2013年高考湖北卷(文)

合集下载

2013年高考文科数学湖北卷试题与答案word解析版__独自整理

2013年高考文科数学湖北卷试题与答案word解析版__独自整理

2013年普通高等学校招生全国统一考试数学(湖北卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013湖北,文1)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B∩=( ).A.{2} B.{3,4}C.{1,4,5} D.{2,3,4,5}【答案】B【考点】本题主要考查集合的补集和交集运算。

【解析】∵={3,4,5},B={2,3,4},故B∩={3,4}.故选B.2.(2013湖北,文2)已知0<θ<π4,则双曲线C1:2222=1sin cosx yθθ-与C2:22221cos siny xθθ-=的( ).A.实轴长相等 B.虚轴长相等C.离心率相等 D.焦距相等【答案】D【考点】本题主要考查双曲线的标准方程及其几何意义,考查考生对双曲线方程的理解认知水平。

【解析】对于θ∈π0,4⎛⎫⎪⎝⎭,sin2θ+cos2θ=1,因而两条双曲线的焦距相等,故选D.3.(2013湖北,文3)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ).A.(⌝p)∨(⌝q) B.p∨(⌝q) C.(⌝p)∧(⌝q) D.p∨q【答案】A【考点】本题主要考查逻辑联结词和复合命题。

【解析】至少有一位学员没有降落在指定范围,即p∧q的对立面,即⌝(p∧q)=(⌝p)∨(⌝q),故选A. 4.(2013湖北,文4)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且 y=2.347x-6.423;②y与x负相关且 y=-3.476x+5.648;③y与x正相关且 y=5.437x+8.493;④y与x正相关且 y=-4.326x-4.578.其中一定不正确...的结论的序号是( ).A.①② B.②③ C.③④ D.①④【答案】D【考点】本题主要考查两个变量的相关性,并能判断正相关和负相关。

2013年湖北省高考语文试卷

2013年湖北省高考语文试卷

2013年湖北省高考语文试卷一、语文基础知识(共15分,共5小题,每小题3分)1. 下列各组词语中,加横线字的注音全都正确的一组是()A.踹(chuài)水竞(jìnɡ)赛蘸(zhàn)酒擂(léi)鼓助威B.跋涉(shè)陡(dǒu)峭攀登(dēnɡ)餐霜饮雪(xiě)C.善(shàn)良谦逊(sùn)璞(pú)玉不事雕琢(zhuó)D.荆棘(jí)飘泊(bó)青苔(tāi)红漆(qī)雕花【答案】A【考点】识记字音【解析】本题的几个错音,都是常见字,读几遍,一般都能找出.【解答】B项,“雪”应读“xuě”;C项,“逊”应读“xùn”;D项,“苔”应读“tái”。

2. 下列各组词语中,没有错别字的一组是()A.彷徨愁怨寂寥静默凄婉惆伥B.顾盼精捍步履稳健风神潇洒C.睿智禀赋崇高品质趋善避恶D.辩难商榷典藉满架旁稽博采【答案】C【考点】识记字形【解析】本题注意依义辨形和词语结构特点.【解答】A项凄婉、惆怅,“惆怅”是连绵词,偏旁相同;B项精悍,“精悍”是形容词,而“捍”从构型看与动作有关;D项典籍,“典籍”的“籍”与古书有关,因此是竹字头。

3. 依次填入下列横线处的词语,最恰当的一组是()①宋人画雪常不用铅粉,()把背景用墨衬黑,一层层(),留出山头的白,树梢的白,甚至花蕾上的白,虚实映衬,意境悠远。

②因为睡不着,打开窗帘,遥望夜空,满天(),斜月晶莹,薄雾似轻纱漫卷,()。

我思念那个小山村,那个让我魂牵梦绕的地方。

A.而是点染星汉如梦如幻B.总是浸染星云如诗如画C.却是绘染星光诗意盎然D.只是渲染星斗诗意朦胧【答案】D【考点】成语的使用【解析】正确使用词语的基础就是能够根据语境辨析词语的意义.语境就是语言环境,也就是上下文.汉语词语是多义的,但到了一个语境中,每个词都只有一个固定的意义(双关修辞义除外).【解答】第一空与前一句“常不用”照应,“总是”与绝对化了,“而是”、“却是”转折意味太强,应该搭配的是“不是”而不是“常不”;第二空注意“一层层”和“画雪”,只能选“渲染”;第三空“星汉”、“星云”是集合名词,是天体集合,不会满天,有月亮的晚上不会星光满天,只能选星斗,即星星;第四空联系上句“薄雾似轻纱漫卷”,对应的应该就是“诗意朦胧”了。

2013年湖北省高考文综试卷(完整版)

2013年湖北省高考文综试卷(完整版)

绝密★启用前2013年普通高等学校招生全国统一考试文科综合能力测试注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必在将自己的姓名、考生号填写在答题卡上。

2. 回答第Ⅰ卷时,选出每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

3. 回答第Ⅱ卷时,将答案卸载答题卡上,写在试卷上无效。

4. 考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷本卷共35小题。

每小题4分,共140分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

哥伦比亚已经成为世界重要的鲜切花生产国。

读图1,完成1~3题。

1.每年的情人节(2月14日),在美国销售的鲜切玫瑰花多来自哥伦比亚。

与美国相比,在此期间,哥伦比亚生产鲜切玫瑰花的优势自然条件是()A.地形较平B.降水较丰沛C.气温较高D.土壤较肥沃2.哥伦比亚向美国运送鲜切玫瑰花宜采用()A.公路运输B.铁路运输C.航空运输D.海洋运输3.目前,墨西哥已成为哥伦比亚在美国鲜切花市场的竞争对手,与哥伦比亚相比,墨西哥开拓美国鲜切花市场的优势在于()A.运费低B.热量足C.技术高D.品种全图2为45ºN 附近某区域的遥感影像,共中深色部分为植被覆盖区,浅色部分为高原荒澳区;终年冰雪覆盖的山峰海拔3424米,距海约180千米.读图2.完成4~6题。

4.导致图示区域内降水差异的主导因素是()A.大气环流B.地形C.纬度位置D.洋流5.该区域位于()A.亚欧大陆太平洋沿岸地区B. 亚欧大陆大西洋沿岸地区C.北美洲大西洋沿岸地区D. 北美洲太平洋沿岸地区6.该区域中山脉西坡山麓的自然植被属于()A.常绿阔叶林B.常绿硬叶林C.针阔叶混交林D.草原6.图3示意某城市20世纪80年代和90年代平均人口年变化率,当前该城市中人口约1300万。

据此完成7~8题。

7.20世纪90年代和80年代相比,该城市A.总人口增长速度加快 B总人口减少C.人口自然增长率降低 D人口净迁入量减少8.该城市所在的国家可能是A.美国B.日本C.俄罗斯D.德国图4示意我国某地区14日6时的气压形式,L为低压,图中天气系统以200千米/天的速度东移。

【语文】2013年高考真题——(湖北卷)解析版

【语文】2013年高考真题——(湖北卷)解析版

绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)语文本试题卷共8页,六大题23小题。

全卷满分150分。

考试用时150分钟。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.非选择题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中,加点字的注音全都正确的一组是A.踹.(chuài)水竞.(jìnɡ)赛蘸.(zhàn)酒擂.(léi)鼓助威B.跋涉.(shè)陡.(dǒu)峭攀登.(dēnɡ)餐霜饮雪.(xiě)C.善.(shàn)良谦逊.(sùn)璞.(pú)玉不事雕琢.(zhuó)D.荆棘.(jí)飘泊.(bó)青苔.(tāi)红漆.(qī)雕花2.下列各组词语中,没有错别字的一组是A.彷徨愁怨寂寥静默凄婉惆伥B.顾盼精捍步履稳健风神潇洒C.睿智禀赋崇高品质趋善避恶D.辩难商榷典藉满架旁稽博采3.依次填入下列横线处的词语,最恰当的一组是①宋人画雪常不用铅粉,把背景用墨衬黑,一层层,留出山头的白,树梢的白,甚至花蕾上的白,虚实映衬,意境悠远。

②因为睡不着,打开窗帘,遥望夜空,满天,斜月晶莹,薄雾似轻纱漫卷,。

我思念那个小山村,那个让我魂牵梦绕的地方!A.而是点染星汉如梦如幻B.总是浸染星云如诗如画C.却是绘染星光诗意盎然D.只是渲染星斗诗意朦胧4.下列各项中,没有语病的一项是A.《美丽中国》以歌舞为主,融入京剧演唱、茶艺表演、少林武术等元素,加上奇幻的灯光,震撼的音响,一幅美丽中国的大写意,声光舞影流溢着浓郁的中国情。

2013湖北卷

2013湖北卷

标签:2013年高考湖北卷(2013 湖北)、答案、四星级2013年普通高等学校招生全国统一考试(湖北卷)语文试题参考答案及评分参考一、语文基础知识(共15分,共5小题,每小题3分)1.A 2.C 3.D 4.B 5.B二、现代文(论述类文本)阅读(共9分,共3小题,每小题3分)6.A 7.C 8.B三、古代诗文阅读(共34分,共7小题)9.(3分)C 10.(3分)B 11.(3分)D12.(9分)(1)(3分)你难道猜想我不会射箭吗?只是我的箭弓稍微软了点。

【评分参考】译出句子大意给1分;“亿”“顾”两处,每译对一处给1分。

(2)(2分)刘整行拜礼后起身,在旁边站立,廉希宪不跟他讲一句话。

【评分参考】译出句子大意给1分;“侧立”译对给1分。

(3)(4分)(廉希宪)恭敬地(把秀才们)迎入家里,陪他们坐着,摆出酒食,对待他们的礼节非常恭敬,并且记下他们住的地方。

【评分参考】译出句子大意给1分;“肃”“录”“居止”三处,每译对一处给1分。

13.(3分)勺饮不入口者三日/恸辄呕血/扶乃能起/既葬/结庐墓所/诸相以居忧无例/欲极力起公。

【评分参考】每处0.5分。

断句超过6处,每多一处扣0.5分,扣完本小题分为止。

14.(8分)(1)(3分)这首词蕴含的情感主要有:①久别重逢的喜悦;②宦海沉浮的悲惋无奈;③离别在即的愁绪。

【评分参考】答案包含重逢之喜、仕途之悲、离别之愁等三个方面的情感,每个方面答对给1分。

意思答对即可。

此题只要言之成理,可酌情给分。

语文试题参考答案及评分参考第1页(共4页)(2)(5分)①想象奇特,虚实相生。

词人忽发奇想,将本来荒僻的阆州点化为神仙阆苑,赋予阆州神话般的美丽。

虚实处理得当,富有浪漫色彩。

②境界缥缈开阔,语言洒脱灵动。

“阆山”通“阆苑”,“滁州”望“阆州”,展现了多重时空的组合变化。

“闻说”二字导入传说,忽又接以“楼高”句设想将来,灵动超逸,挥洒自如。

【评分参考】答案包含2个要点,答对1个要点并有赏析给2分,答对2个要点并有赏析给5分。

2013湖北语文高考试卷及答案

2013湖北语文高考试卷及答案

2013年湖北省高考语文试卷及答案一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中,加点字的注音全都正确的一组是()A.踹.(chuài)水竞.(jìnɡ)赛蘸(zhàn)酒擂.(léi)鼓助威B.跋涉.(shè)陡.(dǒu)峭攀登.(dēnɡ)餐霜饮雪.(xiě)C.善.(shàn)良谦逊.(sùn)璞(pú)玉不事雕琢(zhuó)D.荆棘.(jí)飘泊.(bó)青苔.(tāi)红漆.(qī)雕花2.下列各组词语中,没有错别字的一组是()A.彷徨愁怨寂寥静默凄婉惆伥B.顾盼精捍步履稳健风神潇洒C.睿智禀赋崇高品质趋善避恶D.辩难商榷典藉满架旁稽博采3.依次填入下列横线处的词语,最恰当的一组是()①宋人画雪常不用铅粉,把背景用墨衬黑,一层层,留出山头的白,树梢的白,甚至花蕾上的白,虚实映衬,意境悠远。

②因为睡不着,打开窗帘,遥望夜空,满天,斜月晶莹,薄雾似轻纱漫卷,。

我思念那个小山村,那个让我魂牵梦绕的地方!A.而是点染星汉如梦如幻B.总是浸染星云如诗如画C.却是绘染星光诗意盎然D.只是渲染星斗诗意朦胧4.下列各项中,没有语病的一项是()A.《美丽中国》以歌舞为主,融入京剧演唱、茶艺表演、少林武术等元素,加上奇幻的灯光,震撼的音响,一幅美丽中国的大写意,声光舞影流溢着浓郁的中国情。

B.梦在前方,路在脚下,青年要坚定信念,珍惜韶华,在追求中国梦的道路上放飞青春,以青春之我建设“青春之国家”!C.从汶川到芦山,地震确实有能量剥夺太多本该鲜活滋润的生命,但地震却没有能量剥夺站立在废墟上的那些生命依然坚强。

D.网友们纷纷撰写微博,围绕着“追星”的话题,或幽默,或自嘲,或“假正经”一番,捧腹之后,总有一种耐人寻味留在心中。

5.下列有关文学常识的表述,有错误的一项是()A.《论语》中有不少有关为人处世的格言警句。

2013年高考湖北文科数学试题及答案(word解析版)

2013年高考湖北文科数学试题及答案(word解析版)

2013年普通高等学校招生全国统一考试(湖北卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2013年湖北,文1,5分】已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A =ð( )(A ){2} (B ){3,4} (C ){1,4,5} (D ){2,3,4,5} 【答案】B 【解析】U B A =ð{2,3,4}{3,4,5}{3,4}=,故选B .(2)【2013年湖北,文2,5分】已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的( ) (A )实轴长相等 (B )虚轴长相等 (C )离心率相等 (D )焦距相等 【答案】D【解析】在双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=中,都有222sin cos 1c θθ=+=,即焦距相等,故选D .(3)【2013年湖北,文3,5分】在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) (A )()p ⌝∨()q ⌝ (B )p ∨()q ⌝ (C )()p ⌝∧()q ⌝ (D )p ∨q【答案】A【解析】因为p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则p -是“没有降落在指定范围”,q -是“乙没有降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为()p ⌝∨()q ⌝,故选A .(4)【2013年湖北,文4,5分】四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-;② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+;④ y 与x 正相关且 4.326 4.578y x =--.其中一定不正确...的结论的序 号是( )(A )①② (B )②③ (C )③④ (D )①④ 【答案】D【解析】在①中,y 与x 不是负相关;①一定不正确;同理④也一定不正确,故选D . (5)【2013年湖北,文5,5分】小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶,与以上事件吻合得最好的图像是( )(A ) (B ) (C ) (D )【答案】C【解析】可以将小明骑车上学的行程分为三段,第一段是匀速行驶,运动方程是一次函数,即小明距学校的距离是他骑行时间的一次函数,所对应的函数图象是一条直线段,由此可以判断A 是错误的;第二段因交通拥堵停留了一段时间,这段时间内小明距学校的距离没有改变,即小明距学校的距离是行驶时间的常值函数,所对应的函数图象是平行于x 轴的一条线段,由此可以排除D ;第三段小明为了赶时间加快速度行驶,即小明在第三段的行驶速度大于第一段的行驶速度,所以第三段所对应的函数图象不与第一段的平行,从而排除B ,故选C .(6)【2013年湖北,文6,5分】将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )(A )π12 (B )π6 (C )π3 (D )5π6【答案】B【解析】因为sin ()y x x x =+∈R 可化为2cos()6y x π=-(x ∈R ),将它向左平移π6个单位得x x y cos 26)6(cos 2=⎥⎦⎤⎢⎣⎡-+=ππ,其图像关于y 轴对称,故选B .(7)【2013年湖北,文7,5分】已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为( )(A(B(C) (D) 【答案】A【解析】2,1AB =(),5,5CD =(),则向量AB 在向量CD方向上的射影为cos AB CDAB CDθ⋅====,故选A . (8)【2013年湖北,文8,5分】x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为( )(A )奇函数 (B )偶函数 (C )增函数 (D )周期函数 【答案】D【解析】函数()[]f x x x =-表示实数x 的小数部分,有(1)1[1][]()f x x x x x f x +=+-+=-=,所以函数()[]f x x x =-是以1为周期的周期函数,故选D .(9)【2013年湖北,文9,5分】某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )(A )31200元 (B )36000元 (C )36800元 (D )38400元 【答案】C【解析】根据已知,设需要A 型车x 辆,B 型车y 辆,则根据题设,有2170,03660900x y y x x y x y +≤⎧⎪-≤⎪⎨>>⎪⎪+=⎩, 画出可行域,求出三个顶点的坐标分别为4(7)1A ,,2(5)1B ,,6(15C ,),目标函数 (租金)为16002400k x y =+,如图所示.将点B 的坐标代入其中,即得租金的最小值为:1600524001236800k =⨯+⨯=(元),故选C . (10)【2013年湖北,文10,5分】已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )(A )(,0)-∞ (B )1(0,)2(C )(0,1) (D )(0,)+∞【答案】B【解析】'()ln 12f x x ax =+-,由()(ln )f x x x ax =-由两个极值点,得'()0f x =有两个不等的实数解,即ln 21x ax =-有两个实数解,从而直线21y ax =-与曲线ln y x =有两个交点. 过点01(,-)作ln y x =的切线,设切点为00x y (,),则切线的斜率01k x =,切线方程为011y x x =-. 切点在切线上,则00010x y x =-=,又切点在曲线ln y x =上,则00ln 01x x =⇒=,即切点为10(,).切线方程为1y x =-. 再由直线21y ax =-与曲线ln y x =有两个交点,知直线21y ax =-位于两直线0y =和1y x =-之间,如图所示,其斜率2a 满足:021a <<,解得102a <<,故选B .二、填空题:共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分.(11)【2013年湖北,文11,5分】i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z = . 【答案】23i -+【解析】复数123i z =-在复平面内的对应点123Z -(,),它关于原点的对称点2Z 为2,3-(),所对应的复数为223i z =-+.(12)【2013年湖北,文12,5分】某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(1)平均命中环数为;(2)命中环数的标准差为 .【答案】(1)7;(2)2【解析】(1)()178795491074710+++++++++=;(2)2s =. (13)【2013年湖北,文13,5分】阅读如图所示的程序框图,运行相应的程序.若输入m 的值为2,则输出的结果i = . 【答案】4【解析】初始值2110m A B i ====,,,,第一次执行程序,得121i A B ===,,,因为A B <不成立,则第二次执行程序,得2224122i A B ==⨯==⨯=,,,还是A B <不成立,第三次执行程序,得3428236i A B ==⨯==⨯=,,,仍是A B <不成立,第四次执行程序,得48216i A ==⨯=,,424B =⨯=,有A B <成立,输出4i =.(14)【2013年湖北,文14,5分】已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上 到直线l 的距离等于1的点的个数为k ,则k =_________. 【答案】4【解析】这圆的圆心在原点,半径为5,圆心到直线l 1=,所以圆O 上到直线l 的距离等于1的点有4个,如图A 、B 、C 、D 所示.(15)【2013年湖北,文15,5分】在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m = . 【答案】3 【解析】因为区间[2,4]-的长度为6,不等式||x m ≤的解区间为[-m ,m ] ,其区间长度为2m . 那么在区间[2,4]-上随机地取一个数x ,要使x 满足||x m ≤的概率为56,m 将区间[2,4]-分为[]2m -,和[m ,4],且两区间的长度比为5:1,所以3m =.(16)【2013年湖北,文16,5分】我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 【答案】3【解析】如图示天池盆的半轴截面,那么盆中积水的体积为()22961061031963V ππ=⨯++⨯=⨯(立方寸),盆口面积S =196π(平方寸),所以,平地降雨量为323196()3196⨯=寸(寸)(寸). (17)【2013年湖北,文17,5分】在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =.(1)图中格点四边形DEFG 对应的,,S N L 分别是 ;(2)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点多边形对应的71N =,18L =, 则S = (用数值作答). 【答案】(1)3, 1, 6;(2)79 【解析】(1)S=S △DFG +S △DEF =1+2=3 ,N=1,L =6.(2)根据题设△ABC 是格点三角形,对应的1S =,0N =,4L =,有 41b c += ①由(1)有63a b c ++= ② 再由格点DEF ∆中,S=2,N=0,L=6,得62b c += ③联立①②③,解得1,1, 1.2b c a ==-=所以当71N =,18L =时,171181792S =+⨯-=.三、解答题:共5题,共65分.解答应写出文字说明,演算步骤或证明过程.(18)【2013年湖北,文18,12分】在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (1)求角A 的大小;(2)若△ABC 的面积S =5b =,求sin sin B C 的值.解:(1)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=,即(2cos 1)(cos 2)0A A -+=,解得1cos 2A =或cos 2A =-(舍去).因为0πA <<,所以π3A =.(2)由11sin 22S bc A bc ====得20bc =. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a =.又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.(19)【2013年湖北,文19,13分】已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-.(1)求数列{}n a 的通项公式;(2)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由. 解:(1)设数列{}n a 的公比为q ,则10a ≠,0q ≠.由题意得243223418S S S S a a a -=-⎧⎨++=-⎩,即23211121(1)18a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩, 解得132a q =⎧⎨=-⎩,故数列{}n a 的通项公式为13(2)n n a -=-.(2)由(1)有3[1(2)]1(2)1(2)n n n S ⋅--==----.若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤-当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥. 综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N .(20)【2013年湖北,文20,13分】如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (1)证明:中截面DEFG 是梯形;(2)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算.已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.解:(1)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2.又121A A d =, 122B B d =,123C C d =,且123d d d <<.因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B平面MEFN ME =,可得AA 2∥ME ,即A 1A 2∥DE .同理可证A 1A 2∥FG ,所以DE ∥FG .又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11A C 的中点,即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (2)V V <估. 证明如下:由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥.而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥.由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高,因此13121231()(2)22228DEFG d d d d a a S S d d d ++==+⋅=++中梯形,即123(2)8ahV S h d d d =⋅=++估中.又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估.由123d d d <<,得210d d ->,310d d ->,故V V <估.(21)【2013年湖北,文21,13分】设0a >,0b >,已知函数()1ax bf x x +=+. (1)当a b ≠时,讨论函数()f x 的单调性;(2)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f, f ,()bf a是否成等比数列,并证明()b f f a ≤; (ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G ≤≤,求x的取值范围.解:(1)()f x 的定义域为(,1)(1,)-∞--+∞,22(1)()()(1)(1)a x ax b a bf x x x +-+-'==++. 当a b >时,()0f x '>,函数()f x 在(,1)-∞-,(1,)-+∞上单调递增; 当a b <时,()0f x '<,函数()f x 在(,1)-∞-,(1,)-+∞上单调递减.(2)(i )(1)02a b f +=>,2()0b abf a a b=>+,0f =>.故22(1)()[2b a b ab f f ab f a a b +=⋅==+,即2(1)()[b f f f a =.①所以(1),()bf f f a 成等比数列.因2a b +≥,即(1)f f ≥.由①得()b f f a ≤. (ii )由(i )知()bf H a=,f G =.故由()H f x G ≤≤,得()()(b f f xf a ≤≤.② 当a b =时,()()b f f x f a a ===.这时,x 的取值范围为(0,)+∞;当a b >时,01ba<<,从而b a <,由()f x 在(0,)+∞上单调递增与②式,得b x a ≤≤即x的取值范围为,b a ⎡⎢⎣;当a b <时,1ba>,从而b a >由()f x 在(0,)+∞上单调递减与②式,bx a ≤,即x的取值范围为b a ⎤⎥⎦. (22)【2013年湖北,文22,14分】如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(1)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.解:依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=. 其中0a m n >>>, 1.mnλ=>(1)解法一:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-,于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---.若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=.故当直线l 与y 轴重合时,若12S S λ=,则1λ.解法二:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=.所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ=.(2)解法一:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性,不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d ==,所以12d d =. 又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=.由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-,||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-.① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x = 根据对称性可知C B x x =-,D A x x =-,于是2||||2A B x AD BC x = ②1(1)λλλ+=-.③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解 得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-, 等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>+所以当11λ<≤+l ,使得12S S λ=;当1λ> 轴不重合的直线l 使得12S S λ=.解法二:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性,不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==,2d =12d d =. 又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A B x x BD AB x x λ+==-,所以11A B x x λλ+=-.由点(,)A A A x kx ,(,)B B B x kx 分别在C 1, C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a mλ--+=, 依题意0A B x x >>,所以22A B x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-.因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1A B x x λ<<.从而111λλλ+<<-,解得1λ>+所以当11λ<≤+l ,使得12S S λ=;当1λ>+l 使得12S S λ=.。

2013年湖北省高考语文试卷及答案

2013年湖北省高考语文试卷及答案

2013年湖北省高考语文试卷及答案一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中,加点字的注音全都正确的一组是()A.踹(chuài)水竞(jìnɡ)赛蘸(zhàn)酒擂(léi)鼓助威B.跋涉(shè)陡(dǒu)峭攀登(dēnɡ)餐霜饮雪(xiě)C.善(shàn)良谦逊(sùn)璞(pú)玉不事雕琢(zhuó)D.荆棘(jí)飘泊(bó)青苔(tāi)红漆(qī)雕花2.下列各组词语中,没有错别字的一组是()A.彷徨愁怨寂寥静默凄婉惆伥B.顾盼精捍步履稳健风神潇洒C.睿智禀赋崇高品质趋善避恶D.辩难商榷典藉满架旁稽博采3.依次填入下列横线处的词语,最恰当的一组是()①宋人画雪常不用铅粉,把背景用墨衬黑,一层层,留出山头的白,树梢的白,甚至花蕾上的白,虚实映衬,意境悠远。

②因为睡不着,打开窗帘,遥望夜空,满天,斜月晶莹,薄雾似轻纱漫卷,。

我思念那个小山村,那个让我魂牵梦绕的地方!A.而是点染星汉如梦如幻B.总是浸染星云如诗如画C.却是绘染星光诗意盎然D.只是渲染星斗诗意朦胧4.下列各项中,没有语病的一项是()A.《美丽中国》以歌舞为主,融入京剧演唱、茶艺表演、少林武术等元素,加上奇幻的灯光,震撼的音响,一幅美丽中国的大写意,声光舞影流溢着浓郁的中国情。

B.梦在前方,路在脚下,青年要坚定信念,珍惜韶华,在追求中国梦的道路上放飞青春,以青春之我建设“青春之国家”!C.从汶川到芦山,地震确实有能量剥夺太多本该鲜活滋润的生命,但地震却没有能量剥夺站立在废墟上的那些生命依然坚强。

D.网友们纷纷撰写微博,围绕着“追星”的话题,或幽默,或自嘲,或“假正经”一番,捧腹之后,总有一种耐人寻味留在心中。

5.下列有关文学常识的表述,有错误的一项是()A.《论语》中有不少有关为人处世的格言警句。

2013湖北文科高考试题(含答案)

2013湖北文科高考试题(含答案)

2013年普通高等学校夏季招生全国统一考试数学文史类(湖北卷)本试题卷共5页,22题.全卷满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑.2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷、草稿纸上无效.3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内.答在试题卷、草稿纸上无效.4.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013湖北,文1)已知全集U ={1,2,3,4,5},集合A ={1,2},B ={2,3,4},则B ∩=( ).A .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5} 答案:B解析:∵={3,4,5},B ={2,3,4},故B ∩={3,4}.故选B.2.(2013湖北,文2)已知0<θ<π4,则双曲线C 1:2222=1sin cos x y θθ-与C 2:22221cos sin y x θθ-=的( ). A .实轴长相等 B .虚轴长相等 C .离心率相等 D .焦距相等 答案:D解析:对于θ∈π0,4⎛⎫ ⎪⎝⎭,sin 2θ+cos 2θ=1,因而两条双曲线的焦距相等,故选D. 3.(2013湖北,文3)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ).A .(⌝p )∨(⌝q )B .p ∨(⌝q )C .(⌝p )∧(⌝q )D .p ∨q 答案:A解析:至少有一位学员没有降落在指定范围,即p ∧q 的对立面,即⌝(p ∧q )=(⌝p )∨(⌝q ),故选A.4.(2013湖北,文4)四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y =2.347x -6.423; ②y 与x 负相关且y =-3.476x +5.648; ③y 与x 正相关且y =5.437x +8.493; ④y 与x 正相关且y =-4.326x -4.578. 其中一定不正确...的结论的序号是( ). A .①② B .②③ C .③④ D .①④ 答案:D解析:正相关指的是y 随x 的增大而增大,负相关指的是y 随x 的增大而减小,故不正确的为①④,故选D.5.(2013湖北,文5)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶,与以上事件吻合得最好的图象是( ).答案:C解析:根据题意,刚开始距离随时间匀速减小,中间有一段时间距离不再变化,最后随时间变化距离变化增大,故选C.6.(2013湖北,文6)将函数ycos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ).A .π12 B .π6 C .π3 D .5π6答案:B解析:y=cos x +sin x =2πsin 3x ⎛⎫+ ⎪⎝⎭的图象向左平移m 个单位长度后得y =2πsin 3x m ⎛⎫++ ⎪⎝⎭的图象.又平移后的图象关于y 轴对称,即y =2πsin 3x m ⎛⎫++ ⎪⎝⎭为偶函数,根据诱导公式m 的最小正值为π6,故选B.7.(2013湖北,文7)已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB 在CD方向上的投影为( ).A.2 B.2 C.2- D.2-答案:A解析:因为AB =(2,1),CD =(5,5),所以向量AB 在CD 方向上的投影为|AB |cos 〈AB,CD〉=2AB CD AB CD AB AB CD CD ⋅⋅⋅===.故选A. 8.(2013湖北,文8)x 为实数,[x ]表示不超过x 的最大整数,则函数f (x )=x -[x ]在R 上为( ).A .奇函数B .偶函数C .增函数D .周期函数 答案:D解析:由题意f (1.1)=1.1-[1.1]=0.1,f (-1.1)=-1.1-[-1.1]=-1.1-(-2)=0.9,故该函数不是奇函数,也不是偶函数,更不是增函数.又对任意整数a ,有f (a +x )=a +x -[a +x ]=x -[x ]=f (x ),故f (x )在R 上为周期函数.故选D.9.(2013湖北,文9)某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( ).A .31 200元B .36 000元C .36 800元D .38 400元 答案:C解析:设需A ,B 型车分别为x ,y 辆(x ,y ∈N ),则x ,y 需满足3660900,7,,,x y y x x y +≥⎧⎪-≤⎨⎪∈∈⎩N N 设租金为z ,则z =1 600x +2 400y ,画出可行域如图,根据线性规划中截距问题,可求得最优解为x =5,y =12,此时z 最小等于36 800,故选C.10.(2013湖北,文10)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( ).A .(-∞,0)B .10,2⎛⎫ ⎪⎝⎭C .(0,1)D .(0,+∞) 答案:B解析:f ′(x )=ln x -ax +1x a x ⎛⎫- ⎪⎝⎭=ln x -2ax +1,函数f (x )有两个极值点,即ln x -2ax +1=0有两个不同的根(在正实数集上),即函数g (x )=ln 1x x+与函数y =2a 在(0,+∞)上有两个不同交点.因为g ′(x )=2ln xx -,所以g (x )在(0,1)上递增,在(1,+∞)上递减,所以g (x )max=g (1)=1,如图.若g(x)与y=2a有两个不同交点,须0<2a<1.即0<a<12,故选B.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分.11.(2013湖北,文11)i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i,则z2=__________.答案:-2+3i解析:z1在复平面上的对应点为(2,-3),关于原点的对称点为(-2,3),故z2=-2+3i.12.(2013湖北,文12)某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(1)平均命中环数为__________;(2)命中环数的标准差为__________.答案:(1)7(2)2解析:平均数为78795491074710+++++++++=,标准差为=2.13.(2013湖北,文13)阅读如图所示的程序框图,运行相应的程序.若输入m的值为2,则输出的结果i=__________.答案:4解析:由程序框图,i=1后:A=1×2,B=1×1,A<B?否;i=2后:A=2×2,B=1×2,A<B?否;i=3后:A=4×2,B=2×3,A<B?否;i=4后:A=8×2,B=6×4,A<B?是,输出i=4.14.(2013湖北,文14)已知圆O:x2+y2=5,直线l:x cos θ+y sin θ=1π2θ⎛⎫<<⎪⎝⎭.设圆O上到直线l的距离等于1的点的个数为k,则k=__________.答案:4解析:由题意圆心到该直线的距离为12,故圆上有4个点到该直线的距离为1.15.(2013湖北,文15)在区间[-2,4]上随机地取一个数x,若x满足|x|≤m的概率为56,则m=__________.答案:3解析:由题意[-2,4]的区间长度为6,而满足条件的x取值范围的区间长度为5,故m 取3,x∈[-2,3].16.(2013湖北,文16)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是__________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)答案:3解析:由题意盆内所盛水的上底面直径为28122+=20(寸),下底面半径为6寸,高为9寸,故体积为V=13·9·(π·102+π·62+π·10·6)=588π,而盆上口面积为π·142=196π,故平地降雨量为588π196π=3(寸).17.(2013湖北,文17)在平面直角坐标系中,若点P(x,y)的坐标x,y均为整数,则称点P为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC是格点三角形,对应的S=1,N=0,L=4.(1)图中格点四边形DEFG对应的S,N,L分别是__________;(2)已知格点多边形的面积可表示为S=aN+bL+c,其中a,b,c为常数.若某格点多边形对应的N=71,L=18,则S=__________(用数值作答).答案:(1)3,1,6(2)79解析:由图形可得四边形DEFG对应的S,N,L分别是3,1,6.再取两相邻正方形可计算S,N,L的值为2,0,6.加上已知S=1时N=0,L=4,代入S=aN+bL+c可计算求出a=1,b=12,c=-1,故当N=71,L=18时,S=71+12×18-1=79.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.(2013湖北,文18)(本小题满分12分)在△ABC中,角A,B,C对应的边分别是a,b,c.已知cos 2A-3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=b=5,求sin B sin C的值.解:(1)由cos 2A-3cos(B+C)=1,得2cos2A+3cos A-2=0,即(2cos A-1)(cos A+2)=0,解得cos A=12或cos A=-2(舍去).因为0<A<π,所以π3 A=.(2)由S=12bc sin A=12bc==,得bc=20.又b=5,知c=4.由余弦定理得a2=b2+c2-2bc cos A=25+16-20=21,故a=又由正弦定理得sin B sin C=basin A·casin A=2bcasin2A=20352147⨯=.19.(2013湖北,文19)(本小题满分13分)已知S n是等比数列{a n}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.解:(1)设数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得2432234,18,S S S S a a a -=-⎧⎨++=-⎩即23211121,118,a q a q a q a q q q ⎧--=⎨(++)=-⎩ 解得13,2.a q =⎧⎨=-⎩故数列{a n }的通项公式为a n =3(-2)n -1.(2)由(1)有S n =3[12]12n ⋅-(-)-(-)=1-(-2)n .若存在n ,使得S n ≥2 013, 则1-(-2)n ≥2 013, 即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}. 20.(2013湖北,文20)(本小题满分13分)如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为A 1A 2=d 1.同样可得在B ,C 处正下方的矿层厚度分别为B 1B 2=d 2,C 1C 2=d 3,且d 1<d 2<d 3.过AB ,AC 的中点M ,N 且与直线AA 2平行的平面截多面体A 1B 1C 1-A 2B 2C 2所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中.(1)证明:中截面DEFG 是梯形;(2)在△ABC 中,记BC =a ,BC 边上的高为h ,面积为S .在估测三角形ABC 区域内正下方的矿藏储量(即多面体A 1B 1C 1-A 2B 2C 2的体积V )时,可用近似公式V 估=S 中·h 来估算.已知V =13(d 1+d 2+d 3)S ,试判断V 估与V 的大小关系,并加以证明. (1)证明:依题意,A 1A 2⊥平面ABC ,B 1B 2⊥平面ABC ,C 1C 2⊥平面ABC , 所以A 1A 2∥B 1B 2∥C 1C 2.又A 1A 2=d 1,B 1B 2=d 2,C 1C 2=d 3,且d 1<d 2<d 3. 因此四边形A 1A 2B 2B 1,A 1A 2C 2C 1均是梯形.由AA 2∥平面MEFN ,AA 2⊂平面AA 2B 2B ,且平面AA 2B 2B ∩平面MEFN =ME , 可得AA 2∥ME ,即A 1A 2∥DE .同理可证A 1A 2∥FG ,所以DE ∥FG .又M ,N 分别为AB ,AC 的中点,则D ,E ,F ,G 分别为A 1B 1,A 2B 2,A 2C 2,A 1C 1的中点, 即DE ,FG 分别为梯形A 1A 2B 2B 1,A 1A 2C 2C 1的中位线. 因此DE =12(A 1A 2+B 1B 2)=12(d 1+d 2),FG =12(A 1A 2+C 1C 2)=12(d 1+d 3), 而d 1<d 2<d 3,故DE <FG ,所以中截面DEFG 是梯形.(2)解:V 估<V .证明如下:由A 1A 2⊥平面ABC ,MN ⊂平面ABC ,可得A 1A 2⊥MN . 而EM ∥A 1A 2,所以EM ⊥MN , 同理可得FN ⊥MN .由MN 是△ABC 的中位线,可得MN =1122BC a =即为梯形DEFG 的高, 因此S 中=S 梯形DEFG =13121231(2)22228d d d d a ad d d ++⎛⎫+⋅=++ ⎪⎝⎭,即V 估=S 中·h =8ah(2d 1+d 2+d 3).又12S ah =,所以V =13(d 1+d 2+d 3)S =6ah (d 1+d 2+d 3).于是V -V 估=6ah (d 1+d 2+d 3)-8ah (2d 1+d 2+d 3)=24ah[(d 2-d 1)+(d 3-d 1)].由d 1<d 2<d 3,得d 2-d 1>0,d 3-d 1>0,故V 估<V .21.(2013湖北,文21)(本小题满分13分)设a >0,b >0,已知函数f (x )=1ax bx ++. (1)当a ≠b 时,讨论函数f (x )的单调性;(2)当x >0时,称f (x )为a ,b 关于x 的加权平均数.①判断f (1),f ,b f a ⎛⎫⎪⎝⎭是否成等比数列,并证明b f f a ⎛⎫≤ ⎪⎝⎭; ②a ,b 的几何平均数记为G .称2aba b+为a ,b 的调和平均数,记为H .若H ≤f (x )≤G ,求x 的取值范围.解:(1)f (x )的定义域为(-∞,-1)∪(-1,+∞),f ′(x )=22111a x ax b a bx x (+)-(+)-=(+)(+). 当a >b 时,f ′(x )>0,函数f (x )在(-∞,-1),(-1,+∞)上单调递增;当a <b 时,f ′(x )<0,函数f (x )在(-∞,-1),(-1,+∞)上单调递减.(2)①计算得f (1)=2a b+>0,20b ab f a a b⎛⎫=> ⎪+⎝⎭,0f =>,故22(1)2b a b abf f ab f a a b ⎡⎤+⎛⎫=⋅==⎢⎥⎪+⎝⎭⎢⎥⎣⎦,即2(1)b f f fa ⎡⎤⎛⎫=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,(*)所以f (1),f ,b f a ⎛⎫⎪⎝⎭成等比数列.因2a b+≥,即(1)f f ≥,由(*)得b f f a ⎛⎫≤ ⎪⎝⎭.②由①知b f H a ⎛⎫= ⎪⎝⎭,f G =.故由H ≤f (x )≤G ,得()b f f x f a ⎛⎫≤≤⎪⎝⎭.(**)当a =b 时,()b f f x f a a ⎛⎫=== ⎪⎝⎭. 这时,x 的取值范围为(0,+∞);当a >b 时,0<<1ba ,从而b a <由f (x )在(0,+∞)上单调递增与(**)式,得b x a ≤≤即x 的取值范围为b a ⎡⎢⎣;当a <b 时,>1ba ,从而b a >由f (x )在(0,+∞)上单调递减与(**)式,bx a ≤≤,即x 的取值范围为b a ⎤⎥⎦. 22.(2013湖北,文22)(本小题满分14分)如图,已知椭圆C 1与C 2的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m,2n (m >n ),过原点且不与x 轴重合的直线l 与C 1,C 2的四个交点按纵坐标从大到小依次为A ,B ,C ,D ,记mnλ=,△BDM 和△ABN 的面积分别为S 1和S 2.(1)当直线l 与y 轴重合时,若S 1=λS 2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得S 1=λS 2?并说明理由. 解:依题意可设椭圆C 1和C 2的方程分别为C 1:2222=1x y a m+,C 2:2222=1x y a n +.其中a>m>n>0,mnλ=>1.(1)解法1:如图1,若直线l与y轴重合,即直线l的方程为x=0,则S1=12|BD|·|OM|=12a|BD|,S2=12|AB|·|ON|=12a|AB|,所以12||||S BDS AB=.在C1和C2的方程中分别令x=0,可得y A=m,y B=n,y D=-m,于是||||1 ||||1B DA By yBD m nAB y y m nλλ-++===---.若12=S S λ,则11λλλ+=-,化简得λ2-2λ-1=0.由λ>1,可解得λ.故当直线l与y轴重合时,若S1=λS2,则λ.图1解法2:如图1,若直线l与y轴重合,则|BD|=|OB|+|OD|=m+n,|AB|=|OA|-|OB|=m-n;S1=12|BD|·|OM|=12a|BD|,S2=12|AB|·|ON|=12a|AB|.所以12||1 ||1S BD m n S AB m n λλ++ ===--.若12=S S λ,则11λλλ+=-,化简得λ2-2λ-1=0.由λ>1,可解得λ.故当直线l与y轴重合时,若S1=λS2,则λ.(2)解法1:如图2,若存在与坐标轴不重合的直线l,使得S1=λS2.图2根据对称性,不妨设直线l :y =kx (k >0),点M (-a,0),N (a,0)到直线l 的距离分别为d 1,d 2,则因为1d ==,2d ==d 1=d 2. 又S 1=12|BD |d 1,S 2=12|AB |d 2, 所以12||||S BD S AB ==λ,即|BD |=λ|AB |. 由对称性可知|AB |=|CD |,所以|BC |=|BD |-|AB |=(λ-1)|AB |,|AD |=|BD |+|AB |=(λ+1)|AB |, 于是||1||1AD BC λλ+=-.① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =根据对称性可知x=-x ,x D =-x A ,于是2||||2A Bx AD BC x ==.② 从而由①和②式可得11λλλ+=(-).③ 令1=1t λλλ+(-),则由m >n ,可得t ≠1,于是由③可解得22222211n t k a t λ(-)=(-). 因为k ≠0,所以k 2>0.于是③式关于k 有解,当且仅当222221>01n t a t λ(-)(-), 等价于2221(1)<0t t λ⎛⎫-- ⎪⎝⎭. 由λ>1,可解得1λ<t <1, 即11<11λλλλ+<(-), 由λ>1,解得λ>,所以当1<λ≤时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2; 当λ>l 使得S 1=λS 2.解法2:如图2,若存在与坐标轴不重合的直线l ,使得S 1=λS 2.根据对称性, 不妨设直线l :y =kx (k >0),点M (-a,0),N (a,0)到直线l 的距离分别为d 1,d 2,则因为1d ==,2d ==d 1=d 2. 又S 1=12|BD |d 1,S 2=12|AB |d 2,所以12||=||S BD S AB λ=.因为||||A B A Bx x BD AB x x λ+===-, 所以11A B x x λλ+=-. 由点A (x A ,kx A ),B (x B ,kx B )分别在C 1,C 2上,可得 22222=1A A x k x a m +,22222=1B B x k x a n+, 两式相减可得22222222=0A B A B x x k x x a mλ-(-)+, 依题意x A >x B >0,所以22A B x x >. 所以由上式解得22222222A B B A m x x k a x x λ(-)=(-). 因为k 2>0,所以由2222222>0A B B A m x x a x x λ(-)(-),可解得<1A Bx x λ<. 从而11<<λλλ+,解得λ> 当1<λ≤时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2; 当λ>l 使得S 1=λS 2.。

2013年普通高等学校招生全国统一考试(湖北卷文科)

2013年普通高等学校招生全国统一考试(湖北卷文科)

2013年普通高等学校招生全国统一考试(湖北卷文科)文科综合试题 第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U ={1,2,3,4,5},集合A ={1,2},B ={2,3,4},则B ∩∁U A =( ) A .{2} B .{3,4} C .{1,4,5} D .{2,3,4,5}2.已知0<θ<π4,则双曲线C 1:x 2sin 2θ-y 2cos 2θ=1与C 2:y 2cos 2θ-x 2sin 2θ=1的( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等4.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x -6.423; ②y 与x 负相关且y ^=-3.476x +5.648; ③y 与x 正相关且y ^=5.437x +8.493; ④y 与x 正相关且y ^=-4.326x -4.578: 其中一定不正确的结论的序号是( ) A .①② B .②③ C .③④ D .①④5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是( )6.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π67.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量方向上的投影为( )A.322B.3152C .-322D .-31528.x 为实数,[x ]表示不超过x 的最大整数,则函数f (x )=x -[x ]在R 上为( ) A .奇函数 B .偶函数 C .增函数 D. 周期函数9.某旅行社租用A ,B 两种型号的客车安排900名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元10.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( ) A .(-∞,0) B.⎝⎛⎭⎫0,12 C .(0,1) D .(0,+∞)二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分.11.i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z 2=________.12.某学员在一次射击测试中射靶10次,命中环数如下: 7,8,7,9,5,4,9,10,7,4则(1)平均命中环数为________;(2)命中环数的标准差为________.13.阅读如图所示的程序框图,运行相应的程序.若输入m 的值为2,则输出的结果i =________.14.已知圆O :x 2+y 2=5,直线l :x cos θ+y sin θ=1(0<θ<π2).设圆O 上到直线l 的距离等于1的点的个数为k ,则k =________.15.在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.16.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.在平面直角坐标系中,若点P (x ,y )的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是________;(2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数.若某格点多边形对应的N =71,L =18,则S =________(用数值作答).三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1. (1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值.19.已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.20.如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为A 1A 2=d 1.同样可得在B ,C 处正下方的矿层厚度分别为B 1B 2=d 2,C 1C 2=d 3,且d 1<d 2<d 3.过AB ,AC 的中点M ,N 且与直线AA 2平行的平面截多面体A 1B 1C 1-A 2B 2C 2所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中.(1)证明:中截面DEFG 是梯形;(2)在△ABC 中,记BC =a ,BC 边上的高为h ,面积为S .在估测三角形ABC 区域内正下方的矿藏储量(即多面体A 1B 1C 1-A 2B 2C 2的体积V )时,可用近似公式V 估=S 中·h 来估算.已知V =13(d 1+d 2+d 3)S ,试判断V 估与V 的大小关系,并加以证明.21.设a >0,b >0,已知函数f (x )=ax +bx +1.(1)当a ≠b 时,讨论函数f (x )的单调性;(2)当x >0时,称f (x )为a ,b 关于x 的加权平均数. (i)判断f (1),f ⎝⎛⎭⎫b a ,f ⎝⎛⎭⎫b a 是否成等比数列,并证明f ⎝⎛⎭⎫b a ≤f ⎝⎛⎭⎫b a ; (ii)a ,b 的几何平均数记为G .称2aba +b 为a ,b 的调和平均数,记为H .若H ≤f (x )≤G ,求x的取值范围.22.如图,已知椭圆C 1与C 2的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m,2n (m >n ),过原点且不与x 轴重合的直线l 与C 1,C 2的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记λ=mn,△BDM 和△ABN 的面积分别为S 1和S 2.(1)当直线l 与y 轴重合时,若S 1=λS 2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得S 1=λS 2?并说明理由.2013年普通高等学校招生全国统一考试(湖北卷文科)1.解析:选B 本题主要考查集合的补集和交集运算.由题得,∁U A ={3,4,5},则B ∩∁U A ={3,4},故选B.2. 解析:选D 本题主要考查双曲线的标准方程及其几何意义,考查考生对双曲线方程的理解认知水平.由双曲线C 1知:a 2=sin 2θ,b 2=cos 2θ⇒c 2=1,由双曲线C 2知:a 2=cos 2θ,b 2=sin 2θ⇒c 2=1,故选D.3.4. 解析:选D 本题主要考查两个变量的相关性,并能判断正相关和负相关.①中y 与x 负相关而斜率为正,不正确;④中y 与x 正相关而斜率为负,不正确,故选D.5. 解析:选C 本题主要考查函数的相关知识,考查考生的识图能力.出发时距学校最远,先排除A ,中途堵塞停留,距离没变,再排除D ,堵塞停留后比原来骑得快,因此排除B ,故选C.6.解析:选B 本题主要考查三角函数的性质和三角函数平移变换.y =3cos x +sin x =2cos ⎝⎛⎭⎫x -π6,左移m 个单位得y =2cos ⎝⎛⎭⎫x +m -π6,图象关于y 轴对称,则m -π6=k π,k ∈Z ,令k =0,得m =π6.故选B.7.8.解析:选D 本题主要考查函数的图象和性质.当x ∈[0,1)时,画出函数图象(图略),再左右扩展知f (x )为周期函数.故选D.9.解析:选C 本题主要考查用二元一次不等式组解决实际问题的能力,考查线性规划问题,考查考生的作图、运算求解能力.设租A 型车x 辆,B 型车y 辆,租金为z ,则⎩⎪⎨⎪⎧36x +60y ≥900,y -x ≤7,y +x ≤21,x ,y ∈N ,画出可行域(图中阴影区域中的整数点),则目标函数z =1 600x +2400y 在点N (5,12)处取得最小值36 800,故选C.10.解析:选B 本题主要考查导数的应用,利用导数研究函数极值的方法,考查考生运算能力、综合分析问题的能力和化归与转化能力.由题知,x >0,f ′(x )=ln x +1-2ax ,由于函数f (x )有两个极值点,则f ′(x )=0有两个不等的正根,即函数y =ln x +1与y =2ax 的图象有两个不同的交点(x >0),则a >0;设函数y =ln x +1上任一点(x 0,1+ln x 0)处的切线为l ,则k l =y ′=1x 0,当l 过坐标原点时,1x 0=1+ln x 0x 0⇒x 0=1,令2a =1⇒a =12,结合图象知0<a <12,故选B.11.解析:本题主要考查复数的运算及代数表示,考查考生的运算推理能力.由复数的几何意义知,z 1,z 2的实部,虚部均互为相反数,故z 2=-2+3i.答案:-2+3i12. 解析:本题主要考查统计中的平均数和标准差.(1)由公式知,平均数为110(7+8+7+9+5+4+9+10+7+4)=7;(2)由公式知,s 2=110(0+1+0+4+4+9+4+9+0+9)=4⇒s=2.答案:7 213. 解析:本题主要考查考生的读图、识图能力.i =2时,A =4,B =2;i =3时,A =8,B =6;i =4时,A =16,B =24符合A <B ,故i =4.答案:414.解析:本题主要考查直线与圆的位置关系.直线l :x cos θ+y sin θ=1⎝⎛⎭⎫0<θ<π2是单位圆x 2+y 2=1在第一象限部分的切线,圆O :x 2+y 2=5的圆心到直线l 的距离为1,故过原点O 与l 平行的直线l 1与圆O 的2个交点到直线l 的距离为1,l 1关于l 对称的直线l 2与圆O 也有2个交点,共4个.答案:415.解析:本题以非常简单的区间和不等式的解集立意,考查几何概型.由几何概型知:56=m -(-2)6⇒m =3. 答案:316.解析:本题以我国数学名著《数书九章》为题材,考查台体的体积.圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r 中r 下)=π3×9×(102+62+10×6)=588π,降雨量为V 142π=3×196π196π=3.答案:3(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.解析:本题属自定义型信息题,考查考生的创新意识.(1)由定义知,四边形DEFG由一个等腰直角三角形和一个平行四边形构成,其内部格点有1个,边界上格点有6个,S 四边形DEFG=3.(2)由待定系数法可得,⎩⎪⎨⎪⎧12=a ·0+b ·3+c ,1=a ·0+b ·4+c ,3=a ·1+b ·6+c ,⇒⎩⎪⎨⎪⎧a =1,b =12,c =-1,当N =71,L =18时,S =1×71+12×18-1=79.答案:3,1,6 7918.解:本题主要考查三角函数,三角形的面积公式,正弦定理和余弦定理等知识的综合应用,考查考生的化简、运算、求解能力.(1)由cos 2A -3cos(B +C )=1,得2cos 2 A +3cos A -2=0,即(2cos A -1)(cos A +2)=0,解得cos A =12或cos A =-2(舍去).因为0<A <π,所以A =π3.(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20.又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =21. 又由正弦定理得sin B sin C =b a sin A ·c a sin A =bc a sin 2 A =2021×34=57.19.解:本题主要考查等比数列的性质、等差数列的性质、等比数列的通项公式及前n 项和公式,也考查了分类讨论思想.(1)设数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18,即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18, 解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3(-2)n -1.(2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n .若存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n ≤-2 012. 当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.20.解:本题主要考查空间线线、线面、面面位置关系,线面角等基础知识,同时考查空间想象能力和推理论证能力.(1)证明:依题意A 1A 2⊥平面ABC ,B 1B 2⊥平面ABC ,C 1C 2⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2.又A 1A 2=d 1,B 1B 2=d 2,C 1C 2=d 3,且d 1<d 2<d 3.因此四边形A 1A 2B 2B 1,A 1A 2C 2C 1均是梯形.由AA 2∥平面MEFN ,AA 2⊂平面AA 2B 2B ,且平面AA 2B 2B ∩平面MEFN =ME ,可得AA 2∥ME ,即A 1A 2∥DE .同理可证A 1A 2∥FG ,所以DE ∥FG .又M ,N 分别为AB ,AC 的中点,则D ,E ,F ,G 分别为A 1B 1,A 2B 2,A 2C 2,A 1C 1的中点, 即DE 、FG 分别为梯形A 1A 2B 2B 1、A 1A 2C 2C 1的中位线.因此DE =12(A 1A 2+B 1B 2)=12(d 1+d 2),FG =12(A 1A 2+C 1C 2)=12(d 1+d 3),而d 1<d 2<d 3,故DE <FG ,所以中截面DEFG 是梯形. (2)V 估<V .证明如下:由A 1A 2⊥平面ABC ,MN ⊂平面ABC ,可得A 1A 2⊥MN . 而EM ∥A 1A 2,所以EM ⊥MN ,同理可得FN ⊥MN .由MN 是△ABC 的中位线,可得MN =12BC =12a ,即为梯形DEFG 的高,因此S 中=S 梯形DEFG =12⎝⎛⎭⎫d 1+d 22+d 1+d 32·a 2=a8(2d 1+d 2+d 3), 即V 估=S 中·h =ah8(2d 1+d 2+d 3).又S =12ah ,所以V =13(d 1+d 2+d 3)S =ah6(d 1+d 2+d 3).于是V -V 估=ah 6(d 1+d 2+d 3)-ah 8(2d 1+d 2+d 3)=ah24[(d 2-d 1)+(d 3-d 1)].由d 1<d 2<d 3,得d 2-d 1>0,d 3-d 1>0,故V 估<V .21. 解:本题主要考查不等式、导数的应用,利用导数研究函数的单调性等基础知识,考查运算能力及用函数思想分析解决问题的能力.(1)f (x )的定义域为(-∞,-1)∪(-1,+∞), f ′(x )=a (x +1)-(ax +b )(x +1)2=a -b(x +1)2.当a >b 时,f ′(x )>0,函数f (x )在(-∞,-1),(-1,+∞)上单调递增; 当a <b 时,f ′(x )<0,函数f (x )在(-∞,-1),(-1,+∞)上单调递减. (2)(ⅰ)计算得f (1)=a +b 2>0,f ⎝⎛⎭⎫b a =2aba +b >0,f ⎝⎛⎭⎫b a =ab >0. 故f (1)f ⎝⎛⎭⎫b a =a +b 2·2ab a +b =ab =⎣⎡⎦⎤f ⎝⎛⎭⎫b a 2, 即f (1)f ⎝⎛⎭⎫b a =⎣⎡⎦⎤f⎝⎛⎭⎫b a 2.① 所以f (1),f ⎝⎛⎭⎫b a 2,f ⎝⎛⎭⎫b a 成等比数列. 因为a +b 2≥ab ,即f (1)≥f ⎝⎛⎭⎫b a .由①得f ⎝⎛⎭⎫b a ≤f ⎝⎛⎭⎫b a . (ⅱ)由(ⅰ)知f ⎝⎛⎭⎫b a =H ,f ⎝⎛⎭⎫b a =G .故由H ≤f (x )≤G , 得f ⎝⎛⎭⎫b a ≤f (x )≤f ⎝⎛⎭⎫b a .② 当a =b 时,f ⎝⎛⎭⎫b a =f (x )=f ⎝⎛⎭⎫b a =a . 这时,x 的取值范围为(0,+∞);当a >b 时,0<b a <1,从而ba <ba,由f (x )在(0,+∞)上单调递增与②式, 得ba≤x ≤b a ,即x 的取值范围为⎣⎡⎦⎤ba,b a ; 当a <b 时,b a >1,从而ba >ba,由f (x )在(0,+∞)上单调递减与②式,得b a ≤x ≤b a,即x 的取值范围为⎣⎡⎦⎤b a ,b a . 22. 解:本题主要考查椭圆的标准方程、直线与圆锥曲线的位置关系,是一道综合性的试题,考查考生综合运用知识解决问题的能力.其中问题(2)是一个开放性问题,考查观察、推理以及创造性地分析问题、解决问题的能力.依题意可设椭圆C 1和C 2的方程分别为C 1:x 2a 2+y 2m 2=1,C 2:x 2a 2+y 2n 2=1.其中a >m >n >0,λ=m n>1.(1)法一:如图1,若直线l 与y 轴重合,即直线l 的方程为x =0,则S 1=12|BD |·|OM |=12a |BD |,S 2=12|AB |·|ON |=12a |AB |,所以S 1S 2=|BD ||AB |.在C 1和C 2的方程中分别令x =0,可得y A =m ,y B =n ,y D =-m , 于是|BD ||AB |=|y B -y D ||y A -y B |=m +n m -n =λ+1λ-1.若S 1S 2=λ,则λ+1λ-1=λ,化简得λ2-2λ-1=0.由λ>1,可解得λ=2+1. 故当直线l 与y 轴重合时,若S 1=λS 2,则λ=2+1. 法二:如图1,若直线l 与y 轴重合,则|BD |=|OB |+|OD |=m +n ,|AB |=|OA |-|OB |=m -n ; S 1=12|BD |·|OM |=12a |BD |,S 2=12|AB |·|ON |=12a |AB |.所以S 1S 2=|BD ||AB |=m +n m -n =λ+1λ-1.若S 1S 2=λ,则λ+1λ-1=λ,化简得λ2-2λ-1=0.由λ>1,可解得λ=2+1. 故当直线l 与y 轴重合时,若S 1=λS 2,则λ=2+1.(2)法一:如图2,若存在与坐标轴不重合的直线l ,使得S 1=λS 2.根据对称性,不妨设直线l :y =kx (k >0),点M (-a,0),N (a,0)到直线l 的距离分别为d 1,d 2,则因为d 1=|-ak -0|1+k 2=ak 1+k 2,d 2=|ak -0|1+k 2=ak1+k 2,所以d 1=d 2. 又S 1=12|BD |d 1,S 2=12|AB |d 2,所以S 1S 2=|BD ||AB |=λ,即|BD |=λ|AB |.由对称性可知|AB |=|CD |,所以|BC |=|BD |-|AB |=(λ-1)|AB |,|AD |=|BD |+|AB |=(λ+1)|AB |,于是|AD ||BC |=λ+1λ-1.①将l 的方程分别与C 1,C 2的方程联立,可求得 x A =am a 2k 2+m 2,x B=ana 2k 2+n 2. 根据对称性可知x C =-x B ,x D =-x A ,于是 |AD ||BC |=1+k 2|x A -x D |1+k 2|x B -x C |=2x A 2x B =m n a 2k 2+n 2a 2k 2+m 2.②从而由①和②式可得a 2k 2+n 2a 2k 2+m 2=λ+1λ(λ-1).③ 令t =λ+1λ(λ-1),则由m >n ,可得t ≠1,于是由③可解得k 2=n 2(λ2t 2-1)a 2(1-t 2). 因为k ≠0,所以k 2>0.于是③式关于k 有解,当且仅当n 2(λ2t 2-1)a 2(1-t 2)>0,等价于(t 2-1)⎝⎛⎭⎫t 2-1λ2<0.由λ>1,可解得1λ<t <1, 即1λ<λ+1λ(λ-1)<1,由λ>1,解得λ>1+2,所以 当1<λ≤1+2时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2;当λ>1+2时,存在与坐标轴不重合的直线l 使得S 1=λS 2.法二:如图2,若存在与坐标轴不重合的直线l ,使得S 1=λS 2.根据对称性,不妨设直线l :y =kx (k >0),点M (-a,0),N (a,0)到直线l 的距离分别为d 1,d 2,则因为d 1=|-ak -0|1+k 2=ak 1+k 2,d 2=|ak -0|1+k 2=ak1+k 2,所以d 1=d 2. 又S 1=12|BD |d 1,S 2=12|AB |d 2,所以S 1S 2=|BD ||AB |=λ.因为|BD ||AB |=1+k 2|x B -x D |1+k 2|x A -x B |=x A +x B x A -x B =λ,所以x A x B =λ+1λ-1.由点A (x A ,kx A ),B (x B ,kx B )分别在C 1,C 2上,可得 x 2A a 2+k 2x 2A m 2=1,x 2B a 2+k 2x 2B n2=1, 两式相减可得x 2A -x 2B a 2+k 2(x 2A -λ2x 2B )m 2=0,依题意x A >x B >0,所以x 2A >x 2B .所以由上式解得k 2=m 2(x 2A -x 2B )a 2(λ2x 2B -x 2A ).因为k 2>0,所以由m 2(x 2A -x 2B )a 2(λ2x 2B -x 2A )>0,可解得1<x A x B <λ. 从而1<λ+1λ-1<λ,解得λ>1+2,所以当kλ=1+2时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2;当λ>1+2时,存在与坐标轴不重合的直线l 使得S 1=λS 2.。

2013年湖北省高考语文试卷(附参考答案)

2013年湖北省高考语文试卷(附参考答案)

2013年湖北省高考语文试卷一、语文基础知识(共15分,共5小题,每小题3分)1.(3分)下列各组词语中,加横线字的注音全都正确的一组是()A.踹(chuài)水竞(jìnɡ)赛蘸(zhàn)酒擂(léi)鼓助威B.跋涉(shè)陡(dǒu)峭攀登(dēnɡ)餐霜饮雪(xiě)C.善(shàn)良谦逊(sùn)璞(pú)玉不事雕琢(zhuó)D.荆棘(jí)飘泊(bó)青苔(tāi)红漆(qī)雕花2.(3分)下列各组词语中,没有错别字的一组是()A.彷徨愁怨寂寥静默凄婉惆伥B.顾盼精捍步履稳健风神潇洒C.睿智禀赋崇高品质趋善避恶D.辩难商榷典藉满架旁稽博采3.(3分)依次填入下列横线处的词语,最恰当的一组是()①宋人画雪常不用铅粉,把背景用墨衬黑,一层层,留出山头的白,树梢的白,甚至花蕾上的白,虚实映衬,意境悠远。

②因为睡不着,打开窗帘,遥望夜空,满天,斜月晶莹,薄雾似轻纱漫卷,。

我思念那个小山村,那个让我魂牵梦绕的地方。

A.而是点染星汉如梦如幻B.总是浸染星云如诗如画C.却是绘染星光诗意盎然D.只是渲染星斗诗意朦胧4.(3分)下列各项中,没有语病的一项是()A.《美丽中国》以歌舞为主,融入京剧演唱、茶艺表演、少林武术等元素,加上奇幻的灯光,震撼的音响,一幅美丽中国的大写意,声光舞影流溢着浓郁的中国情.B.梦在前方,路在脚下,青年要坚定信念,珍惜韶华,在追求中国梦的道路上放飞青春,以青春之我建设“青春之国家”!C.从汶川到芦山,地震确实有能量剥夺太多本该鲜活滋润的生命,但地震却没有能量剥夺站立在废墟上的那些生命依然坚强.D.网友们纷纷撰写微博,围绕着“追星”的话题,或幽默,或自嘲,或“假正经”一番,捧腹之后,总有一种耐人寻味留在心中.5.(3分)下列有关文学常识的表述,有错误的一项是()A.《论语》中有不少有关为人处世的格言警句.如:“君子欲讷于言而敏于行”告诉我们做人要言语谨慎、行事敏捷;“见贤思齐焉,见不贤而内自省也”是说看见贤人就应该向他看齐,看见不贤的人就应该反省自己.B.《红楼梦》第五回,贾宝玉随贾母等赴宁国府赏梅,午间去房间休息,看见房内挂着一副对联“世事洞明皆学问,人情练达即文章”,宝玉觉得这副对联蕴含丰富,十分喜爱,铭记在心.C.《狂人日记》把批判的锋芒指向旧中国几千年“吃人”的历史.在狂人看来,人人都想吃人,又害怕被人吃,人与人互相牵掣,结成一个连环,难以打破.文末发出了“救救孩子”的呼声.D.美国作家海明威1954年获得诺贝尔文学奖.他的作品《桥边的老人》和《老人与海》均以“老人”为主人公,前者表现了战争环境中人性的光辉,后者描写了“人的灵魂的尊严”.二、现代文(论述类文本)阅读(共9分,共1小题,每小题9分)6.(9分)阅读下面的文章,完成各题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A =I ðA .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}2.已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()p ⌝∨()q ⌝B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q4.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分 别得到以下四个结论:① y 与x 负相关且$2.347 6.423y x =-; ② y 与x 负相关且$3.476 5.648y x =-+; ③ y 与x 正相关且$5.4378.493y x =+; ④ y 与x 正相关且$ 4.326 4.578y x =--. 其中一定不.正确..的结论的序号是 A .①② B .②③C .③④D . ①④5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是6.将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是A .π12B .π6C .π3 D .5π67.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB u u u r在CD u u u r 方向上的投影为ABC. D. 8.x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为 A .奇函数B .偶函数C .增函数D . 周期函数9.某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为 A .31200元B .36000元C .36800元D .38400元10.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z = . 12.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为 ; (Ⅱ)命中环数的标准差为 .13.阅读如图所示的程序框图,运行相应的程序. 若输入m 的值为2, 则输出的结果i = .14.已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点第13题图的个数为k ,则k = .15.在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m = . 16.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =. (Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是 ;(Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点多边形对应的71N =,18L =, 则S = (用数值作答).三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (Ⅰ)求角A 的大小; (Ⅱ)若△ABC 的面积53S =5b =,求sin sin B C 的值.19.(本小题满分13分)已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.20.(本小题满分13分)如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.21.(本小题满分13分)设0a >,0b >,已知函数()1ax bf x x +=+. (Ⅰ)当a b ≠时,讨论函数()f x 的单调性;(Ⅱ)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f , ()b f a ,()bf a是否成等比数列,并证明()()b b f f a a ≤; (ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G ≤≤,求x 的取值范围.第20题图22.(本小题满分14分)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别 为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从 大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S . (Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.第22题图2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1.B 2.D 3.A 4.D 5.C 6.B 7.A 8.D 9.C 10.B 二、填空题:11.23i -+ 12.(Ⅰ)7 (Ⅱ)2 13.414.4 15.3 16.3 17.(Ⅰ)3, 1, 6 (Ⅱ)79 三、解答题:18.(Ⅰ)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=,即(2cos 1)(cos 2)0A A -+=,解得1cos 2A = 或cos 2A =-(舍去).因为0πA <<,所以π3A =.(Ⅱ)由11sin 22S bc A bc ===得20bc =. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a =.又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.19. (Ⅰ)设数列{}n a 的公比为q ,则10a ≠,0q ≠. 由题意得 2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即23211121,(1)18,a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为13(2)n n a -=-.(Ⅱ)由(Ⅰ)有 3[1(2)]1(2)1(2)n n n S ⋅--==----.若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤- 当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N . 20. (Ⅰ)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2. 又121A A d =,122B B d =,123C C d =,且123d d d << . 因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B I 平面MEFN ME =, 可得AA 2∥ME ,即A 1A 2∥DE . 同理可证A 1A 2∥FG ,所以DE ∥FG . 又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11A C 的中点, 即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (Ⅱ)V V <估. 证明如下:由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥. 而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥. 由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高, 因此13121231()(2)22228DEFG d d d d a a S S d d d ++==+⋅=++中梯形, 即123(2)8ahV S h d d d =⋅=++估中. 又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估.由123d d d <<,得210d d ->,310d d ->,故V V <估.21. (Ⅰ)()f x 的定义域为(,1)(1,)-∞--+∞U ,22(1)()()(1)(1)a x ax b a bf x x x +-+-'==++. 当a b >时,()0f x '>,函数()f x 在(,1)-∞-,(1,)-+∞上单调递增; 当a b <时,()0f x '<,函数()f x 在(,1)-∞-,(1,)-+∞上单调递减. (Ⅱ)(i )计算得(1)02a b f +=>,2()0b abf a a b=>+,0f =.故22(1)()[2b a b ab f f ab f a a b +=⋅==+, 即2(1)()[b f f f a =. ①所以(1),()bf f f a成等比数列.因2a b +≥(1)f f ≥.由①得()b f f a ≤. (ii )由(i )知()bf H a =,f G =.故由()H f x G ≤≤,得()()b f f x f a ≤≤. ②当a b =时,()()b f f x f a a ===.这时,x 的取值范围为(0,)+∞; 当a b >时,01ba<<,从而b a <,由()f x 在(0,)+∞上单调递增与②式,得b x a ≤x的取值范围为,b a ⎡⎢⎣; 当a b <时,1ba>,从而b a >()f x 在(0,)+∞上单调递减与②式,bx a ≤,即x的取值范围为b a ⎤⎥⎦. 22. 依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=. 其中0a m n >>>, 1.mn λ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-, 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ.解法2:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=. 所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ.(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d ==12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-. ① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =根据对称性可知C B x x =-,D A x x =-,于是2||||2A Bx AD BC x = ② 从而由①和②式可得1(1)λλλ+-. ③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-,第22题解答图1第22题解答图2等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>当11λ<≤+l ,使得12S S λ=;当1λ>l 使得12S S λ=. 解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d ==12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A Bx x BD AB x x λ+==-,所以11A B x x λλ+=-. 由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a m λ--+=, 依题意0A B x x >>,所以22AB x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-.因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1ABx x λ<<. 从而111λλλ+<<-,解得1λ>当11λ<≤+l ,使得12S S λ=;当1λ>l 使得12S S λ=.。

相关文档
最新文档