第二章 有理数及其运算
第二章有理数及其运算第一讲有理数(教案)
-突破方法:通过具体案例,强调运算顺序的重要性,并引导学生用括号明确运算顺序。
-实际应用题的解决:难点在于如何将实际问题抽象成有理数运算问题,以及如何列式和计算。
-突破方法:提供多样化的实际应用题,引导学生逐步学会提取信息、建立数学模型并解决问题。
2.培养学生运用有理数进行逻辑推理,提高逻辑思维能力,增强数学抽象素养。
3.培养学生熟练掌握有理数的运算,提高运算速度和准确性,强化数学运算素养。
4.引导学生通过解决实际问题,培养数据分析素养,提高解决问题的能力。
5.激发学生主动探究有理数性质和运算规律的意识,培养数学探究素养,增强创新精神。
6.培养学生合作交流、分享学习心得的习惯,提高数学交流素养,增进团队合作意识。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数的基本概念。有理数是可以表示为两个整数比的数,如分数、整数。它是数学运算的基础,广泛应用于各个领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了有理数在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调有理数的分类和运算规则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示有理数运算的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
第二章 有理数及其运算(知识归纳+题型突破)(解析版)
第二章有理数1.了解具有相反意义的量,正负数的概念;2.理解有理数、相反数、绝对值、倒数的概念,能正确解题;3.理解数轴的概念,并能正确画出数轴,,在数轴上表示数;4.理解有理数加法、减法、乘法、除法法则、;5.理解有理数乘方定义及运算;6.能掌握加法、减法的运算定律和运算技巧,熟练计算;能掌握乘法的运算定律和运算技巧,熟练计算;7.通过将减法转化成加法和将除法转化成乘法,初步培养学生数学的归一思想8.进一步掌握有理数的五则混合运算;9.理解科学记数法,了解近似数;10.能运用科学记数法表示较大的数.知识点1 正数和负数1.概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
知识点2:有理数1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数知识点3:数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)知识点3 :相反数1.概念代数:只有符号不同的两个数叫做相反数。
(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
北师大版七年级数学上册第二章有理数及其运算有理数课件
(2)“零上”和“零下”意义相反,零上41 ℃记作+41 ℃,那么零下3 ℃可表示为-3 ℃.
B C
“±5 mL”表示实际容量比250 mL最多多5 mL,最少少5 mL,抽查的 5盒容量都在(250±5) mL范围内,所以它们都是合格的.
【拓展训练】 9. 某农民出售10麻袋黄豆给镇粮食收购站,按规定,每袋应为100千克,在 过磅时,记录如下表(单位:千克):
试完成表格,并计算一下这位农民共出售了多少千克黄豆,实际平均每袋黄 豆多少千克.
第二章 有理数及其运负
负数 负数
0 整数 分数
负整数
正数 负分数
比海平面低100m的地方
C A
5. (1)小明家今年八月份的总收入为2 500元,可表示为+2 500元,那么 他们家八月份的总支出1 500 元如何表示呢?
(2)武汉市某年七月份的最高气温为零上41 ℃,可表示为+41 ℃,一月份 的最低气温为零下3 ℃又该如何表示呢?
差,即最多超出标准质量5g,最少少于标准质量5g.
【提升训练】 7. 一架飞机进行特技表演,第一次上升6 m,第二次上升4 m,第三次下降5 m, 第四次又下降7 m(记升为正,下降为负). (1)这时飞机在初始位置的上方还是下方?相距初始位置多少米? (2)飞机在表演中共运行了多少米?
8. 某乳品公司的一种盒装牛奶的外包装上标注着“250 mL ±5 mL”的 字样,“±5 mL”是什么含义?质检局对该产品抽查了5盒,容量分别为253 mL,252 mL,249 mL,246 mL,254 mL,则被抽查产品的容量是否合格?
第二章---有理数及其运算-讲义-答案版本
%第二章有理数及其运算1 有理数题型一具有相反意义的量及表示方法1.下列选项中,具有相反意义的量是()A.胜2局与负3局 B.6个老师与6个学生C.盈利3万元与支出3万元 D.向东行30米与向北行30米`2.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.如果向东走5米记为+5米,那么向西走3米记为()A.﹣3米B.﹣5米C.+3米D.+5米3.某商场经理对今年上半年每月的利润作了如下记录:月盈利分别是33万元、32万元、万元、54万元,3、4月份亏损分别是万元和万元.试用正、负数表示各月的利润,并算出该商场上半年的总利润.|题型二几何图形的构成4.在﹣3,0,1,﹣2这四个数中,是负数的有()个.A.1 B.2 C.3 D.05.在下列各说法中,正确的是()A.数0的意义就是没有 B.一个有理数,不是整数就是分数C.一个有理数不是正有理数就是负有理数 D.正数和负数统称为有理数6.在﹣,2,0,,﹣9这五个数中,负有理数的个数为个;整数的个数为个.:7下列各数中,既不是整数也不是负数的是()A.B.5 C.﹣1 D.08.课堂上老师要求就数“0”发表自己的意见,四位同学共说了下列四句话:①0是整数,但不是自然数;②0既不是正数,也不是负数;③0不是整数,是自然数;④0没有实际意义.其中正确的个数是()A.4 B.3 C.2 D.19.(1)统称整数,(2)统称分数,(3)统称有理数.10..下列各数,哪些是整数,哪些是分数哪些是正数,哪些是负数1,﹣,,﹣789,325,0,﹣20,,1 .,11.五袋白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:+,﹣4,+,﹣,+.这五袋白糖共超过多少千克总重量是多少千克]题型三数的集合12.把下列各数填入相应的大括号内:﹣,2,0,﹣,﹣3,+27,﹣15%,﹣1正数集合{ }负数集合{ }整数集合{ }分数集合{ }非负数集合{ }—1 有理数-提升1.小青乘飞机取旅游,从放置在座位后背的一份杂志上看到这样的一张表格:飞机距离地面高度h(千米)012~3……飞机舱外面的温度t(℃)82﹣4﹣10……)此时飞机舱外部的温度显示为﹣22℃,地面此时温度为8℃,请你帮小青算算,他所乘坐的飞机此时距离地面()千米.A.8 B.7 C.6 D.52.下列说法正确的是()A.有理数分为正数和负数B.﹣a一定表示负数C.正整数,正分数,负整数,负分数统称为有理数D.有理数包括整数和分数3.给出下列各数:+10,﹣2,0,﹣,5,﹣1,,﹣2016,,,其中,是负数的有()【A.2个B.3个C.4个D.5个4.小明和小红以旗杆为起点,小明向东走15米记作+15米,小红向西走3米记作﹣3米,小明和小红相距()米.A.18米B.19米C.20米5.﹣,0,2008,,10%,﹣23,,﹣,3,上述数中,整数有,负分数有.6.下列数﹣11、5%、﹣、、、0、﹣、﹣π、2014中,负有理数有个,负分数有个,整数有个.7.邻居张大爷上星期五买进某公司股票,每股27元,下表为本周内每日该股票的涨跌情况.(单位:元)星期一;三四五二﹣每股涨跌+2 +﹣1。
北京师范七年级数学上册第二章-有理数及其运算课件
(2)温度计上的刻度有什么特点?
5℃
0℃
-10 ℃
1、正数和负数的定义; 像2,5,2.5,…这样的数叫做正数;在正数前
面加上负号叫做负数,如-2,-5….;
正数 2还可写为+2,通常情况下正数前面的“+”可 以省略不写.
2、用正数和负数可以表示具有相反意义的量.
3、零既不是正数也不是负数;
3.用“>、<、=”号填空 │+8│ = │-8│ , -5 > -8.
4.如果一个数的绝对值等于 4,那么这个数等 于____4_或__-4___. 5.绝对值小于3的整数有__5_个, 分别是 _2__,___1_,___0__,__-_1__,___-_2__.
一天上午,出租车司机小王在东西走向的中山路上
3种
文具店、书店和玩具店依次坐落在一条东西走向的大街上,文
具店在书店西边30米处,玩具店在书店东边90米处,元元从书店沿
街向东走40米,接着又向东走-70米,此时元元的位置在
.
甲说:元元在玩具店东边20米处;
乙说:元元在玩具店西边40米处.
甲乙两人无法找到统一的答案,谁也说服不了谁,作为同学的
你,能否用一个简明有效的方法帮助他们解决纷争呢?
4 2 0.5 1.5 3
-5 -4 -3 -2 -13 0 0 1 2 3 4 5
4 3>1.5>0> 0.5> 3> 2
4
3|4
3|4
一、填空
(1)-8的相反数是( 8 ),( )相反数是- .
(2)数轴上表示-2的点在原点的( 左 )侧,距原点的.
距离是( 2 )个单位长度,表示6的点在原点的( 右 )侧, 距原点的距离是( 6 )个单位长度.
第二章 有理数及其运算 复习
数学·新课标〔BS〕
第二章 |过关测试
数学·新课标〔BS〕
第二章 |过关测试 ►考点十 科学记数法 例11 用科学记数法表示80 000 000×90 000 000的计算结
果.
解:80 000 000×90 000 000=7 200 000 000 000 000=×1015.
+9,-3,-5,+4,-8,+6,-3,-6,-4,+10. (1)最后出租车离开钟楼多远?在钟楼的什么方向? (2)假设每千米的收费价格是元,该出租车周日下午的营业额 是多少?
数学·新课标〔BS〕
第二章 |过关测试 解:(1)+9-3-5+4-8+6-3-6-4+10=0,故该出租
车正好在钟楼; ×(|+9|+|-3|+|-5|+|+4|+|-8|+|+6|+|-3|+|-6|+|
第二章 有理数及其运算 复习
第二章 |过关测试
知识归类
1.有理数
(1)有理数
整数
正整数 零
负整数
分数
正分数 负分数
(2)有理数 正零有理数
正整数 正分数
负有理数Βιβλιοθήκη 负整数 负分数数学·新课标〔BS〕
第二章 |过关测试 2.数轴:(1)数轴的概念:规定了____原__点_、____正__方_、向
所示,则a________b(填“<〞、“>〞或“=〞) .
数学·新课标〔BS〕
第二章 |过关测试 [答案] < [解析] 由图可知,实数a、b都是负数,且表示数a的点在
表示数b的点的左边,所以a<b.
数学·新课标〔BS〕
第二章 |过关测试 例4 有理数a、b在数轴上的位置如图2-2所示,试化简|a
第二章有理数及其运算第三讲有理数的运算法则(教案)
-有理数混合运算:掌握混合运算的顺序和法则,解决实际问题。
举例解释:
-加法重点:强调两个正数或两个负数相加时,结果的符号不变,绝对值为两个数绝对值之和。如:3 + 4 = 7,-3 + (-4) = -7。
-减法重点:强调减法实际上是加上相反数,如:5 - 3 = 5 + (-3)。
第二章有理数及其运算第三讲有理数的运算法则(教案)
一、教学内容
本节课选自教材第二章“有理数及其运算”的第三讲,主题为“有理数的运算法则”。教学内容主要包括以下几点:
1.有理数的加法法则:掌握同号相加、异号相加的规律,理解“正负相抵”的概念。
-同号相加:两个正数或两个负数相加,结果为同号的较大绝对值。
五、教学反思
在今天的教学中,我重点关注了有理数的运算法则这一章节。我尝试通过日常生活中的例子引入新课,希望这样能让学生感受到数学与生活的紧密联系。在理论讲解部分,我尽力将有理数的概念和运算法则阐述清楚,同时用具体的案例帮助学生理解这些抽象的规则。
课堂上,我发现学生在异号相加和乘法符号规律这两个部分有些吃力。我通过反复举例和对比分析,尽量让学生明白这些难点。在实践活动和小组讨论中,我鼓励学生积极思考,提出问题,并尝试解决问题。看到他们认真讨论、动手操作的样子,我觉得他们已经开始体会到数学学习的乐趣。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“有理数的运算法则”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相反意义的量,比如温度上升和下降?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数运算法则的奥秘。
第二章 有理数及其运算
第二章有理数及其运算1.数怎么不够用了【课中导学】1.正数;2.0;3.整数分数;4.0,负整数负分数;5.-0.2毫米 +0.08元;6.正数负数;7.应分为:正有理数、负有理数和0【归类探究】例1 明明和林雪燕说得对例2 略例3 略【课堂操练】1.A;2.D;3.1,-1,0;4.-1.5;5.属于整数集合的是:-10,-3,0,2;属于分数集合的是:-3.010010001,17−,0.21,3.14159;属于负数集合的是:-3.010010001,10,-3.010010001,-3,17−.6.(1)总收入130万,总支出35万;(2)总收入+130万,总支出-35万;(3)95万2.数轴【课中导学】1.原点正方向单位长度2.相反数互为相反数 03.点 0 负数正数4.大小于大于大于5.有理数都可以用数轴上的点来表示;关于原点对称;右边的点表示的数总比左边的点表示的数大(规定向右为正方向)【归类探究】例1 点A表示-2;点B表示2;点C表示0;点D表示-1 例2 略例3 例4 A【课堂操练】1.A;2.C;3.0,6;4.-2<-12<-13<0<13<125.(1)-1.5和1.5 (2)56.解:(1)数轴略,小明在250处,小兵在600处,小颖在-200处;(2)450米;(3)250+350+800=1400(米)3.绝对值【课中导学】1.原点;2.2 |+2|=2 2 |-2|=2;3.本身它的相反数0;4.小;5.相等;6.大于或等于0 不能;不一定可能不可能;不可能不可能可能;【归类探究】例1 略例2(1)-2>7 (2)-0.3>-|13−|例3 51.B;2.B;3.5或-5;4. -8;5. >,>;6.-17;7.a=-6,b=6.8.(1)第1,4,5,6瓶是合乎要求的;(2)第6瓶.4.有理数的加法第1课时有理数的加法法则【课中导学】1.相同绝对值 0 较大较大较小这个数;2.(1)-17,(2)+18,(3)-8,(4)9,(5)0,(6)-13;3.0 不正确,如-2+(-3)=-5,和小于每一个加数;4.(1)先确定和的符号,(2)再确定和的绝对值.【归类探究】例1(1)-25(2)0 (3)-6 例2(1)1112−(2)-8.75【课堂操练】1.D;2.C;3. -11,-3;4.3,0;5.(1)-23(2)-5(3)-9(4)-1.1(5)16−(6)712−;6.1300m第2课时有理数的加法运算律【课中导学】a+b=b+a;(a+b)+c=a+(b+c)【归类探究】例1 -17 例2 2.9 例3 -8 例4 略【课堂操练】1.194.5千克;2.8300元钱;3.148−;4.788−;5.勘察队在出发点的上游,距出发点23千米;6.5010(2356204131)505×+−+−++++−−+=(人)5.有理数的减法【课中导学】1.加上这个数的相反数;2.(1)4(2)-20(3)7 (4)30;3.(1)-5 -3 (2)-1-2 (3)-15(4)23,1;4.不正确比如﹝-3﹞-﹝-2﹞=-1,差比每个减数都大【归类探究】例1 (1)56(2)-12(3)215−(4)6.3 例2 A点比B点高19.8 m,比C点高34.7 m1.C ;2.D ;3.2−℃;4.3−,9;5.3,2−;6.13;7.223−; 8.原式=⎟⎠⎞⎜⎝⎛−−+⎟⎠⎞⎜⎝⎛++⎟⎠⎞⎜⎝⎛−−+⎟⎠⎞⎜⎝⎛−−+⎟⎠⎞⎜⎝⎛+211312009322008652007212006 ()⎟⎠⎞⎜⎝⎛−+−−+−+−−213132652112009200820072006=()1−+⎟⎠⎞⎜⎝⎛−611=612−6.有理数的加减混合运算第1课时有理数的加减混合运算【课中导学】1.12.8 2.1.3 3.-65 4.125.加法运算 【归类探究】例1 (1)14(2)2(3)14例2 略 【课堂操练】1.B ;2.B ;3.7564−−+;4.111323334−+−−;5.-17;6.(1)-11;(2)-3;7.2004 第2课时利用运算律进行有理数的加减混合运算【课中导学】1.-65 2.12 3.(1)4960(2)3.5;4.可以从左向右依次进行或者利用加法的交换律与结合律 5.加法交换律,加法结合律;6.把小数化成分数或把分数化成小数【归类探究】例1 364− 例2 (1)-10 (2)1 例3 21515【课堂操练】1.D ;2.-8;3.-50;4.原式=(21+8+28)+(-18-16-23)=57-57=0.5.原式=(38-18-20)+(-213+523-313)-14=0+0-14=-14. 6.原式=(514+634)+(413-113)=12+3=15. 7. 原式=(2.35+214+325)+(-123-113)+9=8-3+9=14. 8.10第3课时水位的变化【课中导学】1.2285 2.35 3.-5;4.在实际生活中也可以运用加减混合运算.【归类探究】例1 略 例2 略【课堂操练】1.B ;2.A ;3.二;4.3;5.(1)体温依次填39,39.3,38;差值依次填+1.8,+1.5,+0.5(2)小芳6时体温最高,18时刻的体温最低.7.有理数的乘法第1课时有理数的乘法法则【课中导学】1.正 负 绝对值 0;2.倒数;3.(1)-42 (2)-56 (3)0 (4)16; 4.积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负,有一个因数为0时,积为0.5.0没有倒数.6.先确定积的符号,再求积的绝对值.【归类探究】例1 (1)-15 (2)56(3)135−(4)-π 例2 (1)-252 (2)15(3)118−(4)0 【课堂操练】1.B ; 2.B ;3.D ;4.0;5.一个或三个;6.-10;7.52. 8.(1)3*)2(−1613)2(32=++−××−=.(2)4(*)2*[]14242)3(++××−=−*)11()3(−=−*761)11()3()11(2)3(−=+−+−×−×−=−.第2课时有理数的乘法运算律 【课中导学】a b =b a ﹝a b ﹞c =a ﹝bc ﹞ a ﹝b+c ﹞=a b+ a c【归类探究】例1(1)11 (2)103例2 (1)11(2)-198 例3 141.B ;2.C ;3.原式=-6+8-10+9=14.解:原式=(18.4-3.2-16.8)×532=(-1.6)×532=-14 5.解:原式=(-37512)×[(-256)+(-416)]= (-37512)×(-7) =(-37)×(-7)+(-512)×(-7)=259+21112=2611112. 6.乙的解法好,还有方法如下: 原式21575)8()161()8(72)8()16172(−=−×−+−×=−×−=.8.有理数的除法 【课中导学】1.正 负 相除 0;2.乘以这个数的倒数;3.乘法;4.(1)-121 (2)2 (3)23 (4)2; 5.先将除法转变为乘法,再由负因数的个数决定;6.先确定商的符号,然后确定商的绝对值.【归类探究】例1 (1)-2 (2)34 例2 121− 例3 (1)48 (2)256 例4 略 【课堂操练】1.C ;2.D ;3.C ;4.311,43−;5.-2;6.8;1和-1 7.由题意,这座山的高度为[]5001006.0)2(1=×÷−−(m ).8.(1)91−; (2)原式241()214161(−÷+−=)24(21)24()41()24(61−×+−×−+−×= 101264−=−+−=9.科学记数法 【课中导学】1.10n a × ,a 是整数位只有一位的数,n 是正整数;2.n -1; 3.37000=3.7×104; 4.720000;5.这种表示方法比较简单,不容易出错 【归类探究】例1 一天的秒数为8.64×104秒;一年的秒数为3.1536×107秒例2 2.10×107kb例3 (1)9 597 000 km 2 (2)300 000 000 m/s1.C ;2.D ;3.11;4.553.63310,4.05510××;5.(1)13110×; (2)81.8210×. 6.7706024365 3.679210×××=×到达1亿次需要近2.8年,因此一个正常人不到三年就能使心跳次数达到1亿次. 7.3.556×104根.8.200家.10.有理数的乘方第1课时有理数乘方的概念【课中导学】1.求n 个相同因数a 的积 幂;2.底 指 a 的n 次方 a 的n 次幂;3.底 指 5的4次方;4.23 7 23的7次方;5. -3 5;6.54 (-0.2)×(-0.2)×(-0.2)×(-0.2)×(-0.2); 7.乘方是求n 个相同因数的积的运算,乘方可以写成积的形式;8.正数,负数,正数的任何次幂都是正数,0的正整数次幂是0;9. (-2)3表示3个-2相乘,-23的相反数. 【归类探究】例1 略 例2(1)-1 (2)1(3)1(4)-1 例3 略【课堂操练】1.D ;2.B ; 3.A ; 4.25;-25;5.0;6.302;7.(1)81,(2)-125,(3)827,(4)-1; 8.(1)-72,(2)-72,(3)12−, 第2课时有理数乘方的运算 【课中导学】1.正数,正数,负数;正数或0;2.(1)相乘,a ,n ,n 次方;(2)相反数,a ,n ,相反数. 3.偶数,奇数,1,-1;【归类探究】例1 (1)-9 (2)8(3)827(4)94− 例2 略 例3 120平方米 【课堂操练】1. A ;2.B ;3.C ;4.C ;5.2; 6.34或34−;7.(1)34−,(2)-72,(3)-64,(4)-8;8.72,10211.有理数的混合运算【课中导学】1.乘方 乘除 加减 括号里面的;2. D ;3.C ;4.A 应先算后面的乘法;B 应先算3÷54,再用商乘45;C 应从前向后进行;D 选项应为-9,从A 、B 选项看,如果不按运算顺序进行计算,会导致结果出错.【归类探究】例1 -30 例2 15 例3 8335− 【课堂操练】1.C ;2.D ;3.C ;4.–10;5.21;6.1;7.第二步,没有按乘除是同级运算,除在前面先算除;第三步,根据同号相除应得正.8.原式=-16-12×(13-1)×(―34)=-16-(4―12) ×(―34)=-16+(3―9)=-22.12.计算器的使用【课中导学】1.简单计算器 科学计算器 图形计算器 键盘 显示器 单行双行2.运算科学计算器可以进行有理数的混合计算.【归类探究】例1 圆环的面积为4355.18 mm 2例2 (1)20 979(2)21 978(3)22 977(4)23 976例3 (1)38(2)69(3)略【课堂操练】1.C ;2.D ;3.5 +/- ;4. 42,4422,444222,44442222;66666,66667;5. (1)54.76 (2)645.16 (3)12.5316;6.(1)9.088;(2)1.15;(3)11790.3;(4)27.8832.7.22221522525625351225452025====,,,. 规律是25前的数乘以比它大1的积加25,22857225959025==,.。
北师大版数学七年级上册《 第二章 有理数及其运算 》教案
北师大版数学七年级上册《第二章有理数及其运算》教案一. 教材分析《第二章有理数及其运算》这一章主要介绍了有理数的概念、分类及有理数的运算规则。
内容涵盖了有理数的概念、分类、加减乘除运算、乘方运算等。
这部分内容是整个初中数学的基础,对于学生理解和掌握后续知识具有重要意义。
二. 学情分析学生在学习这一章内容时,已经具备了初步的数学运算能力,对数学概念有一定的理解。
但部分学生可能对有理数的概念和分类理解不深,对于有理数的运算规则容易混淆。
因此,在教学过程中,需要注重对学生概念的理解和运算规则的训练。
三. 教学目标1.理解有理数的概念,掌握有理数的分类。
2.掌握有理数的加减乘除运算规则,能够熟练进行计算。
3.理解有理数的乘方运算规则,能够进行相应的计算。
4.培养学生的运算能力和逻辑思维能力。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算规则,特别是乘方运算。
五. 教学方法采用讲解、示例、练习、讨论等教学方法,通过引导学生自主探究、合作交流,让学生在实践中掌握知识,提高能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备练习题,包括基础题和拓展题。
七. 教学过程1.导入(5分钟)通过复习小学学过的加减乘除运算,引出有理数的概念和分类。
2.呈现(15分钟)讲解有理数的概念和分类,示例说明有理数的运算规则。
3.操练(15分钟)让学生进行有理数的加减乘除运算,引导学生掌握运算规则。
4.巩固(10分钟)让学生进行一些有关有理数的运算题目,巩固所学知识。
5.拓展(10分钟)讲解有理数的乘方运算规则,让学生进行相关的计算。
6.小结(5分钟)对本节课的主要内容进行总结,强调重点和难点。
7.家庭作业(5分钟)布置一些有关有理数运算的题目,让学生课后巩固。
8.板书(课后整理)整理本节课的主要板书内容,方便学生复习。
教学过程每个环节所用时间共计50分钟,剩余10分钟用于学生自主学习和教师解答疑问。
针对以上教案对教学情境和教学活动的分析如下:一、教学情境本节课的主题是有理数及其运算,我通过创设生动有趣的教学情境,激发学生的学习兴趣。
第二章 有理数及其运算
第二章 有理数及其运算1、正数和负数用来表示具有相反意义的量。
(0既不是正数也不是负数)2、有理数:整数和分数统称有理数。
(有限小数和无限循环小数都可以写成分数形式,因此它们也是分数)(π是无限不循环小数,因此它不是有理数)3、有理数的分类:①按定义分: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 ②按正负分: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数4、数轴:规定了原点、正方向、单位长度的一条直线。
(任何一个有理数都可以用数轴上的一个点来表示)5、相反数:只有符号不同的两个数,我们说其中一个数是另一个的相反数。
(0的相反数还是0)(a+b=0 ⇔ a 、b 互为相反数)6、绝对值:数轴上表示某数a 的点与原点的距离。
正数的绝对值是它本身;0的绝对值是0;负数的绝对值是它的相反数。
用符号表示:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧<-≥=)0a (a )0a (a a (绝对值的问题经常分类讨论) 7、有理数比较大小:(1)正数大于0;(如果a 是正数,那么a >0)(2)负数小于;(如果a 是负数,那么a <0)(3)正数大于负数;(4)两个负数比大小,绝对值大的反而小;(数轴上的两个数,右边的数总比左边的数大)8、互为倒数:乘积为1的两个数互为倒数。
(0没有倒数)(若ab=1 a、b互为倒数)1)(若a≠0,那么a的倒数是a9、有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(互为相反数的两数相加和为0)(3)一个数与0相加,仍得这个数。
10、有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c)。
11、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
第二章有理数及其运算教案
第二章 有理数2.1有理数教学目标1.理解有理数的概念,掌握有理数的分类方法;(重点) 2.会把所给的有理数填入相应的集合;(难点)3.经历对有理数进行分类探索的过程,初步感受分类讨论的数学思想.(重点)板书设计:1.有理数的概念(1)整数:正整数、零和负整数统称整数.(2)有理数:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数. 2.有理数的分类①按定义分类为: ②按性质分类为:有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数零负整数分数⎩⎪⎨⎪⎧正分数负分数有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数零负有理数⎩⎪⎨⎪⎧负整数负分数例题:探究点一:有理数的有关概念例1下列各数:-45,1,8.6,-7,0,56,-423,+101,-0.05,-9中,( )A .只有1,-7,+101,-9是整数B .其中有三个数是正整数C .非负数有1,8.6,+101,0D .只有-45,-445,-0.05是负分数解析:根据有理数的有关概念,整数包括:1,-7,0,+101,-9,故选项A 错误;正整数只有两个,即1和+101,故选项B 错误;非负数包括有1,8.6,+101,0,56,故选项C 错误;负分数包括-45,-423,-0.05,故选项D 正确.故选D.方法总结:当有理数只含有单个符号时,带负号的数即为负数.然后再区分是整数还是分数. 探究点二:有理数的分类例2把下列各数填入相应的集合内.-10,8,-712,334,-10%,3101,2,0,3.14,-67,37,0.618,-1,0.3080080008…正数集合{ …}; 负数集合{ …}; 整数集合{ …};分数集合{ …}.解析:要将各数填入相应的集合里,首先要弄清楚有理数的分类标准,其次要弄清楚每个数的特征.在填入相应的集合时,要注意每个有理数,身兼不同的身份,所以解答时不要顾此失彼.解:正数集合{8,334,3101,2,3.14,37,0.618,0.3080080008… …};负数集合{-10,-712,-10%,-67,-1 …};整数集合{-10,8,2,0,-67,-1 …};分数集合{-712,334,-10%,3101,3.14,37,0.618,0.3080080008… …}.方法总结:在填数时要注意以下两种方法:(1)逐个考察给出的每一个数,看它是什么数,是否属于某一集合;(2)逐个填写相应集合,从给出的数中找出属于这个集合的数,避免出现漏数的现象2.2数轴教学目标1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;(重点) 2.会正确地画出数轴,会用数轴上的点表示给定的有理数;(难点) 3.会根据数轴上的点读出所表示的有理数;(难点) 4.感受在特定的条件下数与形是可以相互转化的.板书设计:1.数轴 (1)原点 (2)正方向 (3)单位长度2.数轴上的点与有理数间的关系 (1)原点表示零(2)原点右边的点表示正数 (3)原点左边的点表示负数例题:探究点一:数轴的概念例1 下列图形中是数轴的是( )A. B. C. D.解析:A 中的没有单位长度,错误;B 中没有正方向,错误;C 中满足原点,正方向,单位长度,正确;D 中没有原点,错误.故选C.方法总结:要判断一条直线是不是数轴,要抓住它的三要素:原点、正方向和单位长度,三者缺一不可.探究点二:有理数与数轴的关系【类型一】 读出数轴上的点所表示的数例2指出如图中所表示的数轴上的A 、B 、C 、D 、E 、F 各点所表示的数.解析:要确定数轴上的点所表示的数可利用以下方法:(1)确定符号,在原点右边为正数,在原点左边为负数;(2)确定数字,即距离原点是几个单位长度.解:由图可知,A 点表示:-4.5;B 点表示:4;C 点表示:-2;D 点表示:5.5;E 点表示:0.5;F 点表示7.方法总结:在确定数字时,要认真观察已知点是在原点的左边还是右边,对于A 、D 这种情况,要注意它们所表示的数是在哪两个数之间.【类型二】 在数轴上表示有理数例3 画出数轴,并用数轴上的点表示下列各数:-5,2.5,3,-52,0,-3,312.解析:(1)画数轴必须具备“三要素”,三者缺一不可;单位长度必须一致,不能长短不一;正方向向右;(2)用数轴上的点表示数时,注意数的符号和该数到原点的距离.解:如图:方法总结:用数轴上的点表示数时,首先由数的性质符号确定该数应在原点的左边还是右边,然后再根据该数到原点的距离,确定位置.【类型三】 数轴上两点间的距离问题例4 数轴上的点A 表示的数是+2,那么与点A 相距5个单位长度的点表示的数是( ) A .5 B .±5 C .7 D .7或-3解析:与点A 相距5个单位长度的点表示的数有2个,分别是7或-3,故选D.方法总结:解答此类问题要注意考虑两种情况,即要求的点在已知点的左侧或右侧.另外,点在数轴上移动时也要分向左、向右两种情况.2.3相反数教学目标:1.借助数轴理解相反数的概念,并能求给定数的相反数;(重点) 2.了解一对相反数在数轴上的位置关系;(重点) 3.掌握双重符号的化简;(难点)4.通过从数和形两个方面理解相反数,初步体会数形结合的思想方法.板书设计:1.相反数(1)只有符号不同的两个数.(2)a 的相反数是-a ,0的相反数是0. (3)互为相反数的两个数和为0. 2.多重符号的化简(1)偶数个“-”号,结果为正数. (2)奇数个“-”号,结果为负数.例题:探究点一:相反数的意义【类型一】 相反数的代数意义例1 写出下列各数的相反数:16,-3,0,-12015,m ,-n .解析:只需将各数前面的正、负号换一下即可,但要注意0的相反数是0. 解:-16,3,0,12015,-m ,n .方法总结:求一个数的相反数,只需改变它前面的符号,符号后面的数不变;0的相反数是0. 【类型二】 相反数的几何意义例2(1)数轴上离原点3个单位长度的点所表示的数是________,它们的关系为____________.(2)在数轴上,若点A 和点B 分别表示互为相反数的两个数,点A 在点B 的左侧,并且这两个数的距离是12.8,则A =______,B =______.解析:(1)左边距离原点3个单位长度的点是-3;右边距离原点3个单位长度的点是3,∴距离原点3个单位长度的点所表示的数是3或-3.它们互为相反数;(2)∵点A 和点B 分别表示互为相反数的两个数,∴原点到点A 与点B 的距离相等,∵A 、B 两点间的距离是12.8,∴原点到点A 和点B 的距离都等于6.4.∵点A 在点B 的左侧,∴这两点所表示的数分别是-6.4,6.4.方法总结:本题考查了相反数的几何意义,解题时应从相反数的意义入手,明确互为相反数的两数到原点距离相等,这种“利用概念解题,回到定义中去”是一种常用的解题技巧.【类型三】 相反数与数轴相结合的问题 例3如图,图中数轴(缺原点)的单位长度为1,点A 、B 表示的两数互为相反数,则点C 所表示的数为( )A .2B .-4C .-1D .0 解析:由题意如图,数轴向右为正方向,数轴(缺原点)的单位长度为1,∴点C 所表示的数为-1,故应选C.方法总结:先在数轴上找到原点,从而确定点C 所表示的数,同时牢记互为相反数的两个点到原点的距离相等.探究点二:化简多重符号 例4 化简下列各数. (1)-(-8)=________;(2)-(+1518)=________;(3)-[-(+6)]=________; (4)+(+35)=________.解:(1)-(-8)=8; (2)-(+1518)=-1518;(3)-[-(+6)]=-(-6)=6;(4)+(+35)=35.方法总结:化简多重符号时,只需数一下数字前面有多少个负号,若有偶数个,则结果为正;若有奇数个,则结果为负.2.4绝对值教学目标1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;(重点)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;(难点)3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.板书设计:1.绝对值的几何定义:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a |. 2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.用符号表示为:|a |=⎩⎪⎨⎪⎧a (a >0)0(a =0)-a (a <0)或|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0)例题:探究点一:绝对值的意义及求法【类型一】 求一个数的绝对值 例1 -3的绝对值是( ) A .3B .-3C .-13 D.13解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是3.故选A.方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 【类型二】 利用绝对值求有理数例2 如果一个数的绝对值等于23,则这个数是__________.解析:∵23或-23的绝对值都等于23,∴绝对值等于23的数是23或-23.方法总结:解答此类问题容易漏解、考虑问题不全面,所以一定要记住:绝对值等于某一个数的值有两个,它们互为相反数,0除外.【类型三】 化简绝对值例3 化简:|-35|=______;-|-1.5|=______;|-(-2)|=______.解析:|-35|=35;-|-1.5|=-1.5;|-(-2)|=|2|=2.方法总结:根据绝对值的意义解答.即若a >0,则|a |=a ;若a =0,则|a |=0;若a <0,则|a |=-a .探究点二:绝对值的性质及应用【类型一】绝对值的非负性及应用例4 若|a-3|+|b-2015|=0,求a,b的值.解析:由绝对值的性质可知|a-3|≥0,|b-2015|≥0,则有|a-3|=|b-2015|=0.解:由绝对值的性质得|a-3|≥0,|b-2015|≥0,又因为|a-3|+|b-2015|=0,所以|a-3|=0,|b-2015|=0,所以a=3,b=2015.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0.【类型二】绝对值在实际问题中的应用例5 第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数,不足标准重量的克数记为负数).(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明.(2)若规定与标准质量误差不超过0.1g的为优等品,超过0.1g但不超过0.3g的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近,将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻0.08克,二号球,|+0.1|=0.1,比标准球重0.1克.(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,合格品,四号球|0|=0,优等品,五号球|-0.08|=0.08,优等品,六号球|-0.15|=0.15,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关.2.5有理数大小的比较教学目标1.掌握有理数大小的比较法则;(重点)2.会比较有理数的大小,并能正确地使用“>”或“<”号连接;(重点)3.能初步进行有理数大小比较的推理和书写.(难点)板书设计:1.借助数轴比较有理数的大小:在数轴上右边的数总比左边的数大2.运用法则比较有理数的大小:正数与0的大小比较负数与0的大小比较正数与负数的大小比较负数与负数的大小比较例题:探究点一:借助数轴比较有理数的大小【类型一】借助数轴直接比较数的大小例1 画出数轴,在数轴上表示下列各数,并用“<”连接:+5,-3.5,12,-112,4,0.解析:画出数轴,在数轴上标出表示各数的点,然后根据右边的数总比左边的数大进行比较.解:如图所示:因为在数轴上右边的数大于左边的数,所以-3.5<-112<0<12<4<+5.方法总结:此类问题是考查有理数的意义以及数轴的有关知识,正确地画出数轴是解决本题的关键.【类型二】 借助数轴间接比较数的大小例2 已知有理数a 、b 在数轴上的位置如图所示.比较a 、b 、-a 、-b 的大小,正确的是( )A .a <b <-a <-bB .b <-a <-b <aC .-a <a <b <-bD .-b <a <-a <b解析:由图可得a <0<b ,且|a |<|b |,则有:-b <a <-a <b .故选D.方法总结:解答本题的关键是结合数轴和绝对值的相关知识,从数轴上获取信息,判断数的大小. 探究点二:运用法则比较有理数的大小 【类型一】 直接比较大小例3 比较下列各对数的大小: (1)3和-5; (2)-3和-5;(3)-2.5和-|-2.25|; (4)-35和-34.解析:(1)根据正数大于负数;(2)、(3)、(4)根据两个负数比较大小,绝对值大的数反而小. 解:(1)因为正数大于负数,所以3>-5;(2)因为|-3|=3,|-5|=5,3<5,所以-3>-5; (3)因为|-2.5|=2.5,-|-2.25|=-2.25,|-2.25|=2.25,2.5>2.25,所以-2.5<-|-2.25|; (4)因为|-35|=35,|-34|=34,35<34,所以-34<-35.方法总结:在比较有理数的大小时,应先化简各数的符号,再利用法则比较数的大小.【类型二】 有理数的最值问题例4 设a 是绝对值最小的数,b 是最大的负整数,c 是最小的正整数,则a 、b 、c 三数分别为( ) A .0,-1,1 B .1,0,-1 C .1,-1,0 D .0,1,-1解析:因为a 是绝对值最小的数,所以a =0,因为b 是最大的负整数,所以b =-1,因为c 是最小的正整数,所以c =1,综上所述,a 、b 、c 分别为0、-1、1.故选A.方法总结:要理解并记住以下数值:绝对值最小的有理数是0;最大的负整数是-1;最小的正整数是1.2.6有理数加减法1.同号两数相加,取__相同的符号__,并把__绝对值__相加.2.绝对值不相等的异号两数相加,取__绝对值较大的加数__的符号,并用__较大的绝对值__减去__较小的绝对值__.互为相反数的两个数相加得__0__.3.一个数同0相加,仍得__这个数__.1.有理数加法的交换律:两个数相加,交换加数的位置,__和__不变,数学表达式__a +b =b +a __.2.有理数加法的结合律:三个数相加,__先把前两个数相加或先把后两个数相加__,和不变,数学表达式__(a +b )+c =a +(b +c )__.3.在有理数中,所有整数的和为__0__.1.有理数减法法则:__减去一个数,等于加这个数的相反数__,数学表达式是__a -b =a +(-b )__. 2.若a >b ,则a -b__>__0; 若a <b ,则a -b__<__0.3.利用有理数减法法则进行计算,其步骤是 (1)__减数变为其相反数__;(2)__相加__.4.一般地,较小的数减去较大的数,所得差的符号是__负号__.1.根据有理数的减法法则,可以将有理数加减混合运算统一为__加法__运算,然后按__加法__的运算法则进行计算,即a +b -c =a +b +__(-c )__.2.有理数加减混合运算的一般步骤是:(1)__先转化为加法运算__;(2)__运用加法的运算律化简运算__.探究点三 数轴上两点之间的距离活动三:在数轴上,当A ,B 分别表示数a ,b ,利用有理数的减法,分别计算下列情况下A ,B 之间的距离.(1)a =2,b =6; (2)a =0,b =6; (3)a =-2,b =6; (4)a =-2,b =-6. 【展示点评】根据AB =|a -b|,可得:当a>b 时,AB =a -b ;当a =b 时,AB =0,当a<b 时,AB =b -a. 【小组讨论】:两数之差的绝对值与两数之间的距离有什么关系?【反思小结】利用数轴,把数和形结合起来,有利于把抽象的知识直观化.两数之差的绝对值等于表达两数的点之间的距离.例题:1.上升10 m ,再上升-3 m ,则共上升了__7__m. 2.-713的绝对值与513的相反数的和是__2__.3.两数相加,其和小于每一个数,那么( C ) A .这两个加数必定有一个为0B .这两个加数一正一负,且负数的绝对值较大C .这两个加数必定都是负数D .这两个加数的符号不能确定4.数a ,b 表示的点如图所示,则(填“>”“<”或“=”)(1)a +b__>__0;(2)a +(-b)__<__0; (3)(-a)+b__>__0; (4)(-a)+(-b)__<__0.5.计算题:(1)(+3)+(+8); (2)(+14)+(-12);(3)(-312)+(-3.5);(4)(-314)+(+213);(5)|(-19)+8.3|;(6)-3.4+4.3.解:(1)11 (2)-14 (3)-7 (4)-1112(5)10.7 (6)0.91.下列说法正确的是( C ) A .零减去一个数,仍是这个数 B .负数减去负数,结果仍是负数 C .正数减去负数,结果是正数 D .被减数一定大于差2.-7,-12,+2三个数的和比它们的绝对值的和小( D ) A .4 B .-4 C .-38 D .383.温度3℃比-7℃高__10℃__,海拔300 m 比海拔-80 m 高__380__m ,-3比__3__小6,-3比__-9__大6.4.计算:(1)(-5)-(-3); (2)0-(-7); (3)(+25)-(-13); (4)(-11)-(+5). 解:(1)-2 (2)7 (3)38 (4)-165.计算:(1)12-21; (2)(-1.7)-(-2.5); (3)23-(-12); (4)(-16)-(-13). 解:(1)-9 (2)0.8 (3)76 (4)162.7有理数的乘除法1.有理数的乘法法则:两数相乘,同号__得正__,异号__得负__,并把__绝对值相乘__.任何数与0相乘都得0. 2.互为倒数:乘积是__1__的两个数互为倒数.3.有理数乘法运算时,应注意,先__确定符号__,再__确定积的绝对值__.4.几个有理数相乘,如果其中一个因数为0,则积为__0__.两个有理数相乘先确定积的符号,再把绝对值相乘.其法则是:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.3.(1)乘法交换律__ab =ba __;(1)(-25)×39×(-4); (2)乘法结合律__(ab )c =a (bc )__;(3)乘法分配律__a (b +c )=ab +ac __. 用两种方法计算(14+16-12)×12. 1.有理数除法法则:(1)除以一个不等于0的数,等于乘以这个数的__倒数__,即a ÷b =__a ×1b__(b 不等于0); (2)两数相除,同号得__正__,异号得__负__,并把绝对值相__除__. 2.a(a ≠0)的倒数是__1a__.3.若a >0,b <0,则ab__<__0,ab __<__0;若a <0,b <0,则ab__>__0,ab__>__0.1.有理数混合运算,应先__乘除__,再__加减__,如果有括号则先__算括号__里面的. 2.同级运算应按__从左到右__的顺序进行计算.3.有理数的混合运算中,有些能用__乘法的运算律__简化运算.例题:探究点一 有理数的乘法法则 例1 计算:(1)(-3)×9; (2)8×(-1); (3)(-12)×(-2); (4)(-5)×(-7).探究点三 多个有理数相乘的符号法则 活动三:计算:(1)(-3)×56×(-95)×(-14);(2)(-5)×6×(-45)×14.五、达标检测 反思目标1.两个有理数的积是负数,和为0,那么这两个有理数一定是( D ) A .一个为0,另一个数是负数 B .两个都是负数C .一个为正数,另一个为负数D .均不为0,且互为相反数 2.下列运算结果错误的是( D )A .(-2)×(-3)=6B .(+3)×(+4)=12C .(-5)×0=0D .(-12)×(-6)=-33.6×(-9)=__-54__; (-114)×(-45)=__1__;3×(-32)=__-92__; (-54)×32=__-158__. 4.写出下列各数的倒数:1,-1,13,-123,-34,0.45. 解:1,-1,3,-35,-43,2095.计算:(1)13×(-6);(2)(-312)×27; (3)(-35)×(-152);(4)(-123)×(-127). 解:(1)-2 (2)-1 (3)92 (4)157有理数除法法则例1 填空:(1)8÷(-4)=8×______=______;(2)(-15)÷3=(-15)×______=______;(3)(-14)÷(-12)=(-14)×______=______; (4)0÷(-1212)=______;0÷2012=______. (1)18-6÷(-2)×(-13); (2)214×(-76)÷(12-2). 2.8有理数乘方运算板书设计1.有理数乘方的意义2.有理数乘方运算的符号法则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.3.与乘方有关的探求规律问题例题:探究点一:乘方的意义例1 把下列各式写成乘方的形式,并指出底数和指数各是什么.(1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14); (2)25×25×25×25×25×25解析:首先化成幂的形式,再指出底数和指数各是什么.解:(1)(-3.14)×(-3.14)×(-3.14)×(-3.14)×(-3.14)=(-3.14)5,其中底数是-3.14,指数是5; (2)25×25×25×25×25×25=(25)6,其中底数是25,指数是6;方法总结:乘方是一种特殊的乘法运算,幂是乘方的结果,当底数是负数或分数时,要先用括号将底数括起来再写指数.探究点二:乘方的运算例2 计算:(1)-(-3)3; (2)(-34)2; (3)(-23)3; (4)(-1)2015. 解析:可根据乘方的意义,先把乘方转化为乘法,再根据乘法的运算法则来计算;或者先用符号法则来确定幂的符号,再用乘法求幂的绝对值.解:(1)-(-3)3=-(-33)=33=3×3×3=27;(2)(-34)2=34×34=916; (3)(-23)3=-(23×23×23)=-827; (4)(-1)2015=-1.方法总结:乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;-1的奇数次幂是-1,-1的偶数次幂是1.2.9有理数的混合运算有理数的混合运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.例题:探究点一:有理数的混合运算例1 计算:(1)(-5)-(-5)×110÷110×(-5); (2)-1-{(-3)3-[3+23×(-112)]÷(-2)}. 解析:(1)题是含有减法、乘法、除法的混合运算,运算时,一定要注意运算顺序,尤其是本题中的乘除运算.要从左到右进行计算;(2)题有大括号、中括号,在运算时,可从里到外进行.注意要灵活掌握运算顺序.解:(1)(-5)-(-5)×110÷110×(-5)=(-5)-(-5)×110×10×(-5)=(-5)-25=-30; (2)-1-{(-3)3-[3+23×(-112)]÷(-2)}=-1-{-27-[3+23×(-32)]÷(-2)}=-1-{-27-2÷(-2)}=-1-{-27-(-1)}=-1-(-26)=25.方法总结:有理数的混合运算可用下面的口诀记忆:混合运算并不难,符号第一记心间;加法需取大值号,乘法同正异负添;减变加改相反数,除改乘法用倒数;混合运算按顺序,乘方乘除后加减. 探究点二:数字规律探索例2 为了求1+2+22+23+24+…+22015的值,可令S =1+2+22+23+…+22015,则2S =2+22+23+24+…+22016,因此2S -S =22016-1,所以1+2+22+23+…+22015=22016-1,仿照以上推理,那么1+5+52+…+52015=________.解析:观察等式,可发现规律,根据规律即可进行解答.则设S =1+5+52+53+…+52015,5S =5+52+53+54+…+52016,5S -S =52016-1,∴S =52016-14,故填52016-14. 方法总结:解规律性问题的关键在于发现规律,应用规律解题.2.10科学计数法科学记数法:(1)把大于10的数表示成a ×10n 的形式.(2)a 的范围是1≤|a |<10,n 是正整数.(3)n 比原数的整数位数少1.例题:探究点一:用科学记数法表示大数例1 我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为( )A .167×103B .16.7×104C .1.67×105D .1.6710×106解析:根据科学记数法的表示形式,先确定a ,再确定n ,解此类题的关键是a ,n 的确定.167000=1.67×105,故选C.方法总结:科学记数法的表示形式为a ×10n ,其中1≤|a |<10,n 为整数,表示时关键要正确确定a的值以及n 的值.例2 2014年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元( )A .9.34×102B .0.934×103C .9.34×109D .9.34×1010解析:934千万=9340000000=9.34×109.故选C.方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.探究点二:将用科学记数法表示的数转换为原数例3 已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104;(2)6.070×105;(3)-3×103.解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.解:(1)2.01×104=20100;(2)6.070×105=607000;(3)-3×103=-3000.方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.。
第二章 有理数及其运算
第二章 有理数及其运算2.1 有理数1.在具体情境中,进一步认识负数,学会用正负数表示具有相反意义的量,体会负数是实际生活的需要. 2.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类.(重点)阅读教材P23~24,完成预习内容. (一)知识探究1.正整数、0和负整数统称为整数.正分数和负分数统称为分数. 2.整数和分数统称为有理数. (二)自学反馈1.(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示? (2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克,记作+0.02克,那么-0.03克表示什么? (3)某大米包装袋上标注着“净重量:10 kg ±150 g ”,这里的“10 kg ±150 g ”表示什么? 解:(1)沿顺时针方向转了12圈记作-12圈.(2)-0.03克表示乒乓球的质量低于标准质量0.03克. (3)每袋大米的标准质量应为10 kg ,但实际每袋大米可能有150 g 的误差,即每袋大米的净含量最多是10 kg +150 g ,最少是10 kg -150 g.2.把下列各数写在相应的集合里.-5,10,-4.5,0,+235,-2.15,0.01,+66,-35,15%,227,2 009,-16.正整数集合:{10,+66,2 009,…}负整数集合:{-5,-16,…}负分数集合:{-4.5,-2.15,-35,…}正分数集合:{+235,0.01,15%,227,…}整数集合:{-5,10,0,+66,2 009,-16,…} 负数集合:{-5,-4.5,-2.15,-35,-16,…}正数集合:{10,+235,0.01,+66,15%,227,2 009,…}有理数集合:{-5,10,-4.5,0,+235,-2.15,0.01,+66,-35,15%,227,2 009,-16,…}3.有理数的分类(分两类).有理数的分类标准要统一.活动1 小组讨论例1 在知识竞赛中,如果用“+10”表示加10分,那么扣20分记作什么? 解:记作-20分.例2 在数-5,23,0,-0.24,7,4 076,-59,-2中,正数有23,7,4 076,负数有-5,-0.24,-59,-2,整数有-5,0,7,4 076,-2,分数有23,-0.24,-59,有理数有-5,23,0,-0.24,7,4__076,-59,-2.例3 下列说法不正确的是(A)A .正整数和负整数统称为整数B .正有理数和负有理数和零统称有理数C .整数和分数统称有理数D .正分数和负分数统称为分数 活动2 跟踪训练1.下列说法正确的是(D)A .一个有理数不是正数就是负数B .正有理数和负有理数组成有理数C .有理数是指整数、分数、正有理数、负有理数和零这五类数D .负整数和负分数统称为负有理数2.有理数:-7,3.5,-12,112,0,π,1317中正分数有(C)A .1个B .2个C .3个D .4个3.下列各数:-8,-113,2.03,0.5,67,-44,-0.99,其中整数是-8,-44,负分数有-113,-0.99.4.有理数中,是整数而不是负数的是非负整数,是负有理数而不是分数的是负整数.活动3 课堂小结通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是正整数、零、负整数、正分数、负分数.2.2 数轴1.了解数轴的概念,学会画数轴,知道如何在数轴上表示有理数.(重点)2.能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应.(重点) 3.体会数形结合的思想方法.阅读教材P27~28,完成预习内容. (一)知识探究1.规定了原点、正方向、单位长度的直线叫做数轴. 2.数轴是一条直线,它可以向两端无限延伸. 3.数轴上原点左侧是负数,正数在原点的右侧. (二)自学反馈1.数轴的三要素是原点、正方向、单位长度.2.如图,数轴上点A 、B 表示的数分别是-2.5、2.3.指出图中所画数轴的错误:解:略.活动1 小组讨论例 (1)画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75; (2)画一条数轴,并表示出如下各点:1 000,5 000,-2 000; (3)画一条数轴,在数轴上标出到原点的距离小于3的整数; (4)画一条数轴,在数轴上标出-5和+5之间的所有整数. 解:略.数轴的三要素、画法、适当地选择单位长度和原点的位置.活动2 跟踪训练1.在数轴上点A 表示-4,如果把原点向负方向移动1.5个单位,那么在新数轴上点A 表示的数是(C) A .-512B .-4C .-212D .2122.在数轴上表示-1.2的点在(B)A .-1与0之间B .-2与-1之间C .1与2之间D .-1与1之间 3.数轴上表示-8的点在原点的左侧,距离原点8个单位长度;数轴上点P 距原点5个单位长度,且在原点的左侧,则点P 表示的数是-5.4.在数轴上,表示数-3,2.6,-35,0,413,-223,-1的点中,在原点左边的点有4个.5.写出数轴上点A ,B ,C ,D ,E 所表示的数:解:0,-2,1,2.5,-3.6.画一条数轴表示下列各数,并用“<”把这些数连接起来.1 3,2,-4.5,0,52,-0.5,-14.解:略.7.一个点在数轴上表示的数是-5,这个点先向左边移动3个单位长度,然后再向右边移动6个单位长度,这时它表示的数是多少呢?如果按上面的移动规律,最后得到的点是2,则开始时它表示什么数?解:-2,-1.利用数轴数形结合解题.活动3 课堂小结1.数轴的出现对数学的发展起了重要作用,以它作基础师生共同研究,什么是数轴?如何画数轴?如何在数轴上表示有理数?2.利用数轴很多数学问题都可以借助图直观地表示.2.3 绝对值1.借助数轴,理解绝对值和相反数的概念,知道|a|的含义以及互为相反数的两个数在数轴上的位置关系. 2.能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小.(重点) 3.通过应用绝对值解决实际问题,体会绝对值的意义和作用.(难点)阅读教材P30~31,完成预习内容. (一)知识探究1.一般地,数轴上表示数a 的点与原点的距离,叫做数a 的绝对值.2.一个正数的绝对值是它本身,即:若a>0,则|a|=a ;一个负数的绝对值是它的相反数,即:若a<0,则|a|=-a ;0的绝对值是0(双重性). (二)自学反馈1.数轴上有一点到原点的距离为6.03,那么这个点表示的数是±6.03.所以|6.03|=6.03,|-6.03|=6.03. 2.(1)|+13|=13; (2)|-8|=8; (3)|+315|=315;(4)|-8.22|=8.22.3.-213的绝对值是213,绝对值等于213的数是±213,它们是一对相反数.非负数的绝对值是它本身,负数的绝对值是它的相反数.活动1 小组讨论例1 -2的相反数是(A)A .2B .-2C .0.5D .-0.5 例2 下列四组数中不相等的是(C)A .-(+3)和+(-3)B .+(-5)和-5C .+(-7)和-(-7)D .-(-1)和|-1| 例3 下列说法正确的是(B)A .一个数的绝对值的相反数一定不是负数B .一个数的绝对值一定不是负数C .一个数的绝对值一定是正数D .一个数的绝对值一定是非正数例4 若|x -3|+|y -2|=0,则x =3,y =2. 例5 比较下列每组数的大小: (1)-1和-5; (2)-56和-2.7.解:(1)-1>-5.(2)-56>-2.7.活动2 跟踪训练1.在|-7|,5,-(+3),-|0|中,负数共有(A)A .1个B .2个C .3个D .4个 2.一个数的绝对值等于这个数本身,这个数是(D) A .1 B .+1,-1,0 C .1或-1 D .非负数3.在数轴上距离原点2个单位长度的点表示的数是±2,也就是说绝对值等于2的数是±2. 4.在数轴上表示下列各数,并求它们的绝对值:-32,6,-3,-8.6. 解:32;6;3;8.6.图略.5.已知|a|=3,|b|=5,a 与b 异号,求a 、b 两数在数轴上所表示的点之间的距离. 解:8.6.比较下列各组数的大小: (1)-110,-27;(2)-0.5,-23;(3)0,|-23|;(4)|-7|,|7|. 解:(1)-110>-27.(2)-0.5>-23.(3)0<|-23|.(4)|-7|=|7|.7.下面的说法是否正确?请将错误的改正过来. (1)有理数的绝对值一定比0大; (2)有理数的相反数一定比0小;(3)如果两个数的绝对值相等,那么这两个数相等; (4)互为相反数的两个数的绝对值相等. 解:(1)错误,可能等于0. (2)错误,可能比0大. (3)错误,可能互为相反数. (4)正确.活动3 课堂小结1.求一个有理数的相反数.2.绝对值的定义:有理数到原点的距离3.化简绝对值. |a|=⎩⎪⎨⎪⎧a (a>0)0(a =0)-a (a<0)4.两个负数比较大小,绝对值大的反而小.2.4 有理数的加法第1课时 有理数的加法法则1.了解有理数加法的意义,理解有理数加法法则的合理性. 2.能运用有理数加法法则正确进行有理数加法运算.(重点)阅读教材P34~36,完成预习内容. (一)知识探究结合课本对两个有理数相加的7个计算式,类似地再列举出相应的计算式并结合数轴解释,得出结果(如(+3)+(+4)、(-3)+(-4)、(-3)+(+4)、(+3)+(-4)、(+3)+(-3)、(-3)+0、(+3)+0),根据以上7个算式,思考:你能总结出有理数相加的符号如何确定?和的绝对值如何确定?互为相反数相加,一个有理数和0相加,和分别为多少?结合以上内容,总结得出有理数加法法则:1.同号两数相加,取相同符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数. (二)自学反馈计算:(1)16+(-8)=8; (2)(-12)+(-13)=-56;(3)(+312)+(-72)=0;(4)(+8)+(-3)=5; (5)(-0.125)+(18)=0;(6)0+(-9.7)=-9.7.在进行有理数加法运算时,一要辨别加数是同号还是异号;二要确定和的符号;三要计算和的绝对值.即“一辨、二定、三算”.活动1 小组讨论 例1 计算:(1)(-3)+(-9); (2)(-4.7)+3.9.解:(1)-12. (2)-0.8.例2 足球循环比赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数. 解:黄队净胜球:-2,红队净胜球:2,蓝队净胜球:0. 活动2 跟踪训练1.两个数的和为负数,则下列说法中正确的是(D) A .两个均是负数 B .两个数一正一负 C .至少有一个正数 D .至少有一个负数 2.一个正数与一个负数的和是(D)A .正数B .负数C .零D .不能确定符号 3.计算:(1)(+3)+(+8); (2)(+14)+(-12);(3)(-312)+(-3.5);(4)(-314)+(+213);(5)(-19)+8.3;(6)-3.4+4.解:11,-14,-7,-1112,-10.7,0.6.注意计算的符号,特别是负号.4.某县某天夜晚平均气温是-10 ℃,白天比夜晚高12 ℃,那么白天的平均温度是多少? 解:2 ℃.活动3 课堂小结 有理数的加法法则:1.同号相加,取相同的符号,并把绝对值相加.2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值. 3.任意有理数和零相加,仍得这个数.第2课时 有理数的加法运算律1.掌握有理数加法的运算律,理解小学中加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算,会根据算式的特点选择适当的简便运算方法.(重难点)阅读教材P37~38,完成预习内容. (一)知识探究加法的交换律的文字表达:两个数相加,交换加数的位置,和不变. 加法的交换律的字母表达:a +b =b +a . 加法的交换律的例子说明:1+2=2+1.加法的结合律的文字表达:三个数相加,先用前两个数相加,或者先用后两个数相加,和不变. 加法的结合律的字母表达:(a +b)+c =a +(b +c). 加法的结合律的例子说明:(1+2)+3=1+(2+3). (二)自学反馈 计算:(1)(-7.34)+(-12.74)+7.34+12.4; (2)(-35+15)+(-45);(3)(-37)+(+15)+(+27)+(-115); (4)(-20.75)+314+(-4.25)+1934;(5)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7).解:(1)-0.34.(2)-65.(3)-117.(4)-2.(5)1.活动1 小组讨论 例1 计算:(1)(-2)+3+1+(-3)+2+(-4); (2)16+(-25)+24+(-35); (3)314+(-235)+534+(-825);(4)(-7)+6+(-3)+10+(-6); 解:(1)-3.(2)-20.(3)-2.(4)0.例2 有一批食品罐头,标准质量为每听454 g ,现抽取10听样品进行检测,结果如下表:听号 1 2 3 4 5 质量/g 444 459 454 459 454 听号 6 7 8 9 10 质量/g454449454459464这10听罐头的总质量是多少? 解:解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4 550(g).解法二:把超过标准质量的克数用正数表示,不足的用负数表示,列出10听罐头与标准质量的差值表:听号 1 2 3 4 5 与标准质 量的差/g -10 +5 0 +5 0 听号 6 7 8 9 10 与标准质 量的差/g-5+5+10这10听罐头与标准质量差值的和为 (-10)+5+0+5+0+0+(-5)+0+5+10=[(-10)+10]+[(-5)+5]+5+5=10(g). 因此,这10听罐头的总质量为454×10+10=4 540+10=4 550(g).注意运算律的运用.活动2 跟踪训练1.用适当的方法计算:(1)23+(-17)+6+(-22); (2)1+(-12)+13+(-16);(3)1.125+(-325)+(-18)+(-0.6);(4)(-2.48)+(+4.33)+(-7.52)+(-4.33). 解:(1)-10.(2)23.(3)-3.(4)-10.2.某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15,+14,-3,-11,+10,-12,+4,-15,+16,-18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米? (2)若汽车耗油量为a 公升/千米,这天下午汽车共耗油多少公升?解:(1)15+14-3-11+10-12+4-15+16-18=0,距出发地0千米. (2)118a.活动3 课堂小结有理数加法交换律、结合律: 1.加法交换律:a +b =b +a ;加法结合律:(a +b)+c =a +(b +c). 2.简便运算: ①运用运算律;②运用相反数的和为零; ③凑整.2.5 有理数的减法1.掌握有理数的减法法则,熟练地进行有理数的减法运算.(重点) 2.了解加与减两种运算的对立统一关系,掌握数学学习中转化的思想.阅读教材P40~41,完成预习内容. (一)知识探究通过实际例子,一方面,利用加法与减法互为逆运算可知:计算4-(-3),就是求一个数x ,使x +(-3)=4,易知x =7,所以4-(-3)=7.① 另一方面,4+(+3)=7,② 由①②有4-(-3)=4+(+3).再试把减数-3换成正数,任意列出一些算式进行计算,如: 计算:9-8与9+(-8);15-7与15+(-7). 由上述内容,得出减法法则:减去一个数,等于加这个数的相反数.用字母表示为:a -b =a +(-b).减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.有理数的减法法则是:减去一个数,等于加这个数的相反数; 用字表示为:a -b =a +(-b). (二)自学反馈 计算:(1)(-3)-(-6); (2)0-8; (3)6.4-(-3.6);(4)-312-(+514).解:(1)3.(2)-8. (3)10.(4)-834.(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:a -b =a +(-b)活动1 小组讨论 例 计算:(1)(-38)-(-36); (2)0-(-711);(3)1.7-(-3.5); (4)(-234)-(-112);(5)323-(-234);(6)(-334)-(+1.75).解:(1)-2.(2)711.(3)5.2.(4)-114.(5)6512.(6)-5.5.活动2 跟踪训练1.计算:(1)(-23)-(+112)-(-14);(2)(-0.1)-(-813)-1123-(-110);(3)(-1.5)-(-1.4)-(-3.6)-4.3-(+5.2);(4)(5-6)-(7-9).解:(1)-2312.(2)-313.(3)-6.(4)1.2.根据题意列出式子计算.(1)一个加数是1.8,和是-0.81,求另一个加数; (2)-13的绝对值的相反数与23的相反数的差.解:(1)-0.81-1.8=-2.61. (2)-|-13|-(-23)=-13+23=13.活动3 课堂小结1.有理数的减法法则:a -b =a +(-b). 2.转化原则:减号变加号,减数变成相反数.2.6 有理数的加减混合运算 第1课时 有理数的加减混合运算1.会把有理数的加减混合运算统一为加法运算.2.熟悉有理数加减运算的运算律,能把有理数加法运算省略加号和括号,理解有理数的和.(重难点)阅读教材P43,完成预习内容. (一)知识探究把下列算式统一为加法,并写成省略加号的形式:(-20)+(+3)-(-5)-(+7)=(-20)+(+3)+(+5)+(-7)=-20+3+5-7, (-7)+(+5)+(-4)-(-10)=(-7)+(+5)+(-4)+(+10)=-7+5-4+10. 认识算式:①2-5;②-5+3;③-2-8;④-4+2-6的意义.注意有理数的加减混合运算写成省略加号的和的形式的意义.(二)自学反馈把(+23)+(-45)-(+15)-(-13)-(+1)写成省略加号的和的形式,并计算.解:23-45-15+13-1=-1.活动1 小组讨论例1 计算:(1)(+27)+(-49)-(+59)-(-57)-(+1);(2)-7-(-8)-(-712)-(+9)+(-10)+1112;(3)-99+100-97+98-95+96+ (2)(4)-1-2-3- (100)解:(1)-1.(2)1.(3)50.(4)-5 050.例2 银行储蓄所办理了8件工作业务,取出950元,存进500元,取出800元,存进1 200元,存进了2 500元,取出1 025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元? 解:增加了,增加了1 625元.例3 把-a +(+b)-(-c)+(-d)写成省略加号的和的形式为-a +b +c -d .总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算; (2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算. 活动2 跟踪训练1.把下列算式先统一为加法运算再写成省略括号和的形式,并把结果用两种读法读出来. (1)(+9)-(+10)+(-2)-(-8)+3; (2)(-13)-(+22)+(-17)-(-18). 解:(1)9-10-2+8+3. (2)-13-22-17+18. 2.计算:(1)(-7)-(+5)+(-4)-(-10); (2)1-4+3-0.5;(3)34-72+(-16)-(-23)-1; (4)-2.4+3.5-4.6+3.5.解:(1)-6.(2)-0.5.(3)-314.(4)0.活动3 课堂小结1.有理数的加减混合运算可以利用运算顺序进行计算. 2.熟练进行含有整数、小数、分数的加减混合运算.第2课时 有理数加减混合运算中的简便计算1.运用加法交换律和结合律简化有理数加减混合运算.(重难点) 2.能熟练地进行有理数的加减混合运算.阅读教材P44~45,完成预习内容. (一)知识探究计算:4.5+(-3.2)+1.1+(-1.4). 解:原式=4.5+1.1+[(-3.2)+(-1.4)] =5.6+(-4.6) =1.运用加法交换律和结合律可以简化运算.(二)自学反馈运用交换律和结合律计算: (1)3-10+7=3+7-10=0;(2)-6+12-3-5=-6-3-5+12=-2.活动1 小组讨论 例1 计算:(1)(-9)-(-7)+(-6)-(+4)-(-5); (2)(+4.3)-(-4)+(-2.3)-(+4).解:(1)原式=-9+7-6-4+5=(-9-6-4)+7+5=-19+12=-7. (2)原式=4.3+4-2.3-4=2.例2 已知上周周五(周末不开盘)收盘时股市指数以2 880点报收,本周内股市涨跌情况如下表,则本周四收盘时的股市指数为(D)星期 一 二 三 四 五 股指变化+50-21-100+78-78A.2 880 B .2 877 正数表示涨,负数表示跌,每天的变化是相对于前一天来比较的,所以周四的股市指数为2 880+50-21-100+78=2 887.总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算; (2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算. 活动2 跟踪训练 1.计算:(1)(-8)-(-15)+(-9)-(-12); (2)(-13)-15+(-23);(3)(-18)-(-65)+(+8)-(+710);(4)-23+(-16)-(-14)-12.解:(1)10.(2)-16.(3)-9.5.(4)-1312.2.甲、乙两队进行拔河比赛,标志物先向乙队方向移动了0.2米,又向甲队方向移动了0.5米,相持一会后,又向乙队方向移动了0.4米,随后又向甲队方向移动了1.3米,在大家的欢呼鼓励中,标志物又向甲队方向移动了0.9米,若规定标志物向某队方向移动2米该队即可获胜,那么现在谁赢了?用算式说明你的判断.解:甲队获胜,因为-0.2+(+0.5)+(-0.4)+(+1.3)+(+0.9)=+2.1(米)>2(米),所以甲队获胜.活动3 课堂小结在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.第3课时有理数加减混合运算的应用1.能综合运用有理数及其加、减法的有关知识灵活地解决简单的实际问题.(重难点)2.感受到有理数运算的实用性,增强学好数学的信心.阅读教材P47,完成预习内容.知识探究折线统计图可以表示同一种量在不同时间的变化规律,如北京周一到周日的天气变化情况.正确地画出折线统计图是观察变化情况的依据.画法及步骤:①写出统计图名称,如天气、水位等;②画出横、纵两条互相垂直的数轴(有时不画箭头,一般向上为正方向,向右为正方向),分别表示两个量,标出单位和单位长度;③根据统计数据,分别描出对应点,描点时可借助三角板来完成;④用线段把所描的点顺次连接起来.活动1 小组讨论例下表是一个水文站在雨季对某条河一周内水位变化情况的记录.其中,水位上升用正数表示,水位下降用负数表示(水位变化的单位:米).星期一二三四五六日变化+0.4 -0.3 -0.4 -0.3 +0.2 +0.2 +0.1 注:①表中记录的数据为每天12时的水位与前一天12时水位的变化量.②上周日12时的水位高度为2米.(1)请你通过计算说明本周末水位是上升了还是下降了.(2)用折线图表示本周每天的水位,并根据折线图说明水位在本周内的升降趋势.分析:计算这七天水位变化量的和,看结果是正、还是负,若是正,说明周末水位上升了;若是负,说明水位下降了.解:(1)因为(+0.4)+(-0.3)+(-0.4)+(-0.3)+(+0.2)+(+0.2)+(+0.1)=0.4-0.3-0.4-0.3+0.2+0.2+0.1=-0.1(米),所以本周末水位下降了.(2)折线图如图所示:由折线图可看出,本周水位先上升,再下降,最后上升.①画折线统计图时,要先确定哪一个量或哪一个数值为0,即基准;②要标出横线和竖线的单位;③选择单位长度时要考虑使统计图有明显的上升和下降的幅度,能看出变化情况.活动2 跟踪训练1.光明中学初一(1)班学生的平均身高是160厘米.(1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表:姓名小明小彬小丽小亮小颖小山身高159 154 165身高与平均-1 +2 0 +3身高的差值(2)谁最高?谁最矮?(3)最高和最矮的学生身高相差多少?解:(1)依次填入:162 160 163 -6 +5.(2)小山最高,小亮最矮.(3)最高和和最矮的学生身高相差11厘米.2.9.11事故后,美国股市出现狂跌,股市指数一度跌到历史最低点,后经政府宏观调控,稍有反弹,下表是某周(周末不开盘)(1)本周内哪天股市指数最高?哪天股市指数最低?(2)本周五的股市指数比上周五的股市指数高还是低?(3)若将上周五的股市指数记为0点,请你画出本周的股市指数折线图.解:(1)本周内星期四股市指数最高,星期二股市指数最低.(2)本周五的股市指数比上周五的股市指数高(3)图略.活动3 课堂小结1.知识归纳:利用正、负数表示相反意义的量,进行有理数的加减混合运算解决实际问题.2.数学思想方法:用已学知识解决新问题的转化思想.2.7 有理数的乘法第1课时 有理数的乘法法则1.了解有理数乘法的实际意义.2.理解有理数的乘法法则,能熟练地进行有理数乘法运算.(重点)阅读教材P49~51,完成预习内容. (一)知识探究有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定积的符号,再计算积的绝对值. 乘积为1的两个数互为倒数.如:-3的倒数是-13,0.5的倒数是2,-212的倒数是-25.看书第50、51页的内容,体会几个不等于零的有理数相乘,积的符号的确定方法:几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负.几个数相乘,如果其中有一个因数是0,积等于0. (二)自学反馈1.计算:(-114)×(-45)=1,(+3)×(-2)=-6,0×(-4)=0,123×(-115)=-2,(-15)×(-13)=5,-│-3│×(-2)=6.2.计算:(-2)×(-3)×(-5)=-30, (-723)×3×(-123)=1,(-9.89)×(-6.2)×(-26)×(-30.7)×0=0.(1)运用乘法法则,先确定积的符号,再把绝对值相乘;(2)0没有倒数.活动1 小组讨论例1 计算:(+5)×(+3)=15, (+5)×(-3)=-15, (-5)×(+3)=-15, (-5)×(-3)=15, (+6)×0=0, 6×(-4)=-24,(-6)×4=-24, (-6)×(-4)=24. 例2 计算:(1)(-112)×815×(-23)×(-214)=-115;(2)14×(-16)×(-45)×(-114)×8×(-0.25)=8. 活动2 跟踪训练 1.计算:(1)(-5)×0.2=-1; (2)(-8)×(-0.25)=2; (3)(-312)×(-27)=1;(4)0.1×(-0.01)=-0.001;(5)(-59)×0.01×0=0;(6)(-2)×(-5)×(+56)×(-30)=-250;(7)312×(-47)+(-25)×(-334)=-12.2.a ×(-56)=1则a =-65.一个有理数的倒数的绝对值是7,则这个有理数是±17.3.判断对错:(1)两数相乘,若积为正数,则这两个因数都是正数.(×) (2)两数相乘,若积为负数,则这两个数异号.(√) (3)两个数的积为0,则两个数都是0.(×) (4)互为相反的数之积一定是负数.(×)(5)正数的倒数是正数,负数的倒数是负数.(√) 活动3 课堂小结1.有理数的乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0.2.倒数:乘积是1的两个数互为倒数.(负倒数:乘积为-1)3.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.第2课时 有理数的乘法运算律1.进一步应用乘法法则进行有理数的乘法运算.2.能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用.(重难点)阅读教材P52~53,完成预习内容.(一)知识探究 乘法的交换律文字表达:两个数相乘,交换因数的位置,积相等. 乘法的交换律字母表达:ab =ba . 乘法的结合律文字表达:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. 乘法的结合律字母表达:(ab)c =a(bc).乘法的分配律文字表达:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 乘法的分配律字母表达:a(b +c)=ab +ac .(二)自学反馈1.计算:(-3)×56×(-95)×(-14)×(-8)×(-1). 解:-9.2.计算:(1)-34×(8-43-1415);(2)191819×(-15). 解:(1)-4310.(2)-299419. 运用运算律进行简便运算.活动1 小组讨论例 计算:(1)(-0.5)×(-316)×(-8)×113; 解:-1.(2)-10556×12; 解:-1 270.(3)(-34+156-78)×(-24); 解:-5.(4)317×(317-713)×722×2122; 解:-4.(5)(23-49+527)×27-1117×8+117×8. 解:3.活动2 跟踪训练1.运用分配律计算(-3)×(-4+2-3),下面有四种不同的结果,其中正确的是(D)A .(-3)×4-3×2-3×3B .(-3)×(-4)-3×2-3×3C .(-3)×(-4)+3×2-3×3D .(-3)×(-4)-3×2+3×32.在运用分配律计算3.96×(-99)时,下列变形较合理的是(C)A .(3+0.96)×(-99)B .(4-0.04)×(-99)C .3.96×(-100+1)D .3.96×(-90-9)3.对于算式2 007×(-8)+(-2 007)×(-18),逆用分配律写成积的形式是(C)A .2 007×(-8-18)B .-2 007×(-8-18)C .2 007×(-8+18)D .-2 007×(-8+18)4.计算1357×316最简便的方法是(D) A .(13+57)×316B .(14-27)×316C .(10+357)×316D .(16-227)×316 5.计算:(1)(-4)×8×(-2.5)×0.1×(-0.125)×10;(2)(134-78-112)×117; (3)(-5.25)×(-4.73)-4.73×(-19.75)-25×(-5.27).解:(1)-10.(2)1921.(3)250. 活动3 课堂小结1.有理数乘法交换律.2.有理数乘法结合律.3.有理数乘法分配律.2.8 有理数的除法1.理解除法的意义,掌握有理数的除法法则.2.能熟练进行有理数的除法运算.(重点)3.感受转化、归纳的数学思想.阅读教材P55~56,完成预习内容.(一)知识探究1.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数. 2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何不等于0的数仍得0. (二)自学反馈(1)(-18)÷6=-3; (2)5÷(-15)=-25; (3)(-27)÷(-9)=3;(4)0÷(-2)=0. 0不能作除数.活动1 小组讨论例1 计算:(1)(-15)÷(-3); (2)12÷(-14); (3)(-0.75)÷0.25;(4)(-12)÷(-112)÷(-100). 解:(1)5.(2)-48.(3)-3.(4)-1.44.例2 计算:(1)(-18)÷(-23); (2)16÷(-43)÷(-98). 解:(1)27.(2)323. 乘除混合运算要先将除法化成乘法,然后确定积的符号,最后求出结果.活动2 跟踪训练1.两个不为零的有理数的和等于0,那么它们的商是(B)A .正数B .-1C .0D .±12.两个不为0的数相除,如果交换它们的位置,商不变,那么(D)A .两数相等B .两数互为相反数C .两数互为倒数D .两数相等或互为相反数3.计算:(1)-0.125÷(-38); (2)(-215)÷1110; (3)(-112)÷34÷1.4. 解:(1)13.(2)-2;(3)-107. 活动3 课堂小结1.法则1:a ÷b =a ·1b. 2.法则2:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数仍得0.3.化简分数.2.9 有理数的乘方1.理解有理数乘方的意义,理解乘方运算、幂、底数等概念的意义.2.正确进行有理数乘方运算.(重点)阅读教材P58~59,完成预习内容.(一)知识探究1.求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂,a 叫底数,n 叫指数.乘方a n 有双重含义:(1)表示一种运算,这时读作“a 的n 次方”;(2)表示乘方运算的结果,这时读作“a 的n 次幂”. 2.正数的任何次幂都是正数,0的任何正整数次幂都是0;负数的奇次幂是负数,偶次幂是正数. (二)自学反馈 1.在(-2)6中,底数是-2,指数是6,运算结果是64;在-26中,底数是2,指数是6,运算结果是-64.(特别注意)2.底数是-23,指数是3的幂是-827. 3.(-1)2 017=-1,02 017=0,(-0.1)4=0.000__1.在书写乘方时,若底数为负数、分数时一定要加括号.3.(-12)4表示的意义是4个-12相乘,23×23×23×23可写成(23)4. 4.计算:(-25)3=-8125;3×23=24;(3×2)3=216;(-3)3×(-42)=432;(-324)2-324=4516.活动1 小组讨论例 计算:(1)(-2)2×(-2)3; (2)5×(-3)2;(3)(-2)4-(-4)2; (4)(-3×2)2-3×22.解:(1)-32.(2)45.(3)0.(4)24.活动2 跟踪训练1.如果一个数的平方与这个数的差等于零,那么这个数只能是(D)A .0B .-1C .1D .0或12.下列说法正确的是(D)A .一个数的偶次幂一定是正数B .一个正数的平方比原数大C .一个负数的立方比原数小D .互为相反数的两个数的立方仍互为相反数3.任何一个有理数的二次幂是(B)A .正数B .非负数C .负数D .无法确定4.当n 为整数时,(-1)2n -1+(-1)2n 的值为(B)A .-2B .0C .1D .25.某种细胞每过30分钟便由1个分裂成2个,经过5小时后,这种细胞1个能分裂成多少个?(1)细胞每30分钟分裂一次,则5个小时共分裂10次;(2)5个小时后,细胞的个数一共有=1__024个,为了简便可以记作210.6.①边长为a 的正方形的面积为a 2;②棱长为a 的正方体的体积为a 3;③把一张纸对折一次可裁成两张,对折2次可裁成4张,问对折3次可裁成几张?用算式如何表示?23.如果对折10次、100次,用算式如何表示?210,2100.7.计算(-2)3,(-3)3,(-12)3,(-13)3,并找出其中最大的数和最小的数.解:(-2)3=-8,(-3)3=-27,(-12)3=-18,(-13)3=-127. 其中最大的数为-127,最小的数为-27. 活动3 课堂小结1.乘方2.乘方的计算:3.乘方的性质.。
七年级数学第二章有理数及其运算知识总结+教师用
有理数及其运算知识总结一、本章知识概述本章所学习的是有理数及其运算,我们可以将本章的内容分为三大部分:第一部分:主要内容是有理数的有关概念.首先是理解有理数的意义及分类,判断一个数是正数还是负数,运用正、负数表示生活中具有相反意义的量.其次是认识数轴,用数轴上的点表示有理数,借助数轴认识相反数的概念及互为相反数的一对数在数轴上的位置关系,利用数轴比较有理数的大小.第三是理解绝对值的概念及求一个数的绝对值,利用绝对值比较两个负数的大小,通过应用题解决实际问题,体会绝对值的意义和作用.第二部分:学习有理数的加减法运算,通过探索有理数加法法则和运算律的过程,理解有理数的加法法则和运算律,利用有理数的加法法则进行有理数的加法运算,并利用运算律简化运算;通过探索有理数减法法则的过程,理解有理数的减法法则,利用有理数的减法法则进行有理数的减法运算;利用有理数的加、减法法则进行包括整数、分数或小数的有理数的加减混合运算,并适当利用运算律简化运算;综合运用有理数及其加法、减法的有关知识,解决简单的实际问题,体会数学与现实生活的联系.第三部分:主要内容是有理数的乘、除、乘方运算及有理数的加、减、乘、除、乘方混合运算.经历探索有理数乘法法则及运算律的过程,发展观察、归纳、猜测、验证等能力 .根据有理数乘法法则进行有理数的乘法运算,运用乘法运算律简化计算;根据有理数除法法则进行有理数的除法运算,求有理数的倒数;根据有理数乘方的意义进行有理数的乘方运算,通过实例感受当底数大于1时,乘方运算结果的快速增长.根据有理数混合运算顺序的规定,进行有理数加、减、乘、除、乘方的混合运算,在运算过程中,合理使用运算律简化运算;使用计算器进行有理数的加、减、乘、除、乘方运算,使用计算器进行实际问题的复杂运算.二、重点知识归纳及讲解1、正数和负数的概念比0大的数叫做正数;在正数前面加上“-”号的数叫做负数;0既不是正数,也不是负数.为了突出数的符号,可以在正数前面加“+”号,一般地“+”号往往省略不写,但负数前面的“-”号不能省略.对于正数和负数的概念,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数.2、有理数的概念及分类整数和分数统称为有理数:正数、负数和零也统称为有理数.整数包括正整数、零和负整数、分数包括正分数和负分数;正数包括正整数和负整数;负整数包括负整数和负分数.到目前为止,我们学过的数细分有五类:正整数、正分数、零、负整数、负分数,因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数.有时为了研究的需要,整数也可以看作是分母为 1的分数,但本章中的分数是指不包括分母是1的分数.通常把正整数和零统为非负数;负数和零统称为非正数;正整数和零统称为非负整数,即为自然数;负整数和零统称为非正整数.3、数轴的概念及画法规定了原点、正方向和单位长度的直线叫做数轴.数轴的概念中包含有三层含义:一是说数轴是一条直线,可以向两端无限延伸;二是说数轴具有原点,正方向和单位长度三要素,三者缺一不可;三是说数轴原点的选定,正方向的取向、单位长度大小的确定,是根据实际需要规定的.画数轴的步骤:(1)画一条直线,一般画成水平的直线;(2)在直线上选取一点为原点,用实心点表示,在原点下边标上0;(3)用箭头表示正方向,一般规定向右为正;(4)选取适当的长度为单位长度,用细短线画出,并在下边标上对应的数.4、相反数的概念如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等,这就是相反数的几何意义.一般地,数a的相反数是-a,这里a表示任意一个数,可以是正数、负数或零,还可以代表任意一个代数式,表示或求一个数的相反数,只要在这个数的前面添上一个“-”号就可以了.相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数;不能理解为只要符号不同的两个数就互为相反数,只有符合不同的两个数是说除了符号不同以外完全相同.5、绝对值的概念在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,数a的绝对值记作“|a|”.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0,这就是绝对值的代数意义,也可表示为:6、绝对值的有关性质(1)对任意有理数a,都有|a|≥0;(2)若|a|=0,则a=0;(3)若|a|=|b|,则a=b或a=-b;(4)若|a|=b(b>0),则a=±b;(5)若|a|+|b|=0,则a=0且b=0;(6)对任意有理数a,都有|a|=|-a|.7、有理数大小的比较法则在数轴上表示的两个数,右边的数总比左边的数大;正数都大于 0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小 .8、有理数加法法则同号两数相加,取相同的符号,并把绝对值相加 .异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并把较大的绝对值减去较小的绝对值.一个数同 0相加,仍得这个数.9、有理数加法运算律加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)10、有理数减法法则减去一个数,等于加上这个数的相反数,即: a-b=a+(-b).11、代数和的意义几个正数或负数的和叫做代数和,代数和一般用省略加号、括号的和的形式来表示,代数和不仅表示有理数相加的结果,而且还可表示加法运算.12、有理数加减混合运算步骤(1)把加减混合运算统一成加法;(2)写成省略加号、括号的代数和;(3)利用加法法则及运算律进行计算.13、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘都得0.14、多个非零因数相乘,积的符号规律n个不等于零的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数的个数为偶数个时,积为正.n个数相乘,有一个因数为0,积就为0.15、有理数乘法的运算律(1)交换律:两个因数相乘,交换因数的位置,积不变.即a·b=b·a;(2)结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即(a·b)·c=a·(b·c);(3)分配律:一个数同两个数的和相乘,等于把这个数分别同这两数相乘,再把所得的积相加.即a(b +c)=ab+ac.16、倒数的概念乘积为1的两个有理数互为倒数.即当a·b=1时,a与b互为倒数.由于任何一个有理数与0的积为0,不可能是1,所以0没有倒数.倒数还可以说成是:1除以一个数(除数不等于0)的商叫做这个数的倒数,如a≠0,a的倒数为1a.17、有理数的除法法则除以一个数等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都得0.18、利用除法化简分数除法可以写成几种不同的形式,例如:6÷3可以写成63,还可写成6∶3.说明除法可以表示成分数和比的形式;反过来,分数和比可化为除法,由于除法、分数和比可以互化,所以可以利用除法化简分数.19、乘方的概念求几个相同因数的积的运算,叫做乘方,即在n a中,a叫做底数,n叫做指数,n a叫做幂.na的读法有两种:(1)读作a的n次幂.(2)读作a的n次方.20、有理数的乘方法则正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.21、学记数法a 的形式,其中a的整数位数只有一位,这种记数的方法,叫做学记数把一个大于10的数记成10n法.22、有理数的混合运算有理数的运算中,加减为一级运算,乘除为二级运算,乘方(及开方——乘方的逆运算,以后将讲到)为三级运算.对于有理数的混合运算,要特别注意运算顺序及正确使用符号法则确定各步运算结果的符号.有理数的运算顺序是:先算乘方,再算乘除,最后算加减,对于同级运算,一般从左到右依次进行.如果有括号,就先算括号内的,且一般先算小括号内的,再算中括号内的,最后算大括号内的.如果能利用运算律简化计算,可变更上面的运算顺序,灵活处理.三、难点知识剖析1、负数的产生及其意义随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,为了满足实际需要,引入了负数、负数是由于实际需要产生的,负数也是客观存在的数 .正数和负数通常表示具有相反意义的量,若正数表示某种意义的量,则负数就表示其相反意义的量,反之亦然 .2、数集的概念把一些数放在一起,就组成一个数的集合,简称数集、所有的有理数组成的数集叫做有理数集,类似地,所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,等等 .3、多重符号的化简规律单独一个有理数前面的“+”号和“-”号,一般都是性质符号,读作“正”号或“负”号 .括号前是“+”号时,去掉括号和“+”号后,括号内的数不变,括号前是“-”号时,去掉括号和“-”号后,括号内的数就变成它的相反数 .在一个数的前面添加一个“+”号,仍然与原数相同;在一个数的前面添加一个“-”号,就成为原数的相反数 .4、两个负有理数的大小比较两个负有理数的大小比较与其它数一样,可以利用数轴找准两个负有理数在数轴上的对应点,右边的数总比左边的数大 .两个负有理数的大小比较,还可以利用绝对值,求这两个数的绝对值,比较两个数绝对值的大小,绝对值大的反而小 .5、有关绝对值的计算及化简灵活正确运用绝对值的代数意义及有关性质 .6、积的符号的确定方法有理数乘法与算术中的乘法的区别在于积的符号.几个正数与负数相乘时积的符号法则:几个不等于0的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数有偶数个数,积为正;几个数相乘,有一个因数为0,积为0,根据积的符号法则,在有理数乘法中,不管有多少个不为0的数相乘,都应该首先根据负因数的个数一次性地先确定积的符号,这样做的好处是既简练又准确.7、几个非0的有理数相除,商的符号的确定几个非0的有理数相除,商的符号由负数的个数决定:当负数的个数为奇数时,商为负;当负数的个数为偶数时,商为正.如: (-12)÷(-2)÷(-3)——三个负数:负=-(12÷2÷3)=-2(-12)÷2÷(-3)——两个负数:正=+(12÷2÷3)=28、有理数混合运算中应注意的问题(1)要注意运算顺序;(2)要灵活运用运算定律进行简便运算,不要搞错符号,特别是乘方的符号;(3)要灵活进行小数、分数的互化;(4)互为相反数的和,互为倒数的积,有因数为零,特殊运算先行结合.典型例题例1:一个物体沿着南北两个相反方向运动,如果把向南的方向规定为正,那么走 6km,走-4.5km,走0km的意义各是什么?分析:正数与负数可表示具有相反意义的量,正数表示向南运动,则负数表示向北运动 .0表示原地不动,0表示正数与负数的分界,在实际问题中也有确定的意义.解:走 6km表示物体向南走6km;走- 4.5km表示物体向北走4.5km;走 0km表示物体原地不动.例2:某老师把某一小组五名同学的成绩简记为:+ 10、-5、0、+8、-3,又知记为0的实际成绩表示90分,正数表示超过90分,则这五位同学的平均成绩为多少分?分析:由题意先求出这五位同学的实际成绩,如简记为+ 10的学生实际成绩为100,然后再求平均成绩.解:依题意知,五位同学在实际成绩分别为:100、85、90、98、87,其平均成绩为:1(10085909887)92().5++++=分例3:如图所示的数轴上, A、B、C、D、E各点分别表示什么数?分析:根据各点在原点的左侧,右侧还是在原点上,来确定数是负数,正数还是 0,根据各点距离原点多少个长度单位,来确定数的值.解:点A表示数132;点B表示数12;点C表示数0;点D表示-3;点E 表示数142-. 例4:在数轴上画出表示下列各数的点,并用“<”连接起来;分析:首先画出数轴,三要素要齐全;再把各数在数轴上的对应点找出来;然后根据这些数在数轴上的位置顺序比较大小,再用“<”连接起来.解:这些数在数轴上的表示如图所示.它们从小到大的排列为:111132101242242<-<-<<<< 例5:利用绝对值比较下列有理数的大小 .(1)-0.6,-60234(2) ,,345--- 分析:比较负数的大小,先求出各数的绝对值,关键是比较绝对值的大小,绝对值大的反而小,比较分数大小,一般要化成同分母的分数来比较 .解:(1)|-0.6|=0.6, |-60|=60∵ 0.6<60,∴ -0.6>-60.224033454448(2) ||||||336044605560404548 ,606060234 .345---<<∴->->-==,==,==, 例6:已知 |a +2|+|b -3|=0,求a 和b 的值.分析:由绝对值的非负性可知, |a +2|≥0,|b -3|≥0,而且只有当|a +2|和|b -3|都等于0时,|a +2|+|b -3|=0才成立,因为只有0的绝对值等于0,所以a=-2,b=3.解:∵ |a +2|+|b -3|=0,又 ∵ |a+2|≥0,|b -3|≥0,∴ |a +2|=0,|b -3|=0.∴ a +2=0,b -3=0.∴ a=-2,b=3.例7:计算分析:进行有理数加减混合运算时,应先把加减运算统一成加法运算,再写成省略加号和括号的代数和,最后运用有理数的加法法则及运算律进行计算,能够简化运算的尽量简化运算 .解:(1)原式=(-5)+(-3)+(-9)+(+7)=-5-3-9+7=(-5-3-9)+7=-17+7=-1034210(2)()()()()10757++++-+-原式=例8:计算题:2322232183(1)(1)(1)(0.51);362141(2)(3)12(2).3(2)÷-+⨯------÷--- 268491(1)()()3721168471 76834922 (2)29(8)1⨯-+⨯---++-⨯-----解:原式==121=1684-6原式====-1 注:(1)要按运算顺序进行计算.(2)乘方时要看清楚底数与指数,先确定幂的符号.例9:计算题:242112518(1){[(2)]()(2)}();23639131(2)0.25()(1)(12 3.75)24.283--÷---÷--÷-⨯-++-⨯112518(1){[2)]()2)}()23639251 []631 3 3131 (2)16(1)124224 3.7521683+÷-+÷-⨯⨯⨯⨯-⨯⨯-+⨯+⨯-⨯解:原式=169=(-)+2(-)589=(-5+2)(-)889=(-)(-)38=原式=4 1+33+56-900== 注:第(1)小题先由里及外逐层去掉括号,同时把除法转化为乘法进行运算,第(2)小题应用乘法分配律使运算得以简化.例10:用学记数法表示下列各数.(1)270.3; (2)3870000;(3)光的速度约为300 000 000米/秒;(4)0.5×9×1000000; (5)10.解:(1)270.3=2.703×100=2.703×102.(2)3870000=3.87×1000000=3.87×106.(3)300000000=3×100000000=3×108.(4)0.5×9×1000000=4.5×106.(5)10=1×10.说明:学记数法a ×10n 中,a 是小于10且大于等于1的数,n 比原数位的整数位数少1,比如:3870000000是10位数,指数n 就是9.这就是说n 等于原数的整数位数减1,而不是比所有的数位和少1.如179.4=1.794×102,而不是179.4=1.794×103.例11:某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6 ℃,若该地地面温度为21 ℃,高空某处温度为-39 ℃,求此处的高度是多少千米?解: 1×{[21-(-39)]÷6}=1×(60÷6)=10(千米)因此:此处的高度是10千米.。
第2章《有理数及其运算》知识讲练(学生版)
2023-2024学年北师大版数学七年级上册章节知识讲练知识点01:有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:细节剖析:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数表示没有3个苹果用+3表示,没有苹果用0表示表示某种状态00C表示冰点表示正数与负数的界点0非正非负,是一个中性数2.数轴:规定了原点、正方向和单位长度的直线.细节剖析:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.细节剖析:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.数a的绝对值记作a.(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.知识点02:有理数的运算1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. (2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0. (4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·1b(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 细节剖析:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ;(2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩知识点03:有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.知识点04:科学记数法把一个大于10的数表示成10n a ⨯的形式(其中1≤10a <,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯.一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•藁城区二模)若要等式4〇(﹣6)=﹣2成立,“〇”中应填的运算符号是( ) A .+B .﹣C .×D .÷2.(2分)(2023•江岸区模拟)小王在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加.重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到.则小王写下的四个整数的积可能是( ) A .80B .90C .100D .1203.(2分)(2022秋•沧州期末)我们定义一种新运算:a *b =a 2﹣b .例如:1*2=12﹣2=﹣1,求(﹣4)*[2*(﹣3)]的值为( ) A .﹣23B .﹣3C .4D .94.(2分)(2022秋•沧州期末)在原点为O 的数轴上,从左到右依次排列的三个点A ,M ,B ,满足MA =MB ,将点A ,M ,B 表示的数分别记为a ,m ,b .若b =8,BM =3OM ,则m 的值是( )A .﹣2B .﹣4C .2D .2或﹣45.(2分)(2022秋•庐阳区校级期末)有理数a 、b 、c 在数轴上的位置如图所示.下列式子错误的是( )A .a <c <bB .|a ﹣b |=﹣(a ﹣b )C .|a ﹣1|=a ﹣1D .|c ﹣a |=c ﹣a6.(2分)(2022秋•海港区校级期末)有理数a 、b 、c 在数轴上位置如图,则|a ﹣c |﹣|a +b |+|b ﹣c |的值为( )A.2a B.2a+2b﹣2c C.0 D.﹣2c7.(2分)(2022秋•汝城县期末)如果|a+2|+(b﹣1)2=0,那么(a+b)2009的值是()A.﹣2009 B.2009 C.﹣1 D.18.(2分)(2019秋•云冈区期末)下列四个算式:①﹣2﹣3=﹣1;②2﹣|﹣3|=﹣1;③(﹣2)3=﹣6;④﹣2÷=﹣6.其中,正确的算式有()A.0个B.1个C.2个D.3个9.(2分)(2022秋•南关区校级期末)如图,数轴上的A,B两点所表示的数分别是a,b,如果|a|>|b|且ab<0,那么该数轴的原点O的位置应该在()A.点A的左边B.点B的右边C.点A与点B之间且靠近点AD.点A与点B之间且靠近点B10.(2分)(2022秋•栾城区校级期末)已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.二.填空题(共10小题,满分20分,每小题2分)(2023春•莱山区期末)若a>b>0,则1,1+a,1+b这三个数用“>”连接起来为.(2分)11.12.(2分)(2023春•肇东市期末)若|a|=5,b=6且a<b,则2a﹣b=.13.(2分)(2022秋•鄄城县期末)点A在数轴上距原点3个单位长度,若将点A向右移动4个单位长度,再向左移动1个单位长度,此时点A所表示的数是.14.(2分)(2023春•泉港区期末)如图,完全重合的两个等边△ABC、等边△DEF的边BC、EF都在数轴上,点B、C在数轴上所对应的数分别为3、9.若将△ABC向左平移m个单位,△DEF向右平移m个单位.当点E、C为线段BF的三等分点时,则m的值为.15.(2分)(2022秋•邯山区校级期末)若|x﹣2|+(y+3)2=0,则y x=.16.(2分)(2022秋•平谷区期末)黑板上写着7个数,分别为:﹣8,a,1,13,b,0,﹣6,它们的和为﹣10,若每次从中任意擦除两个数,同时写上一个新数(新数为所擦除的两个数的和加上1),这样操作若干次,直至黑板上只剩下一个数,则所剩的这个数是.17.(2分)(2022秋•朝阳区校级期末)若|m﹣3|与(n﹣4)2互为相反数,则(﹣m)n的值为.18.(2分)(2022秋•安岳县期末)定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2写作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)写作(﹣3)④,读作“(﹣3)的圈4次方”.一般地,把(a≠0)记作:aⓝ,读作“a的圈n次方”.特别地,规定:a①=a.通过以上信息,请计算:2022②×(﹣)④+(﹣1)⑰=.19.(2分)(2022秋•黄埔区校级期末)已知a,b,c在数轴上的位置如图所示,化简:|a﹣b|+|b+c|+|c﹣a|=.20.(2分)(2022秋•深圳校级期中)已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.三.解答题(共8小题,满分60分)21.(6分)(2022秋•沧州期末)计算:(1);(2).22.(6分)(2023春•肇东市期末)有理数a,b,c在数轴上的位置如图所示.化简代数式:|a﹣b|+|a+b|+|b﹣c|.23.(8分)(2022秋•鞍山期末)小明和同学们玩扑克牌游戏.游戏规则是:从一副扑克牌(去掉“大王”“小王”)中任意抽取四张,根据牌面上的数字进行混合运算,其中J代表11、Q代表12、K代表13,若每张牌上的数字只能用一次,并使得运算结果等于24.(1)小明抽到的牌如图所示,请帮小明列出一个结果等于24的算式;(2)请你抽取任意数字不相同的4张扑克牌,并列出一个结果等于24的算式.24.(8分)(2022秋•祁阳县期末)如图,在数轴上点A表示数a,点B表示数b,点C表示数c,a,c满足|a+4|+(c﹣2)2=0,b是最大的负整数.(1)a=,b=,c=.(2)若将数轴折叠,使得点A与点C重合,则点B与数表示的点重合;(3)点A,B,C开始在数轴上运动,若点A和点B分别以每秒0.4个单位长度和0.3个单位长度的速度向左运动,同时点C以每秒0.2个单位长度的速度向左运动,点C到达原点后立即以原速度向右运动,运动时间为t秒,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,请问:5AB﹣BC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出5AB﹣BC的值.25.(8分)(2022秋•海兴县期末)如图,已知在一条不完整的数轴上,从左到右的点A,B,C对应的数分别是a,b,c,AC=5,BC=3.(1)若a+b=0,则原点在点B的(填“左侧”或“右侧”);(2)设原点为O,若bc<0,且,求a+b+c的值;(3)在(2)的条件下,数轴上一点D表示的数为d,若BD=2OC,求d的值.26.(8分)(2022秋•曹县期末)观察下列三个等式:,,,我们称使等式a﹣b=ab成立的一对有理数a,b为“有趣数对”,记为(a,b),例如数对,,都是“有趣数对”,请回答下列问题:(1)数对是“有趣数对”吗?试说明理由.(2)若是“有趣数对”,求a的值.(3)若(2,m2+2m)是“有趣数对”,求10﹣6m2﹣12m的值.27.(8分)(2022秋•二七区期末)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2写作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)写作(﹣3)④,读作“(﹣3)的圈4次方”.一般地,把记作:aⓝ,读作“a的圈n次方”.特别地,规定:a①=a.【初步探究】(1)直接写出计算结果:2023②=;(2)若n为任意正整数,下列关于除方的说法中,正确的有;(横线上填写序号)A.任何非零数的圈2次方都等于1B.任何非零数的圈3次方都等于它的倒数C.圈n次方等于它本身的数是1或﹣1D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数a(a≠0)的圈n(n≥3)次方写成幂的形式:aⓝ=;(4)计算:﹣1⑧﹣142÷(﹣)④×(﹣7)⑥.28.(8分)(2022秋•德州期末)如图所示,在数轴上点A表示的数是4,点B位于点A的左侧,与点A的距离是10个单位长度.(1)点B表示的数是,并在数轴上将点B表示出来.(2)动点P从点B出发,沿着数轴的正方向以每秒2个单位长度的速度运动.经过多少秒点P与点A的距离是2个单位长度?(3)在(2)的条件下,点P出发的同时,点Q也从点A出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点Q到点B的距离是点P到点A的距离的2倍?。
初中一年级数学知识点总结第二章 有理数及其运算
初中一年级数学知识点总结第二章有理数及其运算1、有理数的分类正有理数有理数零负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
任何一个有理数都可以用数轴上的一个点来表示。
解题时要真正掌握数形结合的思想,并能灵活运用。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
6、有理数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
7、有理数的运算:(1)五种运算:加、减、乘、除、乘方(2)有理数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(3)运算律加法交换律加法结合律乘法交换律乘法结合律乘法对加法的分配律第三章字母表示数1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。
4、去括号法则(1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
(2)括号前是“﹣”,把括号和它前面的“﹣”号去掉后,原括号里各项的符号都要改变。
5、整式的运算:整式的加减法:(1)去括号;(2)合并同类项。
第四章平面图形及其位置关系1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。
线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。
射线有一个端点。
北师大版七年级数学上册教学设计《第二章有理数及其运算2.1有理数》
北师大版七年级数学上册教学设计《第二章有理数及其运算2.1有理数》一. 教材分析《北师大版七年级数学上册》第二章“有理数及其运算”是整个初中数学的基础,而2.1节“有理数”更是这一基础中的基础。
本节内容主要介绍了有理数的定义、分类和基本性质,为后续的数的运算、方程的求解等知识点奠定了基础。
本节课的内容对于学生来说,不仅需要理解和掌握有理数的概念,还需要培养他们的逻辑思维能力和数学语言表达能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对实数的概念有一定的了解。
但是,对于有理数的定义、分类和性质,他们可能还比较陌生。
因此,在教学过程中,需要从学生的实际出发,循序渐进地引导他们理解和掌握有理数的概念,并能够运用有理数解决实际问题。
三. 教学目标1.理解有理数的定义,掌握有理数的分类和基本性质。
2.能够运用有理数解决实际问题,培养学生的数学应用能力。
3.培养学生逻辑思维能力和数学语言表达能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的基本性质。
3.有理数的运算。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究有理数的定义和性质。
2.利用实例和实际问题,让学生感受有理数在生活中的应用。
3.采用小组合作学习的方式,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备一些实际问题,用于引导学生运用有理数解决。
七. 教学过程1.导入(5分钟)利用问题驱动的方式,引导学生回顾实数的概念,进而引出有理数的定义。
例如:“你们知道实数包括哪些类型吗?那么有理数是实数的一部分,它又是怎样的数呢?”2.呈现(15分钟)通过讲解和示例,呈现有理数的定义、分类和基本性质。
在此过程中,引导学生积极参与,主动提问,以理解有理数的概念。
3.操练(15分钟)让学生通过解决实际问题,运用有理数进行计算。
例如:“小明有2.5个苹果,小华给了小明1个苹果,请问小明现在有几个苹果?”4.巩固(10分钟)通过小组合作学习,让学生进一步巩固有理数的定义和性质。
七年级数学 第二章 有理数及其运算2.6 有理数的加减混合运算第1课时 有理数的加减混合运算作业
2.6 有理数的加减(jiā jiǎn)混合运算
第1课时 有理数的加减(jiā jiǎn)混合运算
第一页,共二十二页。
第二页,共二十二页。
加法(jiāfǎ)
1.有理数的加减混合运算,先将减法统一成____,然后利用加法的运算律和运算法则
进行运算.其原则是正数与正数、负数与负数分别相结合,同分母分数或比较容易通分
Image
12/9/2021
第二十二页,共二十二页。
是
.
6-3+7-2
第三页,共二十二页。
第四页,共二十二页。
1.下列式子可读作“负10、负6、正3、负7的和”的是( )
B
A.-10+(-6)+(+3)-(-7)
B.-10-6+3-7来自C.-10-(-6)-3-(-7)
D.-10-(-6)-(-3)-(-7)
2.把(+5)-(+6)-(-9)+(-4)写成省略(shěnglüè)括号的和的形式是( ) C
第十页,共二十二页。
9.根据下列(xiàliè)条件,求a+(-b)-(-c)的值. (1)a=5,b=-3,c=-4; (2)a=-7.8,b=18.9,c=-5.4. 解:(1)原式=5+3-4=4 (2)原式=-7.8-18.9-5.4=-32.1
第十一页,共二十二页。
第十二页,共二十二页。
第六页,共二十二页。
5.将下列各式改写成省略括号(kuòhào)和加号的形式,并写出其读法. (1)(-4)-(+5)+(-9)-(-1); 解:原式=-4-5-9+1,读作:负4减5减9加1 (2)0-(-15)-(-12)+(-18). 解:原式=0+15+12-18,读作:0,15,12,负18的和
第二章《有理数及其运算》知识梳理
第二章《有理数及其运算》知识梳理正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0正有理数负整数正分数有理数有理数0(0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
北师大版数学七年级上册第二章2.1有理数课件(共29张PPT)
负有理数
分数
负分数:如 -1/5、-3.5、-5/6
整数与分数统称为有理数
做一做
随堂练习
关键:以800个零件为正、负数的标准(分界限)
2、下表是某日上海发行的部分债券行情表,试说 第三天超产零件是-50个
3、某厂计划每天生产零件800个,第一天生产零件850个,第二天生产零件800个,第三天生产零件750个,
(1)分数(
);
46663.6
295.1
171440
(2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示?
66 家乐福 39855.7 2、请举出3对具有相反意义的量,并分别用
负数是
。
805.6
297290
负分数:如 -1/5、-3.
111 特斯科 30351.9 第三天超产零件是-50个
(3)-0.03克表示乒乓球的质量低于标 准质量0.03克.
(4)如果向东运动4m记作+4m,那么向西运动 7m应记作什么?若在原地不动又记作什么?
做一做 随堂练习
1、填空题
(1)如果零上5℃记作+5 ℃,那么零下3 ℃记作 ______________.
(2)东、西为两个相反方向,如果-4米表示一个 物体向西运动4米,那么+2米表示___________,物 体原地不动记作________。
某班进行知识竞赛,评分标准是:答对一题加10分,
(2)沿顺时针方向转12圈记作-12圈;
25,-9/10,-301,4/27,31.
米5、,调记查作八9月9份家国中。的债收入(和支1出)情_涨况_,_并0_且._0_1_元___;99国债(2)_跌__0_._0_5_元__;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册复习专项训练
专项训练二有理数及其运算
【时间:45分钟分值:100分】
一、选择题(每小题4分,共32分)
1.在中,最小的数是()
A.3B.﹣|﹣3.5|C.D.0
2.数轴上表示﹣5和﹣1的两点之间的距离是()
A.6B.5C.4D.3
3.徐淮盐铁路是江苏省东西向高速铁路,全长约316.7公里,共11座车站,全程设计行车速度为250公里/小时,是江苏腹地最重要的铁路大动脉之一,有江苏铁路“金腰带”之称,预计于今年底通车.其中数据316.7用科学记数法表示应为()
A.31.67×101B.3.167×102C.0.3167×103D.3.16×102
4.下列运算结果为正数的是()
A.0×(﹣2019)2018B.(﹣3)2
C.﹣2÷(﹣3)4D.(﹣2)3
5.如图,检测4个排球,其中质量超过标准的克数记为正数,不足的克数记为负数,从轻重的角度,下列最接近标准的是()
A.B.C.D.
6.若|a|=7,b的相反数是﹣1,则a+b的值是()
A.6B.8C.6或﹣8D.﹣6或8
7.若计算机按如图所示程序工作,若输入的数是1,则输出的数是()
A.﹣63B.63C.﹣639D.639
8.点A,B在数轴上的位置如图所示,其对应的有理数分别是a和b.对于下列四个结论:
①b﹣a>0;②|a|<|b|;③a+b>0;④>0.其中正确的是()
A.①②③④B.①②③C.①③④D.②③④
二、填空题(每小题4分,共20分)
9.若向东走2m记作+2m,则向西走5m记作m.
10.已知|x+2|+(y﹣4)2=0,求xy的值为.
11.计算:=.
12.已知a,b,c的位置如图所示,则|a|+|a+b|﹣|c﹣b|=.
13.定义:a★b=,则(2019★2018)★2020=.
三、解答题(共48分)
14.(8分)计算:
(1)﹣15﹣(﹣8)+(﹣11);(2)﹣22+2.
15.(8分)在数轴上画出表示下列各数的点,并用“<”号将这些数按从小到大的顺序连接起来:
﹣2.5,3,0,﹣2,+5,0.5
16.(10分)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的数,d和e互为相反数.求代数式a2﹣2b3+3c4﹣4(d+e)5的值.
17.(10分)槟榔是四大南药之一,每袋槟榔以50千克为标准,用正数记超过标准重量的千克数,用负数记不足标准重量的千克数.10袋槟榔称后记录如下(单位:kg):
+8,﹣11,+12,+5,﹣9,﹣2,+7.5,﹣2.5,+18,﹣15
(1)通过计算求出这10袋槟榔的重量;
(2)如果每千克槟榔售价8元,这10袋槟榔可收入多少元?
18.(12分)如图,数轴上的点A,B,C,D,E对应的数分别为a,b,c,d,e,且这五个点满足每相邻两个点之间的距离都相等.
(1)填空:a﹣c0,b﹣a0,b﹣d0(填“>“,“<“或“=“);
(2)化简:|a﹣c|﹣2|b﹣a|﹣|b﹣d|;
(3)若|a|=|e|,|b|=3,直接写出b﹣e的值.
答案与解析
1.B.
2.C.
3.B.
4.B.
5.D.
6.D.
7.C.
8.B.
解析:根据图示,可得﹣3<a<0,b>3,∴(1)b﹣a>0,故正确;
(2)|a|<|b|,故正确;
(3)a+b>0,故正确;
(4)<0,故错误.
∴正确的是①②③.
故选:B.
9.﹣5.
10.﹣8.
11.﹣999.
12.-2a﹣c.
13.2021.
解析:∵2019>2018,
∴2019★2018=2019﹣2018=1,
则原式=1★2020,
∵1<2020,
∴1★2020=1+2020=2021,
故答案为:2021.
14.
解:(1)﹣15﹣(﹣8)+(﹣11)
=(﹣15)+8+(﹣11)
=﹣18;
(2)﹣22+2
=﹣4+2×2﹣3×(﹣1)
=﹣4+4+3
=3.
15.
解:
﹣2.5<﹣2<0<0.5<3<+5.
16.
解:根据题意得:a=1,b=﹣1,c=0,d+e=0,
则原式=1+2+0﹣0=3.
17.
解:(1)(+8)+(﹣11)+(+12)+(+5)+(﹣9)+(﹣2)+(+7.5)+(﹣2.5)+(+18)+(﹣15)=11,
50×10+11=511(千克).
答:这10袋槟榔的重量是511千克;
(2)8×511=4088(元).
答:这10袋槟榔可收入4088元.
18.解:(1)从数轴可知:a<b<c<d<e,
∴a﹣c<0,b﹣a>0,b﹣d<0,
故答案为:<,>,<;
(2)原式=|a﹣c|﹣2|b﹣a|﹣|b﹣d|
=﹣a+c﹣2(b﹣a)﹣(d﹣b)
=﹣a+c﹣2b+2a﹣d+b
=a﹣b+c﹣d;
(3)|a|=|e|,
∴a、e互为相反数,
∵|b|=3,这五个点满足每相邻两个点之间的距离都相等,∴b=﹣3,e=6,
∴b﹣e=﹣3﹣6=﹣9.。