初中数学基本知识点总结
初中数学常识知识点汇总
初中数学常识知识点汇总初中数学是学生数学学习的基础阶段,涵盖了众多的知识点。
在本文中,我将为大家总结一些初中数学的常识知识点,希望能帮助大家理解和掌握数学的基本概念和方法。
一、数与运算1. 自然数:自然数是0和正整数的集合,用N表示。
2. 整数:整数包括正整数、零和负整数,用Z表示。
3. 有理数:有理数包括整数和分数,用Q表示。
4. 实数:实数包括有理数和无理数,用R表示。
5. 加法和减法原理:加法和减法原理是数学运算的基础,它们决定了加减法运算的法则。
二、代数1. 代数式:代数式是由数和字母以及运算符号组成的表达式,可以进行各种数学运算。
2. 代数方程:代数方程是一个含有未知数的等式。
3. 一元一次方程:一元一次方程是指未知数的最高幂次为一的方程,它可以用解代数方程的方法解出未知数的值。
4. 二元一次方程组:二元一次方程组是包含两个未知数的方程组,可以通过消元法或代入法解出未知数的值。
三、几何1. 平面几何:平面几何是研究二维图形的性质和关系的数学分支。
2. 长度和面积:长度是指直线段的度量,面积是指二维图形所围成的区域的大小。
3. 三角形:三角形是由三条边和三个内角所确定的图形,它的性质包括边长关系、内角和等。
4. 直角三角形:直角三角形是一种特殊的三角形,其中一个角为直角(90度)。
5. 圆:圆是平面上离一个固定点(圆心)距离相等的点的轨迹。
四、概率与统计1. 概率:概率是事件发生的可能性的度量。
2. 事件与样本空间:事件是指试验中可能发生的一个结果,样本空间是指试验的所有可能结果的集合。
3. 随机事件:随机事件是指在试验过程中发生或不发生的事件,其结果是随机的。
4. 随机变量:随机变量是指试验结果的数值描述,例如掷一枚硬币的结果可以用0和1表示。
五、函数和图像1. 函数:函数是一种特殊的关系,它将一个集合的每个元素映射到另一个集合的元素上。
2. 自变量和因变量:在函数中,自变量是输入值,因变量是输出值。
最完整初中数学知识点总结及公式大全
最完整初中数学知识点总结及公式大全1.整数和有理数-整数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。
-有理数的加减乘除运算规则:同号相加取共同的符号,异号相加取绝对值大的符号;乘法规则:同号得正,异号得负;除法规则:除数不为零,同号得正,异号得负。
2.平面图形-平面图形的性质与计算:正方形的面积等于边长的平方;矩形的面积等于长乘以宽;三角形的面积等于底乘以高的一半;梯形的面积等于上底加下底乘以高的一半。
3.线的关系与方程-平行线和垂直线的特征:平行线具有相同的斜率,垂直线具有互为倒数的斜率。
-直线的方程:一般式方程、斜截式方程、截距式方程、点斜式方程。
4.相似与全等-相似的概念和判定条件:对应角相等,对应边成比例。
-全等三角形的判定条件:边-边-边、边-角-边、角-边-角、角-角-角。
5.几何作图-通过已知条件作出各种形状:平分线、垂直线、平行线、三等分线等。
6.算式计算-四则运算:加法、减法、乘法、除法。
-分数的加减乘除运算:通分、约分、分数的加减乘除运算规则。
7.比例与百分数-比例的概念和性质:比例的定义、比例的性质、比例的延长线、反比例。
-百分数的计算:百分数与小数的相互转换、百分数之间的比较、百分数与分数的相互转换。
8.数据与概率-数据整理与分析:表格、条形图、折线图、饼图等。
-概率的计算:事件的概率等于事件发生次数除以总次数。
9.代数基础知识-代数式的加减乘除:同类项的加减法、乘法运算法则、除法运算法则。
-代数式的值:给定变量值计算代数式的值。
10.一元一次方程与一元一次不等式-一元一次方程的解:解方程的基本步骤、等式的等价性质。
-一元一次不等式的解:解不等式的基本步骤、不等式的性质。
11.二次根式与二次方程-二次根式的化简:完全平方、配方法。
-二次方程的解:因式分解法、配方法、求根公式。
12.几何证明-各种定理的证明:三角形的中位线定理、三角形的角平分线定理、圆的性质等。
初中数学知识点全面总结
初中数学知识点全面总结一、集合与函数1.集合的定义、集合的表示法、集合的运算和集合的基本性质2.包含关系和相等关系3.并集、交集、差集和补集的概念4.集合的运算定律5.判断元素是否属于一些集合的方法6.集合的划分和幂集的概念7.函数的定义和函数的表示法(映射、箭头图、列表)8.域、值域和一一对应的概念9.函数的四种关系:单射、满射、一射和反函数10.函数的运算:加法、减法、乘法、除法和复合二、代数与方程1.代数式的概念和常见的代数式2.代数式的运算法则3.代数等式和方程的概念4.方程的解、方程的根和方程的意义5.一元一次方程的解法和一次方程的实际应用6.一元一次方程的图像表示方法7.一元一次方程组的解法8.二元一次方程组的解法和一元一次方程与二元一次方程组的关系9.二元一次方程组的图像表示方法10.一元二次方程的解法和一元二次方程的图像表示方法11.一元二次方程的实际应用12.二元二次方程组的解法和二元一次方程组与二元二次方程组的关系13.二元二次方程组的图像表示方法三、平面几何与空间几何1.平面几何的基本概念:点、直线、线段、射线、角2.角的度量和角的分类3.角的平分线和垂直平分线4.形状相似的概念和判断方法5.相似三角形的性质和判断方法6.直角三角形的性质和判断方法7.三角形三边关系和三角形内角和关系8.正多边形和圆的基本概念及特性9.圆的周长和面积的计算公式10.圆与直线的位置关系及判断方法11.三棱锥和四棱锥的概念及特性12.立体图形的表面积和体积的计算公式13.空间几何的基本概念:点、直线、平面、空间等四、数据与统计1.数据的收集和处理2.平均数的计算和解读3.中位数、众数和极差的计算和解读4.茎叶图和折线图的绘制和解读5.概率的基本概念和计算方法6.基本事件和对立事件的概念7.加法原理和乘法原理的概念和应用8.随机事件和必然事件的概念9.事件的运算和事件的概率计算10.古典概型和几何概型的概念和计算方法11.条件概率和独立事件的概念和计算方法12.排列和组合的概念和计算方法以上是初中数学的主要知识点总结,包括了集合与函数、代数与方程、平面几何与空间几何、数据与统计等方面的知识。
初中数学必学的知识点总结
初中数学必学的知识点总结一、整数与有理数整数是由自然数、0和负整数组成,用符号±表示。
有理数包括整数和分数,可以用分数的形式表示。
二、代数表达式与代数方程代数表达式是由数、变量和运算符号组成的式子。
代数方程是含有未知数的等式,通过解方程可以求得未知数的值。
三、平方根与立方根平方根又称二次根,表示一个数的正平方根的符号是√,平方根的计算需要使用平方根运算法则。
立方根是一个数的3次方根,表示一个数的立方根的符号是∛。
四、比例与比例的应用比例是两个相等的比之间的关系,比例的记法是a:b或a/b。
比例的应用包括比例的相等性、比例的延长与缩短、比例的倒数、比例的合并与分离、比例的倒置等。
五、百分数与简单利息百分数表示一个数分之一百,记作百分之a%。
简单利息是指利息按固定利率在固定时间内计算得到的利息,简单利息的计算公式是I=PxRxT,其中I表示利息,P表示本金,R表示利率,T表示时间。
六、数列数列是按照一定规律排列的一组数。
等差数列是指数列中相邻两项之差相等的数列,通项公式为an=a1+(n-1)d,其中an表示第n项,a1表示首项,d表示公差。
等比数列是指数列中相邻两项之比相等的数列,通项公式为an=a1*r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
七、平面几何平面几何是研究平面图形的形状和性质的数学学科。
平面图形包括三角形、四边形、多边形等,每种图形都有特定的性质和计算方法。
计算平面图形的面积需要根据图形的形状选择相应的计算公式。
八、立体几何立体几何是研究空间物体的形状和性质的数学学科。
常见的立体几何图形包括球、圆柱、圆锥、棱柱、棱锥等,每种图形都有特定的性质和计算方法。
计算立体图形的体积需要根据图形的形状选择相应的计算公式。
九、统计与概率统计是研究收集、整理、分析和解释数据的学科。
统计的基本方法包括调查和统计、频数和频率的统计、用直方图和折线图表示数据等。
概率是研究随机事件发生可能性的学科,概率用数字表示一个事件发生的可能性。
初中数学的重要知识点总结
初中数学的重要知识点总结一、数与代数1. 整数:初中数学中整数的概念和运算是非常重要的知识点。
学生需要了解正整数、负整数,以及它们的加、减、乘、除等运算规则。
2. 分数:分数是初中数学中的重点难点之一,学生需要掌握分数的概念、约分、通分、加减乘除等基本运算法则。
3. 百分数:百分数是初中数学中常见的一个知识点,学生需要了解百分数的概念、意义、换算,以及百分数与分数、小数之间的转换等知识。
4. 有理数:有理数是整数、分数的统称,学生需要了解有理数的概念、性质、比较大小、加减乘除等操作。
5. 方程与不等式:初中数学中的方程与不等式是一个重要的内容,学生需要了解一元一次方程、一元一次不等式的解法,以及应用解题能力。
6. 几何与图形1. 平面直角坐标系:平面直角坐标系是初中数学中的一个重要知识点,学生需要了解直角坐标系的概念、性质、点、坐标、距离等基本概念。
2. 直线与线段:初中数学中直线和线段是一个重要的几何知识点,学生需要了解直线和线段的概念、性质、垂直、平行、倾斜等基本性质。
3. 角与三角形:初中数学中角与三角形也是一个重要的几何知识点,学生需要了解角的概念、性质、分类,以及三角形的概念、性质、分类、面积等知识。
4. 圆与圆周角:初中数学中圆与圆周角是一个重要的几何知识点,学生需要了解圆的概念、性质,以及圆周角的度量、性质等知识。
7. 函数与方程1. 函数:初中数学中函数是重要的知识点,学生需要了解函数的概念、性质、图像、性质等基本知识。
2. 方程:方程是初中数学中一个重要的知识点,学生需要了解方程的概念、类型、解法,以及应用解题能力。
8. 数据与图表1. 统计与概率:初中数学中统计与概率是一个重要的知识点,学生需要了解调查和统计的基本方法、概率的计算、事件的概率等知识。
2. 数据与图表:数据与图表是初中数学中的重点难点之一,学生需要掌握统计图、频数表、条形图、折线图、饼图等基本图表的制作、分析和解读能力。
初中数学知识点全总结(完美打印版)
七年级数学上第一章有理数1.有理数2.数轴3.相反数4.绝对值5.有理数比大小6.互为倒数7. 有理数加法法则8.有理数加法的运算律9.有理数减法法则10 有理数乘法法则11 有理数乘法的运算律:12.有理数除法法则13.有理数乘方的法则:14.乘方的定义15.科学记数法16.近似数的精确位17.有效数字18.混合运算法则第二章整式的加减1.单项式2.单项式的系数与次数3.多项式4.多项式的项数与次数第三章一元一次方程1.一元一次方程2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).3.一元一次方程解法的一般步骤4.列一元一次方程解应用题:(1)读题分析法:…………多用于“和,差,倍,分问题”(2)画图分析法: …………多用于“行程问题”4.列方程解应用题的常用公式:(1)行程问题:距离=速度·时间;(2)工程问题:工作量=工效·工时;(3)比率问题:部分=全体·比率;(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价·折·,利润=售价-成本,;(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C 正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc ,V正方体=a3,V圆柱=πR2h ,V圆锥=πR2h.七年级数学下第五章相交线与平行线1.邻补角2.对顶角3.垂线4.平行线5.同位角、内错角、同旁内角:6.命题7.平移8.对应点9.定理与性质10垂线的性质:11.平行公理12.平行线的性质:13.平行线的判定:第六章平面直角坐标系1.有序数对2.平面直角坐标系3.横轴、纵轴、原点4.坐标5.象限第七章三角形1.三角形2.三边关系3.高4.中线5.角平分线6.三角形的稳定性6.多边形7.多边形的内角8.多边形的外角9.多边形的对角线10.正多边形11.平面镶嵌12.公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质,多边形内角和公式,多边形的外角和多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
初中数学知识点总结归纳(完整版)
初中数学知识点总结归纳(完整版)一、数的概念与运算1.自然数:正整数,包括0和正数。
2.整数:正整数、负整数和0的集合。
3.分数:约分、通分、四则运算、化为整数、化为带分数。
4.小数:百分制数、百分数与小数的相互转换、小数的运算、小数的应用、有限小数和无限小数。
5.整式与分式:字母的代数运算,整式的加减乘除,约分、倒数、整式的应用。
6.乘方与开方:幂的概念与运算,方根的概念与运算。
7.实数:有理数与无理数的关系,实数集的完备性,视数的大小比较。
二、代数1.代数式与多项式:常数、变量、系数、次数、多项式的加减乘除。
2.等式与不等式:等式的性质,方程与解,不等式的性质与解集。
3.图示法与坐标方程:带有几何意义的代数式,平面直角坐标系,点、线、曲线、正比例关系及代数图象。
4.一次函数与方程:函数的概念,函数的图象,函数的增减性、奇偶性,线性函数与一次方程,一次不等式。
5.二次根式:二次根式的概念和性质,二次根式的加减乘除、化简,含有二次根式的一元二次方程。
三、几何1.平面图形:三角形、四边形、多边形、圆,它们的性质与判定,运用平面几何知识解决问题。
2.空间图形:正方体、长方体、棱柱、棱锥、球、圆柱、圆锥、解析几何的基本概念。
3.相似与全等:相似的概念与性质,全等的概念与性质,相似三角形的判定与性质,相似三角形的应用。
4.角与三角形:角的概念与性质,角的度量、角的平分线、角的比较大小,三角形的概念与性质,三角形的判定与性质。
5.圆与圆的运动:圆的性质与计算,正多边形与圆的内接外接,圆的切线与切圆,圆与直线的位置关系。
四、函数与方程1.线性方程组:二元一次方程组,三元一次方程组,多元一次方程组。
2.二次函数与方程:二次函数的概念、图象,二次方程的解法,解的判别式,根的性质。
3.不等式:一元一次不等式,一元二次不等式,含有绝对值的不等式。
4.平面向量:向量与点、向量的运算,向量的模、单位向量,向量的线性运算。
数学知识点总结初中
数学知识点总结初中
一、数与代数
有理数:包括整数和分数,了解有理数的性质、运算规则和顺序。
实数:理解实数的概念、性质和分类,包括无理数。
代数式:学习整式、分式、根式等代数式的概念、性质和运算。
方程与不等式:掌握一元一次方程、一元二次方程、二元一次方程组的解法,以及不等式的性质和求解方法。
二、几何与图形
基本图形:熟悉点、线、面、角等基本概念,了解它们的性质和关系。
平面几何:学习平行线、三角形、四边形等基本图形的性质、判定和计算。
立体几何:了解基本立体图形的性质,如长方体、正方体、圆柱、圆锥等,掌握它们的表面积和体积的计算方法。
三、函数与图像
函数:理解函数的概念、表示方法和性质,掌握常见函数的图像和性质。
图像的变换:了解图像的平移、旋转、对称等基本变换,以及它们在解决实际问题中的应用。
四、概率与统计
概率:理解概率的基本概念,掌握概率的计算方法和应用。
统计:学习数据的收集、整理和分析方法,包括统计图表的绘制和解读。
此外,初中数学还包括锐角三角函数的定义和性质,以及整式的加减、单项式和多项式的概念和运算规则等知识点。
请注意,以上只是初中数学知识点的一个简要总结,具体的学习内容可能因教材版本和地区差异而有所不同。
在学习的过程中,建议结合教材和教辅资料,深入理解各个知识点的内涵和外延,并通过大量的练习来巩固和提高自己的数学能力。
初中数学知识点全面总结(完整版)
初中数学知识点全面总结(完整版)初中数学知识点全面总结(完整版)1. 数字与代数- 自然数:1,2,3,...- 整数:包括自然数及其负数和0- 有理数:可以表示为两个整数的比值的数- 实数:包括有理数和无理数- 代数运算:加法、减法、乘法、除法- 代数式:可以含有数、字母和运算符号的式子2. 几何与图形- 点、线、面:几何学的基本概念- 直线和线段:由无数个点连成的图形- 角度:由两条射线共享一个端点而形成的图形- 三角形:有三条边和三个角的图形- 四边形:有四条边和四个角的图形- 圆和圆周:由一条曲线上的所有点组成的图形3. 数据和统计- 数据收集:通过调查、观察或实验来获得数据- 数据处理:整理、分类和统计数据的过程- 平均数:一组数值的中间值- 概率:事件发生的可能性4. 函数与方程- 函数:将一个或多个输入值关联到一个输出值的规则- 线性函数:图像为一条直线的函数- 一次方程:含有未知数的等式,且未知数的最高次数为1 - 二次函数:含有未知数的等式,且未知数的最高次数为2 - 不等式:包含不等关系的方程式5. 测量与几何变换- 长度、面积和体积的测量- 几何变换:平移、旋转、翻转和对称6. 概率与统计- 抽样调查:通过从整体中选取一部分作为样本来进行调查- 频率分布表:将数据按一定规则整理并统计出现频率- 相对频率:某一事件发生的频率与总次数之比- 抽样误差:由于样本选择不足而引起的统计结果误差以上是初中数学的主要知识点总结,希望对你有帮助!(注意:每个知识点只是简短介绍,具体内容还需进一步研究和理解。
)。
初中的数学知识点归纳
初中的数学知识点归纳初中数学的知识点包括数与代数、几何、函数与方程、统计与概率四个方面。
下面将分别对这四个方面的知识点进行总结。
一、数与代数1.自然数的加法、减法、乘法和除法运算2.整数的加法、减法、乘法和除法运算3.分数的加法、减法、乘法和除法运算4.百分数的计算和应用5.有理数的加法、减法、乘法和除法运算6.实数的基本性质和排序7.次方和根的运算8.二次根式的化简9.四则运算的复杂运用10.整式的乘法和因式分解11.分式的乘法、除法和简化12.方程和不等式的解13.利用代数式进行计算和推理14.利用模型解决实际问题二、几何1.平面图形的边与角2.平面图形的面积和周长3.三角形的性质和计算4.四边形的性质和计算5.圆的性质、计算和应用6.尺规作图和投影解析几何的基本概念7.立体图形的表面积和体积8.相似和全等三角形的判定和计算9.平行线和平面的性质和运用10.坐标系和平面向量的基本概念11.三视图和棱柱体的展开图12.三角形的中线、高线和角平分线三、函数与方程1.一次函数及其图像的性质和应用2.整式的加减乘除与因式分解3.二次函数及其图像的性质和应用4.函数与方程的应用问题5.数列的概念、性质和应用6.等差数列和等比数列的计算和应用7.不等式的性质及其解法8.一元一次方程的性质和解法9.一元一次不等式的性质和解法10.二元一次方程组的性质和解法11.函数的复合、反函数和函数方程四、统计与概率1.统计图表的制作和分析2.平均数与中位数的计算和应用3.简单事件的概率计算4.复合事件的概率计算5.抽样调查和数据分析6.统计推断和误差分析7.图形的构造和解释8.概率模型和随机变量的应用9.条件概率和事件的独立性总结以上初中数学的知识点,主要涵盖了数与代数、几何、函数与方程、统计与概率四个方面。
这些知识点不仅是初中数学学科的基础,也是后续学习高中和大学数学的基石。
掌握这些知识点,可以使学生在数学学习中更加熟练和自信,并为将来的学习打下坚实的基础。
初中数学知识点总结及公式大全
初中数学知识点总结及公式大全一、整数与有理数1. 整数运算a. 加法:同号相加,异号相减,取绝对值相减,结果的符号由绝对值较大的数决定。
b. 减法:减去一个数,相当于加上它的相反数。
c. 乘法:同号得正,异号得负。
d. 除法:除法的定义与整数的性质保持一致。
2. 有理数运算a. 加法与减法:通分后进行加法或减法运算,结果再化为最简分数。
b. 乘法与除法:同号得正,异号得负;除法的定义与有理数的性质保持一致。
3. 整数与有理数的大小比较a. 同号比大小,绝对值大的数大;异号比大小,正数大于负数。
二、分数1. 分数的基本概念a. 分数的表示:分数由分子和分母组成,分子表示被分成的份数,分母表示总共的份数。
b. 真分数和假分数:分子小于分母的分数为真分数,分子大于分母的分数为假分数。
2. 分数的四则运算a. 加法与减法:通分后进行加减法运算,结果再化为最简分数。
b. 乘法:分子相乘,分母相乘,结果再化为最简分数。
c. 除法:分子乘以倒数,分母相乘,结果再化为最简分数。
3. 分数的大小比较a. 同分母比大小,分子大的分数大;异分母比大小,通分后再比大小。
三、代数1. 代数式a. 代数式的概念:表达式中含有字母的代数式。
b. 代数式的加减法:同类项相加减,非同类项不变。
2. 一元一次方程a. 一元一次方程的形式:ax+b=0。
b. 解一元一次方程的步骤:去括号、去分母、合并同类项、移项求解、检验解。
3. 实数集a. 自然数、整数、有理数、无理数、实数的包含关系。
b. 实数的性质:封闭性、比较性、连续性、稠密性。
四、平面图形1. 点、线、面的关系与性质a. 点:无宽度。
b. 线:由无数个点无限延申而成。
c. 面:由无数个线条围成的封闭区域。
2. 三角形a. 三角形的性质:内角和为180°,外角和为360°。
b. 三角形的分类:按照边长和角度的不同进行分类。
3. 四边形a. 四边形的分类:平行四边形、矩形、正方形、菱形、梯形等。
初中数学所有知识点总结
初中数学所有知识点总结初中数学知识点总结一、数与代数1. 有理数- 整数:正整数、负整数和零- 有理数的定义与性质- 有理数的四则运算- 绝对值与相反数2. 整数的性质- 奇数与偶数- 质数与合数- 最大公约数和最小公倍数3. 分数与小数- 分数的表示与性质- 分数的四则运算- 小数的表示与性质- 小数的四则运算4. 代数表达式- 单项式与多项式- 代数式的加减运算- 乘法公式与因式分解5. 一元一次方程- 方程的建立与解法- 实际问题中的一元一次方程6. 二元一次方程组- 代入法与消元法- 线性方程组的应用7. 不等式与不等式组- 不等式的性质与解法- 一元一次不等式与不等式组8. 函数- 函数的概念与表示- 线性函数与二次函数的图像与性质 - 函数的应用二、几何1. 平面几何- 点、线、面的基本性质- 角的概念与分类- 三角形的性质与分类- 四边形的性质与分类- 圆的性质与计算2. 几何图形的计算- 面积与体积的计算公式- 相似与全等的判定与应用- 三角形的中位线定理- 圆的切线与割线定理3. 空间几何- 立体图形的基本概念- 棱柱、棱锥、圆柱、圆锥的性质- 空间图形的计算三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读- 众数、中位数、平均数的计算2. 概率- 概率的基本概念- 事件的概率计算- 条件概率与独立事件四、综合应用1. 数学问题的实际应用- 利用数学知识解决实际问题- 数学建模与问题解决策略2. 数学思维与逻辑推理- 培养数学思维能力- 逻辑推理与证明方法以上是初中数学的主要知识点概述,每个部分都包含了相应的基本概念、性质、公式和应用。
在实际教学和学习中,应根据具体的教学大纲和学习要求,对每个知识点进行深入的学习和练习,以确保对初中数学知识体系的全面掌握。
初中数学基础知识点总结大全
一、基本知识㈠、数与代数A、数与式:1、有理数有理数:Ⅰ、整数→正整数/0/负整数Ⅱ、分数→正分数/负分数数轴:Ⅰ、画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
Ⅱ、任何一个有理数都可以用数轴上的一个点来表示。
Ⅲ、如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
Ⅳ、数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值:Ⅰ、在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
Ⅱ、正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:Ⅰ、同号相加,取相同的符号,把绝对值相加。
Ⅱ、异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
Ⅲ、一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:Ⅰ、两数相乘,同号得正,异号得负,绝对值相乘。
Ⅱ、任何数与0相乘得0。
Ⅲ、乘积为1的两个有理数互为倒数。
除法:Ⅰ、除以一个数等于乘以一个数的倒数。
Ⅱ、0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数:无限不循环小数叫无理数平方根:Ⅰ、如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
Ⅱ、如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
Ⅲ、一个正数有2个平方根/0的平方根为0/负数没有平方根。
Ⅳ、求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:Ⅰ、如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
Ⅱ、正数的立方根是正数、0的立方根是0、负数的立方根是负数。
初中数学知识点大全总结整理
初中数学知识点大全总结整理一、有理数1.有理数的概念与性质2.有理数的比较与排序3.有理数的运算(加减乘除)4.有理数的乘方与乘方根5.有理数的四则混合运算二、整数1.整数的概念与性质2.整数的比较与排序3.整数的加减法运算4.整数的乘法运算5.整数的除法运算6.整数的乘方与乘方根三、分数1.分数的概念与性质2.分数的化简与比较3.分数的加减法运算4.分数的乘法运算5.分数的除法运算6.分数的乘方与乘方根四、小数1.小数的概念与性质2.小数与分数的相互转换3.小数的加减法运算4.小数的乘法运算5.小数的除法运算6.小数的乘方与乘方根五、代数基础1.代数式的概念与性质2.代数式的加减法运算3.代数式的乘法运算4.代数式的整除运算5.代数式的分离与合并6.代数式的系数与次数六、一元一次方程1.一元一次方程的概念与性质2.一元一次方程的等价变形3.一元一次方程的解与解集4.解一元一次方程的应用问题七、一元一次不等式1.一元一次不等式的概念与性质2.一元一次不等式的解与解集3.一元一次不等式的解集的表示4.解一元一次不等式的应用问题八、平面图形1.平面图形的分类与性质2.三角形的性质与分类3.四边形的性质与分类4.特殊的四边形(平行四边形、矩形、正方形等)5.多边形的性质与分类6.圆的性质与判定九、图形的计算1.从图形中抽象出代数式2.根据已知条件解图形问题3.利用图形计算长度、面积、周长4.解决含图形的复合问题十、几何变换1.平移的概念与性质2.平移的性质与判定3.旋转的概念与性质4.旋转的性质与判定5.对称的概念与性质6.对称的性质与判定十一、统计与概率1.统计调查与统计数据的整理与表示2.抽样调查与统计数据的分析3.概率的基本概念与性质4.事件的相互排斥与相互独立5.概率计算与应用。
初中数学必背知识点及总结
初中数学必背知识点及总结初中数学是学生在数学学科中的基础阶段,这一阶段的数学知识点较为基础,但却是后续学习的基础和支撑。
初中数学的主要知识点包括数与代数、函数与方程、几何与图形、数据与概率等。
以下是初中数学必背知识点及其总结。
一、数与代数1. 整数整数是由自然数、零和负整数组成,用于表示数量和大小。
整数的加、减、乘、除运算是初中数学的基础知识。
其中,求两个整数的和、差、积、商是初中数学必背知识点。
2. 分数分数是指由分母和分子组成的数,用来表示部分或比例。
分数的加减乘除是初中数学的基础知识,求和、差、积、商都是初中数学必须掌握的知识点。
3. 小数小数是表示不完整的数,小数点后的数字表示不完整的部分。
小数的加、减、乘、除同样也是初中数学的基础知识,求和、差、积、商也是初中数学必须掌握的知识点。
4. 数量关系数与量的关系包括数的大小比较、数的倍数、约数、公约数、最大公约数等关系。
这些知识点是初中数学必须掌握的基础知识。
5. 代数代数是数学中的一大分支,包括代数式、代数方程、代数不等式等。
代数式的展开与因式分解、代数方程的解、代数不等式的解是初中数学必须掌握的知识点。
二、函数与方程1. 函数函数是一种数学关系,可以用图像、公式、表格等形式表示。
初中数学要求学生了解函数的概念、图像和性质,并能够解决与函数相关的问题。
2. 方程与不等式方程是用字母表示的等式,包括一元一次方程、一元二次方程、二元一次方程等。
不等式是一种数学式子,包括一元一次不等式、一元二次不等式等。
求解方程与不等式是初中数学的重要知识点。
三、几何与图形1. 几何图形线段、角、三角形、四边形、圆等是初中数学中常见的几何图形。
了解几何图形的性质、计算面积和周长是初中数学必须掌握的知识点。
2. 合作问题平行线、相似三角形、直角三角形、全等三角形等是初中数学中的重要知识点。
掌握三角形的性质、判定方法和计算问题是初中数学的重要内容。
3. 圆理解圆的定义、性质、圆周率和计算问题是初中数学必须掌握的知识点。
初中数学基础知识点总结
初中数学基础知识点总结一、整数与有理数1. 整数的概念及性质:整数的概念、绝对值、整数的比较大小、整数的加减法、整数的乘除法、整数的幂运算。
2. 有理数的概念及性质:有理数的概念、有理数的加减法、有理数的乘除法、有理数的大小比较、绝对值与相反数。
二、整式与分式1. 代数式与整式:代数式的概念、整式的概念及性质、整式的加减法、整式的乘法。
2. 分式的概念及性质:分式的概念、分式的运算、简化与整除、分式方程。
三、方程与不等式1. 一元一次方程:方程的概念、一元一次方程的解集、一元一次方程的性质、一元一次方程的应用。
2. 一元一次不等式:不等式的概念、一元一次不等式的解集、一元一次不等式的性质、一元一次不等式的应用。
3. 一元二次方程:一元二次方程的解、一元二次方程的判别式与性质、一元二次方程的应用。
4. 一元二次不等式:一元二次不等式的解、一元二次不等式的性质、一元二次不等式的应用。
四、数列与函数1. 数列的概念及性质:数列的概念、数列的通项公式、数列的递推关系、数列的等差数列与等比数列。
2. 等差数列与等差数列:等差数列的概念、等差数列的通项公式、等差数列的求和公式、等差数列的性质、等差数列的应用。
3. 等比数列与等比数列:等比数列的概念、等比数列的通项公式、等比数列的求和公式、等比数列的性质、等比数列的应用。
4. 函数的概念与性质:函数的概念、函数的表示、函数的性质、函数的特性。
五、几何图形与几何变换1. 二维几何图形:点、线、角、三角形、四边形、圆的概念与性质。
2. 三维几何图形:长方体、正方体、棱柱、棱锥、球体的概念与性质。
3. 几何变换:平移、旋转、对称的概念与性质。
六、统计与概率1. 统计:统计的概念、频数与频率、统计图表、平均数与中位数。
2. 概率:概率的概念、概率的计算、事件的相互关系、概率与统计的应用。
七、几何证明与简单推理1. 几何证明的基本思想与方法:假设、引理、定理、证明方法。
初中数学基础知识点总结大全
初中数学基础知识点总结大全一、数的四则运算1.加法:加法的性质、加法的运算法则(交换律、结合律、单位元等)、加法的简便算法(补数法等)2.减法:减法的性质、减法的运算法则(加法法则、移项法则等)、减法的简便算法(补数法等)3.乘法:乘法的性质、乘法的运算法则(交换律、结合律、乘法分配律等)、乘法的简便算法(口诀、竖式等)4.除法:除法的性质、除法的运算法则(被除数不变法则、移项法则等)、除法的简便算法(长除法等)二、小数与分数1.小数的加减乘除及应用2.分数的加减乘除及应用3.分数与小数的互化三、倍数和约数1.倍数的概念及运算2.最大公约数和最小公倍数的求法四、整数运算1.整数的加减乘除及应用2.整数的四则运算规则3.整数的混合运算4.分数与整数的混合运算五、代数式与方程式1.代数式的概念及常见表达形式2.代数式的加减乘除与应用3.方程式的概念及解方程的方法六、比与比例1.比与比值的概念及运算2.比例的概念及运算(比例的三种基本形式)3.百分数与比例的互化4.倒数与比例的关系七、平方和平方根1.平方数与完全平方式2.平方根与开方3.完全平方式的性质与运算八、图形的认识与计算1.直线、线段、射线与角的认识2.角的分类及其性质3.三角形的分类及其性质(直角三角形、等边三角形、等腰三角形等)4.四边形的分类及其性质(矩形、平行四边形、菱形等)5.圆的认识及其性质(半径、直径、周长、面积等)九、数据的收集与分析1.统计调查与数据的收集2.数据的整理与分类3.数据的图形表示(条形图、饼图、折线图等)4.中心与离散趋势的度量(平均数、中位数、众数、极差等)十、方程和不等式1.一元一次方程的解法与应用2.一元一次不等式的解法与应用3.二元一次方程组的解法与应用4.一次不等式组的解法与应用十一、几何变形1.直线与平行线的性质2.三角形的相似与全等性质3.平行四边形与相应角的性质4.圆与切线的性质以上是初中数学的基础知识点总结,涵盖了数的四则运算、小数与分数、倍数和约数、整数运算、代数式与方程式、比与比例、平方和平方根、图形的认识与计算、数据的收集与分析、方程和不等式、几何变形等各方面。
初中数学知识点总结归纳(完整版)
初中数学知识点总结归纳(完整版)1. 数与式整数与有理数•整数与负数的概念•整数与有理数的关系•整数的加减乘除•有理数的加减乘除•有理数的绝对值与相反数分数与小数•分数的概念与性质•分数的化简与约分•分数的加减乘除•分数的比较大小•小数的概念与性质•小数与分数的相互转化•小数的加减乘除百分数与比例•百分数的概念与表示方法•百分数的转化与运算•比例的概念与性质•比例的表示与比例的简化•比例的四则运算•比例的应用:比例尺、利润、利率等平方根与立方根•平方根的概念与性质•平方根的计算与应用•立方根的概念与计算代数式与方程式•代数式的概念与性质•代数式的加减乘除与化简•方程式的概念与性质•方程式的解与解的唯一性•一元一次方程与解法•一元一次方程的应用2. 几何直线与角•直线与线段的概念与性质•直线与角的关系•角的分类与度量•角的加减运算•角的余角与补角•垂直角与同位角三角形•三角形的分类与性质•直角三角形的性质•等腰三角形的性质•等边三角形的性质•三角形的角平分线与垂直平分线•三角形的面积与周长的计算平行线与比例•平行线的性质与判定•平行线的应用:平行线的等与不等关系•比例线段与比例的概念•线段的延长、分割及等分•相似三角形与相似比例圆•圆的概念与性质•圆周角与弧长的关系•相切线与切线的性质•弦长与弧度制长方体与正方体•长方体与正方体的概念与性质•长方体与正方体的表面积与体积的计算•长方体与正方体的应用3. 数据分析与统计统计图表•统计图表的分类与绘制•条形图的绘制与应用•折线图的绘制与应用•饼图的绘制与应用•散点图的绘制与应用平均数与中位数•平均数的概念与计算•中位数的概念与计算•平均数与中位数的应用概率与事件•概率的概念与计算•事件的概念与运算•概率与事件的应用抽样调查•抽样调查的目的与方法•抽样调查的误差与样本容量•调查报告的撰写与分析4. 代数与函数一元一次方程•一元一次方程的解法•一元一次方程的应用二元一次方程组•二元一次方程组的解法•二元一次方程组的应用函数与图像•函数的概念与性质•函数的表示与计算•函数的图像与性质•平移、伸缩与翻折变换•函数的最大值与最小值幂与指数函数•幂函数与指数函数的概念与性质•幂函数与指数函数的应用图形与变化•图形的对称与性质•图形的平移、伸缩与翻折•图形的旋转与变化规律结语初中数学知识点的总结归纳,涵盖了数与式、几何、数据分析与统计以及代数与函数方面的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学基本知识点总结(精简版)1、整数( 包括:正整数、0、负整数) 和分数( 包括:有限小数和无限环循小数) 都是有理数.如:-3,,0.231,0.737373⋯,,.无限不环循小数叫做无理数.如:π,-,0.1010010001⋯( 两个1之间依次多1个0) .有理数和无理数统称为实数.2、绝对值:a≥0 丨a丨=a;a≤0 丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式( 其中1≤a<10,n是整数) ,这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3 ×10-5.5、乘法公式( 反过来就是因式分解的公式) :①( a+b)( a-b) =a2-b2.②( a±b) 2=a2±2ab+b2.③( a+b)( a2-ab+b2 ) =a3+b3.④( a-b)( a2+ab+b2 ) =a3-b3;a2+b2=( a+b) 2-2ab,( a-b) 2=( a+b) 2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③( a m) n=a mn.④( ab) n=a n b n.⑤( ) n=n.⑥a-n=1n a,特别:( ) -n=( ) n.⑦a0=1( a≠0) .如:a3×a2=a5,a6÷a2=a4,( a3) 2=a6,( 3a3) 3=27a9,( -3) -1=-,5-2==,( ) -2=( ) 2=,( -3.14) o =1,( -) 0=1.7、二次根式:①( ) 2=a( a≥0) ,②=丨a丨,③=×,④=( a>0,b≥0) .如:①( 3 ) 2=45.②=6.③a<0时,=-a .④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念)8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=2 42b b aca,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a( x-x1 )( x-x2) .③以a和b为根的一元二次方程是x2-( a+b) x+ab=0.9、一次函数y=kx+b( k≠0) 的图象是一条直线( b是直线与y 轴的交点的纵坐标即一次函数在y轴上的截距) .当k>0时,y随x的增大而增大( 直线从左向右上升) ;当k<0时,y随x的增大而减小( 直线从左向右下降) .特别:当b=0时,y=kx( k≠0) 又叫做正比例函数( y与x成正比例) ,图象必过原点.10、反比例函数y=( k≠0) 的图象叫做双曲线.当k>0时,双曲线在一、三象限( 在每一象限内,从左向右降) ;当k<0时,双曲线在二、四象限( 在每一象限内,从左向右上升) .因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体2中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数( 有时不止一个) ,叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数( 或两个数的平均数) 叫做这组数据的中位数.(2)公式:设有n 个数x1,x2,⋯,xn,那么:①平均数为:1 2 ...... n x x xxn+ + += ;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值- 最小值;③方差:( ) ( ) ( ) 2 2 2 数据x1、x2 ⋯⋯, x n 的方差为2 s ,则2 s =1 21x x x x ..... x n xn轾- + - + + - 犏臌标准差:方差的算术平方根.( ) ( ) ( ) 2 2 2 数据x1、x2 ⋯⋯, n x 的标准差s ,则s=1 21 ..... n x x x x x xn轾- + - + + - 犏臌一组数据的方差越大,这组数据的波动越大,越不稳定。
12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
(2)概率①如果用P 表示一个事件A 发生的概率,则0≤P(A )≤1;P(必然事件)=1;P(不可能事件)=0;②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
③大量的重复实验时频率可视为事件发生概率的估计值;13、锐角三角函数:①设∠A是Rt△ABC 的任一锐角,则∠A的正弦:sinA=,∠A的余弦:cosA=,∠A的正切:tanA=.并且sin2A+cos2A=1.0<sinA<1,0<cosA<1,tanA>0.∠A越大,∠A的正弦和正切值越大,余弦值反而越小.②余角公式:sin( 90o-A) =cosA,cos( 90o-A) =sinA.③特殊角的三角函数值:sin30o=cos60o=,sin45o=cos45o=,sin60o=cos30o=,tan30o=,tan45o=1,tan60o=.④斜坡的坡度:i=铅垂高度水平宽度=.设坡角为α,则i=tanα=.14、平面直角坐标系中的有关知识:(1)对称性:若直角坐标系内一点P(a,b),则P 关于x 轴对称的点为P1(a,-__________b),P 关于y 轴对称的点为P2(-a,b),关于原点对称的点为P3(-a,-b). hlα3(2)坐标平移:若直角坐标系内一点P(a,b)向左平移h 个单位,坐标变为P(a-h,b),向右平移h个单位,坐标变为P(a+h,b);向上平移h 个单位,坐标变为P(a,b+h),向下平移h 个单位,坐标变为P(a,b-h).如:点A(2,-1)向上平移2 个单位,再向右平移5 个单位,则坐标变为A(7,1).15、二次函数的有关知识:1.定义:一般地,如果y ax bx c(a,b,c 2 是常数,a 0) ,那么y 叫做x 的二次函数.2.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当a 0时,开口向上;当a 0时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作x h .特别地,y 轴记作直线x 0 .几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标2 y ax当a 0时开口向上当a 0时开口向下x 0(y 轴)(0,0)y ax k 2 x 0(y 轴)(0, k )2 y a x h x h ( h ,0)y a x h k 2 x h ( h , k )y ax bx c 2x b2 (aac bab4422,)4.求抛物线的顶点、对称轴的方法(1)公式法:aac baby ax bx c a x4422 ,∴顶点是(,)aac bab4422,对称轴是直线abx2.(2)配方法:运用配方的方法,将抛物线的解析式化为y a x h k 2 的形式,得到顶点为( h , k ),对称轴是直线x h .(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
若已知抛物线上两点1 2 (x , y)、(x , y) (及y 值相同),则对称轴方程可以表示为:1 22x xx9.抛物线y ax bx c 2 中,a,b, c的作用(1)a 决定开口方向及开口大小,这与2 y ax 中的a完全一样.(2)b 和a共同决定抛物线对称轴的位置.由于抛物线y ax bx c 2 的对称轴是直线abx2,故:①b 0时,对称轴为y 轴;②0ab(即a 、b 同号)时,对称轴在y 轴左侧;③0ab(即a、b 异号)时,对称轴在y 轴右侧.(3)c的大小决定抛物线y ax bx c 2 与y 轴交点的位置.4当x 0时,y c,∴抛物线y ax bx c 2 与y 轴有且只有一个交点(0,c ):①c 0,抛物线经过原点; ②c 0 ,与y轴交于正半轴;③c 0 ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0ab.11.用待定系数法求二次函数的解析式(1)一般式:y ax bx c 2 .已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:y a x h k 2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标x1、x2,通常选用交点式:y a x x1 x x2 .12.直线与抛物线的交点(1)y 轴与抛物线y ax bx c 2 得交点为(0, c ).(2)抛物线与x 轴的交点二次函数y ax bx c 2 的图像与x轴的两个交点的横坐标x1、x2,是对应一元二次方程0 2 ax bx c 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点( 0 ) 抛物线与x 轴相交;②有一个交点(顶点在x轴上)( 0 ) 抛物线与x 轴相切;③没有交点( 0 ) 抛物线与x 轴相离.(3)平行于x轴的直线与抛物线的交点同(2)一样可能有0 个交点、1 个交点、2 个交点.当有2 个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax2 bx c k 的两个实数根.(4)一次函数y kx n k 0 的图像l 与二次函数0 2 y ax bx c a 的图像G 的交点,由方程组y ax bx cy kx n2 的解的数目来确定:①方程组有两组不同的解时l 与G 有两个交点; ②方程组只有一组解时l 与G 只有一个交点;③方程组无解时l 与G 没有交点.(5)抛物线与x轴两交点之间的距离:若抛物线y ax bx c 2 与x轴两交点为0 0 A x1,,B x2,,则AB x1 x21、多边形内角和公式:n边形的内角和等于( n-2) 180o(n≥3,n是正整数),外角和等于360o2、平行线分线段成比例定理:(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
如图:a∥b∥c,直线l1 与l2 分别与直线a、b、c 相交与点A、B、CD、E、F,则有, ,AB DE AB DE BC EFBC EF AC DF AC DF(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。