勾股定理证明及练习
1.1 勾股定理的证明 北师大版八年级数学上册同步练习(含解析)
1.1 勾股定理的证明同步练习一.选择题(共10小题)1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则EF的长为( )A.9B.C.D.32.在认识了勾股定理的赵爽弦图后,一位同学尝试将5个全等的小正方形嵌入长方形ABCD 内部,其中点M,N,P,Q分别在长方形的边AB,BC,CD和AD上,若AB=7,BC=8,则小正方形的边长为( )A.B.C.D.23.如图是我国古代著名的“赵爽弦图”,大正方形ABCD是由四个全等的直角三角形和一个小正方形拼接而成,连接EC,若正方形ABCD的面积为10,EC=BC,则小正方形EFGH的面积为( )A.2B.2.5C.3D.3.54.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果大正方形的面积是5,小正方形的面积是1,直角三角形的两直角边长分别是a、b(b>a),则(a+b)2的值为( )A.16B.9C.4D.35.如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则(a+b)2的值为( )A.25B.19C.13D.1696.如图是在北京召开的国际数学家大会的会标,它是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形.若小正方形的面积为8,每个直角三角形比小正方形的面积均小1,则每个小直角三角形的周长是( )A.5+B.9+C.10+D.147.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a,较短直角边长为b,若(a+b)2=27,大正方形面积为15,则小正方形面积为( )A.3B.4C.6D.128.如图所示的“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.该图由四个全等的直角三角形和一个小正方形拼成一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=10,大正方形面积为25,则小正方形边长为( )A.B.2C.D.39.我国是最早了解勾股定理的国家之一,下面四幅图中,不能证明勾股定理的是( )A.B.C.D.10.意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是( )A.S1=a2+b2+2ab B.S1=a2+b2+abC.S2=c2D.S2=c2+ab二.填空题(共5小题)11.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和四边形EFGH都是正方形,如果AB=15,AH=9,则四边形GFEH的面积为 .12.“赵爽弦图”是我国古代数学的图腾(如图①).小丽同学深受“赵爽弦图”的启发,设计出一个图形(如图②).已知△ABC和△DEF都是等边三角形,D、E、F分别在线段BE、CF和AD上,且满足EC:EF=1:2,若AC=5,则EF = .13.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是1和2,则小正方形与大正方形的面积之比为 .14.魏晋时期,伟大数学家刘徽利用如图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理,若图中BF=2,CF=4,则AE的长为 .15.在证明“勾股定理”时,可以将4个全等的直角三角形和一个小正方形拼成一个大正方形(如图所示,AB<BC).如果小正方形的面积是25,大正方形的面积为49,那么= .三.解答题(共4小题)16.阅读材料,解决问题:三国时期吴国的数学家赵爽创建了一幅“弦图”,利用面积法给出了勾股定理的证明,实际上,该“弦图”与完全平方公式有着密切的关系.如图2,这是由8个全等的直角边长分别为a,b,斜边长为c的三角形拼成的“弦图”.(1)在图2中,正方形ABCD的面积可表示为 ,正方形PQMN的面积可表示为 .(用含a,b的式子表示)(2)请结合图2用面积法说明(a+b)2,ab,(a﹣b)2三者之间的等量关系.(3)已知a+b=7,ab=5,求正方形EFGH的面积.17.如图叫“赵爽弦图”,此图由四个全等的直角三角形(阴影部分)围成一个大正方形,中空的部分是一个小正方形.它是我国汉代的赵爽在注解《周髀算经》时给出的,其巧妙地利用图形的面积证明了“勾股定理”,表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲.(1)请你写出“勾股定理”的内容;(2)请你利用图形面积,结合图片完成勾股定理的证明.18.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2=,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.19.勾股定理是人类最伟大的科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(如图中图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有 个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2直角三角形面积为S3,请判断S1,S2,S3的关系并证明.1.1 勾股定理的证明同步练习参考答案与试题解析一.选择题(共10小题1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则EF的长为( )A.9B.C.D.3【解答】解:由题意可得,a2+b2=25,ab=8,∴(a﹣b)2=a2﹣2ab+b2=(a2+b2)﹣2ab=25﹣2×8=25﹣16=9,由图可知:EF2=(a﹣b)2+(a﹣b)2,∴EF2=9+9,解得EF=3,故选:C.2.在认识了勾股定理的赵爽弦图后,一位同学尝试将5个全等的小正方形嵌入长方形ABCD 内部,其中点M,N,P,Q分别在长方形的边AB,BC,CD和AD上,若AB=7,BC=8,则小正方形的边长为( )A .B .C .D .2【解答】解:将每个小正方形按照如图所示分成四个全等的直角三角形和一个正方形,设每个直角三角形的较大的直角边为x ,较小的直角边为y ,∵AB =7,BC =8,∴,解得,∴小正方形的边长为=.故选A .3.如图是我国古代著名的“赵爽弦图”,大正方形ABCD 是由四个全等的直角三角形和一个小正方形拼接而成,连接EC ,若正方形ABCD 的面积为10,EC =BC ,则小正方形EFGH 的面积为( )A .2B .2.5C .3D .3.5【解答】解:∵四边形EFGH 是正方形,∴CH ⊥BE ,∵EC =BC ,∴HE =HB ,∴BE=2HE,∴HC=2HE,设正方形EFGH的边长为a,则HB=HE=a,HC=2a,∴S正方形ABCD=S正方形EFGH+4S△BHC=a2+4××HB•HC=a2+4××a•2a=5a2=10,∴a2=2,故选:A.4.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果大正方形的面积是5,小正方形的面积是1,直角三角形的两直角边长分别是a、b(b>a),则(a+b)2的值为( )A.16B.9C.4D.3【解答】解:由题意可知:大正方形的面积=a2+b2=5,4个直角三角形的面积之和=,所以(a+b)2=a2+b2+2ab=5+4=9.故选:B.5.如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,则(a+b)2的值为( )A.25B.19C.13D.169【解答】解:由条件可得:,解之得:.所以(a+b)2=25,故选:A.6.如图是在北京召开的国际数学家大会的会标,它是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形.若小正方形的面积为8,每个直角三角形比小正方形的面积均小1,则每个小直角三角形的周长是( )A.5+B.9+C.10+D.14【解答】解:设直角三角形的较长直角边是a,较短直角边是b,斜边是c,∴ab=8﹣1=7,∴ab=14,∵小正方形的边长是a﹣b,∴(a﹣b)2=8,∴a2+b2﹣2ab=8,∴a2+b2=36,∵c2=a2+b2=36,∴c=6,∵(a+b)2=a2+b2+2ab=36+2×14=64,∴a+b=8,∴每个小直角三角形的周长是a+b+c=8+6=14,故选:D.7.如图,四个全等的直角三角形和中间的小正方形可以拼成一个大正方形,若直角三角形的较长直角边长为a,较短直角边长为b,若(a+b)2=27,大正方形面积为15,则小正方形面积为( )A.3B.4C.6D.12【解答】解:∵(a+b)2=27,∴a2+2ab+b2=27,∵直角三角形的较长直角边长为a,较短直角边长为b,∴大正方形的边长为.∵大正方形的面积为15,∴,∴a2+b2=15,∴2ab=27﹣15=12,∴小正方形的面积为15﹣12=3.故选:A.8.如图所示的“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.该图由四个全等的直角三角形和一个小正方形拼成一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b.若ab=10,大正方形面积为25,则小正方形边长为( )A.B.2C.D.3【解答】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×10=5,从图形中可得,大正方形的面积是4个直角三角形的面积与中间小正方形的面积之和,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣20=5,∵a﹣b>0,∴a﹣b=.故选:C.9.我国是最早了解勾股定理的国家之一,下面四幅图中,不能证明勾股定理的是( )A.B.C.D.【解答】解:A、大正方形的面积为:c2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:ab×4+(b﹣a)2=a2+b2,∴a2+b2=c2,故A选项能证明勾股定理;B、大正方形的面积为:(a+b)2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:ab×4+c2=2ab+c2,∴(a+b)2=2ab+c2,∴a2+b2=c2,故B选项能证明勾股定理;C、梯形的面积为:(a+b)(a+b)=(a2+b2)+ab;也可看作是2个直角三角形和一个等腰直角三角形组成,则其面积为:ab×2+c2=ab+c2,∴ab+c2=(a2+b2)+ab,∴a2+b2=c2,故C选项能证明勾股定理;D、大正方形的面积为:(a+b)2;也可看作是2个矩形和2个小正方形组成,则其面积为:a2+b2+2ab,∴(a+b)2=a2+b2+2ab,∴D选项不能证明勾股定理.故选:D.10.意大利著名画家达•芬奇用下图所示的方法证明了勾股定理.若设左图中空白部分的面积为S1,右图中空白部分的面积为S2,则下列表示S1,S2的等式成立的是( )A.S1=a2+b2+2ab B.S1=a2+b2+abC.S2=c2D.S2=c2+ab【解答】解:观察图象可知:S1=S2=a2+b2+ab=c2+ab,故选:B.二.填空题(共5小题)11.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和四边形EFGH都是正方形,如果AB=15,AH=9,则四边形GFEH的面积为 9 .【解答】解:∵△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,∴AH=DE=9,AD=AB=15,在Rt△ADE中,AE===12,∴HE=AE﹣AH=12﹣9=3,∵四边形EFGH是正方形,∴四边形GFEH的面积为9,故答案为:9.12.“赵爽弦图”是我国古代数学的图腾(如图①).小丽同学深受“赵爽弦图”的启发,设计出一个图形(如图②).已知△ABC和△DEF都是等边三角形,D、E、F分别在线段BE、CF和AD上,且满足EC:EF=1:2,若AC=5,则EF= .【解答】解:过C作CH⊥AF于H,设CE=x,则EF﹣2x,∵△ABC和△DEF都是等边三角形,∴∠BFD=∠BEF=∠ACB=60°,AC=BC,∴∠DAC+∠ACF=∠ACF+∠BDF,∠AFC=∠CEB,∴∠DAC=∠BCF,∴△ACF≌△CBE(AAS),∴AF=CE=x,在Rt△CFH中,CF=3x,∠CFD=60°,∴CH=CF cos60°=x,FH=CF sin60°=x,∴AC==5,解得:x=,∴EF=2x=,故答案为:.13.“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是1和2,则小正方形与大正方形的面积之比为 1:5 .【解答】解:∵直角三角形的两条直角边的长分别是1和2,∴小正方形的边长为1,根据勾股定理得:大正方形的边长=,∴.故答案为:1:5.14.魏晋时期,伟大数学家刘徽利用如图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”证明了勾股定理,若图中BF=2,CF=4,则AE的长为 6 .【解答】解:∵BF=2,CF=4,∴BC=BF+CF=2+4=6,∵AB∥EC,∴=,即=,解得:CE=12,在Rt△ADE中,AD=6,DE=DC+CE=6+12=18,根据勾股定理得:AE==6,故答案为:6.15.在证明“勾股定理”时,可以将4个全等的直角三角形和一个小正方形拼成一个大正方形(如图所示,AB<BC).如果小正方形的面积是25,大正方形的面积为49,那么= .【解答】解:∵小正方形的面积是25,∴EB=5,∵△HAG≌△BCA,∴AH=CB,∵大正方形的面积为49,∴BH=7,∴AB+AH=7,设AB=x,则AH=7﹣x,在Rt△ABC中:x2+(7﹣x)2=52,解得:x1=4,x2=3,当x=4时,7﹣x=3,当x=3时,7﹣x=4,∵AB<BC,∴AB=3,BC=4,∴=,故答案为:.三.解答题(共4小题)16.阅读材料,解决问题:三国时期吴国的数学家赵爽创建了一幅“弦图”,利用面积法给出了勾股定理的证明,实际上,该“弦图”与完全平方公式有着密切的关系.如图2,这是由8个全等的直角边长分别为a,b,斜边长为c的三角形拼成的“弦图”.(1)在图2中,正方形ABCD的面积可表示为 (a+b)2 ,正方形PQMN的面积可表示为 (a﹣b)2 .(用含a,b的式子表示)(2)请结合图2用面积法说明(a+b)2,ab,(a﹣b)2三者之间的等量关系.(3)已知a+b=7,ab=5,求正方形EFGH的面积.【解答】解:(1)正方形ABCD的面积可表示为(a+b)2,正方形PQMN的面积可表示为(a﹣b)2.故答案为:(a+b)2,(a﹣b)2;(2)∵正方形ABCD的面积=正方形MNPQ的面积+直角三角形的面积×8,∴(a+b)2=(a﹣b)2+ab×8,∴(a+b)2=(a﹣b)2+4ab;(3)∵正方形EFGH的面积=正方形ABCD的面积﹣直角三角形的面积×4,∴正方形EFGH的面积=(a+b)2﹣ab×4=(a+b)2﹣2ab=72﹣2×5=39.17.如图叫“赵爽弦图”,此图由四个全等的直角三角形(阴影部分)围成一个大正方形,中空的部分是一个小正方形.它是我国汉代的赵爽在注解《周髀算经》时给出的,其巧妙地利用图形的面积证明了“勾股定理”,表现了我国古人对数学的钻研精神和聪明才智,是我国古代数学的骄傲.(1)请你写出“勾股定理”的内容;(2)请你利用图形面积,结合图片完成勾股定理的证明.【解答】解:(1)在直角三角形中,两条直角边的平方和等于斜边的平方;(2)由图可知:,∴a2﹣2ab+b2+2ab=c2,∴a2+b2=c2.故:在直角三角形中,两条直角边的平方和等于斜边的平方.18.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2=,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.【解答】解:(1)在Rt△ABC中,由面积的两种算法可得:,解得:CD=.(2)在Rt△ABD中AD2=42﹣x2=16﹣x2,在Rt△ADC中AD2=52﹣(6﹣x)2=﹣11+12x﹣x2,所以16﹣x2=﹣11+12x﹣x2,解得=.19.勾股定理是人类最伟大的科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(如图中图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有 3 个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2直角三角形面积为S3,请判断S1,S2,S3的关系并证明.【解答】解:(1)①如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.(或者:在直角三角形中,两条直角边的平方和等于斜边的平方.)②证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即c2=ab×4+(b﹣a)2,化简得:a2+b2=c2.在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即(a+b)2=c2+ab×4,化简得:a2+b2=c2.在图3中,梯形的面积等于三个直角三角形的面积的和.即(a+b)(a+b)=ab×2+c2,化简得:a2+b2=c2.(2)①三个图形中面积关系满足S1+S2=S3的有3个;故答案为:3;②结论:S1+S2=S3.∵S1+S2=π()2+π()2+S3﹣π()2,∴S1+S2=π(a2+b2﹣c2)+S3,∴a2+b2=c2.∴S1+S2=S3.。
验证勾股定理-知识点+例题+习题
第2节验证并应用勾股定理导课:上一节课,我们通过测量和数格子的方法发现了勾股定理.在下图中,分别以直角三角形的三条边为边长向外作正方形,你能利用这个图说明勾股定理的正确性吗?你是如何做的?与同伴进行交流.一、勾股定理的验证做一做:为了计算图1中大正方形的面积,小明对这个大正方形适当割补后得到图2、图3.图1 图2 图3(1)将所有三角形和正方形的面积用a,b,c的关系式表示出来;(2)图2、图3中正方形ABCD的面积分别是多少?你们有哪些表示方式?与同伴进行交流.(3)你能分别利用图2、图3验证勾股定理吗?1.常用方法:通过拼图法利用求面积来验证.这种方法是以数形转换为指导思想,图形拼补为手段,以各部分面积之间的关系为依据而达到目的的.2.用拼图法验证勾股定理的思路:(1)图形经过割补、拼接后,只要没有重叠,没有空隙,面积不会改变;(2)根据同一种图形的面积的不同表示方法列出等式;(3)利用等式性质验证结论成立,即拼出图形→写出图形面积的表达式→找出等量关系→恒等变形→推导结论.议一议:观察下图,判断图中三角形的三边长是否满足a2+b2=c2.例1 如图是用硬纸板做成的四个两直角边长分别是a,b,斜边长为c的全等的直角三角形和一个边长为c的正方形,请你将它们拼成一个能说明勾股定理正确性的图形.(1)画出拼成的这个图形的示意图;(2)说明勾股定理的正确性.总结:勾股定理的验证主要是通过拼图法利用面积的关系完成的,拼图又常以补拼法和叠合法两种方式拼图,补拼是要无重叠,叠合是要无空隙;而用面积法验证的关键是要找到一些特殊图形(如直角三角形、正方形、梯形)的面积之和等于整个图形的面积,从而达到验证的目的.例2 用四个边长均为a,b,c的直角三角板,拼成如图所示的图形,则下列结论中正确的是()A.c2=a2+b2B.c2=a2+2ab+b2C.c2=a2-2ab+b2D.c2=(a+b)2例3 历史上对勾股定理的一种证法采用了如图的图形,其中两个全等直角三角形的边AE,EB在一条直线上.证明中用到的面积相等关系是()A.S△EDA=S△CEB B.S△EDA+S△CEB=S△CDEC.S四边形CDAE=S四边形CDEB D.S△EDA+S△CDE+S△CEB=S四边形ABCD二、勾股定理的应用例4 我方侦察员小王在距离东西向公路400m处侦察,发现一辆敌方汽车在公路上疾驰.他赶紧拿出红外测距仪,测得汽车与他相距400m,10s后,汽车与他相距500m,你能帮小王计算敌方汽车的速度吗?1.勾股定理是一个重要的数学定理,它将图形(直角三角形)与数量关系(三边关系)有机结合起来;在几何及日常生活中都有着广泛的应用.2.运用勾股定理进行计算分三步:第一步:注意应用的前提,即看是不是直角三角形;第二步:分清求解的对象,即看是求直角边长,还是斜边长或者两种均有可能;第三步:运用勾股定理进行计算.例5 〈实际应用题〉两棵树之间的距离为8 m,两棵树的高度分别是8 m,2 m,一只小鸟从一棵树的树顶飞到另一棵树的树顶,这只小鸟至少要飞多少米?例6 如图,一个长为2.5 m的梯子,一端放在离墙脚1.5 m处,另一端靠墙,则梯子顶端距离墙脚() A.0.2 m B.0.4 m C.2 m D.4 m例7 (中考·安顺)如图,有两棵树,一棵高10 m,另一棵高4 m,两树相距8 m,一只小鸟从一棵树的树顶飞到另一棵树的树顶,小鸟至少飞行()A.8 m B.10 m C.12 m D.14 m用拼图验证勾股定理的方法:首先通过拼图找出面积之间的相等关系,再由面积之间的相等关系结合图形进行代数变形即可推导出勾股定理.它一般都经过以下几个步骤:拼出图形→写出图形面积的表达式→找出相等关系→恒等变形→导出勾股定理.三、课堂小测。
勾股定理测试题及答案
勾股定理测试题及答案一、选择题(每题2分,共10分)1. 直角三角形的两直角边长分别为3和4,斜边长为______。
A. 5B. 6C. 7D. 82. 如果一个三角形的三边长分别为3,4,5,那么这个三角形是______。
A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不是三角形3. 一个三角形的两边长分别为5和12,斜边长为13,那么这个三角形是______。
A. 直角三角形B. 等边三角形C. 等腰三角形D. 其他三角形4. 直角三角形的斜边长为10,一条直角边长为6,另一条直角边长为______。
A. 4B. 6C. 8D. 105. 如果一个三角形的三边长满足勾股定理,那么这个三角形一定是______。
A. 直角三角形B. 等边三角形C. 等腰三角形D. 锐角三角形二、填空题(每题2分,共10分)6. 若直角三角形的两条直角边分别为a和b,斜边为c,则a² + b²= ______。
7. 已知直角三角形的一条直角边长为9,斜边长为10,另一条直角边长为 ______。
8. 如果一个三角形的三边长分别为6,8和10,那么这个三角形是______ 。
9. 直角三角形的两条直角边分别为3和4,那么斜边长为 ______ 。
10. 如果一个三角形的三边长分别为7,24和25,那么这个三角形是______ 。
三、解答题(每题5分,共10分)11. 已知直角三角形的两条直角边分别为5和12,求斜边的长度。
12. 一个三角形的三边长分别为7,24和25,判断这个三角形是否为直角三角形,并说明理由。
四、证明题(每题10分,共20分)13. 证明:如果一个三角形的三边长分别为a,b和c,且满足a² + b² = c²,那么这个三角形是直角三角形。
14. 证明:在一个直角三角形中,斜边是最长边。
答案:1. A2. A3. A4. C5. A6. c²7. 78. 直角三角形9. 510. 直角三角形11. 斜边长度为1312. 是直角三角形,因为7² + 24² = 25²13. 证明略14. 证明略。
勾股定理练习题及答案
勾股定理练习题及答案问题一:已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。
解答一:根据勾股定理,斜边的平方等于两条直角边的平方和。
设斜边的长度为c,则有:c^2 = 3^2 + 4^2c^2 = 9 + 16c^2 = 25取平方根得到c = 5cm。
所以,斜边的长度为5cm。
问题二:已知直角三角形的斜边长度为10cm,一条直角边的长度为6cm,求另一条直角边的长度。
解答二:设另一条直角边的长度为a。
根据勾股定理,可得:a^2 + 6^2 = 10^2a^2 + 36 = 100a^2 = 100 - 36a^2 = 64取平方根得到a = 8cm。
所以,另一条直角边的长度为8cm。
问题三:已知直角三角形的一条直角边的长度为5cm,另一条直角边的长度为12cm,求斜边的长度。
解答三:设斜边的长度为c。
根据勾股定理,可得:c^2 = 5^2 + 12^2c^2 = 25 + 144c^2 = 169取平方根得到c = 13cm。
所以,斜边的长度为13cm。
问题四:已知直角三角形的斜边长度为15cm,一条直角边的长度为9cm,求另一条直角边的长度。
解答四:设另一条直角边的长度为a。
根据勾股定理,可得:a^2 + 9^2 = 15^2a^2 + 81 = 225a^2 = 225 - 81a^2 = 144取平方根得到a = 12cm。
所以,另一条直角边的长度为12cm。
问题五:已知直角三角形的一条直角边的长度为7cm,另一条直角边的长度为24cm,求斜边的长度。
解答五:设斜边的长度为c。
根据勾股定理,可得:c^2 = 7^2 + 24^2c^2 = 49 + 576c^2 = 625取平方根得到c = 25cm。
所以,斜边的长度为25cm。
以上是五道勾股定理练习题及答案的解答过程。
通过这些练习题,我们可以加深对勾股定理的理解,熟练掌握如何在已知条件下求解三角形的边长。
勾股定理在几何学和实际应用中都有广泛的应用,是数学中的重要概念之一。
八年级数学(下)《勾股定理习题》练习题含答案
图1E八年级数学(下)《勾股定理习题》练习题1已知:如图1,点A 、D 、B 、E 在同一条直线上,AD=BE,AC∥DF,BC∥EF.求证:AC=DF.2已知:如图2,BE⊥AC,DF⊥AC,垂足分别是E 、F,O 是BD 的中点. 求证:BE=DF.3已知:如图3, AB=DE,BC=EF,AF=CD. 求证:AB∥DE, BC∥EF.4已知:如图4, AB=AD,AC=AE, ∠BAD=∠CAE.求证:. ∠B=∠D.5已知:如图5, AD=AE,点D 、E 在BC 上,BD=CE,∠ADE=∠AED.求证: ⊿ABE≌⊿ACD图56已知:如图6,已知AC、BD相交于点O,AB∥CD, OA=OC.求证: AB=CD7已知:如图7,已知AC∥DF,BC=EF,∠C=∠F.求证: ⊿ABC≌⊿DEF.8已知:如图8,已知AC=AE,AB=AD.求证: OB=OD.9在直线L上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4= .S4 S3S2S1图1L 32 1C 图7F之间的关系,并分别用含n 的代数式表示a 、b 、c :a= ,b= ,c= ; (2)猜想以a 、b 、c 为边的三角形是否 为直角三角形,并验证你的猜想.11分析:这是一道结论开放题,据题意经过分析,符合要求的点C 有多个,如图2所示,1C ,2C ,3C ,4C ,5C ,6C 都是符合要求的点.参考答案1思路分析:要证明AC=DF,则需要证明⊿ABC≌⊿DEF.在⊿ABC和⊿DEF中,由AC∥DF可得∠CAB=∠FDE, 由BC∥EF可得∠CBA=∠FED,现已证两三角形的两组对应角相等,所以考虑夹边,用ASA,证明⊿ABC≌⊿DEF.由已知AD=BE可得:AD+DB=BE+DB,即AB=DE,命题得证.2思路分析:要证明BE=DF,则需要证明⊿BOE≌⊿DOF.在⊿BOE和⊿DOF中,由BE⊥AC,DF⊥AC可得∠BEO=∠DFO=90°,∠BOE=∠DOF,现已证两三角形的两组对应角相等,所以考虑其中一组对应角的对边,用AAS,证明⊿BOE≌⊿DOF.由已知O是BD的中点可得:OB=OD,条件已具备,命题得证.3思路分析:要证明AB∥DE, BC∥EF,则需要证明∠A=∠D,∠BCA=∠EFD,由此只需要证明⊿ABC≌⊿DEF.在⊿ABC和⊿DEF中,已知AB=DE,BC=EF,即两三角形的两组对应边相等,因此,只需证明边AC=DF,用SSS证明⊿ABC≌⊿DEF.由已知AF=CD,根据等式性质得:AF+CF=CD+CF,即AC=DF,命题得证.4思路分析:要证明∠B=∠D,只需要证明⊿ABC≌⊿ADE.在⊿ABC和⊿ADE中,已知AB=AD, AC=AE,即两三角形的两组对应边相等,因此,只需证明两条已知边的夹角相等,用SAS证明⊿ABC≌⊿ADE.由已知∠BAD=∠CAE,根据等式性质得:∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,命题得证.5思路分析:要证明⊿ABE≌⊿ACD,在⊿ABE和⊿ACD中,已知AD =AE, ∠ADE=∠AED即相邻的一角一边对应相等,因此,只需证明∠ADE与∠AED的另一邻边相等即可,用SAS证明⊿ABE≌⊿ACD.由已知BD=CE可得:BD+DE=CE+DE,即BE=CD,命题得证.6思路分析:要证明AB=CD,则需要证明⊿ABO≌⊿CDO.在⊿ABO和⊿CDO中,已知OA =OC, ∠AOB=∠COD即相邻的一角一边对应相等,因此,只需证明OA与OC的另一邻角相等即可,用ASA证明⊿ABO≌⊿CDO.由已知AB∥CD可得:∠A=∠C,命题得证.7思路分析:要证明⊿ABC≌⊿DEF,在⊿ABC和⊿DEF中,已知BC =E F, ∠C=∠F,即相邻的一角一边对应相等,因此,只需证明已知边的对角相等(∠A=∠EDF)即可,从而用AAS证明⊿ABC≌⊿DEF.由已知AC∥DF可得:∠A=∠EDF,命题得证.8思路分析:要证明OB=OD,则需要证明⊿BOE≌⊿DOC,已知一边和它的对角相等,即由AC=AE,AB=AD可得BE=DC,对顶角∠BOE=∠DOC,从而只要证明另一组角相等(∠B=∠D)即可.要证明∠B=∠D,只需要证明⊿ABC≌⊿ADE,因为题中已知AC=AE,AB=AD,∠A是公共角,所以⊿BOE≌⊿DOC,∠B=∠D得证,从而命题得证.9分析: 经过观察图形,可以看出正放着正方形面积与斜放置的正方形之间关系为: S1+S2=1;S 2+S3=2; S3+S4=3;这样数形结合可把问题解决.解: S1代表的面积为S1的正方形边长的平方, S2代表的面积为S2的正方形边长的平图4EDCBA图3ED图2图2方,所以S 1+S 2=斜放置的正方形面积为1;同理S 3+S 4=斜放置的正方形面积为3,故S 1+S 2+S 3+S 4=1+3=4. 10分析:解:(1)12-n ;2n ;12+n(2)猜想以a 、b 、c 为边的三角形是直角三角形. 验证:由于124122)1(24224222++=++-=+-n n n n n n n为边、、,所以,以,即)()所以(c b a c b a n n n n n n 222222222422121,12)1(=++=+-++=+的三角形是直角三角形.11如图2所示,是由边长为1的小正方形组成的正方形网格,以线段AB (A ,B 为格点)为一条直角边任1C 意画一个Rt△ABC,且点C 为格点,并求出以BC 为边的正方形的面积.解:画出的Rt△ABC 如图2中所示,41624222+=+=BC =20,所以以BC 为边的正方形面积为20.。
勾股定理练习题及答案(共6套)
勾股定理课时练(1)1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。
求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R 90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。
五年级第一讲勾股定理
五年级第一讲勾股定理勾股定理是数学中经典而重要的定理之一,它以古希腊数学家毕达哥拉斯的名字命名。
勾股定理描述了直角三角形中的关系,对于初学者来说会有一定的挑战。
本文将详细介绍勾股定理的概念、证明方法以及一些应用示例。
一、勾股定理的概念勾股定理是指在直角三角形中,直角边的平方和等于斜边的平方。
具体而言,假设直角三角形的两条直角边分别为a和b,斜边长度为c,那么根据勾股定理可以得到以下公式:a² + b² = c²二、勾股定理的证明方法勾股定理的证明有多种方法,这里我们介绍一种基于几何图形的证明方法。
首先,构造一个正方形,边长为a+b,如下图所示:□a b□□c根据正方形的性质,它的对角线长度等于边长的平方根,即(a+b)²的平方根。
接下来,将正方形分割成四个直角三角形,如下图所示:□a b□□ △ □□c可以看出,其中三个直角三角形的直角边分别为a、b和c,斜边长度分别未a+b、a+b和c。
根据三角形的面积公式S = 0.5 ×底 ×高,可以得到以下等式关系:S(△a) + S(△b) + S(△c) = S(□)0.5 × a × a + 0.5 × b × b + 0.5 × c × c = (a+b)²化简上式,可以得到勾股定理的形式:a² + b² = c²因此,我们通过几何图形的分割和面积计算,成功证明了勾股定理。
三、勾股定理的应用示例勾股定理在解决直角三角形问题时起到了重要的作用,我们可以通过一个实际问题来说明其应用。
假设甲地点距离某个高楼的距离为5千米,乙地点距离该高楼的距离为12千米,甲、乙两人正好位于高楼两侧的直角顶点。
现在甲想要测量高楼的高度h,他找到了一个10千米长的测量工具。
根据勾股定理,可以建立以下方程:5² + h² = 10²25 + h² = 100h² = 100 - 25h² = 75h = √75h ≈ 8.66(约等于)因此,高楼的高度约为8.66千米。
(完整版)勾股定理经典题目及答案
勾股定理1.勾股定理是把形的特征(三角形中有一个角是直角),转化为数量关系(a 2+b 2=c 2),不仅可以解决一些计算问题,而且通过数的计算或式的变形来证明一些几何问题,特别是证明线段间的一些复杂的等量关系. 在几何问题中为了使用勾股定理,常作高(或垂线段)等辅助线构造直角三角形.2.勾股定理的逆定理是把数的特征(a 2+b 2=c 2)转化为形的特征(三角形中的一个角是直角),可以有机地与式的恒等变形,求图形的面积,图形的旋转等知识结合起来,构成综合题,关键是挖掘“直角”这个隐含条件.△ABC 中 ∠C =Rt ∠a 2+b 2=c 2⇔3.为了计算方便,要熟记几组勾股数:①3、4、5; ②6、8、10; ③5、12、13; ④8、15、17;⑤9、40、41.4.勾股定理的逆定理是直角三角形的判定方法之一.一般地说,在平面几何中,经常利用直线间的位置关系,角的相互关系而判定直角,从而判定直角三角形,而勾股定理则是通过边的计算的判定直角三角形和判定直角的. 利用它可以判定一个三角形是否是直角三角形,一般步骤是:(1)确定最大边;(2)算出最大边的平方,另外两边的平方和;(3)比较最大边的平方与另外两边的平方和是否相等,若相等,则说明是直角三角形; 5.勾股数的推算公式①罗士琳法则(罗士琳是我国清代的数学家1789――1853)任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。
②如果k 是大于1的奇数,那么k, ,是一组勾股数。
212-k 212+k ③如果k 是大于2的偶数,那么k, ,是一组勾股数。
122-⎪⎭⎫ ⎝⎛K 122+⎪⎭⎫⎝⎛K ④如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。
典型例题分析例1 在直线l 上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=____ 依据这个图形的基本结构,可设S 1、S 2、S 3、S 4的边长为a 、b 、c 、d 则有a 2+b 2=1,c 2+d 2=3,S 1=b 2,S 2=a 2,S 3=c 2,S 4=d 2 S 1+S 2+S 3+S 4=b 2+a 2+c 2+d 2=1+3=4例2 已知线段a ,求作线段 a5分析一:a ==525a 224a a +∴a 是以2a 和a 为两条直角边的直角三角形的斜边。
勾股定理证明方法及习题全解
做8个全等的宜角三角形.设它们的两条直角边长分別为」b ・斜边长为c ・ 再做三个边长分别为黑b. c的正方形.把它们像上图那样拼成衲个正方形. 从图上可以石到・这两个正方形的边K 都是a * b.所以向积相等•即 a 2 +/>' +4x —aZ> = c* +4x —<//> » >2 2 •整理得 a l ^b^u 2.【证法2】(邹元治证明)以a 、b 为左角边.以c 为料边做四个金等的逍角三角形.则每个£1角三介 —cib形的血枳等丁• 2 •把这四个直角三角形拼成如图所示形状•便A 、E. B 三点在一条去线上,B. F 、C 三点在一条直线上.•: Rt A HAE 仝 Rt A EBF, ••• ZAHE= ZBEF. •: ZAEH+ ZAHE = 90°f :.ZAEH+ ZBEF = 90°.••• ZHEF= 180°-90°^ 90°・•••四边形EF(iH 是一个边长为c 的正方形•它的面积等于上【证法1](课本的证明〉aba bC. G 、D 三点在一条直线上.C b abEAb•: Rt A GDH 也RlAHAE,••• ZHGD= ZEHA.V ZHGD+ ZGHD = 90u,:.ZEIIA 4- ZGHD-90u.乂••• ZGHE = 90M t••• ZDHA=90°+90°= 180u.••• ABCD是-个边长为a + b的止力•形,它的血枳等丁(" +疔・【证法3】(赵爽证明)以a、b为◎角边(b>a),以c为斜边作四个全等的立角三角形,则每个n角丄血三角形的而积筲于宁'•把这以|个也角三角形拼成如图所示形状.•・・ Rt A DAH 竺Rt A ABE,・•・ ZHDA= ZEAB.•・• ZHAD+ ZHAD = 9(T,:.ZEAB+ ZHAD = 90°,・•・A BCD是一个边氏为c的正方形,•・・ EF = FG=GH=HE = b-a, ZHEF =90°・••• EFGH是一个边长为b-a的正方形.它的面积等于仏厂【证法4] (1876年美国总统Garfield证明)以a、b为直角边,以c为斜边作两个全等的百角三角形.则每个W角三角它的面积等于討XV ZDAE = 90°r ZEBC = 90°, ••• AD〃BC.4x-ab + (h-a)2 = c2* • 2它的Iftl积等于&形的血枳等丁d"在-条]I线上.V Rt A EAD・•・ZADE=•: ZAED +:.ZAED +•把这两个直角三角形拼成如图所示形状.使A、E、CB三点D參RtACRE,ZBEC.ZADE = 90°,ZBEC = 90°.••• ZDEC= 180°-90°= 90°.••• A DEC是一个等三角形.bA B它的面积等于2【证法5】(梅文鼎证明)做叫个金筲的宜允三角形・设它们的两条F[角边氏分别为;K b •斜边K为 c.把它们拼成如图那样的一个£边形.便6 E. F在一条宜壮・过C作AC 的延长线交DF于点P.V IX E. F在一条EL线上ILR2GEF Q k 'EIHX:.ZEGF= ZBED.I ZEGF > ZGEF・9(r • :.ZBED+ ZGEF"(T • :.ZBEG=lW a-90°=90D.又丁AB = BE = EG = GA = c.:.AREG是-个边Sc的正方形.:.ZABC+ ZCBE = 90°.V Ri A ABC 耳Rt AEBD, :.ZABC= ZEBD.:.ZEBD+ ZCBE 90°.即ZCBD=90\乂I NBDE=*)J ZBCP= W ・BC-BDr:• BDPC是一个边长为a的正方形.同理• HPFG是一个边长为b的正方形.设多边形GHCBF的血积为S•则a2十“’ «S+2x—:• ABCD是一个直角梯形,FA c B【证法6】(项明达证明)做两个全等的直用三九形・设它们的两条应用边长分別为3、b(b*> •斜边长为G再做一个边长为c的疋方形.把它们拼瑕如图侨示的名边形•使E.A.F 作FN 丄PQ ・垂足为N ・•/ ZBCA=90°, QP 〃BC ・:.ZMPC = 90°. V BM1PQ, :.ZBMP-W.:.BCPM 是一个矩形.B|IZMBC=9(r.•/ NQBM4 ZMBA- ZQBA • 90°. NABC+ZMBA= NMBC=90\:.ZQBM - ZABC.乂 I 上BMP 二 90° ・・BCA二 90°. BQ 二 BA 二“ 【证法7】(欧几里得证明) 做三个边长分别为狙b. c 的正方形.把它们拼应如闺所示形状.便lh C 、 H 三点在一条自线上・连结BF. CD.过 C 作CL 丄DE. 交AB T 点M 交DE 于点 LI AF= AC. AR = AD. ZEAB= NGAD.AFAB 丝 A GAD . 丄/••• A FAB 的面积等于2 • A GAD 的面积等弓矩形ADIA1 風理町证.矩形MLEB 的面枳」・・•正方形ADEB 的面积=矩形ADLM 的面枳+矩形MLEB 的面枳【证法«](利用相似三介形性质证明) 如图,在R2ABC 中.设直角边AC 、 K 为c ・过戍C 作CD 丄AB.碼足足D. 在^ADC 和dACB 屮・V NADC= ZACB = W. ZCAD- ZBAC.A ADC s AACB ・AD : AC =AC : AR ・ 即 AC 1 =肋•肋.同理可证.ACDB 5 AACB.从而冇BC‘ = BD ・AB. :.4阳=(初肿2 .即宀V的面职的-半.:.矩形ADLM 的面积一几 BC 的出ft 分別为3、b-斜边AB 泊【证法9】(杨作玫证明)做两个全等的直和三角形.设它们的两条•育加边长分别为叭b<br 儿斜边 K 为c.再做一•个边K 为c 的辰方形.把它们折成如阳所示的多边形.过A 作AF 丄AC, AF 交GT J : F, AF 史2)T 」R.过B 作BP 丄AF ・爭足为P.过D 作DE 与CB 的if 长饯■</[•乘足为E. D 巨交AF 于H.•: ZBAD ■刈• ZPAC - 90".■; ZDAH= ZB AC. XV ZDHA= W°. ZBCA=90°. AD = AB = c. •; Rt »DHA 旦 Rt&BC 人.7 DH = BC=a. AH = AC = b. 山作法wJllh PBCA 是一个矩形. 蔺以 Rt A APB 也 Rt A BC A •即 PB = CA = b ・ AP= a ・从而 PH = b~a.V Rl'DGT £ Rl^BCA. Rt ADHA W Rt ABC A・•: R( XDGT 也 Rl 'DHA.•; DH = DG=a ・ ZGDT= ZHDA. 乂T ZDGT-90仁 ZDHF-9T.ZGDH - ZGDT+ ZTDH = ZHDA-b ZTDH = 90°. •: DGFH 衆一个边K 为Q 的正力形.•: GF=FH = a ・TF 丄AF ・ TF= GT-GF= b-a .••• TFPB<一个直角梯形,上底TF-b-a.下底BP ・b,高FP-a+- (b-a). 用数字表示面积的编号(如图人則以c 为边长的正方形的丙积为员 + S] + / =丄[/>+(/> +(厶 _ t/)] I ,_丄皿•: 2 = 2C - = Sg + aVj + — S| — S” + 4 Sy=b' +52 + 5^ =沪A= S M + Sy把②代入①.得【证法汕】(李俛证明)设点角三角形两直角边的长分别为a. b (bi 斜边的长为C•做三个边长分别为a.b. c的正方形.祀1它们拼成如图所示形状.使A. E、G三点在一条fl线上.用数字衣示而积的编号(如图》•••• ZTBE・ ZABI19V%:.ZTBH= ZABE. 乂丁ZBTII- ZBEA二90°.BT = BE = b ・:.RtAHBT 也ABE.:.HT = AE = x:.GH =GT-HT = b-a. 又I ZGHF+ ZBHT = 90° .ZDBC+ ZBHT= ZTBH+ ZBHT«90°,ZGHF= ZDBC.I DB = EB—ED = b-a.ZHGF= ZBDC = 90°.过Q作QM丄AG・爭足是M・由ZBAQ= ZBEA =90° .町知ZABE ZQAM ・而AB-AQ-c.所以RlAABE 幻R( A QAM .又Rf MfBT 也Rt A ABE.所以RtAHBT 幻Rt A QAM •即几話.tb Rt A ABE 9 Rt A QAM. 乂得QM = AE = a. ZAQM= ZBAE.I ZAQM + ZFQM ■ 90° • ZBAE 卜ZCAR ■ 9tT • ZAQM - ZBAE • :.ZFQM» ZCAR.乂I ZQMF- ZARC-900・ QM・AR・a ・:.RtAQMF 也RtA ARC.即山■久.• •= /]丰丰4-d* = S、+ h' = 5>| + S7 + SjX V 4=6, S* =5$, S_, = S°,•:宀2RA :• R2HGF 经R( a BDC. W=S] ♦ S. + 十S? +5^即f[证祛11](利用切别线定理证明)在RtAABC ttn/fl边RC二a・ AC=b.料边AR二c•如图.以R 为岡心a为半径作回・交AB及AB的延K线分别】L>、E・则BD = BE = BL = a. W 为ZBCA = 9a1.点C在OB匕•所以AC是OR的切线•由切割线定理.科AC2 +E・ AD丄 B + BE'HB-BD)=/-/,|I|I b2“‘ +6’ = c2.【证法12】(利用多列米定理证明)衣RtAABC中・设11角边BC=a・ AC = b •斜边AR = c (jfllffl).过点人作AD〃CP・过点B作BD〃CA・则ACBD为处形.矩彤ACBD内按J;个圆. 根抵形列米定理•岡内按叫边形对角线的乘积等J两对边乘积z和.刊加• DC—肚+ /(>〃〃•V AB-DC-Cw AD-BC-a.AC = BD = b・A AH Z BC2 AC Z. up C2 =a2 +/>2.••• d2 ^b2 ^c2・【证法13】(作直角三角形的内切圆证明》K Rt A ABC .设『I角边B€=a. AC=b.斜边AB=c・作R—'ABC的内切呦(DO・切点分别为D、E・V设®O^t径为匕•/ AE=AF. BF=RD・ CD = CE・:.JC+5C-JB=(JE + CE) +(BD + CD)-(dF+ IfF)■ CE + CD =「十]• ■ 2r,HP•: a 4- 6 = 2r 4- c e.・.(a + ^)J =(2r + c)\即a"十十2cib = 4(r2 + rc)+...九“詁血,.:2必工4几杖,c* . c , c -cr^-ar + 丄〃尸丄(&+〃 + <?》■又T 九ac h*咖4 4»心・=2 2 2 = 2i(2r + c*c>=2 = r + rc\,...4(宀小侶w.二 4(r3 4-rr)= lab ..;a •+* 2cb = 2a/>+c'. :. a* -4-/>2 = f* t【证法14](利用反证法证明)如国,在Rt AABC中.KtHHl边AC、RC的f度分别为乩b•斜边AR的长为c.过点C作CD丄AB.垂足是D.假设/十胪丸即假设AC2 ± BC2 AB2•则由AB' = AB • AB = ** BD)二加"Q 十肋• BDnjill •或者BC・ tAB ・ BDL!|I AD< AC^ACi AB.或冇BD BC/BC:人B・在A ADC和A ACB中.V ZA= ZA.:.若ADt AC^AC: AB・则ZADC^ZACB.右.ACDB 和 * ACB 'I1.V ZB - ZB.:.若BC^BC: AB.则ZCDB^ZACB ・乂T ZACBf.这与作法CD丄AB «•所以,AC^BC^AB^}假设不能成立.•:十b‘ =c\设直角三角形两宜角边的长分别为叭b・斜边的长为C.作边长是hb的正方形ABCD.把止方形ABCD划分成上方左图所■的几个部分.则正方形ABCD的血积为("+盯二把止方形ABCD划分成上方右图所加的儿个(<;+ &尸=4 x 丄a厶+ F =部分.则正方彤ABCD的仙积为 2 二2MW.•: a2 +/)2 + lab = lub + v2f.*. a:+b:=c[【证法16】(陈杰证明)设貴角工饬形曲肖的边的K分别为氛b <b>a>.斜边的长为c・做购个边长分别为s b的正方形(b>“ 把它们拼成如图所示形状.使E. H、M三点在・条直线上.用数字表示而积的编号cinra, •在£H=b上餒取ED = a・逹鉛DA. DC・则AD =GV EM=EH +HM=b+a. ED = a・:.DM = EM-ED = (/> + </)-a = b.乂T ZCMD « 90°. CM-a.ZAED = 90® . AE-b.:.RtAAED 也lit A DMC.:.ZEAD= ZMDC・ DC = AD = c.V ZADE+ ZADC4- ZMDC =1^0°.BZADE+ ZMDC- ZADE+ ^EAD ■剜.:.ZADC = <M \:.ft AB//TX:. CBZ/DA-则AECD母一个边也为匚时正方彫V ZBAF+ 2 EAD = ZDAE +NFAD=9『T;■ZHAF=^DAE<迷结FE*在九ABF和%ADE中,■/ AB -AD = c,必匚=AF = b. ZTJA^ZDA^,A ABF 旦A ADE,:、ZAFB- DF-DE-x:.点B・F、G. H痉一条自钱上.存Rl X ABF 和Rl \ BCG 中*T AU - UC -c,UF-CG- a.:.Rt A ABF «Rt A BCG・•・十兄十①十肌* =J,+^ + ^f/ =跃十畀叭5 =5, = 5j = 5(, + S7■曇•西+科*(几佔)■屍+ A1+ A勾股定理练习题—、基础达标:1. 下列说法正确的是()A. 若a、b、c是厶ABC的三边,贝卩a2+ b2= c2;B. 若a、b、c 是Rt△ ABC的三边,则a2+ b2= c2;C. 若a、b、c 是Rt△ ABC的三边,.A no,贝卩a2+ b2= c2;D. 若a、b、c 是Rt△ ABC的三边,.c no,贝S a2+ b2= c2.2. Rt △ ABC的三条边长分别是a、b、c,则下列各式成立的是()A . a b = c B. a b c C. a b : c D. a2b2= c23. 如果Rt△的两直角边长分别为k2-1, 2k (k >1 ),那么它的斜边长是()A、2kB、k+1 C k2-1 D k2+14. 已知a, b, c ABC三边,且满足(a2—b2)(a 2+b2-c2)=0,则它的形状为()A.直角三角形C.等腰直角三角形5. 直角三角形中一直角边的长为 三角形的周长为() A . 121 B .1206. △ ABC 中,AB= 15,AC= 13,高 AD= 12,则厶ABC 的周长为( A . 42 B . 32 7. ※直角三角形的面积为 长为()(A ) d 2 S 2d (C ) 2 ,d 2S 2d8在平面直角坐标系中, A : 3 B : 49.若厶 ABC 中, AB=25cmAC=26cr 高 AD=24,则 BC 的长为()A . 17B.3C.17或3 D.以上都不对10. 已知a 、b 、c 是三角形的三边长,如果满足(a-6)2+V^8+|c -10 | =0则三角形的形状是( )A :底与边不相等的等腰三角形B:等边三角形 C:钝角三角形 D:直角三角形11. 斜边的边长为17cm ,一条直角边长为8cm 的直角三角形的面积是 ______ .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为 ______ . 13. 一个直角三角形的三边长的平方和为 200,则斜边长为 _________ 14. ______________________________________________ 一个三角形三边之比是10:8:6,则按角分类它是 ____________________ 三角形. 15. 一个三角形的三边之比为5 : 12 : 13,它的周长为60,则它的面B.等腰三角形D.等腰三角形或直角三角形 9,另两边为连续自然数,则直角D.不能确定)C . 42 或 32D . 37 或 33 S ,斜边上的中线长为d ,则这个三角形周(B ) . d 2 _S _d(D ) 2.d 2 S d已知点P 的坐标是(3,4),则OP 勺长为(积是_____ .16. 在Rt △ ABC中,斜边AB=4 贝卩AU+BC+ AC二 .17. ____________________________________ 若三角形的三个内角的比是1:2:3,最短边长为1cm,最长边长为2cm,则这个三角形三个角度数分别是___________________________________ ,另外一边的平方是 _____ .18. 如图,已知• ABC 中,/ C = 90 , BA = 15, BAC=12,以直角边BC为直径作半圆,贝S 厂、、这个半圆的面积是I19. 一长方形的一边长为3cm,面积为12cm2, C A那么它的一条对角线长是________ .二、综合发展:1. 如图,一个高4m、宽3m的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cr现将直角边AC沿/ CAB的角平分线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?CD ”3. 一个三角形三条边的长分别为15cm , 20cm , 25cm,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m棚宽a=4m棚的长为12m 现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15. “中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30 m处, 过了2s后,测得小汽车与车速检测仪间距离为5o m这辆小汽车小汽车小汽车超速了吗?答案:一、基础达标1.解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案:D.2.解析:本题考察三角形的三边关系和勾股定理答案:B.3.解析:设另一条直角边为x,则斜边为(x+1 )利用勾股定理可得方程,可以求出x.然后再求它的周长.答案:C.4.解析:解决本题关键是要画出图形来,作图时应注意高AD是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5.解析: 2 2 2勾股定理得到:17一8二15,另一条直角边是15,1 215 8= 60cm22所求直角三角形面积为2.答案:6.解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.7. & 答案:a2・b 2二c 2, C ,直角,斜,直角.解析:本题由边长之比是 10:8:6可知满足勾股定理,即是直角三角形.答案:直角. 解析:由三角形的内角和定理知三个角的度数 ,断定是直角三角形.答案:30、60、90 , 3.2解析:由勾股定理知道:BC 为直径的半圆面积为 10.125 n 10. 解析:长方形面积长X 宽,即 答案:5cm . 二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m . 12解析:因为152 202= 252,所以这三角形是直角三角形,设最长边(斜边)上的高为1 1xcm,由直角三角形面积关系,可得-15 20 =丄25 x ,二x =12 .答案:12cm 2 213•解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少, 勾股定理求出•答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为2所以矩形塑料薄膜的面积是: 5X 20=100(m).14. 解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是梢之间的距离是13m,两再利用时间关系式求解 • 答案:6.5s .15. 解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是 2s ,可得速度是 20m/s=72km/h > 70 km/h . 答案:这辆小汽车超速了.9. = AB 2 _AC 2 =152 _122 = 92,所以以直角边 BC = 9 .答案:10.125 n .12长X 3,长=4,所以一条对角线长为 5.可以借助5m,13m ,也就是两树树。
八年级数学上册 第三章 3.1 勾股定理的证明知识点与同步训练(含解析)苏科版
勾股定理的证明一.勾股定理1.如果直角三角形的两直角边长分别为a,b,斜边长为c,那么222a b c+=.2.勾股定理的变形:22c a b=+,22a c b=-,22b c a=-.二.勾股定理的证明1.如下图,()22142ABCDS c a b ab==-+⨯正方形,所以222a b c+=.HGFEDCBA cba 2.如下图,2()()112222ABCDa b a bS ab c+-==⨯+梯形,所以222a b c+=.cb ac baEDCBA一.勾股定理逆定理1.如果三角形的三边长a,b,c满足222a b c+=,那么这个三角形是直角三角形.2.勾股定理与其逆定理的区别是:勾股定理以“一个三角形是直角三角形”为前提,得到这个三角形的三边长的数量关系;勾股定理的逆定理以“三角形的三边长满足222a b c+=”为前提,得到这个三角形是直角三角形.两者的题设和结论正好相反,应用时要注意其区别.二.勾股数1.满足222a b c+=的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.2.常用勾股数:3、4、5;5、12、13;6、8、10;7、24、25;8、15、17;9、40、41.题模一:证明例1.1.1请根据我国古代数学家赵爽的弦图(如图),说明勾股定理.【答案】见解析【解析】∵△ABC、△BMD、△DHE、△AGE是全等的四个直角三角形,∴AE DE BD AB===,1809090EAG BAC EAG AEG∠+∠=∠+∠=︒-︒=︒,∴四边形ABDE是正方形,∵90AGE EHD BMD ACB∠=∠=∠=∠=︒,∴90HGC∠=︒,∵GH HM CM CG b a====-,∴四边形GHMC是正方形,∴大正方形的面积是2c c c⨯=,大正方形的面积也可以是:2222214222ab b a ab a ab b a b⨯+-=+-+=+(),∴222a b c+=,即在直角三角形中,两直角边a b(、)的平方和等于斜边c()的平方.例1.1.2如图所示,P是△ABC边AC上的动点,以P为顶点作矩形PDEF,顶点D,E在边BC上,顶点F在边AB上;△ABC的底边BC及BC上的高的长分别为a,h,且是关于x的一元二次方程mx2+nx+k=0的两个实数根,设过D,E,F三点的⊙O的面积为S⊙O,矩形PDEF的面积为S矩形PDEF.(1)求证:以a+h为边长的正方形面积与以a、h为边长的矩形面积之比不小于4;(2)求OPDEFS S 矩形的最小值;(3)当OPDEFSS 矩形的值最小时,过点A 作BC 的平行线交直线BP 与Q ,这时线段AQ 的长与m ,n ,k 的取值是否有关?请说明理由.【答案】 见解析 【解析】 解法一:(1)据题意,∵a+h=-n m ,ah=k m∴所求正方形与矩形的面积之比: 2()a h ah+=2()n m k m-=2n mk (1分) ∵n 2-4mk≥0,∴n 2≥4mk,由ah=km知m ,k 同号, ∴mk>0 (2分)(说明:此处未得出mk >0只扣(1分),不再影响下面评分) ∴2n mk ≥4mk mk=4(3分) 即正方形与矩形的面积之比不小于4.(2)∵∠FED=90°,∴DF 为⊙O 的直径.∴⊙O 的面积为:S ⊙O =π(2DF )2=π24DF =4π(EF 2+DE 2). (4分)矩形PDEF 的面积:S 矩形PDEF =EF•DE. ∴面积之比:OPDEFSS 矩形=4π(EF DE+DE EF),设EF DE=f .OPDEFSS 矩形=4π(f+1f)=4π[(f )2+(1f )2-2f -1f+2f1f]=4π(f -1f)2+2π.(6分)∵(f -1f )2≥0,∴4π(f -1f)2+2π≥2π,∴f =1f,即f=1时(EF=DE ),OPDEFSS 矩形的最小值为2π(7分)(3)当OPDEFSS 矩形的值最小时,这时矩形PDEF 的四边相等为正方形.过B 点过BM⊥AQ,M 为垂足,BM 交直线PF 于N 点,设FP=e ,∵BN∥FE,NF∥BE,∴BN=EF,∴BN=FP=e. 由BC∥MQ,得:BM=AG=h . ∵AQ∥BC,PF∥BC,∴AQ∥FP, ∴△FBP∽△ABQ. (8分)(说明:此处有多种相似关系可用,要同等分步骤评分) ∴FP AQ =BNBM,(9分) ∴e AQ =eh,∴AQ=h (10分) ∴AQ=242n n mkm -±-(11分)∴线段AQ 的长与m ,n ,k 的取值有关. (解题过程叙述基本清楚即可) 解法二:(1)∵a,h 为线段长,即a ,h 都大于0,∴ah>0 (1分)(说明:此处未得出ah >0只扣(1分),再不影响下面评分) ∵(a-h )2≥0,当a=h 时等号成立. 故,(a-h )2=(a+h )2-4ah≥0.(2分) ∴(a+h )2≥4ah,∴2()a h ah+≥4.(﹡) (3分)这就证得2()a h a h+-≥4.(叙述基本明晰即可)(2)设矩形PDEF 的边PD=x ,DE=y ,则⊙O 的直径为22x y +. S ⊙O =π(222x y +)2(4分),S 矩形PDEF =xyOPDEFSS 矩形=22()4x y xyπ+=4π[22(2)2x xy y xy xy ++-]=4π[2()x y xy +-2](6分)2()x y xy+≥4由(1)(*). ∴4π[2()x y xy +-2]≥4π(4-2)=2π.∴OPDEFSS 矩形的最小值是2π(7分)(3)当OPDEFSS 矩形的值最小时,这时矩形PDEF 的四边相等为正方形.∴EF=PF.作AG⊥BC,G为垂足.∵△AGB∽△FEB,∴ABBF =AGEF.(8分)∵△AQB∽△FPB,ABBF =AQPF,(9分)∴ABBF =AGEF=AQPF.而EF=PF,∴AG=AQ=h,(10分)∴AG=h=242n n mkm-+-,或者AG=h=242n n mkm---(11分)∴线段AQ的长与m,n,k的取值有关.(解题过程叙述基本清楚即可)题模二:勾股定理例1.2.1如图,每个小正方形的边长为1,△ABC的三边a,b,c的大小关系式()A.a<c<b B.a<b<c C.c<a<b D.c<b<a【答案】C【解析】∵AC=2243+=5=25,BC=2241+=17,AB=4=16,∴b>a>c,即c<a<b.故选C.例1.2.2有一个三角形两边长为3和4,要使三角形为直角三角形,则第三边长为()A.5B.7C.5或7D.不确定【答案】C【解析】本题考查勾股定理的使用.此题要分两种情况进行讨论:①当3和4为直角边时;②当4为斜边时,再分别利用勾股定理进行计算即可.①当3和4为直角边时,第三边长为22345+=②当4为斜边时,第三边长为22437-=,故选C.例1.2.3在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365B.1225C.94D.334【答案】A【解析】根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB=22AC BC+=15,过C作CD⊥AB,交AB于点D,又S△ ABC=12AC•BC=12AB•CD,∴CD=AC BCAB=91215⨯=365,则点C到AB的距离是365.故选A例1.2.4已知直角三角形的一直角边等于35cm,另外两条边的和为49cm,求斜边长.【答案】斜边长为37cm【解析】设直角三角形的斜边长为x cm,则另一直角边为()49x-cm,根据勾股定理可列方程:()2223549x x+-=,解得37x=随练1.1勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜地发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2.证明:连结DB,过点D作BC边上的高DF,则DF=EC=b-a.∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b-a)∴12b2+12ab=12c2+12a(b-a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结____.∵S五边形ACBED=____.又∵S五边形ACBED=____.∴____.∴a2+b2=c2.【答案】(1)BD,过点B作DE边上的高BF,则BF=b-a(2)S△ ACB+S△ ABE+S△ ADE=12ab+12b2+12ab,(3)S△ ACB+S△ ABD+S△ BDE=12ab+12c2+12a(b-a)(4)12ab+12b2+12ab=12ab+12c2+12a(b-a)【解析】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,∵S 五边形ACBED =S △ ACB +S △ ABE +S △ ADE =12ab+12b 2+12ab , 又∵S 五边形ACBED =S △ ACB +S △ ABD +S △ BDE =12ab+12c 2+12a (b-a ), ∴12ab+12b 2+12ab=12ab+12c 2+12a (b-a ), ∴a 2+b 2=c 2.随练1.2 如图,在正方形网格(图中每个小正方形的边长均为1)中,△ABC 的三个顶点均在格点上,则△ABC 的周长为=_____,面积为_____【答案】 62610+;36【解析】 该题考查的是勾股定理和三角形面积计算.由勾股定理得:2239310AB =+=,226662BC =+=,1.2239310AC =+=, 2. 所以△ABC 的周长为62610AB AC BC ++=+,1199662393622ABC S =⨯-⨯⨯-⨯⨯⨯=△随练1.3 若一直角三角形两边长为6和8,则第三边长为()A . 10B . 27C . 10或D . 10【答案】C【解析】 该题考查的是勾股定理.(1)当6和8是直角边时,斜边10==;(2)当8是斜边时,另一直角边==;故选C .随练1.4 若一直角三角形两边长为6和8,则第三边长为( )A . 10B .C . 10或D . 10【答案】C【解析】 该题考查的是勾股定理.(1)当6和8是直角边时,斜边10==;(2)当8是斜边时,另一直角边==;故选C .随练1.5 设a 、b 是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是____A . 1.5B . 2C . 2.5D . 3【答案】D【解析】 本题考查了勾股定理和三角形的周长以及完全平方公式的运用.由该三角形的周长为6,斜边长为2.5可知a+b+2.5=6,再根据勾股定理和完全平方公式即可求出ab 的值.∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5,①∵a、b 是直角三角形的两条直角边,∴a 2+b 2=2.52,②由①②可得ab=3,故选D .随练1.6 已知在Rt △ABC 中,90C ∠=︒,AB c =,BC a =,AC b =.如果26c =,:5:12a b =,求a 、b 的值.【答案】 10a =,24b =【解析】 ∵Rt ABC △中,90C ∠=︒,26c =,:5:12a b =,可设5a x =,则12b x =,∴()()22251226x x +=,解得2x =,∴10a =,24b =.作业1 如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了( )m 的路,却踩伤了花草.A . 5B . 4C . 3D . 2【答案】B【解析】 该题考查的是勾股定理.根据直角三角形勾股定理两直角边长的平方和等于斜边长的平方,可得斜边长为2251213+=,因此少走的路为512134+-=.所以本题的答案是B .作业2 如图,点E 在正方形ABCD 内,满足90AEB ∠=︒,6AE =,8BE =,则阴影部分的面积是( )E ACB D A . 48B . 60C . 76D . 80【答案】C 【解析】 211100687622ABE ABCD S S S AB AE BE ∆=-=-⨯⨯=-⨯⨯=正方形阴影部分.故选C .作业3 已知一个直角三角形的两条直角边分别为6cm ,8cm ,那么这个直角三角形斜边上的高为cm.【解析】∵直角三角形的两条直角边分别为6cm,8cm,∴斜边为=10,设斜边上的高为h,则直角三角形的面积为×6×8=×10h,h=4.8cm,这个直角三角形斜边上的高为4.8cm.作业4如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC、BC为直径作半圆,面积分别记为S1、S2,则S1+S2等于____.【答案】2π【解析】S1=12π(2AC)2=18πAC2,S2=18πBC2,所以S1+S2=18π(AC2+BC2)=18πAB2=2π.故答案为:2π.作业5学习勾股定理相关内容后,张老师请同学们交流这样的一个问题:“已知直角三角形的两条边长分别为3,4,请你求出第三边.”张华同学通过计算得到第三边是5,你认为张华的答案是否正确:_____________,你的理由是______________________________________________________________________【答案】不正确;若4为直角边,第三边为5;若4为斜边,第三边为7【解析】本题需要分类讨论.当4为直角边时,第三边的长为22345+=;当4为斜边时,第三边的长为22437-=.因此答案为5或7.作业6如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长.【答案】5连接BD ,∵等腰直角三角形ABC 中,D 为AC 边上中点,∴BD⊥AC(三线合一),BD=CD=AD ,∠ABD=45°,∴∠C=45°,∴∠ABD=∠C,又∵DE 丄DF ,∴∠FDC+∠BDF=∠EDB+∠BDF,∴∠FDC=∠EDB,在△EDB 与△FDC 中,∵EBD C BD CD EDB FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDB≌△FDC(ASA ),∴BE=FC=3,∴AB=7,则BC=7,∴BF=4,在Rt△EBF 中,EF 2=BE 2+BF 2=32+42,∴EF=5.答:EF 的长为5.作业7 操作:剪若干个大小形状完全相同的直角三角形,三边长分别记为a 、b 、c (如图①),分别用4张这样的直角三角形纸片拼成如图②③的形状,图②中的两个小正方形的面积2S 、3S 与图③中小正方形的面积1S 有什么关系?你能得到a 、b 、c 之间有什么关系?【答案】 三个小正方形的面积满足231S S S +=,其边长满足222a b c +=【解析】 分别用4张直角三角形纸片,拼成如图2、图3的形状,观察图2、图3可发现,图2中的两个小正方形的面积之和等于图3中的小正方形的面积,即231S S S +=,这个结论用关系式可表示为222a b c +=.如有侵权请联系告知删除,感谢你们的配合!。
勾股定理证明方法及习题全解
勾股定理练习题一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边,,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边,,则a 2+b 2=c 2.2. Rt △ABC 的三条边长分别是、、,则下列各式成立的是( )A . B. C. D.3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+14. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则 90=∠A 90=∠C a b c c b a =+c b a >+c b a <+222c b a =+它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定 6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33 7.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 22d S d + (B 2d S d - (C )222d S d + (D )22d S d +8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3B :4C :5D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c ---=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形 11.斜边的边长为,一条直角边长为的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为 14.一个三角形三边之比是,则按角分类它是 三角形. 15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.cm 17cm 86:8:1017.若三角形的三个内角的比是,最短边长为,最长边长为,则这个三角形三个角度数分别是 ,另外一边的平方是 .18.如图,已知中,,,,以直角边为直径作半圆,则这个半圆的面积是 .19. 一长方形的一边长为,面积为,那么它的一条对角线长是 .二、综合发展:1.如图,一个高、宽的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?3:2:1cm 1cm 2ABC ∆︒=∠90C 15=BA 12=AC BC cm 3212cm 4m 3mACBAECDB3.一个三角形三条边的长分别为,,,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?cm 15cm 20cm 2515.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方m 处,过了2s 后,测得小汽车与车速检测仪间距离为m ,这辆小汽车超速了吗?答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长. 答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解. 答案:C.5. 解析: 勾股定理得到:,另一条直角边是15,所求直角三角形面积为.答案: .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.70305022215817=-21158602cm ⨯⨯=260cm A小汽车小汽车 BC观测点答案:,,直角,斜,直角.7. 解析:本题由边长之比是 可知满足勾股定理,即是直角三角形.答案:直角. 8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:、、,3. 9. 解析:由勾股定理知道:,所以以直角边为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长,所以一条对角线长为5. 答案:. 二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:.12解析:因为,所以这三角形是直角三角形,设最长边(斜边)上的高为,由直角三角形面积关系,可得,∴.答案:12cm13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解. 答案:6.5s . 15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >km/h . 答案:这辆小汽车超速了.222c b a =+c 6:8:10︒30︒60︒9022222291215=-=-=AC AB BC 9=BC 4=cm 55m 222252015=+xcm 1115202522x ⨯⨯=⨯⋅12=x 70。
17.1 勾股定理(第一课时 勾股定理的证明)(练习)(解析版)八年级数学下册(人教版)
第十七章勾股定理17.1 勾股定理(第一课时勾股定理的证明)精选练习答案一、单选题(共10小题)1.(2020·山东青岛市·八年级期中)若实数m、n满足|m﹣3|+4n-=0,且m、n恰好是Rt的两条边长,则的周长是()A.5 B.57C.12 D.12或7【答案】D【分析】根据非负数的性质分别求出m、n,分4是直角边、4是斜边两种情况,根据勾股定理、三角形的周长公式计算,得到答案.【详解】n-0,∵|m﹣4n-0,∴|m﹣3|=04∴m﹣3=0,n﹣4=0,解得,m=3,n=4,当422+5,34则△ABC的周长=3+4+5=12,当422-7,43则△ABC的周长=7=7故选:D.2.(2020·吉林长春市·八年级期末)勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为()A .2B .3C .5D .6【答案】B【分析】 由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S 1,S 2,S 3,大小正方形重叠部分的面积为S ,则由勾股定理可得:S 1+S 2=S 3,在图②中,S 1+S 2+3-S=S 3,∴S=3,故选:B .3.(2020·广东清远市·八年级期末)下列各组数是勾股数的是( )A .4,5,6B .5,7,9C .6,8,10D .10,11,12【答案】C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数a 、b 、c 叫做勾股数,逐一进行判断即可.【详解】解:A. 222456+≠,故此选项错误;B. 222579+≠,故此选项错误;C. 2226810+=,故此选项正确;D. 222101112+≠,故此选项错误.故选:C .4.(2020·福建福州市·八年级期末)在平面直角坐标系中,点P(1-,3)到原点的距离是( ) A .10 B .4 C .22 D .2 【答案】A【分析】根据平面直角坐标系中,两点间的距离公式,即可求解.【详解】∵P(1-,3),原点坐标为(0,0),∴点P(1-,3)到原点的距离=22(10)(30)10--+-=,故选A .5.(2020·吉林长春市·八年级期末)如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .3D 3【答案】C【分析】 根据线段垂直平分线性质得出AD=BD ,再用勾股定理即可求出AC .【详解】解:∵点D 是线段AB 的垂直平分线与BC 的交点,BD=4,∴AD=BD=4,∴2222AC AD CD;4223故选:C.6.(2020·张掖市期中)已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.C.12或D.以上都不对【答案】C【详解】设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,=,此时这个三角形的周长.故选C7.(2020·江门市期中)在△ABC中,AB=10,BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10【答案】C【详解】分两种情况:在图①中,由勾股定理,得==;BD8===;CD2∴BC=BD+CD=8+2=10.在图②中,由勾股定理,得==;BD8===;CD2∴BC=BD―CD=8―2=6.故选C.8.(2020·河北张家口市·八年级期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6【答案】C【详解】 如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C .9.(2020·山东泰安市·八年级期中)如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11【答案】C【详解】 试题分析:运用正方形边长相等,再根据同角的余角相等可得∠BAC=∠DCE ,然后证明△ACB ≌△DCE ,再结合全等三角形的性质和勾股定理来求解即可.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即S b=S a+S c=1+9=10,∴b的面积为10,故选C.10.(2020·伊宁市期中)若一个直角三角形的两直角边的长为12和5,则第三边的长为()A.13119B.13或15 C.13 D.15【答案】C【分析】直角三角形中斜边最长,结合已知数据,利用勾股定理可求出第三边的长.【详解】当12,522+=12513.故第三边的长为13.故选:C.二、填空题(共5小题)11.(2020·南丹县期中)已知直角三角形的两边长分别为3、4.则第三边长为________.【答案】57【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:22-=;437②长为3、4的边都是直角边时:第三边的长为:22435;∴第三边的长为:7或5.∆的周12.(2020·黑龙江绥化市期中)在△ABC中,AB=15,AC=13,高AD=12,则ABC长为_______________.【答案】32或42【分析】根据题意画出图形,分两种情况:△ABC是钝角三角形或锐角三角形,分别求出边BC,即可得到答案【详解】当△ABC是钝角三角形时,∵∠D=90°,AC=13,AD=12,∴2222CD AC AD=-=-=,13125∵∠D=90°,AB=15,AD=12,∴2222BD AB AD=-=-=,15129∴BC=BD-CD=9-5=4,∴△ABC的周长=4+15+13=32;当△ABC是锐角三角形时,∵∠ADC=90°,AC=13,AD=12,∴2222=-=-=,13125CD AC AD∵∠ADB=90°,AB=15,AD=12,∴2222=-=-=,15129BD AB AD∴BC=BD-CD=9+5=14,∴△ABC的周长=14+15+13=42;综上,△ABC的周长是32或42,故答案为:32或42.13.(2020·广西防城港市·八年级期中)如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是__________cm2.【答案】17【解析】试题解析:根据勾股定理可知,∵S正方形1+S正方形2=S大正方形=49,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=49.∴正方形D的面积=49-8-10-14=17(cm2).14.(2020·山东菏泽市·八年级期中)已知一直角三角形两直角边的长分别为6cm和8cm,则第三边上的高为________.【答案】4.8cm【分析】先由勾股定理求出斜边的长,再用面积法求解.【详解】解:如图,在Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,CD ⊥AB , 则2210AB AC BC =+=(cm ), 由1122ABC S AC BC AB CD ==, 得6810CD ⨯=,解得CD =4.8(cm).故答案为4.8cm.15.(2020·广东韶关市·八年级期中)平面直角坐标系中,点()3,4P -到原点的距离是_____.【答案】5【分析】作PA x ⊥轴于A ,则4PA =,3OA =,再根据勾股定理求解.【详解】作PA x ⊥轴于A ,则4PA =,3OA =.则根据勾股定理,得5OP =.故答案为5.三、解答题(共2小题)16.(2020·湖南株洲市期末)如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.【答案】(1)DE=3;(2)ADB S 15∆=.【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 17.(2020·宿州期中)在四边形ABCD 中,∠B =90°,AB =4,BC =3,CD =12,AD =13.(1)求AC 的长;11/1 (2)求四边形ABCD 的面积.【答案】(1)5;(2)36【分析】(1)由勾股定理可得:22AC AB BC =+,从而可得答案;(2)先证明ACD △是直角三角形,再利用四边形的面积等于两个直角三角形的面积和,从而可得答案.【详解】解:(1)∵∠B =90°,AB =4,BC =3,∴2222435AC AB BC =+=+=;(2)由(1)知,AC =5,∵CD =12,AD =13,∴AC 2+CD 2=22251216913+===AD 2,∴ACD △是直角三角形,∠ACD =90°,∵AB =4,BC =3,∠B =90°,AC =5,CD =12,∠ACD =90°,∴四边形ABCD 的面积是,即四边形ABCD 的面积是36.。
勾股定理16种经典证明方法与在实际生活中的应用
ab c ab b a 214214222⨯+=⨯++【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF,∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º,∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º,∴ ∠EHA + ∠GHD = 90º.又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+.【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +.∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c , ∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º.∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD . ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a . ∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N .∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ ,∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º. ∵ ∠QBM + ∠MBA = ∠QBA = 90º, ∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点 L .∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD ,∵ ΔFAB 的面积等于221a,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB∴ 222b ac += ,即 222c b a =+【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB . AD ∶AC = AC ∶AB ,即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2.∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+.【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC . 又∵ ∠DHA = 90º,∠BCA = 90º,AD = AB = c , ∴ Rt ΔDHA ≌ Rt ΔBCA . ∴ DH = BC = a ,AH = AC = b .由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+=812SS b -- . ② 把②代入①,得98812212S S S S b S S c ++--++==922S S b ++ = 22a b +. ∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE .又∵ ∠BTH = ∠BEA = 90º, BT = BE = b ,∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a .∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º, ∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º, ∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27SS =. 过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58SS =. 由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c ,即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -, 即222a c b -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = bAD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC ADDC AB •+•=•,∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴ 222ACBC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2. ∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ ab S ABC 21=∆,∴ABC S ab ∆=42, 又∵AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442,∴()ab rc r 242=+, ∴ 22222c ab ab b a +=++, ∴ 222c b a =+. 【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+• 可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中, ∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC ,则 AD = c .∵ EM = EH + HM = b + a , ED = a , ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a ,∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c .D D∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=,732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++ =5432S S S S +++=2c∴ 222c b a =+.勾股定理在实际生活中的应用勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三边之间的数量关系,是我们在直角三角形中解决边长计算问题的重要理论依据,同时勾股定理在我们实际生活中应用也很广泛。
勾股定理证明题试题及参考答案
勾股定理证明题试题及参考答案勾股定理证明题一已知△ABC中,∠ACB=90°,以△ABC的各边为长边在△ABC外作矩形,使每个矩形的宽为长的一半,S1、S2、S3分别表示这三个矩形的面积,则S1、S2、S3之间有什么关系?并证明你的结论。
(要详细解题过程)因为D是AB的中点,DE垂直于DF于D所以,∠EDF=90度,AC=2DF, BC=2DE又因为,∠ACB=90度,∠EDF=90度,所以DE//BC,DF//AC即,∠DFB=∠AED=90度根据勾股定理则有 AE^2=AD^2-DE^2-------(1)BF^2=BD^2-DF^2-------(2)又因为D是AB的中点,DE//BC,DF//AC。
所以EF//AB,且AD=BD=EF----------------(3)在Rt△EDF中, EF^2 =DE^2+DF^2 = 2AD^2-(AE^2+BF^2)即 EF^2=AE^2+BF^2因为D是AB的中点,DE垂直于DF于D所以,∠EDF=90度,AC=2DF, BC=2DE又因为,∠ACB=90度,∠ED F=90度,所以DE//BC,DF//AC即,∠DFB=∠AED=90度根据勾股定理则有 AE^2=AD^2-DE^2-------(1)BF^2=BD^2-DF^2-------(2)又因为D是AB的中点,DE//BC,DF//AC。
所以EF//AB,且AD=BD=EF----------------(3)在Rt△EDF中, EF^2 =DE^2+DF^2 = 2AD^2-(AE^2+BF^2)即 EF^2=AE^2+BF^2勾股定理证明题二设MD,ME,MF分别交AC,BC,AB于P,Q,R,连接MA.MB,MC由勾股定理MB^2=MP^2+BP^2=MR^2+BR^2 (1)BD^2=MP^2+PD^2=BF^2=BR^2+FR^2 (2)CM^2=CP^2++MP^2=CQ^2+MQ^2 (3)CD^2=PD^2+PC^2=CF^2=CQ^2+QF^2 (4)MA^2=MQ^2+AQ^2=AR^2+MR^2 (5)由(1)(2)(3)(4)(5)可得AQ^2+MQ^2=AR^2+FR^2即AE^2=AF^2AE=AF中学勾股定理课堂实录师:我们知道,数学是一门基础学科,它用概念、公式、定理演绎着数学的神奇和魅力,今天我们在一起继续学习一个古老而著名的数学定理。
勾股定理证明练习
图1CA B F D E 勾股定理证明习题1.已知:如图1,点A 、D 、B 、E 在同一条直线上,AD=BE,AC∥DF,BC∥EF. 求证:AC=DF.2.已知:如图2,BE⊥AC,DF⊥AC,垂足分别是E 、F,O 是BD 的中点. 求证:BE=DF.3.已知:如图3, AB=DE,BC=EF,AF=CD. 求证:AB∥DE, BC∥EF.4.已知:如图4, AB=AD,AC=AE, ∠BAD=∠CAE.求证:. ∠B=∠D.5.已知:如图5, AD=AE,点D 、E 在BC 上,BD=CE,∠ADE=∠AED. 求证: ⊿ABE≌⊿ACDA 图2C DB A E F图4E DC BA图3BA CE D F6.已知:如图6, 已知AC 、BD 相交于点O ,AB∥CD, OA=OC.求证: AB=CD7.已知:如图7, 已知AC∥DF,BC=EF ,∠C=∠F. 求证: ⊿ABC≌⊿DEF.8.已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC ,AB ⊥AC ,∠B=45°,CD=2cm. 求证:BC 的长.9.已知:如图,AD 是△ABC 的高,AB=10,AD=8,BC=12。
求证:△ABC 是等腰三角形。
10.已知:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,BD=4cm 。
求AC 的长。
11.在ABC ∆中,AC AB =,D 为BC 边上任一点,求证:DC BD AD AB ⋅=-22图6O A BDC 图7AB C F ED A12.已知:如图,在ABC Rt ∆中,90=∠C ,D 是AC 的中点,AB ED ⊥于E求证:(1)22243BD BC AB =+(2)222BC AE BE =-13.如图,在ABC ∆中,90=∠C ,13=AB ,12=BC ,BC BD 21=(1)AD 的长.(2)ABD ∆的面积.14.如图,有一个直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?15.若△ABC 的三边a 、b 、c 满足条件a 2+b 2+c 2+338=10a +24b +26c ,试判断△ABC 的形状. ACBDEBC AD C B AD E16.已知:如图, ABC 中,AB=AC=10,BC=16,点D 在BC 上,DA ⊥CA 于A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
正方形ABCD的面积为 c
D
2
c b ba
B
a
还可以认为Байду номын сангаас四个三角 形与一个小正方形的和,即
1 ( ab) 4 (b a) 2 2
C
∴
∴
c
2
1 ( ab) 4 (b a ) 2 2
a 2 b2 c2
证法二:(毕达哥拉斯证法)
b
a a
b
c
c
b
E
a
C
1 1 1 2 ab ab c 梯形ABCD的面积= 2 2 2 1 1 1 1 2 (a b)( a b) ab ab c ∴ 2 2 2 2
∴
a 2 b2 c2
随 堂 练 习
下列几组数能否作为直角三角形的三边? 说说你的理由. (1) 9, 12 , 15; (2) 15, 36, 39; (3)12, 35, 36; (3) 12, 18, 22.
思考题
(1) 如果三条线段a.b.c满足a2=c2-b2,这三条线段组成三角形
是直角三角形吗?为什么? (2) 一个直角三角形的三边长为5,12,13. 如果将这三边同时扩大3倍, 那么得到的三角形还是直角
三角形吗?
随堂练习
甲、乙两位探险者到沙漠进行探险.某日早晨 8:00,甲先出发,他以6千米/小时的速度向东行走,1时
后乙出发,他以5千米/小时的速度向北行进,上午 10:00,甲、乙二人相距多远?
北
乙
甲
东
如图,两个全等的正方形,双方都去掉四个全等带阴
影的直角三角形后,两正方形中剩下的部分面积应相等。
即:
a 2 b2 c2
证法三:(伽菲尔德证法1876年)
如图,Rt△ABE≌Rt△ECD, A 可知∠AED=90°;
a c
D
c
b
1 ( a b)( a b) 梯形ABCD的面积= 2
B