八年级上册数学二元一次方程组测试题

合集下载

北师大版数学八年级上册第五章二元一次方程组综合测试题

北师大版数学八年级上册第五章二元一次方程组综合测试题

北师大版数学八年级上册第五章综合测试题一、选择题1、下列方程组中是二元一次方程组的是( )A .⎩⎨⎧xy =42x +y =6B .⎩⎪⎨⎪⎧4x -3y =31x =3y C .⎩⎪⎨⎪⎧x +z =0x -y =15D .⎩⎨⎧x -y =22x +y =4 2、下列方程组是二元一次方程组的是( )A .⎩⎨⎧x -y =1y +z =3B .⎩⎪⎨⎪⎧x -3y =21y+x =5 C .⎩⎨⎧x -y =33x -y =1 D .⎩⎨⎧x +y =7x 2-y 2=7 3、下列说法中正确的是( )A .二元一次方程3x -2y =5的解为有限个B .方程 3x +2y =7的解x ,y 为自然数的有无数对C .方程组⎩⎨⎧x -y =0,x +y =0的解为0 D .方程组各个方程的公共解叫做这个方程组的解4、已知一个等腰三角形的两边长x ,y 满足方程组⎩⎨⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为( )A .5B .4C .3D .5或45、某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种零件1个与乙种零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种零件x 天,生产乙种零件y 天,则有( )A.⎩⎨⎧x +y =30200x =100yB.⎩⎨⎧x +y =30100x =200yC.⎩⎨⎧x +y =302×200x =100yD.⎩⎨⎧x +y =302×100x =200y6、小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如A .64元B .65元C .66元D .67元7、晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5 min 后也原路返回,两人恰好同时到家.晓琳和爸爸在整个运动过程中离家的路程y 1(m ),y 2(m )与运动时间x(min )之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200 m /min ;①m 的值是15,n 的值是3 000;①晓琳开始返回时与爸爸相距1 800 m ;①运动18 min 或30 min时,两人相距900 m .其中正确结论的个数是( )A .1个B .2个C .3个D .4个8、若⎩⎨⎧x =3-m ,y =1+2m ,则y 用只含x 的代数式表示为( ) A .y =2x +7 B .y =7-2x C .y =-2x -5 D .y =2x -59、为丰富同学们的课余生活,某校计划成立足球和篮球课外兴趣小组,现购买了篮球和足球若干个,已知购买的篮球比足球少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各购买了多少个?设购买了篮球x 个,购买了足球y 个,可列方程组( )A .⎩⎨⎧x -y =160x +30y =480B .⎩⎨⎧x =y -160x +30y =480 C .⎩⎨⎧x =y -130x +60y =480 D .⎩⎨⎧x -y =130x +60y =48010、若方程mx -2y =3x +4是关于x ,y 的二元一次方程,则( )A .m≠-2B .m≠0C .m≠3D .m≠4二、填空题11.已知二元一次方程2x -3y =1,若x =3,则y =___;若y =1,则x =____.12.若-2x m -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是____.13.一次函数y =-2x +b 与x 轴交于点(3,0),则它与直线y =x 的交点坐标为____.14.在平面直角坐标系中,两条直线l 1和l 2交于点A(-5,-3),若直线l 1和l 2对应的二元一次方程分别是3x =5y 和x -2y =m ,则m =____.15.如果实数x ,y 是方程组⎩⎨⎧x +3y =0,2x +3y =3的解,那么代数式(xy x +y +2)÷1x +y 的值是____.16.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%,求甲、乙两种商品原来的单价.现设甲商品原来的单价为x 元,乙商品原来的单价为y元,根据题意可列方程组为____.三、解答题17、解下列方程组:(1)⎩⎨⎧3x +4y =19,x -y =4; (2)⎩⎨⎧8y +5x =2,4y -3x =-10.18、5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施,6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂6月份的用水量各是多少吨.19、某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?20、随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解,2辆A 型汽车、3辆B 型汽车的进价共计80万元,3辆A 型汽车、2辆B 型汽车的进价共计95万元.(1)求A ,B 两种型号的汽车每辆的进价分别为多少万元;(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A 型汽车可获利8 000元,销售1辆B 型汽车可获利5 000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?北师大版数学八年级上册第五章综合测试题参考答案一、选择题1、下列方程组中是二元一次方程组的是( D )A .⎩⎨⎧xy =42x +y =6B .⎩⎪⎨⎪⎧4x -3y =31x =3y C .⎩⎪⎨⎪⎧x +z =0x -y =15D .⎩⎨⎧x -y =22x +y =4 2、下列方程组是二元一次方程组的是( C )A .⎩⎨⎧x -y =1y +z =3B .⎩⎪⎨⎪⎧x -3y =21y+x =5 C .⎩⎨⎧x -y =33x -y =1 D .⎩⎨⎧x +y =7x 2-y 2=7 3、下列说法中正确的是( D )A .二元一次方程3x -2y =5的解为有限个B .方程 3x +2y =7的解x ,y 为自然数的有无数对C .方程组⎩⎨⎧x -y =0,x +y =0的解为0 D .方程组各个方程的公共解叫做这个方程组的解4、已知一个等腰三角形的两边长x ,y 满足方程组⎩⎨⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为( A )A .5B .4C .3D .5或45、某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种零件1个与乙种零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种零件x 天,生产乙种零件y 天,则有( C )A.⎩⎨⎧x +y =30200x =100yB.⎩⎨⎧x +y =30100x =200yC.⎩⎨⎧x +y =302×200x =100yD.⎩⎨⎧x +y =302×100x =200y6、小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如A .64元B .65元C .66元D .67元7、晓琳和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,晓琳继续前行5 min 后也原路返回,两人恰好同时到家.晓琳和爸爸在整个运动过程中离家的路程y 1(m ),y 2(m )与运动时间x(min )之间的函数关系如图所示,下列结论:①两人同行过程中的速度为200 m /min ;①m 的值是15,n 的值是3 000;①晓琳开始返回时与爸爸相距1 800 m ;①运动18 min 或30 min 时,两人相距900 m .其中正确结论的个数是( C )A .1个B .2个C .3个D .4个8、若⎩⎨⎧x =3-m ,y =1+2m ,则y 用只含x 的代数式表示为( B ) A .y =2x +7 B .y =7-2x C .y =-2x -5 D .y =2x -59、为丰富同学们的课余生活,某校计划成立足球和篮球课外兴趣小组,现购买了篮球和足球若干个,已知购买的篮球比足球少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各购买了多少个?设购买了篮球x 个,购买了足球y 个,可列方程组(B )A .⎩⎨⎧x -y =160x +30y =480B .⎩⎨⎧x =y -160x +30y =480C .⎩⎨⎧x =y -130x +60y =480 D .⎩⎨⎧x -y =130x +60y =48010、若方程mx -2y =3x +4是关于x ,y 的二元一次方程,则(C)A .m≠-2B .m≠0C .m≠3D .m≠4二、填空题11.已知二元一次方程2x -3y =1,若x =3,则y =__53__;若y =1,则x =__2__. 12.若-2x m -n y 2与3x 4y 2m +n 是同类项,则m -3n 的立方根是__2__.13.一次函数y =-2x +b 与x 轴交于点(3,0),则它与直线y =x 的交点坐标为__(2,2)__.14.在平面直角坐标系中,两条直线l 1和l 2交于点A(-5,-3),若直线l 1和l 2对应的二元一次方程分别是3x =5y 和x -2y =m ,则m =__1__.15.如果实数x ,y 是方程组⎩⎨⎧x +3y =0,2x +3y =3的解,那么代数式(xy x +y +2)÷1x +y 的值是__1__.16.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%,求甲、乙两种商品原来的单价.现设甲商品原来的单价为x 元,乙商品原来的单价为y元,根据题意可列方程组为__⎩⎨⎧x +y =1000.9x +1.4y =100×1.2__. 三、解答题17、解下列方程组:(1)⎩⎨⎧3x +4y =19,x -y =4; (2)⎩⎨⎧8y +5x =2,4y -3x =-10.(1)解:⎩⎨⎧x =5,y =1(2)解:⎩⎨⎧x =2,y =-118、5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施,6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂6月份的用水量各是多少吨.解:设甲、乙工厂5月份的用水量分别为x 吨、y 吨,根据题意,得⎩⎨⎧x +y =200,(1-15%)x +(1-10%)y =174,解得⎩⎨⎧x =120,y =80,所以(1-15%)x =102,(1-10%)y =72,所以甲、乙工厂6月份的用水量分别为102吨、72吨19、某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.20、随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解,2辆A 型汽车、3辆B 型汽车的进价共计80万元,3辆A 型汽车、2辆B 型汽车的进价共计95万元.(1)求A ,B 两种型号的汽车每辆的进价分别为多少万元;(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A 型汽车可获利8 000元,销售1辆B 型汽车可获利5 000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?解:(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,依题意,得⎩⎨⎧2x +3y =80,3x +2y =95,解得⎩⎨⎧x =25,y =10.答:A 型汽车每辆的进价为25万元,B 型汽车每辆的进价为10万元(2)设购进A 型汽车m 辆,购进B 型汽车n 辆,依题意,得25m +10n =200,解得m =8-25n.因为m ,n 均为正整数,所以⎩⎨⎧m =6,n =5或⎩⎨⎧m =4,n =10或⎩⎨⎧m =2,n =15,所以共有以下3种购买方案:①购进A 型车6辆,B 型车5辆;①购进A 型车4辆,B 型车10辆;①购进A 型车2辆,B 型车15辆(3)方案①可获得利润8 000×6+5 000×5=73 000(元);方案①可获得利润8 000×4+5 000×10=82 000(元);方案①可获得利润8 000×2+5 000×15=91 000(元).因为73 000<82 000<91 000,所以购进A 型车2辆,B 型车15辆获利最大,最大利润是91 000元。

(好题)初中数学八年级数学上册第五单元《二元一次方程组》测试卷(答案解析)(1)

(好题)初中数学八年级数学上册第五单元《二元一次方程组》测试卷(答案解析)(1)

一、选择题1.如图,1l 经过点()015,.和2(2,3),l 经过原点和点(2,3),以两条直线12,l l 的交点坐标为解的方程组是( )A .346320x y x y -=-⎧⎨-=⎩B .346320x y x y -+=⎧⎨+=⎩C .346320x y x y -=⎧⎨-=⎩D .346320x y x y -=⎧⎨+=⎩2.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,下列结论中正确的个数有( )①当5a =时,方程组的解是105x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若23722a y -=,则2a =A .1个B .2个C .3个D .4个3.一次函数y=kx +b 中,x 与γ的部分对应值如下表所示,则下列说法正确的是( ) x … -1 0 1 2 … y…52-1-4…A .x 的值每增加1,y 的值增加 3,所以k=3B .x=2是方程 kx +b=0的解C .函数图象不经过第四象限D .当x>1时,y<-14.如图所示的三阶幻方,其对角线、横行、纵向的和都相等,则根据所给数据,可以确定这个和为( )A .12B .4C .8-D .15-5.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩6.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( ) A .a =0,b =1 B .a =2,b =1 C .a =1,b =0 D .a =0,b =2 7.已知关于x ,y 的方程组232x y a x y a -=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a =0时,x ,y 的值互为相反数;②20x y =⎧⎨=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x ﹣y =1﹣a 的解;其中正确的是( ) A .①② B .①③ C .②③ D .①②③8.已知一次函数y kx b =+,当31x -≤≤时,对应y 的取值范围是19y ≤≤,则k b ⋅的值为( ) A .14B .6-C .6-或21D .6-或149.已知方程组2325x y x y +=⎧⎨-=⎩,则39x y +的值为( )A .2-B .2C .6-D .610.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( )A .5B .-5C .15D .25 11.如果3m 2n n m 3x 4y 120---+=是关于,x y 的二元一次方程,那么,m n 的值分别为( ) A .m=2, n=3B .m=2, n=1C .m=-1, n=2D .m=3, n=412.把方程23x y -=改写成用含x 的式子表示y 的形式( ) A .23y x =-B .23y x =+C .1322x y =+ D .132x y =+ 二、填空题13.若方程组23113543.1a b a b -=⎧⎨+=⎩的解为9.72.8a b =⎧⎨=⎩,则方程组()()()()(223111325143.1x y x y ⎧+--=⎪⎨++-=⎪⎩的解为___________ .14.某车间有660名工人,生产某种由一个螺栓和两个螺母构成的配套产品,每人每天平均生产螺栓14个或螺母20个,应安排______________人生产螺母,才能使生产出的螺栓和螺母刚好配套.15.已知方程1(2)(3)5m n m x n y --+-=是二元一次方程,则mn =_________; 16.若10x y =-⎧⎨=⎩和23x y =⎧⎨=⎩都是方程y =ax +b 的解,则a=____.b=____. 17.幻方(MagicSquare )是一种将数字排放在正方形格子中,使其每行、每列和对角线上的数字和都相等的图表.在如图所示的三阶幻方中,x+y 的值为_____. 3 4 x ﹣2 y a 2y ﹣xcb18.若方程组34526x y k x y k -=-⎧⎨+=⎩的解中2019x y +=,则k 等于_____.19.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩,的解是13x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩的解是_____.20.如图,已知点A 坐标为(6,0),直线()0y x b b =+>与y 轴交于点B ,与x 轴交于点C ,连接AB ,43AB =,则OC 的长为______.三、解答题21.某厂计划一个月(30天)安装新式儿童小机器人玩具480台,由于熟练工不够,工厂决定招聘一些新工人,新工人经过培训后上岗调研部门发现:1名熟练工和2名新工人每天可安装8台;2名熟练工和3名新工人每天可安装14台. (1)每名熟练工和新工人每天分别可以安装多少台小机器人玩具?(2)如果工厂招聘(010)n n <<名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一个月的安装任务,那么工厂有哪几种新工人的招聘方案?(3)在(2)的条件下,工厂给每名熟练工每天发180元的工资,给每名新工人每天发110元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每天支出的工资总额尽可能地少? 22.若关于x 、y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩①②的解也是二元一次方程4536x y +=的解,求k 的值.23.我国南宋数学家杨辉在《续古摘奇算法》中的攒九图中提出“幻圆”的概念.幻圆是将自然数排列在多个同心圆或多个连环圆上,使各圆周上数字之和相同,几条直径上的数字也相同.(注:圆周上的数字之和与直径上的数字之和不相等)如图是一个简单的二阶幻圆模型,根据图形,完成下面问题:(1)当6y =时,求x 和k 的值; (2)用含k 的代数式表示y .24.已知点(4,0)A 及在第一象限的动点(,)P x y ,且6x y +=,设OPA 的面积为S . (1)用含x 的式子表示S ,并写出自变量x 的取值范围; (2)求S 9=时P 点坐标;(3)在(2)的基础上,设点Q 为y 轴上一动点,当PQ AQ +的值最小时,求点Q 坐标.25.如图,已知一次函数2y x =-的图象与y 轴交于点A ,一次函数4y x b =+的图象与y 轴交于点B ,且与x 轴以及-次函数2y x =-的图象分别交于点C 、D ,点D 的坐标为(2,4)--.(1)关于x 、y 的方程组24y x y x b -=-⎧⎨-=⎩的解为 .(2)求ABD △的面积;(3)在x 轴上是否存在点E ,使得以点,,C D E 为顶点的三角形是直角三角形?若存在,求出点E 的坐标;若不存在,请说明理由.26.行政区划调整后,某村有两段长度相等的道路需硬化,现分别由甲、乙两个工程队同时开始施工.如图的线段和折线是两队前12天硬化的道路长y y 乙甲、(米)与施工时间x (天)之间的函数图象.根据图象解答下列问题:(1)直接写出y y 乙甲、与x (天)之间的函数关系式: ①当012x <≤时,y =甲 _ ;②当04x <≤时,y =乙 ;当412x <≤时,y =乙 ; (2)求图中点M 的坐标,并说明点M 的横、纵坐标表示的实际意义;(3)施工过程中,甲队的施工速度始终不变,而乙队在施工12天后,每天的施工速度提高到120米/天,两队将同时完成任务.两队还需要多少天完成任务?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】用待定系数法求出直线1l 、2l 的解析式,联立方程即可. 【详解】解:设直线1l 的解析式为y kx b =+,∵1l 经过点(0,1.5)、(2,3),∴ 1.532b k b =⎧⎨=+⎩,解得:341.5k b ⎧=⎪⎨⎪=⎩,∴直线1l 的解析式为31.54y x =+, ∵直线2l 经过原点,∴设直线2l 的解析式为y ax =, 又∵直线2l 经过点(2,3), ∴32a =, 解得:32a =, ∴直线2l 的解析式为32y x =, ∴以两条直线的交点坐标为解的方程组是:3 1.5432y x y x⎧=+⎪⎪⎨⎪=⎪⎩, 即346320x y x y -=-⎧⎨-=⎩,故选:A . 【点睛】本题考查一次函数与二元一次方程组的关系,方程组的解即是两个一次函数图象的交点,利用待定系数法求出两个一次函数的解析式是解答本题的关键.2.B解析:B 【分析】①把5a =代入方程组求出解,即可作出判断;②由题意得0x y +=,变形后代入方程组求出a 的值,即可作出判断;③若x y =,代入方程组,变形得关于a 的方程,即可作出判断;④根据题中等式得237a y -=,代入方程组求出a 的值,即可作出判断. 【详解】解:①把5a =代入方程组得:351020x y x y -=⎧⎨-=⎩,解得:2010x y =⎧⎨=⎩,本选项错误;②当x ,y 的值互为相反数时,0x y +=,即:y x =-,代入方程组得:35225x x ax x a +=⎧⎨+=-⎩,解得:20a =,本选项正确;③若x y =,则有225x ax a -=⎧⎨-=-⎩,可得:5a a =-,矛盾,故不存在一个实数a 使得x y =, 本选项正确; ④由方程组得:2515x ay a =-⎧⎨=-⎩,由题意得:237a y -=, 把15y a =-代入得: 24537a a -+=,解得:525a =,本选项错误; ∴正确的选项有②③两个.故选:B . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.3.D解析:D 【分析】根据待定系数法求得解析式,然后根据一次函数的特点进行选择即可. 【详解】 解:由题意,当1x =-时,5y =;当0x =时,2y =; ∴52k b b -+=⎧⎨=⎩,解得32k b =-⎧⎨=⎩,∴一次函数为32y x =-+;∴函数图像经过第一、二、四象限,不经过第三象限, ∴A 、C 选项不符合题意;当2x =时,则3224y =-⨯+=-,故B 错误; ∵30k =-<,∴一次函数32y x =-+,y 随x 的增大而减小; ∵32y x =-+经过点(1,1-), ∴当x>1时,y<-1;故D 正确; 故选:D . 【点睛】本题主要考查对一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式等知识点的理解和掌握,能求出一次函数的解析式是解此题的关键.4.A解析:A 【分析】根据对角线、横行、纵向的和都相等,设出未知数求解即可. 【详解】解:如图,设对角线上的三个数字为x 、y 、z ,三阶幻方的和=中心数字×3,由题意得10+2+x=10-6+z x+y+z=10-6+z x+y+z=3y ⎧⎪⎨⎪⎩ ,解得048x y z =⎧⎪=⎨⎪=⎩,∴三阶幻方的和10+2+0=12, 故选A .【点睛】本题考查了奇阶幻方的特征的灵活应用,解题的关键是掌握三阶幻方的和=中心数字×3.5.A解析:A 【分析】根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组. 【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩.故选:A . 【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组.6.C解析:C 【分析】根据同类项的定义可得关于a 、b 的方程组,解方程组即得答案. 【详解】解:由同类项的定义,得122a b a b -=⎧⎨+=⎩,解得:10a b =⎧⎨=⎩.故选:C . 【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题目,正确理解题意、掌握解答的方法是解题的关键.7.B解析:B 【分析】把a =0代入方程组,可求得方程组的解,把20x y =⎧⎨=⎩代入方程组,可得a =1,可判断②;把a =﹣1代入方程可求得a 的值为2,可判断③;可得出答案. 【详解】解:①当a =0时,原方程组为230x y x y -=⎧⎨+=⎩,解得11x y =-⎧⎨=⎩,②把2x y =⎧⎨=⎩代入方程组得到a =1,不符合题意. ③当a =﹣1时,原方程组为242x y x y -=⎧⎨+=-⎩,解得02x y =⎧⎨=-⎩,当02x y =⎧⎨=-⎩时,代入方程组可求得a =﹣1, 把02x y =⎧⎨=-⎩与a =﹣1代入方程2x ﹣y =1﹣a 得,方程的左右两边成立, 综上可知正确的为①③. 故选:B . 【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.8.D解析:D 【分析】一次函数可能是增函数也可能是减函数,应分两种情况进行讨论,根据待定系数法求出解析式即可. 【详解】解:由一次函数性质知,当k>0时,y 随x 的增大而增大,所以得319k b k b -+=⎧⎨+=⎩,解得27k b =⎧⎨=⎩, 即kb=14;当k<0时,y 随x 的增大而减小,所以得391k b k b -+=⎧⎨+=⎩,解得23k b =-⎧⎨=⎩,即kb=-6.∴k b ⋅的值为6-或14. 故选D . 【点睛】此题考查一次函数的性质,要注意根据一次函数图象的性质解答.9.C解析:C 【分析】方程组两方程相减求出x+3y 的值,进而即可求得3x+9y 的值. 【详解】2325x y x y +=⎧⎨-=⎩①②, ①-②得:32x y +=-, ∴()39336x y x y +=+=-, 故选:C . 【点睛】本题考查了求代数式的值以及解二元一次方程组,解二元一次方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.灵活运用整体代入法是解题的关键.10.A解析:A 【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可.【详解】解:2728 x yx y+=⎧⎨+=⎩①②①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5.故选A.【点睛】本题考查了用加减法解二元一次方程组.11.D解析:D【分析】根据二元一次方程的概念可得关于m、n的方程组,解方程组求得m、n即可.【详解】由题意得3211m nn m-=⎧⎨-=⎩,解得34mn=⎧⎨=⎩,故选D.【点睛】本题考查了二元一次方程的概念,解二元一次方程组,熟练掌握相关知识是解题的关键. 12.A解析:A【分析】把x看做已知数求出y即可.【详解】方程2x−y=3,解得:y=2x−3,故选:A.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.二、填空题13.【分析】先把x+2与y-1看作一个整体则x+2与y-1是已知方程组的解于是可得进一步即可求出答案【详解】解:由方程组的解为由题意得:方程组的解为解得:故答案为:【点睛】本题考查了二元一次方程组同解方解析:7.73.8 xy=⎧⎨=⎩.【分析】先把x+2与y-1看作一个整体,则x+2与y-1是已知方程组23113543.1a ba b-=⎧⎨+=⎩的解,于是可得29.71 2.8xy+=⎧⎨-=⎩,进一步即可求出答案.【详解】解:由方程组23113543.1a ba b-=⎧⎨+=⎩的解为9.72.8ab=⎧⎨=⎩,由题意得:方程组()()()()(223111325143.1x yx y⎧+--=⎪⎨++-=⎪⎩的解为29.71 2.8xy+=⎧⎨-=⎩,解得:7.73.8 xy=⎧⎨=⎩.故答案为:7.73.8 xy=⎧⎨=⎩.【点睛】本题考查了二元一次方程组同解方程组的解法,正确理解题意、得出29.71 2.8xy+=⎧⎨-=⎩是解此题的关键.14.385【分析】设安排x人生产螺栓y人生产螺母根据一个螺栓两个螺母构成的配套产品列方程组求解【详解】解:设安排x人生产螺栓y人生产螺母由题意得解得:答:安排275人生产螺栓385人生产螺母故答案是:3解析:385【分析】设安排x人生产螺栓,y人生产螺母,根据一个螺栓两个螺母构成的配套产品,列方程组求解.【详解】解:设安排x人生产螺栓,y人生产螺母,由题意得,660 14220x yx y+⎧⎨⨯⎩==,解得:275385 xy⎧⎨⎩==,答:安排275人生产螺栓,385人生产螺母.故答案是:385.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.15.-2【分析】二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程列出方程组求出mn 的值然后代入代数式进行计算即可得解【详解】∵方程是二元一次方程∴且m-2≠0n=1∴m=-2n=1∴解析:-2【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,列出方程组求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】∵方程1(2)(3)5m n m x n y --+-=是二元一次方程, ∴11m -=且m-2≠0,n=1,∴m=-2,n=1,∴mn =-2.故答案为-2.【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.16.1【分析】把和代入方程y=ax+b 可得关于ab 的方程组解方程组即可求出答案【详解】解:把和代入方程y=ax+b 得解得:故答案为:11【点睛】本题考查了二元一次方程的解的定义和二元一次方程组的解法属于解析:1【分析】把10x y =-⎧⎨=⎩和23x y =⎧⎨=⎩代入方程y =ax +b 可得关于a 、b 的方程组,解方程组即可求出答案. 【详解】解:把10x y =-⎧⎨=⎩和23x y =⎧⎨=⎩代入方程y =ax +b ,得023a b a b -+=⎧⎨+=⎩,解得:11a b =⎧⎨=⎩. 故答案为:1,1.【点睛】本题考查了二元一次方程的解的定义和二元一次方程组的解法,属于基础题型,正确理解题意、熟练掌握解二元一次方程组的方法是解题的关键.17.1【分析】根据每行每列和对角线上的数字和都相等列出方程组并解答【详解】根据题意得解得所以x+y =﹣1+2=1故答案是:1【点睛】本题主要考查二元一次方程组的应用解题的关键是根据幻方的特点列出关于xy解析:1【分析】根据“每行、每列和对角线上的数字和都相等”列出方程组并解答.【详解】根据题意,得34+23222x x y y x y x x y y x ++=+-⎧⎨-+-=++-⎩, 解得12x y =-⎧⎨=⎩. 所以x+y =﹣1+2=1.故答案是:1.【点睛】本题主要考查二元一次方程组的应用,解题的关键是根据幻方的特点列出关于x 、y 的算式.18.2020【分析】将方程组的两个方程相加可得再根据即可得到进而求出的值【详解】解:①②得即:故答案为:2020【点睛】本题考查二元一次方程组的解法整体代入是求值的常用方法解析:2020【分析】将方程组的两个方程相加,可得1x y k +=-,再根据2019x y +=,即可得到12019k -=,进而求出k 的值.【详解】解:34526x y k x y k -=-⎧⎨+=⎩①②, ①+②得,5555x y k +=-,即:1x y k +=-,2019x y +=,12019k ∴-=2020k ∴=,故答案为:2020.【点睛】本题考查二元一次方程组的解法,整体代入是求值的常用方法.19.【分析】根据已知得出关于ab 的方程组进而得出答案【详解】解:∵关于xy 的二元一次方程组的解是∴方程组中解得:故答案为:【点睛】本题主要考查二元一次方程组的解法关键是根据整体思想及方程组的解法进行求解解析:21a b =⎧⎨=-⎩【分析】根据已知得出关于a ,b 的方程组进而得出答案.【详解】解:∵关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩,的解是13x y =⎧⎨=⎩,∴方程组()()()()3526a b m a ba b n a b⎧+--=⎪⎨++-=⎪⎩中13a ba b+=⎧⎨-=⎩,解得:21 ab=⎧⎨=-⎩.故答案为:21 ab=⎧⎨=-⎩.【点睛】本题主要考查二元一次方程组的解法,关键是根据整体思想及方程组的解法进行求解.20.【分析】根据勾股定理求得OB即可求得b的值得到直线解析式令y=0求得x的值即可求得OC的值【详解】解:∵点A坐标为(60)∴OA=6∵AB=4∴OB=∴b=OB=2∴直线的解析式为y=x+2令y=0解析:【分析】根据勾股定理求得OB,即可求得b的值,得到直线解析式,令y=0,求得x的值,即可求得OC的值.【详解】解:∵点A坐标为(6,0),∴OA=6,∵∴=∴∴直线的解析式为令y=0,则∴C(0),∴故答案为【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题21.(1)每名熟练工和新工人每天分别可以安装4,2台小机器人玩具;(2)3种,详见解析;(3)4名【分析】(1)设每名熟练工和新工人每天分别可以安装x、y台小机器人玩具,根据1名熟练工和2名新工人每天可安装8台;2名熟练工和3名新工人每天可安装14台列方程组求解. (2)设工厂有a 名熟练工.根据新工人和抽调的熟练工刚好能完成一个月的安装任务,根据a ,n 都是正整数和0<n <10,进行分析n 的值的情况;(3)表示出工资总额W=-40a+880,根据使新工人的数量多于熟练工,同时工厂每月支出的工资总额尽可能地少,两个条件进行分析比较.【详解】解:(1)设每名熟练工和新工人每天分别可以安装x 、y 台小机器人玩具.根据题意,得:282314x y x y +=⎧⎨+=⎩, 解得:42x y =⎧⎨=⎩, 答:每名熟练工和新工人每天分别可以安装4、2台小机器人玩具.(2)设工厂有a 名熟练工.根据题意,得30(4a+2n )=480,2a+n=8,n=8-2a ,又a ,n 都是正整数,0<n <10,所以n=6,4,2.即工厂有3种新工人的招聘方案.①n=6,a=1,即新工人6人,熟练工1人;②n=4,a=2,即新工人4人,熟练工2人;③n=2,a=3,即新工人2人,熟练工3人;(3)要使新工人的数量多于熟练工,则n=6,a=1;或n=4,a=2;根据题意,得:工资总额W=180a+110n=180a+110(8-2a )=-40a+880.当n=6,a=1时,W=840,当n=4,a=2时,W=800,显然当n=4,a=2时,即工厂应招聘4名新工人,工厂每天支出的工资总额尽可能地少.【点睛】本题主要考查二元一次方程组的应用,解题的关键是要能够理解题意,正确找到等量关系和不等关系,熟练解方程组和根据条件分析不等式中未知数的值.22.2【分析】先用含k 的式子表示x 、y ,根据方程组的解也是二元一次方程4536x y +=的解,即可求得k 的值.【详解】解:①+②得:214x k =,解得: x =7k ,将x =7k 代入①得:75k y k +=,解得: y =-2k ,∴方程组的解为72x k y k =⎧⎨=-⎩, 将72x k y k =⎧⎨=-⎩代入4x +5y =36得: ()475236k k ⨯+⨯-=,解得k=2 ,答:k 的值是2.【点睛】本题考查了二元一次方程组的解、二元一次方程的解以及解二元一次方程组,解决本题的关键是用含k 的式子表示x 、y .23.(1)48x k =⎧⎨=⎩;(2)2y k =- 【分析】根据圆周上数字之和相同,几条直径上的数字也相同,列出方程组求解即可.【详解】解:(1)由题意可得:152376365127x k x k +++=+++⎧⎨+++=+++⎩, 化简得:124x k x k +=⎧⎨-=-⎩解得:48x k =⎧⎨=⎩(2)由题意可得:1523735127x k y x y k +++=+++⎧⎨+++=+++⎩,化简得:62x y k x y k -+=⎧⎨+-=⎩①② ①-②得:224y k -+=,即2y k =-.【点睛】本题考查了有理数的加法,读懂题意,能列出方程组即可.24.(1)122S x =-;06x <<;(2)P 15,5(4)..;(3)Q 360,11⎛⎫ ⎪⎝⎭【分析】 (1)首先把x+y=6,变形成y=6-x ,再利用三角形的面积求法:底×高÷2=S ,可以得到S 关于x 的函数表达式;P 在第一象限,故x >0,再利用三角形的面积S >0,可得到x 的取值范围;(2)把S=9代入函数解析式即可;(3)根据题意画出图象,作出A 的对称点A′,连接PA′,此时PA′与y 轴交于点Q ,此时PQ+AQ 的值最小,进而求出即可.【详解】(1)∵6x y +=∴6y x =-,∴()462S x =-÷即:122S x =-∵1220x ->∴6x <∴06x <<;(2)∵9s =∴9122x =-解得: 1.5x =,∴61545y =-=.. ∴当9s =时,P 点坐标15,5(4)..; (3)如图所示:作出A 的对称点A ',连接PA ',此时PA '与y 轴交于点Q ,此时PQ AQ +的值最小.∵A 点坐标为()4,0,∴()4,0A '-,∴将()4,0-,15,5(4)..代入y kx b =+, 401545k b k b -+=⎧⎨+=⎩..得: 解得:9113611k b ⎧=⎪⎪⎨⎪=⎪⎩∴9361111y x =+,∴0x =,时,3611y = ∴当PQ AQ +的值最小时,Q 点坐标为:360,11⎛⎫ ⎪⎝⎭. 【点睛】此题主要考查了待定系数法求函数解析式以及画一次函数的图象和最短路线求法,解题时一定要注意自变量的取值范围.25.(1)24x y =-⎧⎨=-⎩;(2)6;(3)存在,(2,0)E -或(18,0)E - 【分析】(1)直接结合题意和图象即可得出结论;(2)分别求出A ,B 的坐标,由12△ABD D S AB x =计算即可; (3)分三种情况讨论:①当点E 为直角顶点时,过点D 作DE 1⊥x 轴于E 1,即可得出结论;②当点C 为直角顶点时,x 轴上不存在点E ;③当点D 为直角顶点时,过点D 作DE 2⊥CD 交x 轴于点E 2.设E 2(t ,0),利用勾股定理即可得出结论.【详解】(1)由图象可知:关于x 、y 的方程组24y x y x b -=-⎧⎨-=⎩的解为24x y =-⎧⎨=-⎩; 故答案为:24x y =-⎧⎨=-⎩; (2)由题意可直接得出()0,2A -,将(2,4)--代入4y x b =+,解得:4b =,∴()0,4B ,6AB =, ∴1162622△ABD D S AB x ==⨯⨯=; (3)如图,①当点E 为直角顶点时,过点D 作DE 1⊥x 轴于E 1.∵D (-2,-4),∴E 1(-2,0)②当点C 为直角顶点时,x 轴上不存在点E .③当点D 为直角顶点时,过点D 作DE 2⊥CD 交x 轴于点E 2.设E 2(t ,0).∵C (-1,0),E 1(-2,0),∴CE 2=-1-t ,E 1E 2=-2-t .∵D (-2,-4),∴DE 1=4,CE 1=-1-(-2)=1.在12Rt DE E ∆中,由勾股定理得:()2222222211242420DE DE E E t t t =+=+--=++. 在1Rt CDE ∆中,由勾股定理得:2221417CD =+=.在2Rt CDE ∆中,由勾股定理得:22222CE DE CD =+.∴(-1-t )2=t 2+4t +20+17解得:t =-18.∴E 2(-18,0).综合上所述:点E 坐标为(-2,0)或(-18,0).【点睛】本题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,勾股定理,一次函数与方程组,利用了数形结合的思想,熟练掌握一次函数的性质是解答本题的关键. 26.(1)①100x ;②150x ;50400x +;(2)()8,800M ;工作到第8天时,甲乙两工程队硬化道路的长度相等,均为800m ;(3)10天【分析】(1)根据图像,已知两点的坐标,可根据待定系数法列方程,求函数解析式即可; (2)根据一次函数列出二元一次方程组求出点M 的坐标,即可得出实际意义; (3)设两队还需x 天完成任务,根据速度⨯天数=施工距离,则甲队施工的总距离为1200100x +,乙队施工的总距离为1000120x +,根据总施工道路长相等列出一元一次方程从而求出x 的即可.【详解】(1)① 设=y kx 甲,由图像可知=y kx 甲经过点()12,1200,∴120012k =100k ∴==100y x ∴甲②当04x <≤时,设1=k y x 乙由图像可知1=y k x 乙经过点()4,600∴1600=4k1150k ∴=∴=150y x 乙当412x <≤时,设2=k y x b +乙由图像可知2=k y x b +乙经过点()4,600,点()12,1000224600121000k b k b +=⎧∴⎨+=⎩250400k b =⎧∴⎨=⎩=50400y x +乙(2)根据题意可得:10050400y x y x =⎧⎨=+⎩解得:8800x y =⎧⎨=⎩ M ∴()8,800∴点M 的横、纵坐标的实际意义:工作到第8天时,甲乙两工程队硬化道路的长度相等,均为800m .()3设两队还需要x 天完成任务,有题意得:10001201200100x x +=+解得:10x =所以两队还需要10天完成任务.【点睛】本题主要考查了用待定系数法求一次函数解析式,用一次函数解决实际问题,解题关键是数形结合读懂图像,找准等量关系列一元一次方程.。

2022年北师大版八年级数学上册第5章 二元一次方程组 单元测试卷含答案

2022年北师大版八年级数学上册第5章 二元一次方程组 单元测试卷含答案

北师大新版八年级上册《第5章二元一次方程组》单元测试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)下列方程组中是二元一次方程组的是()A.B.C.D.2.(3分)二元一次方程组的解是()A.B.C.D.3.(3分)与方程组有相同解的方程是()A.x+y=3B.2x+3y+4=0C.3x+=﹣2D.x﹣y=14.(3分)若实数x,y满足|x﹣y﹣1|+=0,则2x﹣y的值为()A.0B.1C.2D.35.(3分)某校运动员分组训练,若每组6人,余3人;若每组7人,则缺5人;设运动员人数为x人,组数为y 组,则列方程组为()A.B.C.D.6.(3分)现有大、小两种船,1艘大船与4艘小船一次最多可以载客46名,2艘大船与3艘小船一次最多可以载客57名,某旅游点的船有3艘大船与6艘小船,一次最多可以载客的人数为()A.129B.120C.108D.967.(3分)已知单项式﹣3x m﹣1y3与5x n y m+n是同类项,那么()A.B.C.D.8.(3分)若2x+5y﹣3z=2,3x+8z=3,则x+y+z的值等于()A.0B.1C.2D.无法求出9.(3分)如图所示,方程组的解是()10.(3分)某商店有方形、圆形两种巧克力,小明如果购买3块方形巧克力和5块圆形巧克力,他带的钱会差8元;如果购买5块方形巧克力和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()A.8元B.16元C.24元D.32元二、填空题(本大题7小题,每小题4分,共28分)11.(4分)已知二元一次方程3x+y﹣1=0,用含y的代数式表示x,则x=;当y=﹣2时,x=.12.(4分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.13.(4分)一次函数y=2x与y=2x+1图象之间的位置关系是,这说明方程组解的情况是.14.(4分)一个三位数,若百位上的数为x,十位上的数为y,个位上的数是百位与十位上的数的差的2倍,则这个三位数是.15.(4分)已知方程组的解能使等式4x﹣6y=10成立,则m的值为.16.(4分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是.17.(4分)定义运算“※”,规定x※y=ax2+by,其中a,b为常数,且1※2=5,2※1=6,则2※3=.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)在平面直角坐标系中,已知点A(1,2),B(6,﹣2).(1)若点C与点B关于y轴对称,则点C的坐标是;(2)求直线AC所表示的函数表达式.19.(6分)解下列方程组:(1);(2).20.(6分)解方程组:.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知一次函数y=﹣mx+3和y=3x﹣n的图象交于点P(2,﹣1)(1)直接写出方程组的解;(2)求m和n的值.22.(8分)列二元一次方程组解应用题:学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.求A,B两种奖品的单价.23.(8分)若方程组的解是,求(a+b)2﹣(a﹣b)(a+b).五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息.自来水销售价格每户每月用水量单价/(元•t﹣1)15t及以下a超过15t但不超过25t的部分b超过25t的部分5根据上表信息,解答下列问题:(1)小王家今年3月份用水20t,要交水费元;(用含a,b的代数式表示)(2)小王家今年4月份用水21t,交水费48元,邻居小李家4月份用水27t,交水费70元,求a,b的值;(3)在(2)的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单价的a,b的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.25.(10分)某学校期末考试要给学生印制复习资料若干份,印刷厂有甲、乙两种收费方式,除按印刷份数收取印刷费用外,甲种方式还收取制版费,而乙种不需要,两种印刷方式的费用y(元)与印刷份数x(份)之间的函数关系如图所示:(1)填空:甲种收费方式的函数关系式是,乙种收费方式的函数关系式是.(2)若需印刷100﹣400份(含100和400)份复习资料,选择哪种印刷方式比较合算.参考答案一、选择题(本大题10小题,每小题3分,共30分)1.C;2.A;3.C;4.A;5.D;6.D;7.C;8.B;9.B;10.D;二、填空题(本大题7小题,每小题4分,共28分)11.;;12.;13.平行;无解;14.102x+8y;15.8;16.;17.10;三、解答题(一)(本大题3小题,每小题6分,共18分)18.(﹣6,﹣2);19.;20.;四、解答题(二)(本大题3小题,每小题8分,共24分)21.;22.;23.;五、解答题(三)(本大题2小题,每小题10分,共20分)24.(15a+5b);25.y1=0.1x+16(x≥0);y2=0.2x(x≥0);。

北师大版八年级上册数学第七章二元一次方程组练习题(带解析)

北师大版八年级上册数学第七章二元一次方程组练习题(带解析)

北师⼤版⼋年级上册数学第七章⼆元⼀次⽅程组练习题(带解析)北师⼤版⼋年级上册数学第七章⼆元⼀次⽅程组练习题(带解析)考试范围:xxx ;考试时间:100分钟;命题⼈:xxx1. 答题前填写好⾃⼰的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释⼀、单选题(注释)1、甲⼄两地相距360千⽶,⼀轮船往返于甲、⼄两地之间,顺⽔⾏船⽤18⼩时,逆⽔⾏船⽤24⼩时,若设船在静⽔中的速度为x 千⽶/时,⽔流速度为y 千⽶/时,则下列⽅程组中正确的是() A .B .C .D .2、已知有含盐20%与含盐5%的盐⽔,若配制含盐14%的盐⽔200千克,设需含盐20%的盐⽔x 千克,含盐5%的盐⽔y 千克,则下列⽅程组中正确的是() A .B .C .D .3、如果⼀个两位数的⼗位数字与个位数字之和为6,那么这样的两位数的个数是() A .3 B .6 C .5 D .44、已知x b+5y 3a 和-3x 2a y 2-4b是同类项,那么a,b 的值是()5、如果5x3m-2n-2y n-m+11=0是⼆元⼀次⽅程,则()A.m=1,n=2 B.m=2,n=1 C.m=-1,n=2 D.m=3,n=46、⽤加减法解⽅程组时,要使两个⽅程中同⼀未知数的系数相等或相反,有以下四种变形的结果:①②③④其中变形正确的是()A.①②B.③④C.①③D.②④7、⽤代⼊法解⽅程组使得代⼊后化简⽐较容易的变形是()A.由①得x=B.由①得y=C.由②得x=D.由②得y=2x-58、四名学⽣解⼆元⼀次⽅程组提出四种不同的解法,其中解法不正确的是()A.由①得x=,代⼊②B.由①得y=,代⼊②C.由②得y=-,代⼊①D.由②得x=3+2y,代⼊①9、已知⽅程mx+(m+1)y=4m-1是关于x,y的⼆元⼀次⽅程,则m的取值范围是()A.m≠0B.m≠-1 C.m≠0且m≠1D.m≠0且m≠-110、⼆元⼀次⽅程3a+b=9在正整数范围内的解的个数是()A.0 B.1 C.2 D.3更多功能介绍/doc/be631667312b3169a451a4e8.html /zt/11、如图,10块相同的长⽅形墙砖拼成⼀个矩形,设长⽅形墙砖的长和宽分别为x厘⽶和y厘⽶,则依题意列⽅程组正确的是A .B .C .D .12、某车间有56名⼯⼈,每⼈每天能⽣产螺栓16个或螺母24个,设有x 名⼯⼈⽣产螺栓,y 名⼯⼈⽣产螺母,每天⽣产的螺栓和螺母按1:2配套,下⾯所列⽅程组正确的是() A .B .C .D .13、已知⽅程组中x ,y 的互为相反数,则m 的值为()A .2B .﹣2C .0D .414、下列⽅程是⼆元⼀次⽅程的是() A .B .C .3x ﹣8y=11D .7x+2=15、关于x 、y 的⼆元⼀次⽅程组的解满⾜不等式>0,则的取值范围是() A .<-1 B .<1 C .>-1 D .>116、⽅程组的解是()A .B .C .D .由于疏忽,表格中捐款40元和50元的⼈数忘记填写了,若设捐款40元的有x 名同学,捐款50元的有y 名同学,根据题意,可得⽅程组()A. B.C. D.18、将⽅程中的x的系数化为整数,则下列结果正确的是()A.B.C.D.19、雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、⼄两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6⼈,⼄种帐篷每顶安置4⼈,共安置8000⼈.设该企业捐助甲种帐篷x顶、⼄种帐篷y顶,那么下⾯列出的⽅程组中正确的是A.B.C.D.20、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy的值是()A.14 B.-4 C.-12 D.12分卷II分卷II 注释⼆、填空题(注释)21、⽅程组的解是.22、在⽅程组中,若x >0,y <0,则m 的取值范围是.23、已知⽅程组的解为,则2a ﹣3b 的值为.24、若(x+y+4)2+|3x ﹣y|=0,则x= ,y= .25、已知⼆元⼀次⽅程2x+3y+1=0,⽤含x 的代数式表⽰y ,则y= .26、请写出⼀个以x ,y 为未知数的⼆元⼀次⽅程组,要求满⾜下列条件:①由两个⼆元⼀次⽅程组成;②⽅程组的解为,这样的⽅程组是.27、⼀次数学测试,满分为100分.测试分数出来后,同桌的李华和吴珊同学把他俩的分数进⾏计算,李华说:我俩分数的和是160分,吴珊说:我俩分数的差是60分.那么对于下列两个命题:①俩⼈的说法都是正确的,②⾄少有⼀⼈说错了.真命题是(填写序号).28、请写出⼀个以x ,y 为未知数的⼆元⼀次⽅程组,且同时满⾜下列两个条件:①由两个⼆元⼀次⽅程组成;②⽅程组的解为,这样的⽅程组可以是____________.按此规律,第n 个⽅程组为___________,它的解为___________(n 为正整数).30、⽅程组的解是_____________.三、计算题(注释)31、解⽅程组:.32、解⽅程组:(1)(2)33、解⽅程组:(1)(2)34、解⽅程组:35、若是⼆元⼀次⽅程ax -by=8和ax+2by=-4的公共解,求2a -b 的值.36、解下列⽅程:(1).(2)(3)(4)37、解⽅程组38、解⽅程组(5分)(1)39、解下列⼆元⼀次⽅程组(1) (2)40、(1)计算:(2)解⽅程组:四、解答题(注释)41、端午节期间,某校“慈善⼩组”筹集到1240元善款,全部⽤于购买⽔果和粽⼦,然后到福利院送给⽼⼈,决定购买⼤枣粽⼦和普通粽⼦共20盒,剩下的钱⽤于购买⽔果,要求购买⽔果的钱数不少于180元但不超过240元.已知⼤枣粽⼦⽐普通粽⼦每盒贵15元,若⽤300元恰好可以买到2盒⼤枣粽⼦和4盒普通粽⼦.(1)请求出两种⼝味的粽⼦每盒的价格;(2)设买⼤枣粽⼦x 盒,买⽔果共⽤了w 元.①请求出w 关于x 的函数关系式;②求出购买两种粽⼦的可能⽅案,并说明哪⼀种⽅案使购买⽔果的钱数最多.42、某农户原有15头⼤⽜和5头⼩⽜,每天约⽤饲料325kg ;两周后,由于经济效益好,该农户决定扩⼤养⽜规模,⼜购进了10头⼤⽜和5头⼩⽜,这时每天约⽤饲料550kg .问每头⼤⽜和每头⼩⽜1天各需多少饲料? 43、某种仪器由1种A 部件和1个B 部件配套构成.每个⼯⼈每天可以加⼯A 部件1000个或者加⼯B 部件600个,现有⼯⼈16名,应怎样安排⼈⼒,才能使每天⽣产的A 部件和B 部件配套?44、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资⾦为⽼师购买纪念品,其余资⾦⽤于在毕业晚会上给50位同学每⼈购买⼀件⽂化衫或⼀本相册作为纪念.已知每件⽂化衫⽐每本相册贵9元,⽤200元恰好可以买到2件⽂件衫和5本相册.(1)求每件⽂化衫和每本相册的价格分别为多少元?(2)有⼏种购买⽂化衫和相册的⽅案?哪种⽅案⽤于购买⽼师纪念品的资⾦更充⾜?45、解⽅程(组)(1)(2).46、某学校初⼆级甲、⼄两班共有学⽣150⼈,他们的期末考试数学平均分为64.4分,若甲班学⽣平均分为72分,⼄班学⽣平均分为57分,那么甲、⼄两班各有学⽣多少⼈?47、⼀辆汽车从A地驶往B地,前路段为普通公路,其余路段为⾼速公路.已知汽车在普通公路上⾏驶的速度为60km/h,在⾼速公路上⾏驶的速度为100km/h,汽车从A 地到B地⼀共⾏驶了2.2h.请你根据以上信息,就该汽车⾏驶的“路程”或“时间”,提出⼀个⽤⼆元⼀次⽅程组解决的问题,并写出解答过程.48、解⽅程组.49、⼩⽂在甲、⼄两家超市发现他看中的篮球的单价相同,书包单价也相同,⼀个篮球和三个书包的总费⽤是400元.两个篮球和⼀个书包的总费⽤也是400元.(1)求⼩⽂看中的篮球和书包单价各是多少元?(2)某⼀天⼩⽂上街,恰好赶上商家促销,超市甲所有商品打九折销售,超市⼄全场购物满100元返30元购物券(不⾜100元不返券,购物券全场通⽤),如果他只能在同⼀家超市购买他看中的篮球和书包各⼀个,应选择哪⼀家超市购买更省钱?50、解⽅程组:试卷答案1.【解析】试题分析:根据等量关系:顺⽔⾏船⽤18⼩时,逆⽔⾏船⽤24⼩时,即可列出⽅程组. 由题意可列⽅程组为,故选A.考点:本题考查的是根据实际问题列⽅程组点评:解题关键是要读懂题⽬的意思,根据题⽬给出的条件,找出合适的等量关系,列出⽅程组.2.【解析】试题分析:根据等量关系:盐⽔总质量为200千克,配制前后的含盐量相同,即可列出⽅程组.由题意可列⽅程组为,故选C.考点:本题考查的是根据实际问题列⽅程组点评:解题关键是要读懂题⽬的意思,根据题⽬给出的条件,找出合适的等量关系,列出⽅程组.3.【解析】试题分析:可以设两位数的个位数为x,⼗位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.设两位数的个位数为x,⼗位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选B.考点:本题考查了⼆元⼀次⽅程的应⽤点评:解题的关键在于根据未知数的整数性质讨论未知数的具体值,注意不要漏掉两位数的个位数可以为0的情况.4.【解析】试题分析:根据同类项的定义即可得到关于a、b的⽅程组,解出即可.由题意得,解得,故选D.考点:本题考查的是同类项点评:解答本题的关键是熟记同类项的定义:所含有的字母相同,并且相同字母的指数也相同的项叫同类项.5.【解析】试题分析:根据⼆元⼀次⽅程的定义即可得到关于m、n的⽅程组,解出即可.由题意得,解得,故选D.考点:本题考查的是⼆元⼀次⽅程的定义点评:解答本题的关键是熟练掌握⼆元⼀次⽅程必须符合以下三个条件:(1)⽅程中只含有2个未知数;(2)含未知数项的最⾼次数为⼀次;(3)⽅程是整式⽅程.注意:π是⼀个数.6.【解析】试题分析:根据等式的基本性质把⽅程组中的每个⽅程分别变形,注意不能漏乘项.(1)第⼀个⽅程右边的1漏乘了3,第⼆个⽅程右边的8漏乘了2,故变形不正确;(2)第⼀个⽅程右边的1漏乘了2,第⼆个⽅程右边的8漏乘了3,故变形不正确;(3)是利⽤等式的性质把x的系数化为了互为相反数的数,变形正确;(4)是利⽤等式的性质把y的系数化为了互为相反数的数,变形正确.故选B.考点:本题考查的是解⼆元⼀次⽅程组点评:解答本题的关键是注意⽅程组中,两个⽅程中同⼀未知数的系数相等或互为相反数时,直接运⽤加减法求解.7.【解析】试题分析:⽤代⼊法解⽅程组的第⼀步:尽量⽤其中⼀个未知数表⽰系数较简便的另⼀个未知数.A、B、C、D四个答案都是正确的,但“化简⽐较容易的”只有D.故选D.考点:本题考查的是代⼊法解⼆元⼀次⽅程组点评:解答本题的关键是注意在⽤其中⼀个未知数表⽰另⼀个未知数时,尽量避免出现分数.8.【解析】试题分析:此题中四位同学均利⽤了代⼊法求⽅程组的解,需对四个答案进⾏逐⼀分析求解.A、B、D均符合等式的性质,不符合题意;C、应该由②得y=,故错误,符合题意.考点:本题考查的是代⼊法解⼆元⼀次⽅程组点评:解答本题的关键是熟练掌握代⼊法解⼆元⼀次⽅程组,同时注意⽅程在进⾏合理变形时要根据等式的性质.9.【解析】试题分析:根据⼆元⼀次⽅程的定义即可得到结果.由题意得m≠0且m+1≠0,解得m≠0且m≠-1,故选D.考点:本题考查的是⼆元⼀次⽅程的定义点评:解答本题的关键是熟练掌握⼆元⼀次⽅程必须符合以下三个条件:(1)⽅程中只含有2个未知数;(2)含未知数项的最⾼次数为⼀次;(3)⽅程是整式⽅程.注意:π是⼀个数.10.【解析】试题分析:根据题意,⼆元⼀次⽅程3a+b=9的解为正整数,分类讨论、解答出即可.根据题意,a ,b 为正整数,∴当a=1时,b=9-3=6,当a=2时,b=9-6=3,当a=3时,b=0,不符合题意,所以,⽅程在正整数范围内的解的个数是2个故选C.考点:本题主要考查了解⼆元⼀次⽅程点评:采⽤“给⼀个,求⼀个”的⽅法,即先给出其中⼀个未知数的值,再依次求出另⼀个的对应值. 11.【解析】试题分析:根据图⽰可得:长⽅形的长可以表⽰为x+2y ,长⼜是75厘⽶,故x+2y=75,长⽅形的宽可以表⽰为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联⽴两个⽅程得。

(好题)初中数学八年级数学上册第五单元《二元一次方程组》测试(含答案解析)(3)

(好题)初中数学八年级数学上册第五单元《二元一次方程组》测试(含答案解析)(3)

一、选择题1.在长方形ABCD中,放入6个形状大小完全相同的小长方形,所标尺寸如图所示,则小长方形的宽AE的长度为() cm .A.1 B.1.6 C.2 D.2.52.如图,一次函数162y x=-+的图象分别交x、y轴于点A、B,与正比例函数y x=的图象交于第一象限内的点C,则OBC的面积为()A.12 B.24 C.27 D.483.由于今年重庆受到洪水袭击,造成南滨路水电站损害;重庆市政府决定对南滨路水电站水库进行加固.现有4辆板车和5辆卡车一次能运27吨水电站加固材料,10辆板车和3辆卡车一次能运20吨水电站加固材料,设每辆板车每次可运x吨货,每辆卡车每次能运y 吨货,则可列方程组()A.452710320x yx y+=⎧⎨-=⎩B.45271020x yx y-=⎧⎨+=⎩C.452710320x yx y-=⎧⎨-=⎩D.452710320x yx y+=⎧⎨+=⎩4.我国民间流传的数学名题:“只闻隔壁人分银,不知多少银和人,每人7两少7两,每人半斤多半斤,试问各位善算者,多少人分多少银?(1斤等于10两)”,其大意是:听见隔壁一些人在分银两,每人7两还缺7两,每人半斤则多半斤,问共有多少人?共有多少两银子?设有x个人,共分y两银子,根据题意,可列方程组为()A.7755x yy x-=⎧⎨=-⎩B.7+755x yy x=⎧⎨-=⎩C.7755y xy x-=⎧⎨-=⎩D.7755x yy x-=⎧⎨-=⎩5.已知24510a ba b+=⎧⎨-=⎩,则+a b等于()A.8 B.7 C.6 D.56.如图,一次函数y kx b =+与2y x =+的图象相交于点(,4)P m ,则方程组2y x y kx b=+⎧⎪=+⎨⎪⎩的解是( )A .(2,4)B .(2,4)-C .(4,2)D .(4,2)- 7.已知关于x ,y 的方程组22331x y k x y k +=⎧⎨+=-⎩,以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③不论k 取什么实数,3x y +的值始终不变;④当1y x ->-时,1k >.其中正确的是( )A .①②③B .①②④C .①③④D .②③④ 8.下列四组数值是二元一次方程26x y -=的解的是( )A .15x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .24x y =⎧⎨=⎩D .23x y =⎧⎨=⎩9.下列各组数中①22x y =⎧⎨=⎩; ②21x y =⎧⎨=⎩;③22x y =⎧⎨=-⎩;④16x y ⎧⎨⎩==是方程410x y +=的解的有( )A .1个B .2个C .3个D .4个10.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12aD .﹣12a 11.下列方程组的解为31x y =⎧⎨=⎩的是( ) A .224x y x y -=⎧⎨+=⎩ B .253x y x y -=⎧⎨+=⎩ C .32x y x y +=⎧⎨-=⎩ D .2536x y x y -=⎧⎨+=⎩ 12.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,可列式为( )A .2256x y x y +=⎧⎨=⎩B .2265x y x y +=⎧⎨=⎩C .22310x y x y +=⎧⎨=⎩D .22103x y x y +=⎧⎨=⎩ 二、填空题13.已知直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (2,b ),则关于x ,y 的方程组100x y mx y n -+=⎧⎨-+=⎩的解是______. 14.正比例函数y=kx 的图象经过点(﹣2,4),则k=__. 15.若方程组41524x y k x y +=-⎧⎨+=⎩的解为x 、y ,且x +y >0,则k 的取值范围是__________. 16.已知x ,y 满足二元一次方程3x +y =6,若y <0,则x 的取值范围是_____.17.若关于,x y 的二元一次方程组42x y k x y k-=⎧⎨+=⎩的解也是二元一次方程27x y -=-的解;则k 的值是______18.已知24x y -=,用含x 的代数式表示y 为:y =____________.19.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩,的解是13x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩的解是_____. 20.已知x 和y 满足方程组3634x y x y +=⎧⎨+=⎩,则x-y 的值为_____. 三、解答题21.某景点的门票价格如下表:购票人数1~5051~100100以上每人门票价2016101)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1828元,如果两班联合起来作为一个团体购票,则只需花费1020元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少元?22.某公司决定从甲、乙、丙三个工厂共购买100件同种产品A,计划从丙厂购买的产品数量是从甲厂购买的产品数量的2倍;从丙厂购买的产品数量的12与从甲厂购买的产品数量之和,刚好等于从乙厂购买的产品数量.(1)设从甲厂购买x件产品A,从乙厂购买y件产品A,请用列方程组的方法求出该公司从三个工厂各应购买多少件产品A;(2)已知这三个工厂生产的产品A的优品率分别为甲:80%;乙:85%;丙:90%,求快乐公司所购买的100件产品A的优品率;(3)在第(2)题的基础上,你认为该公司在购买总数100件不变的情况下,能否通过改变计划,调整从三个工厂购买产品A的数量,使购买产品A的优品率上升2%?若能,请求出所有可能的购买方案;若不能,请说明理由(各厂购买的优品件数是整数).23.(1)如图1,则∠A、∠B、∠C、∠D之间的数量关系为.(2)如图2,AP、CP分别平分∠BAD、∠BCD.若∠B=36°,∠D=14°,求∠P的度数;(3)如图3,CP、AG分别平分∠BCE、∠FAD,AG反向延长线交CP于点P,请猜想∠P、∠B、∠D之间的数量关系.并说明理由.24.解方程:4 34 2312 x yx y⎧+=⎪⎨⎪-=⎩25.解方程组:(1)3 326 x yx y+=-⎧⎨+=⎩(2)0.31 0.20.519x yx y-=⎧⎨-=⎩26.行政区划调整后,某村有两段长度相等的道路需硬化,现分别由甲、乙两个工程队同时开始施工.如图的线段和折线是两队前12天硬化的道路长y y 乙甲、(米)与施工时间x (天)之间的函数图象.根据图象解答下列问题:(1)直接写出y y 乙甲、与x (天)之间的函数关系式:①当012x <≤时,y =甲 _ ;②当04x <≤时,y =乙 ;当412x <≤时,y =乙 ;(2)求图中点M 的坐标,并说明点M 的横、纵坐标表示的实际意义;(3)施工过程中,甲队的施工速度始终不变,而乙队在施工12天后,每天的施工速度提高到120米/天,两队将同时完成任务.两队还需要多少天完成任务?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设小长方形的长为xcm ,宽为ycm ,则AD=x+3y ,AB=x+y=6+2y ,联立构造方程组求解即可.【详解】设小长方形的长为xcm ,宽为ycm ,则AD=x+3y ,AB=x+y=6+2y 即x-y=6,根据题意,得3146x y x y +=⎧⎨-=⎩, 解得62x y =⎧⎨=⎩, 即AE=2,故选C .【点睛】本题考查了二元一次方程组的应用,合理引进未知数,列出正确的方程组是解题的关键. 2.A解析:A【分析】 因直线162y x =-+交y 轴于点B ,故可求得点B 的坐标,从而可得OB 的长,又直线162y x =-+与直线y x =相交,故可求得点C 的坐标,从而可得△OBC 的边OB 上的高,因此可求得△OBC 的面积.【详解】 对于直线162y x =-+,令0x =,得:6y = ∴6OB = 解方程组162y x y x =⎧⎪⎨=-+⎪⎩,得:44x y =⎧⎨=⎩ 即点C 的坐标为(4,4)∴点C 到y 轴的距离为4 ∴14122OBC SOB =⨯⨯= 故选:A【点睛】 本题主要考查了求两直线交点坐标、平面直角坐标系中求直线围成的三角形面积,关键分别求得点B 、点C 的坐标,而求两直线的交点坐标体现了数形结合的思想.3.D解析:D【分析】以每次运送加固材料为等量关系,列方程组即可.【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4527x y +=;根据10辆板车运货量+3辆卡车运货量=20吨,得方程10320x y +=.可列方程组为452710320x y x y +=⎧⎨+=⎩. 故选D .【点睛】本题考查了二元一次方程组的应用,解题关键是找准题目数量关系,找到等量关系列方程组.4.D解析:D【分析】根据“每人7两还缺7两,每人半斤则多半斤”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:依题意,得:7755x y y x -=⎧⎨-=⎩. 故选:D .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.D解析:D【分析】解二元一次方程组再进行计算即可;【详解】24510a b a b +=⎧⎨-=⎩, 10a b -=两边同时乘以2得:2220a b -=,245a b +=减去2220a b -=得:615b =-, 解得:52b =-, 代入10a b -=得:152a =, ∴155522a b +=-=; 故答案选D .【点睛】本题主要考查了二元一次方程组的求解,结合代数式求值是解题的关键.6.A解析:A【分析】将点P (m 、4)代入2y x =+,求出m 的值,结合图像交点P 的坐标即为二元一次方程组的解.【详解】一次函数y kx b =+与2y x =+的交点为P (m 、4)24m ∴+=解得2m =∴点P 的坐标为(2、4)2y x y kx b =+⎧∴⎨=+⎩的解为:24x y =⎧⎨=⎩故选:A .【点睛】本题考查了一次函数与二元一次方程组的关系,解题关键是求出点P 坐标,结合图形求解.7.A解析:A【分析】直接利用二元一次一次方程组的解法表示出方程组的解进而分别分析得出答案.【详解】解:①当0k =时,原方程组可整理得:20231x y x y +=⎧⎨+=-⎩, 解得:21x y =-⎧⎨=⎩, 把21x y =-⎧⎨=⎩代入2x y -得: 2224x y -=--=-,即①正确,②解方程组22331x y k x y k +=⎧⎨+=-⎩得: 321x k y k =-⎧⎨=-⎩, 若0x y +=,则(32)(1)0k k -+-=, 解得:12k =, 即存在实数k ,使得0x y +=,即②正确,③解方程组22331x y k x y k +=⎧⎨+=-⎩得: 321x k y k =-⎧⎨=-⎩, 3323(1)1x y k k ∴+=-+-=,∴不论取什么实数,3x y +的值始终不变,故③正确;④解方程组22331x y k x y k +=⎧⎨+=-⎩得: 321x k y k =-⎧⎨=-⎩, 当1y x ->-时,1321k k --+>-,1k ∴<,故④错误,故选:A .【点睛】本题主要考查解二元一次方程组的能力,熟练掌握解二元一次方程组的技能和二元一次方程的解得定义.8.B解析:B【分析】将各项中x 与y 的值代入方程检验即可.【详解】解:A 、把15x y =⎧⎨=⎩代入方程得:左边=2-5=-3,右边=6,左边≠右边,不符合题意; B 、把42x y =⎧⎨=⎩代入方程得:左边=8-2=6,右边=6,左边=右边,符合题意; C 、把24x y =⎧⎨=⎩代入方程得:左边=4-4=0,右边=6,左边≠右边,不符合题意; D 、把23x y =⎧⎨=⎩代入方程得:左边=4-3=1,右边=6,左边≠右边,不符合题意; 故选:B .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 9.B解析:B【详解】解:把①22x y ==⎧⎨⎩代入得左边=10=右边; 把②2{1x y ==代入得左边=9≠10; 把③2{2x y ==-代入得左边=6≠10; 把④1{6x y ==代入得左边=10=右边;所以方程4x +y =10的解有①④2个.故选B .10.A解析:A【分析】设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2a m a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.11.D解析:D【解析】把31x y =⎧⎨=⎩代入选项A 第2个方程24x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项B 第2个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项C 第1个方程3x y +=不成立,故错误; 把31x y =⎧⎨=⎩代入选项D 两个方程均成立,故正确;故选D.12.A解析:A【分析】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x、y的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:22 56x yx y+=⎧⎨=⎩.故选:A.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题13.【分析】首先将点P(2b)代入直线l1:y=x+1求出b的值进而得到P点坐标再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案【详解】解:∵直线y=x+1经过点P(2b)∴b=2+1解析:23 xy=⎧⎨=⎩【分析】首先将点P(2,b)代入直线l1:y=x+1求出b的值,进而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】解:∵直线y=x+1经过点P(2,b),∴b=2+1,解得b=3,∴P(2,3),∴关于x的方程组10x ymx y n-+=⎧⎨-+=⎩的解为23xy=⎧⎨=⎩,故答案为:23 xy=⎧⎨=⎩.【点睛】此题主要考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.14.-2【分析】将(﹣24)代入正比例函数y=kx的的解析式求出k=-2【详解】∵正比例函数y=kx的图象经过点(﹣24)∴-2k=4解得k=-2故答案为:-2【点睛】此题考查待定系数法求函数解析式正确解析:-2【分析】将(﹣2,4)代入正比例函数y=kx的的解析式,求出k=-2.【详解】∵正比例函数y=kx的图象经过点(﹣2,4),∴-2k=4,解得k=-2,故答案为:-2.【点睛】此题考查待定系数法求函数解析式,正确理解待定系数法及正确计算是解题的关键. 15.k>-3【分析】本题可将两式相加得到6x+6y=k+3根据x+y的取值可得出k 的值【详解】两式相加得:6x+6y=k+3∵x+y>0∴6x+6y=6(x+y)>0即k+3>0∴k>-3故答案为:k>解析:k>-3【分析】本题可将两式相加,得到6x+6y=k+3,根据x+y的取值,可得出k的值.【详解】两式相加得:6x+6y=k+3,∵x+y>0∴6x+6y=6(x+y)>0,即k+3>0,∴ k>-3,故答案为:k>-3.【点睛】本题考查的是二元一次方程的解的性质,通过化简得到x+y的形式,再根据x+y>0求得k 的取值.16.x>2【分析】把x看作已知数求出y根据y<0求出x的范围即可【详解】方程整理得:y=6-3x由y<0得到6-3x<0解得:x>2故答案为x>2【点睛】此题考查了二元一次方程的解解一元一次不等式熟练掌解析:x>2.【分析】把x看作已知数求出y,根据y<0求出x的范围即可.【详解】方程整理得:y=6-3x,由y<0,得到6-3x<0,解得:x>2.故答案为x>2.【点睛】此题考查了二元一次方程的解,解一元一次不等式,熟练掌握定义是解本题的关键. 17.-1【分析】把k 看作已知数表示出方程组的解代入已知方程计算即可得到k 的值【详解】①+②得:2x=6k 解得x=3k②-①得2y=-2k 解得:y=-k 代入2x-y=-7得6k+k=-7解得k=-1故答案解析:-1【分析】把k 看作已知数表示出方程组的解,代入已知方程计算即可得到k 的值.【详解】42x y k x y k -=⎧⎨+=⎩①② ①+②得:2x=6k ,解得,x=3k ,②-①得,2y=-2k ,解得:y=-k代入2x-y=-7得,6k+k=-7解得,k=-1.故答案为:-1.【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组.方程组的解即为能使方程组中两方程都成立的未知数的值.18.2x-4【分析】【详解】由2x-y=4得:-y=4-2x ∴y=2x-4故答案为:2x-4 解析:2x-4【分析】【详解】由2x-y=4得:-y=4-2x ,∴ y=2x-4,故答案为:2x-419.【分析】根据已知得出关于ab 的方程组进而得出答案【详解】解:∵关于xy 的二元一次方程组的解是∴方程组中解得:故答案为:【点睛】本题主要考查二元一次方程组的解法关键是根据整体思想及方程组的解法进行求解解析:21a b =⎧⎨=-⎩【分析】根据已知得出关于a ,b 的方程组进而得出答案.【详解】解:∵关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩,的解是13x y =⎧⎨=⎩, ∴方程组()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩中13a b a b +=⎧⎨-=⎩, 解得:21a b =⎧⎨=-⎩. 故答案为:21a b =⎧⎨=-⎩. 【点睛】本题主要考查二元一次方程组的解法,关键是根据整体思想及方程组的解法进行求解. 20.1【详解】-②可得2x-2y=2即可得x-y=1故答案为1解析:1【详解】3634x y x y +=⎧⎨+=⎩①②, -②可得,2x-2y=2,即可得x-y=1.故答案为1三、解答题21.(1)53人;49人;(2)1班节约了490元,2班节约了318元【分析】(1)设(1)班有x 名学生,(2)班有y 名学生,根据“如果两班都以班为单位单独购票,则一共支付1828元,如果两班联合起来作为一个团体购票,则只需花费1020元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)利用节约的钱数=购买每张票节约的钱数×班级人数,即可求出结论.【详解】解:(1)∵1020÷16=6334,6334不为整数, ∴(1)(2)两班的人数之和超过100人.设(1)班有x 名学生,(2)班有y 名学生, 依题意得:2016182810()1020x y x y +=⎧⎨+=⎩, 解得:4953x y =⎧⎨=⎩. 答:(1)班有49名学生,(2)班有53名学生.(2)(1)班节约的钱数为(20-10)×49=490(元),(2)班节约的钱数为(16-10)×53=318(元).答:团体购票与单独购票相比较,(1)班节约了490元,(2)班节约了318元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(1)从甲、乙、丙购买的数量分别为20、40、40;(2)86%;(3)能,方案见解析【分析】(1)根据题意所述的两个等量关系列出方程组,解出即可得出答案;(2)先求出优品数量,然后除以100即可得出优品率;(3)设从甲厂购买x件,从乙厂购买y件,则从丙厂购买(100-x-y)件,根据优品的数量不变,可得出方程,解出即可.【详解】解:(1)由题意得:2100122x x yx x y++=⎧⎪⎨+⨯=⎪⎩,解得:2040 xy=⎧⎨=⎩,所以从甲、乙、丙购买的数量分别为20、40、40;(2)优品率为(80%×20+85%×40+90%×40)÷100=86%;(3)设从甲厂购买x件,从乙厂购买y件,则从丙厂购买(100-x-y)件,80%x+85%y+90%(100-x-y)=100(86%+2%),化简得:2x+y=40因为各厂购买的优品件数是整数,所以45x,1720y要是整数,所以当y=0时,x=20符合;则从甲购20件,乙购0件,丙购80件;当y=20时,x=10符合;则从甲购10件,乙购20件,丙购70件;当y=40时,x=0符合;则从甲购0件,乙购40件,丙购60件.【点睛】本题考查了二元一次方程组的应用,解答此类应用性题目,一定要仔细审题,找到等量关系,然后运用方程思想进行解答.23.(1)∠A+∠B=∠C+∠D;(2)∠P=25°;(3)2∠P=∠B+∠D,理由见解析【分析】(1)根据三角形的内角和定理,结合对顶角的性质可求解;(2)根据角平分线的定义可得∠BAP=∠DAP,∠BCP=∠DCP,结合(1)的结论可得2∠P=∠B+∠D,再代入计算可求解;(3)根据角平分线的定义可得∠ECP=∠PCB,∠FAG=∠GAD,结合三角形的内角和定理可得∠P+∠GAD=∠B+∠PCB,∠P+(180°﹣∠GAD)=∠D+(180°﹣∠ECP),进而可求解.【详解】解:(1)∵∠AOB+∠A+∠B =∠COD+∠C+∠D =180°,∠AOB =∠COD ,∴∠A+∠B =∠C+∠D ,故答案为∠A+∠B =∠C+∠D ;(2)∵AP 、CP 分别平分∠BAD 、∠BCD ,∴∠BAP =∠DAP ,∠BCP =∠DCP ,由(1)可得:∠BAP+∠B =∠BCP+∠P ,∠DAP+∠P =∠DCP+∠D ,∴∠B ﹣∠P =∠P ﹣∠D ,即2∠P =∠B+∠D ,∵∠B =36°,∠D =14°,∴∠P =25°;(3)2∠P =∠B+∠D .理由:∵CP 、AG 分别平分∠BCE 、∠FAD ,∴∠ECP =∠PCB ,∠FAG =∠GAD ,∵∠PAB =∠FAG ,∴∠GAD =∠PAB ,∵∠P+∠PAB =∠B+∠PCB ,∴∠P+∠GAD =∠B+∠PCB①,∵∠P+∠PAD =∠D+∠PCD ,∴∠P+(180°﹣∠GAD )=∠D+(180°﹣∠ECP ),P GAD D ECP ∴∠-∠=∠-∠②∴①+②得:2∠P =∠B+∠D .【点睛】本题考查的是三角形的内角和定理的应用,角平分线的定义,二元一次方程组的解法,掌握以上知识是解题的关键.24.1083x y =⎧⎪⎨=⎪⎩【分析】先将方程组整理为43482312x y x y +=⎧⎨-=⎩,然后利用加减消元法解二元一次方程组. 【详解】解:方程组整理得43482312x y x y +=⎧⎨-=⎩①②, ①+②得:660x =,解得:10x =,把10x =代入①得:83y =,则方程组的解为1083x y =⎧⎪⎨=⎪⎩. 【点睛】本题考查解二元一次方程组,掌握加减消元法解方程组的计算步骤和计算法则正确计算是解题关键.25.(1)1215x y =⎧⎨=-⎩;(2)370110x y =⎧⎨=⎩【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【详解】 解:3,32 6.x y x y +=-⎧⎨+=⎩①② ①2⨯,得226x y +=-.③②-③,得12x =.将12x =代入①,得15y =-.∴原方程组的解为12,15.x y =⎧⎨=-⎩(2)0.31,0.20.519.x y x y -=⎧⎨-=⎩①② ①10⨯,得31010x y -=.③②20⨯,得410380x y -=.④④-③,得370x =.将370x =代入③,得110y =.∴原方程组的解为370,110.x y =⎧⎨=⎩ 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.26.(1)①100x ;②150x ;50400x +;(2)()8,800M ;工作到第8天时,甲乙两工程队硬化道路的长度相等,均为800m ;(3)10天【分析】(1)根据图像,已知两点的坐标,可根据待定系数法列方程,求函数解析式即可; (2)根据一次函数列出二元一次方程组求出点M 的坐标,即可得出实际意义; (3)设两队还需x 天完成任务,根据速度⨯天数=施工距离,则甲队施工的总距离为1200100x +,乙队施工的总距离为1000120x +,根据总施工道路长相等列出一元一次方程从而求出x 的即可.【详解】(1)① 设=y kx 甲,由图像可知=y kx 甲经过点()12,1200,∴120012k =100k ∴==100y x ∴甲②当04x <≤时,设1=k y x 乙由图像可知1=y k x 乙经过点()4,600∴1600=4k1150k ∴=∴=150y x 乙当412x <≤时,设2=k y x b +乙由图像可知2=k y x b +乙经过点()4,600,点()12,1000224600121000k b k b +=⎧∴⎨+=⎩ 250400k b =⎧∴⎨=⎩=50400y x +乙(2)根据题意可得:10050400y x y x =⎧⎨=+⎩ 解得:8800x y =⎧⎨=⎩M ∴()8,800∴点M 的横、纵坐标的实际意义:工作到第8天时,甲乙两工程队硬化道路的长度相等,均为800m .()3设两队还需要x 天完成任务,有题意得:10001201200100x x +=+解得:10x =所以两队还需要10天完成任务.【点睛】本题主要考查了用待定系数法求一次函数解析式,用一次函数解决实际问题,解题关键是数形结合读懂图像,找准等量关系列一元一次方程.。

第五章二元一次方程组单元测试2024-2025学年北师大版数学八年级上册

第五章二元一次方程组单元测试2024-2025学年北师大版数学八年级上册

北师大版八年级上册第五章二元一次方程组一、选择题1.下列方程中,属于二元一次方程的是( )A .523x -=B .31x y +=C .26x y -=D .221x y -=2.方程组的解是31x y x y +=⎧⎨-=-⎩的解是( ) A . B .32x y =-⎧⎨=-⎩ C .21.x y =⎧⎨=⎩, D .23.x y =⎧⎨=⎩, 3.在解二元一次方程组22425x y x y -=⎧⎨-=⎩①②时,下列方法中无法消元的是( ) A .-①② B .由①变形得22x y =+③,将③代入②C .4⨯+①②D .由②变形得245y x =-③,将③代入①4.《张丘建算经》中有这样一首古诗:甲乙隔溪牧羊,二人互相商量;甲得乙羊九只,多乙一倍正当;乙说得甲九只,两人羊数一样;问甲乙各几羊,让你算个半晌,如果设甲有羊x 只,乙有羊y 只,那么可列方程组( )A .B .C .D .5.如图,在天平上放若干苹果和香蕉,其中①②的天平保持平衡,现要使③中的天平也保持平衡,需要在天平右盘中放入砝码( )A .350克B .300克C .250克D .200克6.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax b y kx=+⎧⎨=⎩的解是( ) 12x y =⎧⎨=⎩A.4.53xy=⎧⎨=⎩B.31xy=-⎧⎨=⎩C.13xy=⎧⎨=-⎩D.3xy=⎧⎨=⎩7.为清理积压的库存,商场决定打折销售,已知甲、乙两种服装的原单价共为440元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为342元,则甲、乙两种服装的原单价分别是A.200元,240元B.240元,200元C.280元,160元D.160元,280元8.上学年初一某班的学生都是两人一桌,其中男生与女生同桌,这些女生占全班女生的,本学年该班新转入4个男生后,男女生刚好一样多.设上学年该班有男生x人,女生y人,则列方程组为()A.B.C.D.9.某校七年级1班学生为了参加学校文化评比,买了22张彩色的卡纸制作如图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.B.C.D.10.现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是()二、填空题11.已知3x 2a +b -3-5y 3a -2b +2=1是关于x ,y 的二元一次方程,则(a +b )b = .12. 已知二元一次方程,请写出该方程的一组整数解.关于x ,y 的方程组{x +6y =42x −3y =2k −1的解也是二元一次方程的解,则k 的值为 . 13.若方程组的解是 ,则直线y =-2x +b 与直线y =x -a 的交点坐标是 .14.在方程组中,若未知数x 、y 满足x +y >0,则m 的取值范围是 . 15.我国古代数学书《四元玉鉴》中有这样﹣一个问题:“九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱”.计算可得甜果的个数是 .16.小明与爸爸的年龄和是52岁,爸爸对小明说:“当我的年龄是你现在的年龄的时候,你还要16年才出生呢.”如果设现在小明的年龄是x 岁,爸爸的年龄是y 岁,则可列二元一次方程组为: .17.如图,已知函数y ax b =+和y kx =的图象交于点P ,则二元一次方程组y ax b y kx=+⎧⎨=⎩的解是________.三、解答题18.解方程组:(1). (2).19.已知方程组与有相同的解,求m 和n 值.20.大型客车每辆能坐54人,中型客车每辆能坐36人,现有378人,问需要大、中型客车各几辆才能使每个人上车都有座位,且每辆车正好坐满?21.某校积极开展课外兴趣活动,已知701班同学中,参加球类项目的学生与参加艺术类项目的学生共32人,且参加球类项目的学生比参加艺术类项目的学生多4人.求参加球类和艺术类项目的学生各多少人. 3x y +=22.某班组织班团活动,班委会准备15元钱全部用来购买笔记本和中性笔两种奖品.已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的数量关系式;(2)有多少种购买方案?请列举所有可能的结果.23.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?24.如图,已知函数y=x+2的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,4)且与x轴及y=x+2的图象分别交于点C、D,点D的坐标为(23,n)(1)则n=,k=,b=_______.(2)若函数y=kx+b的函数值大于函数y=x+2的函数值,则x的取值范围是_______.(3)求四边形AOCD的面积.25.某商场购进甲、乙两种服装后,都加价40%标价出售,春节期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元,问这两种服装的标价和进价各是多少元?26.某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.类型价格A型B型进价(元/件)60100标价(元/件)100160(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?27.某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:里程数(千米)时间(分钟)车费(元)小聪3109小明61817.4(1)求x,y的值;(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从家打车到郊区,总里程为23千米,耗时30分钟,求小强需支付多少车费.28.植树造林可以减少二氧化碳排放,为实现“碳中和”做出贡献,还可以美化环境:为此某区计划由甲施工队把城区主干道某一段公路的一侧栽上若干棵小叶榕树;若施工队平均每人植5棵小叶榕树,则施工队可以种植的棵数比计划种植的棵数少10棵;若施工队平均每人植6棵小叶榕树,则施工队可以种植的棵数比计划种植的棵数多5棵.求甲施工队有多少人?计划种植的小叶榕树有多少棵?。

(好题)初中数学八年级数学上册第五单元《二元一次方程组》测试卷(答案解析)

(好题)初中数学八年级数学上册第五单元《二元一次方程组》测试卷(答案解析)

一、选择题1.已知关于x 、y 的方程组1427x y ax y a +=+⎧⎨-=--⎩得出下列结论,正确的是( )①当0a =时,方程组的解也是方程1x y +=的解;②当x y =时,52a =-;③不论a 取什么实数,3x y -的值始终不变:④不存在a 使得23x y =成立; A .①②③B .①②④C .①③④D .②③④2.如图,一次函数y kx b =+与2y x =+的图象相交于点(,4)P m ,则方程组2y x y kx b=+⎧⎪=+⎨⎪⎩的解是( )A .(2,4)B .(2,4)-C .(4,2)D .(4,2)-3.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是( )(用含有a 、b 的代数式表示).A .a-bB .a+bC .abD .2ab4.下列四组数值是二元一次方程26x y -=的解的是( )A .15x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .24x y =⎧⎨=⎩D .23x y =⎧⎨=⎩5.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .452710320x y x y -=⎧⎨+=⎩C .452710320x y x y +=⎧⎨+=⎩D .427510203x yx y -=⎧⎨-=⎩6.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是3219423x y x y +=⎧⎨+=⎩,类似地,图2所示的算筹图表示的方程组为( )A .2114322x y x y +=⎧⎨+=⎩B .2114327x y x y +=⎧⎨+=⎩C .3219423x y x y +=⎧⎨+=⎩D .264327x y x y +=⎧⎨+=⎩7.使用喷壶在家中喷洒消毒液是预防新冠病毒的有效措施.某同学为了更加合理、科学、节约的喷洒消毒液,做了如下的记录.壶中可装消毒液400ml ,喷洒每次喷出20ml 的水,壶里的剩余消毒液量y (ml)与喷洒次数n (次)有如下的关系: 喷洒次数(n )1 2 3 4 … 壶中剩余消毒液量y (ml ) 380360340320…A .y 随n 的增加而增大B .喷洒8次后,壶中剩余量为160mlC .y 与n 之间的关系式为y =400-nD .喷洒18次后,壶中剩余量为40ml8.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( )A .31t -= .B .33t -=C .93t =D .91t =9.已知关于x ,y 的方程组232x y ax y a -=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a =0时,x ,y 的值互为相反数;②20x y =⎧⎨=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x ﹣y =1﹣a 的解;其中正确的是( ) A .①② B .①③ C .②③ D .①②③ 10.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( ) A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=311.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x 尺,绳子长为y 尺,则所列方程组正确的是( )A . 4.50.51y x y x =-⎧⎨=+⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =+⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩12.已知a b c 、、是ABC 的三边长,其中a b 、是二元一次方程组10216a b a b +=⎧⎨+=⎩的解,那么c 的值可能是下面四个数中的( ) A .2B .6C .10D .18二、填空题13.定义一种新的运算:2a b a b =-☆,例如:()()312317-=⨯--=☆,那么 (1)若()216b -=-☆,那么b =______;(2)若0a b =☆,且关于x ,y 的二元一次方程()1520a x by a -++-=,当a ,b 取不同值时,方程都有一个公共解,那么公共解为_________.14.已知直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (2,b ),则关于x ,y 的方程组100x y mx y n -+=⎧⎨-+=⎩的解是______.15.已知方程组2300x y ax y c -+=⎧⎨-+=⎩的解为11x y =-⎧⎨=⎩,则一次函数y =2x +3与y =ax +c 的图象的交点坐标是_____________.16.如果实数m ,n 满足方程组212m n m n -=⎧⎨+=⎩,那么2021(2)m n -=______. 17.在平面直角坐标系xOy 中,二元一次方程ax+by=c 的图象如图所示.则当x=3时,y 的值为_______.18.若关于,x y 的方程组275x y kx y k +=+⎧⎨-=⎩的解互为相反数,则k =_____.19.在方程27x y +=中,用含x 的代数式表示y ,则得___________.20.方程组6293x yx y a =-⎧⎨-=-⎩的解x 、y 互为相反数,则a =_____.三、解答题21.解方程组31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩22.如图,直线y kx b =+分别交x 轴于点()4,0A ,交y 轴于点()0,8B . (1)求直线AB 的函数表达式.(2)若点()2,P m ,点(),2Q n 是直线AB 上两点,求线段PQ 的长.23.目前,新型冠状病毒在我国虽可控可防,但不可松懈.天府新区某校欲购置规格分别为300ml 和500ml 的甲、乙两种免洗手消毒液共300瓶,其中甲消毒液15元/瓶,乙消毒液20元/瓶.(1)如果购买这两种消毒液共5550元,求甲、乙两种消毒液各购买多少瓶?(2)在(1)的条件下,若该校在校师生共1320人,平均每人每天都需使用10ml 的免洗手消毒液,则这批消毒液可使用多少天? 24.解方程组:253420x y x y -=⎧⎨+=⎩25.(1)解方程组:1?37x y x y =+⎧⎨+=⎩;(2)解方程组:5210?258?x y x y +=⎧⎨+=⎩.26.设一次函数11y k x b =+(10k ≠)的图像为直线1l ,一次函数22y k x b =+(20k ≠)的图像为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)求过点()1,4P 且与已知直线21y x =--平行的直线l 的函数表达式;(2)设(1)中的直线l 分别与x 轴、y 轴交于A 、B 两点,直线21y x =--分别与x 轴、y 轴交于C 、D 两点,求四边形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除1.A 解析:A 【分析】①把a 看做已知数表示出方程组的解,把a=0代入求出x 与y 的值,代入方程检验即可;②令x=y 求出a 的值,即可作出判断;③把x 与y 代入3x-y 中计算得到结果,判断即可;④令2x=3y 求出a 的值,判断即可. 【详解】解:1427x y a x y a +=+⎧⎨-=--⎩①②,①+②得:3x=3a-6, 解得:x=a-2,把x=a-2代入①得:y=3a+3, 当a=0时,x=-2,y=3,把x=-2,y=3代入x+y=1得:左边=-2+3=1,右边=1,是方程的解; 当x=y 时,a-2=3a+3,即a=52-; 3x-y=3a-6-3a-3=-9,无论a 为什么实数,3x-y 的值始终不变,为-9; 令2x=3y ,即2a-4=9a+9,即a=137-,存在, 则正确的结论是①②③, 故选A . 【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.2.A解析:A 【分析】将点P (m 、4)代入2y x =+,求出m 的值,结合图像交点P 的坐标即为二元一次方程组的解. 【详解】一次函数y kx b =+与2y x =+的交点为P (m 、4)24m ∴+= 解得2m =∴点P 的坐标为(2、4)2y x y kx b =+⎧∴⎨=+⎩的解为:24x y =⎧⎨=⎩【点睛】本题考查了一次函数与二元一次方程组的关系,解题关键是求出点P 坐标,结合图形求解.3.C解析:C 【分析】设小正方形的边长为x ,大正方形的边长为y ,列方程求解,用大正方形的面积减去4个小正方形的面积即可. 【详解】解:设小正方形的边长为x ,大正方形的边长为y ,则:22x y ay x b +=⎧⎨-=⎩, 解得:42a b x a b y -⎧=⎪⎪⎨+⎪=⎪⎩, ∴阴影面积=(2a b +)2﹣4×(4a b -)22222224444a ab ba ab b ab ++-+=-==ab . 故选C . 【点睛】本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键.4.B解析:B 【分析】将各项中x 与y 的值代入方程检验即可. 【详解】解:A 、把15x y =⎧⎨=⎩代入方程得:左边=2-5=-3,右边=6,左边≠右边,不符合题意;B 、把42x y =⎧⎨=⎩代入方程得:左边=8-2=6,右边=6,左边=右边,符合题意;C 、把24x y =⎧⎨=⎩代入方程得:左边=4-4=0,右边=6,左边≠右边,不符合题意;D 、把23x y =⎧⎨=⎩代入方程得:左边=4-3=1,右边=6,左边≠右边,不符合题意;故选:B . 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.C解析:C 【分析】根据等量关系式“①4辆板车运货量+5辆卡车运货量=27吨;②10辆板车运货量+3辆卡车运货量=20吨”根据相等关系就可设未知数列出方程. 【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4x+5y=27; 根据10辆板车运货量+3辆卡车运货量=20吨,得方程10x+3y=20. 可列方程组为452710320x y x y +⎧⎨+⎩==. 故选:C . 【点睛】由关键性词语“4辆板车和5辆卡车一次能运27吨货”,“10辆板车和3车卡车一次能运货20吨”,找到等量关系是解决本题的关键.6.B解析:B 【分析】类比图1所示的算筹的表示方法解答即可. 【详解】解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为2114327x y x y +=⎧⎨+=⎩; 故选:B . 【点睛】本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.第II 卷(非选择题)请点击修改第II 卷的文字说明7.D解析:D 【分析】先利用待定系数法求出y 与n 之间的函数关系式,再根据一次函数的性质逐项判断即可得. 【详解】由表格可知,y 与n 之间的函数关系式为一次函数, 设y 与n 之间的函数关系式为y kn b =+,将点(1,380),(2,360)代入得:3802360k b k b +=⎧⎨+=⎩,解得20400k b =-⎧⎨=⎩,则y 与n 之间的函数关系式为20400y n =-+,选项C 错误;由一次函数的性质可知,y 随n 的增大而减小,选项A 错误; 当8n =时,208400240y =-⨯+=,选项B 错误; 当18n =时,201840040y =-⨯+=,选项D 正确; 故选:D . 【点睛】本题考查了利用待定系数法求一次函数的解析式、一次函数的性质等知识点,熟练掌握待定系数法是解题关键.8.C解析:C 【分析】运用加减消元法求解即可. 【详解】解:解方程组232261s t s t +=⎧⎨-=-⎩①②时,①-②,得3t-(-6t)=2-(-1),即,9t=3, 故选:C . 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.B解析:B 【分析】把a =0代入方程组,可求得方程组的解,把2x y =⎧⎨=⎩代入方程组,可得a =1,可判断②;把a =﹣1代入方程可求得a 的值为2,可判断③;可得出答案. 【详解】解:①当a =0时,原方程组为230x y x y -=⎧⎨+=⎩,解得11x y =-⎧⎨=⎩,②把20x y =⎧⎨=⎩代入方程组得到a =1,不符合题意.③当a =﹣1时,原方程组为242x y x y -=⎧⎨+=-⎩,解得02x y =⎧⎨=-⎩,当02x y =⎧⎨=-⎩时,代入方程组可求得a =﹣1,把2xy=⎧⎨=-⎩与a=﹣1代入方程2x﹣y=1﹣a得,方程的左右两边成立,综上可知正确的为①③.故选:B.【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.10.C解析:C【分析】根据二元一次方程的定义,列出关于m、n的方程组,然后解方程组即可.【详解】解:根据题意,得121 m nm n-=⎧⎨+-=⎩,解得21mn=⎧⎨=⎩.故选:C.11.C解析:C【分析】根据题中的等量关系即可列得方程组.【详解】设木头长为x尺,绳子长为y尺,∵用一根绳子去量一根木头的长、绳子还剩余4.5尺,∴y=x+4.5,∵将绳子对折再量木头,则木头还剩余1尺,∴0.5y=x+1,故选:C.【点睛】此题考查二元一次方程组的实际应用,正确理解题意找到题目中绳子和木头之间的等量关系是解题的关键.12.B解析:B【分析】先解二元一次方程组求出a,b的值,然后再根据三角形三边之间的关系确定c的值.【详解】解:由题意可知:10(1) 216(2) a ba b+=⎧⎨+=⎩,(2)-(1)式得:a=6,代回(1)中,解得b=4,根据三角形两边之和大于第三边,两边之差小于第三边可知,6-4<c<6+4,即:2<c<10,故选:B.【点睛】本题考查了二元一次方程组的解法及三角形三边之间的关系,熟练掌握二元一次方程组的解法是解决本题的关键.二、填空题13.【分析】(1)根据新定义代入数据计算即可求解;(2)根据新定义可得b=2a代入方程得到(a-1)x+2ay+5-2a=0则(x+2y-2)a=x-5根据当ab取不同值时方程都有一个公共解得到方程组解解析:51.5 xy=⎧⎨=-⎩【分析】(1)根据新定义代入数据计算即可求解;(2)根据新定义可得b=2a,代入方程得到(a-1)x+2ay+5-2a=0,则(x+2y-2)a=x-5,根据当a,b取不同值时,方程都有一个公共解,得到方程组22050x yx+-=⎧⎨-=⎩,解方程组即可求解.【详解】解:(1)∵(-2)☆b=-16,∴2×(-2)-b=-16,解得b=12;(2)∵a☆b=0,∴2a-b=0,∴b=2a,则方程(a-1)x+by+5-2a=0可以转化为(a-1)x+2ay+5-2a=0,则(x+2y-2)a=x-5,∵当a,b取不同值时,方程都有一个公共解,∴22050x yx+-=⎧⎨-=⎩,解得51.5 xy=⎧⎨=-⎩,故这个公共解为51.5 xy=⎧⎨=-⎩.【点睛】本题考查了新定义,二元一次方程的解,关键是熟练掌握新定义运算.14.【分析】首先将点P (2b )代入直线l1:y =x +1求出b 的值进而得到P 点坐标再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案【详解】解:∵直线y=x+1经过点P (2b )∴b=2+1解析:23x y =⎧⎨=⎩【分析】首先将点P (2,b )代入直线l 1:y =x +1求出b 的值,进而得到P 点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】解:∵直线y=x+1经过点P (2,b ),∴b=2+1,解得b=3,∴P (2,3),∴关于x 的方程组100x y mx y n -+=⎧⎨-+=⎩的解为23x y =⎧⎨=⎩, 故答案为:23x y =⎧⎨=⎩. 【点睛】 此题主要考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.15.【分析】函数图象交点坐标为两函数解析式组成的方程组的解据此即可求解【详解】解:∵关于xy 的二元一次方程组的解为∴一次函数y =2x +3与y =ax +c 的图象的交点坐标为(-11)故答案为:(-11)【点解析:()1,1-【分析】函数图象交点坐标为两函数解析式组成的方程组的解,据此即可求解.【详解】解:∵关于x ,y 的二元一次方程组2300x y ax y c -+=⎧⎨-+=⎩的解为11x y =-⎧⎨=⎩, ∴一次函数y =2x +3与y =ax +c 的图象的交点坐标为(-1,1).故答案为:(-1,1).【点睛】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.16.1【分析】方程组中的两个方程相减可得然后整体代入所求式子计算即可【详解】解:对方程组①-②得所以故答案为:﹣1【点睛】本题考查了二元一次方程组的解法和代数式求值灵活应用整体的思想是解题的关键解析:-1【分析】方程组中的两个方程相减可得21m n -=-,然后整体代入所求式子计算即可.【详解】解:对方程组21{2m n m n -=+=①②,①-②,得21m n -=-, 所以()()20212021211m n -=-=-. 故答案为:﹣1. 【点睛】本题考查了二元一次方程组的解法和代数式求值,灵活应用整体的思想是解题的关键. 17.【分析】从给出图象中得到二元一次方程的两组解进而确定具体的二元一次方程为x +2y =2再代入x=3即可求出y 的值【详解】解:从图象可以得到和是二元一次方程ax +by =c 的两组解∴2a =cb =c ∴x +2 解析:12- 【分析】从给出图象中得到二元一次方程的两组解,进而确定具体的二元一次方程为x +2y =2,再代入x=3即可求出y 的值.【详解】解:从图象可以得到,20x y =⎧⎨=⎩和01x y =⎧⎨=⎩是二元一次方程ax +by =c 的两组解, ∴2a =c ,b =c ,∴x +2y =2,当x =3时,y =12-, 故答案为12-. 【点睛】本题考查二元一次方程的解与一次函数图象的关系;能够从一次函数图象上获取二元一次方程的解,代入求出具体的二元一次方程是解题的关键. 18.【分析】由方程组的解互为相反数得到代入方程组计算即可求出的值【详解】由题意得:代入方程组得由①得:③③代入②得:解得:故答案为:【点睛】本题考查了二元一次方程组的解方程组的解即为能使方程组中两方程都解析:6-【分析】由方程组的解互为相反数,得到y x =-,代入方程组计算即可求出k 的值.【详解】由题意得:y x =-,代入方程组得275x x k x x k -=+⎧⎨+=⎩①②, 由①得:7x k =--③,③代入②得:426k k --=,解得:6k =-,故答案为:6-.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.【分析】把x 看做已知数求出y 即可【详解】解:方程2x+y=7解得:y=7-2x 故答案为:y=7-2x 【点睛】本题考查了解二元一次方程解题的关键是将x 看做已知数求出y解析:72y x =-【分析】把x 看做已知数求出y 即可.【详解】解:方程2x+y=7,解得:y=7-2x .故答案为:y=7-2x .【点睛】本题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .20.7【分析】由x 与y 互为相反数得到y =﹣x 代入方程组求出a 的值即可【详解】解:由xy 互为相反数得到x +y =0即y =﹣x 代入方程组得:解得:故答案为:7【点睛】本题考查相反数的性质二元一次方程组的解法熟 解析:7【分析】由x 与y 互为相反数得到y =﹣x ,代入方程组求出a 的值即可.【详解】解:由x 、y 互为相反数,得到x +y =0,即y =﹣x ,代入方程组6293x y x y a =-⎧⎨-=-⎩得:6293x x x x a=+⎧⎨+=-⎩, 解得:x=-6a=7⎧⎨⎩,故答案为:7.【点睛】本题考查相反数的性质,二元一次方程组的解法,熟练掌握基础知识是关键.三、解答题21.532x y z =⎧⎪=⎨⎪=⎩【分析】将①式代入其它两式可抵消掉y ,将方程组变为二元一次方程组,利用加减消元法求解即可.【详解】解:31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩①②③ 将①代入②后整理得:4318y z +=④,将①代入③后整理得:5y z +=⑤,④-3×⑤得3y =,代入⑤可得2z =,代入①得2x =,故该方程组的解为:532x y z =⎧⎪=⎨⎪=⎩【点睛】本题考查解三元一次方程组.掌握消元思想是解题关键.22.(1)28y x =-+;(2【分析】(1)直接用待定系数法将点A 、B 的坐标代入求解即可;(2)将点()2P m ,,()2Q n ,代入(1)求出的函数表达式中,即可求出点P 、Q 的坐标,然后根据两点之间距离公式求解即可.【详解】(1)将()40A ,,()08B ,分别代入y kx b =+,得 4008k b b +=⎧⎨+=⎩,解得28k b =-⎧⎨=⎩ ∴一次函数的表达式为28y x =-+;(2)将()2P m ,,()2Q n ,分别代入28y x =-+,得 4m =,3n =,即()24P ,,()32Q ,分别过点P ,Q 作关于x 轴,y 轴垂线,相交于点H ,则1QH =,2PH =, ∴2222125PQ QH PH =+==+【点睛】本题考查了用待定系数法求一次函数的解析式和一次函数的性质的应用,以及两点之间距离公式的计算,正确掌握知识点是解题的关键.23.(1)甲种消毒液购买90瓶,乙种消毒液购买210瓶;(2)这批消毒液可使用10天【分析】(1)设甲种消毒液购买x 瓶,乙种消毒液购买y 瓶,由甲、乙两种免洗手消毒液共300瓶,其中甲消毒液15元/瓶,乙消毒液20元/瓶,列出方程组,即可求解;(2)设这批消毒液可使用a 天,由该校在校师生共1320人,平均每人每天都需使用10ml 的免洗手消毒液,列出方程可求解.【详解】解:(1)设甲种消毒液购买x 瓶,乙种消毒液购买y 瓶,由题意可得:30015205550x y x y +=⎧⎨+=⎩, 解得:90210x y =⎧⎨=⎩, 答:甲种消毒液购买90瓶,乙种消毒液购买210瓶;(2)设这批消毒液可使用a 天,由题意可得:1320×10×a =90×300+500×210,解得:a =10,答:这批消毒液可使用10天.【点睛】本题考查了二元一次方程组的应用,一元一次方程的应用,根据题意列出方程和方程组是解答本题的关键.24.612x y =⎧⎪⎨=⎪⎩【分析】利用加减消元法解答即可.【详解】解:253420x y x y -=⎧⎨+=⎩①② ①×2,得2x -4y =10 ③②+③得:5x =30解得,x=6把x =6代入①得:6-2y =5,解得y =12所以原方程组的解是612x y =⎧⎪⎨=⎪⎩. 【点睛】本题考查了的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较为简便.25.(1)21x y =⎧⎨=⎩;(2)34212021x y ⎧=⎪⎪⎨⎪=⎪⎩. 【分析】(1)利用代入消元法求解即可;(2)变形后,用加减消元法求解即可.【详解】解:(1)137x y x y =+⎧⎨+=⎩①②, 将①代入②中得3(1)7y y ++=,解得1y =,将1y =代入①中得:112x =+=,故该方程组的解为:21x y =⎧⎨=⎩; (2)5210258x y x y +=⎧⎨+=⎩①②, ①×2得:10420x y +=③,②×5得:102540x y +=④,④-③得:2120y =,解得2021y =,将2021y=代入①中得:20210152x+⨯=,解得3421x=,故该方程组的解为:34212021xy⎧=⎪⎪⎨⎪=⎪⎩.【点睛】本题考查解二元一次方程组.熟练掌握解二元一次方程组的两种方法,并能灵活运用是解题关键.26.(1)26y x=-+;(2)494.【分析】(1)根据直线l与直线21y x=--平行,设直线l的解析式为2y x b=-+,再将点()1,4P代入即可求解;(2)根据直线26y x=-+与直线21y x=--的解析式,求出点A、B、C、D的坐标,再利用ABC DCAABCDSS S=+四边形△△即可求解.【详解】解:(1)∵直线l与直线21y x=--平行∴设直线l的解析式为2y x b=-+∵过点()1,4P∴421b=-⨯+解得:6b=∴直线l的解析式为:26y x=-+(2)如图,令210y x=--=,得12x=-,令0x=,得1y=-∴C 点的坐标为1,02⎛⎫- ⎪⎝⎭, D 点的坐标为()0,1-,令260y x =-+=,得3x =,令0x =,得6y =,∴点A 的坐标()3,0,点B 的坐标为()0,6∴AC=OA+OC=3+12=72∴ABC DCA ABCD S S S =+四边形△△1717612222=⨯⨯+⨯⨯ 494=. 【点睛】本题主要考查了用待定系数法求一次函数、一次函数的性质以及一次函数与坐标轴所构成的几何图形的面积,解题的关键是熟练掌握一次函数的性质,会将不规则图形分割呈规则几何图形.。

八年级数学上册第五章二元一次方程组检测题新版北师大版(含答案)

八年级数学上册第五章二元一次方程组检测题新版北师大版(含答案)

八年级数学上册:第五章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.已知下列各式:①1x +y =2;②2x-3y =5;③12x +xy =2;④x+y =z -1;⑤x +12=2x -13.其中二元一次方程的个数是( A ) A .1 B .2 C .3 D .42.方程5x +2y =-9与下列方程构成方程组的解为⎩⎪⎨⎪⎧x =-2,y =12的是( D )A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-83.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定4.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m 可得出x 与y 的关系是( A )A .2x +y =4B .2x -y =4C .2x +y =-4D .2x -y =-4 5.若(x +y -5)2+|2x -3y -10|=0,则代数式xy 的值是( C ) A .6 B .-6 C .0 D .56.已知一个等腰三角形的两边长x ,y 满足方程组⎩⎪⎨⎪⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为( A )A .5B .4C .3D .5或47.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( C )A.⎩⎪⎨⎪⎧3x -4y =6,3x -2y =0B.⎩⎪⎨⎪⎧3x -4y =6,3x +2y =0C.⎩⎪⎨⎪⎧3x -4y =-6,3x -2y =0D.⎩⎪⎨⎪⎧-3x +4y =6,3x +2y =0 8.某班共有学生49人,一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半,若该班男生人数为x ,女生人数为y ,则所列方程组正确的是( D )A.⎩⎪⎨⎪⎧x -y =49,y =2(x +1)B.⎩⎪⎨⎪⎧x +y =49,y =2(x +1)C.⎩⎪⎨⎪⎧x -y =49,y =2(x -1)D.⎩⎪⎨⎪⎧x +y =49,y =2(x -1) 9.小明在解关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +⊗y =3,3x -⊗y =1时,得到了正确结果⎩⎪⎨⎪⎧x =⊕,y =1.后来发现“⊗”和“⊕”处被墨水污损了,请你帮他找出“⊗”和“⊕”处的值分别是( B )A .⊗=1,⊕=1B .⊗=2,⊕=1C .⊗=1,⊕=2D .⊗=2,⊕=210.(2016·黔东南州)小明在某商店购买商品A ,B 共两次,这两次购买商品A ,B 的数量和费用如表:A .64元B .65元C .66元D .67元 二、填空题(每小题3分,共24分)11.写出一个解为⎩⎪⎨⎪⎧x =1,y =2的二元一次方程组__⎩⎪⎨⎪⎧x +y =3,x -y =-1(答案不唯一)__.12.若x3m -2-2yn -1=3是二元一次方程,则m =__1__,n =__2__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.已知⎩⎪⎨⎪⎧x =-2,y =0和⎩⎪⎨⎪⎧x =1,y =3是方程x 2-ay 2-bx =0的两组解,那么a =__13__,b =__-2__.15.如果⎩⎪⎨⎪⎧x +2y =2 015,y +2z =2 016,z +2x =2 017,那么x +y +z =__2_016__.16.某工厂在规定天数内生产一批抽水机支援抗旱,如果每天生产25台,那么差50台不能完成任务;如果每天生产28台,那么可以超额40台完成任务,则这批抽水机有__800__台,规定__30__天完成任务.17.如图,在同一平面直角坐标系内分别作出一次函数y =12x +1和y =2x -2的图象,则下面的说法:①函数y =2x -2的图象与y 轴的交点是(-2,0);②方程组⎩⎪⎨⎪⎧2y -x =2,2x -y =2的解是⎩⎪⎨⎪⎧x =2,y =2;③函数y =12x +1和y =2x -2的图象交点的坐标为(-2,2);④两直线与y 轴所围成的三角形的面积为3.其中正确的有__②④__.(填序号),(第17题图)) ,(第18题图))18.(2016·重庆)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程s(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第__120__秒.三、解答题(共66分)19.(8分)解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎪⎨⎪⎧x =2,y =-1. 解:⎩⎪⎨⎪⎧x =9,y =6. 解:⎩⎪⎨⎪⎧x =1,y =1. 解:⎩⎪⎨⎪⎧x =1,y =-2,z =-1.20.(8分)直线l 与直线y =2x +1的交点的横坐标为2,与直线y =-x +2的交点的纵坐标为1,求直线l 对应的函数表达式.解:设直线l 与直线y =2x +1的交点坐标为A (x 1,y 1),与直线y =-x +2的交点为B (x 2,y 2),因为x 1=2,代入y =2x +1,得y 1=5,即A 点坐标为(2,5).因为y 2=1,代入y =-x +2,得x 2=1,即B 点坐标为(1,1).设直线l 的表达式为y =kx +b ,把A ,B 两点坐标代入,得⎩⎪⎨⎪⎧2k +b =5,k +b =1,解得⎩⎪⎨⎪⎧k =4,b =-3.故直线l 对应的函数表达式为y =4x -3.21.(8分)观察下列方程组,解答问题:①⎩⎪⎨⎪⎧x -y =2,2x +y =1;②⎩⎪⎨⎪⎧x -2y =6,3x +2y =2;③⎩⎪⎨⎪⎧x -3y =12,4x +3y =3;… (1)在以上3个方程组的解中,你发现x 与y 有什么数量关系?(不必说明理由) 解:在以上3个方程组的解中,发现x +y =0.(2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.解:第④个方程组为⎩⎪⎨⎪⎧x -4y =20①,5x +4y =4②,①+②,得6x =24,即x =4,把x =4代入①,得y =-4,则x +y =4-4=0.22.(9分)学校组织学生乘汽车去自然保护区野营,前13路段为平路,其余路段为坡路,已知汽车在平路上行驶的速度为60 km /h ,在坡路上行驶的速度为30 km /h .汽车从学校到自然保护区一共行驶了6.5 h ,求汽车在平路和坡路上各行驶多少时间?解:设汽车在平路上用了x 小时,在坡路上用了y 小时,由题意得⎩⎪⎨⎪⎧x +y =6.5,60x =13×(60x +30y ),解得⎩⎪⎨⎪⎧x =1.3,y =5.2.答:汽车在平路上用了1.3小时,在坡路上用了5.2小时.23.(9分)某班将举行知识竞赛活动,班长安排小明购买奖品,图①,图②是小明买回奖品时与班长的对话情境:根据上面的信息解决问题:(1)计算两种笔记本各买多少本.解:设买5元、8元的笔记本分别是x 本,y 本,依题意,得⎩⎪⎨⎪⎧x +y =40,5x +8y =300-68+13,解得⎩⎪⎨⎪⎧x =25,y =15,即买5元、8元的笔记本分别是25本,15本.(2)小明为什么不可能找回68元? 解:若小明找回68元,则⎩⎪⎨⎪⎧x +y =40,5x +8y =300-68,此方程组无整数解,故小明找回的钱不可能是68元.24.(12分)某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎪⎨⎪⎧b =300,30k 2+b =600,解得⎩⎪⎨⎪⎧k 2=10,b =300.所以y 2=10x+300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.(12分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发开往乙地.如图,线段OA 表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD 表示轿车离甲地的距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)求线段CD 对应的函数表达式; 解:y =110x -195.(2)货车从甲地出发后多长时间被轿车追上?此时离甲地的距离是多少千米?解:先求出线段OA 对应的函数表达式为y =60x ,由题意联立方程得⎩⎪⎨⎪⎧y =60x ,y =110x -195,解得⎩⎪⎨⎪⎧x =3.9,y =234,则货车从甲地出发3.9小时被轿车追上,此时离甲地234千米.(3)轿车到达乙地后,货车距乙地多少千米?解:60×(5-4.5)=30(千米).。

2022八年级数学上册第五章二元一次方程组测试卷3新版北师大版(含答案)

2022八年级数学上册第五章二元一次方程组测试卷3新版北师大版(含答案)

八年级数学上册新版北师大版:第五章二元一次方程组测试卷一.选择题.1.(3分)若3x﹣2y﹣7=0,则6y﹣9x﹣6的值为()A.15 B.﹣27 C.﹣15 D.无法确定2.(3分)在方程2(x+y)﹣3(y﹣x)=3中,用含x的式子表示y,正确的是()A.y=5x+3 B.y=﹣x﹣3 C.y=5x﹣3 D.y=3.(3分)已知是方程mx+2y=﹣2的一个解,那么m为()A.B.﹣ C.﹣4 D.4.(3分)用加减消元法解方程组,下列变形正确的是()A.B.C.D.5.(3分)关于x,y的方程组的解互为相反数,则k的值是()A.8 B.9 C.10 D.116.(3分)若和都是关于x、y的方程|a|x+by=6的解,则a+b的值为()A.4 B.﹣10 C.4或﹣10 D.﹣4或107.(3分)关于x,y的二元一次方程ax+b=y的两个解是,,则这个二元一次方程是()A.y=2x+3 B.y=2x﹣3 C.y=2x+1 D.y=﹣2x+19.(3分)如果是方程组的解,那么,下列各式中成立的是()A.a+4c﹣2=0 B.4a+c=2 C.a+4c+2=0 D.4a+c+2=010.(3分)关于x、y的二元一次方程组没有解时,m的值是()A.﹣6 B.6 C.1 D.011.(3分)若方程组与有相同的解,则a、b的值为()A.2,3 B.3,2 C.2,﹣1 D.﹣1,212.(3分)若2a+5b+4c=0,3a+b﹣7c=0,则a+b﹣c的值是()A.O B.1 C.2 D.﹣1二.填空题.13.(3分)已知是方程组的解,则m2﹣n2的值为.14.(3分)若满足方程组的x、y的值相等,则k= .15.(3分)已知==,且a+b﹣c=,则a= ,b= ,c= .16.(3分)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.三.解答题.17.解方程组:.18.已知,xyz≠0,求的值.19.对于等式y=ax2+bx+c,有三对x,y的值;;能使等式两边值相等,试求a,b,c的值.20.甲运输公司决定分别运给A市苹果10t,B市苹果8t,但现在仅有12t苹果,还需从乙运输公司调运6t,经协商,从甲运输公司运1t苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1t苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运?21.汽车从A地开往B地,如果在原计划时间的前一半时间每小时行驶40km,而后一半时间每小时行驶50km,可按时到达.但汽车以每小时40km的速度行至离AB中点还差40km时发生故障,停车半小时后,又以每小时55km的速度前进,结果仍按时到达B地.求A、B 两地的距离及原计划行驶的时间.参考答案与试题解析一.选择题.1.(3分)若3x﹣2y﹣7=0,则6y﹣9x﹣6的值为()A.15 B.﹣27 C.﹣15 D.无法确定【考点】33:代数式求值.【专题】11 :计算题.【分析】先变形3x﹣2y﹣7=0得到3x﹣2y=7,再变形6y﹣9x﹣6得到﹣3(3x﹣2y)﹣6,然后利用整体思想进行计算.【解答】解:∵3x﹣2y﹣7=0,∴3x﹣2y=7,∴6y﹣9x﹣6=﹣3(3x﹣2y)﹣6=﹣3×7﹣6=﹣27.故选B.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.2.(3分)在方程2(x+y)﹣3(y﹣x)=3中,用含x的式子表示y,正确的是()A.y=5x+3 B.y=﹣x﹣3 C.y=5x﹣3 D.y=【考点】93:解二元一次方程.【分析】把方程2(x+y)﹣3(y﹣x)=3写成用含x的式子表示y的形式,需要把含有y 的项移到等号一边,其它的项移到另一边,然后合并同类项、系数化1就可.【解答】解:去括号,得2x+2y﹣3y+3x=3,移项、合并同类项,得﹣y=3﹣5x,系数化为1,得y=5x﹣3y.故选C.【点评】本题考查的是方程的基本运算技能:去括号、移项、合并同类项、系数化为1等.3.(3分)已知是方程mx+2y=﹣2的一个解,那么m为()A.B.﹣ C.﹣4 D.【考点】92:二元一次方程的解.【专题】11 :计算题.【分析】根据二元一次方程的解的定义,把代入方程mx+2y=﹣2,得关于m的方程,解关于m的方程即可求解.【解答】解:把代入方程mx+2y=﹣2得:3m+2×(﹣5)=﹣2,解得:m=,故选:A.【点评】本题主要考查了二元一次方程的解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.4.(3分)用加减消元法解方程组,下列变形正确的是()A.B.C.D.【考点】98:解二元一次方程组.【分析】运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数,把原方程变形要根据等式的性质,本题中方程①×2,②×3,就可把y的系数变成互为相反数.【解答】解:①×2得,4x+6y=6③,②×3得,9x﹣6y=33④,组成方程组得:.故选C.【点评】二元一次方程组的解法有加减法和代入法两种,一般选用加减法解二元一次方程组较简单.运用加减法解方程组时,要满足方程组中某一个未知数的系数相等或互为相反数.5.(3分)关于x,y的方程组的解互为相反数,则k的值是()A.8 B.9 C.10 D.11【考点】9C:解三元一次方程组.【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用k表示出来,代入方程x=﹣y求得k的值.【解答】解:由x,y互为相反数得x=﹣y,代入(1)得y=﹣1,则x=1,把x=1,y=﹣1,代入(2)得:2k﹣k﹣1=10,则k=11.故选D.【点评】本题的实质是解三元一次方程组,用加减法或代入法来解答.6.(3分)若和都是关于x、y的方程|a|x+by=6的解,则a+b的值为()A.4 B.﹣10 C.4或﹣10 D.﹣4或10【考点】92:二元一次方程的解.【专题】11 :计算题.【分析】将已知两对x与y的值代入已知方程,求出a【解答】解:将和分别代入方程|a|x+by=6得:,解得:a=±7,b=﹣3,则a+b=4或﹣10.故选C【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.(3分)关于x,y的二元一次方程ax+b=y的两个解是,,则这个二元一次方程是()A.y=2x+3 B.y=2x﹣3 C.y=2x+1 D.y=﹣2x+1【考点】92:二元一次方程的解;98:解二元一次方程组.【分析】把方程的解代入得出关于a、b的方程组,求出方程组的解即可.【解答】解:∵关于x,y的二元一次方程ax+b=y的两个解是,,∴代入得:,解得:a=2,b=﹣3,∴y=2x﹣3,故选B.【点评】本题考查了二元一次方程的解和解二元一次方程组的应用,关键是求出a、b的值.9.(3分)如果是方程组的解,那么,下列各式中成立的是()A.a+4c﹣2=0 B.4a+c=2 C.a+4c+2=0 D.4a+c+2=0【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程的值,只需将方程的解代入方程组,就可得到关于a,b、c的三元一次方程组,消去b就可得到a与c的关系.【解答】解:把代入方程组得:,①+②×2得:﹣a﹣4c=2,即a+4c+2=0.故选:C.【点评】此题主要考查了二元一次方程组的消元思想.本题要求同学们不仅熟悉代入法,更需要熟悉二元一次方程组的解法,解题时要根据方程组的特点进行有针对性的计算.10.(3分)关于x、y的二元一次方程组没有解时,m的值是()A.﹣6 B.6 C.1 D.0【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】利用代入消元法消去y得到关于x的方程,由方程组无解即可确定出m的值.【解答】解:,由①得:y=2x﹣1③,将③代入②得:mx+6x﹣3=2,即(m+6)x=5,∵方程组没有解,∴m=﹣6.故选A【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.11.(3分)若方程组与有相同的解,则a、b的值为()A.2,3 B.3,2 C.2,﹣1 D.﹣1,2【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】将第一个方程组中第一个方程与第二个方程组的第二个方程联立求出x与y的值,代入剩下的两方程计算即可求出a与b的值.【解答】解:根据题意得:,①+②×4得:11x=22,即x=2,将x=2代入②得:4﹣y=5,即y=﹣1,将x=2,y=﹣1代入得:,解得:a=3,b=2,故选B【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.12.(3分)若2a+5b+4c=0,3a+b﹣7c=0,则a+b﹣c的值是()A.O B.1 C.2 D.﹣1【考点】9C:解三元一次方程组.【分析】首先把2a+5b+4c=0,3a+b﹣7c=0,建立关于a、b的二元一次方程组,求出的解用c表示,进一步代入求得结果即可.【解答】解:由2a+5b+4c=0,3a+b﹣7c=0得,,解得,代入a+b﹣c=3c﹣2c﹣c=0.故选:A.【点评】此题考查方程组的解法,注意把三元变为二元,把其中一个未知数看作已知数是解决问题的关键.二.填空题.13.(3分)已知是方程组的解,则m2﹣n2的值为﹣8.【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】根据题意得出关于m,n的二元一次方程组,进而求出m,n的值,进而得出答案.【解答】解:∵是方程组的解,∴,解得:,∴m2﹣n2=(﹣)2﹣32=﹣8.故答案为:﹣8.【点评】此题主要考查了二元一次方程组的解,根据题意得出m,n的值是解题关键.14.(3分)若满足方程组的x、y的值相等,则k= .【考点】97:二元一次方程组的解.【专题】11 :计算题.【分析】根据x=y,把方程组中的y换成x,得到关于x与k的二元一次方程组,求出方程组的解即可得到k的值.【解答】解:因为x=y,所以方程组化为,由①得:x=4,把x=4代入②,解得:k=.故答案为:【点评】此题考查了二元一次方程组的解法,解题中注意利用消元的数学思想,是一道基础题.15.(3分)已知==,且a+b﹣c=,则a= ,b= ,c= .【考点】9C:解三元一次方程组.【专题】11 :计算题.【分析】设已知第一个等式等于k,表示出a,b,c,代入第二个等式求出k的值,即可确定出a,b,c的值.【解答】解:设===k,即a=2k,b=3k,c=4k,代入a+b﹣c=,得:2k+3k﹣4k=,即k=,则a=,b=,c=.故答案为:;;【点评】此题考查了解三元一次方程组,弄清题意是解本题的关键.16.(3分)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了4380 朵.【考点】9D:三元一次方程组的应用.【专题】12 :应用题;16 :压轴题.【分析】题中有两个等量关系:甲种盆景所用红花的朵数+乙种盆景所用红花的朵数+丙种盆景所用红花的朵数=2900朵,甲种盆景所用紫花的朵数+丙种盆景所用紫花的朵数=3750朵.据此可列出方程组,设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z 盆,用含x的代数式分别表示y、z,即可求出黄花一共用的朵数.【解答】解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580,即x+2y+2(x+z)=580③,由②得,x+z=150④,把④代入③,得x+2y=280,∴2y=280﹣x⑤,由④得z=150﹣x⑥.∴4x+2y+3z=4x+(280﹣x)+3(150﹣x)=730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故答案为:4380.【点评】本题考查了三元一次方程组在实际生活中的应用.解题的关键是发掘等量关系列出方程组,难点是由于24x+12y+18z=6(4x+2y+3z),所以千方百计“创造”(4x+2y+3z)这一整体.三.解答题.17.解方程组:.【考点】9C:解三元一次方程组.【分析】利用③求出y的数值,再代入①②建立关于x、z的二元一次方程组,求出方程组的解即可.【解答】解:,由③得﹣4y=4,y=﹣1;代入①②得,解得,所以方程组的解为.【点评】此题考查三元一次方程组的解法,注意逐步减少未知数的个数,最后变为一元一次方程解决问题.18.已知,xyz≠0,求的值.【考点】9C:解三元一次方程组.【分析】首先把三元一次方程组化为关于x、y的二元一次方程组,把x、y用z表示,进一步代入代数式求得数值即可.【解答】解:,整理得,解得x=,代入===.【点评】此题考查方程组的解法以及代数式的求值,注意方程组的转化.19.对于等式y=ax2+bx+c,有三对x,y的值;;能使等式两边值相等,试求a,b,c的值.【考点】9C:解三元一次方程组.【专题】11 :计算题.【分析】把三对x,y的值分别代入y=ax2+bx+c得到得,由②﹣①得a﹣b=2④,③﹣②得a+b=0⑤,再解由④⑤组成的方程组,求出a、b,然后把a、b的值代入①可求出c.【解答】解:根据题意得,②﹣①得3a﹣3b=6,整理得a﹣b=2④,③﹣②得5a+5b=0,整理得a+b=0⑤,解由④⑤组成的方程组得,把a=1,b=﹣1代入①得1﹣1+c=﹣2,解得c=﹣2,所以原方程组的解为.【点评】本题考查了解三元一次方程组:利用加减消元或代入消元法把三元一次方程转化为二元一次方程.20.甲运输公司决定分别运给A市苹果10t,B市苹果8t,但现在仅有12t苹果,还需从乙运输公司调运6t,经协商,从甲运输公司运1t苹果到A、B两市的运费分别为50元和30元,从乙运输公司运1t苹果到A、B两市的运费分别为80元和40元,要求总运费为840元,问如何进行调运?【考点】9A:二元一次方程组的应用.【分析】设从甲运输公司运往A市苹果xt,运往B市苹果yt,根据甲运输公司共有12t苹果,共花运费840元,列出方程组求解.【解答】解:设从甲运输公司运往A市苹果xt,运往B市苹果yt,由题意得,,解得:,则从乙运输公司运往A市苹果2t,运往B市苹果4t.答:从甲运输公司运往A市苹果8t,运往B市苹果4t,从乙运输公司运往A市苹果2t,运往B市苹果4t.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系列方程组求解.21.汽车从A地开往B地,如果在原计划时间的前一半时间每小时行驶40km,而后一半时间每小时行驶50km,可按时到达.但汽车以每小时40km的速度行至离AB中点还差40km时发生故障,停车半小时后,又以每小时55km的速度前进,结果仍按时到达B地.求A、B 两地的距离及原计划行驶的时间.【考点】9A:二元一次方程组的应用.【分析】设A、B两地的距离为xkm,原计划行驶的时间为yh,根据前一半时间每小时行驶40km,而后一半时间每小时行驶50km,用y小时按时到达B地,以每小时40km的速度行至离AB中点还差40km时发生故障,停车半小时后,又以每小时55km的速度前进,仍用y小时到达B地,列出方程组求解.【解答】解:设A、B两地的距离为xkm,原计划行驶的时间为yh,由题意得,,解得:,答:A、B两地的距离为360km,原计划行驶的时间为8h.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.。

(典型题)初中数学八年级数学上册第五单元《二元一次方程组》测试(有答案解析)

(典型题)初中数学八年级数学上册第五单元《二元一次方程组》测试(有答案解析)

一、选择题1.已知关于x 、y 的方程组1427x y a x y a +=+⎧⎨-=--⎩得出下列结论,正确的是( ) ①当0a =时,方程组的解也是方程1x y +=的解;②当x y =时,52a =-;③不论a 取什么实数,3x y -的值始终不变:④不存在a 使得23x y =成立;A .①②③B .①②④C .①③④D .②③④ 2.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩,则下列结论中正确的个数有( ) ①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若35x a -=,则5a =. A .1个 B .2个C .3个D .4个 3.长方形ABCD 可以分割成如图所示的七个正方形.若10AB =,则AD 等于( )A .252B .353C .14011D .150114.为了研究吸烟对肺癌是否有影响,某研究机构随机调查了8000人,结果显示:在吸烟者中患肺癌的比例是3%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多33人.在这8000人中,设吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y .所列方程组正确的是( )A .333%0.5%8000x y x y -=⎧⎨⨯+⨯=⎩B .80003%0.5%22x y x y +=⎧⎨⨯-⨯=⎩C .3380003%0.5%x y x y -=⎧⎪⎨+=⎪⎩D .8000333%0.5%x y x y +=⎧⎪⎨-=⎪⎩ 5.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩6.已知关于x ,y 的方程组72x my mx y m +=⎧⎨-=+⎩①②,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当m 每取一个值时,就有一个方程,这些方程有一个公共解,这个公共解为( )A .54x y =⎧⎨=-⎩B .14x y =⎧⎨=-⎩C .41x y =⎧⎨=-⎩D .-54x y =⎧⎨=⎩7.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( ) A .2,3 B .3,2 C .2,4 D .3,48.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a ,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是( )(用a 的代数式表示)A .﹣aB .aC .12a D .﹣12a 9.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( )A .a =0,b =1B .a =2,b =1C .a =1,b =0D .a =0,b =2 10.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( )A .112lB .116lC .516lD .118l 11.已知 xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则 x :y :z 等于( )A .3:2:1B .1:2:3C .4:5:3D .3:4:5 12.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为( ).A .7384x y x y -=⎧⎨+=⎩B .7384x y x y +=⎧⎨-=⎩C .8374x y x y -=⎧⎨+=⎩D .8374x y x y +=⎧⎨-=⎩二、填空题 13.有一个蓄水池,池内原有水60m 3,现在向蓄水池注水,已知池内总水量y 与注水时间x 具有如下关系:式为_____.14.定义一种新的运算:2a b a b =-☆,例如:()()312317-=⨯--=☆,那么 (1)若()216b -=-☆,那么b =______;(2)若0a b =☆,且关于x ,y 的二元一次方程()1520a x by a -++-=,当a ,b 取不同值时,方程都有一个公共解,那么公共解为_________.15.已知012x y =⎧⎪⎨=-⎪⎩是方程组522x b y x a y -=⎧⎨+=⎩的解,则a b +的值为_______ . 16.已知方程组2300x y ax y c -+=⎧⎨-+=⎩的解为11x y =-⎧⎨=⎩,则一次函数y =2x +3与y =ax +c 的图象的交点坐标是_____________.17.如果实数m ,n 满足方程组212m n m n -=⎧⎨+=⎩,那么2021(2)m n -=______. 18.若关于,x y 的方程组275x y k x y k+=+⎧⎨-=⎩ 的解互为相反数,则k =_____. 19.若x 3m ﹣2﹣2y n ﹣1=5是二元一次方程,则m+n =_____.20.已知434m n m x y -与5n x y 是同类项,则m n +的值是_______.三、解答题21.着中国传统节日“端午节”的临近,永旺超市决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元:打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?22.用白铁皮做罐头盒,每张铁皮可制作24个盒身,或制作32个盒底,一个盒身与两个盒底配成一套罐头盒,现有40张白铁皮请用二元一次方程组的知识解答下列问题. (1)问用多少张制作盒身,多少张制作盒底可以使盒身与盒底正好配套?(2)已知一张白铁皮的成本为120元,每张制作盒底的加工费为30元/张,而制作盒身的加工方式有横切和纵切两种,横切的加工费为20元/张,纵切的加工费为25元/张,问在(1)的结论下,若想要总费用控制在5900元,应安排多少张横切,多少张纵切? 23.在手工制作课上,老师组织班级同学用硬纸制作圆柱形茶叶筒.全班共有学生50人,其中男生x 人,女生y 人,男生人数比女生人数少2人.已知每名同学每小时剪筒身40个或剪筒底120个.(1)求这个班男生、女生各有多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,若要求一个筒身配两个筒底,请说明每小时剪出的筒身与筒底能否配套?如果不配套,请说明如何调配人员,才能使每小时剪出的筒身与筒底刚好配套?24.解方程(组):(1)()()221342x x +--=(2)35821x y x y ⋅+=⎧⎨-=⎩25.为了保护学生的视力,课桌的高度cm y 与椅子的高度cm x (不含靠背)都是按y 是x 的一次函数关系配套设计的,下表列出了两套符合条件课桌椅的高度:(2)现有一把高42.0cm 的椅子和一张高78.2cm 的课桌,它们是否配套?请通过计算说明理由.26.已知y 与x-1成正比例,并且当x=3时,y=-4.(1)求y 与x 之间的函数关系式;(2)如果函数图象经过点P (m ,6),求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】①把a 看做已知数表示出方程组的解,把a=0代入求出x 与y 的值,代入方程检验即可;②令x=y 求出a 的值,即可作出判断;③把x 与y 代入3x-y 中计算得到结果,判断即可;④令2x=3y 求出a 的值,判断即可.【详解】解:1427x y a x y a +=+⎧⎨-=--⎩①②, ①+②得:3x=3a-6,解得:x=a-2,把x=a-2代入①得:y=3a+3,当a=0时,x=-2,y=3,把x=-2,y=3代入x+y=1得:左边=-2+3=1,右边=1,是方程的解;当x=y 时,a-2=3a+3,即a=52-; 3x-y=3a-6-3a-3=-9,无论a 为什么实数,3x-y 的值始终不变,为-9;令2x=3y ,即2a-4=9a+9,即a=137-,存在, 则正确的结论是①②③,故选A .【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键. 2.D解析:D【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断;③假如x=y ,得到a 无解,即可做出判断;④根据题中等式x-3a=5,代入方程组求出a 的值,即可做出判断.【详解】解:①把10a =代入方程组得:352025x y x y -=⎧⎨-=⎩, 解得:155x y =⎧⎨=⎩,本选项正确; ②由x 与y 互为相反数,得到0x y +=,即y x =-,代入方程组解得:20a =,本选项正确;③若x y =,则有225x a x a -=⎧⎨-=-⎩,可得5a a =-,矛盾, 故不存在一个实数a 使得x y =,本选项正确; ④方程组解得:2515x a y a =-⎧⎨=-⎩, ∵35x a -=,把2515x a y a =-⎧⎨=-⎩代入得:2535a a --=, 解得:5a =,本选项正确,故选:D .【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.3.D解析:D【分析】根据题意,设DE=x ,EF=y ,然后由边长的数量关系列出方程组,解方程组求出x 、y ,即可得到答案.【详解】解:如图:设DE=x ,EF=y ,根据题意,则32()10y x y x y =⎧⎨++=⎩, 解得:10113011x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴103015010111111AD =++=; 故选:D .本题考查了二元一次方程组的应用,解二元一次方程组,解题的关键是熟练掌握题意,正确列出方程组进行解题.4.C解析:C【分析】根据吸烟者患肺癌的人数比不吸烟者患肺癌的人数多33人且该研究机构共调查了8000人,即可得出关于x ,y 的二元一次方程,此题得解.【详解】解:依题意得:3380003%0.5%x y x y -=⎧⎪⎨+=⎪⎩. 故选:C .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.A解析:A【分析】根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组.【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩. 故选:A .【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组. 6.A解析:A【分析】由这组公共解与m 无关,所以把两个方程相加变形为:()190,x y m x y +-+--=从而【详解】解:①+②得:9,mx x my y m ++-=+90,mx x my y m ∴++---=()190,x y m x y ∴+-+--=结合题意得:1090x y x y +-=⎧⎨--=⎩解得:54x y =⎧⎨=-⎩, 所以这个公共解为54x y =⎧⎨=-⎩. 故选A .【点睛】本题考查的是二元一次方程组的公共解与字母系数无关的问题,掌握与该字母无关,则含有该字母的项合并后系数为零是解题的关键.7.B解析:B【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值.【详解】根据题意,得:55216x y x y +=⎧⎨+=⎩, 解得:23x y =⎧⎨=⎩, 将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩, 得:23122313a b b a +=⎧⎨+=⎩, 解得:32a b =⎧⎨=⎩, ∴a 、b 的值分别是3、2.故选:B .【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.8.A解析:A【分析】设图③小长方形的长为m ,宽为n ,则由已知可以求得m 、n 关于a 的表达式,从而可以用a 表示出图①阴影部分周长与图②阴影部分周长,然后即可算得二者之差.【详解】解:设图③小长方形的长为m ,宽为n ,则由图①得m=2n ,m+2n=2a , ∴2a m a n ==,, ∴图①阴影部分周长=22245a n a a a ⨯+=+=,图②阴影部分周长=()2322126n n n n a ++==,∴图①阴影部分周长与图②阴影部分周长的差是:5a-6a=-a ,故选A .【点睛】本题考查二元一次方程组的几何应用,设图③小长方形的长为m ,宽为n ,并用a 表示出m 和n 是解题关键.9.C解析:C【分析】根据同类项的定义可得关于a 、b 的方程组,解方程组即得答案.【详解】解:由同类项的定义,得122a b a b -=⎧⎨+=⎩,解得:10a b =⎧⎨=⎩. 故选:C .【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题目,正确理解题意、掌握解答的方法是解题的关键.10.B解析:B【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可.【详解】 解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=. 3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=, 116x l ∴=. ∴标号为①的正方形的边长116l . 故选:B .【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系. 11.B解析:B【分析】由4520430x y z x y z -+⎧⎨+-⎩=①=②,①×3+②×2,得出x 与y 的关系式,①×4+②×5,得出x 与z 的关系式,从而算出xyz 的比值即可.【详解】∵4520430x y z x y z -+⎧⎨+-⎩=①=②, ∴①×3+②×2,得2x=y ,①×4+②×5,得3x=z ,∴x :y :z=x :2x :3x=1:2:3,故选B .【点睛】本题考查了三元一次方程组的解法,用含有x 的代数式表示y 与z 是解此题的关键. 12.C解析:C【分析】设人数有x 人,鸡的价钱是y 钱,依据题意列方程组,即可完成求解.【详解】设人数有x 人,鸡的价钱是y 钱依据题意得:8374x y x y -=⎧⎨+=⎩即8374x y x y -=⎧⎨+=⎩故选:C .【点睛】本题考查了二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.二、填空题13.y=12x+60【分析】设直线的解析式为y=kx+b 从表中任意选取两点代入解析式转化为方程求解即可【详解】解:设直线的解析式为y=kx+b 把(060)和(172)分别代入解析式得解得∴直线的解析式为解析:y=12x+60.【分析】设直线的解析式为y=kx+b ,从表中任意选取两点代入解析式,转化为方程求解即可.【详解】解:设直线的解析式为y=kx+b ,把(0,60)和(1,72)分别代入解析式,得6072b k b =⎧⎨+=⎩, 解得1260k b =⎧⎨=⎩, ∴直线的解析式为y=12x+60,故答案为:y=12x+60.【点睛】本题考查了待定系数法确定一次函数的解析式,熟练掌握待定系数法,灵活求解二元一次方程组是解题的关键.14.【分析】(1)根据新定义代入数据计算即可求解;(2)根据新定义可得b=2a 代入方程得到(a-1)x+2ay+5-2a=0则(x+2y-2)a=x-5根据当ab 取不同值时方程都有一个公共解得到方程组解解析:51.5x y =⎧⎨=-⎩【分析】(1)根据新定义代入数据计算即可求解;(2)根据新定义可得b=2a,代入方程得到(a-1)x+2ay+5-2a=0,则(x+2y-2)a=x-5,根据当a,b取不同值时,方程都有一个公共解,得到方程组22050x yx+-=⎧⎨-=⎩,解方程组即可求解.【详解】解:(1)∵(-2)☆b=-16,∴2×(-2)-b=-16,解得b=12;(2)∵a☆b=0,∴2a-b=0,∴b=2a,则方程(a-1)x+by+5-2a=0可以转化为(a-1)x+2ay+5-2a=0,则(x+2y-2)a=x-5,∵当a,b取不同值时,方程都有一个公共解,∴22050x yx+-=⎧⎨-=⎩,解得51.5 xy=⎧⎨=-⎩,故这个公共解为51.5 xy=⎧⎨=-⎩.【点睛】本题考查了新定义,二元一次方程的解,关键是熟练掌握新定义运算.15.【分析】将代入方程组求出a和b的值即可求解【详解】将代入方程组得:解得:∴故答案为:【点睛】本题考查了二元一次方程组的解方程组的解即为能使方程组中两方程都成立的未知数的值解析:0【分析】将12xy=⎧⎪⎨=-⎪⎩代入方程组522x b yx a y-=⎧⎨+=⎩,求出a和b的值,即可求解.【详解】将12xy=⎧⎪⎨=-⎪⎩代入方程组522x b yx a y-=⎧⎨+=⎩,得:121222b a ⎧-=-⎪⎪⎨⎛⎫⎪=⨯- ⎪⎪⎝⎭⎩, 解得:1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴11022a b +=-+=. 故答案为:0.【点睛】 本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.16.【分析】函数图象交点坐标为两函数解析式组成的方程组的解据此即可求解【详解】解:∵关于xy 的二元一次方程组的解为∴一次函数y =2x +3与y =ax +c 的图象的交点坐标为(-11)故答案为:(-11)【点解析:()1,1-【分析】函数图象交点坐标为两函数解析式组成的方程组的解,据此即可求解.【详解】解:∵关于x ,y 的二元一次方程组2300x y ax y c -+=⎧⎨-+=⎩的解为11x y =-⎧⎨=⎩, ∴一次函数y =2x +3与y =ax +c 的图象的交点坐标为(-1,1).故答案为:(-1,1).【点睛】本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.17.1【分析】方程组中的两个方程相减可得然后整体代入所求式子计算即可【详解】解:对方程组①-②得所以故答案为:﹣1【点睛】本题考查了二元一次方程组的解法和代数式求值灵活应用整体的思想是解题的关键解析:-1【分析】方程组中的两个方程相减可得21m n -=-,然后整体代入所求式子计算即可.【详解】解:对方程组21{2m n m n -=+=①②,①-②,得21m n -=-,所以()()20212021211m n -=-=-. 故答案为:﹣1.【点睛】 本题考查了二元一次方程组的解法和代数式求值,灵活应用整体的思想是解题的关键. 18.【分析】由方程组的解互为相反数得到代入方程组计算即可求出的值【详解】由题意得:代入方程组得由①得:③③代入②得:解得:故答案为:【点睛】本题考查了二元一次方程组的解方程组的解即为能使方程组中两方程都解析:6-【分析】由方程组的解互为相反数,得到y x =-,代入方程组计算即可求出k 的值.【详解】由题意得:y x =-,代入方程组得275x x k x x k -=+⎧⎨+=⎩①②, 由①得:7x k =--③,③代入②得:426k k --=,解得:6k =-,故答案为:6-.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.3【分析】二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程【详解】解:由x3m ﹣2﹣2yn ﹣1=5是二元一次方程得3m ﹣2=1n ﹣1=1解得m =1n =2m+n =1+2=3故答案为解析:3【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【详解】解:由x 3m ﹣2﹣2y n ﹣1=5是二元一次方程,得3m ﹣2=1,n ﹣1=1.解得m =1,n =2.m+n =1+2=3,故答案为:3.【点睛】本题考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.20.5【分析】由同类项的定义可得关于mn的方程组解方程组即可求出mn的值然后把mn的值代入所求式子计算即可【详解】解:由题意得:解得:∴故答案为:5【点睛】本题考查了同类项的定义和二元一次方程组的解法属解析:5【分析】由同类项的定义可得关于m、n的方程组,解方程组即可求出m、n的值,然后把m、n的值代入所求式子计算即可.【详解】解:由题意得:431m nn m=⎧⎨-=⎩,解得:14mn=⎧⎨=⎩,∴145m n+=+=.故答案为:5.【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于常考题型,熟练掌握基本知识是解题的关键.三、解答题21.(1)甲品牌粽子每盒70元,乙品牌粽子每盒80元;(2)3120元【分析】(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据节省钱数=甲品牌粽子节省的钱数+乙品牌粽子节省的钱数,即可求出节省的钱数.【详解】解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,题意得:2230500.8400.755200 x yx y+=⎧⎨⨯+⨯=⎩,解得:7080 xy=⎧⎨=⎩,∴甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)80×70×(1-80%)+100×80×(1-75%)=3120(元).答:打折后购买这批粽子比不打折节省了3120元.【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.22.(1)用16张制盒身,24张制盒底可以使盒身与盒底正好配套;(2)应安排4张横切,12张纵切才能使总费用控制在5900元.【分析】(1)设用x 张制盒身,y 张制盒底可以使盒身与盒底正好配套,根据共有40张白铁皮且制作的盒底总数是制作的盒身的2倍,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设安排m 张横切,则安排(16−m )张纵切,根据总费用=40张白铁皮的成本+总加工费,列出关于m 的方程,即可解决问题.【详解】解:(1)设用x 张制盒身,y 张制盒底可以使盒身与盒底正好配套,依题意,得:4022432x y x y +⎧⎨⨯⎩==,解得:1624x y ⎧⎨⎩==, 答:用16张制盒身,24张制盒底可以使盒身与盒底正好配套;(2)设安排m 张横切,则安排(16−m )张纵切,120×40+30×24+20m +25(16−m )=5900解得:m=4,答:在(1)的结论下,应安排4张横切,12张纵切才能使总费用控制在5900元.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是:找准等量关系,正确列出二元一次方程组或一元一次方程.23.(1)这个班有男生有24人,女生有26人;(2)原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【分析】(1)由题意列出方程组,解方程组解可;(2)分别计算出24名男生和26名女生剪出的筒底和筒身的数量,可得不配套;设男生应向女生支援y 人,根据制作筒底的数量=筒身的数量×2,根据等量关系列出方程,再解即可.【详解】解:(1)由题意得:502x y x y +=⎧⎨=-⎩, 解得:2426x y =⎧⎨=⎩, 答:这个班有男生有24人,女生有26人;(2)男生剪筒底的数量:24×120=2880(个),女生剪筒身的数量:26×40=1040(个),因为一个筒身配两个筒底,2880:1040≠2:1,所以原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套, 设男生应向女生支援a 人,由题意得:120(24-a)=(26+a)×40×2,解得:a=4,答:原计划男生负责剪筒底,女生负责剪筒身,每小时剪出的筒身与筒底不能配套;男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.【点睛】本题考查了二元一次方程组的应用、一元一次方程的应用,解题的关键是正确理解题意,找出题目中的等量关系,列出方程或方程组.24.(1)x=-4;(2)11x y =⎧⎨=⎩【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)方程组运用加减消元法求解即可.【详解】解:(1)()()221342x x +--=去括号得,423+42x x +-=移项,合并同类项得,x=-4; (2)35821x y x y ⋅+=⎧⎨-=⎩①② ①+②×5得,13x=13解得,x=1把x=1代入②得,2-y=1解得,y=1所以,方程组的解为:11x y =⎧⎨=⎩【点睛】本题考查了解二元一次方程组和解一元一次方程,能正确根据等式的性质进行变形是解(1)的关键,能把二元一次方程组转化成一元一次方程是解(2)的关键.25.(1) 1.611y x =+;(2)是,理由见解析【分析】(1)根据题意和表格中的数据可以计算出y 与x 的函数关系式;(2)将x=42.0代入(1)中的函数解析式,然后与78.2作比较,即可解答本题.【详解】解:(1)设y 与x 的函数关系式为y kx b =+,把40x =,75y =和37x =,70.2y =代入y kx b =+中,得40753770.2k b k b +=⎧⎨+=⎩,解得 1.611k b =⎧⎨=⎩所以 1.611y x =+(2)把42x =代入 1.611y x =+得 1.6421178.2y =⨯+=答:是配套的.【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,求出相应的函数解析式. 26.(1)y=-2x+2;(2)m=-2.【分析】(1)利用正比例的定义,设y=k (x-1),然后利用待定系数法,把已知的一组对应值代入,求出k 即可;(2)把P (m ,6)代入(1)中的表达式,得到关于m 的方程,解方程即可.【详解】解:(1)根据y 与 x-1 成正比例,可设y=k ( x-1),当 x=3 时,y=-4.原式化为:-4=2k ,则k=-2,所以y=-2x+2;(2)由题意知函数y=-2x+2图象经过点P (m ,6),原式化为:-2m+2=6,所以m=-2.【点睛】本题考查考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b ;再将自变量x 的值及与它对应的函数值y 的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.。

(北师大版)厦门市八年级数学上册第五单元《二元一次方程组》测试(包含答案解析)

(北师大版)厦门市八年级数学上册第五单元《二元一次方程组》测试(包含答案解析)

一、选择题1.已知关于x ,y 的方程组35225x y ax y a -=⎧⎨-=-⎩,下列结论中正确的个数有( )①当5a =时,方程组的解是105x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若23722a y -=,则2a = A .1个B .2个C .3个D .4个2.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐步成为人们喜爱的交通工具.某汽车公司计划正好用190万元购买A ,B 两种型号的新能源汽车(两种型号的汽车均购买),其中A 型汽车进价为20万元/辆,B 型汽车进价为30万元/辆,则A ,B 型号两种汽车一共最多购买( ) A .9辆B .8辆C .7辆D .6辆3.由于今年重庆受到洪水袭击,造成南滨路水电站损害;重庆市政府决定对南滨路水电站水库进行加固.现有4辆板车和5辆卡车一次能运27吨水电站加固材料,10辆板车和3辆卡车一次能运20吨水电站加固材料,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .45271020x y x y -=⎧⎨+=⎩C .452710320x y x y -=⎧⎨-=⎩D .452710320x y x y +=⎧⎨+=⎩4.某学校操场是周长为400 m 的长方形,且长比宽的2倍少40m .若设该长方形的长为x ,宽为y ,则可列方程组为( ) A .400240x y y x +=⎧⎨-=⎩B .400240x y y x +=⎧⎨+=⎩C .200240x y y x +=⎧⎨-=⎩D .200240x y y x +=⎧⎨+=⎩5.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是( )(用含有a 、b 的代数式表示).A .a-bB .a+bC .abD .2ab6.如图所示的三阶幻方,其对角线、横行、纵向的和都相等,则根据所给数据,可以确定这个和为( )A .12B .4C .8-D .15-7.小亮用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮两种水果各买了多少千克?设小亮买了甲种水果x 千克,乙种水果y 千克,则可列方程组为( ) A .46282x y x y +=⎧⎨=+⎩B .46282y x x y +=⎧⎨=+⎩C .46282x y x y +=⎧⎨=-⎩D .46282y x x y +=⎧⎨=-⎩8.下列四组值中,不是二元一次方程21x y -=的解的是( )A .11x y =-⎧⎨=-⎩B .00.5x y =⎧⎨=-⎩C .10=⎧⎨=⎩x yD .11x y =⎧⎨=⎩9.已知关于x ,y 的方程组72x my mx y m +=⎧⎨-=+⎩①②,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当m 每取一个值时,就有一个方程,这些方程有一个公共解,这个公共解为( ) A .54x y =⎧⎨=-⎩B .14x y =⎧⎨=-⎩C .41x y =⎧⎨=-⎩D .-54x y =⎧⎨=⎩10.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .6种 B .7种 C .8种 D .9种 11.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( ) A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=312.下列各方程中,是二元一次方程的是( ) A .253x y x y-=+ B .x+y=1 C .2115x y =+ D .3x+1=2xy二、填空题13.如图,已知直线1:l y kx b =+与直线21:2l y x m =-+都经过68,55C ⎛⎫- ⎪⎝⎭,直线1l 交y 轴于点()0,4B ,交x 轴于点A ,直线2l 为y 轴交于点D ,P 为y 轴上任意一点,连接PA 、PC ,有以下说法:①方程组12y kx b y x m =+⎧⎪⎨=+⎪⎩的解为6585x y ⎧=-⎪⎪⎨⎪=⎪⎩;②BCD △为直角三角形; ③6ABDS=;④当PA PC +的值最小时,点P 的坐标为()0,1. 其中正确的说法是______.14.已知关于,x y 的方程组2326322x y k x y k +=+⎧⎨+=+⎩.(1)用k 表示x y +的值为____. (2)若7x y +=,则k 的值为____.15.已知某直线经过点(0,1)A ,且与两坐标轴围成的三角形的面积为2,则该直线的函数表达式是_________.16.如果()2x 2y 1x y 50-+++-=,那么x =______,y =____ 17.正比例函数y=kx 的图象经过点(﹣2,4),则k=__. 18.若方程组23103228a b a b -=⎧⎨+=⎩的解是82a b =⎧⎨=⎩,则方程组()()()()223110322128x y x y ⎧+--=⎪⎨++-=⎪⎩的解是____________.19.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为_____________. 20.如图,甲圆与乙圆的面积之和是丙圆面积的35,甲圆内阴影部分的面积占甲圆面积的13,乙圆内阴影部分的面积占乙圆面积的12,丙圆内阴影部分的面积占丙圆面积的14,则甲、乙两圆面积的比为_____.三、解答题21.某景点的门票价格如下表:购票人数1~5051~100100以上每人门票价2016101)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1828元,如果两班联合起来作为一个团体购票,则只需花费1020元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少元?22.如图,直线l1:y=x+1与直线l2:y=mx+n交于点P(1,b),直线l2与x轴交于点A (4,0).(1)求b的值;(2)解关于x,y的方程组1y xy mx n=+⎧⎨=+⎩,并直接写出它的解;(3)判断直线l3:y=nx+m是否也经过点P?请说明理由.23.在数的学习过程中,我们通过对其中一些具有某种特性的数进行研究探索,发现了数字的美和数学的灵动性.现在我们继续探索一类数.定义:一个各位数字均不为0的四位自然数t,若t的百位、十位数字之和的2倍比千位、个位数字之和大1,则我们称这个四位数t是“四·二一数”例如:当t=6413时,∵2×(4+1)-(6+3)=1 ∴6413是“四·二一数”;当=4257时,:2×(2+5)-(4+7)=3≠1 ∴4257不是“四·二一数”.(1)判断7142和6312是不是“四二-数”,并说明理由;(2)已知t= 4abc(1≤a≤9、1≤b≤9、1≤c≤9且均为正整数)是“四·二一数”,满足4a与bc 的差能被7整除,求所有满足条件的数t.24.如图,已知点A(6,0)、点B(0,﹣2).(1)求直线AB 所对应的函数表达式;(2)在x 轴上找一点P ,满足PA =PB ,求P 点的坐标. 25.(16﹣153﹣12(2)解方程组:321237x y x y -=⎧⎨+=-⎩.26.一水果批发商用209元钱从水果批发市场批发了橙子和香蕉共50斤,橙子和香蕉这天每斤的批发价与零售价如下表所示:品名 橙子 香蕉 批发价(元/斤) 5.5 2.2 零售价(元/斤)83(2)求批发商当天卖完这些橙子和香蕉共能赚多少钱?(3)如果当天橙子和香蕉总数量卖去一半后,剩下按零售价打八折出售,最终当天共赚66元,求打折后卖出的橙子和香蕉各多少斤?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】①把5a =代入方程组求出解,即可作出判断;②由题意得0x y +=,变形后代入方程组求出a 的值,即可作出判断;③若x y =,代入方程组,变形得关于a 的方程,即可作出判断;④根据题中等式得237a y -=,代入方程组求出a 的值,即可作出判断. 【详解】解:①把5a =代入方程组得:351020x y x y -=⎧⎨-=⎩, 解得:2010x y =⎧⎨=⎩,本选项错误;②当x ,y 的值互为相反数时,0x y +=,即:y x =-,代入方程组得:35225x x ax x a +=⎧⎨+=-⎩,解得:20a =,本选项正确;③若x y =,则有225x ax a -=⎧⎨-=-⎩,可得:5a a =-,矛盾,故不存在一个实数a 使得x y =, 本选项正确; ④由方程组得:2515x ay a=-⎧⎨=-⎩,由题意得:237a y -=, 把15y a =-代入得: 24537a a -+=,解得:525a =,本选项错误; ∴正确的选项有②③两个.故选:B . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.本题属于基础题型,难度不大.2.A解析:A 【分析】设购买A ,B 型号汽车分别购买m ,n 辆,列出二元一次方程,根据m ,n 的实际意义,分别求出m ,n 的对应值,即可求解. 【详解】设购买A ,B 型号汽车分别购买m ,n 辆, ∵两种型号的汽车均购买, ∴m≥1,n≥1,且m ,n 均为整数, 由题意得:20m+30n=190,即2m+3n=19, ∴1≤n≤5,又∵2m 为偶数,则3n 为奇数,∴n 为奇数,即:n=1,3,5, 当n=1时,m=8, 当n=3时,m=5, 当n=5时,m=2,∴A ,B 型号两种汽车一共最多购买9辆. 故选A. 【点睛】本题主要考查二元一次方程的实际应用,根据等量关系,列出方程,是解题的关键.3.D解析:D 【分析】以每次运送加固材料为等量关系,列方程组即可. 【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4527x y +=; 根据10辆板车运货量+3辆卡车运货量=20吨,得方程10320x y +=.可列方程组为452710320x y x y +=⎧⎨+=⎩.故选D . 【点睛】本题考查了二元一次方程组的应用,解题关键是找准题目数量关系,找到等量关系列方程组.4.C解析:C 【分析】根据长加宽等于周长的一半200m ,长比宽的2倍少40m ,列得方程组. 【详解】解:若设该长方形的长为 x ,宽为y ,则可列方程组为200240x y y x +=⎧⎨-=⎩,故选:C . 【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.5.C解析:C 【分析】设小正方形的边长为x ,大正方形的边长为y ,列方程求解,用大正方形的面积减去4个小正方形的面积即可. 【详解】解:设小正方形的边长为x ,大正方形的边长为y ,则:22x y ay x b +=⎧⎨-=⎩, 解得:42a b x ab y -⎧=⎪⎪⎨+⎪=⎪⎩, ∴阴影面积=(2a b +)2﹣4×(4a b -)22222224444a ab ba ab b ab ++-+=-==ab . 故选C . 【点睛】本题考查了整式的混合运算,求得大正方形的边长和小正方形的边长是解题的关键.6.A解析:A 【分析】根据对角线、横行、纵向的和都相等,设出未知数求解即可. 【详解】解:如图,设对角线上的三个数字为x 、y 、z ,三阶幻方的和=中心数字×3,由题意得10+2+x=10-6+z x+y+z=10-6+z x+y+z=3y ⎧⎪⎨⎪⎩ ,解得048x y z =⎧⎪=⎨⎪=⎩,∴三阶幻方的和10+2+0=12, 故选A .【点睛】本题考查了奇阶幻方的特征的灵活应用,解题的关键是掌握三阶幻方的和=中心数字×3.7.A解析:A 【分析】设小亮买了甲种水果x 千克,乙种水果y 千克,根据两种水果共花去28元,乙种水果比甲种水果少买了2千克,据此列方程组. 【详解】设小亮买了甲种水果x 千克,乙种水果y 千克,由题意得:46282x y x y +=⎧⎨=+⎩.故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.8.D解析:D 【分析】将各项中x 与y 的值代入方程检验即可. 【详解】 解:x-2y=1, 解得:x=2y+1,当y=-1时,x=-1,所以11x y =-⎧⎨=-⎩是方程21x y -=的解,选项A 不合题意,当y=-0.5时,x=-1+1=0,所以00.5x y =⎧⎨=-⎩是方程21x y -=的解,选项B 不合题意;当y=0时,x=1,所以10x y =⎧⎨=⎩是方程21x y -=的解,选项C 不合题意;当y=1时,x=2+1=3,所以11x y =⎧⎨=⎩不是方程21x y -=的解,选项D 符合题意;故选:D . 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.A解析:A 【分析】由这组公共解与m 无关,所以把两个方程相加变形为:()190,x y m x y +-+--=从而可得答案. 【详解】解:①+②得:9,mx x my y m ++-=+90,mx x my y m ∴++---=()190,x y m x y ∴+-+--=结合题意得:1090x y x y +-=⎧⎨--=⎩解得:54 xy=⎧⎨=-⎩,所以这个公共解为54 xy=⎧⎨=-⎩.故选A.【点睛】本题考查的是二元一次方程组的公共解与字母系数无关的问题,掌握与该字母无关,则含有该字母的项合并后系数为零是解题的关键.10.A解析:A【解析】试题设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:24xy=⎧⎨=⎩,43xy=⎧⎨=⎩,62xy=⎧⎨=⎩,81xy=⎧⎨=⎩,10{xy==,5xy=⎧⎨=⎩.因此兑换方案有6种,故选A.考点:二元一次方程的应用.11.C解析:C【分析】根据二元一次方程的定义,列出关于m、n的方程组,然后解方程组即可.【详解】解:根据题意,得121 m nm n-=⎧⎨+-=⎩,解得21mn=⎧⎨=⎩.故选:C.12.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A、分母中含有未知数,是分式方程,故本选项错误;B、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C、D、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误.故选B .二、填空题13.①②④【分析】由题意①直线的交点即为该直线组成方程组时该方程的解;②通过已知条件求解直线的未知数通过判断两直线k 的乘积是否为-1即可;③由②知两直线的表达式进而可得点ABD 的坐标进一步即可求出△AB 解析:①②④【分析】由题意①直线的交点即为该直线组成方程组时,该方程的解;②通过已知条件,求解直线的未知数,通过判断两直线k 的乘积是否为-1,即可; ③由②知两直线的表达式,进而可得点A ,B ,D 的坐标,进一步即可求出△ABD 的面积;④求点C 关于y 轴的对称点,然后连接A ,C 1,与y 轴的交点即为PA +PC 的值最小的点;【详解】①由于直线的交点即为该直线组成方程组时的解;∴ 12y kx b y x m =+⎧⎪⎨=-+⎪⎩ 的解,即为两条直线的交点,为:6585x y ⎧=-⎪⎪⎨⎪=⎪⎩,故①正确; ②将点C 的坐标和点B 的坐标分别代入直线1:l y kx b =+和21:2l y x m =-+; 可得:2k =、4b =、1m =;∴ 直线1:24l y x =+和21:12l y x =-+;又两直线的k 分别为:2和12-; 又 12()12⨯-=-;∴ 12l l ⊥; ∴ △BCD 为直角三角形;故②正确;③由②知,(2,0)A -,(0,4)B ,(0,1)D ;∴ 3BD =,2OA =;∴ △ABD 的面积为:1132322BD OA ⨯⨯=⨯⨯=;故③不正确; ④由题,对点68(,)55C -作关于y 轴的对称点168(,)55C ,又(2,0)A -;∴ 连接A ,C 1与y 轴的交点即为最小值点;设过点A ,C 1的直线为:y kx b =+;将点A ,C 1的坐标代入y kx b =+,可得:12k =,1b =;∴过点A ,C 1的直线为:112y x =+;又112y x =+与y 轴的交点坐标为:(0,1);∴ 点P 的坐标为:(0,1);故④正确; 故填:①②④;【点睛】本题考查一次函数的性质,关键在理解一次函数交点、垂直和对称问题,需要仔细审题. 14.【分析】(1)将方程组中①+②可求解;(2)根据(1)中的结论利用整体代入思想将代入然后解一元一次方程求解【详解】解:(1)由①+②可得:∴故答案为:(2)将代入中解得:故答案为:9【点睛】本题考查 解析:385k + 【分析】(1)将方程组中①+②可求解;(2)根据(1)中的结论利用整体代入思想将7x y +=代入,然后解一元一次方程求解.【详解】解:(1)2326322x y k x y k +=+⎧⎨+=+⎩①②, 由①+②可得:5538x y k +=+∴385k x y ++=故答案为:385k + (2)将7x y +=代入385k x y ++=中, 38=75k +,解得:9k = 故答案为:9.【点睛】本题考查加减法解二元一次方程组及解一元一次方程,掌握解方程的步骤正确计算是解题关键.15.或【分析】先画出函数大致图结合图象分两种情况讨论根据三角形的面积为2求出函数与轴交点坐标即可求出函数解析式【详解】如下图:∵点A(01)∴OA=1当直线与x 轴相交于时∵直线与两坐标轴围成的三角形的面 解析:411y x =+或141y x =-+ 【分析】先画出函数大致图,结合图象分两种情况讨论,根据三角形的面积为2求出函数与x 轴交点坐标,即可求出函数解析式 【详解】如下图:∵点A (0、1)∴OA=1当直线与x 轴相交于1B 时,∵直线与两坐标轴围成的三角形的面积为2,∴1122OA OB ⋅=, 解得14OB =,故1B (4、0)设该直线的解析式为y=kx+1将(4、0)代入得0=4k+1,解得14k =-∴y=14-x+1 当直线与x 轴相交于2B 时,同理可求2(4,0)B - 将2(4,0)B -代入得0=-4k+1,解得14k =∴y=14x+1 故该函数表达式为:y=14-x+1或y=14x+1故答案为:y=14-x+1或y=14x+1.【点睛】本题考查一次函数与几何图形问题,能根据函数与两坐标轴围成的三角形的面积为2求出它与x轴的交点坐标是解决此题的关键,另外本题一定要分交点在x轴正半轴和x轴负半轴两种情况讨论.16.2【分析】根据绝对值的非负性和平方数的非负性列出关于xy的二元一次方程组然后利用加减消元法求解即可【详解】解:根据题意得:②-①得:3y ﹣6=0解得:y=2将y=2代入②中得:x+2﹣5=0解得:x解析:2【分析】根据绝对值的非负性和平方数的非负性,列出关于x、y的二元一次方程组,然后利用加减消元法求解即可.【详解】解:根据题意得:21050x yx y-+=⎧⎨+-=⎩①②,②-①得:3y﹣6=0,解得:y=2,将y=2代入②中,得:x+2﹣5=0,解得:x=3,所以,方程组的解是32 xy=⎧⎨=⎩,故答案为:3;2.【点睛】本题考查绝对值和偶次方的非负性、解二元一次方程组,掌握二元一次方程组的解法,能根据两个非负性的和为零,则这两个数为零列出方程组是解答的关键.17.-2【分析】将(﹣24)代入正比例函数y=kx的的解析式求出k=-2【详解】∵正比例函数y=kx的图象经过点(﹣24)∴-2k=4解得k=-2故答案为:-2【点睛】此题考查待定系数法求函数解析式正确解析:-2【分析】将(﹣2,4)代入正比例函数y=kx的的解析式,求出k=-2.【详解】∵正比例函数y=kx的图象经过点(﹣2,4),∴-2k=4,解得k=-2,故答案为:-2.【点睛】此题考查待定系数法求函数解析式,正确理解待定系数法及正确计算是解题的关键. 18.【分析】仿照已知方程组的解确定出所求方程组xy的关系再联立解出xy 的值即可【详解】解:∵方程组的解是∴方程组的解是即故答案为:【点睛】此题考查了二元一次方程组的解方程组的解即为能使方程组中两方程都成解析:63 xy=⎧⎨=⎩【分析】仿照已知方程组的解确定出所求方程组x,y的关系,再联立解出x,y的值即可.【详解】解:∵方程组23103228a ba b-⎧⎨+⎩==的解是82ab⎧⎨⎩=,=∴方程组()()()()223110322128x yx y⎧+--=⎪⎨++-=⎪⎩的解是2812xy+⎧⎨-⎩==,即63xy=⎧⎨=⎩故答案为:63 xy=⎧⎨=⎩.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.【分析】两个等量关系为:上坡用的时间+下坡用的时间=16;上坡用的时间×上坡的速度+下坡用的时间×下坡速度=1200把相关数值代入即可求解【详解】解:可根据所用时间和所走的路程和得到相应的方程组为:解析:351.2 606016x yx y⎧+=⎪⎨⎪+=⎩【分析】两个等量关系为:上坡用的时间+下坡用的时间=16;上坡用的时间×上坡的速度+下坡用的时间×下坡速度=1200,把相关数值代入即可求解.【详解】解:可根据所用时间和所走的路程和得到相应的方程组为:351.2 606016x yx y⎧+=⎪⎨⎪+=⎩故答案为:351.2 606016x yx y⎧+=⎪⎨⎪+=⎩.【点睛】本题考查用二元一次方程组解决行程问题;得到走不同路段所用时间及所走的路程之和的等量关系是解决本题的关键.20.1:1【分析】根据题意设甲圆的面积为x 乙圆的面积为y 丙圆的面积为z 则甲圆内阴影部分的面积是乙圆内阴影部分的面积是丙圆内阴影部分的面积是即再根据甲圆内阴影部分的面积得出x+y =z 根据这两个数量关系求出 解析:1:1.【分析】根据题意设甲圆的面积为x ,乙圆的面积为y ,丙圆的面积为z ,则甲圆内阴影部分的面积是13x ,乙圆内阴影部分的面积是12y ,丙圆内阴影部分的面积是14z ,即111324x y z +=,再根据甲圆内阴影部分的面积得出x+y =35z ,根据这两个数量关系,求出用z 不上x 、y 的值,即可求得甲、乙两圆面积的比.【详解】解:设甲圆的面积为x ,乙圆的面积为y ,丙圆的面积为z ,则甲圆内阴影部分的面积是13x ,乙圆内阴影部分的面积是12y ,丙圆内阴影部分的面积是14z , 111324x y z +=,即4x+6y =3z①, x+y =35z ,即x =35z ﹣y②, 把②代入①得,4(35z ﹣y )+6y =3z , 整理得y =310z , x =35z ﹣y =35z ﹣310z =310z , x :y =1:1,所以甲、乙两圆面积的比为1:1,故答案为:1:1.【点睛】本题考查扇形的面积,根据数量关系等式找出甲、乙、丙圆的面积的关系,用丙的面积表示甲、乙的面积是解题的关键.三、解答题21.(1)53人;49人;(2)1班节约了490元,2班节约了318元【分析】(1)设(1)班有x 名学生,(2)班有y 名学生,根据“如果两班都以班为单位单独购票,则一共支付1828元,如果两班联合起来作为一个团体购票,则只需花费1020元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)利用节约的钱数=购买每张票节约的钱数×班级人数,即可求出结论.【详解】解:(1)∵1020÷16=6334,6334不为整数,∴(1)(2)两班的人数之和超过100人.设(1)班有x名学生,(2)班有y名学生,依题意得:20161828 10()1020x yx y+=⎧⎨+=⎩,解得:4953 xy=⎧⎨=⎩.答:(1)班有49名学生,(2)班有53名学生.(2)(1)班节约的钱数为(20-10)×49=490(元),(2)班节约的钱数为(16-10)×53=318(元).答:团体购票与单独购票相比较,(1)班节约了490元,(2)班节约了318元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.22.(1)2;(2)12xy=⎧⎨=⎩;(3)是,理由见解析【分析】(1)由点P的坐标结合一次函数图象上点的坐标特征,即可求出b的值;(2)利用数形结合的思想即可得出方程组的解就是两直线的交点坐标,依此即可得出结论;(3)根据点A、P的坐标,利用待定系数法求出m、n的值,由此即可得出直线l3的解析式,代入x=1得出y=2,由此即可得出直线l3:y=nx+m也经过点P.【详解】解:(1)∵点P(1,b)在直线l1:y=x+1上,∴b=1+1=2.(2)∵直线l1:y=x+1与直线l2:y=mx+n交于点P(1,2),∴关于x,y的方程组1y xy mx n=+⎧⎨=+⎩的解为12xy=⎧⎨=⎩.(3)直线l3:y=nx+m也经过点P.理由如下:将点A(4,0)、P(1,2)代入直线l2:y=mx+n中,得:042m nm n=+⎧⎨=+⎩,解得:2383mn⎧=-⎪⎪⎨⎪=⎪⎩,∴直线l3:y=83x﹣23.当x =1时,y =83×1﹣23=2, ∴直线l 3:y =83x ﹣23经过点P (1,2). 【点睛】 本题考查了一次函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b 值;(2)根据交点坐标得出方程组的解;(3)利用待定系数法求出m 、n 的值.本题属于中档题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.23.(1)7142是“四·二一数”,6312不是“四·二一数”;(2)4235【分析】(1)根据“四·二一数”的定义分别判断即可;(2)根据“四·二一数”的定义可得225a b c +-=,依次列举即可求解.【详解】解:(1)当t=7142时,∵()()412721+⨯-+=,∴7142是“四·二一数”;当t=6312时,∵()()312620+⨯-+=,∴6312不是“四·二一数”;(2)根据题意可得()241a b c +--=,即225a b c +-=,当1a =,2b =,1c =时,4a 与bc 的差为20,不符合题意;当2a =,1b =,1c =时,4a 与bc 的差为31,不符合题意;当2a =,2b =,3c =时,4a 与bc 的差为19,不符合题意;当2a =,3b =,5c =时,4a 与bc 的差为7,符合题意;当3a =,2b =,5c =时,4a 与bc 的差为18,不符合题意;当3a =,3b =,7c =时,4a 与bc 的差为6,不符合题意;当3a =,4b =,9c =时,4a 与bc 的差为-6,不符合题意;当4a =,3b =,9c =时,4a 与bc 的差为5,不符合题意;综上,满足条件的数t 为4235.【点睛】本题考查新定义问题,理解题干中“四·二一数”的定义是解题的关键.24.(1)y =13x ﹣2;(2)点P 的坐标为(83,0). 【分析】(1)根据点的坐标,利用待定系数法可求出直线AB 的表达式;(2)设点P 的坐标为(m ,0),结合点A ,B 的坐标可得出PA ,PB 的长,结合PA=PB 可得出关于m 的方程,解之即可得出m 的值,进而可得出点P 的坐标.【详解】解:(1)设直线AB 所对应的函数表达式为y =kx +b ,将A(6,0)、B(0,﹣2)代入,得:602k bb+=⎧⎨=-⎩,解得:132kb⎧=⎪⎨⎪=-⎩,∴一次函数的表达式为y=13x﹣2;(2)设点P的坐标为(m,0).∵点A的坐标为(6,0),点B的坐标为(0,﹣2),∴PA=|m﹣6|,PB∵PA=PB,∴(m﹣6)2=m2+22,∴m=83,∴点P的坐标为(83,0).【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及两点间的距离,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数表达式;(2)利用两点间的距离结合PA=PB,找出关于m的方程.25.(1)-2)11132313 xy⎧=-⎪⎪⎨⎪=-⎪⎩【分析】(1)二次根式的混合运算,注意先算乘除,后算加减;(2)利用加减消元法解二元一次方程组求解.【详解】解:(1﹣==﹣(2)321? 237?x yx y-=⎧⎨+=-⎩①②①×3得:9x﹣6y=3③,②×2得:4x+6y=﹣14④,③+④得:x=﹣11 13,把x =﹣1113代入①得:y =﹣2313, ∴方程组的解为:11132313x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查解二元一次方程组和二次根式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.26.(1)3020x y =⎧⎨=⎩;(2)共能赚91元;(3)打折后卖出橙子10斤,香蕉15斤. 【分析】(1)直接设批发橙子x 斤,香蕉y 斤,根据题意列出二元一次方程组即可;(2)用售价减进价等于利润直接计算赚的钱即可;(3)根据题意列出方程组,解方程组即可;【详解】(1)设批发橙子x 斤,香蕉y 斤, 则505.5 2.2209x y x y +=⎧⎨+=⎩, 得3020x y =⎧⎨=⎩, 答:批发商批发橙子30斤,香蕉20斤,(2)()()308 5.5203 2.291⨯-+⨯-=,共能赚91元;(3)设打折后卖出橙子m 斤,香蕉n 斤,则()()()()2530 2.5200.880.8 5.530.8 2.266m n m n m n +=⎧⎨-⨯+-⨯+⨯⨯-+⨯⨯-=⎩解得1015m n =⎧⎨=⎩, 答:打折后卖出橙子10斤,香蕉15斤.【点睛】本题考查了二元一次方程组的应用问题,正确理解题意,找出等量关系是解题的关键;。

初中数学方程与不等式之二元一次方程组经典测试题附答案

初中数学方程与不等式之二元一次方程组经典测试题附答案

初中数学方程与不等式之二元一次方程组经典测试题附答案一、选择题1.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-3分,不答的题得-1分.已知欢欢这次竞赛得了72分,设欢欢答对了x 道题,答错了y 道题,则( ) A .5372x y -= B .5372x y +=C .6292x y -=D .6292x y +=【答案】C 【解析】 【分析】设欢欢答对了x 道题,答错了y 道题,根据“每答对一题得+5分,每答错一题得-3分,不答的题得-1分,已知欢欢这次竞赛得了72分”列出方程. 【详解】解:设答对了x 道题,答错了y 道题,则不答的题有()20x y -- 道, 依题意得:()532072x y x y ----=, 化简得:6292x y -=. 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程,关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20.2.二元一次方程3420x y +=的正整数解有( ) A .1组 B .2组C .3组D .4组【答案】A 【解析】 【分析】通过将方程变形,得到以x 的代数式,利用倍数逻辑关系,枚举法可得. 【详解】∵由3420x y += 可得,34y 203, 54x y x =-=-,,x y 是正整数. ∴根据题意,x 是4的倍数,则05x y ==,(不符题意);4,2x y == 是方程的解,8,1x y ==- (不符题意).故答案是A . 【点睛】本题既考查正整数的概念又考查代数式的变形,理解二元一次方程解的概念是本题的关键.3.重庆育才中学2019年“见字如面读陶分享会” 隆重举行,初一年级得到了一定数量的入场券,如果每个班10张,则多出15张,如果每个班12张,则差5张券,假设初一年级共有x个班,分配到的入场券有y张,列出方程组为()A.1051215x yx y+=⎧⎨-=⎩B.1051215x yx y-=⎧⎨+=⎩C.1051215x yx y=-⎧⎨+=⎩D.1051215x yx y-=⎧⎨=+⎩【答案】A【解析】【分析】假设初一班级共有x个班,分配到的入场券有y张,根据“如果每个班10张,则多出5张券;如果每个班12张,则差15张券”列出方程组.【详解】设初一班级共有x个班,分配到的入场券有y张,则1051215x yx y+=⎧⎨-=⎩.故选:A.【点睛】此题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.4.已知二元一次方程1342x y-=的一组解是x ay b=⎧⎨=⎩,则63a b-+的值为()A.11 B.7 C.5 D.无法确定【答案】A【解析】【分析】把二元一次方程12x-3y=4的一组解先代入方程,得12a-3b=4,即a-6b=8,然后整体代入求出结果.【详解】∵x ay b=⎧⎨=⎩是二元一次方程12x-3y=4的一组解,∴12a-3b=4,即a-6b=8,∴a-6b+3=8+3=11.故选:A.【点睛】此题考查二元一次方程的解,解题的关键是运用整体代入的方法.5.某人购买甲种树苗12棵,乙种树苗15棵,共付款450元,已知甲种树苗比乙种树苗每棵便宜3元,设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组( )A .12154503x y x y +=⎧⎨-=⎩B .12154503x y y x +=⎧⎨-=⎩C .12154503x y y x +=⎧⎨=-⎩D .12154503x y x y +=⎧⎨=-⎩【答案】B 【解析】 【分析】根据“购买甲种树苗12棵,乙种树苗15棵,共付款450元”可列方程12x+15y =450;由“甲种树苗比乙种树苗每棵便宜3元”可列方程y ﹣x =3,据此可得. 【详解】设甲种树苗每棵x 元,乙种树苗每棵y 元. 由题意可列方程组12154503x y y x +=⎧⎨-=⎩,故选:B . 【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.6.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( ) A .8374y x y x +=⎧⎨-=⎩B .8374x yx y +=⎧⎨-=⎩C .8374x yx y -=⎧⎨+=⎩D .8374y xy x -=⎧⎨+=⎩【答案】C 【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x yx y -=⎧⎨+=⎩, 故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.7.下列方程组中,是二元一次方程组的是( )A .2113x y x⎧+=⎪⎨⎪=⎩ B .3526x y y z -=⎧⎨-=⎩C .1521x y xy ⎧+=⎪⎨⎪=⎩D .2224xy x ⎧=⎪⎨⎪-=⎩【答案】D 【解析】 【分析】根据二元一次方程组的定义进行判断即可. 【详解】解:A 、该方程组中未知数的最高次数是2,属于二元二次方程组,故本选项错误; B 、该方程组中含有3个未知数,属于三元一次方程组,故本选项错误; C 、该方程组中未知数的最高次数是2,属于二元二次方程组,故本选项错误; D 、该方程组符合二元一次方程组的定义,故本选项正确; 故选D . 【点睛】本题考查了二元一次方程组的定义,组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.8.如果230x y z +-=,且20x y z -+=,那么xy的值为( ) A .15B .15-C .13D .13-【答案】D 【解析】 【分析】将题目中的两个方程相加,即可求得3x +y =0的值,根据x 与y 的关系代入即可求出xy的值. 【详解】解:2x +3y −z =0 ① ,x −2y +z =0 ② , ①+②,得 3x +y =0, 解得,1=-3x y , 故选D . 【点睛】本题主要考查解三元一次方程组,解答本题的关键是明确题意,求出所求式子的值.9.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==【答案】A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.10.已知a,b满足方程组2226a ba b-=⎧⎨+=⎩,则3a+b的值是()A.﹣8 B.8 C.4 D.﹣4【答案】B【解析】【分析】方程组中的两个方程相加,即可得出答案.【详解】解:2226a ba b-=⎧⎨+=⎩①②,①+②,得:3a+b=8,故选B.【点睛】本题考查了解二元一次方程组和二元一次方程的解等知识点,能选择适当的方法求出解是解题的关键.11.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A .11910813x y y x x y =⎧⎨+-+=⎩()()B .10891311y x x y x y +=+⎧⎨+=⎩C .91181013x y x y y x ()()=⎧⎨+-+=⎩D .91110813x y y x x y =⎧⎨+-+=⎩()()【答案】D 【解析】 【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可. 【详解】设每枚黄金重x 两,每枚白银重y 两,由题意得:91110813x y y x x y =⎧⎨+-+=⎩()(),故选:D . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.12.已知关于x,y 的二元一次方程组323223x y m x y m +=-⎧⎨+=⎩的解适合方程25x y -=,则m 的值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】整理方程为3x+7y=2,与25x y -=组成新的方程组,求解得31x y =⎧⎨=-⎩,代入原方程组中任意一个方程即可求出m. 【详解】解:将m=2x+3y 代入3232x y m +=-中得,3x+7y=2, ∵x,y 的二元一次方程组323223x y m x y m +=-⎧⎨+=⎩的解适合方程25x y -=,∴联立方程组25372x y x y -=⎧⎨+=⎩,解得:31x y =⎧⎨=-⎩,∴23m x y =+=3, 故选C. 【点睛】本题考查解二元一次方程组的方法,属于简单题,熟练掌握加减消元和代入消元的方法是解题关键.13.|21|0a b -+=,则2019()b a -等于( ) A .1- B .1C .20195D .20195-【答案】A 【解析】 【分析】根据二次根式的性质和绝对值的概念先列出关于a,b 的方程组,求出解,然后代入式子中求值. 【详解】12110a b -+=,所以50,210,a b a b ++=⎧⎨-+=⎩①②由②,得21b a =+③,将③代入①,得2150a a +++=, 解得2a =-, 把2a =-代入③中, 得3b =-, 所以20192019()(1)1b a -=-=-.故选A. 【点睛】本题考查了二元一次方程组的解法,也考查了二次根式和绝对值的性质,比较基础.14.在方程组657237x y m x y +=+⎧⎨-=⎩的解中,x 、y 的和等于9,则72m +的算术平方根为( ) A .7B .7±CD.【答案】A 【解析】 【分析】根据条件得到二元一次方程组937y x y x ⎧⎨-=+=⎩,求出x ,y 的值,进而求出72m +的算术平方根,即可. 【详解】∵657237x y m x y +=+⎧⎨-=⎩且x+y=9,∴937y x y x ⎧⎨-=+=⎩,解得:45x y =⎧⎨=⎩,∴72m +=65x y +=6×4+5×5=49, ∴72m +的算术平方根为:7. 故选A . 【点睛】本题主要考查二元一次方程组的解的意义,掌握解二元一次方程组的方法,是解题的关键.15.方程5x +2y =-9与下列方程构成的方程组的解为212x y =-⎧⎪⎨=⎪⎩的是( )A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-8【答案】D 【解析】试题分析:将x 与y 的值代入各项检验即可得到结果. 解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x ﹣4y=﹣8.故选D .点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.16.一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .设普通公路长、高速公路长分别为km km x y 、,则可列方程组为( )A .2 2.210060x y x y =⎧⎪⎨+=⎪⎩B .2 2.260100x y x y =⎧⎪⎨+=⎪⎩C .2 2.260100x y x y =⎧⎪⎨+=⎪⎩D .2 2.210060x y x y=⎧⎪⎨+=⎪⎩ 【答案】C 【解析】 【分析】设普通公路长、高速公路长分别为xkm 、ykm ,由普通公路占总路程的13,结合汽车从A 地到B 地一共行驶了2.2h ,即可得出关于x ,y 的二元一次方程组,此题得解. 【详解】设普通公路长、高速公路长分别为xkm 、ykm ,依题意,得:2 2.260100x y xy =⎧⎪⎨+=⎪⎩ 故答案为:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.17.方程组2x y x y 3n+=⎧+=⎨⎩的解为{x 2y ==n ,则被遮盖的两个数分别为( )A .2,1B .5,1C .2,3D .2,4【答案】B 【解析】把x=2代入x+y=3中,得:y=1, 把x=2,y=1代入得:2x+y=4+1=5, 故选B .18.如果方程组45x by ax =⎧⎨+=⎩的解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为( )A .﹣1B .1C .2D .0【答案】B 【解析】 【分析】 把43x y ==⎧⎨⎩代入方程组25bx ay by ax +⎧⎨+⎩==,得到一个关于a ,b 的方程组,将方程组的两个方程左右两边分别相加,整理即可得出a+b 的值. 【详解】把43x y ==⎧⎨⎩代入方程组25bx ay by ax +⎧⎨+⎩==,得:432345b a b a =①=②+⎧⎨+⎩,①+②,得:7(a+b )=7, 则a+b=1. 故选B . 【点睛】此题主要考查了二元一次方程组的解的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.理解定义是关键.19.如果方程组x 35ax by =⎧⎨+=⎩的解与方程组y 42bx ay =⎧⎨+=⎩的解相同,则a 、b 的值是( )A .a 12b =-⎧⎨=⎩B .a 12b =⎧⎨=⎩C .a 12b =⎧⎨=-⎩D .a 12b =-⎧⎨=-⎩【答案】A 【解析】 【分析】把34x y =⎧⎨=⎩代入方程中其余两个方程得345342a b b a +=⎧⎨+=⎩,解方程组可得.【详解】解:由于两个方程组的解相同,所以这个相同的解是34x y =⎧⎨=⎩, 把34x y =⎧⎨=⎩代入方程中其余两个方程得345342a b b a +=⎧⎨+=⎩解得a 12b =-⎧⎨=⎩故选A . 【点睛】本题考核知识点:解二元一次方程组.解题关键点:熟练解二元一次方程组.20.某玩具车间每天能生产甲种玩具零件200个或乙种玩具零件100个,甲种玩具零件1个与乙种玩具零件2个能组成一个完整的玩具,怎样安排生产才能在30天内组装出最多的玩具?设生产甲种玩具零件x 天,生产乙种玩具零件y 天,则有( )A .30200100x y x y +=⎧⎨=⎩B .30100200x y x y +=⎧⎨=⎩C .302200100x y x y +=⎧⎨⨯=⎩D .302100200x y x y +=⎧⎨⨯=⎩ 【答案】C【解析】【分析】根据题意可以列出相应的二元一次方程组,本题得以解决. 【详解】由题意可得,{x y 302200x 100y +=⨯=,故答案为C【点睛】 本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.。

第五章 二元一次方程组 单元测试 2022-2023学年北师大版数学八年级上册

第五章 二元一次方程组 单元测试 2022-2023学年北师大版数学八年级上册

第五章单元测试一、选择题(每题3分,共30分)1.下列方程组中是二元一次方程组的是( )A .⎩⎨⎧x -z =1,y =2B .⎩⎨⎧x =-1,y -2x =2C .⎩⎨⎧x +y =1,xy =xzD .⎩⎨⎧x -y =0,y 2=12.已知⎩⎨⎧x =2k ,y =3k 是二元一次方程2x +y =14的解,则k 的值是( ) A .2 B .-2 C .3 D .-33. 直线l 1:y =k 1x +b 1和直线l 2:y =k 2x +b 2在平面直角坐标系中如图所示,通过观察我们就可以得到方程组⎩⎨⎧y =k 1x +b 1,y =k 2x +b 2的解为⎩⎨⎧x =1,y =1,这一求解过程主要体现的数学思想是( )A .数形结合思想B .分类讨论思想C .类比思想D .公理化思想4.以方程2x +y =14的解为坐标的点组成的图象是一条直线,这条直线对应的一次函数表达式为( )A .y =2x +14B .y =2x -14C .y =-2x +14D .y =-x +75.设直线y =kx +b 经过点(-5,1),(3,-3),那么k 和b 的值分别是( )A .-2,-3B .1,-6C .-12,-32D .1,66.用加减消元法解方程组⎩⎨⎧2x +5y =-10,①5x -3y =-1②时,下列结果正确的是( ) A .要消去x ,可以用①×3-②×5 B .要消去y ,可以用①×5+②×2C .要消去x ,可以用①×5-②×2D .要消去y ,可以用①×3+②×27.为安置200名因暴风雪受灾的灾民,需要搭建可容纳12人和8人的两种帐篷(不能只搭建一种,且每顶帐篷都要住满),则搭建方案共有( )A .8种B .9种C .16种D .17种8.已知关于x ,y 的方程组⎩⎨⎧ax -by =4,ax +by =2的解为⎩⎨⎧x =4,y =2,则4a -3b 的值为( ) A .-92 B .92 C .-32 D .329.天虹商场现销售某品牌运动套装,上衣和裤子一套售价500元.若将上衣价格下调5%,将裤子价格上调8%,则这样一套运动套装的售价提高0.2%.设上衣和裤子在调价前单价分别为x 元和y 元,则可列方程组为( )A .⎩⎨⎧x +y =500,(1+5%)x +(1-8%)y =500×(1+0.2%) B .⎩⎨⎧x +y =500,(1-5%)x +(1+8%)y =500×0.2% C .⎩⎨⎧x +y =500,(1-5%)x +(1+8%)y =500×(1+0.2%) D .⎩⎨⎧x +y =500,5%x +8%y =500×(1+0.2%) 10.汪老师购买了一条18米长的彩带来装饰教室,他用剪刀剪了a (a >2)次,把彩带剪成了一段5米长,一段7米长和若干段相同长度(长度为整数)的彩带,则a 的所有可能取值的和为( )A .11B .12C .14D .16二、填空题(每题3分,共15分)11.如果4x a +b -2y a -b =8是二元一次方程,那么a =________.12. 已知x ,y 满足方程组⎩⎨⎧2x +y =5,x +2y =4,则x +y 的值为______. 13.《九章算术》中的算筹图是竖排的,为了看图方便,我们把它改成横排,图1,图2中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是⎩⎨⎧x +3y =18,2x +4y =26.类似地,图2所示的算筹图,可以表述为______________________.14. 如图,一次函数y =kx +b 和y =-13x +13的图象交于点M .则关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =kx +b ,y =-13x +13的解是__________. 15.《九章算术》中有一题为“今有人共买鸡,人出九,盈十一;人出六,不足十六,问人数、鸡价各几何?”题目的大意是:有几人共同出钱买鸡,每人出9枚铜钱,则多了11枚铜钱;每人出6枚铜钱,则少了16枚铜钱,那么共有________人买鸡,鸡的价格为________.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.解下列方程组:(1)⎩⎨⎧x +5y =6,3x -6y -4=0; (2)⎩⎨⎧2a +3b =2,4a -9b =-1;(3)⎩⎪⎨⎪⎧5(x -9)=6(y -2),x 4-y +13=2; (4)⎩⎨⎧x -y +z =0,4x +2y +z =3,25x +5y +z =60.17.若关于x ,y 的方程组⎩⎨⎧3x +5y =m +2,2x +3y =m的解x 与y 的值的和等于2,求m 2-4m +4的值.18.一个两位数的十位数字与个位数字的和为6,如果把这个两位数加上36,那么恰好成为个位数字与十位数字对调后组成的两位数,则原来的两位数是多少?19.从少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以12千米/时的速度下山,以9千米/时的速度通过平路,到学校共用了55分钟.回去时,通过平路的速度不变,但以6千米/时的速度上山,回到营地共花去了1小时10分钟,则夏令营到学校有多少千米?20.甲、乙两支清雪队同时开始清理某路段积雪,一段时间后,乙队被调往别处,甲队又用了3 h完成了剩余的清雪任务,已知甲队每小时的清雪量保持不变,乙队每小时清雪50 t,甲、乙两队在此路段的清雪总量y(t)与清雪时间x(h)之间的函数图象如图所示.(1)乙队调离时,甲、乙两队已完成的清雪总量为________t.(2)求此次任务的清雪总量m.(3)求乙队调离后y与x之间的函数关系式.21.某扶贫帮扶小组积极响应政策,对农民实施精准扶贫.某农户老张种植花椒和黑木耳两种干货共800千克,扶贫帮扶小组通过市场调研发现,花椒市场价为60元/千克,黑木耳市场价为48元/千克,老张全部售完可以收入4.2万元.已知老张种植花椒的成本为25元/千克,种植黑木耳的成本为35元/千克,根据脱贫目标任务要求,老张种植花椒和黑木耳两种干货的纯收入(销售收入-种植成本)在2万元以上才可以顺利脱贫.请你分析一下扶贫帮扶小组是否能帮助老张顺利脱贫.22.如图,在平面直角坐标系xOy中,直线l1:y=x+1与x轴交于点A,直线l2与x轴交于点B(1,0),l1与l2相交于点C(m,3).(1)求直线l2的表达式;(2)过x轴上一动点D(t,0),作垂直于x轴的直线,分别与直线l1,l2交于P,Q两点.连接AQ,若S△AQC=2S△ABC,求此时点Q的坐标.23.甲、乙两地相距300 km,一辆货车和一辆轿车先后从甲地出发驶向乙地,轿车比货车晚出发1.5 h,如图,线段OA表示货车离甲地的距离y(km)与货车出发的时间x(h)之间的函数关系;折线BCD表示轿车离甲地的距离y(km)与货车出发的时间x(h)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,求货车与甲地的距离;(2)求线段CD对应的函数表达式;(3)在轿车行进过程中,轿车行驶多少时间时,两车相距15 km?答案一、1. B 2. A 3. A 4. C 5. C 6. C 7.A 8.B9. C 10. C二、11.1 12.313.⎩⎨⎧3x +2y =19,x +4y =23 14.⎩⎨⎧x =-2,y =115.9;70 三、16.解:(1)⎩⎪⎨⎪⎧x =83,y =23. (2)⎩⎪⎨⎪⎧a =12,b =13. (3)⎩⎨⎧x =-18,y =-20.5. (4)⎩⎨⎧x =3,y =-2,z =-5.17.解:⎩⎨⎧3x +5y =m +2,2x +3y =m ,①② ①-②得x +2y =2.③因为x +y =2,④所以③-④得y =0.把y =0代入④得x =2,把x =2,y =0代入②,得m =4,所以m 2-4m +4=42-4×4+4=4.18.解:设原来的两位数的十位数字为x ,个位数字为y ,由题意得⎩⎨⎧ x +y =6,10x +y +36=10y +x ,解得⎩⎨⎧x =1,y =5,则原来的两位数是15.19.解: 设平路有x 千米, 山路有y 千米,由题意得⎩⎪⎨⎪⎧x 9+y 12=5560,x 9+y 6=11060,解得⎩⎨⎧x =6,y =3, 故夏令营到学校有3+6=9(千米).20.解:(1)270(2)乙队调离前,甲、乙两队每小时的清雪总量为270÷3=90(t), 因为乙队每小时清雪50 t ,所以甲队每小时的清雪量为90-50=40(t),所以m =270+40×3=390.(3)由(2)可知点B 的坐标为(6,390),设乙队调离后y 与x 之间的函数关系式为y =kx +b (k ≠0), 因为图象经过点A (3,270),B (6,390),所以⎩⎨⎧3k +b =270,6k +b =390,解得⎩⎨⎧k =40,b =150.所以乙队调离后y 与x 之间的函数关系式是y =40x +150.21.解:设老张种植花椒x 千克,黑木耳y 千克,依题意得⎩⎨⎧x +y =800,60x +48y =42 000,解得⎩⎨⎧x =300,y =500,(60-25)×300+(48-35)×500=17 000(元),17 000<20 000,所以扶贫帮扶小组不能帮助老张顺利脱贫.22.解:(1)因为直线l 1:y =x +1与l 2相交于点C (m ,3),所以3=m +1,解得m =2,所以点C (2,3).设直线l 2的表达式为y =kx +b ,因为直线l 2与x 轴交于点B (1,0),与l 1相交于点C (2,3),所以⎩⎨⎧k +b =0,2k +b =3,解得⎩⎨⎧k =3,b =-3,所以直线l 2的表达式为y =3x -3.(2)当点D 在B 的左侧时,由S △AQC =2S △ABC ,C (2,3),易得Q (t ,-3).将(t ,-3)代入y =3x -3,得-3=3t -3,解得t =0,所以Q (0,-3);当点D 在B 的右侧时,由S △AQC =2S △ABC ,C (2,3),易得Q (t ,9).将(t ,9)代入y =3x -3,得9=3t -3,解得t =4,所以Q (4,9).综上所述,点Q 的坐标为(0,-3)或(4,9).23.解:(1)由图象可得,货车的速度为300÷5=60(km/h),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(km).(2)设线段CD 对应的函数表达式是y =kx +b ,将点C (2.5,80),点D (4.5,300)的坐标代入,得⎩⎨⎧2.5k +b =80,4.5k +b =300,解得⎩⎨⎧k =110,b =-195,即线段CD 对应的函数表达式是y =110x -195(2.5≤x ≤4.5).(3)当x =2.5时,两车之间的距离为60×2.5-80=70(km),因为70>15,所以在轿车行进过程中,两车相距15 km 的时间是在2.5 h ~4.5 h 之间,由图象可得,线段OA 对应的函数表达式为y =60x ,则|60x -(110x -195)|=15,解得x 1=3.6,x 2=4.2.因为轿车比货车晚出发1.5 h ,3.6-1.5=2.1(h),4.2-1.5=2.7(h),所以在轿车行进过程中,轿车行驶2.1 h 或2.7 h 时,两车相距15 km .。

(典型题)初中数学八年级数学上册第五单元《二元一次方程组》测试题(包含答案解析)

(典型题)初中数学八年级数学上册第五单元《二元一次方程组》测试题(包含答案解析)

一、选择题1.一次函数y=kx +b 中,x 与γ的部分对应值如下表所示,则下列说法正确的是( )A .x 的值每增加1,y 的值增加 3,所以k=3B .x=2是方程 kx +b=0的解C .函数图象不经过第四象限D .当x>1时,y<-12.某学校操场是周长为400 m 的长方形,且长比宽的2倍少40m .若设该长方形的长为x ,宽为y ,则可列方程组为( ) A .400240x y y x +=⎧⎨-=⎩B .400240x y y x +=⎧⎨+=⎩C .200240x y y x +=⎧⎨-=⎩D .200240x y y x +=⎧⎨+=⎩3.小亮用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮两种水果各买了多少千克?设小亮买了甲种水果x 千克,乙种水果y 千克,则可列方程组为( ) A .46282x y x y +=⎧⎨=+⎩B .46282y x x y +=⎧⎨=+⎩C .46282x y x y +=⎧⎨=-⎩D .46282y x x y +=⎧⎨=-⎩4.用加减法将方程组2311255x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ).A .26y =B .816y =C .26y -=D .816y -=5.使用喷壶在家中喷洒消毒液是预防新冠病毒的有效措施.某同学为了更加合理、科学、节约的喷洒消毒液,做了如下的记录.壶中可装消毒液400ml ,喷洒每次喷出20ml 的水,壶里的剩余消毒液量y (ml)与喷洒次数n (次)有如下的关系:A .y 随n 的增加而增大B .喷洒8次后,壶中剩余量为160mlC .y 与n 之间的关系式为y =400-nD .喷洒18次后,壶中剩余量为40ml6.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,公路长为y 米.根据题意,下面所列方程组中正确的是( ) A .6(1)5(211)y x x y=-⎧⎨+-=⎩B .6(1)5(21)y x x y =-⎧⎨+=⎩C .65(211)y xx y=⎧⎨+-=⎩D .65(21)y xx y =⎧⎨+=⎩7.如图,长方形ABCD被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD的周长为l,若图中3个正方形和2个长方形的周长之和为94l,则标号为①正方形的边长为()A.112l B.116l C.516l D.118l8.已知1,2xy=⎧⎨=⎩是二元一次方程24x ay+=的一组解,则a的值为()A.2 B.2-C.1 D.1-9.若方程6kx﹣2y=8有一组解32xy=-⎧⎨=⎩,则k的值等于(()A.23-B.23C.16-D.1610.已知方程组2728x yx y+=⎧⎨+=⎩,则5510x y-+的值是( )A.5 B.-5 C.15 D.2511.把60个乒乓球分别装在两种不同型号的盒子里(两个盒子必须都装),大盒装6个,小盒装4个,当把乒乓球都装完的时候恰好把盒子都装满,那么不同的装球方法有().A.2种B.4种C.6种D.8种12.已知方程组43235x y kx y-=⎧⎨+=⎩的解满足x y=,则k的值为()A.1 B.2 C.3 D.4二、填空题13.写出二元一次方程x+4y=11的一个整数解_____.14.金秋十月,丹桂飘香,重庆市綦江区某中学举行了创新科技大赛,该校初二年级某班共有18人报名参加航海组、航空组和无人机组三个项目组的比赛(每人限参加一项),其中航海组的同学比无人机组的同学的两倍少3人,航空组的同学不少于5人但不超过9人,班级决定为航海组的每位同学购买2个航海模型,为航空组的每位同学购买3个航空模型,为无人机组的每位同学购买若干个无人机模型,已知航海模型75元每个,航空模型98元每个,无人机模型165元每个,若购买这三种模型共需花费6939元,则其中购买无人机模型的费用是_______.15.渝北区某学校将开启“阅读节”活动,为了充实学校书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去7690元;语文组购买了A 、B 两种文学书籍若干本,用去8330元,已知A 、B 两种书的数量分别与甲、乙两种书的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同,若甲种书的单价比乙种书的单价多8元,则乙种书籍比甲种书籍多买了______本. 16.若2(321)4330x y x y -++--=,则x y -=_____.17.明代的程大位创作了《算法统宗》,它是一本通俗实用的数学书,将枯燥的数学问题化成了美妙的诗歌,读来朗朗上口,是将数字入诗的代表作.例如,其中有一首饮酒数学诗:“肆中饮客乱纷纷,薄酒名釂厚酒醇.醇酒一瓶醉三客,薄酒三瓶醉一人,共同饮了一十九,三十三客醉颜生.试问高明能算士,几多酶酒几多醇?”这首诗是说:“好酒一瓶,可以醉倒3位客人;薄酒三瓶,可以醉倒1位客人,如今33位客人醉倒了,他们总共饮下19瓶酒.试问其中好酒、薄酒分别是多少瓶?”请你根据题意,求出好酒是有_____瓶. 18.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm .19.已知24x y -=,用含x 的代数式表示y 为:y =____________. 20.已知434m n m x y -与5n x y 是同类项,则m n +的值是_______.三、解答题21.已知点()2,3P 是第一象限内的点,直线PA 交y 轴于点()0,2B ,交x 轴于点A ,连接OP .(1)求直线PA 的表达式. (2)求AOP ∆的面积.22.学校为奖励优秀学生,用695元钱在某文具店购买甲、乙两种笔记本共100本,已知甲种笔记本每本8元,乙种笔记本每本5元.请问两种笔记本各购买了多少本? 23.在数的学习过程中,我们通过对其中一些具有某种特性的数进行研究探索,发现了数字的美和数学的灵动性.现在我们继续探索一类数.定义:一个各位数字均不为0的四位自然数t ,若t 的百位、十位数字之和的2倍比千位、个位数字之和大1,则我们称这个四位数t 是“四·二一数”例如:当t=6413时,∵2×(4+1)-(6+3)=1 ∴6413是“四·二一数”;当=4257时,:2×(2+5)-(4+7)=3≠1 ∴4257不是“四·二一数”. (1)判断7142和6312是不是“四二-数”,并说明理由;(2)已知t= 4abc (1≤a≤9、1≤b≤9、1≤c≤9且均为正整数)是“四·二一数”,满足4a 与bc 的差能被7整除,求所有满足条件的数t . 24.解方程组:253420x y x y -=⎧⎨+=⎩25.解方程:4342312x y x y ⎧+=⎪⎨⎪-=⎩26.行政区划调整后,某村有两段长度相等的道路需硬化,现分别由甲、乙两个工程队同时开始施工.如图的线段和折线是两队前12天硬化的道路长y y 乙甲、(米)与施工时间x (天)之间的函数图象.根据图象解答下列问题:(1)直接写出y y 乙甲、与x (天)之间的函数关系式: ①当012x <≤时,y =甲 _ ;②当04x <≤时,y =乙 ;当412x <≤时,y =乙 ; (2)求图中点M 的坐标,并说明点M 的横、纵坐标表示的实际意义;(3)施工过程中,甲队的施工速度始终不变,而乙队在施工12天后,每天的施工速度提高到120米/天,两队将同时完成任务.两队还需要多少天完成任务?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据待定系数法求得解析式,然后根据一次函数的特点进行选择即可. 【详解】解:由题意,当1x =-时,5y =;当0x =时,2y =;∴52k b b -+=⎧⎨=⎩,解得32k b =-⎧⎨=⎩,∴一次函数为32y x =-+;∴函数图像经过第一、二、四象限,不经过第三象限, ∴A 、C 选项不符合题意;当2x =时,则3224y =-⨯+=-,故B 错误; ∵30k =-<,∴一次函数32y x =-+,y 随x 的增大而减小; ∵32y x =-+经过点(1,1-), ∴当x>1时,y<-1;故D 正确; 故选:D . 【点睛】本题主要考查对一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式等知识点的理解和掌握,能求出一次函数的解析式是解此题的关键.2.C解析:C 【分析】根据长加宽等于周长的一半200m ,长比宽的2倍少40m ,列得方程组. 【详解】解:若设该长方形的长为 x ,宽为y ,则可列方程组为200240x y y x +=⎧⎨-=⎩,故选:C . 【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键. 3.A解析:A 【分析】设小亮买了甲种水果x 千克,乙种水果y 千克,根据两种水果共花去28元,乙种水果比甲种水果少买了2千克,据此列方程组. 【详解】设小亮买了甲种水果x 千克,乙种水果y 千克,由题意得:46282x y x y +=⎧⎨=+⎩.故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.4.D解析:D 【分析】方程组两方程相减消去x 即可得到结果. 【详解】解:2311?255? x y x y -=⎧⎨+=-⎩①②②-①得:8y=-16,即-8y=16, 故选D . 【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.D解析:D 【分析】先利用待定系数法求出y 与n 之间的函数关系式,再根据一次函数的性质逐项判断即可得. 【详解】由表格可知,y 与n 之间的函数关系式为一次函数, 设y 与n 之间的函数关系式为y kn b =+,将点(1,380),(2,360)代入得:3802360k b k b +=⎧⎨+=⎩,解得20400k b =-⎧⎨=⎩,则y 与n 之间的函数关系式为20400y n =-+,选项C 错误;由一次函数的性质可知,y 随n 的增大而减小,选项A 错误; 当8n =时,208400240y =-⨯+=,选项B 错误; 当18n =时,201840040y =-⨯+=,选项D 正确; 故选:D . 【点睛】本题考查了利用待定系数法求一次函数的解析式、一次函数的性质等知识点,熟练掌握待定系数法是解题关键.6.A解析:A 【分析】设原有树苗x 棵,公路长为y 米,由栽树问题“栽树的棵数=分得的段数+1”,建立方程组即可. 【详解】设原有树苗x 棵,公路长为y 米, 由题意,得6(1)5(211)y x x y=-⎧⎨+-=⎩,故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组.关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.7.B解析:B 【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可. 【详解】 解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=.3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-, 91644y x l ∴+=,116x l ∴=. ∴标号为①的正方形的边长116l . 故选:B . 【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.8.C解析:C 【分析】把x与y的值代入方程计算即可求出a的值.【详解】把1,2xy=⎧⎨=⎩代入方程24x ay+=,得224a+=,解得1a=.故选C.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.A解析:A【分析】根据方程的解满足方程,课的关于k的方程,根据解方程,可得答案.【详解】解:由题意,得6×(-3)k-2×2=8,解得k=-2 3 ,故选A.【点睛】本题考查了二元一次方程,利用方程的解满足方程得出关于的k方程是解题关键.10.A解析:A【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可.【详解】解:2728 x yx y+=⎧⎨+=⎩①②①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5.故选A.【点睛】本题考查了用加减法解二元一次方程组.11.B解析:B【分析】结合题意,列二元一次方程,再根据x和y均为正整数,通过解二元一次方程,即可得到答案.【详解】假设大盒有x 个,小盒有y 个 根据题意得:6460x y += 结合题意,x 和y 均为正整数 当1x =时,60613.54y -==,不符合题意 当2x =时,6012124y -==,符合题意 当3x =时,601810.54y -==,不符合题意 当4x =时,602494y -==,符合题意 当5x =时,60307.54y -==,不符合题意 当6x =时,603664y -==,符合题意 当7x =时,60424.54y -==,不符合题意 当8x =时,604834y -==,符合题意 当9x =时,60541.54y -==,不符合题意 当10x =时,606004y -==,不符合题意 ∴共有4种装球方法 故选:B . 【点睛】本题考查了二元一次方程的知识;解题的关键是熟练掌握二元一次方程的性质并运用到实际问题中,从而完成求解.12.A解析:A 【分析】把x y =代入方程组43235x y kx y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解.【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x kx =⎧⎨=⎩,所以k=1, 故选:A【点睛】此题考查了解二元一次方程组.把x=y代入到方程组,消去y是解答此题的关键.二、填空题13.(答案不唯一)【分析】根据二元一次方程的整数解的定义写出即可【详解】解:当y=1时x=7所以二元一次方程x+4y=11的一个整数解为:(答案不唯一)【点睛】本题考查了二元一次方程整数解解题关键是理解解析:71xy=⎧⎨=⎩(答案不唯一).【分析】根据二元一次方程的整数解的定义写出即可.【详解】解:当y=1时,x=7,所以二元一次方程x+4y=11的一个整数解为:71xy=⎧⎨=⎩(答案不唯一).【点睛】本题考查了二元一次方程整数解,解题关键是理解方程解的意义,选一整数代入求另一个未知数的整数值.14.4125元【分析】设无人机组有x个同学航空组有y个同学根据人数为18列出二元一次方程根据航空组的同学不少于5人但不超过9人得到xy的解再代入模型费用进行验证即可求解【详解】设无人机组有x个同学航空组解析:4125元.【分析】设无人机组有x个同学,航空组有y个同学,根据人数为18列出二元一次方程,根据航空组的同学不少于5人但不超过9人,得到x,y的解,再代入模型费用进行验证即可求解.【详解】设无人机组有x个同学,航空组有y个同学,则航海组有(2x-3)个同学,依题意得x+2x-3+y=18,解得x=21=733y y --,∵航空组的同学不少于5人但不超过9人,x,y为正整数,y为3的倍数,故方程的解为,56xy=⎧⎨=⎩,49xy=⎧⎨=⎩,设为无人机组的每位同学购买a个无人机模型,当56xy=⎧⎨=⎩时,依题意得5a×165+2×7×75+6×3×98=6939解得a=4125=5825,符合题意,故购买无人机模型的费用是4125元; 当49x y =⎧⎨=⎩时,依题意得4a×165+2×5×75+9×3×98=6939 解得a=3543660,不符合题意; 综上,答案为4125元.故答案为:4125元.【点睛】此题主要考查二元一次方程的应用,解题的关键是根据题意列出方程,再分类讨论进行求解.15.80【分析】先设甲种书的单价为x 元数量为y 本乙种书的数量为z 本根据数学组购买了甲乙两种自然科学书籍若干本用去7690元:语文组购买了AB 两种文学书籍若干本用去8330元列出方程组求出z-y 的值即可求解析:80【分析】先设甲种书的单价为x 元,数量为y 本,乙种书的数量为z 本,根据数学组购买了甲、乙两种自然科学书籍若干本,用去7690元:语文组购买了A 、B 两种文学书籍若干本,用去8330元列出方程组,求出z-y 的值即可求出答案.【详解】设甲种书的单价为x 元,数量为y 本,乙种书的数量为z 本,根据题意得:()()8769088330xy x z x y xz ⎧+-⎪⎨-+⎪⎩==,整理得:8769088330xy xz z xy y xz +-⎧⎨-+⎩=①=②, ②−①得:8z-8y =640,则z-y =80,故乙种书籍比甲种书籍多买了80本故答案为:80.【点睛】此题考查了三元二次方程组的应用,关键是读懂题意,根据题目中的数量关系列出方程组,在解方程组时要注意方程组的特点.16.4【分析】根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出xy 的值再代入原式中即可【详解】解:∵∴①×3-②×2得把代入①得解得∴故答案为:4【点睛】本题考查了非负数的性质及二元一次方解析:4【分析】根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x 、y 的值,再代入原式中即可.【详解】解:∵2(321)4330x y x y -++--=,∴32104330x y x y -+=⎧⎨--=⎩①②, ①×3-②×2得,9x =-,把9x =-代入①得,27210y --+=,解得13y =-,∴9134x y -=-+=.故答案为:4.【点睛】本题考查了非负数的性质及二元一次方程组的解法.注意:几个非负数的和为零,则每一个数都为零.17.10【分析】根据好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33可列方程组解之即可【详解】解:设有好酒x 瓶薄酒y 瓶根据题意可列方程组为解得:∴好酒是有10瓶故答案为:10【点睛】本题主解析:10【分析】根据“好酒数量+薄酒数量=19和喝好酒醉倒人数+喝薄酒醉倒人数=33”可列方程组,解之即可.【详解】解:设有好酒x 瓶,薄酒y 瓶.根据题意,可列方程组为193333x y y x +=⎧⎪⎨+=⎪⎩,解得:109x y =⎧⎨=⎩, ∴好酒是有10瓶,故答案为:10.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是掌握理解题意,找到题目蕴含的相等关系.18.【分析】设小长方形的长是xmm 宽是ymm 根据图(1)知长的3倍=宽的5倍即3x=5y ;根据图(2)知宽的2倍-长=5即2y+x=5建立方程组【详解】设小长方形的长是xmm 宽是ymm 根据题意得:解得∴解析:2375mm【分析】设小长方形的长是xmm ,宽是ymm .根据图(1),知长的3倍=宽的5倍,即3x=5y ;根据图(2),知宽的2倍-长=5,即2y+x=5,建立方程组.【详解】设小长方形的长是xmm ,宽是ymm ,根据题意得:3525x y y x =⎧⎨-=⎩ ,解得2515x y =⎧⎨=⎩ ∴小长方形的面积为:22515375xy mm 【点睛】此题的关键是能够分别从每个图形中获得信息,建立方程.19.2x-4【分析】【详解】由2x-y=4得:-y=4-2x ∴y=2x-4故答案为:2x-4 解析:2x-4【分析】【详解】由2x-y=4得:-y=4-2x ,∴ y=2x-4,故答案为:2x-420.5【分析】由同类项的定义可得关于mn 的方程组解方程组即可求出mn 的值然后把mn 的值代入所求式子计算即可【详解】解:由题意得:解得:∴故答案为:5【点睛】本题考查了同类项的定义和二元一次方程组的解法属 解析:5【分析】由同类项的定义可得关于m 、n 的方程组,解方程组即可求出m 、n 的值,然后把m 、n 的值代入所求式子计算即可.【详解】解:由题意得:431m n n m =⎧⎨-=⎩,解得:14m n =⎧⎨=⎩, ∴145m n +=+=.故答案为:5.【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于常考题型,熟练掌握基本知识是解题的关键.三、解答题21.(1)122y x =+;(2)6 【分析】(1)设直线PA 的表达式为y kx b =+,把()0,2B ,()2,3P 代入求解即可;(2)根据题意得出A 的坐标求解即可;【详解】(1)设直线PA 的表达式为y kx b =+,把()0,2B ,()2,3P 分别代入y kx b =+,得,232b k b =⎧⎨=+⎩, 解得122k b ⎧=⎪⎨⎪=⎩, ∴122y x =+; (2)令0y =,则1202x +=, 解得4x =-,∴()4,0A -, ∴14362S =⨯⨯=; 【点睛】 本题主要考查了一次函数的应用,准确计算是解题的关键.22.甲种笔记本购买了65本,乙种笔记本购买了35本.【分析】设甲种笔记本购买了x 本,乙种笔记本购买了y 本,根据题意可列出二元一次方程组,解方程组求出x 、y 的值即可得答案.【详解】设甲种笔记本购买了x 本,乙种笔记本购买了y 本,∵用695元钱购买两种笔记本共100本,甲种笔记本每本8元,乙种笔记本每本5元, ∴10085695x y x y +=⎧⎨+=⎩, 解得:6535x y =⎧⎨=⎩. 答:甲种笔记本购买了65本,乙种笔记本购买了35本.【点睛】本题考查二元一次方程的应用,正确得出等量关系,列出方程组是解题关键. 23.(1)7142是“四·二一数”,6312不是“四·二一数”;(2)4235【分析】(1)根据“四·二一数”的定义分别判断即可;(2)根据“四·二一数”的定义可得225a b c +-=,依次列举即可求解.【详解】解:(1)当t=7142时,∵()()412721+⨯-+=,∴7142是“四·二一数”;当t=6312时,∵()()312620+⨯-+=,∴6312不是“四·二一数”;(2)根据题意可得()241a b c +--=,即225a b c +-=,当1a =,2b =,1c =时,4a 与bc 的差为20,不符合题意;当2a =,1b =,1c =时,4a 与bc 的差为31,不符合题意;当2a =,2b =,3c =时,4a 与bc 的差为19,不符合题意;当2a =,3b =,5c =时,4a 与bc 的差为7,符合题意;当3a =,2b =,5c =时,4a 与bc 的差为18,不符合题意;当3a =,3b =,7c =时,4a 与bc 的差为6,不符合题意;当3a =,4b =,9c =时,4a 与bc 的差为-6,不符合题意;当4a =,3b =,9c =时,4a 与bc 的差为5,不符合题意;综上,满足条件的数t 为4235.【点睛】本题考查新定义问题,理解题干中“四·二一数”的定义是解题的关键.24.612x y =⎧⎪⎨=⎪⎩【分析】利用加减消元法解答即可.【详解】解:253420x y x y -=⎧⎨+=⎩①② ①×2,得2x -4y =10 ③②+③得:5x =30解得,x=6把x =6代入①得:6-2y =5,解得y =12所以原方程组的解是612x y =⎧⎪⎨=⎪⎩. 【点睛】本题考查了的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较为简便.25.1083x y =⎧⎪⎨=⎪⎩【分析】先将方程组整理为43482312x y x y +=⎧⎨-=⎩,然后利用加减消元法解二元一次方程组. 【详解】解:方程组整理得43482312x y x y +=⎧⎨-=⎩①②, ①+②得:660x =,解得:10x =,把10x =代入①得:83y =, 则方程组的解为1083x y =⎧⎪⎨=⎪⎩. 【点睛】本题考查解二元一次方程组,掌握加减消元法解方程组的计算步骤和计算法则正确计算是解题关键.26.(1)①100x ;②150x ;50400x +;(2)()8,800M ;工作到第8天时,甲乙两工程队硬化道路的长度相等,均为800m ;(3)10天【分析】(1)根据图像,已知两点的坐标,可根据待定系数法列方程,求函数解析式即可; (2)根据一次函数列出二元一次方程组求出点M 的坐标,即可得出实际意义; (3)设两队还需x 天完成任务,根据速度⨯天数=施工距离,则甲队施工的总距离为1200100x +,乙队施工的总距离为1000120x +,根据总施工道路长相等列出一元一次方程从而求出x 的即可.【详解】(1)① 设=y kx 甲,由图像可知=y kx 甲经过点()12,1200,∴120012k =100k ∴==100y x ∴甲②当04x <≤时,设1=k y x 乙由图像可知1=y k x 乙经过点()4,600∴1600=4k1150k ∴=∴=150y x 乙当412x <≤时,设2=k y x b +乙由图像可知2=k y x b +乙经过点()4,600,点()12,1000224600121000k b k b +=⎧∴⎨+=⎩ 250400k b =⎧∴⎨=⎩=50400y x +乙(2)根据题意可得:10050400y x y x =⎧⎨=+⎩ 解得:8800x y =⎧⎨=⎩ M ∴()8,800∴点M 的横、纵坐标的实际意义:工作到第8天时,甲乙两工程队硬化道路的长度相等,均为800m .()3设两队还需要x 天完成任务,有题意得:10001201200100x x +=+解得:10x =所以两队还需要10天完成任务.【点睛】本题主要考查了用待定系数法求一次函数解析式,用一次函数解决实际问题,解题关键是数形结合读懂图像,找准等量关系列一元一次方程.。

北师大版八年级上册数学 第五章 二元一次方程组 单元检测题

北师大版八年级上册数学  第五章   二元一次方程组   单元检测题

北师大版八年级上册数学第五章 二元一次方程组 单元测试题一.单选题 1.若2123a b a b x y -+--=是关于x 、y 的二元一次方程,则2023(2)ab -的值为( )A .2023B .2023-C .1D .1-2. 如果方程3x y -=与下面方程中的一个组成的方程组的解为41x y =⎧⎨=⎩,那么这个方程是( ) A .1254x y += B .2()6x y -= C .29x y += D .3416x y -=3.用代入消元法解二元一次方程组235311x y y x -=⎧⎨=-⎩①②时,将②代入①中,正确的是( ) A .()23115x x --= B .23115x x --= C .233115x x -⨯-= D .()233115x x -⨯-=4. 下列哪对x ,y 的值是二元一次方程26x y +=的解( )A .22x y =-⎧⎨=-⎩B .02x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .31x y =⎧⎨=⎩ 5.在平面直角坐标系中,若点()1A a b -+,与点(),3B a b -关于y 轴对称,则点(),C a b -落在( )A .第一象限B .第二象限C .第三象限D .第四象限6.我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y 个,则下列关于x ,y 的二元一次方程组中符合题意的是( )A .10009928999x y x y +=⎧⎨+=⎩B .999971000114x y x y +=⎧⎪⎨+=⎪⎩C .100011499997x y x y +=⎧⎪⎨+=⎪⎩ D . 100097999114x y x y +=⎧⎪⎨+=⎪⎩ 7.函数y kx b =+的图象如图所示,根据图象信息可求得关于x 的方程0kx b +=的解为( )A .1x =B .2x =-C .0x =D .3x =8.若5210a b a b +++-+=,则()2023b a -的值是( )二.填空题15.在画一次函数y kx b=+的图象时,琪琪同学列表部分如下,其中x L2-1-1y L53▲-16.一次函数 31y x =-与y x b =+的图象的交点为()12P ,,则b = . 17. 将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为 .18.在坐标平面内,已知正比例函数2y x =与一次函数1y x =-的图象交于点A ,则点A 的坐标为 .三、解答题 19.解方程:(1) 34165633x y x y +=⎧⎨-=⎩; (2) 527x y x y +=⎧⎨+=⎩.20.已知关于x 、y 的方程组4210323x y x y +=⎧⎨-=-⎩和48ax by ax by +=-⎧⎨-=⎩有相同的解,求22a b ab +的值.21. 已知31a +的算术平方根是2,23a b -+的立方根是3-,求8b a -的平方根.22.已知A 、B 、C 的坐标分别为()1,5A -、3,62B ⎛⎫- ⎪⎝⎭、()2,1C -,试判断A 、B 、C 三点是否在同一直线上,并说明理由.23. 对有理数x 、y 定义一种新运算“※”,规定:()21x y ax by =+-※,,这里等式右边是通常的四则运算,例如:()0102**1121a b b =*+-=-※,,已知:()114-=-※,,()4211=※, (1)求a 、b 的值;(2)求()25m m +※,的最小值.l的函数表达式;(1)求直线2△的面积;(2)求ADCl上是否存在点(3)在直线2。

北师大版八年级数学上册《第五章二元一次方程组》检测题-带参考答案

北师大版八年级数学上册《第五章二元一次方程组》检测题-带参考答案

北师大版八年级数学上册《第五章二元一次方程组》检测题-带参考答案一、单选题1.楠溪江某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1225元,设其中有x张成人票,y张儿童票,根据题意,下列方程组正确的是()A. B. C. D.2.被历代数学家尊为算经之首的九章算术是中国古代算法的扛鼎之作.九章算术中记载:今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?译文:今有只雀、只燕,分别将它们放在天平两侧,只雀比只燕重,将只雀、只燕交换位置而放,重量相等.只雀、只燕总重量为斤.问雀、燕只各重多少斤?若设每只雀、燕的重量分别为斤,斤,则根据题意可列方程组()A. B. C. D.3.用“加减法”将方程组中的 x 消去后得到的方程是()A.y=8 B.7y=10 C.-7y=8 D.-7y=104.方程组的解是()A.B.C.D.5.已知是方程的一个解,则的值为()A.B.C.D.6.已知a,b,c是△ABC的三边长,其中a,b是二元一次方程组的解,那么c的值可能是下面四个数中的()A.2 B.6 C.10 D.187.若关于x,y的方程组的解满足,则m的值是()A.-2 B.-1 C.0 D.8.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组的解是()A.B.C.D.二、填空题9.若和都是方程的解,则.10.从甲地到乙地1200米,刚好是有一段上坡路与一段下坡路,一天李海同学保持上坡路每小时走3千米,下坡路每小时走5千米的速度,从甲地到乙地共用了16分钟.若设李海同学上坡路用了x 分钟,下坡路用了y分钟.可列出方程组为.11.关于的二元一次方程组的解满足,则的值是.12.关于x,y的二元一次方程组的解是,其中y的值被墨渍盖住了,则b的值为.13.小华和小盘到校门外文具店买文件,小华购铅笔2支,练习本2本,圆珠笔1支,共付9元钱;小慧购同样铅笔1支,练习本4本,圆珠笔2支,共付12元钱,若小明去买与她们一样的购铅笔1支、练习本2本、圆珠笔1支,他需付元钱.三、解答题14.解方程组:.15.某工厂要配制蛋白质15%的100千克食品,现在有含蛋白质分别为20%、12%的两种配料,用这两种配料可以配成要求的食品吗?如果可以,它们各需要多少千克?16.某水果种植场今年收获的“妃子笑”和“无核Ⅰ号”两种荔枝共3200 千克,全部售出后卖了30400 元.已知“妃子笑”荔枝每千克售价8 元,“无核Ⅰ号”荔枝每千克售价12 元,问该种植场今年这两种荔枝各收获多少千克?17.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润:(2)商场计划在暑假期间,对A型电脑按成本价提高20%后标价,又以9折(即按标价的90%)优惠卖出,结果每台电脑仍可获利90元,则每台A型电脑的成本是多少元?18.小能到某体育用品商店购物,他已选定了需购买的篮球和羽毛球拍的种类,若购买3个篮球和8副羽毛球拍共需416元;若购买6个篮球和1副羽毛球拍共需232元.(1)求每个篮球和每副羽毛球拍各需多少元?(2)“暑假”期间,该体育用品商店举行让利促销活动,篮球和羽毛球拍均以相同折扣进行销售,小能发现用256元购买篮球的个数比用480元购买羽毛球拍的副数少5.①求商店本次活动对篮球和羽毛球拍进行几折销售?②小能决定在这次让利促销活动中同时购买篮球和羽毛球拍,最后扫码支付了281.6元,问他有几种购买方案,请说明理由.参考答案:1.B2.C3.D4.B5.A6.B7.A8.C9.310.11.212.13.714.解:将①,得:③③②得:,解得把代入①得:所以原方程组的解为.15.解:设需要含蛋白质分别为20%、12%的两种配料分别是x千克,y千克,根据题意得:解得: .答:需要含蛋白质分别为20%、12%的两种配料分别是37.5千克,62.5千克.16.解:设这个种植场今年“妃子笑”荔枝收获 x 千克,“无核Ⅰ号”荔枝收获 y 千克.根据题意得这个方程组得答:该场今年收获“妃子笑”与“无核Ⅰ号”荔枝分别为 2000 千克和 1200 千克. 17.(1)解:设每台A型电脑、B型电脑的销售利润分别为x元、y元,依题意得:解得,答:每台A型电脑、B型电脑的销售利润分别为100元、150元.(2)解:设每台A型电脑的成本是a元,由题意得解得答:每台A型电脑的成本是1125元.18.(1)解:设每个篮球需要元,每副羽毛球拍需要元依题意得:解得:.答:每个篮球需要32元,每副羽毛球拍需要40元.(2)解:①设商店本次活动对篮球和羽毛球拍进行折销售依题意得:解得:经检验,是原方程的解,且符合题意.答:商店本次活动对篮球和羽毛球拍进行八折销售.②他有2种购买方案,理由如下:设小能购买了个篮球,副羽毛球拍依题意得:化简得:.均为正整数,小能有2种购买方案。

北师大版八年级上册数学《二元一次方程组应用题》测试试题以及答案

北师大版八年级上册数学《二元一次方程组应用题》测试试题以及答案

方程组应用题练习1、某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%,该农场去年实际生产玉米、小麦各多少吨?2、某工厂生产甲、乙两种商品共8万件,已知2件甲种商品与3件乙种商品售价收入相同,3件甲种商品比2件乙种商品销售收入多1500元,问甲种商品和乙种商品的销售单价各是多少元?3、某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆。

(1)现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?(2)经研究,停车场降低了收费标准,中型汽车的停车费改为10元/辆,小型汽车的停车费改为6元/辆,价格调价后停放这些汽车共需缴纳停车费多少元?4、某服装店用6000元购进A、B两种新式服装,按标价售出后可获得利润3800元(利润=售价-进价),这两种服装的进价、标价如下表所示:(1)求这两种服装各购进的件数;(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?5、某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样成订货的45不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?6、今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人,求该市今年外来和外出旅游的人数?7、某商场用36000元购进甲、乙两种商品,销售完后共获利6000元,其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元。

(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售,若两种商品销售完毕,要使第二次经营活动获利为8160元,乙种商品售价为每件多少元?8、某地方为了加快建设美丽乡村,对A、B两类村庄进行了全面改建,根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;建设2个A类村庄和5个B类村庄共投入资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)若改建3个A类美丽村庄和6个B类美丽村庄,问共需资金多少万元?9、购进甲、乙两种商品,其中甲商品的进件是120元/件,售价是130元/件,乙中商品的进件是100元/件,售价是150元/件。

(必考题)初中数学八年级数学上册第五单元《二元一次方程组》测试题(包含答案解析)(5)

(必考题)初中数学八年级数学上册第五单元《二元一次方程组》测试题(包含答案解析)(5)

一、选择题1.已知方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩,则关于x ,y 的方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩的解是( ) A .16x y =⎧⎨=-⎩B .14x y =⎧⎨=⎩C .46x y =⎧⎨=-⎩D .44x y =⎧⎨=-⎩2.若2()(2)3x a x x x b +-=-+,则实数b 等于( ) A .2-B .2C .12-D .123.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2-B .2C .1-D .14.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是3219423x y x y +=⎧⎨+=⎩,类似地,图2所示的算筹图表示的方程组为( )A .2114322x y x y +=⎧⎨+=⎩B .2114327x y x y +=⎧⎨+=⎩C .3219423x y x y +=⎧⎨+=⎩D .264327x y x y +=⎧⎨+=⎩5.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .6种B .7种C .8种D .9种6.已知关于,x y 的方程组2106x y nx my +=⎧⎨+=⎩和10312mx y nx y -=⎧⎨-=⎩有公共解,则m n -的值为( )A .1B .1-C .2D .2-7.方程组2824x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( )A .1B .2C .3D .48.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )A .19分B .20分C .21分D .22分9.已知 xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则 x :y :z 等于( )A .3:2:1B .1:2:3C .4:5:3D .3:4:510.已知方程组43235x y kx y -=⎧⎨+=⎩的解满足x y =,则k 的值为( )A .1B .2C .3D .4 11.如果3m 2n n m 3x 4y 120---+=是关于,x y 的二元一次方程,那么,m n 的值分别为( ) A .m=2, n=3B .m=2, n=1C .m=-1, n=2D .m=3, n=412.已知a b c 、、是ABC 的三边长,其中a b 、是二元一次方程组10216a b a b +=⎧⎨+=⎩的解,那么c 的值可能是下面四个数中的( ) A .2B .6C .10D .18二、填空题13.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______.14.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为_______.15.已知关于x ,y 的方程组111222a b c a b c x y x y +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩的解是____________. 16.在平面直角坐标系xOy 中,二元一次方程ax+by=c 的图象如图所示.则当x=3时,y 的值为_______.17.写出一个解为21x y =⎧⎨=⎩的二元一次方程组______. 18.从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3,km 平路每小时走4,km 下坡每小时走5,km 那么从甲地到乙地需48,min 从乙地到甲地需要36,min 则甲地到乙地的全程是__________________.km19.如图,汪曾祺纪念馆中的仿古墙独具特色,其中一处是由10块相同的小矩形砖块拼成了一个大矩形,若大矩形的一边长为75cm ,则小矩形砖块的面积为______2cm .20.如图,已知点A 坐标为(6,0),直线()0y x b b =+>与y 轴交于点B ,与x 轴交于点C ,连接AB ,43AB =,则OC 的长为______.三、解答题21.解方程组31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩22.2019年是中华人民共和国成立70周年,全国多地用灯光秀为祖国庆祝生日.据悉,四川省内某城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元.已知照明灯的售价为每个9元,投射灯的售价为每个120元,请用方程或方程组的相关知识解决下列问题:(1)该城市灯光秀使用照明灯和投射灯各多少个?(2)某栋楼宇原计划安装照明灯1000个,投射灯50个.后因楼宇本身的设计,实际安装时投射灯比计划多安装了20%,照明灯的数量不变.卖灯的商家为祖国70华诞而让利,把照明灯和投射灯售价分别降低了m %,3%5m ,实际上这栋楼宇照明灯和投射灯的总价为13536元,请求出m 的值.23.某公司决定从甲、乙、丙三个工厂共购买100件同种产品A ,计划从丙厂购买的产品数量是从甲厂购买的产品数量的2倍;从丙厂购买的产品数量的12与从甲厂购买的产品数量之和,刚好等于从乙厂购买的产品数量.(1)设从甲厂购买x 件产品A ,从乙厂购买y 件产品A ,请用列方程组的方法求出该公司从三个工厂各应购买多少件产品A ;(2)已知这三个工厂生产的产品A 的优品率分别为甲:80%;乙:85%;丙:90%,求快乐公司所购买的100件产品A 的优品率;(3)在第(2)题的基础上,你认为该公司在购买总数100件不变的情况下,能否通过改变计划,调整从三个工厂购买产品A 的数量,使购买产品A 的优品率上升2%?若能,请求出所有可能的购买方案;若不能,请说明理由(各厂购买的优品件数是整数). 24.某包装生产企业承接了一批礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是200cm ×40cm 的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示,(单位:cm ).(1)列出方程(组),求出图甲中a 与b 的值.(2)在试生产阶段,若将25张标准板材用裁法一裁剪,将5张标准板材用裁法二裁剪,再将得到的A 型与B 型板材分别做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?25.解方程(组)(1)()()4213311x x ---= (2)148x y x y +=⎧⎨+=-⎩①②26.为了保护学生的视力,课桌的高度cm y 与椅子的高度cm x (不含靠背)都是按y 是x 的一次函数关系配套设计的,下表列出了两套符合条件课桌椅的高度:(2)现有一把高42.0cm 的椅子和一张高78.2cm 的课桌,它们是否配套?请通过计算说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】将方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩变形为111222a x b y c a x b y c +=⎧⎨+=⎩类似的形式,解方程组即可.【详解】解:方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩可化为:1112222(1)2(1)a x b y c a x b y c -+=⎧⎨-+=⎩,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是25x y =⎧⎨=⎩,∴方程组1111222222a x b y b c a x b y b c -=+⎧⎨-=+⎩的解满足()2215x y =⎧⎨-+=⎩,即解为:16x y =⎧⎨=-⎩,故选:A . 【点睛】本题考查了二元一次方程组的解,解二元一次方程组,正确的解出方程组的解是解题的关键.2.B解析:B 【分析】等式左边去括号后两边经过比对可以得解 . 【详解】解:原等式可变为:()22223x a x a x x b +--=-+, ∴可得:232a b a -=-⎧⎨=-⎩,解之得:a=-1,b=2, 故选B . 【点睛】本题考查二元一次方程组的应用和多项式的乘法,熟练掌握代数式相等的意义、多项式的乘法法则及二元一次方程组的解法是解题关键.3.D解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可. 【详解】根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩ ,解得:=2=1x y ⎧⎨-⎩,∴2(1)1x y =-=. 故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.4.B解析:B 【分析】类比图1所示的算筹的表示方法解答即可. 【详解】解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为2114327x y x y +=⎧⎨+=⎩; 故选:B . 【点睛】本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.第II 卷(非选择题)请点击修改第II 卷的文字说明5.A解析:A 【解析】 试题设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10, 方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩.因此兑换方案有6种, 故选A .考点:二元一次方程的应用.6.A解析:A 【分析】联立不含m 与n 的两个方程组成方程组,求出x 与y 的值,进而求出m 与n 的值,代入m-n ,计算即可. 【详解】 解:联立得:210312x y x y +=⎧⎨-=⎩①②,①×3+②得:7x=42, 解得:x=6,把x=6代入②得:y=-2,把62x y =⎧⎨=-⎩ 代入得:6266210n m m n -=⎧⎨+=⎩, 解得:m=3,n=2, 则m-n=3-2=1. 故选A . 【点睛】本题考查了二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.利用两个方程组有公共解得出x ,y 的值是解题关键.7.A解析:A 【分析】分类讨论x 与y 的正负,利用绝对值的代数意义化简,求出方程组的解,即可做出判断. 【详解】解:根据x 、y 的正负分4种情况讨论: ①当x >0,y >0时,方程组变形得:2824x y x y +=⎧⎨+=⎩,无解;②当x >0,y <0时,方程组变形得:2824x y x y +=⎧⎨-=⎩,解得x =3,y =2>0, 则方程组无解;③当x <0,y >0时,方程组变形得:2824x y x y -+=⎧⎨+=⎩,此时方程组的解为16x y =-⎧⎨=⎩;④当x <0,y <0时,方程组变形得:2824x y x y -+=⎧⎨-=⎩,无解,综上所述,方程组的解个数是1. 故选:A . 【点睛】本题考查了解二元一次方程组,利用了分类讨论的思想,熟练掌握运算法则是解本题的关键.8.A解析:A 【分析】设投中外环得x 分,投中内环得y 分,根据所给图信息列一个二元一次方程组,解出即可得出答案. 【详解】解:设投中外环得x 分,投中内环得y 分,根据题意得2321417x y x y +=⎧⎨+=⎩, 解得:35x y =⎧⎨=⎩,32332519x y ∴+=⨯+⨯=分即小颖得分为19分, 故选A .本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键.9.B解析:B 【分析】 由4520430x y z x y z -+⎧⎨+-⎩=①=②,①×3+②×2,得出x 与y 的关系式,①×4+②×5,得出x 与z 的关系式,从而算出xyz 的比值即可. 【详解】 ∵4520430x y z x y z -+⎧⎨+-⎩=①=②,∴①×3+②×2,得2x=y ,①×4+②×5,得3x=z , ∴x :y :z=x :2x :3x=1:2:3, 故选B . 【点睛】本题考查了三元一次方程组的解法,用含有x 的代数式表示y 与z 是解此题的关键.10.A解析:A 【分析】把x y =代入方程组43235x y kx y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解.【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x kx =⎧⎨=⎩,所以k=1, 故选:A 【点睛】此题考查了解二元一次方程组.把x=y 代入到方程组,消去y 是解答此题的关键.11.D解析:D 【分析】根据二元一次方程的概念可得关于m 、n 的方程组,解方程组求得m 、n 即可. 【详解】 由题意得3211m n n m -=⎧⎨-=⎩,解得34m n =⎧⎨=⎩,【点睛】本题考查了二元一次方程的概念,解二元一次方程组,熟练掌握相关知识是解题的关键.12.B解析:B 【分析】先解二元一次方程组求出a,b 的值,然后再根据三角形三边之间的关系确定c 的值. 【详解】解:由题意可知:10(1)216(2)a b a b +=⎧⎨+=⎩,(2)-(1)式得:a =6,代回(1)中,解得b =4,根据三角形两边之和大于第三边,两边之差小于第三边可知, 6-4<c<6+4,即:2<c<10, 故选:B . 【点睛】本题考查了二元一次方程组的解法及三角形三边之间的关系,熟练掌握二元一次方程组的解法是解决本题的关键.二、填空题13.【分析】先把点的纵坐标为40代入得出x =2则两个一次函数的交点P 的坐标为(240);那么交点坐标同时满足两个函数的解析式而所求的方程组正好是由两个函数的解析式所构成因此两函数的交点坐标即为方程组的解解析:240x y =⎧⎨=⎩【分析】先把点P 的纵坐标为40代入20y x =,得出x =2,则两个一次函数的交点P 的坐标为(2,40);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解; 【详解】解:把y =40代入20y x =, 得出x =2,函数20y x =和40y ax =-的图象交于点P (2,40), 即x =2,y =40同时满足两个一次函数的解析式.所以关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是240x y =⎧⎨=⎩.故答案为:240x y =⎧⎨=⎩. 【点睛】此题考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14.63【分析】设左下角的小正方形边长为左上角最大的正方形的边长为根据长方形的长和宽列出方程组求解即可【详解】解:设左下角的小正方形边长为左上角最大的正方形的边长为解得长方形的长是:长方形的宽是:面积是 解析:63【分析】设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,根据长方形的长和宽列出方程组求解即可.【详解】解:设左下角的小正方形边长为x ,左上角最大的正方形的边长为y ,()()31311x y x x y y -=⎧⎨++=+-⎩,解得25x y =⎧⎨=⎩, 长方形的长是:22239+++=,长方形的宽是:257+=,面积是:7963⨯=.故答案是:63.【点睛】本题考查二元一次方程组的应用,解题的关键是找到等量关系列出方程组求解. 15.【分析】变形方程组根据整体代入的方法进行分析计算即可;【详解】方程组可变形为方程组即是当代入方程组之后的方程组则也是这一方程组的解所以∴故答案是【点睛】本题主要考查了二元一次方程组的求解准确分析计算解析:52m n =⎧⎨=-⎩【分析】变形方程组,根据整体代入的方法进行分析计算即可;【详解】方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩可变形为方程组()()111222a 2m 6b (1)c a 2m 6b (1)c n n ⎧-+--=⎪⎨-+--=⎪⎩,即是当261x m y n =-⎧⎨=--⎩代入方程组111222a b c a b c x y x y +=⎧⎨+=⎩之后的方程组,则41x y =⎧⎨=⎩也是这一方程组的解,所以26411x my n=-=⎧⎨=--=⎩,∴52mn=⎧⎨=-⎩.故答案是52 mn=⎧⎨=-⎩.【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.16.【分析】从给出图象中得到二元一次方程的两组解进而确定具体的二元一次方程为x+2y=2再代入x=3即可求出y的值【详解】解:从图象可以得到和是二元一次方程ax+by=c的两组解∴2a=cb=c∴x+2解析:1 2 -【分析】从给出图象中得到二元一次方程的两组解,进而确定具体的二元一次方程为x+2y=2,再代入x=3即可求出y的值.【详解】解:从图象可以得到,2xy=⎧⎨=⎩和1xy=⎧⎨=⎩是二元一次方程ax+by=c的两组解,∴2a=c,b=c,∴x+2y=2,当x=3时,y=12 -,故答案为12 -.【点睛】本题考查二元一次方程的解与一次函数图象的关系;能够从一次函数图象上获取二元一次方程的解,代入求出具体的二元一次方程是解题的关键.17.答案不唯一【分析】以2与1列出两个算式为2+1=32-1=1即可列出所求的二元一次方程组【详解】解:根据题意列得:故答案为:【点睛】本题考查二元一次方程组的解属于开方型试题此题答案不唯一只要满足题意解析:答案不唯一、31 x yx y+=⎧⎨-=⎩【分析】以2与1列出两个算式为2+1=3,2-1=1,即可列出所求的二元一次方程组.【详解】解:根据题意列得:31 x yx y+=⎧⎨-=⎩故答案为:31x y x y +=⎧⎨-=⎩. 【点睛】本题考查二元一次方程组的解,属于开方型试题,此题答案不唯一,只要满足题意即可. 18.7【分析】设从甲地到乙地坡路长平路长根据从甲地到乙地需从乙地到甲地需即可得出关于的二元一次方程组解之即可得出的值再将其代入中即可求出结论【详解】设从甲地到乙地坡路长平路长依题意得:解得:∴(km)故 解析:7【分析】设从甲地到乙地坡路长xkm ,平路长ykm ,根据“从甲地到乙地需48,min ,从乙地到甲地需36,min ”,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入()x y +中即可求出结论.【详解】设从甲地到乙地坡路长xkm ,平路长ykm , 依题意,得:483460365460x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 解得:6532x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴3 1.2 1.5 2.7265x y +=+=+=(km). 故答案为:2.7.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.675【分析】设小矩形的长为xcm 宽为ycm 由图形的条件列出方程组可求解【详解】设小矩形的长为xcm 宽为ycm 由题意可得:解得:∴小矩形砖块的面积为=45×15=675cm2故答案为:675【点睛】解析:675【分析】设小矩形的长为xcm ,宽为ycm ,由图形的条件列出方程组,可求解.【详解】设小矩形的长为xcm ,宽为ycm ,由题意可得:275 23x yx y x+=⎧⎨=+⎩,解得:4515 xy=⎧⎨=⎩,∴小矩形砖块的面积为=45×15=675cm2,故答案为:675.【点睛】本题考查了二元一次方程组的应用,找到正确的等量关系是本题的关键.20.【分析】根据勾股定理求得OB即可求得b的值得到直线解析式令y=0求得x的值即可求得OC的值【详解】解:∵点A坐标为(60)∴OA=6∵AB=4∴OB=∴b=OB=2∴直线的解析式为y=x+2令y=0解析:【分析】根据勾股定理求得OB,即可求得b的值,得到直线解析式,令y=0,求得x的值,即可求得OC的值.【详解】解:∵点A坐标为(6,0),∴OA=6,∵∴=∴∴直线的解析式为令y=0,则∴C(0),∴故答案为【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题21.532 xyz=⎧⎪=⎨⎪=⎩【分析】将①式代入其它两式可抵消掉y ,将方程组变为二元一次方程组,利用加减消元法求解即可.【详解】解:31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩①②③ 将①代入②后整理得:4318y z +=④,将①代入③后整理得:5y z +=⑤,④-3×⑤得3y =,代入⑤可得2z =,代入①得2x =,故该方程组的解为:532x y z =⎧⎪=⎨⎪=⎩【点睛】本题考查解三元一次方程组.掌握消元思想是解题关键.22.(1)照明灯45万个,投射灯5万个;(2)m =20.【分析】(1)设该城市灯光秀使用照明灯x 万个,投射灯y 万个,根据“该城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,即可得出关于m 的一元一次方程,解之即可得出结论.【详解】解:(1)设该城市灯光秀使用照明灯x 万个,投射灯y 万个,依题意,得:5091201005x y x y +=⎧⎨+=⎩, 解得:455x y =⎧⎨=⎩. 答:该城市灯光秀使用照明灯45万个,投射灯5万个. (2)依题意,得:9(1﹣m %)×1000+120(135-m %)×50×(1+20%)=13536,解得:m =20.答:m 的值为20.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,找准题目中等量关系列出方程是解题关键.23.(1)从甲、乙、丙购买的数量分别为20、40、40;(2)86%;(3)能,方案见解析【分析】(1)根据题意所述的两个等量关系列出方程组,解出即可得出答案;(2)先求出优品数量,然后除以100即可得出优品率;(3)设从甲厂购买x件,从乙厂购买y件,则从丙厂购买(100-x-y)件,根据优品的数量不变,可得出方程,解出即可.【详解】解:(1)由题意得:2100122x x yx x y++=⎧⎪⎨+⨯=⎪⎩,解得:2040 xy=⎧⎨=⎩,所以从甲、乙、丙购买的数量分别为20、40、40;(2)优品率为(80%×20+85%×40+90%×40)÷100=86%;(3)设从甲厂购买x件,从乙厂购买y件,则从丙厂购买(100-x-y)件,80%x+85%y+90%(100-x-y)=100(86%+2%),化简得:2x+y=40因为各厂购买的优品件数是整数,所以45x,1720y要是整数,所以当y=0时,x=20符合;则从甲购20件,乙购0件,丙购80件;当y=20时,x=10符合;则从甲购10件,乙购20件,丙购70件;当y=40时,x=0符合;则从甲购0件,乙购40件,丙购60件.【点睛】本题考查了二元一次方程组的应用,解答此类应用性题目,一定要仔细审题,找到等量关系,然后运用方程思想进行解答.24.(1)a=50,b=40;(2)可以做竖式无盖礼品盒8个,横式无盖礼品盒16个.【分析】(1)由图示利用板材的长列出关于a、b的二元一次方程组求解;(2)设可以做竖式无盖礼品盒x个,横式无盖礼品盒y个,根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数,然后根据竖式与横式礼品盒所需要的A、B两种型号板材的张数列出关于x、y的二元一次方程组,然后求解即可.【详解】解:(1)由题意得:310200330200 a ba b++=⎧⎨++=⎩,解得:5040ab=⎧⎨=⎩,答:图甲中a与b的值分别为:50、40;(2)设可以做竖式无盖礼品盒x个,横式无盖礼品盒y个,依题意得:43325+5225+35x yx y+=⨯⎧⎨+=⨯⎩,解得:816 xy=⎧⎨=⎩.答:可以做竖式无盖礼品盒8个,横式无盖礼品盒16个.【点睛】本题考查的知识点是二元一次方程组的应用,掌握二元一次方程组解应用题的方法与步骤,关键是数形结合构造出关于a 、b 的二元一次方程组,以及竖式与横式两种无盖礼品盒数量的方程组.25.(1)2x =-;(2)34x y =-⎧⎨=⎩【分析】(1)先去括号,再移项、合并同类项,最后将系数化为1,即可求出其解;(2)将两个方程直接相减,可消去未知数y ,求出x 的值,再求出y 的值即可.【详解】解:(1)()()4213311x x ---=去括号得,84931x x --+=,移项合并得,2x -=,系数化为1得,2x =-.(2)148x y x y +=⎧⎨+=-⎩①② ②-①得:39x =-解得:3x =-把3x =-代入①得:4y =.所以34x y =-⎧⎨=⎩. 【点睛】本题考查一元一次方程及二元一次方程组的解法,属于基础题型,比较简单.解一元一次方程的一般步骤是:去分母,去括号,移项,合并同类项,系数化为1.注意:在去分母时,应该将分子用括号括上.切勿漏乘不含有分母的项.解二元一次方程组的基本思想是消元,即化二元为一元,基本解法是代入法和加减法.26.(1) 1.611y x =+;(2)是,理由见解析【分析】(1)根据题意和表格中的数据可以计算出y 与x 的函数关系式;(2)将x=42.0代入(1)中的函数解析式,然后与78.2作比较,即可解答本题.【详解】解:(1)设y 与x 的函数关系式为y kx b =+,把40x =,75y =和37x =,70.2y =代入y kx b =+中,得40753770.2k b k b +=⎧⎨+=⎩,解得 1.611k b =⎧⎨=⎩所以 1.611y x =+ (2)把42x =代入 1.611y x =+ 得 1.6421178.2y =⨯+= 答:是配套的.【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,求出相应的函数解析式.。

八年级上册数学单元测试卷-第五章 二元一次方程组-北师大版(含答案)

八年级上册数学单元测试卷-第五章 二元一次方程组-北师大版(含答案)

八年级上册数学单元测试卷-第五章二元一次方程组-北师大版(含答案)一、单选题(共15题,共计45分)1、若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围为 ( )A.a<4B.a>4C.a<-4D.a>-42、已知,且x﹣y<0,则m的取值范围为()A. B. C. D.3、用加减法解方程组中,消x用____法,消y用____法()A.加,加B.加,减C.减,加D.减,减4、已知关于x,y的方程组,给出下列结论:①不论a取何值,方程组总有一组解;②当a=﹣2时,x,y的值互为相反数;③x+2y=3;④当3x+y=81时,a=2.其中正确的是()A.①②③④B.①②③C.②③D.①③④5、已知二元一次方程组的解为,则在同一平面直角坐标系中,两函数y=x+5与y=﹣x﹣1的图像的交点坐标为()A.(﹣4,1)B.(1,﹣4)C.(4,﹣1)D.(﹣1,4)6、方程2x-3y=5,x+=6,3x-y+2z=0,2x+4y,5x-y>0中是二元一次方程的有()个A.1B.2C.3D.47、一次函数y=kx与y=x+k交点的横坐标是2,则交点坐标是().A.(4,2)B.(-4, 2)C.(2 ,4)D.(2,-4)8、一个宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团25人准备同时租用这三种客房共9间,如果每个房间都住满,则租房方案共有()A.4种B.3种C.2种D.1种9、下列方程中,属于二元一次方程的是()A. B. C. D.10、方程组的解是()A. B. C. D.11、由方程组,可得到x与y的关系式是()A.x-y=8B.x-y=2C.x-y=-2D.x-y=-812、已知是关于x、y的二元一次方程组的解,则m+2n的值为()A. B.1 C.7 D.1113、用图象法解方程组时,所画的图象是()A. B.C.D.14、一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了()道题.A.17B.18C.19D.2015、下列方程中,为二元一次方程的是()A.xy-3=0B.2x+3y=10C.x 2-5y=8D. -2x=3二、填空题(共10题,共计30分)16、已知二元一次方程组的解是,则 ________.17、某公司推出一款新产品,通过市场调研后,按三种颜色受欢迎的程度分别对A颜色、B 颜色、C颜色的产品在成本的基础上分别加价40%,50%,60%出售(三种颜色产品的成本一样),经过一个季度的经营后,发现C颜色产品的销量占总销量的40%,三种颜色产品的总利润率为51.5%,第二个季度,公司决定对A产品进行升级,升级后A产品的成本提高了25%,其销量提高了60%,利润率为原来的两倍;B产品的销量提高到与升级后的A产品的销量一样,C产品的销量比第一季度提高了50%,则第二个季度的总利润率为________.18、如图,y=k1x+b1与y=k2x+b2交于点A,则方程组的解为________.19、对于实数x,y,定义一种运算“*”如下,x*y=ax﹣by2,已知2*3=10,4*(﹣3)=6,那么(﹣2)*2=________.20、已知方程组的解是,则直线y=3x﹣3与y=﹣x+3的交点坐标为________.21、若3x3m+5n+9+9y4m﹣2n+3=5是二元一次方程,则=________.22、《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为________;23、《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上一只鸽子对地上觅食的鸽子说:“若从你们中飞来一只,则树下的鸽子就是整个鸽群的;若从树上飞下去一只,则树上,树下的鸽子数一样多.”你知道树上树下共有________只.24、当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.已知点A (1,6)与点B的坐标满足y=﹣x+b,且点B是“完美点”.则点B的坐标是________.25、关于x,y的二次式x2+7xy+my2﹣5x+43y﹣24可以分解为两个一次因式的乘积,则m的值是________三、解答题(共5题,共计25分)26、已知关于x、y的二元一次方程组与的解相同,求a、b的值.27、(1)解二元一次方程组(2)画出不等式组在数轴上的解集.28、下列图示程序若输入x的值为1,则输出的值为1;若输入x的值为-1,则输出的值为-3;当输入x的值为时,输出的值为多少?29、现有一种饮料,它有大、中、小3种包装,其中1个中瓶比2个小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,三种包装的饮料每瓶各多少元?30、解方程组.参考答案一、单选题(共15题,共计45分)1、A2、D3、C4、A5、A6、A7、C8、B9、D10、D11、A12、C13、A14、C15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)27、28、29、。

北师大版八年级数学上册第五章二元一次方程组单元测试题(含答案,教师版)

北师大版八年级数学上册第五章二元一次方程组单元测试题(含答案,教师版)

北师大版八年级数学上册第五章二元一次方程组单元测试题(时间:120分钟 满分:150分)A 卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案填在下面的答题框内)1.下列各方程是二元一次方程的是(A)A .8x +3y =yB .2xy -3C .2x 2-3y =9 D.1x +y=3 2.解为⎩⎪⎨⎪⎧x =1,y =2的方程组是(D)A.⎩⎪⎨⎪⎧x -y =13x +y =5B.⎩⎪⎨⎪⎧x -y =-13x +y =-5 C.⎩⎪⎨⎪⎧x -y =33x -y =1D.⎩⎪⎨⎪⎧x -2y =-33x +y =5 3.方程y =1-x 与3x +2y =5的公共解是(B)A.⎩⎪⎨⎪⎧x =-3y =-2 B.⎩⎪⎨⎪⎧x =3y =-2 C.⎩⎪⎨⎪⎧x =-3y =4D.⎩⎪⎨⎪⎧x =3y =2 4.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解是(C)A.⎩⎪⎨⎪⎧x =3y =-1B.⎩⎪⎨⎪⎧x =-3y =-1C.⎩⎪⎨⎪⎧x =-3y =1D.⎩⎪⎨⎪⎧x =3y =15.已知⎩⎪⎨⎪⎧x =2,y =-3是二元一次方程4x +ky =2的解,则k 的值为(B)A .-2B .2C .1D .-16.方程x +2y =5的非负整数解有(A) A .3组B .2组C .1组D .0组7.下面四条直线,其中直线上每个点的坐标都是二元一次方程2x -y =2的解的是(B)A B C D8.成渝高速内江至成都段全长170 千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度分别为x 千米/时和y 千米/时,则下列方程组正确的是(D)A.⎩⎪⎨⎪⎧x +y =2076x +76y =170 B.⎩⎪⎨⎪⎧x -y =2076x +76y =170 C.⎩⎪⎨⎪⎧x +y =2076x +76y =170D.⎩⎪⎨⎪⎧76x +76y =17076x -76y =209.2019年足球亚洲杯在阿联酋举行,这项起源于我国“蹴鞠”的运动项目近年来在我国中小学校园得到大力推广,某次校园足球比赛规定:胜一场得3分,平一场得1分,负一场得0分,某足球队共进行了8场比赛,得了12分,该队获胜的场数有几种可能(A)A .3种B .4种C .5种D .6种10.如果关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +2y =k ,3x +5y =k -1的解x ,y 满足x -y =7,那么k的值是(A)A .-2B .8 C.45D .-8二、填空题(本大题共4个小题,每小题4分,共16分,答案写在题中的横线上) 11.甲班有男生x 人,女生y 人,其中男生比女生的2倍少8人,列出关于x ,y 的二元一次方程为x =2y -8.12.已知甲队有x 人,乙队有y 人,若从甲队调出10人到乙队,则乙队人数是甲队人数的2倍,调整后两队人数间的数量关系用含x ,y 的等式表示为y +10=2(x -10).13.由方程组⎩⎪⎨⎪⎧2x +m =1,y -2=m 可得出x 与y 的关系是y =-2x +3.14.若方程组⎩⎪⎨⎪⎧ax +by =4,ax -by =2与⎩⎪⎨⎪⎧2x +3y =4,4x -5y =-6的解相同,则a =33,b =1114.三、解答题(本大题共6个小题,共54分) 15.(本小题满分12分)解方程组:(1)⎩⎪⎨⎪⎧3x +2y =19,①2x -y =1;② 解:由②,得y =2x -1.③把③代入①,得3x +4x -2=19.解得x =3. 把x =3代入③,得y =2×3-1,即y =5.所以该方程组的解为⎩⎪⎨⎪⎧x =3,y =5.(2) ⎩⎪⎨⎪⎧3a -b +c =7,①2a +3b =-2,②a +b +c =-1.③解:①-③,得2a -2b =8.④ ④-②,得-5b =10,解得b =-2. 将b =-2代入②,得a =2. 将a =2,b =-2代入③,得c =-1. 所以该方程组的解为⎩⎪⎨⎪⎧a =2,b =-2,c =-1.16.(本小题满分6分)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x +y =1+a ,①x +3y =3,②的解满足x +y=2,求a 的值.解:①+②,得4x +4y =4+a. 当x +y =2时,4x +4y =8=4+a. 解得a =4.17.(本小题满分8分)已知方程组⎩⎪⎨⎪⎧5x +y =3,ax +5y =4与方程组⎩⎪⎨⎪⎧x -2y =5,5x +by =1有相同的解,求a ,b 的值.解:由题意,得方程组⎩⎪⎨⎪⎧5x +y =3,x -2y =5的解与题中两方程组的解相同,解得⎩⎪⎨⎪⎧x =1,y =-2.将x =1,y =-2代入ax +5y =4,得 a -10=4.解得a =14.将x =1,y =-2代入5x +by =1,得 5-2b =1,解得b =2.18.(本小题满分8分)直线a 与直线y =2x +1的交点的横坐标是2,与直线y =-x +2的交点的纵坐标是1,求直线a 的函数表达式.解:设直线a 的表达式为y =kx +b.把x =2代入y =2x +1,得y =5,即直线a 上的一个点的坐标是(2,5); 把y =1代入y =-x +2,得x =1,即直线a 上的另一个点的坐标是(1,1).将点(2,5),(1,1)代入y =kx +b ,得⎩⎪⎨⎪⎧k +b =1,2k +b =5.解得⎩⎪⎨⎪⎧k =4,b =-3.所以直线a 的函数表达式为y =4x -3.19.(本小题满分10分)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高2cm ,放入一个大球水面升高3cm ; (2)如果要使水面上升到50 cm ,应放入大球、小球各多少个? 解:设应放入x 个大球,y 个小球,由题意,得⎩⎪⎨⎪⎧3x +2y =50-26,x +y =10.解得⎩⎪⎨⎪⎧x =4,y =6. 答:要使水面上升到50 cm ,应放入4个大球,6个小球.20.(本小题满分10分)如图,已知直线AB :y =12x +1分别与x 轴、y 轴交于点A ,B ,直线CD :y =x +b 分别与x 轴、y 轴交于点C ,D ,直线AB 与CD 相交于点P ,S △ABD =2.求:(1)b 的值和点P 的坐标; (2)△ADP 的面积.解:(1)因为直线AB :y =12x +1分别与x 轴、y 轴交于点A ,B ,令y =0,则x =-2,即A(-2,0), 令x =0,则y =1,即B(0,1).又因为S △ABD =2,所以12|BD|·|OA|=2.因为|OA|=2,所以|BD|=2.又因为B(0,1),所以D(0,-1).所以b =-1. 联立⎩⎪⎨⎪⎧y =12x +1,y =x -1,解得⎩⎪⎨⎪⎧x =4,y =3.所以P(4,3).(2)S △ADP =S △ABD +S △BDP =2+12|BD|·|x P |=6.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在题中的横线上) 21.已知等式(2A -7B)x +(3A -8B)=8x +10对一切实数x 都成立,则A =65,B =-45.22.已知关于x ,y 的方程组⎩⎪⎨⎪⎧y =kx +m ,y =(2k +1)x +4有无数组解,则k +m 的值是3.23.在一条街AB 上,甲由A 向B 步行,乙骑车由B 向A 行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A 开出向B 行进,且每隔x 分钟发一辆车,过了一段时间,甲发现每隔10分钟有一辆公共汽车追上他,而乙感到每隔5分钟就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x =8分钟.24.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个或衣身15个或衣领12个,那么应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.25.某商人经营甲、乙两种商品,每件甲种商品的利润率为40% ,每件乙种商品的利润率为60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率为45%(利润率=利润÷成本).二、解答题(本大题共3个小题,共30分)26.(本小题满分8分)甲、乙、丙三种车型的汽车按运载量运载货物,它们的运载量如表:(1)甲种车型的汽车3辆,乙种车型的汽车a 辆,丙种车型的汽车2a 辆,它们一次性能运载(28a +15)吨货物(可用含a 的代数式表示);(2)甲、乙、丙三种车型的汽车共12辆,刚好能一次性运载物资共82吨,则甲、乙、丙三种车型的汽车各有多少辆?解:设甲种车型的汽车x 辆,乙种车型的汽车y 辆,则丙种车型的汽车(12-x -y)辆.由题意,得5x +8y +10(12-x -y)=82.整理,得y =19-52x(0≤y ≤12,且x ,y 是非负整数),所以x 只能取4和6.当x =4,得y =9(不合题意,舍去);当x =6,得y =4,12-x -y =2. 答:甲、乙、丙三种车型的汽车分别为6辆、4辆、2辆.27.(本小题满分10分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分钟的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分钟)之间的函数图象如图所示.(1)求小张骑自行车的速度;(2)求小张停留后再出发时y 与x 之间的函数表达式.解:(1)由题意,得2 400-1 2004=300(米/分钟).答:小张骑自行车的速度是300米/分钟. (2)由小张的速度可知B(10,0). 设直线AB 的表达式为y =kx +b. 把A(6,1 200)和B(10,0)代入,得⎩⎪⎨⎪⎧10k +b =0,6k +b =1 200,解得⎩⎪⎨⎪⎧k =-300,b =3 000. 故小张停留后再出发时y 与x 之间的函数表达式为y =-300x +3 000.28.(本小题满分12分)小明家需要用钢管做防盗窗,按设计要求,其中需要长为0.8 m ,2.5 m 且粗细相同的钢管分别为100根,32根,并要求这些用料不能是焊接而成的,现钢材市场的这种规格的钢管每根为6 m.(1)试问一根6 m 长的钢管有哪些裁剪方法呢?请填写下空(余料作废). 方法1:当只裁剪长为0.8 m 的用料时,最多能剪7根;方法2:当先剪下1根2.5 m 的用料时,余下部分最多能剪0.8 m 长的用料4根; 方法3:当先剪下 2根2.5 m 的用料时,余下部分最多能剪0.8 m 长的用料1根; (2)联合用(1)中的方法2和方法3各裁剪多少根6 m 长的钢管,才能刚好得到所需要的相应数量的材料?(3)小明经过探究发现:如果联合(1)中的二种或三种裁剪方法,还有多种方案能刚好得到所需要的相应数量的材料,并且所需要6 m 长的钢管与(2)中根数相同,试帮小明说明理由,并写出一种与(2)不同的裁剪方案.解:(2)设用方法二剪x 根,方法三裁剪y 根6 m 长的钢管,由题意,得⎩⎪⎨⎪⎧x +2y =32,4x +y =100,解得⎩⎪⎨⎪⎧x =24,y =4. 答:用方法2裁剪24根,方法3裁剪4根6 m 长的钢管,才能刚好得到所需要的相应数量的材料.(3)设方法1裁剪m 根,方法3裁剪n 根6 m 长的钢管,由题意,得⎩⎪⎨⎪⎧7m +n =100,2n =32,解得⎩⎪⎨⎪⎧m =12,n =16. 所以m +n =28.因为x +y =24+4=28,所以m +n =x +y.所以方法1与方法3联合,所需要6 m 长的钢管与(2)中根数相同.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学二元一次方程组测试题
一、选择题(每小题3分,共30分)
1、下列是二元一次方程的是()
A.3x6=x B .3x=2y C .2x+3=1 D .2x 3y=xy
y
2.下列各方程组中,属于二元一次方程组的是( )
A.3x2y7 B.2xy1 C.y2x
5 y1 D.x32
xy5 xz2 3x 4y 2
x2y3 3.方程组2x3y 5①,把②代入①得( )
y
②2x1
A.2x6x1=5 B .2(2x1) 3y=5C.2x 6x+3=5 D.2x6x3=5
4.已知方程ax+y=3x 1是二元一次方程,则a满足的条件是()
A.a≠0 B.a≠1 C.a≠3 D .a≠1
5.一个两位数,十位数字与个位数字的和为7,那么满足这个条件的两位数有
( )
A.4个 B .5个 C .6个 D .7个6.已知两个单项式2a3x b y5与5a24y b2x能合并为一个单项式,则x,y的值是
( )
A.x=2,y=1 B .x=2,y= 1 C.x= 2,y=-1 D.x=-2,y=1
7.已知关于x,y的方程组axby0的解为x 2
3ax2by10 y 1
,则a、b的值是( )
A.a 1 B.a 2 C .a1 D.a2
b 2 b 1 b2 b1
8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运
动员人数为x人,组数为y组,则列方程组为( )
第1页
A.7y x3 B.7y x3 C.7y x 3 D .7y x 3 8y 5x 8y 5x 8y x 5 8y x 5
9.两个水池共贮水40t,如果甲池再注进水4t,乙池再注进水8t,甲池水的吨数就与乙池水的吨数相等,甲、乙水池原来各贮水的吨数是( )
A .甲池21t,乙池19t
B .甲池22t,乙池18t
C .甲池23t,乙池17t
D .甲池24t,乙池16t
10.方程2x+3y=17的正整数解的个数是( )
A.1个B.2个 C .3个 D .4个
二、填空题(每空2分,共26分)
11.已知3x m+2一5y3—n=0是关于x、y的二元一次方程,则m+n= 。

12.若x3是方程3x+ay=1的一个解,则a的值是_______。

y 4
13.若方程x=2m1,y=4 m,那么用含x的代数式表示y,则y=_______。

14.写出一个以x 1为解的二元一次方程组_______。

y2
15.若方程组4x2y 6的解x,y互为相反数,则k=_______。

kx y 5
16.如果|x2yl 和(x+y 3)2互为相反数,则x y=_______。

17.如图,在3×3的方格内,填入一些代数式与数,若各行、各列及对角线上
的三个数字之和都相等,则x=_______,y=________。

18.关于x、y的二元一次方程组ax by 2与2x 3y 4的解相同,则a=______。

ax by 44x 5y 6
b=_______。

19.代数式ax+by,当x=3,y=2时,它的值为8;当x= 2,y=3时,它的值
为7,则代数式为_______。

第2页
20.方程组x
:y
1:3
的解是______________。

x 2y
14
21.对于x 、y ,规定一种新的运算: x*y=ax+by ,其中a 、b 为常数,等式右边
是通常的加法和乘法运算,已知 3*5=15,4*7=28,
则a+b=_______。

三、用适当的方法解下列方程组 (22~25题,每题6分,共24分)
4m
2n 5 0
1x 1
y1 22. 23. 2 3 3n 4m 6
1
2 3
xy
3
24. 0.4x 0.3y
0.7
2x
1y
10 11x 10y 25
.5
3 1
2x
2y
7
四、列方程解应用题(26,27每题5分,28题6分,共16分) 26.某校举办数学竞赛,有 120人报名参加,竞赛结果:总平均成绩为
66分,
合格生平均成绩为
76分,不及格生平均成绩为
52分,则这次数学竞赛中,及 格的学生有多少人,不及格的学生有多少人
?
第3页
27.有一个两位数,其数字和为14,若调换个位数字与十位数字,就比原数大
18,则这个两位数是多少?
28.某通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市
场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每
部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1) 若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买;
(2)若商场同时购进其中三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号的手机购买数量不少于6部且不多于8部,请你求出商场每
种型号手机的购买数量.
第4页。

相关文档
最新文档