人教版初三数学上册中心对称的性质探究
人教版九年级数学上册23.2.2.1《中心对称》教学设计
人教版九年级数学上册23.2.2.1《中心对称》教学设计一. 教材分析人教版九年级数学上册23.2.2.1《中心对称》是中心对称图形的相关知识,主要介绍了中心对称图形的定义、性质及运用。
通过本节课的学习,学生能够理解中心对称图形的概念,掌握中心对称图形的性质,并能运用中心对称解决实际问题。
二. 学情分析九年级的学生已经具备了一定的图形认知能力和空间想象力,他们对平面几何图形有一定的了解。
但是,对于中心对称图形的概念和性质,学生可能初次接触,需要通过实例和操作来加深理解。
此外,学生可能对实际运用中心对称解决问题的关键点把握不准,需要教师的引导和启发。
三. 教学目标1.知识与技能:理解中心对称图形的定义,掌握中心对称图形的性质,并能运用中心对称解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象力、逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:中心对称图形的定义、性质及运用。
2.难点:中心对称图形的性质的证明和运用。
五. 教学方法1.情境教学法:通过生活中的实例,引发学生的兴趣,引导学生主动探究中心对称图形的性质。
2.操作教学法:让学生通过实际操作,观察、总结中心对称图形的性质。
3.合作学习法:引导学生分组讨论,共同解决问题,培养学生的团队合作精神。
六. 教学准备1.教学素材:准备相关的图片、实例,制作PPT。
2.教学工具:黑板、粉笔、多媒体设备。
七. 教学过程1.导入(5分钟)利用生活中的实例,如剪纸、城市规划等,引出中心对称图形的概念,激发学生的兴趣。
2.呈现(10分钟)通过PPT展示中心对称图形的定义和性质,引导学生观察、思考。
3.操练(10分钟)让学生分组讨论,每组找一个中心对称图形,分析其性质,并制作PPT进行展示。
教师在这个过程中给予适当的引导和指导。
人教数学九年级上册-中心对称知识讲解人教版
专题23.4 中心对称(知识讲解)【学习目标】1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、中心对称和中心对称图形1.中心对称: 把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心. 这两个图形中的对应点叫做关于中心的对称点.特别说明:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合(全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形: 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.特别说明:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.3.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:特别说明:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、中心对称图形与轴对称图形的识别1.1.下列四个银行标志中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【答案】A【分析】在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.根据轴对称图形和中心对称图形的概念分析判断即可.解:A. 既是轴对称图形,又是中心对称图形,符合题意;B.是轴对称图形,但不是中心对称图形,故不符合题意;C.既不是轴对称图形,也不是中心对称图形,故不符合题意;D. 是中心对称图形,但不是轴对称图形,故不符合题意.故选:A.【点拨】本题主要考查了轴对称图形和中心对称图形的知识,理解轴对称图形和中心对称图形的概念是解题关键.举一反三:【变式1】习近平主席在2022年新年贺词中提到“人不负青山,青山定不负人”,一语道出“人与自然和谐共生”的至简大道.下列有关环保的四个图形中,是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的概念进行判断即可;解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;故符合题意的是选项B;故选:B.【点拨】本题主要考查中心对称图形的概念,掌握中心对称图形的概念是解题的关键.【变式2】下列图形既是轴对称图形又是中心对称图形的是()A .B .C .D .【答案】B 【分析】根据轴对称图形和中心对称图形的定义判断即可.解:A 、该图形是轴对称图形,不是中心对称图形,故A 选项错误;B 、该图形既是轴对称图形,也是中心对称图形,故B 选项正确;C 、该图形不是轴对称图形,是中心对称图形,故C 选项错误;D 、该图形既不是轴对称图形,也不是中心对称图形,故D 选项错误.故答案为B .【点拨】本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,中心对称图形是要寻找对称中心旋转180度后与原图重合.类型二、利用中心对称图形作图2.如图,在正方形网格中,的顶点在格点上,请仅用无刻度直尺完成以ABC A 下作图(保留作图痕迹).(1)在图1中,作关于点对称的;ABC A O A B C '''V (2)在图2中,作绕点顺时针旋转一定角度后,顶点仍在格点上ABC A A 的.A B C '''V【分析】(1)分别作出A ,B ,C 三点关于O 点对称的点,,,然后顺次连接即可得A 'B 'C ';A B C '''V(2)计算得出AB=AC=5,再根据旋转作图即可.解:(1)如图1所示;(2)根据勾股定理可计算出AB=AC=5,再作图,如图2所示.【点拨】本题考查复杂-应用与设计,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题.举一反三:【变式1】如图所示的两个图形成中心对称,请找出它的对称中点.【分析】根据关于中心对称的两个图形,对应点的连线都经过对称中心作图.解:连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.【点拨】本题考查的是中心对称的性质,掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分是解题的关键.【变式2】在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A 2B 2C 2;(2)△A 2B 2C 2与△ABC 是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.【答案】(1)画图见分析;(2)(0,2).解:分析:(1)根据中心对称和平移性质分别作出变换后三顶点的对应点,再顺次连接可得;(2)根据中心对称的概念即可判断.详解:(1)如图所示,△A 1B 1C 1和△A 2B 2C 2即为所求;(2)由图可知,△A 2B 2C 2与△ABC 关于点(0,2)成中心对称.【点拨】本题考查了中心对称作图和平移作图,熟练掌握中心对称的性质和平移的性质是解答本题的关键. 中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.类型三、利用中心对称图形性质求值3.如图,与关于O 点中心对称,点E 、F 在线段AC 上,且ABO A CDO △AF =CE .求证:FD =BE.【分析】根据中心对称得出OB =OD ,OA =OC ,求出OF =OE ,根据SAS 推出△DOF ≌△BOE 即可.证明:∵△ABO 与△CDO 关于O 点中心对称,∴OB =OD ,OA =OC .∵AF =CE ,∴OF =OE .∵在△DOF 和△BOE 中,,BOE OB OD DOF OF OE =⎧⎪∠=∠⎨⎪=⎩∴△DOF ≌△BOE (SAS ).∴FD =BE .举一反三:【变式1】如图,在中,D 为BC 上任一点,交AB 于点ABC A //DE AC 交AC 于点F ,求证:点关于AD 的中点对称.//E DF AB ,E F,试题分析:根据题意推知四边形AEDF 是平行四边形,则该四边形关于点O 对称.证明:如图,连接EF 交于点O .交AB 与交AC 于F ,//DE AC //E DF AB ,四边形AEDF 是平行四边形,∴点关于AD 的中点对称.∴E F ,【变式2】如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)图中哪两个图形成中心对称;(2)若△ADC的面积为4,求△ABE的面积.【答案】(1)图中△ADC和三角形EDB成中心对称;(2)8.【分析】(1)直接利用中心对称的定义写出答案即可;(2)根据成中心对称的图形的两个图形全等确定三角形BDE的面积,根据等底同高确定ABD的面积,从而确定ABE的面积.解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8.【点拨】本题考查了中心对称的定义,解题的关键是了解中心对称的定义,难度较小.类型四、坐标系中的中心对称图形4、在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)若△ABC和△A1B1C1关于原点O成中心对称图形,画出△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)在x轴上存在一点P,满足点P到点B1与点C1距离之和最小,请直接写出PB1+P C1的最小值为 .【答案】(1)画图见分析;(2)画图见分析;(3【分析】(1)根据关于原点中心对称的点的坐标特征,分别描出点A、B、C的对应点A1、B1、C1,即可得到△A1B1C1;(2)利用网格特点,根据旋转的性质画出点A、B旋转后的对应点A2、B2,即可得到△A2B2C;(3)作C1(或B1)点关于x轴的对称点,根据勾股定理即可求解.解:(1)(2)如图所示(3)如图,作C 1点关于x 轴的对称点C 4在Rt ΔC 4DB 1中,C 4B 1=举一反三:【变式1】已知点P (x ,y )的坐标满足方程(x+3),求点P 分别关于x 轴,y 轴以及原点的对称点坐标.【答案】点P 关于x 轴,y 轴以及原点的对称点坐标分别为(﹣3,4),(3,﹣4),(3,4).【分析】先根据非负数的性质通过方程式求得、的值,即得到点的坐标,然后x y P 求点分别关于轴,轴以及原点的对称点坐标.P x y解:由题意,得x+3=0,y+4=0,解得x=﹣3,y=﹣4,P 点的坐标为(﹣3,﹣4),点P 关于x 轴,y 轴以及原点的对称点坐标分别为(﹣3,4),(3,﹣4),(3,4).【点拨】本题是一道小综合题,涉及了非负数性质、点的坐标及点关于轴、轴以x y 及原点的对称的性质,是考查学生综合知识运用能力的好题.【变式2】在平面直角坐标系中,点A 关于y 轴的对称点为点B ,点A 关于原点O 的对称点为点C .(1)若A 点的坐标为(1,2),请你在给出的坐标系中画出△ABC .设AB 与y 轴的交点为D ,则= ;ADOABC S S D D (2)若点A 的坐标为(a ,b )(ab ≠0),则△ABC的形状为.【答案】(1);(2)直角三角形.14【分析】(1)由A 点的坐标为(1,2),根据关于原点、坐标轴对称的点的坐标特征,求出B 、C 的坐标,继而得到点D 的坐标,在坐标轴上描出A 、B 、C ,顺次连接A 、B 、C 三点可得到△ABC ;根据各点的坐标可得到AD 、OD 、AB 、BC 的长度,然后利用三角形面积公式即可得到答案;(2)点A 的坐标为(a ,b )(ab ≠0),则B 点坐标为(−a ,b ),C 点坐标为(−a ,−b ),则AB ∥x 轴,BC ∥y 轴,至此结合x 轴与y 轴的位置关系就不难判断出△A BC 的形状.解:(1)∵A 点的坐标为(1,2),点A 关于y 轴的对称点为点B ,点A 关于原点O的对称点为点C ,∴B 点坐标为(-1,2),C 点坐标为(-1,-2),连AB ,BC ,AC ,AB 交y 轴于D 点,如图,D 点坐标为(0,2),∴S △ADO =OD •AD =×2×1=1,S △ABC =BC •AB =×4×2=4,12121212∴=;ADO ABC S S A A 14(2)点A 的坐标为(a ,b )(ab ≠0),则B 点坐标为(-a ,b ),C 点坐标为(-a ,-b ),AB ∥x 轴,BC ∥y 轴,AB =2|a |,BC =2|b|,∴△ABC 的形状为直角三角形.【点拨】本题考查了关于原点对称的坐标特点:点P (a ,b)关于原点的对称点P′的坐标为(–a ,–b ).也考查了关于x 轴、y 轴对称的坐标特点以及三角形的面积公式.类型三、中心对称图形的综合运用5、已知:如图,三角形ABM 与三角形ACM 关于直线AF 成轴对称,三角形ABE 与三角形DCE 关于点E 成中心对称,点E 、D 、M 都在线段AF 上,BM 的延长线交CF 于点P .(1)求证:AC=CD ;(2)若∠BAC=2∠MPC ,请你判断∠F 与∠MCD 的数量关系,并说明理由.【分析】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案.(1)证明:∵△ABM与△ACM关于直线AF成轴对称,∴△ABM≌△ACM,∴AB=AC,又∵△ABE与△DCE关于点E成中心对称,∴△ABE≌△DCE,∴AB=CD,∴AC=CD;(2)∠F=∠MCD.理由:由(1)可得∠BAE=∠CAE=∠CDE,∠CMA=∠BMA,∵∠BAC=2∠MPC,∠BMA=∠PMF,∴设∠MPC=α,则∠BAE=∠CAE=∠CDE=α,设∠BMA=β,则∠PMF=∠CMA=β,∴∠F=∠CPM−∠PMF=α−β,∠MCD=∠CDE−∠DMC=α−β,∴∠F=∠MCD.【点拨】本题主要考查轴对称、中心对称性质和全等三角形的判定及性质.通过轴对称与中心对称的性质得出全等三角形的判定条件是解题的关键.举一反三:【变式1】如图,已知点A(2,3)和直线y=x,(1)点A关于直线y=x的对称点为点B,点A关于原点(0,0)的对称点为点C;写出点B 、C 的坐标;(2)若点D 是点B 关于原点(0,0)的对称点,判断四形ABCD 的形状,并说明理由.【答案】(1)B (3,2),点C (﹣2,﹣3);(2)四边形ABCD 是矩形.理由见分析.【分析】(1)依据关于直线y =x 的对称点的坐标特征以及关于原点的对称点的坐标特征,即可得到B (3,2),C (﹣2,﹣3);(2)先依据轴对称和中心对称的性质,得到四边形ABCD 是平行四边形,再依据AC =BD ,即可得出四边形ABCD 是矩形.解:(1)∵A (2,3),∴点A 关于直线y =x 的对称点B 和关于原点的对称点C 的坐标分别为:B (3,2),C (﹣2,﹣3);(2)四边形ABCD 是矩形.理由如下:∵B (3,2)关于原点的对称点为D (﹣3,﹣2).又∵点B 点D 关于原点对称,∴BO =DO .同理AO =DO ,∴四边形ABCD 是平行四边形.∵A 关于直线y =x 的对称点为B ,点A 关于原点的对称点C ,∴AC =BD ,∴四边形ABCD 是矩形.【点拨】本题主要考查了关于原点对称的点的坐标特征以及矩形的判定,解题时注意:对角线相等的平行四边形是矩形.【变式2】(1)画图:图①为正方形网格,画出绕点顺时针旋转后的图ABC A O 90 形.(2)尺规作图:在图②中作出四边形关于点对称的图形(不写作法,保留ABCD O 作图痕迹,用黑色笔将作图痕迹涂黑).【分析】(1)连结OA 、OB 、OC ,将OA 、OB 、OC 绕着点O 顺时针旋转90°得OD ,OE ,OF ,顺次连接即可;(2)连结AO 、BO 、CO 、DO 并延长,在延长线上截取A′O=AO ,B′O=BO ,C′O=CO ,D′O=DO ,顺次连接即可.解:(1)连结OA 、OB 、OC ,将OA 、OB 、OC 绕着点O 顺时针旋转90°得OD ,OE ,OF ,顺次连结DE ,EF ,FD ,如图①,则为所求;DEF A(2)连结AO 、BO 、CO 、DO 并延长,在延长线上截取A′O=AO ,B′O=BO ,C′O=CO ,D′O=DO ,顺次连结A′B′、B′C′、C′D′、D′A ,'如图②,四边形为所求.A B C D ''''【点拨】本题考查旋转作图,中心对称作图问题,掌握旋转作图与中心对称作图的方法与步骤是解题关键.。
中心对称课件(18张PPT)人教版数学九年级上册
23.2.1 中心对称
学习目标
1.从旋转的角度观察两个图形之间的关系,类比旋转得出中心对称 的有关定义,渗透从一般到特殊的研究问题的方法 2.经历在操作活动过程中探索中心对称的性质,掌握中心对称的性 质,进一步增强学生的观察、分析、抽象概括的能力 3.能利用中心对称的性质画出与已知图形成中心对称的图形,提高 学生的画图能力
本节课我们学习了哪些知识?
(1)中心对称的概念; (2)中心对称的性质; (3)画一个图形关于某一点对称的图形,确定中心
对称的两个图形对称中心
我们这节课体会了从一般到特殊的研究问题的方法,相信大家对 旋转有了更深的理解.
板书设计
(中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称 中心所平分.中心对称的两个图形是全等图形)
自主探究 4.请同学们思考:已知一个图形和对称中心,如何画出已知图形 关于对称中心成中心对称的图形?如果已知两个图形成中心对称 ,如何确定对称中心呢?
(①先找出已知图形中的几个关键点; ②画出各点关于对称中心的对称点; ③顺次连接各对称点.连接两个对称点,找出其中点,此中点即 为旋转中心,或连接两组对称点,其交点即为旋转中心)
(2)画出△ABC 关于点D成中心对称的△A₁B₁C₁; (3)△DEF与△A₁B₁C₁是否关于某个点成中心对称?如果是,请在题图中 画出这个对称中心,并记作点O.
解 :(1)如答图,△DEF即为所求. (2)如答图,△A₁B₁C₁ 即为所求 . (3)是.如答图,点O即为所求.
(题图)3: 作图(难点) (1)确定成中心对称的两个图形的对称中心的方法:
①连接任意一组对称点,取这条线段的中点,中点就是对称中心; ②连接任意两组对称点,两条线段的交点就是对称中心.
人教版数学九年级上册23.2中心对称探索旋转的性质教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与中心对称相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示中心对称的基本原理,如利用直尺和圆规绘制中心对称图形。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解中心对称的基本概念。中心对称是指在平面上,存在一个点,使得图形中的任意一点关于这个点都有对应的另一点,且两点的距离相等。它是研究图形变换和性质的重要工具,广泛应用于艺术、建筑和工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了中心对称在实际中的应用,以及它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了中心对称的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对中心对称的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
本节课旨在培养学生的以下核心素养:1.逻辑推理能力:通过探索中心对称的性质,学会运用严密的逻辑推理方法,分析并解决问题;2.空间想象力:理解中心对称的概念,能够准确找出对称中心,并在脑中构建出对称图形,提高空间想象力;3.数据分析观念:运用中心对称知识,对实际问题进行数学建模,培养数据分析观念;4.数学抽象能力:从具体实例中抽象出中心对称的概念和性质,提升数学抽象能力;5.数学应用意识:了解中心对称在实际生活中的应用,培养学生将数学知识应用于解决实际问题的意识。通过本节课的学习,使学生在新教材要求下,全面提升数学核心素养。
人教版九年级数学课件《中心对称图形》
探究新知 知识点 1
【观察思考】
中心对称图形的概念
(1)这些图形有什么共同的特征? 都是旋转对称图形.
(2)这些图形的不同点在哪?分别绕旋转中心旋转了多少度?
第一个图形的旋转角度为120°或240 °,第二个图形的旋 转角度为72°或144°或216°或288°.后两个图形的旋转角度都为 180°,第二,三个是轴对称图形.
依题意可知△BOF与△DOE关于点O成中心
对称,由此图中阴影部分的三个三角形
就可以转化到直角△ADC中,易得阴影部
分的面积为3.
பைடு நூலகம்
巩固练习
如图,点O是平行四边形的对称中心,
点A、C关于点O对称,有AO=CO,那 D F
C
么OE=OF吗?
O
A
EB
解:∵平行四边形是中心对称图形,O是对称中心.
EF经过点O,分别交AB、CD于E、F. ∴点E、F是关于点O的对称点. ∴OE=OF.
补全它的另一部分. A
B
如何寻找中心对称 H
图形的对称中心?
G
C
D
F
E
探究新知
2.如图,有一个平行四边形请你用无刻度的直 尺画一条直线把他们分成面积相等的两部分,你 怎么画?
【归纳】过对称中心的直线可以把中心对称图 形分成面积相等的两部分.
探究新知 素养考点 3 中心对称图形性质的应用
例 请你用无刻度的直尺画一条直线把他们分成面 积相等的两部分,你怎样画?
探究新知
【判断】下列图形中哪些是中心对称图形?
(1)√
(2) √
(3) √
(4)×
探究新知
在生活中,有许多中心对称图形,你能举出一些例 子吗?
人教版数学九年级上册23.2.1《中心对称》说课稿
人教版数学九年级上册23.2.1《中心对称》说课稿一. 教材分析《中心对称》是人教版数学九年级上册第23.2.1节的内容,属于几何学的范畴。
本节内容是在学生掌握了平面几何的基本概念和性质的基础上进行学习的,旨在让学生了解中心对称的定义和性质,能够运用中心对称解决一些几何问题。
教材中通过丰富的例题和练习题,帮助学生理解和巩固中心对称的概念。
本节内容对于学生来说是比较抽象的,需要通过大量的练习和思考,才能真正理解和掌握。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对于平面几何的基本概念和性质有一定的了解。
但是,中心对称是一个相对抽象的概念,学生可能一时间难以理解。
因此,在教学过程中,我将会注重引导学生通过实际例题,去感受和理解中心对称的性质和应用。
三. 说教学目标1.知识与技能目标:学生能够理解中心对称的定义,掌握中心对称的性质,并能够运用中心对称解决一些几何问题。
2.过程与方法目标:通过观察、思考和操作,学生能够培养自己的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂讨论,主动探索中心对称的性质,体验数学的乐趣。
四. 说教学重难点1.教学重点:中心对称的定义和性质。
2.教学难点:理解并运用中心对称解决几何问题。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导发现法和学生自主学习法相结合的方式。
通过多媒体课件和几何模型等教学手段,帮助学生直观地理解中心对称的概念。
六. 说教学过程1.导入新课:通过一个简单的实例,引导学生思考中心对称的概念。
2.讲解概念:详细讲解中心对称的定义和性质,通过示例让学生理解和掌握。
3.课堂练习:让学生通过解决一些实际问题,运用中心对称的性质,巩固所学知识。
4.课堂讨论:引导学生进行小组讨论,分享各自的解题思路和方法,培养学生的合作精神。
5.总结提升:对本节课的主要内容进行总结,强调中心对称的重要性质和应用。
七. 说板书设计板书设计简洁明了,主要包括中心对称的定义、性质和应用等方面。
人教版数学九年级上册教学设计23.2《中心对称》
人教版数学九年级上册教学设计23.2《中心对称》一. 教材分析人教版数学九年级上册第23.2节《中心对称》是学生在学习了平面几何基本概念和性质的基础上进一步探究中心对称图形的性质和判定。
本节内容通过具体例子让学生理解中心对称的概念,探索中心对称图形的性质,以及学会判断一个图形是否为中心对称图形。
教材通过丰富的例题和练习题,帮助学生巩固知识,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有了一定的了解。
但学生在学习过程中可能会对中心对称图形的判断和性质的理解存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生通过观察、操作、思考、交流等活动,逐步理解中心对称的概念和性质。
三. 教学目标1.理解中心对称的概念,掌握中心对称图形的性质和判定方法。
2.能够运用中心对称的知识解决一些实际问题。
3.培养学生的空间想象能力、逻辑思维能力和合作交流能力。
四. 教学重难点1.重点:中心对称的概念,中心对称图形的性质和判定方法。
2.难点:中心对称图形的性质的理解和运用。
五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考、交流等活动,自主探究中心对称的概念和性质。
2.运用多媒体辅助教学,展示中心对称图形的动态变化,增强学生的直观感受。
3.结合具体例子,让学生通过实践操作,加深对中心对称图形的性质的理解。
4.采用小组讨论法,培养学生的合作交流能力和解决问题的能力。
六. 教学准备1.多媒体教学设备。
2.中心对称图形的课件和练习题。
3.剪刀、彩笔等学具。
七. 教学过程1.导入(5分钟)教师通过展示一些图片,如天安门、蜜蜂等,引导学生观察这些图片,并提出问题:“你们认为这些图片有什么共同特征?”学生在观察和思考的过程中,发现这些图片都是中心对称的。
教师进而引导学生总结中心对称的概念。
2.呈现(10分钟)教师通过多媒体展示中心对称图形的动态变化,让学生直观地感受中心对称的过程。
人教版九年级数学上册23.2.2.1《中心对称》教案
人教版九年级数学上册23.2.2.1《中心对称》教案一. 教材分析人教版九年级数学上册第23章《中心对称》是学生在学习了平面几何相关知识的基础上,进一步引导学生探索中心对称的性质和运用。
本节内容通过具体的实例,让学生了解中心对称的定义,掌握中心对称图形的性质,并能够运用中心对称解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生动手操作和观察分析的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。
但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习和操作来巩固。
此外,学生对实际问题的解决能力有待提高,需要通过具体的例子来引导和培养。
三. 教学目标1.了解中心对称的定义,掌握中心对称图形的性质。
2.能够运用中心对称解决实际问题,提高学生的应用能力。
3.培养学生的动手操作和观察分析能力,激发学生学习几何的兴趣。
四. 教学重难点1.中心对称的定义和性质。
2.中心对称在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过具体的实例和问题,引导学生探索中心对称的性质,培养学生的动手操作和观察分析能力。
同时,学生进行小组合作学习,鼓励学生发表自己的观点和思考,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的图片和实例,用于引导学生探索中心对称的性质。
2.准备一些实际问题,用于巩固学生对中心对称的应用。
3.准备黑板和粉笔,用于板书重要的概念和性质。
七. 教学过程1.导入(5分钟)通过展示一些图片,如天安门、蝴蝶等,引导学生观察这些图片的共同特点,引发学生对中心对称的思考。
让学生发表自己的观点,教师总结并引入中心对称的概念。
2.呈现(10分钟)教师通过展示一些实例,如将一张纸折叠后,对折线两侧的图形完全重合,引导学生探索中心对称的性质。
教师引导学生动手操作,观察分析中心对称图形的性质,如对称轴的性质、对称点的性质等。
九年级数学人教版(上册)课件23.2.2中心对称图形
2、学练第62页课时达标演练2、3、6题
1.若设点M(a,b),
M点关于X轴的对称点M1( a,-b ) M点关于Y轴的对称点M2( - a, b ), M点关于原点O的对称点M3(-a,-b )
作业:课本P69 第3、4两题。
谢谢
F(-2,1) G(-2,-1)
05:45:46
(2,-1) (2,1)
填空:
1.已知点M的坐标为(3,-5),则关于x轴对称的点的坐
标点M’的坐标为 (3,5),关于y轴对称的点M’的坐标
为
,关(于-3原,-5点) 对称的点的坐标为
.
(-3,5)
2.点M(-2,3)与点N(2,3)关于__y_轴___对称;
,
点 P 到 y 轴的距离为 1 ;
6、点 P(-3,-4)关于 y 轴对称的点的坐标为
(3,-4),点 P 到 x 轴的距离为 4
,
点 P 到 y 轴的距离为 3 .
y
O
x
课堂小结
本节课你学会了什么?
两个点关于原点对称时,它 们的坐标符号相反,即点P (x,y)关于原点的对称点P′ 的坐标是(-x,-y),及利用 这个特点解决一些实际问题.
中心对称图形
• 学习目标: 1、理解点 P 与点 P′关于原点对称时,它们的横纵 坐标的关系。 2、会用关于原点对称的点的坐标的关系解决有关问 题。
• 学习重难点: 点 P(x,y)关于原点的对称点 P′(-x,-y)及其应 用。
回顾旧知
1. 什么叫中心对称和中心对称图形?
把一个图形绕着某一点旋转180,如 果他能与另一个图形重合,那么就说这两 个图形关于这点成中心对称。
人教版九年级数学上册23.2.2《中心对称》说课稿
人教版九年级数学上册23.2.2《中心对称》说课稿一. 教材分析人教版九年级数学上册23.2.2《中心对称》是本册教材中的一个重要内容。
这部分内容主要介绍了中心对称图形的概念、性质及其在实际问题中的应用。
通过学习中心对称,学生能够理解中心对称图形的定义,掌握中心对称图形的性质,并能运用中心对称解决一些实际问题。
教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的变换和性质有一定的了解。
但是,对于中心对称图形的概念和性质,学生可能还存在一些模糊的认识。
因此,在教学过程中,需要引导学生通过观察、操作、思考等活动,逐步建立中心对称图形的概念,理解其性质。
同时,学生需要通过大量的练习,提高运用中心对称解决实际问题的能力。
三. 说教学目标1.知识与技能目标:学生能够理解中心对称图形的定义,掌握中心对称图形的性质,并能运用中心对称解决一些实际问题。
2.过程与方法目标:学生通过观察、操作、思考等活动,培养观察能力、动手能力和思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,提高学习数学的兴趣,培养合作意识和创新精神。
四. 说教学重难点1.教学重点:中心对称图形的定义及其性质。
2.教学难点:中心对称图形的性质的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作学习法等,引导学生主动参与课堂,提高学习效果。
2.教学手段:利用多媒体课件、几何画板等辅助教学,增强课堂教学的趣味性和互动性。
六. 说教学过程1.导入新课:通过展示一些生活中的中心对称图形,引导学生发现中心对称图形的魅力,激发学习兴趣。
2.探究新知:学生通过观察、操作、思考等活动,探究中心对称图形的定义和性质。
教师引导学生参与讨论,总结中心对称图形的性质。
3.例题讲解:教师通过讲解典型例题,引导学生运用中心对称图形的性质解决问题。
4.练习巩固:学生通过自主练习和小组讨论,巩固所学知识,提高解决问题的能力。
人教版九年级数学上册23.2.3《中心对称》教案
人教版九年级数学上册23.2.3《中心对称》教案一. 教材分析人教版九年级数学上册第23章《中心对称》是学生在学习了平面几何基本概念和性质的基础上进行的一节内容。
本节内容主要让学生了解中心对称的定义,掌握中心对称的性质,并能够运用中心对称解决一些几何问题。
本节课的内容对于学生来说比较抽象,需要通过大量的实例和练习来帮助学生理解和掌握。
二. 学情分析九年级的学生已经具备了一定的几何基础,对于平面几何的基本概念和性质有一定的了解。
但是,由于中心对称是一个比较抽象的概念,学生可能难以理解和接受。
因此,在教学过程中,需要通过生动的实例和实际操作来帮助学生理解和掌握中心对称的概念和性质。
三. 教学目标1.了解中心对称的定义,掌握中心对称的性质。
2.能够运用中心对称解决一些几何问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.中心对称的定义和性质。
2.运用中心对称解决几何问题。
五. 教学方法采用问题驱动法和案例教学法,通过引导学生自主探究和合作交流,让学生在实际操作中理解和掌握中心对称的概念和性质。
六. 教学准备1.准备一些中心对称的图形,如圆、正方形、矩形等。
2.准备一些与中心对称相关的练习题。
七. 教学过程1.导入(5分钟)通过向学生展示一些中心对称的图形,如圆、正方形、矩形等,引导学生观察和思考:这些图形有什么共同的特点?从而引出中心对称的概念。
2.呈现(10分钟)向学生介绍中心对称的定义和性质,并通过具体的例子来解释和展示中心对称的性质。
3.操练(10分钟)让学生分组进行合作交流,每组选择一个中心对称的图形,探讨并总结出该图形的中心对称性质。
然后,让学生在黑板上展示并解释他们的发现。
4.巩固(10分钟)让学生运用中心对称的性质解决一些几何问题,如证明两个三角形全等、求解一些几何图形的面积等。
5.拓展(5分钟)引导学生思考:中心对称与轴对称有什么区别和联系?从而引出轴对称的概念,为后续课程做铺垫。
人教版数学九年级上册..中心对称课件
人教版数学九年级上册..中心对称课 件
3. 判断下列说法是否正确 (1)轴对称图形也是中心对称图形。(×) (2)旋转对称图形也是中心对称图形。(× )
(3)平行四边形、长方形和正方形都是中心对称图 形,对角线的交点是它们的对称中心。(√ )
(4)角是轴对称图形也是中心对称图形。( × )
人教版数学九年级上册..中心对称课 件
人教版数学九年级上册..中心对称课 件
判断下列图形是否是中心对称图形? 如果是,那么对称中心在哪?
人教版数学九年级上册..中心对称课 件
人教版数学九年级上册..中心对称课 件
中心对称图形与轴对称图形有什么区别与联系?
轴对称图形
中心对称图形
1 有一条对称轴——直线 有一个对称中心——点
(5)在成中心对称的两个图形中,对应线段平行
(或在同一直线上)且相等。
(√ )
人教版数学九年级上册..中心对称课 件
人教版数学九年级上册..中心对称课 件
1.正三角形是中心对称图形吗?正方形呢? 正五边形呢?正六边形呢?……你能发现什 么规律?
边数为偶数的正多边形都是中心对称图形。
人教版数学九年级上册..中心对称课 件
2 图形沿轴对折(翻转180°) 图形绕对称中心旋转180° 3 翻转前后的图形完全重合 旋转前后的图形完全重合
人教版数学九年级上册..中心对称课 件人教版来自学九年级上册..中心对称课 件
观察图形,并回答下面的问题: (1)哪些只是轴对称图形?(3)(4)(6) (2)哪些只是中心对称图形?(1) (3)哪些既是轴对称图形,又是中心对称图形?(2)(5)
C A’
B’ B
A C’
人教版数学九年级上册23.2.2《中心对称图形》说课稿
人教版数学九年级上册23.2.2《中心对称图形》说课稿一. 教材分析人教版数学九年级上册第23.2.2节《中心对称图形》是整个初中数学阶段中心对称图形知识的重要内容。
本节课主要介绍了中心对称图形的定义、性质及其在实际问题中的应用。
教材通过丰富的实例,让学生体会中心对称图形的概念,培养学生的空间想象能力,同时,也让学生感受数学与实际生活的紧密联系。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面几何图形有一定的了解。
但是,对于中心对称图形的概念和性质,学生可能还比较陌生。
因此,在教学过程中,我将会注重引导学生从具体实例中发现中心对称图形的特征,并通过对比分析,让学生深刻理解中心对称图形的性质。
三. 说教学目标1.知识与技能:让学生掌握中心对称图形的定义和性质,能够判断一个图形是否为中心对称图形。
2.过程与方法:通过观察、操作、对比等方法,培养学生发现规律、总结性质的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的空间想象能力,感受数学与实际生活的联系。
四. 说教学重难点1.重点:中心对称图形的定义及其性质。
2.难点:中心对称图形性质的证明和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究、发现、总结中心对称图形的性质。
2.教学手段:利用多媒体课件、实物模型、几何画板等,为学生提供丰富的学习资源,提高教学效果。
六. 说教学过程1.导入新课:通过展示一些生活中的中心对称现象,如轴对称的门、旋转的水龙头等,引导学生发现中心对称图形的特征。
2.探究中心对称图形的定义:让学生观察、操作,尝试用自己的语言描述中心对称图形的特征,然后给出中心对称图形的正式定义。
3.发现中心对称图形的性质:引导学生通过对比、归纳、总结中心对称图形的性质,如对称中心、对称轴等。
4.应用中心对称图形解决实际问题:通过一些实际问题,让学生运用中心对称图形的性质解决问题,巩固所学知识。
中心对称-人教版九年级数学上册教案
中心对称-人教版九年级数学上册教案知识点概述中心对称是初中数学中非常基础的一个知识点,也是几何中非常重要的一种变换。
从不同的角度来看待中心对称,不仅能够加深学生对数学的认识,还能够帮助学生在实际生活中更好地应用数学知识。
在人教版九年级数学上册中,中心对称作为一种重要的几何变换,是学生必须掌握的知识点之一。
本文档将会介绍中心对称的概念和定义,并通过教案的形式帮助学生更好地理解和掌握中心对称。
中心对称的概念和定义中心对称是指通过一个已知点作为对称中心,将平面图形上的每一个点沿直线对称轴将其映射到其相对的位置,而使得平面图形上原来不对称的部分能够重合。
具体而言,若点P关于对称中心O对称的点为P’,则OP为对称轴。
这里可以参考下面的图片。
symmetry.gifsymmetry.gif课堂教学实施方案教学目标1.了解中心对称的概念和定义。
2.学会如何通过对称中心和对称轴将平面图形进行对称。
3.通过例题掌握中心对称的基本操作和技巧。
教学内容1.中心对称的定义和基本性质。
2.中心对称的相关概念和知识点解释。
3.中心对称的例题讲解和演示。
教学步骤步骤一:温习前置知识(5分钟)在进入中心对称的具体讲解前,先通过轴对称、点对称等相关知识点的讲解,为学生铺设一个知识储备基地,为后续的具体操作和技巧提供过渡。
步骤二:中心对称的概念和定义(10分钟)1.向学生介绍中心对称的概念和定义,讲解中心对称所包含的核心要素。
2.示例展示中心对称的基本特征,引导学生了解中心对称所具有的对称性和自我复制特征。
步骤三:中心对称的基本操作和技巧(30分钟)1.通过对具体图形的讲解和演示,了解中心对称的具体操作方法。
2.给学生几道基础例题进行练习,提高学生对中心对称基本技巧的熟练度。
3.通过练习巩固知识点,培养学生独立思考和解决问题的能力。
步骤四:中心对称的应用拓展(15分钟)1.通过讲解中心对称的应用,引导学生思考中心对称对现实世界的现实意义和实用价值。
人教版 初中数学 九年级上册 23.2.1中心对称 说课稿
人教版初中数学九年级上册23.2.1中心对称说课稿义务教育课程标准实验教科书九年级上册《中心对称》说课稿尊敬各位评委、各位老师:大家好!今天我说课的内容是人教版义务教育课程标准实验教科书《数学》九年级上册第23.2.1节《中心对称》。
下面我将从教材分析、教学目标、教法与学法指导、教学设计、教学过程等方面向各位领导说说我对本课的教学构思与设计:一、教材分析(一)教材的地位与作用“中心对称”是初中数学教学中的一项重要内容,它与轴对称和轴对称图形有着紧密的联系和区别,同时与图形的三种变换(平移、翻折、旋转)中的“旋转”有着不可分割的联系。
实际生活中也随处可见中心对称的应用.通过对这一节课的学习,可以完善初中对“对称图形”的知识讲授,并为前面平行四边形的学习做必要的补充,起到承前启后的作用。
(二)教学重点、难点教学重在过程,重在研究,而不是重在结论.因此本节课的重点是探究中心对称的概念及性质。
难点:准确理解概念及性质,利用其知识解决实际问题。
二、教学目标为了让每个学生都能达到课程标准规定的基本要求,充分体现义务教育的基础性和全体性,将目标划分为以下三个层次:知识与技能: 理解中心对称,对称中心,对称点等概念;掌握中心对称的性质;应用中心对称的概念及性质,解决实际问题。
过程与方法::经历探究发现中心对称性质的过程,提高观察、分析、抽象、概括等能力;体验猜想、类比、图形运动等数学思想。
经历数学知识融于生活实际的学习过程,体会抽象的数学来源于生活,同时又服务于生活的真谛。
情感态度与价值观:欣赏数学的美学价值,树立学好数学的信心三、教法与学法分析(一)学情分析:本节课是在学生学习了旋转的基础上,从旋转变换引入中心对称的,学生在学习旋多媒体演示2组图片的运动过程,并提出如下问题,力图在课一开始就紧紧抓住学生。
问题1:观察下面的2组图形,看一看各组中2个图形的形状、大小是否相同?怎样将一个图形旋转得到另一个图形?很自然的从旋转变换的角度引入本节课题:中心对称。