《通信原理》实验指导书

合集下载

通信原理实验指导书

通信原理实验指导书
表1-4 双4选1模拟开关功能表

INH






HLຫໍສະໝຸດ HHX入
A L H L H X
导通通道
X0 X,Y0 Y X1 X,Y1 Y X2 X,Y2 Y X3 X,Y3 Y

该模块中选X0=0,X1=-1,X2=0,X3=+1;Y0=Y1= Y2=0,Y3=+1; INH=0。B为合路码,A为256kHZ 时钟信 号。
为可控模拟开关。U12A为2/4译码器。U13为4位二进制计数器。由U 6 分频出的32kHZ 方波信号经U13的二、四分频分别得到16kHZ、8kHZ 方 波信号,送U12A的 2/4译码器。其功能表如表1-2所示。
表1-2 2/4译码器功能表








Y0
Y1















验证是否符合其编码规则。 3.观察HDB3编码中的四连零检测、补V、加B补奇、单/双极
性变换的波形,并验证是否符合编码规则。 4.观察并比较单、双极性码(非归零、归零)、时钟信号、时序信号
及双相码的波形和相位特点。 三、基本原理:
本实验使用数字信源模块和HDB3编、译码模块。(两个实验一起做) 1. 数字信源:
1
表1-1 8选1数据选择器功能表




A2 A1
A0
ST

W
XX




LL



通信原理实验指导书

通信原理实验指导书

实验一 HDB3码型变换实验一、实验目的通过本实验,学生应达到以下要求:1、了解二进制单极性码变换为HDB3码的编码规则,掌握它的工作原理和实现方法。

2、通过测试电路,熟悉并掌握分析电路的一般规律与方法,学会分析电路工作原理,画出关键部位的工作波形。

3、了解关于分层数字接口脉冲的国际规定,掌握严格按技术指标研制电路的实验方法。

二、实验内容⏹调测HDB3编、译码电路;⏹调测位定时提取电路及信码再生电路。

各部分的输出信号应达到技术指标的要求,同时做到编、解码无误;⏹利用频谱仪,研究经HDB3编码后的频谱特性(条件允许)。

三、实验原理在数字通信系统中,有时不经过数字基带信号与信道信号之间的变换,只由终端设备进行信息与数字基带信号之间的变换,然后直接传输数字基带信号。

数字基带信号的形式有许多种,在基带传输中经常采用AMI码(传号交替反转码)和HDB3码(三阶高密度双极性码)。

1、传输码型在数字复用设备中,内部电路多为一端接地,输出的信码一般是单极性不归零信码。

当这种码在电缆上长距离转输时,为了防止引进干扰信号,电缆的两根线都不能接地(即对地是平衡的),这里就要选用一种适合线路上传输的码型,通常有以下几点考虑:(1)在选用的码型的频谱中应该没有直流分量,低频分量也应尽量少。

这是因为终端机输出电路或再生中继器都是经过变压器与电缆相连接的,而变压器是不能通过直流分量和低频分量的。

(2)传输型的频谱中高频分量要尽量少。

这是因为电缆中信号线之间的串话在高频部分更为严重,当码型频谱中高频分量较大时,就限制了信码的传输距离或传输质量。

(3)码型应便于再生定时电路从码流中恢复位定时。

若信号中连“0”较长,则等效于一段时间没有收脉冲,恢复位定时就困难,所以应该使变换后的码型中连“0”较少。

(4)设备简单,码型变换容易实现。

(5)选用的码型应使误码率较低。

双极性基带信号波形的误码率比单极性信号的低。

根据这些原则,在传输线路上通常采用AMI码和HDB3码。

通信原理实验指导书

通信原理实验指导书

通信原理实验指导书一、实验目的本实验旨在帮助学生深入理解通信原理的基本概念和原理,通过搭建实验电路和进行实验操作,掌握通信原理的实际应用。

二、实验器材1. 发射器:一台信号发生器2. 接收器:一台示波器3. 连接电缆:适用于信号传输的电缆三、实验步骤1. 准备工作a. 检查实验器材是否齐全,并确保其正常工作。

b. 将信号发生器和示波器连接电源,并确保电源正常。

2. 实验电路的搭建a. 将信号发生器与示波器通过连接电缆连接起来。

b. 确保电缆的连接牢固可靠,避免信号传输过程中出现干扰。

3. 实验操作a. 设置信号发生器的输出频率和幅度,以产生所需的信号波形。

b. 调节示波器的时间和幅度尺度,以正确显示接收到的信号波形。

c. 运行实验电路,观察信号的传输和接收情况。

d. 根据实验结果,记录并分析接收到的信号波形的特点和变化。

四、实验结果记录与分析根据实验操作所得到的结果,记录并分析接收到的信号波形的特点和变化。

可以通过示波器的屏幕截图来展示实验结果,并结合文字对实验结果进行描述和分析。

五、实验总结通过本次实验,我们深入了解了通信原理的基本概念和原理,并通过实验操作掌握了通信原理的实际应用。

通过实验结果的记录和分析,我们对信号的传输和接收过程有了更深入的理解。

本次实验对于我们进一步学习和研究通信原理的知识非常重要,也为今后从事相关工作打下了扎实的基础。

六、实验注意事项1. 在进行实验之前,务必做好准备工作,并确保实验器材的正常工作。

2. 在实验操作过程中,要小心操作,避免对实验器材造成损坏。

3. 注意信号发生器和示波器的连接方式和操作方法,并正确设置参数。

4. 在记录实验结果时,要准确描述实验过程和实验结果,并结合图示进行分析。

5. 在实验结束后,要及时关闭器材电源,并进行相关器材的清理和整理。

七、参考文献[此处请根据实际情况填写所参考的文献或资料]以上为通信原理实验指导书的内容,请照此进行实验操作。

通信原理实验指导书

通信原理实验指导书

实验1 平台介绍及实验注意事项一、实验目的1.了解实验箱的功能分布;2.掌握实验箱的操作习惯;3.掌握实验箱的操作注意事项。

二、实验仪器1.RZ8681实验平台 1台2.各个实验模块配套三、实验原理1. 实验平台整体功能介绍RZ8681型现代通信技术平台是由底板+模块组成的模块化可定制的系统平台,平台底板提供了基本的信源和信宿并预留了外接接口,中间设置了9个模块放置区,在实验时可以通过选择不同的实验模块,完成不同的实验内容,或者通过多个模块的组合完成综合通信实验内容,另外可以为学校提供底板的接口标准,以便学生基于该平台进行设计,开发。

图1-1 RZ8681底板功能分布图实验底板主要由几个部分组成:(1)USB接口:可将电脑端的数据发送到实验箱上进行传输。

(2)DDS信号源:产生常见的各种信号,并且频率幅度可调。

另外为抽样定理实验提供了抽样脉冲信号。

(3)电话接口:产生真实的语音信号。

(4)电源指示:指示不同电压的工作状态,开电后,3个灯常亮为正常状态,闪烁说明有故障。

(5)模块分布图:指示了底板9个模块放置位置的分布图,序号为A-I。

(6)调制接口:外部调制信号输入和输出铆孔。

(7)光纤接口:可选配置接口,可以通过光纤完成系统的全双工通信。

(8)眼图电路:眼图观察电路,相当于一个参数可调的信道。

(9)滤波器及功放:包含一个参数可调(2.6k和5k)的低通滤波器,滤波器输出信号连接到扬声器。

(10)模块安放区:共9个位置,用来放置实验模块,对应上述的模块分布图。

2. 平台操作及教材编写常识在平台研发及教材编写过程中,默认采用了一些习惯用语,下面将部分习惯用法给出说明,以便理解。

(1)在实验中,测量点主要分为两类:Pxx和TPxx。

其中Pxx是指可插线的测量铆孔,而TPxx则是测量针。

(2)实验中连线时需要注意,连线铆孔分输入孔和输出孔,在铆孔上有箭头标注。

不能将两个输出孔或输入孔连接在一起。

(3)实验步骤中,标号一般以“4P01(G)”形式给出,其中标号代表实际操作中对应的连线或测量标号,而后面括号中的“G”是指:按照要求安放模块后,4P01标号会在G号位安放的板子上找到,这样便于操作时查找。

(完整版)通信原理实验指导书SystemView

(完整版)通信原理实验指导书SystemView

实验一图符库的使用一、实验目的1、了解SystemVue图符库的分类2、掌握SystemVue各个功能库常用图符的功能及其使用方法二、实验内容按照实例使用图符构建简单的通信系统,并了解每个图符的功能。

三、基本原理SystemVue的图符库功能十分丰富,一共分为以下几个大类1.基本库SystemView的基本库包括信源库、算子库、函数库、信号接收器库等,它为该系统仿真提供了最基本的工具。

(信源库):SystemView为我们提供了16种信号源,可以用它来产生任意信号(算子库)功能强大的算子库多达31种算子,可以满足您所有运算的要求(函数库)32种函数尽显函数库的强大库容!(信号接收器库)12种信号接收方式任你挑选,要做任何分析都难不倒它2.扩展功能库扩展功能库提供可选择的能够增加核心库功能的用于特殊应用的库。

它允许通信、DSP、射频/模拟和逻辑应用。

(通信库):包含有大量的通信系统模块的通信库,是快速设计和仿真现代通信系统的有力工具。

这些模块从纠错编码、调制解调、到各种信道模型一应俱全。

(DSP库):DSP库能够在你将要运行DSP芯片上仿真DSP系统。

该库支持大多DSP芯片的算法模式。

例如乘法器、加法器、除法器和反相器的图标代表真正的DSP算法操作符。

还包括高级处理工具:混合的Radix FFT、FIR和IIR滤波器以及块传输等。

(逻辑运算库):逻辑运算自然离不开逻辑库了,它包括象与非门这样的通用器件的图标、74系列器件功能图标及用户自己的图标等。

(射频/模拟库):射频/模拟库支持用于射频设计的关键的电子组件,例如:混合器、放大器和功率分配器等。

3.扩展用户库扩展的用户库包括有扩展通信库2、IS95/CDMA、数字视频广播DVB等。

通信库2: 扩展的通信库2主要对原来的通信库加了时分复用、OFDM调制解调、QAM编码与调制解调、卷积码收缩编解码、GOLD码以及各种衰落信道等功能。

4.5版中,通信库2已被合并到基本通信库中。

通信原理实验指导书

通信原理实验指导书

通信原理实验指导书信息工程系目录实验一数字信号源实验 (3)实验二数字调制实验 (7)实验三2ASK、2FSK数字解调实验..............................................1 7 实验四PCM编译码及TDM时分复用实验 (23)实验一数字信号源实验一、实验目的1、了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。

2、掌握集中插入帧同步码时分复用信号的帧结构特点。

3、掌握数字信号源电路组成原理。

二、实验内容1、用示波器观察单极性非归零码(NRZ)、帧同步信号(FS)、位同步时钟(BS)。

2、用示波器观察NRZ、FS、BS三信号的对应关系。

3、学习电路原理图。

三、基本原理本模块是实验系统中数字信号源,即发送端,其原理方框图如图1-1所示。

本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。

帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。

此NRZ信号为集中插入帧同步码时分复用信号。

发光二极管亮状态表示‘1’码,熄状态表示‘0’码。

本模块有以下测试点及输入输出点:∙ CLK-OUT 时钟信号测试点,输出信号频率为4.433619MHz ∙ BS-OUT 信源位同步信号输出点/测试点,频率为170.5KHz ∙ FS 信源帧同步信号输出点/测试点,频率为7.1KHz∙ NRZ-OUT NRZ信号输出点/测试点图1-3为数字信源模块的电原理图。

图1-1中各单元与图1-3中的元器件对应关系如下:∙晶振CRY:晶体;U1:反相器7404∙分频器US2:计数器74161;US3:计数器74193;US4:计数器40160∙并行码产生器KS1、KS2、KS3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相对应∙八选一US5、US6、US7:8位数据选择器4512∙三选一US8:8位数据选择器4512∙倒相器US10:非门74HC04∙抽样US9:D触发器74HC74图1-1 数字信源方框图图1-2 帧结构下面对分频器,八选一及三选一等单元作进一步说明。

通信原理实验一指导书

通信原理实验一指导书

实验一熟悉SYSTEMVIEW仿真软件一、实验目的1、了解SystemView仿真环境。

2、熟悉SystemView图符库。

二、实验要求1、先安装SystemView软件。

2、熟悉它的环境,仿真窗口,图符库,帮助系统。

3、独立完成,完成后书写实验报告。

三、实验设备网络计算机,SystemView软件。

四、实验内容1、熟悉仿真环境及图符库。

2、学习使用SystemView,建立自己的第一个系统。

五、实验步骤建立一个产生正弦波信号,并对其进行平方运算的系统1、进入SystemView。

通过双击桌面上的SystemView快捷图标或单击程序组中的SystemView即可启动SystemView。

2、设置系统运行时间。

单击工具条中的系统定时“System Time”按钮,把采样频率“Sample Rate”设置成100Hz,采样点数“No of Samples”设置为128。

3、定义一个幅度为1v,频率为10Hz的正弦信号源。

从图符库中拖出一个信号源图符“Source”到设计窗口,双击该图符,在出现的信号源库窗口中,选择周期信号“Periodic”中的正弦信号“Sinusoid”,按“Parameter”按钮,将参数设置窗口中的频率“Frequency”定义为10。

4、定义一个平方运算的函数图符。

从图符库“Function”中拖动一个函数图符至设计窗口,双击该图符,在出现的函数库窗口中,选择代数库“Algebraic”中的“X^a”,并在参数设置窗口中的文字框中输入2。

5、定义两个接收图符。

拖动两个接收器图符到设计窗口,双击它们,将它们都定义为“Graphic Display”的“SystemView”信号接收类型。

6、连接图符。

将信号源图符(正弦输出)分别连接到函数图符和其中一个接收图符,函数图符连接到另一个接收图符。

7、运行系统。

单击工具条中的运行按钮,运行系统,这时就会在第一个接收图形显示区中显示出正弦信号,在第二个接收图形显示区中显示出平方后的信号。

通信原理实验指导书

通信原理实验指导书

第一章信号源实验实验一CPLD可编程数字信号发生器实验一、实验目的1、熟悉各种时钟信号的特点及波形。

2、熟悉各种数字信号的特点及波形。

二、实验内容1、熟悉CPLD可编程信号发生器各测量点波形。

2、测量并分析各测量点波形及数据。

3、学习CPLD可编程器件的编程操作。

三、实验器材1、信号源模块一块2、连接线若干3、20M 双踪示波器一台四、测试点说明CLK1:第一组时钟信号输出端口,通过拨码开关S4选择频率。

CLK2:第二组时钟信号输出端口,通过拨码开关S5选择频率。

FS:脉冲编码调制的帧同步信号输出。

(窄脉冲,频率为8K)NRZ:24位NRZ信号输出端口,码型由拨码开关S1,S2,S3控制,码速率和第二组时钟速率相同,由S5控制。

PN:伪随机码输出,码型为111100010011010,码速率和第一组时钟速率相同,由S4控制。

NRZIN:解码后NRZ码输入。

BSIN:NRZ码的位同步信号输入。

FSIN:NRZ码的帧同步信号输入。

五、实验步骤1、打开电源开关POWER1,使信号源模块工作。

2、观测时钟信号输出波形。

信号源输出两组时钟信号,对应输出点为“CLK1”和“CLK2”,拨码开关S4的作用是改变第一组时钟“CLK1”的输出频率,拨码开关S5的作用是改变第一组时钟“CLK2”的输出频率。

拨码开关拨上为1,拨下为0,拨码开关和时钟的对应关系如下表所示表1-212)根据表1-2改变S5,用示波器观测第二组时钟信号“CLK2”的输出波形3、用示波器观测帧同步信号输出波形信号源提供脉冲编码调制的帧同步信号,在点“FS”输出,共有三种帧同步信号,分别对应2.048M、256K、64K的位时钟。

将拨码开关S4分别设置为“0100”、“0111”和“1001”,用示波器观测“FS”的输出波形。

4、用示波器观测伪随机信号输出波形伪随机信号码型为111100010011010,码速率和第一组时钟速率相同,由S4控制。

通信原理实验指导书(26页).(DOC)

通信原理实验指导书(26页).(DOC)

实验一HDB3码型变换实验一、实验目的1、了解二进制单极性码变换为HDB3码的编码规则,掌握它的工作原理和实现方法;2、掌握HDB3码的位同步码的提取方法。

二、实验内容1、观察HDB3编译码的各种波形;2、观察全0码和全1码时的HDB3码的编码波形;3、观察从HDB3编码信号中提取位同步信号的过程。

三、实验原理AMI码编码原理:信息代码1变为带有符号的1码即+1或-1,1的符号交替反转;信息代码0仍为0码。

因此,AMI码对应的波形是占空比为0.5的双极性归零码,即脉冲宽度τ与码元宽度(码元周期、码元间隔)Ts的关系是τ=0.5Ts。

AMI码的主要特点是无直流成分,接收端收到的码元极性与发送端完全相反也能正确判断。

译码时只需把AMI码经过全波整流就可以变为单极性码。

HDB3码的编码原理:HDB3码主要解决AMI码在连0过多时同步提取困难的问题。

编码时,将4个连0信息码用取代节000V或B00V代替,当两个相邻V码中间有奇数个信息1码时取代节码000V;有偶数个信息1码(包括0个)时取代节为B00V,其它的信息0码仍为0码。

这样,信息码的1码变为带有符号的1码即+1或-1,HDB3码中1、B的符号符合交替反转原则,而V的符号破坏这种符号交替反转原则,但相邻V码的符号又是交替反转的。

因此,HDB3码是占空比为0.5的双极性归零码。

码如图2-1所示。

设信息码为0000 0110 0001 0000,则NRZ码、AMI码、HDB3信息代码 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0NRZ波形AMI码 0 0 0 0 0 1 -1 0 0 0 0 1 0 0 0 0AMI波形HDB3码 B 0 0 V 0 -1 1 -B 0 0 - V 1 0 0 0 VHDB3波形图1-1 NRZ、AMI、HDB3关系图分析表明,AMI码及HDB3码的功率谱如图1-2所示,它不含有离散谱fs成分(fs=1/T,等于位同步信号的频率)。

通信原理实验指导书

通信原理实验指导书

通信原理实验指导书物理与电子电气工程学院二0一一年三月目录实验一、AM调制解调通信系统实验 (3)实验二、数字基带信号实验 (6)实验三、数字调制实验 (15)实验四、数字解调实验 (20)实验一AM调制解调通信系统一、实验目的1. 掌握集成模拟乘法器的基本工作原理;2. 掌握集成模拟乘法器构成的振幅调制电路的工作原理及特点;3. 学习调制系数m及调制特性(m-Uωm )的测量方法,了解m<1 和m=1及 m>1时调幅波的波形特点。

4. 掌握用集成电路实现同步检波的方法。

二、实验仪器1. 双踪示波器一台2. 通信原理Ⅵ型实验箱一台3. M5模拟调制解调模块三、基本原理图1-1 AM调制电路原理图本实验调制部分电路如图1-1所示。

图中MC1496芯片引脚1和引脚4接两个51Ω和两个100Ω电阻及51K电位器用来调节输入馈通电压,调偏RP1,有意引入一个直流补偿电压,由于调制电压uΩ与直流补偿电压相串联,相当于给调制信号uΩ叠加了某一直流电压后与载波电压uc相乘,从而完成普通调幅。

如需要产生抑制载波双边带调幅波,则应仔细调节RP1,使MC1496输入端电路平衡。

另外,调节RP1也可改变调制系数m。

MC1496芯片引脚2和引脚3之间接有负反馈电阻R3,用来扩展uΩ的输入动态范围。

载波电压uc由引脚8输入。

MC1496芯片输出端(引脚12)接有一个三极管组成的射随器,来增加电路的带载能力。

幅度解调实验电路——同步检波器如图1-2所示。

本电路中MC1496构成解调器,载波信号加在8—10脚之间,调幅信号加在1—4脚之间,相乘后信号由12脚输出,经C11、C12、R25、R26、R31和U3组成的低通滤波器输出解调出来的调制信号。

图1-2 AM 解调电路原理图四、实验内容及步骤1、实验连线:a .实验连接线:b. 实验连接线:保持调制实验连接线不变,增加以下连接线2、低频正弦信号源:OUT1输出频率范围为:0-5.5KH Z (通过调节电阻RP1进行调整),幅度范围为:0-15V PP (通过调节电阻RP2进行调整)。

通信原理实验指导书

通信原理实验指导书

实验一信号源实验一、实验目的1、了解频率连续变化的各种波形的产生方法。

2、了解NRZ码、方波、正弦波等各种信号的频谱。

3、理解帧同步信号与位同步信号在整个通信系统中的作用。

4、熟练掌握信号源模块的使用方法。

二、实验内容1、观察频率连续可变信号发生器输出的各种波形及7段数码管的显示。

2、观察点频方波信号的输出。

3、观察点频正弦波信号的输出。

4、拨动拨码开关,观察码型可变NRZ码的输出。

5、观察位同步信号和帧同步信号的输出。

6、观察NRZ码、方波、正弦波、三角波、锯齿波的频谱。

三、实验仪器1、信号源模块2、20M双踪示波器一台3、频率计(可选)一台4、PC机(可选)一台5、连接线若干四、实验原理信号源模块可以大致分为模拟部分和数字部分,分别产生模拟信号和数字信号。

1、模拟信号源部分模拟信号源部分可以输出频率和幅度任意改变的正弦波(频率变化范围100Hz~10KHz)、三角波(频率变化范围100Hz~1KHz)、方波(频率变化范围100Hz~10KHz)、锯齿波(频率变化范围100Hz~1KHz)以及32KHz、64KHz的点频正弦波(幅度可以调节),各种波形的频率和幅度的调节方法请参考实验步骤。

该部分电路原理框图如图1-1所示。

在实验前,我们已经将各种波形在不同频段的数据写入了数据存储器U04,并存放在固定的地址中。

当单片机U03检测到波形选择开关和频率调节开关送入的信息后,一方面通过预置分频器调整U01中分频器的分频比(分频后的信号频率由数码管SM01~SM04显示);另一方面根据分频器输出的频率和所选波形的种类,通过地址选择器选中数据存储器U04中对应地址的区间,输出相应的数字信号。

该数字信号经过D/A转换器U05和开关电容滤波器U06后得到所需模拟信号。

图1-1 模拟信号源部分原理框图2、数字信号源部分数字信号源部分可以产生多种频率的点频方波、NRZ码(可通过拨码开关SW01、SW02、SW03改变码型)以及位同步信号和帧同步信号。

通信原理实验指导书++(凌特修改)

通信原理实验指导书++(凌特修改)

TongXinYuanLiTONGXINYUANLI SHIYANXITONG ZHIDAOSHU高等学校信息工程类专业系列教材通信原理实验系统指导书研发中心编写组编著武汉凌特电子技术有限公司目录实验一CPLD可编程数字信号发生器实验 (1)实验二模拟信号源实验 (7)实验三抽样定理和PAM调制解调实验 (13)实验四脉冲编码调制解调实验 (21)实验五两路PCM时分复用实验 (35)实验六两路PCM解复用实验 (41)实验七振幅键控(ASK)调制与解调实验 (45)实验八移频键控FSK调制与解调实验 (52)实验九移相键控(PSK/DPSK)调制与解调实验 (60)实验十载波同步提取实验 (69)实验十一位同步提取实验 (76)实验十二帧同步提取实验 (86)武汉凌特电子技术有限公司LTE-TX-02E型通信原理实验指导书实验一CPLD可编程数字信号发生器实验一、实验目的1、熟悉各种时钟信号的特点及波形。

2、熟悉各种数字信号的特点及波形。

二、实验内容1、熟悉CPLD可编程信号发生器各测量点波形。

2、测量并分析各测量点波形及数据。

3、学习CPLD可编程器件的编程操作。

三、实验器材1、信号源模块一块2、连接线若干3、20M双踪示波器一台四、实验原理CPLD可编程模块用来产生实验系统所需要的各种时钟信号和各种数字信号。

它由CPLD 可编程器件ALTERA公司的EPM240T100C5、下载接口电路和一块晶振组成。

晶振JZ1用来产生系统内的32.768MHz主时钟。

1、CPLD数字信号发生器包含以下五部分:1)时钟信号产生电路将晶振产生的32.768MH Z时钟送入CPLD内计数器进行分频,生成实验所需的时钟信号。

通过拨码开关S4和S5来改变时钟频率。

有两组时钟输出,输出点为“CLK1”和“CLK2”,S4控制“CLK1”输出时钟的频率,S5控制“CLK2”输出时钟的频率。

2)伪随机序列产生电路通常产生伪随机序列的电路为一反馈移存器。

通信原理实验指导书

通信原理实验指导书
实验注意事项………………………………………………………………………………………………36
实验一码型变换实验
一、实验目的
(1)了解几种常见的数字基带信号;
(2)掌握常用数字基带传输码型的编码规则;
(3)掌握用FPGA实现码型变换的方法。
二、实验仪器
信号源模块、码型变换模块、20M双踪示波器(一台)、连接线(若干)
c、从“BRZ”处观察BRZ编码。(如果发现波形不正确,请按下复位键后继续观察)
(5)BNRZ编码实验
SW01、SW02、SW03设置为10100110 00000000 00000000
a、将“编码方式选择”拨码开关拨为00000100,则编码实验选择为BNRZ方式。
b、将信号源模块与码型变换模块上以下三组输入/输出点用连接线连接:BS与BS、2BS与2BS、NRZ与NRZ。
c、从“编码输出2处”观察AMI编码。(如果发现波形不正确,请按下复位键后继续观察)
5、解码实验:(在每次改变解码方式后,请按下复位键)
(1)RZ解码实验
SW01、SW02、SW03设置为10100110 00000000 00000000
a、将“编码方式选择”拨码开关拨为10000000,则编码实验选择为RZ方式。
(6)HDB3码
HDB3码的全称是三阶高密度双极性码,其编码规则如下:将4个连“0”信息码用取代节“000V”或“B00V”代替,当两个相邻“V”码中间有奇数个信息“1”码时取代节为“000V”;有偶数个信息“1”码(包括0个)时取代节为“B00V”,其它的信息“0”码仍为“0”码,这样,信息码的“1”码变为带有符号的“1”码即“+1”或“-1”。例如:
通信原理实验
指导书

通信原理实验指导书

通信原理实验指导书

通信原理实验指导书石焕玉编电子信息工程学院2011年10月实验一双边带抑制载波调幅与解调实验一、实验目的1、掌握双边带抑制载波调幅与解调的原理及实现方法。

2、掌握相干解调法原理。

3、了解DSB解调信号的频谱特性。

二、实验仪器1、信号源模块2、模拟调制模块3、模拟解调模块4、20M双踪示波器5、频谱分析仪6、带话筒立体声耳机三、实验原理1、调制过程在标准调幅时,由于已调波中含有不携带信息的载波分量,故调制效率较低。

为了提高调制效率,在标准调幅的基础上抑制掉载波分量,使总功率全部包含在双边带中。

这种调制方式称为抑制载波双边带调制,简称双边带调制 (DSB) 。

双边带调制信号的时域表达式: SDSB (t)=f(t)cosωct双边带调制信号的频域表达式: SDSB(ω)=[F(ω+ωc)+F(ω-ωc)]/2实现双边带调制就是完成调制信号与载波信号的相乘运算。

原则上,可以选用很多种非线性器件或时变参量电路来实现乘法器的功能,如平衡调制器或环形调制器。

通常采用的平衡调制器的电路简单、平衡性好,并可将载波分量抑制到 -30~-40dB 。

双边带调制节省了载波功率,提高了调制效率,但已调信号的带宽仍与调幅信号一样,是基带信号带宽的两倍。

实验中采用方框图1实现DSB调制。

由信号源模块提供不含直流分量的2K正弦基波信号m(t)和384K正弦载波信号sinωct,经乘法器相乘,调制深度可由“调制深度调节”旋转电位器调整,得到如图2的DSB调幅信号输出,其频谱如图3所示。

图1图2 DSB调幅波形图3 DSB 调幅波的频谱(波峰在382K 和386K 两点)2、相干解调法实验中采用方框图4实现相干解调法解调DSB 信号。

将DSB 调幅信号与相干载波相乘,得“相乘输出”信号,再经低通滤波器LPF 取出低频分量,即可恢复出原始的带基调制信号。

图4四、实验步骤1、将模块小心地固定在主机箱中,确保电源接触良好。

2、插入电源线,打开主机箱右侧的交流开关,再分别按下三个模块中的电源开关,对应的发光二极管灯亮,三个模块均开始工作。

通信原理实验指导书(完整)

通信原理实验指导书(完整)

实验一:抽样定理实验一、实验目的1、熟悉TKCS—AS型通信系统原理实验装置;2、熟悉用示波器观察信号波形、测量频率与幅度;3、验证抽样定理;二、实验预习要求1、复习《通信系统原理》中有关抽样定理的内容;2、阅读本实验的内容,熟悉实验的步骤;三、实验原理和电路说明1、概述在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。

因此,采取多路化制式是极为重要的通信手段。

最常用的多路复用体制是频分多路复用(FDM)通信系统和时分多路复用(TDM)通信系统。

频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。

而时分多路系统中则是利用不同时序的脉冲对基带信号进行抽样,把抽样后的脉冲信号按时序排列起来,在同一信道中传输。

利用抽样脉冲把一个连续信号变为离散时间样值的过程称为“抽样”,抽样后的信号称为脉冲调幅(PAM)信号。

在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。

并且,从抽样信号中可以无失真地恢复出原信号。

抽样定理在通信系统、信息传输理论方面占有十分重要的地位。

数字通信系统是以此定理作为理论基础的。

在工作设备中,抽样过程是模拟信号数字化的第一步。

抽样性能的优劣关系到整个系统的性能指标。

作为例子,图1-1示意地画出了传输一路语音信号的PCM系统。

从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。

因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。

图1-1 单路PCM系统示意图为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。

除此,本实验还模拟了两路PAM通信系统,从而帮助实验者初步了解时分多路的通信方式。

2、抽样定理抽样定理指出,一个频带受限信号m(t)如果它的最高频率为f H(即m(t)的频谱中没有f H以上的分量),可以唯一地由频率等于或大于2f H的样值序列所决定。

通信原理实验指导书

通信原理实验指导书

目录I、模块介绍 (1)1、主控&信号源模块 (2)2、2号模块数字终端&时分多址模块 (9)3、3号模块信源编译码模块 (11)4、6号模块信道编译码模块 (14)5、7号模块时分复用&时分交换模块 (17)6、8号模块基带传输编译码模块 (20)7、9号模块数字调制解调模块 (22)8、13号模块载波同步及位同步模块 (25)9、21号模块 PCM编译码及语音终端模块 (28)II、实验基本操作说明 (30)第一章信源编码技术 (31)实验一抽样定理实验 (31)实验二 PCM编译码实验 (38)实验三 ADPCM编译码实验 (45)实验四△m及CVSD编译码实验 (47)实验五 PAM孔径效应及其应对方法 (53)第二章基带传输编译码技术 (56)实验六 AMI码型变换实验 (56)实验七 HDB3码型变换实验 (61)实验八 CMI/BPH码型变换实验 (66)第三章基本数字调制技术 (70)实验九 ASK调制及解调实验 (70)实验十 FSK调制及解调实验 (72)实验十一 BPSK调制及解调实验 (76)实验十二 DBPSK调制及解调实验 (79)实验十三 QPSK/OQPSK数字调制实验 (82)第四章信道编译码技术 (84)实验十四汉明码编译码实验 (84)实验十五 BCH码编译码实验 (88)实验十六循环码编译码实验 (91)实验十七卷积码编译码实验 (95)实验十八卷积交织及解交织实验 (99)第五章同步技术 (102)实验十九滤波法及数字锁相环法位同步提取实验 (102)实验二十模拟锁相环实验 (110)实验二十一载波同步实验 (112)实验二十二帧同步提取实验 (114)第六章时分复用及解复用技术 (116)实验二十三时分复用与解复用实验 (116)第七章综合实验 (122)实验二十四 HDB3线路编码通信系统综合实验 (122)I、模块介绍本实验平台采用模块化设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一信号源与码型变换实验一、实验目的1、掌握信号源模块的使用方法。

2、了解几种常见的数字基带信号。

3、掌握常用数字基带传输码型的编码规则。

4、掌握用FPGA实现码型变换的方法。

二、实验设备1、信号源模块。

2、码型变换模块。

3、20M双踪示波器。

三、实验原理1、编码规则①NRZ码NRZ码的全称是单极性不归零码,在这种二元码中用高电平和低电平(这里为零电平)分别表示二进制信息“1”和“0”,在整个码元期间电平保持不变。

例如:1 0 1 0 0 1 1 0+E②RZ码RZ码的全称是单极性归零码,与NRZ码不同的是,发送"1"时在整个码元期间高电平只持续一段时间,在码元的其余时间内则返回零电平。

例如:1 0 1 0 0 1 1 0+E③BRNZ码BRNZ码的全称是双极性不归零码,在这种二元码中用正电平和负电平分别表示"1"和"0"。

与单极性不归零码相同的是整个码元期间电平保持不变,因而在这种码型中不存在零电平。

例如:1 0 1 0 0 1 1 0+E--EBRZ码的全称是双极性归零码,与BNRZ码不同的是,发送"1"和"0"时,在整个码元期间高电平或低电平只持续一段时间,在码元的其余时间内则返回到零电平。

例如:1 0 1 0 0 1 1 0+E+E⑤AMI码AMI码的全称是传号交替反转码,其编码规则如下:信息码中的"0"仍变换为传输码的"0";信息码中"1"交替变换为传输码的"+1、-1、+1、-1….”。

例如:代码:100 1 1000 1 1 1AMI码:+100 -1 +1000 -1 +1 -1AMI码的主要特点是无直流成分,接收端收到的码元极性与发送端完全相反也能正确判断。

译码时只需把AMI码经过全波整流就可以变为单极性码。

⑥HDB3码HDB3码的全称是三阶高密度双极性码,其编码规则如下:将4个连"0"信息码用取代节"000V"或"B00V"代替,当两个相邻"V"码中间有奇数个信息"1"码时取代节为"000V"码,有偶数个信息"1"码(包括0个)时取代节为"B00V",其它的信息"0"码仍为"0"码。

这样,信息码的"1"码变为带有符号的"1"码即"+"1或"-1。

例如:代码:1000 0 1000 0 1 1 000 0 1 1HDB3码: -1000 -V +1000 +V -1 +1 -B00 -V +1 -1HDB3码中"1"、"B"的符号符合交替反转原则,而"V"的符号破坏这种符号交替反转原则,但相邻"V"码的符号又是交替反转的,HDB3码的特点是明显的,它除了保持AMI码的优点外,还增加了使连0串减少到至多3个的优点,而不管信息源的统计特性如何。

这对于定时信号的恢复是十分有利的。

HDB3码是ITU-T推荐使用的码之一。

本实验电路只能对码长为24位的周期性NRZ码序列进行编码。

2、电路原理将信号源产生的NRZ码和和位同步信号BS送入U900(EPM7128SLC84-15)进行变换,可以直接得到各种单极性码和各种双极性码的正、负极性编码信号(因为FPGA的I/O口不能直接连接负电平,所以只能将分别代表正极性和负极性的两路编码信号分别输出,再通过外加电路合成双极性码),如HDB3的正、负极性编码信号送入U901(4051)的选通控制端,控制模拟开关轮流选通正、负电平,从而得到完整的HDB3码。

解码时同样也需要先将双极性的HDB3码变换成分别代表正极性和负极性的两路信号,再送入FPGA进行解码,得到NRZ码。

其它双极性码的编、解码过程相同。

从信号源“NRZ”点输出的数字码即为NRZ码,其产生请参考信号源工作原理。

②BRZ、BNRZ码将NRZ码和位同步信号BS分别送入双四路模拟开关U902(4052)的控制端作为控制信号,在同一时刻,NRZ码和BS信号电平高低的不同组合(00、01、10、11)将控制U902分别接通不同的通道,输出BRZ码和BNRZ码。

X通道的4个输入端X0、X1、X2、X3分别接-5V、GND、+5V、GND,在控制信号控制下输出BRZ码;Y通道的4个输入端Y0、Y1、Y2、Y3分别接-5V、-5V、+5V、+5V,在控制信号控制下输出BNRZ码。

解码时通过电压比较器U907(LM339)将双极性的BRZ和BNRZ码转换为两路单极性码,即双(极性)---单(极性)变换,再送入U900进行解码,恢复出原始的NRZ码。

③AMI码由于AMI码是双极性的码型,所以它的变换过程分成了两个部分。

首先,在U900中,将NRZ码经过一个时钟为BS的JK触发器后,再与NRZ信号相遇后得到控制信号AMIB,该信号与NRZ码作为控制信号送入单八路模拟开关U905(4051)的控制端,U905的输出即为AMI码。

解码过程与BRNZ码一样,,也需先经过双一单变换,再送入U900进行解码。

④HDB3码HDB3码的编、解码框图分别如图1-1、1-2所示,其编、解码过程与AMI码相同。

图1-1 HDB3编码原理框图图1-2 HDB3解码原理框图四、实验内容与步骤1、将信号源模块、码型变换模块固定在机箱中,打开机箱右侧的交流开关,再分别按下两个模块中的开关POWER1、POWER2,对应的发光二极管LED001、LED002、D900、D901发光,按一下信号源模块的复位键,两个模块均开始工作。

2、将信号源模块的拨码开关SW101、SW102设置为00000101 00000000,SW103、SW104、SW105设置为01110010 00110000 00101010。

此时分频比千位、十位、个位均为0,百位为5,因此分频比为500,此时位同步信号频率应为4KH。

观察BS、FS、2BS、NRZ各点波形。

Z3、分别将信号源模块与码型变换模块上以下四组输入/输出接点用连接线连接:BS与BS、FS与FS、2BS 与2BS、NRZ与NRZ。

观察码型变换模块上HDB3、BRZ、BNRZ与AMI各点波形。

4、任意改变信号源模块上的拨码开关SW103、SW104、SW105的设置,以信号源模块的NRZ码为触发信号源,观察码型变换模块上HDB3、BRZ、BNRZ与AMI各点波形。

5、将信号源模块上的拨码开关SW103、SW104、SW105全部拨为1或全部拨为0,观察码型变换模块上HDB3、BRZ、BNRZ与AMI各点波形。

五、预习要求1、复习教材中有关内容。

2、熟悉本实验箱的工作原理。

3、掌握双踪示波器的使用。

六、实验报告与思考题1、分析实验电路的工作原理,叙述其工作过程。

2、根据实验测试记录,在坐标纸上画出各测试点的波形。

3、在分析电路的基础上回答,为什么本实验HDB3编、解码电路只能在输入信号是码长为24位的同期性NRZ码时才能正常工作?实验二普通双边带调幅与解调实验一、实验目的1、掌握普通双边带调幅与解调原理及实现方法。

2、掌握二极管包络检波原理。

3、掌握调幅信号的频谱特性。

4、了解普通双边带调幅与解调优缺点。

二、实验内容1、观察普通双调幅波形。

2、观察普通双边带调幅波形频谱。

3、观察普通双边带解调波形。

三、实验器材1、信号源模块2、PAM/AM模块3、终端模块4、频谱分析模块5、20M双踪示波器6、音频信号发生器(可选)7、立体声单放机(可选)8、立体声耳机9、连接线若干四、实验原理1、普通双边调幅所谓调制,就是在传送信号的一方(发送端)将所要传送的信号(它的频率一般是较低的)“附加”在高频振荡信号上。

所谓将信号“附加”在高频振荡上,就是利用信号来控制高频振荡的某一参数,使这个参数随信号而变化,这里,高频振荡波就是携带信号的“运载工具”,所以也叫载波。

在接收信号的一方(接收端)经过解调(反调制)的过程,把载波所携带的信号取出来,得到原有的信息,解调过程也检波。

调制与解调都是频谱变换的过程,必须用非线性元件才能完成。

调制的方式可分为连续波调制与脉冲波调制两大类,连续波调制是用信号来控制载波的振幅、频率或相应,因而分为调幅、高频和调相三种方式;脉冲波调制是先用信号来控制脉冲波的振幅、宽度、位置等,然后再用这已调脉冲对载波进行调制,脉冲调制有脉冲振幅、脉宽、脉位、脉冲编码调制等多种方式。

本实验模块所要进行的实验是连续波的振幅调制与解调,即普通双边带调幅与解调。

我们已经知道,调幅波的特点是载波的振幅受调制信号的控制作周期性的变化,这变化的周期与调制信号的周期相同,振幅变化与调制信号的振幅成正比。

为简化分析,假定调制信号是简谐振荡,即为单频信号,其表达式为:uΩ(t)=UΩm cosΩt如果用来对载波u c(t)=U cm cosωc t(ωc≥Ω)进行调幅,那么,在理想情况下,普通调幅信号为:u AM(t)=(U cm + kUΩm cosΩt)cosωc t= U cm(1 + M a cosΩt)cosωc t (2—1)其中调幅指数M a = kUΩm/U cm,0<M a≤1,k为比例系数。

图2-1给出了uΩ(t)、u c(t)和u AM(t)的波形图。

图2-1 普通调幅波形从图中并结合式(2-1)可以看出,普通调幅信号的振幅由直流分量U cm和交流分量kUΩm COSΩt叠加而成,其中交流分量与调制信号成正比,或者说,普通调幅信号的包络(信号振幅各峰值点的连线)完全反映了调制信号的变化。

另外还可得到调幅指数M a的表达式:显然,当M a>1时,普通调幅波的包络变化与调制信号不再相同,产生了失真,称为过调制失真。

如图2-2所示。

所以,普通调幅要求M a必须不大于1。

图2-2 过调制波形式(2—1)又可以写成:u AM(t)=U cm cosωc t + M a U cm [ cos(ωc + Ω)t + cos(ωc - Ω)t ]/2 (2—2)可见,u AM(t)的频谱包括了三个频率分量:ωc(载波)、ωc + Ω(上边频)和ωc - Ω(下边频)。

原调制信号的频带宽度是Ω(或F=Ω/2π),而普通调幅信号的频带宽度是2Ω(或2F),是原调制信号的两倍。

普通调幅信号频谱搬移到了载频的左右两旁,如图2—3所示。

被传送的调制信息只存在于边频中而且是在载频中,携带信息的边频分量最多只占总功率的三分之一(因为M a)。

在实际系统中,平均调幅指数很小,所以边频功率占的比例更小,功率利用率更低。

为了提高功率利用率,可以只发送两个边频分量而不发送载频分量,或者进一步仅发送其中一个边频分量,同样可以将调制信息包含在调制信号中。

这两种调制方式分别称为抑制载波的双边带调幅(简称双边带调幅)和抑制载波的单边带调幅(简称单边带调幅)。

本实验模块所进行的实验是双边带调制与解调。

双边带调幅信号产生的具体电路原理图如图2-4所示。

图中MC1496是双平衡四象限模拟乘法器。

相关文档
最新文档