开发公司计划建A 、B 两种户型的住房80套.该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房.两种户
(1 (2)选择哪种方案能使该公司获得最大利润?
23、(本题14分)阅读理解题: 阅读下列解题过程,并按要求填空: 已知:2)2(y x -=1,33)2(y x -=-1,求
y
x y
x -+3的值. 解:根据算术平方根的意义,由2)2(y x -=1,得2)2(y x -=1,2x -y=1①--第一步
根据立方根的意义,由33)2(y x -=-1,得x -2y=-1…………②------第二步
由①、②,得⎩⎨⎧-=-=-1212y x y x ,解得⎩⎨⎧==11
y x ----------------------------第三

把x 、y 的值分别代入式子y x y x -+3中,得y
x y
x -+3=0 -----------------------第四步
以上解题过程中有两处错误,一处是第 步,忽略了 ;一处是第 _步,忽略了 ;正确的解法请写出来.
一、选择题ACBBADCBDC 二、填空题 11、(1+a-b )(1-a+b) 12、4.02×10-5 13、6<m ≤7
14、±16 15、3,4 16、x ≠21 17、±6 18、-2
1
三、解答题
19、(1)-1 (2)2x (3)81x 4-72x 2=16 20、(1)x=1或x=-3 (2)x<2
1 21、(1)96 (2)40 22、略 23略。

相关文档
最新文档