九年级数学复习ppt课件
合集下载
初三数学复习课课件
总结词:掌握代数方程与不等式的解题技巧。
二次根式与一元二次方程
详细描述:通过解决涉及二次根式和一元二次方程的题 目,学生可以更好地理解两者之间的关联,掌握解题方 法,提高解决复杂代数问题的能力。
几何模拟试题
三角形与四边形
详细描述:通过解决三角形与四边形的题目,学生可以 深入理解三角形与四边形的性质和判定条件,掌握解题 方法,提高解决几何问题的能力。 总结词:掌握圆的基本性质及其应用。
几何重点难点
几何变换
掌握平移、旋转和轴对称的变换性质,理解变换在几何问题中的应用。
函数重点难点
一次函数与反比例函数
01
二次函数
03
02
掌握一次函数和反比例函数的图像和性质, 理解函数图像的平移和对称变换。
04
掌握二次函数的图像和性质,理解二次函 数的顶点和对称轴。
函数的应用
05
06
掌握函数在实际问题中的应用,理解函数 的最大值和最小值的求解方法。
03
复习解题方法
代数解题方法
代数方程求解
总结了代数方程的基本 解法,包括移项、合并 同类项、去括号、解方
程等步骤。
不等式求解
介绍了不等式的基本性 质和解题技巧,包括移 项、合并同类项、去分
母等步骤。
因式分解
总结了因式分解的常用 方法和技巧,包括提公
因式法、公式法等。
分式化简
介绍了分式化简的基本 方法和技巧,包括约分 、通分、分子分母同乘
04
复习易错题解析
代数易错题解析
总结词
代数式运算错误
详细描述
学生在进行代数式运算时,常常因为对运算法则理解不透彻或粗心大意导致运算错误,如括号处理不 当、符号混淆等。
浙教版九年级上册数学课件%3A第1章 二次函数 复习课 (共31张PPT)
类型之五 二次函数的实际应用 例5 某商品的进价为每件30元,现在的售价为每件 40元,每星期可卖出150件.市场调查反映:如果每件的 售价每涨1元(售价每件不能高于45元),那么每星期少卖 10件.设每件涨价x元(x为非负整数),每星期销售量为y 件.(1)求y与x的函数表达式及自变量x的取值范围;(2)如 何定价才能使每星期的利润最大且每星期销量较大?每星 期的最大利润是多少? 【解析】 利用总利润=件数×每件利润,建立二次 函数关系式,再利用二次函数性质解决问题.
已知二次函数y=x2-bx+1(-1≤b≤1),当b从-1逐 渐变化到1的过程中,它所对应的抛物线位置也随之变 动.下列关于抛物线的移动方向的描述中,正确的是
A.先往左上方移动,再往左下方移动 B.先往左下方移动,再往左上方移动 C.先往右上方移动,再往右下方移动 D.先往右下方移动,再往右上方移动
(1)求抛物线的函数表达式; (2)若过点C的直线y=kx+b与抛物线相交于点E(4, m),求△CBE的面积.
图1-1
解:(1)设抛物线的解析式为y=a(x-3)2-4,
将C(0,5)代入y=a(x-3)2-4得a=1,
抛物线的函数表达式为y=(x-3)2-4; (2)∵抛物线 y=(x-3)2-4 过点 E(4,m),∴m=1-4=-3, ∴E(4,-3), ∵E(4,-3),C(0,5), ∴4bk=+5b=-3,
=-10x-522+1 562.5(0≤x≤5) ∵a=-10<0, ∴当 x=2.5 时,W 有最大值 1 562.5. ∵0≤x≤5 且 x 为整数, ∴当 x=2 时,40+x=42,y=150-10x=130, W=1 560 元.
1.已知二次函数y=ax2+bx+c(a,b,c为
九年级数学中考复习专题-图形的旋转-PPT名师公开课获奖课件百校联赛一等奖课件
B4 B3 B2
B1
例8. 如图,把两张边长为10cm旳正 方形纸片放在桌面上,使一张纸片旳 顶点放在另一张正方形纸片旳中心位 置O处.试问,桌面被两张正方形纸片 所覆盖旳那部分面积是多少?
O
O
O
延伸: (1)如图,O是边长为a旳正方形 ABCD旳中心,将一块半径足够长、
圆心角为直角旳扇形纸板旳圆心放在 O点处,并将纸板绕O点旋转.求证: 正方形ABCD旳边被纸板覆盖旳总长 度为定值a(圆心O是在正方形内).
样经过平移、旋转、轴对称将△ABC
运动到△A1B1C1旳位置上,使得两者
重叠.
C1
B1 A1
C
A
B
C B
C B
A
C2
A2
图1
A1
A A2
B2 C
C1 B
C2 B1
B2
图2
C1
A1
B1
A
A2
C2
B2
图3
例4 .如图,菱形ABCD绕点O旋转后,
顶点A旳相应点是点E,试拟定顶点B、 C、D旳位置,以及旋转后旳四边形 EFGH.
A´ C
C´ O
旋转方向是 ________顺__时___针__________ 旋转角是∠__A_O__A_´_、___∠__B_O__B_´_、__∠__C__O__C_´_。
演示3
B´
A
O A´
B
C
C´
旋转方向是 ____顺__时___针______________ 旋转角是_∠_A__O_A__´、___∠__B_O__B_´_、___∠__C_O__C__´ 。
以AB边上旳高
OA1为边,按逆 时针方向作等边
人教版九年级上册数学期中复习课件全
通过复习.掌握一元二次方程的概念.并能够熟 练的解一元二次方程.并且利用一元二次方程解决 实际问题.
一般形式 ax2+bx+c=0 (a≠0)
直接开平方法 (x a)2 bb 0
一 元 二
解法
配方法 公式法
x2
bx
b 2
2
x
b 2
2
cc
0
x b b2 4ac 0
次
2a
方
因式分解法 (x a)(x b) 0
ax2 bx c 0 (a,b,c为常数,a≠0)
当 a 0 时,它是一元二次方程;
当 a 0 时,它不是一元二次方程.
方程2ax2 -2bx+a=4x2, (1)在什么条件下此方程为一元二次方程? (2)在什么条件下此方程为一元一次方程?
解: 原方程转化为(2a-4) x2 -2bx+a=0
阶段综合测试一┃ 试卷讲练
【针对第23题训练 】
1.某旅游景点三月份共接待游客25万人次,五月份共接待 游客64万人次,设每月的平均增长率为x,则可列方程为( A )
A.25(1+x)2=64 B.25(1-x)2=64 C.64(1+x)2=25 D.64(1-x)2=25
1.一元二次方程x2+2x+4=0的根的情况是
的解为__x_1____1_,_x_2______4_。
(1)你能举出生活中的中心对称图形吗?
(2)下面的扑克牌中,哪些牌的牌面是中心对 称图形?
6.利用直接开平方的方法去解.
一元二次方程的解法:(公式法)
例:(3) 2x2 3x 4 0
解: a 2,b 3,c 4
b2 4ac 32 4 24
一般形式 ax2+bx+c=0 (a≠0)
直接开平方法 (x a)2 bb 0
一 元 二
解法
配方法 公式法
x2
bx
b 2
2
x
b 2
2
cc
0
x b b2 4ac 0
次
2a
方
因式分解法 (x a)(x b) 0
ax2 bx c 0 (a,b,c为常数,a≠0)
当 a 0 时,它是一元二次方程;
当 a 0 时,它不是一元二次方程.
方程2ax2 -2bx+a=4x2, (1)在什么条件下此方程为一元二次方程? (2)在什么条件下此方程为一元一次方程?
解: 原方程转化为(2a-4) x2 -2bx+a=0
阶段综合测试一┃ 试卷讲练
【针对第23题训练 】
1.某旅游景点三月份共接待游客25万人次,五月份共接待 游客64万人次,设每月的平均增长率为x,则可列方程为( A )
A.25(1+x)2=64 B.25(1-x)2=64 C.64(1+x)2=25 D.64(1-x)2=25
1.一元二次方程x2+2x+4=0的根的情况是
的解为__x_1____1_,_x_2______4_。
(1)你能举出生活中的中心对称图形吗?
(2)下面的扑克牌中,哪些牌的牌面是中心对 称图形?
6.利用直接开平方的方法去解.
一元二次方程的解法:(公式法)
例:(3) 2x2 3x 4 0
解: a 2,b 3,c 4
b2 4ac 32 4 24
中考数学复习系列课件
中考新突破 ·数学(陕西)
知识要点 · 归纳
根据xy=3判断出x,y是同号,根据x+y=-5判断出x,y均是负数,从而确定 点所在的象限.
【解答】∵xy=3,∴x和y同号.又∵x+y=-5,∴x和y均为负数,∴点(x,y) 在第三象限.
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
18
练习1 在平面直角坐标系内,AB∥x轴,AB=5,点A的坐标为(1,3),则点B的
2.函数的三种表示方法:解析式法、○27 __列__表__法__、图象法.
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
9
3.确定函数自变量的取值范围
函数表达 式的形式
整式
自变量的取值范围 全体实数
举例
y=x+1 的自变量的取值范围为○28 __全__体__实__数__
坐标为
(C)
A.(-4,3)
B.(6,3)
C.(-4,3)或(6,3)
D.(1,-2)或(1,8)
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
19
考点 2 确定函数自变量的取值范围
例2 函数 y= 2-x+x+1 3中,自变量 x 的取值范围是
(B)
A.x≤2
中考新突破 ·数学(陕西)
知识要点 · 归纳
重难点 · 突破
第一部分 教材同步复习
13
知识点三 分析判断函数图象 1.判断实际问题的函数图象 (1)找起点:结合题干中所给自变量及因变量的取值范围,在对应的图象中找对 应点; (2)找特殊点:即交点或转折点,说明图象在此点处将发生变化; (3)判断图象趋势:判断出函数的增减性,图象的倾斜方向等; (4)看是否与坐标轴相交:即此时另外一个量为0.
中考数学专题复习:第2课 整式及其运算优质课件PPT
【答案】 2
【类题演练 4】 (2018·扬州)计算:(2x+3)2-(2x+3)(2x -3).
【解析】 原式=4x2+12x+9-(4x2-9)=12x+18.
1.整式的加减实质就是合并同类项,整式的乘除实质就 是幂的运算.
2.本课主要用到以下三种数学思想方法: (1)数形结合思想: 在列代数式时,常常会遇到一种题型:题中提供一 定的图形,要求通过对图形的观察、探索,提取图 形中反馈的信息,并根据相关的知识列出相应的代 数式,也能用图形来验证整式的乘法和乘法公式.
A.34
B.1
C.23
D.98
【答案】 D
()
题型一 幂的运算
熟记法则,依照法则进行计算.
【典例 1】 有下列运算:①a2·a3=a6;②(a3)2=a6;③a5
÷a5=a;④(ab)3=a3b3.其中结果正确的个数为 ( )
A.1
B.2
C.3
D.4
【解析】 ①a2·a3=a5,故本项错误;②(a3)2=a6,故本 项正确;③a5÷a5=1,故本项错误;④(ab)3=a3b3,故本 项正确.故选 B.
注意公式的变形及整体思想的应用.
【典例 3】 (2018·河北)将 9.52 变形正确的是 ( ) A.9.52=92+0.52 B.9.52=(10+0.5)(10-0.5) C.9.52=102-2×10×0.5+0.52 D.9.52=92+9×0.5+0.52
【解析】 9.52=(10-0.5)2=102-2×10×0.5+0.52.
【答案】 C
【类题演练 3】 (2018·乐山)已知实数 a,b 满足 a+b=2,
ab=34,则 a-b=
()
A.1
2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用
解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.
九年级数学 人教版中考专题复习《一元一次方程》课件(共16张PPT)
2x a x a x 1 3 2
中,得
- 2 - a 1 a 1 1 3 2
解得a=-11
综合运用
自主探究
10 1.如果 2x2ab1 3 y3a2b16 是一个二元一次方 程,那么a=_____. 3 b=______ 4
2 x y 5 2.解方程组: 4 x 3 y 7
2 x y 5 2.解方程组: 4 x 3 y 7
(1) ( 2)
解:(2)-(1)x2得 y=-3 将y=-3代入(1)得 x=4 x4 所以原方程组的解是 y 3
组内交流
陈老师为学校购买运动会的奖品后,回学校向后勤处王 老师交账说:“我买了两种书,共105本,单价分别为8 元和12元,买书前我领了1500元,现在还余418元. ” 王 老师算了一下,说:“你肯定搞错了. ”王老师为什么说 他搞错了?试用方程的知识给予解释.
解:设原来的两位数个位数字是x,则十位数字 是9-x. 10x+(9-x)=10(9-x)+x+9 解得 x=5 9-x=4 所以原来的两位数是45.
1.如果2005-200.5=x-20.05,那么x等于(B) A.1814.55 B.1824.55 C.1 774.45 D.1 784.45 2.已知一个正方体的每一表面都填有唯一一个 数字,且各相对表面上所填的数互为倒数.若这 个正方体的表面展开图如图1所示,则A、B的 值分别是( A ) 1 2 A 1 3 B
2.若方程 3x 4 m7+5=0 是一元一次方程, 求 m的值,并求此一元一次方程的解.
根据题意,得 4m-7=1 解得 m=2 当m=2时,原方程变为 3x+5=0 3x=-5
中,得
- 2 - a 1 a 1 1 3 2
解得a=-11
综合运用
自主探究
10 1.如果 2x2ab1 3 y3a2b16 是一个二元一次方 程,那么a=_____. 3 b=______ 4
2 x y 5 2.解方程组: 4 x 3 y 7
2 x y 5 2.解方程组: 4 x 3 y 7
(1) ( 2)
解:(2)-(1)x2得 y=-3 将y=-3代入(1)得 x=4 x4 所以原方程组的解是 y 3
组内交流
陈老师为学校购买运动会的奖品后,回学校向后勤处王 老师交账说:“我买了两种书,共105本,单价分别为8 元和12元,买书前我领了1500元,现在还余418元. ” 王 老师算了一下,说:“你肯定搞错了. ”王老师为什么说 他搞错了?试用方程的知识给予解释.
解:设原来的两位数个位数字是x,则十位数字 是9-x. 10x+(9-x)=10(9-x)+x+9 解得 x=5 9-x=4 所以原来的两位数是45.
1.如果2005-200.5=x-20.05,那么x等于(B) A.1814.55 B.1824.55 C.1 774.45 D.1 784.45 2.已知一个正方体的每一表面都填有唯一一个 数字,且各相对表面上所填的数互为倒数.若这 个正方体的表面展开图如图1所示,则A、B的 值分别是( A ) 1 2 A 1 3 B
2.若方程 3x 4 m7+5=0 是一元一次方程, 求 m的值,并求此一元一次方程的解.
根据题意,得 4m-7=1 解得 m=2 当m=2时,原方程变为 3x+5=0 3x=-5
人教版九年级中考数学总复习课件第12课时 平面直角坐标系(共23张PPT)
14.[变式]如图,动点 P 从(0,3)出发,沿所示的方向
运动,每当碰到矩形的边时反弹,反弹时反射角
等于入射角,当点 P 第 2018 次碰到矩形的边时,
点 P 的坐标为( C )
A.(1,4)
y
B.(5,0)
4P 3
C.(6,4)
2
D.(8,3)
1
O 1 2 3 4 5 6 7 8x
15.[变式]如图,在平面直角坐标系中,每个最小方格
移 (或( x a, y));
规 将点 (x, y) 向上(或向下)平移 b 个单位长度,可
律 以得到对应点坐标为 ( x, y b) (或( x, y b)).
关于 x 轴对称
P(a,b)关于 x 轴对称的点的坐标为 (a, b);
关于 y 轴对称
P(a,b)关于 y 轴对称的点的坐标为(a, b);
坐 各 象 点 P(x,y) 在第一象限 x 0,y 0;
标 平 面
限 内 点 P(x,y) 在第二象限 x 0,y 0;
点 坐
的 标
点 P(x,y) 在第三象限 x 0,y 0;
内 特征 点 P(x,y) 在第四象限 x 0,y 0.
点 的
坐 标 点 P(x,y) 在 x 轴上 y 0
的边长均为 1 个单位长度, P1 , P2 , P3 ,…,均在格
点上,其顺序按图中“→”方向排列,如:
P1 (0,0), P2 (0,1), P14
y
P15
P3 (1,1), P4 (1,1), P5 (1,1), P6 (1,2),
P10 P6
P2
P11 P7
P3
…,根据这个规律,
O P1
初三数学复习《二次函数》(专题复习)PPT课件
面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上
第1章 二次函数 浙教版九年级数学上册复习课件(共17张PPT)
(1)已知二次函数y=ax2+bx+c的部分图象如图所示, 图象经过(1,0),从中你能得到哪些结论?
(2)m满足什么条件时方程ax2+bx+c=m,①有两个不 相等的实数根?②有两个相等的实数根?③没有实 数根?
y
4
-1
o
1
x
图1
• 若把图1的函数图象绕着顶点旋转180度,则能得
到函数的表达式是
4ac 4a
b2
直线x b 2a
向上
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b 2a
向下
增减性
在对称轴的左侧,y随着x的 增大而减小 在对称轴的右侧, y随着x的 增大而增大.
在对称轴的左侧,y随着x的 增大而增大. 在对称轴的右侧, y随着x的 增大而减小.
最值
得到y=2 x2 -4x-1则a= ,b= ,c=
.
3与.如分图别,经两过条点抛(物-2线,0)y,1(2,012)x且2 平1行、于y2y轴的12两x 2条1
平行线围成的阴影部分的面积为( ) A.8 B.6 C.10 D.4
抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方 程ax2+bx+c=0的根的情况说明:
1、二次函数的定义
如果函数 y k 1 xk2k2 kx 1 是关于x的二次函
数,则k=
?
一般地, 如果y=ax2+bx+c(a,b,c 是常数,a≠0), 那么,y叫做x的二次函数。
2、二次函数的图像和性质(画两幅图)
抛物线 顶点坐标 对称轴 开口方向
人教版九年级数学中考总复习《直角三角形与勾股定理》课件20张 (共20张PPT)
考点精讲
【例】(2016广东)如图1-4-5-1,
Rt△ABC中,∠B=30°,∠ACB=90°, CD⊥AB交AB于点D,以CD为较短的直角 边向△CDB的同侧作Rt△DEC,满足∠E= 30°,∠DCE=90°,再用同样的方法作 Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC, ∠HCI=90°. 若AC=a,求CI的长.
课堂巩固训练
1. 将一副直角三角板按如图1-4-5-11放置,若∠AOD=20°,
则∠BOC的大小为
(B)
A. 140°
B. 160°
C. 170° D. 150°
2. 如图1-4-5-12,在Rt△ABC中,∠B=90°,∠A=30°,DE垂
思路点拨:在Rt△ACD中,利用30°角的性质和勾股定理求出 CD的长;同理在Rt△ECD中求出FC的长,在Rt△FCG中求出CH 的长;最后在Rt△HCI中,利用30°角的性质和勾股定理求出 CI的长. 解:在Rt△ACB中,∠B=30°,∠ACB=90°, ∴∠A=90°-30°=60°. ∵CD⊥AB, ∴∠ADC=90°. ∴ቤተ መጻሕፍቲ ባይዱACD=30°.
•1、多少白发翁,蹉跎悔歧路。寄语少年人,莫将少年误。 •2、三人行,必有我师焉;择其善者而从之,其不善者而改之。2021/10/312021/10/312021/10/3110/31/2021 8:14:06 PM •3、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人4、智力教育就是要扩大人的求知范围 •5、教育是一个逐步发现自己无知的过程。 •6、要经常培养开阔的胸襟,要经常培养知识上诚实的习惯,而且要经常学习向自己的思想负责任。2021年10月 2021/10/312021/10/312021/10/3110/31/2021
【例】(2016广东)如图1-4-5-1,
Rt△ABC中,∠B=30°,∠ACB=90°, CD⊥AB交AB于点D,以CD为较短的直角 边向△CDB的同侧作Rt△DEC,满足∠E= 30°,∠DCE=90°,再用同样的方法作 Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC, ∠HCI=90°. 若AC=a,求CI的长.
课堂巩固训练
1. 将一副直角三角板按如图1-4-5-11放置,若∠AOD=20°,
则∠BOC的大小为
(B)
A. 140°
B. 160°
C. 170° D. 150°
2. 如图1-4-5-12,在Rt△ABC中,∠B=90°,∠A=30°,DE垂
思路点拨:在Rt△ACD中,利用30°角的性质和勾股定理求出 CD的长;同理在Rt△ECD中求出FC的长,在Rt△FCG中求出CH 的长;最后在Rt△HCI中,利用30°角的性质和勾股定理求出 CI的长. 解:在Rt△ACB中,∠B=30°,∠ACB=90°, ∴∠A=90°-30°=60°. ∵CD⊥AB, ∴∠ADC=90°. ∴ቤተ መጻሕፍቲ ባይዱACD=30°.
•1、多少白发翁,蹉跎悔歧路。寄语少年人,莫将少年误。 •2、三人行,必有我师焉;择其善者而从之,其不善者而改之。2021/10/312021/10/312021/10/3110/31/2021 8:14:06 PM •3、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人4、智力教育就是要扩大人的求知范围 •5、教育是一个逐步发现自己无知的过程。 •6、要经常培养开阔的胸襟,要经常培养知识上诚实的习惯,而且要经常学习向自己的思想负责任。2021年10月 2021/10/312021/10/312021/10/3110/31/2021
北师大版九年级上册数学 知识点复习课件(共46张PPT)
知识点八 位似
(1) 如果两个图形不仅相似,而且对应顶点的连线相 交于一点,那么这样的两个图形叫做位似图形,这 个点叫做位似中心. (这时的相似比也称为位似比)
(2) 性质:位似图形上任意一对对应点到位似中心的 距离之比等于位似比;对应线段平行或者在 一条直 线上.
(3) 位似性质的应用:能将一个图形放大或缩小.
墙壁等)上得到的影子叫做物体的投影. 投影所在的平面叫做投影面.
投影
投影面
2.中心投影指的是由同一点(知点识光源专)题发出的光线所形成的投影。
中心投影的投射线相交于一点,这 一点称为投影中心。
3.中心投影的特点:
知识专题
1).物体离光源越远,影子越长。
2).物体方向改变,影子方向随之改变。
3).光源离物体越近,影子越短。 4).光源方向改变,影子方向随之改变。
第一章 特殊的平行四边形
本章小结
一、菱形、矩形、正方形的性质
对边
角
平行
对角相等
且四边相等 邻角互补
平行且相等
四个角 都是直角
平行
四个角
且四边相等 都是直角
对角线
互相垂直且平分, 每一条对角线平分
一组对角
互相平分且 相等
互相垂直平分且相 等,每一条对角线
平分一组对角
二、菱形、矩形、正方形的判定方法
(2) 反比例函数的性质
k>0
图象 y
o yk
x
(k≠0) k<0
y
o
所在象限 性质
一、三象 在每个象
限(x,y 限内,y
同号) 随 x 的增
x
大而减小
二、四象 在每个象
限(x,y 限内,y
中考数学总复习课件(完整版)
第2讲┃ 归类示例
请解答下列问题:
(1)按以上规律列出第5个等式:a5=__9×_1_1_1___=
___12_×__19_-_1_11_______;
(2)用含n的代数式表示第n个等式:an= (_2n_-__1_)_×_1_(__2_n+__1_)__=_12_×__2_n_1-_1_-__2_n_1+_1___(n为正整数);
第1讲 实数的有关概念 第2讲 实数的运算与实数的大小比较 第3讲 整式及因式分解 第4讲 分式 第5讲 数的开方及二次根式
第1讲┃ 实数的有关概念
第1讲┃ 考点聚焦
考点聚焦
考点1 实数的概念及分类
1.按定义分类:
实数
有理数
整数
分数
正整数 零 负整数
正分数 有限小数或 负分数 无限循环小数
________2.
图1-2
第1讲┃ 回归教材
2.[2011·贵阳] 如图1-3,矩形OABC的边OA长为2,
边 AB 长为1,OA 在数轴上,以原点 O 为圆心,对角线 OB
的长为半径画弧,交正半轴于一点,则这个点表示的实数是
( D) A . 2.5
B . 2√2
C.√3
D.√5
图1-3 [解析] 由勾股定理得 OB= OA2+AB2= 22+12= 5.
而应从最后结果去判断.一般来说,用根号表示
的数不一定就是无理数,如
是有理数,
用三角函数符号表示的数也不一定就是无理数,
如sin30°、tan45°也不是无理数,一个数是不
是无理数关键在于不同形式表示的数的最终结果
是不是无限不循环小数.
第1讲┃ 归类示例
► 类型之二 实数的有关概念
中考数学总复习ppt课件
第28讲┃ 归类示例
归类示例
► 类型之一 确定圆的条件 命题角度: 1. 确定圆的圆心、半径; 2. 三角形的外接圆圆心的性质.
例1 [2012·资阳] 直角三角形的两边长分别为16和12,则此三 角形的外接圆半径是_1_0_或__8___.
第28讲┃ 归类示例
[解析] 直角三角形的外接圆圆心是斜边的中点,那么半径为斜 边的一半,分两种情况:
(1)作∠ABC的平分线BD交AC于点D; (2)作线段BD的垂直平分线交AB于点E,交BC于点F.由以 上作图可得:线段EF与线段BD的关系为互__相__垂__直__平__分__.
图28-6
第28讲┃ 归类示例
解: (1)作图如下图.(2)作图如下图;互相垂 直平分
第28讲┃ 归类示例
中考需要掌握的尺规作图部分有如下的要求: ①完成以下基本作图:作一条线段等于已知线段, 作一个角等于已知角,作角的平分线,作线段的垂 直平分线.②利用基本作图作三角形:已知三边作 三角形;已知两边及其夹角作三角形;已知两角及 其夹边作三角形;已知底边及底边上的高作等腰三 角形.③探索如何过一点、两点和不在同一直线上 的三点作圆.④了解尺规作图的步骤,对于尺规作 图题,会写已知、求作和作法(不要求证明). 我们在掌握这些方法的基础上,还应该会解一些新 颖的作图题,进一步培养形象思维能力.
第28讲┃ 归类示例
[解析] 四个命题的原命题均为真命题,①的逆 命题为:若|a|=-a,则a≤0,是真命题;②的逆命 题为:若m>n,则ma2>na2,是假命题,当a=0时, 结论就不成立;③的逆命题是平行四边形的两组对 角分别相等,是真命题;④的逆命题是:平分弦的 直径垂直于弦,是假命题,当这条弦为直径时,结 论不一定成立.综上可知原命题和逆命题均为真命 题的是①③,故答案为B.
人教版九年级上册数学第22章二次函数复习课件(36张)
[注意] (1)等号右边必须是整式;(2)自变量的 最高次数是2;(3)当b=0,c=0时,y=ax2是特 殊的二次函数.
注意:
开口方向与 a 的关系; 抛物线与 y 轴的交点与 c 的关系;
对称轴与 a,b 的关系; 抛物线与 x 轴交点数目与 b2-4ac 的符号关系。
抛物线 y=ax2 的图象 :
若抛物线 y=-7(x+4)2-1平移得到 y=-7x2,则可 能( B ) A.先向左平移4个单位,再向下平移1个单位 B.先向右平移4个单位,再向上平移1个单位 C.先向左平移1个单位,再向下平移4个单位 D.先向右平移1个单位,再向下平移4个单位
已知关于x的二次函数,当x=-1时,函数值为10,当x=1
∴当x=87时,W有最大值,此时W=-(87-
90)2+900=891.
一家电脑公司推出一款新型电脑,投放市场以来3个月的利 润情况如图所示,该图可以近似看作为抛物线的一部分,请结 合图象,解答以下问题:
(1)求该抛物线对应的二次函数解析式; (2)该公司在经营此款电脑过程中,第 几月的利润最大?最大利润是多少? (3)若照此经营下去,请你结合所学的 知识,对公司在此款电脑的经营状况 (是否亏损?何时亏损?)作预测分析.
中考热点
1. 二次函数的定义、图象、图象的 平移、性质、图象与系数的关系。
2. 二次函数解析式求法。 3. 二次函数图象与一元二次方程的 根的关系。
本章易错点
1. 二次函数的情势及结构特点。 2. 忽略自变量的取值范围,误认为二次 函数的最值点就是顶点。 3. 二次函数与一元二次方程的关系。 4. 点的坐标与距离的区分和联系。
顶点式y=a(x-h)2+k的情势,得到: 对称轴是直线x=h,最值为y=k,顶 点坐标为(h,k);
注意:
开口方向与 a 的关系; 抛物线与 y 轴的交点与 c 的关系;
对称轴与 a,b 的关系; 抛物线与 x 轴交点数目与 b2-4ac 的符号关系。
抛物线 y=ax2 的图象 :
若抛物线 y=-7(x+4)2-1平移得到 y=-7x2,则可 能( B ) A.先向左平移4个单位,再向下平移1个单位 B.先向右平移4个单位,再向上平移1个单位 C.先向左平移1个单位,再向下平移4个单位 D.先向右平移1个单位,再向下平移4个单位
已知关于x的二次函数,当x=-1时,函数值为10,当x=1
∴当x=87时,W有最大值,此时W=-(87-
90)2+900=891.
一家电脑公司推出一款新型电脑,投放市场以来3个月的利 润情况如图所示,该图可以近似看作为抛物线的一部分,请结 合图象,解答以下问题:
(1)求该抛物线对应的二次函数解析式; (2)该公司在经营此款电脑过程中,第 几月的利润最大?最大利润是多少? (3)若照此经营下去,请你结合所学的 知识,对公司在此款电脑的经营状况 (是否亏损?何时亏损?)作预测分析.
中考热点
1. 二次函数的定义、图象、图象的 平移、性质、图象与系数的关系。
2. 二次函数解析式求法。 3. 二次函数图象与一元二次方程的 根的关系。
本章易错点
1. 二次函数的情势及结构特点。 2. 忽略自变量的取值范围,误认为二次 函数的最值点就是顶点。 3. 二次函数与一元二次方程的关系。 4. 点的坐标与距离的区分和联系。
顶点式y=a(x-h)2+k的情势,得到: 对称轴是直线x=h,最值为y=k,顶 点坐标为(h,k);
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当上网时间多于400分时,选择方式B省钱。
9
3)借助平面直角坐标系解函数问题
例3:已知一次函数y=kx+b的图象如图所示 (1)当x<0时,y的取值范围是______。 (2)求k,b的值.
分析:(1)由图得,当x=0时,y=-4,所以,当x<0 时,y<-4;
(2)函数图象过(2,0)和(0,-4)两点, 代入可求出k、b的值;
12
五、小结归纳 (1)本节课强化了哪一种数学思想?它包含几个方面? (2)数形结合思想具有怎样的优越性?
13
课后作业
1、不等式组
x x
1 4
1
的解集在数轴上,如图表示应是(
)
2、已知一次函数y=kx+b的图象经过A(-4,9)和B(3,16),求一 次函数的解析式。
3:一次函数y=kx+4的图象经过点(-3,-2),则 (1)求这个函数表达式; (2)建立适当坐标系,画出该函数的图象; (3)判断(-5,3)是否在此函数的图象上; (4)把这条直线向下平移4个单位长度后的函数关系式是__________
解答:(1)由图得,当x<0时,y<-4;
(2)由图可得:函数图象过(2,0)和(0,-4) 两点,
代入得, 2k+b=0 ① b=-4 ②
解得:k=2,b=-4,
故答案为k=2,b=-4.
10
考察要点: 考察的是学生对形与数之间的内在联系和对一次函数图像基本特征的掌握
情况
11
练习3:一条直线通过A(2,6),B(-1,3)两点,求此直线的解析式。
数形结合 ——专题复习
1
情景导入
1、本学期学过用数形结合思想来解决 的数学问题有哪些?
2、在教学和升学考中的地位
2
1)借助数轴解“数与式”的问题 2)以形助数:利用函数图象解决代数的问题 3)借助平面直角坐标系解函数问题
3
1)借助数轴解“数与式”的问题
例1:实数在数轴上的位置如图所示,
化简:
=
分析:先找到图像的交点,相交时y值相等,图像在上时说明y 值大,在下时y值小。
由图象可知交于点(400,40)
当x=400时,0.1x=0.05x+20;
当0<x<400时,0.1x<0.05x+20; 当x>400时,0.1x>0.05x+20.
因此, 当上网时间等于400分时,选择方式A、方 式B没有区别。 当一个月内上网时间少于400分时,选择方式A省钱。
分析:题目中明确告知是一条直线,我们知道一次函数的图像是 一条直线,所以“求此直线的解析式”,就是求这个一次函数的 表达式,通过待定系数法来求。
解答:设:此直线的解析式为:y=kx+b (k≠0,b为常数) 根据题意得:
6=2k+b ① 3=-k+b ② 解得:k=1,b=4 故这条直线的解析式为:y=x+4
14
谢谢
15
(2) 方程组
y y
2 x 的1解是 x 1
x=0 y = -1
考查要点:此题主要考察学生对一次函数图像的有关特征和利用一 次函数的图像解二元一次方程组的掌握情况。
8
练习2.一家电信公司给顾客提供两种上网收费方式:方式A的函数解析式为 y=0.1x,方式B的函数解析式是y=0.05x+20(x表示上网时间,单位是分,y是表 示收取的费用,单位是元),请结合图(11.3-7),如何选择收费方式能使上网 者更合算?
abba -2a.
.
.
.
a
0b
图1
分析:计算此题的关键是首先要对(a+b)和(b-a)的值是负还是非负作出判断,
这一判断要从右图的已知中寻找依据。
解:由右图已知可得(a+b)
<0 (b - a) >0
原式= - (a+b)+(b - a)
= - 2a
考查要点:学生对有理数的加法及大小比较的掌握情况
4
练习1:实数a、b上在数轴上对.a B.a-2b C.-a D.b-a.
图1 分析:(a-b)___ 0>
b ___<0
解 : 原 式 =( ab)(b) a2b
5
2)以形助数:利用函数图象解决代数问题
例2:已知直线y1=2x-1和y2=-x-1的图象如图1所示,根据图 象填空. (1)当x ___ 时,y1=y2;
当x___ 时,y1﹥y2; 当x___时,y1<y2.
(2) 方程组
y y
2的x解是1 ( x 1
)
6
分析:判断技巧:先找到图像的交点,相交时y值相 等,图像在上时说明y值大,在下时y值小。另外,两 个函数图像的交点的坐标也就是所对应的方程组的解。
7
(1)当x ___ 0 时,=y1=y2; 当x___ 0 ﹥时,y1﹥y2; 当x___0 时< ,y1<y2.
9
3)借助平面直角坐标系解函数问题
例3:已知一次函数y=kx+b的图象如图所示 (1)当x<0时,y的取值范围是______。 (2)求k,b的值.
分析:(1)由图得,当x=0时,y=-4,所以,当x<0 时,y<-4;
(2)函数图象过(2,0)和(0,-4)两点, 代入可求出k、b的值;
12
五、小结归纳 (1)本节课强化了哪一种数学思想?它包含几个方面? (2)数形结合思想具有怎样的优越性?
13
课后作业
1、不等式组
x x
1 4
1
的解集在数轴上,如图表示应是(
)
2、已知一次函数y=kx+b的图象经过A(-4,9)和B(3,16),求一 次函数的解析式。
3:一次函数y=kx+4的图象经过点(-3,-2),则 (1)求这个函数表达式; (2)建立适当坐标系,画出该函数的图象; (3)判断(-5,3)是否在此函数的图象上; (4)把这条直线向下平移4个单位长度后的函数关系式是__________
解答:(1)由图得,当x<0时,y<-4;
(2)由图可得:函数图象过(2,0)和(0,-4) 两点,
代入得, 2k+b=0 ① b=-4 ②
解得:k=2,b=-4,
故答案为k=2,b=-4.
10
考察要点: 考察的是学生对形与数之间的内在联系和对一次函数图像基本特征的掌握
情况
11
练习3:一条直线通过A(2,6),B(-1,3)两点,求此直线的解析式。
数形结合 ——专题复习
1
情景导入
1、本学期学过用数形结合思想来解决 的数学问题有哪些?
2、在教学和升学考中的地位
2
1)借助数轴解“数与式”的问题 2)以形助数:利用函数图象解决代数的问题 3)借助平面直角坐标系解函数问题
3
1)借助数轴解“数与式”的问题
例1:实数在数轴上的位置如图所示,
化简:
=
分析:先找到图像的交点,相交时y值相等,图像在上时说明y 值大,在下时y值小。
由图象可知交于点(400,40)
当x=400时,0.1x=0.05x+20;
当0<x<400时,0.1x<0.05x+20; 当x>400时,0.1x>0.05x+20.
因此, 当上网时间等于400分时,选择方式A、方 式B没有区别。 当一个月内上网时间少于400分时,选择方式A省钱。
分析:题目中明确告知是一条直线,我们知道一次函数的图像是 一条直线,所以“求此直线的解析式”,就是求这个一次函数的 表达式,通过待定系数法来求。
解答:设:此直线的解析式为:y=kx+b (k≠0,b为常数) 根据题意得:
6=2k+b ① 3=-k+b ② 解得:k=1,b=4 故这条直线的解析式为:y=x+4
14
谢谢
15
(2) 方程组
y y
2 x 的1解是 x 1
x=0 y = -1
考查要点:此题主要考察学生对一次函数图像的有关特征和利用一 次函数的图像解二元一次方程组的掌握情况。
8
练习2.一家电信公司给顾客提供两种上网收费方式:方式A的函数解析式为 y=0.1x,方式B的函数解析式是y=0.05x+20(x表示上网时间,单位是分,y是表 示收取的费用,单位是元),请结合图(11.3-7),如何选择收费方式能使上网 者更合算?
abba -2a.
.
.
.
a
0b
图1
分析:计算此题的关键是首先要对(a+b)和(b-a)的值是负还是非负作出判断,
这一判断要从右图的已知中寻找依据。
解:由右图已知可得(a+b)
<0 (b - a) >0
原式= - (a+b)+(b - a)
= - 2a
考查要点:学生对有理数的加法及大小比较的掌握情况
4
练习1:实数a、b上在数轴上对.a B.a-2b C.-a D.b-a.
图1 分析:(a-b)___ 0>
b ___<0
解 : 原 式 =( ab)(b) a2b
5
2)以形助数:利用函数图象解决代数问题
例2:已知直线y1=2x-1和y2=-x-1的图象如图1所示,根据图 象填空. (1)当x ___ 时,y1=y2;
当x___ 时,y1﹥y2; 当x___时,y1<y2.
(2) 方程组
y y
2的x解是1 ( x 1
)
6
分析:判断技巧:先找到图像的交点,相交时y值相 等,图像在上时说明y值大,在下时y值小。另外,两 个函数图像的交点的坐标也就是所对应的方程组的解。
7
(1)当x ___ 0 时,=y1=y2; 当x___ 0 ﹥时,y1﹥y2; 当x___0 时< ,y1<y2.