空气悬架系统WABCO
威伯科wabco产品知识
● 威伯科电子制动系统特点 采用电子化方式启用所有制动系统部件 减速器和发动机制动器集成在行车制动器应用之中 制动力分配与载荷分配相适应 实现了牵引车和挂车之间的制动一致性 舒适的减速控制 通过集成的诊断和监测功能实现了持续的自测试
● 威伯科电子制动系统优势 提高了制动舒适性 提高了车辆安全性
减少了制动器磨损 更易于保养 威伯科压缩机在气缸盖中集成了 PR(功率降低)系统,从而显著减少了空载阶段的功率损 失。威伯科压缩机降低了来自降温(TR)系统的供给空气的温度,提高了气缸盖中的冷却性 能。集成在气缸盖中的减压阀(选装)可提供过压保护功能。威伯科压缩机采用经过验证的 设计,包括具有最佳扭转阻力的单体式曲轴箱结构以及全淬硬钢制曲轴。压缩机使用寿命长 并且运行完全免保养。
无需保养 ● 威伯科压缩机的应用
卡车 客车 农用车辆
缩短制动距离 威伯科制动器气室简介 威伯科制动器气室在数百万次的应用中展示了其可靠性,成为众多主要卡车制造商的首 选。 威伯科制动器气室变型产品达 500 多种,几乎可为各种应用类型提供完美的解决方案。 额定工作压力达 13 bar,行程长度达 75 毫米,并可配备各种接口,为盘片、凸轮和楔形制 动器提供各种选项。
属于客户所有或者通过 FCC(灵活配置概念)按照客户要求编程 配有 3 个 CAN 接口、11 个(8 个数字式和 3 个模拟式)输入端、4 个输出端和一个 K 线 接口 ● 威伯科车辆电子架构的应用 重型、中型卡车 客车 ● 威伯科车辆电子架构市场供应 欧洲、亚洲、美洲 大多数商用车辆的底盘都采用电子控制方式。威伯科的电子空气悬挂系统(ECAS)已成为这 一趋势的主要推动力,并已得到广泛应用。威伯科对 ECAS 进行了深入开发,将其整合在电 子减振器控制系统(ESAC)中。经过系统整合后仍可使用现有的传感器以及现有的信息。
WABCO威伯科整车气路1(1998)
Systems And Components In Commercial Vehicles Edition 1998© Copyright WABCO 1998WABCOFahrzeugbremsenA Division ofWABCO Standard GmbHThe right of amendment is reservedTable of ContentsPage Operation of Air Braking Systems (4)1. MotorVehiclesBraking System (6)Components of the Motor Vehicle’s Braking System (7)2. TrailersBraking System (62)Equipment For Trailer Braking Systems (64)3.Anti-Lock Braking System (ABS) (79)4.Sustained-Action Braking Systems On Motor Vehicles (89)5. EBS - Elektronisch geregeltes Bremssystem (93)6.Air Suspension Systems and ECAS(Electronically Controlled Air Suspension) (105)7.Clutch Servo (117)8.Air Braking Systems InAgricultural Vehicles (121)9.ETS-Elektronic Door Control SystemFor Motor Coaches (131)10.Installation Of Pipes And Screw Unions (139)11.Index (151)Operation of Air Braking Systems1. Compressed Air Supply The compressed air supplied by the com-pressor (1) flows to the air dryer (3) via the unloader (2) which automatically con-trols the pressure within the system with-in a range of between 7.2 and 8.1 bar, for instance. In the air dryer, the water va-pour in the air is extracted and expelled through the air dryer’s vent. The dried air then flows to the quadruple-circuit pro-tection valve (4) which, if one or several circuits are defective, secures the intact circuits against any loss in pressure. Within the service braking circuits I and II, the air supply from the reservoirs (6 and 7) flows to the brake valve (15). In Circuit III the air supply from the reservoir (5) flows through the 2/2-way valve which is integrated in the trailer control valve (17) to the automatic hose coupling (11) and on to the check valve (13), the hand brake valve (16) and the relay valve (20) into the spring-loaded portion of the Tris-top spring brake actuators (19). Circuit IV supplies air to any ancillary consumers, in this case an exhaust brake.The trailer’s braking system receives compressed air through the hose cou-pling (11) with its supply hose connected. This air then passes the line filter (25)and the relay emergency valve (27) be-fore reaching the reservoir (28) and alsoflows to the supply ports of the ABS relayvalves (38).2. Operation:2.1 Service Braking SystemWhen the brake valve (15) is actuated,compressed air flows via the ABS sole-noid control valve (39) into the brakechambers (14) of the front axle and to theload-sensing valve (18). This valve re-verses and the air flows via the ABS so-lenoid control valve (40) into the servicebrake portion (brake chambers) of theTristop spring brake actuators (19). Thepressure in the brake cylinders generat-ing the force required for the wheel brakedepends on the amount of force appliedto the brake valve, and on the load car-ried on the vehicle. This brake pressureis controlled by the load-sensing valve(18) which is connected to the rear axleby means of a linkage. Any change in thedistance between the vehicle’s chassisand its axle caused by loading or unload-ing the vehicle causes the brake pres-sure to be continuously adjusted. At thesame time, via a pilot line, the load-emptyvalve integrated in the brake valve is af-fected by the load-sensing valve. Thusthe brake pressure on the front axle isalso adjusted to the load carried on thevehicle (mostly on lorries).The trailer control valve (17) actuated bythe two service braking circuits pressuriz-es the pilot connection of the relay emer-gency valve (27) after passing the hosecoupling (12) and the connecting “con-trol“ hose. The air supply from the air res-ervoir (28) is thus allowed to passthrough the relay-emergency valve, thetrailer release valve (32), the adaptervalve (33) and on to the load-sensingvalve (34) and the ABS relay valve (37).The relay valve (37) is actuated by theload-sensing valve (34) and the com-pressed air flows to the brake chambers(29) on the front axle. The ABS relayvalves (38) are actuated by the load-sensing valve (35), and the compressedair is allowed to pass to the brake cham-bers (30 and 31). The service pressureon the trailer, which is similar to the out-put pressure from the towing vehicle, isautomatically adjusted by the load-sens-ing valves (34 and 35) for the load carriedon the trailer. In order to prevent overb-raking of the wheel brake on the frontaxle in the partial-braking range, theservice pressure is reduced by the adapt-er valve (33). The ABS relay valves (onthe trailer) and the ABS solenoid control valves (on the towing vehicle) are used to control (pressure increase, pressure hold, pressure release) the brake cylin-ders. If these valves are activated by the ABS ECU (36 or 41), this control process is achieved regardless of the pressure al-lowed to pass by the brake valve or the relay emergency valve.When they are not needed (solenoids are dead), the valves operate as relay valves and achieve a faster increase or de-crease of the pressure for the brake cyl-inders.2.2Parking Braking System When the hand brake valve (16) is actu-ated and locked, the spring-loaded por-tions of the Tristop spring brake actua-tors (19) are exhausted fully. The force needed for the wheel brake is now pro-vided by the heavily preloaded springs of the Tristop spring brake actuators. At the same time, the pressure in the line lead-ing from the hand brake valve (16) to the trailer control valve (17) is reduced. Brak-ing of the trailer commences by the pres-sure increasing in the connecting ‘supply’hose. Since the guideline of the Council of the European Communities (RREG) that a tractor-trailer combination must be held by the motor vehicle alone, the pres-sure in the trailer’s braking system can bereleased by moving the hand brake leverinto its ‘control’ position. This permits theparking braking system to be examinedas to whether it fulfills the provisions ofthe RREG.2.3 Auxiliary Braking SystemDue to sensitive graduation of the handbrake valve (16) the lorry can be brakedby means of the spring-loaded portionseven if the service braking systems I andII have failed. The brake force for thewheel brake is produced by the force ofthe preloaded springs of the Tristopspring brake actuators (19) as describedunder ‘Parking Braking System’ althoughthe spring-loaded portions are not ex-hausted fully but only to the extent re-quired for the braking performance.3. Automatic Braking of theTrailerIn the event of the connecting ‘supply’line breaking, the pressure will drop rap-idly and the relay emergency valve (27)will cause full application of the trailer’sbrakes. In the event of the connecting‘control’ line breaking, the 2/2-way valveintegrated in the trailer control valve (17)will, when the service braking system isactuated, throttle the passage of the sup-ply line leading to the hose coupling (11)to such an extent that the rupture of thesupply line causes a rapid drop in pres-sure in the supply line and the relayemergency valve (27) causes the trailerto be braked automatically within the le-gally stipulated time of no more than 2seconds. The check valve (13) securesthe parking braking system against anyinadvertent actuation if the pressuredrops in the supply line leading to thetrailer.4. ABS ComponentsThe motor vehicle usually has three tell-tale lamps (ASR having one additionallamp) fitted for indicating functions andfor continuously monitoring the system. Italso has a relay, an information moduleand an ABS socket (24).After actuating the driving switch, the yel-low telltale lamp will come on if the trailerhas no ABS or if the connection has notbeen established. The red lamp will go offwhen the vehicle exceeds a speed of ap-prox. 7 k.p.h. and the safety circuit of theABS electronics has not detected an er-ror.Air braking system with ABS/ASR (4S/4M)Legend:Pos.1Compressor2Air dryer with combined unloader3Four circuit protection valve 4Air reservoir 5Clamps6Test coupling 7Drain valve 8Check valve9Brake valve with integralauto load proportioning valve 10Hand control valve with trailer control 11Relay valve 12Piston cylinder 13Brake chamber14ASR-Control cylinder153/2 Solenoid valve 16Tristop-Brake actuator 17Quick release valve 18Load sensing valve 19Knuckle joint20Trailer control valve 21Hose coupling, supply 22Hose coupling, control 23Two-Way valve 24ABS Warning lamp 25ABS Info lamp 26ABS-socket27Sensor extension cable 28Solenoid cable 29Socket30Sensor braket31Sensor with cable 32Pole wheel33ABS-Solenoid valve 34Electronic control unit 35Info module 36Pressure switch 37Proportional valve383/2 Directional control valve12381234,5714379171333282729,3031,3224253435181915626112316212220108361.Components Of The Motor Vehicle’s Braking SystemAir Intake Filters1.Moist Air FilterPurpose:To prevent impurities from the air getting into the compressor (by using suction fil-ters) or into the vents of compressed air equipment (by using vent filters); they also serve to muffle the noise caused by the intake of air or by blowing it off.Operation:Moist air filters (for normal operating con-ditions). The air is taken in through an opening in the cap, flows through the fil-ter medium where it is cleaned and then flows on to the air intake of the compres-sor.Oil Bath Air CleanerOperation:Oil bath air cleaner (for air containing a large mount of dust)The air is taken in through the sieve plate below the cap and the central pipe, and then passed across the surface of the oil where any dust particles can settle. From the surface of the oil, the air is pushed upward, flows through a filter package which retains any impurities which may still be contained in the air and any oil particles carried over before reaching the air intake of the compressor.Moist Air Filter432 600 . . . 0 to 432 607 . . . 0Oil Bath Air Cleaner432 693 . . . 0 to 432 699 . . . 0Purpose:Production of compressed air for road vehicles and static systems. Operation:The pulley on the end of the crankshaft is rotated by a vee-belt driven off the vehi-cle’s engine. This rotation causes the connecting rods to to move the pistons. As the piston travels downwards clean air from either the engine air cleaner or the moist air filter (or alternatively an oil bath air cleaner) is drawn in trough the inlet valve. As the piston moves up-wards, the inlet valve closes, and air is pumped through the delivery valve into the the reservoir.The type of lubrication depends on the construction of the compressor, and can be splash or pressure fed.Single Cylinder Air Compressor 411 1 . . . . . 0 and 911 . . .. . . 0Twin CylinderAir Compressor 411 5 . . . . . 0 and 911 5 . . . . . 0Air Cleaner1.Purpose:To clean the air delivered by the com-pressor and to precipitate the humidity it contains.Operation:The air entering at port 1 flows through annular gap A into Chamber B. As it passes through the gap A, the air cools and some of the water vapour it contains will condensate. The air then flows through the filter (a) to Port 2.At the same time, the pressure in Cham-ber B opens the inlet (3) of the valve body (d) and the condensate runs through the filter (f) into Chamber C. As the pressure in Chamber B falls, the inlet(3) closes and the outlet (b) opens. The condensate is now blown outside by the pressure in Chamber C. When the pres-sures in Chambers B and C are bal-anced, outlet (b) closes.Pin (C) can be used to check whether the automatic drain valve is working proper-ly.Air Cleaner 432 511 . . . 0Air Dryer432 410 . . . 0 and432 420 . . . 0Purpose:Drying of the compressed air supplied by the compressor by extracting the mois-ture present in the air. This is effected by a progress of cold regenerated adsorp-tion drying where the air compressed by the compressor is led through granulates (adsorbens) capable of adsorbing the moisture contained in the air. Operation:Variant 1 (Control Via Separate Un-loader Valve 432 420 ... 0)In the feed phase, the compressed air supplied by the compressor flows via Port 1 into Chamber A. Here the conden-sate caused by the reduction in tempera-ture will collect, reaching Outlet (e) via Duct C.Via Fine Filter (g) integrated in the car-tridge, and via Annulus (h), the air will reach the upper side of Desiccant Car-trige (b), being cooled in the process, and further condensate will precipitate. Moisture is extracted from the air as it passes through Granulate (a) this mois-ture is absorbed by the surface and the fine ducts [diameter: 4 x 106 m = 4Å(Angström)] of the extremely porousgranulate.Since the oil molecules are more than 4Åin size they cannot enter the fine ducts ofthe granulates. This makes the granulaterobust. The steam portion of the oil is notadsorbed. The dried air reaches the airreservoirs via Check Valve (c) and Port21. At the same time, the dried air alsoreaches the re-generation reservoir viathrottling port and Port 22.When cut-out pressure in the system isreached, Chamber B is pressurized fromthe unloader valve via Port 4. Piston (d)moves downwards, opening Outlet (e).The air, the condensate plus any impuri-ties and oil carbon from Chamber A willbe emitted via Duct C and Outlet (e).When cut-in pressure at the unloadervalve is reached, Chamber B is ventedonce again. Outlet (e) closes and the dry-ing process will commence as describedabove.Any malfunction due to icing in extremeconditions in the area of Piston (d) canbe prevented by fitting a Heating Car-tridge (f) which will switch on at tempera-tures below 6°C and switch off againwhen the temperature reaches approx.30°C.Variant 2 (Control Via Integral Unload-er Valve 432 410 ... 0)The process of drying the air is as de-scribed under Variant 1 In this version,however, the cut-out pressure will reachChamber D via Bore (l), acting on Dia-phragm (m). After overcoming the springresistance, Inlet (n) will open, and Piston(d), now pressurized, will open Outlet (e).The air supplied by the compressor willnow be emitted via Chamber A, Duct Cand Vent 3. Piston (d) also acts as apressure relief valve. In the event of anyexcess pressure, Piston (d) will auto-matically open Outlet (e). If, due to airconsumption, the supply pressure in thesystem falls to a value below cut-in pres-sure, Inlet (n) will close and the pressurefrom Chamber B will be reduced via theunloader valve's vent. Outlet (e) willclose and the drying process will com-mence once again.432 420 432 410Air Dryer 1.Air Dryer With Return-Flow Limiting Valve432 413 . . . 0 and432 415 . . . 0The single-chamber air dryers from this series have an integrated return-flow lim-iting valve which permits the required amount of air to be taken from the main reservoir provided the multiple-circuit protection valve permits a return flow. Thus no separate regenerating reservoir is required.Operation:Variant 1 (Control Via Separate Un-loader Valve432 413 ... 0)In the delivery phase the compressed air supplied by the compressor flows through Port 1, opens the check valve (i) and flows into Chamber A. Due to the drop in temperature, condensation water collects there which reaches the outlet (e) through Duct C.The air is dried as described under 432 420. At the same time, dried air also flows into Chamber E, pressurizing dia-phragm (o). This arches towards the right, releasing the passage between Chambers E and G via Throttling Port (s). The air supply also reaches Chamber H via Filter (l), pressurizing Valve (q). Once the force of the pressure spring, preset by means of Screw (r), has been over-come, Valve (q) is lifted. The air supplywill now reach Chamber F, acting on theother side of the diaphragm (o) with aslightly lower pressure in keeping withthe retention of Valve (q).When the cut-off pressure within the sys-tem has been reached, Chamber B ispressurized by the unloader via Port 4.The piston (d) moves downwards andopens the outlet (e). The check valve (i)closes the passage to Port 1 and the airfrom Chamber A flows through Duct Cand is emitted to atmosphere at the outlet(e).Due to the drop in pressure in ChamberG, the check valve (c) closes. The air tobe regenerated is now taken from the airreservoirs, which is why a multiple-circuitprotection valve must permit its returnflow. The air supply at Port 21 flowsthrough Chamber E, the throttling port (s)where it expands, on into Chamber Gand thus to the underside of the granu-late cartridge (b).As it passes through the granulate car-tridge (b) in an upward direction, the hu-midity on the surface of the granulate (a)is taken up by the air and emitted to at-mosphere at Vent 3 after passing Duct Cand the opened outlet (e). The return flowis completed when the pressure on theleft of the diaphragm (q) has been re-duced to a point where it reaches its clos-ing position.When the cut-in pressure at the unloaderis reached, the pressure in Chamber B isreduced once again. The outlet (e) clos-es and the drying process starts again asdescribed above. Outlet 31 also has asafety valve for the pressure side.Variant 2 (Control Via Integral Unload-er Valve 432 415 ... 0)In this variant, the cut-off pressure reach-es Chamber J via the connecting holeinto Chamber J and acts on the dia-phragm (m). After the spring force hasbeen overcome, the inlet (n) opens andthe piston (d) which is now pressurizedopens the outlet (e).The air delivered by the compressor nowflows through Chamber A, Duct C and isemitted to atmosphere at Vent 3. The pis-ton (d) at the same time acts as a popvalve. When the pressure is excessive,the piston (d) automatically opens theoutlet (e).If air consumption causes the supplypressure within the system to fall belowthe cut-in pressure, the inlet (n) closesand the pressure from Chamber B is re-duced through the vent of the unloadervalve. The outlet (e) closes and the dry-ing process begins again.432 413 432 415Twin Chamber Air Dryer 432 431 . . . 0 and432 432 . . . 0Operation:a) Control without Integral Un-loader ValveThe compressed air supplied by the compressor flows to Bore E via Port 1. Due to a reduction in temperature, con-densate may form at Bore E, reaching Idling Control Valve (m) via Bore L. From Bore E, the compressed air will pass Valve (k), enter Chamber B, and reach the upper side of Desiccant Cartridge (c) via Fine Filter (e) integrated into the car-tridge, and via Annulus A.Through Sieve Plate (a), the pre-cleaned compressed air will pass downwards through Granulate (b) sewn into a filter bag in Cartridge (c), reaching Bore G via Sieve Plate (d) and Check Valve (f).As the air passes through Granulate (b), the inherent moisture is retained by the extremely porous granulate. From Bore G, the compressed air reaches the air reservoirs through Check Valve (g) and via Port 2.Through the throttling port of Valves (fand p) designed according to the sweptvolume of the compressor used, part ofthe dried compressed air from Bore Gwill reach the underside of Cartridge (s),passing Granulate (r) in an upward direc-tion (backflush). In this process, themoisture adhering to the fine ducts of theextremely porous Granulate (r) is takenup by the dried air and reaches Vent 3via Annulus K, Chamber H and past theopen rear side of Valve (o).The additional Charging Valve (h) en-sures that Control Valves (k and o) donot switch over when the system is filledinitially. Valve (h) will not open until asupply pressure of > 5 bar has beenreached at Port 2, permitting com-pressed air to reach Chamber C. If thetimeswitch element integrated in the so-lenoid valve then opens the current sup-ply to Trip Coil (j), Armature (i) will be at-tracted. Compressed air from ChamberC will now flow into ChamberD and, viaBore F, into Chamber M, moving the con-trol valves against the spring force intotheir end positions on the left.The passage from Bore E to Chamber Bis closed. The compressed air present inChamber B will now be emitted at Port 3after passing by the open rear side ofControl Valve (k) and going through BoreN. Check Valve (g) will close and thepressure in the system continues to beensured. As a consequence of the pres-sure reduction in Chamber B, CheckValve (f) will also close.The compressed air supplied by thecompressor will now flow from Bore Ethrough Chamber H, Annulus K andthrough Granulate (r) of Cartridge (s).The drying process of the compressedair is as described before. After Valve (p)and Check Valve (g) have opened, thedried air reaches the reservoirs via Port2. Through the throttling port of Valve (f),dried air reaches the underside of Gran-ulate (b), causing a back-flushing proc-ess to take place here, too.After approx. 1 minute, the time-switchelement will break the current supply tothe trip coil. Armature (i) will close thepassage from Chanber C, opening thevent, thus reducing the pressure inChambers D and M. Through the springforce and the pressure in Bore G, thecontrol valves are returned to their endpositions on the right. Control Valve (o)will close the passage to Chamber H,and Control Valve (k) will open the pas-432 431Air Dryer 1.sage to Chamber B. The compressed air supplied by the compressor is now again fed into Granulate (b), and the drying process will commence as described be-fore, with alternating cartridges continu-ing to be used at one-minute intervals. When the unloader valve switches to idling once the input cut-out pressure has been reached, pressure is being fed in at Port 4, pressurizing, and moving down-wards, Piston (m), opening the idling control valve. Any condensate and impu-rities will be emitted together with the air supplied in the idling phase via Vent 3. When the unloader valve switches to load, Port 4 is vented and the idling con-trol valve closes the passage to Vent 3. Any malfunction due to icing in extreme conditions in the area of Piston (m) can be prevented by fitting a Heating Car-tridge (l) which will switch on at tempera-tures below 6°C and switch off again when the temperature reaches approx. 30°C.b) Control Via Integral UnloaderValveThe air is dried as described under a). The pressure building up at Port 2 when the system is being filled is also present in Chamber P, pressurizing the under-side of Diaphragm (t). As soon as theforce resulting therefrom is larger thanthe force of Pressure Spring (n), Dia-phragm (t) will arch, taking with it Piston(q). This opens Inlet (u), and Piston (m),now pressurized, is moved downward,opening the idling control valve. Any con-densate and impurities will be emitted to-gether with the air supplied in the idlingphase via Vent 3. The compressor willcontinue to run idle until the pressurewithin the system has fallen to a valuebelow the unloader valve's cut-in pres-sure. The pressure in Chamber P belowDiaphragm (t) will fall simultaneously.Pressure Spring (n) will move Piston (q)and Diaphragm (t) back to their originalpositions. Outlet (u) will close, and thepressure from Chamber O will be re-duced via the vent of the unloader valve.The idling control valve with Piston (m)will close once again. The compressedair will now again flow into Bore E andreach the air reservoirs via Port 2 afterbeing dried in Desiccant Containers (b orr). The system is subsequently filledonce again up to the cut-out pressure ofthe unloader valve.Application:Depending on the respective application,WABCO provides Single and TwinChamber Air Dryers.The decision of whether to use a Singleor a Twin Chamber Air Dryer will dependon the compressor's swept volume andon its duty cycle.Single Chamber Air Dryerscan normally be used for applications upto a swept volume of ≈ 500 litres/minuteand a duty cycle of up to ≈ 50%. Any de-viations of these standard values shouldbe tested in road-test runs.Twin Chamber Air Drierscover the area > 500 litres/minute and >50% up to 100% duty cycle. Swept vol-umes in excess of 1000 litres/ minuteshould be tested in road-test runs 432 432Purpose:To automatically control the operating pressure in an air braking system and to protect its pipes and valves from contam-ination. Depending on the variant used, it also serves to control a downstream anti-freeze pump or single chamber air dryer. Operation:a)UnloaderThe compressed air supplied by the compressor flows via Port 1 and Filter (g) to Chamber B. When Check Valve (e) has opened, it flows through the line leading from Port 21 to the air reservoirs and to Chamber E. Port 22 is intended for controlling a downstream anti-freeze pump.Pressure builds up in Chamber E, acting the underside of Diaphragm (c). As soon as that pressure is greater than the force of Compression Spring (b), preset by means of Screw (a), diaphragm (c) will arch upward, taking with it Piston (m). Outlet (l) closes and Inlet (d) opens, per-mitting the compressed air to pass from Chamber E to Chamber C, forcing Piston (k) downwards against the force of Com-pression Spring (h). Outlet (i) opens and the compressed air supplied by the com-pressor is released to atmosphere via Exhaust 3. The fall in pressure in Cham-ber B closes Check Valve (e), thus se-curing the pressure in the system.The compressor will now continue to idleuntil the pressure within the system fallsbelow the Unloader’s cut-in pressure.The pressure in Chamber E below Dia-phragm (c) continues to fall. This causesthe force of Compression Spring (b) topush the diaphragm, together with Piston(m), downwards. Inlet (d) closes, Outlet(l) opens and the air from Chamber C isreleased to atmosphere at Exhaust 3 af-ter passing Chamber F and a connectinghole. Compression Spring (h) forces upPiston (k) and outlet (i) is closed. The airsupplied by the compressor now flowsinto Chamber B, passing Filter (g), andopens Check Valve (e). The system isonce again being filled until the Unload-er’s cut-off pressure has been reached.b) Unloader with Pilot Connec-tion 4 and Port 23This type of Unloader differs from thetype described under a) merely in theway the cut-off pressure is controlled.The cut-off pressure is not taken from in-side the unloader but from the supply linedownstream from the air dryer. The pas-sage from Chamber B to Chamber E isclosed, and there is no Check Valve (e).Via Port 4 and Chamber A, the air fromthe reservoir flows to Chamber E, actingon Diaphragm (c). After that it continuesto operate as described under a). Thepassage between Chambers C and D isopen, permitting pilot pressure fromChamber C to be taken at Port 23 to ac-tuate the single chamber air dryer.c) Tyre inflation connectionAfter removing the protective cap, thetyre inflation hose is fastened by meansof a union nut moving Pin (f). The pas-sage between Chamber B and Port 21 isclosed. The air supplied by the compres-sor now flows from Chamber B to the tyreinflation hose, passing Pin (f). In theevent of the pressure in the system ex-ceeding 12+2 bar or 20 bar respective-ly during this process, Piston (k) which isdesigned to act as a safety valve willopen Outlet (i) and the pressure is re-leased to atmosphere via Exhaust 3.Before using the tyre inflation facility, thereservoir pressure must be reduced to avalue below the Unloader’s cut-in pres-sure since no air can be extracted whilstthe compressor is running idle12–Combined Unloader975 303 . . . 0。
WABCO产品介绍
2009年,首款用于电子稳定性控制(ESC)鉴定的模拟系统
2008年,首个商用车自动紧急制动系统(AEB)诞生
2007年,首个商用车带自动制动功能的碰撞预警系统(CMS)诞生
2001年,首个商用车电子稳定控制系统(ESC)诞生
934 714 010 0 四回路保护阀
934 714 403 0 四回路保护阀
车辆动态控制系统
WABCO件号 产品名称 厂家号码 车型
432 407 012 0 消音器
434 208 000 0 双通阀
441 014 025 0 压力开关
461 315 077 0 脚制动阀
461 315 267 0 脚制动阀
432 407 070 0 消音器 3518025-523
446 004 320 0 ABS ECU 3605115-50A
446 055 402 0 ECAS ECU
446 056 010 4 EACS 安装架
970 051 438 0 离合器分泵 1608ZD2A-010
空气处理和制动系统
WABCO件号 产品名称 厂家号码 车型
432 410 102 0 空气干燥器
432 410 147 0 空气干燥器
432 421 028 0 空气干燥器
434 100 125 0 溢流阀
434 208 029 0 双通阀
空气处理系统
空压机 空气干燥器 四回路保护阀 贮气筒 调压阀 电子空气处理单元
制动器与制动器室
盘式制动器 复合弹簧制动气室 双枪弹簧制动气室
中国重汽 WABCO ABS 培训教程
TRAINING培训ABS/ASREBL/TPMCNHTC ABS CNHTC ABS培训教程培训教程气制动系统或空气干燥器空压机前轮盘式制动器悬架控制温度控制缓速器控制贮气筒后轮盘式制动器盘式制动器ABS, EBS电子控制空气悬挂挂车电子中央控制车辆中央控制变速箱控制ABS / ASR/ APU EBS 带稳定性控制离合器控制压力监测(IVTM)或气制动系统和高度传感器ECU全球主要主机客户6060年代中期年代中期年代中期::研制参数模型并将成果应用于飞机19721972 年年:研制出了第一代模拟技术系统19751975 年年:展出展出ABS ABS ABS系统及微处理器技术系统及微处理器技术19811981 年年:展出批量生产的展出批量生产的A A 型ABS(ABS(第一代第一代第一代))19821982 年年:开始大批量生产开始大批量生产A A 型ABS 19851985 年年:开始批量生产开始批量生产B B 型ABS(ABS(第二代第二代第二代))19861986 年年:开始批量生产开始批量生产66通道带通道带ASR ASR ASR功能的功能的功能的ABS ABS 19891989 年年:开始生产挂车开始生产挂车C C 型ABS ABS Vario Vario Vario--C 19901990 年年:开始生产开始生产C C 型ABS (ABS (第三代第三代第三代))19961996 年年:开始批量生产开始批量生产D D -Full Full和和D -Basic Basic型型ABS(ABS(第四代第四代第四代))2000 2000 年年:开始批量生产开始批量生产E E 型ABS (ABS (第五代第五代第五代))WABCO -ABS 发展历史ABS ABS--D D 到到ABS ABS--EABS ABS 的的概念ABS –A nti nti--lock B raking S ystem是在制动期间控制和监视车辆速度的电子系统是在制动期间控制和监视车辆速度的电子系统。
空气悬架系统WABCO讲解
空气悬挂系统
SWAP
September 27, 2020
ECU 446 055 50. 0
pair-suspension
指 标 高 度 的 控 制。 正 常 高 度 I/II。 用 开 关 / 按 键 进 行 手 动 高 度 调 节。 Kneeling。 监 视 供 气 压 力,如 只 有 特 定 的 环 境 下 允 许 Kneeling。 借 助 压 力 传 感 器 对 轴 荷 进 检 测。
系统配置清单
名称 ECU ECU 高度传感器 电磁阀 电磁阀 电磁阀导线 高度传感器导线 插头体 插头 插头 高度传感器摆杆 连接杆 压力开关
备注 35 针,速 度 信 号 为C3 信 号 速度信号为8脉冲信号 单车用量3件 带 KNEELING 功 能 不 带 KNEELING 功 能 长 度10、12、15 米 可 选 长 度10、12、15 米 可 选
September 27, 2020
E = Electronically C = Controlled A = Air S = Suspension
电子控制空气悬挂系统
ECAS
SWAP
September 27, 2020
ECAS - Electronically Controlled Air Suspension
ECAS 附 加 优 点
SWAP
September 27, 2020
常规客车空气悬挂系统(带kneeling 功能)
ECAS 优 点 举 例
SWAP
September 27, 2020
WABCO EBS技术参数表
□一、四桥自提升
○单胎/○双胎
车桥TDB号
(最好拍下车桥上铭牌的照片)
编写: 校对:审核:
制动计算号:
CONTROL PRESSURE(BAR)
CONTROL PRESSURE PM(BAR)
AXLE LOAD UNLADEN
SUSP PRESS UNLADEN
WABCO EBS技术参数表
合同号
车型
EBS型号
空载重量kg
空载第一轴承重
空载第二轴承重
空载第三轴承重
满载重量kg
满载第一轴承重
满载第二轴承重
满载第三轴承重
空载重心高度mm
空载气囊压强(Bar)
满载重心高度mm
满载气囊压强(Bar)
齿圈数
轮胎型号
轮胎周长
车桥型号
牵引销到悬架中心距离
气室型号
(注明每根桥)
BRAKE PRESS UNLEADEN
AXLE LOAD LADEN
SUSP PRESS LADEN
BRAKE PRESS LADEN
从上到下分别第1、2、3根轴数据
以上由EBS提供商(WABCO)填写填写人:
注:此表上面部分由工程部填写后随规范下发, 与WABCO技术人员落实ECU中输入内容。FT-W-ZG-H26-02A
ECAS-空气悬架知识介绍
紧凑式ECAS。
2001年:批量生产新一代电磁阀(ECAS III,取代 ECAS I)和新一代ECU (ECAS CAN 2)。
15032002.ppt/D.M. G. Meise
88
48
1999年:开始生产ELM,一种将高度传感器集合在一个模块中的主要用于挂车的
汽
1999年:开始研制新一代的被称为“ECAS CAN2”的ECU。
学
苑
4
WABCO
Vehicle Control Systems
ECAS开发过程和客户
15032002.ppt/D.M. G. Meise
DC
88
MAN
48
汽
DAF Scania Iveco
5
车
学
RVI
苑
Kässbohrer
WABCO
Vehicle Control Systems
15032002.ppt/D.M. G. Meise
常规客车空气悬挂系统(带kneeling 功能)
88
ECAS 优 点 举 例
15032002.ppt/D.M. G. Meise
14
48
汽
车
学
苑
WABCO
Vehicle Control Systems
苑 学 车
WS
4. 气囊 5. 遥控器
ECU
正常高度
MV
1 5 3
2
1. 电子控制器 (ECU) 2. 电磁阀 3. 高度传感器
15032002.ppt/D.M. G. Meise
88
3.高度传感器
48
电磁阀通常安装在车架或车架横梁上。ECAS电磁阀是高度集成化和模块化的设 计。取决于不同的配置,在通用的外部壳体内可以布置不同数量的电磁阀部件。 ECAS组合电磁阀可大大节省了零部件数量和安装空间以及装配费用。为了降低排气 噪声,电磁阀排气口带有消音器。
WABCO传动系统(1)
Nov.12
便捷的维修
18
WABCO离合器控制系统价值
使用WABCO离合器助力缸的益处 更长的免维护寿命 => 成本降低: 成本降低 WABCO: 大于2,000,000 次正常使用寿命 免维护系统=>无需初调,自动磨损补偿=>减少日常维护工作量 => 成本降低; 成本降低 磨损指示功能=>直接显示离合器片的磨损状况=>减少日常维护工 作量 => 成本降低; 高的可靠性=>避免离合器和变速器同步器、齿轮的异常磨损,延 长了离合器和变速器的寿命=> 成本降低; WABCO 可以提供完整的离合器控制系统解决方案; 目前,中国的卡车和客车出口市场在不断的发展,匹配WABCO离合器 控制系统可以更大程度的满足全世界客户的需要和期望。
集成ECU的模块 化AMT系统 AMT新一代 ECU 新一代换档 手柄单元与 优化的组件 第一台AMT 在美国市场 应用 1995 GS1 1996 EPS2 1999 Sure Shift 2000 GS3 带拨叉的全集 成化AMT系统 2002 I-Shift 2003 EPS3 2004 AGS2 2008 NM-AMT 2010 新模块化AMT 系统进入中国
Nov.12
方便的磨损指示功能
17
离合器助力缸维护和维修工具包
■ 离合器助力缸的维护 − 正常使用时,威伯科离合器助力缸不 需要任何维护,除了需在车辆维护时 检查制动液液面以及踏板力的大小是 否正常。 − 三年或九十万公里后,建议使用对应 的维修工具包,根据说明更换助力缸 内全部的橡胶件和润滑油 − 制动液须每两年或三十万公里更换一 次. ■ 威伯科提供离合器助力缸的维修工具包, 其内有各种橡胶件、密封件的备件。 ■ 一旦出现了密封失效的故障,经过检查, 可以通过清洁相关部件后更换橡胶密封件 的方式得以解决,有效的降低维护成本。
WABCO 盘式制动器说明
磨损指示传感器安装在制动衬块底 板上,传感器头部是一个线圈,把 线圈固定到合适的位置。 可以提供两个信号: 1-当线圈接触制动盘时 2- 当线圈磨穿时 这样就可以提供预先报警信号。
WABCO Confidential and Proprietary
电子磨损指示功能
电线支撑板
剩余厚度 2 mm 可磨损厚度
WABCO Confidential and Proprietary
商用车市场浮钳盘制动器的技术趋势
亚洲 日本 - 楔块式制动或者盘式制动器正在取代S凸轮鼓式制动器 - 总重小于15 t的车辆使用液压盘式制动器 中国 - 空气式盘式制动器取代S凸轮鼓式制动器 - 系统/模块供应
WABCO Confidential and Proprietary
更换时间
鼓式制动器
拆卸车轮 (10min.) 拆除制动鼓 拆除制动蹄片等等 (共10min.) 安装新零件 (10min.) 加工制动片 (15min.) 安装车轮 (10min.) 时间: 55 分钟/车轮
盘式制动器
拆卸车轮 (10min.) 拆卸固定弹簧 拆卸制动衬片 安装新零件 (共 6min.) 安装车轮 (10min.)
3
1
WABCO Confidential and Proprietary
推杆密封
双推杆
密封
WABCO Confidential and Proprietary
单推杆
可降低温度100°C ! 推盘可以减少传递到密封圈的热量
电子式磨损指示器
不管制动盘的厚度是多少,有电子磨损指示器的帮助,可以保证制动衬块 磨损到2mm才进行更换,从而避免损坏制动盘。
零件数量更少, 可靠性更高
WABCO ECAS系统 培训
前轴
后桥
前后桥均为空气悬挂的4×2车系统布置
15032002.ppt/D.M. G. Meise
17
Vehicle Control Systems
pair-suspension
ECU 446 055 50. 0
指
标 高 度 的 控 制。 正 常 高 度 I/II。 用 开 关 / 按 键 进 行 手 动 高 度 调 节。 Kneeling。 监 视 供 气 压 力,如 只 有 特 定 的 环 境 下 允 许 Kneeling。 借 助 压 力 传 感 器 对 轴 荷 进 检 测。 35 Pin ECU
ECAS 附 加 优 点
15032002.ppt/D.M. G. Meise
7
Vehicle Control Systems
常规客车空气悬挂系统(带kneeling 功能)
ECAS 优 点 举 例
15032002.ppt/D.M. G. Meise
8
Vehicle Control Systems
5
Vehicle Control Systems
ECAS - Electronically Controlled Air Suspension
系 统 部 件
15032002.ppt/D.M. G. Meise
6
Vehicle Control Systems
ECAS 的 优 点 :
15032002.ppt/D.M. G. Meise
12
Vehicle Control Systems
Main Customers
WABCO ECAS Systems Sold World - Wide
WABCO OES空气悬挂压缩机安装说明书
FOR 2005-2011 MERCEDES-BENZ CLS-CLASS FOR 2002-2013 MA YBACH 57S & 62SWARNING: The air suspension system is under pressure (up to 10 bar, or 150 lbf/in). Verify pressure has been relieved and disconnect power to the air suspension system prior to disassembly. Do not allow dirt or grease to enter the system. Always wear standard hand, ear, and eye protection when servicing the air suspension system."Engineered to Ride, Built to Last ®"Congratulations on your purchase of an Arnott ® air suspension product. We at Arnott Incorporated are proud to offer a high quality product at the industry’s most competitive pricing. T hank you for your confidence in usand our product.Proper installation is essential to experience and appreciate the benefits of this system. Please take a moment to review these installation instructions before you begin to install these components on your vehicle. T he removal and installation of air suspension products should only be performed by a fully qualified, ASECertified, professional.It is equally important to be aware of all necessary safety measures while installing your new Air Suspension System. T his includes proper lifting and immobilizing of the vehicle and isolation of any stored energy toprevent personal injury or property damage.Arnott ® is committed to the quality of its products. If you have a question or problem with any Arnott product, ****************************************************************************************************.(IntheEUpleasecall+31(0)*************************************)COMPRESSOR COMPRESSOR (left side of vehicle)(right side of vehicle)AIR LINEINTAKE T UBEFIGURE BWO (2) ELECTRICAL CONNECTORS FROM T HE COMPRESSOR UNITELECTRICAL CONNECTORSFIGURE CFIGURE DFOR 2005-2011 MERCEDES-BENZ CLS-CLASSFOR 2002-2013 MA YBACH 57S & 62SCRACKED AIR SPRINGS MUST BE CHANGEDTO VALIDATE THE WARRANTY ON THE COMPRESSORPLEASE READ ADDITIONAL WARRANTY INFORMATION ON THE BACK OF YOUR INVOICEPROPER PROCEDURE FOR ASSESSING YOUR AIR SPRINGS CONDITION:1. TURN OFF AIR SUSPENSION SWITCH IF EQUIPPED.2. REFER T O OWNER’S MANUAL FOR PROPER LIFTING T ECHNIQUES AND JACKING POINTS.3. RAISE T HE VEHICLE.4. INSPECT AIR SPRINGS FOR ANY T YPE OF CRACKS OR EXCESSIVE WEAR. LOOK FOR DRY ROTNEAR WHERE T HE AIR SPRING FOLDS. Y OU MAY ALSO WISH T O SPRAY A SOLUTION OFSOAP AND WATER ON T HE AIR BLADDER. EXPANDING BUBBLES WILL BE NOTICEABLEAROUND T HE LEAKING AREA.REFER TO FOR REPLACEMENT AIR SPRINGS AND AIR STRUTS.WARNINGArnott® is committed to the quality of its products. If you have a question or problem with any Arnott product, ****************************************************************************************************.(IntheEUpleasecall+31(0)*************************************)。
威伯科WABCO _常规制动系统(Chinese)
应急制动功能
目的:
在行车制动系统失效的情况下, 在行车制动系统失效的情况下,保证 汽车仍能实现减速或停车。 汽车仍能实现减速或停车。
版权所有 ,仅供内部培训使用
特征:
渐进制动 对于牵引车和挂车都可以控制。 对于牵引车和挂车都可以控制。
OCT 08
辅助制动功能
目的:
不用行车制动, 不用行车制动,对车辆实施减速 减轻行车制动
版权所有 ,仅供内部培训使用
OCT 08
37
空气干燥器
主要性能参数
切断压力(系统压力):8.5±0.2bar ;工作压力:10 bar 压力调节范围:0.7 -0.75bar; 工作温度范围:-40°C -- +65°C; 重量:4.23 Kg 加热器: 加热器:功率:100W ;工作电压:24V (21.6-28.8V)直流 自动开启温度:7°±6°C;自动关闭温度:29.5°±3°C
OCT 08
24
图纸符号 标准 DIN 74253 / ISO 1219 阀类
版权所有 ,仅供内部培训使用
脚阀
OCT 08
手阀
25
图纸符号 标准 DIN 74253 / ISO 1219 空气控制阀类
版权所有 ,仅供内部培训使用
继动阀
OCT 08
挂车控制阀
26
图纸符号 标准 DIN 74253 / ISO 1219
整备质量
22
图纸符号 标准 DIN 74253 / ISO 1219 空气供应系统
版权所有 ,仅供内部培训使用
空压机
泄压阀 带泄压阀的空气 干燥器 带排水阀的储气筒
OCT 08
23
图纸符号 标准 DIN 74253 / ISO 1219 例:四回路保护阀
ECAS-空气悬架知识介绍(可编辑)
ECAS-空气悬架知识介绍WABCOVehicle Control SystemsElectronicallyControlledAirSuspension15032002pptDMG Meise1WABCOVehicle Control Systems 内容简介什么是ECASWABCO ECAS 开发过程WABCO ECAS 市场和主要客户空气悬挂的优点ECAS的附加优点ECAS系统组成及布置ECAS 部件功能描述和安装简介 ECAS系统参数设置故障诊断15032002pptDM2WABCOVehicle Control Systems ECAS 定义EE ElectronicallyElectronicallyCC ControlledControlledAA AirAirSS SuspensionSuspension电子控制空气悬挂系统ECAS15032002pptDM3WABCOVehicle Control Systems ECAS 简介客车电子控制的空气悬架系统 ECAS 由ECAS 电控单元电磁阀高度传感器气囊等部件组成高度调节器负责检测车辆高度的变化电控单元将接受输入信息判断当前车辆状态激发电磁阀工作几电磁阀实现对各个气囊的充放气调节随着人们对车辆乘坐舒适性要求的提高和我国客车悬架技术的发展空气悬架在客车上的应用日益广泛传统的空气悬架控制模式是采用机械高度阀即通过高度阀阀门的开启调节对气囊的充放气从而保持车辆恒定的行驶高度随着系统应用的推广和车辆控制技术的发展电子控制逐渐取代传统的机械控制电子控制系统不仅提高了操作的舒适性和反应的灵敏度而且可以附加很多辅助功能威伯科汽车控制系统有限公司早在1986年就开始了电子控制空气悬架系统ECAS electroni-controlled air suspension 的开发和应用它是世界上最为先进并且应用最为广泛的电控空气悬架控制系统15032002pptDMG Meise4WABCOVehicle Control Systems ECAS开发过程和客户RVI KssbohrerDAFMAN ScaniaDCIveco15032002pptDMG Meise5WABCOVehicle Control SystemsAuwrter Nissan MitsubishiMenarini Freightliner MCITatra MAZ Sisu LiazISUZU HINO15032002pptDMG Meise6WABCOECAS ECAS 的开发过程的开发过程Vehicle Control Systems19861986年年开始采用模块概念开始采用模块概念19911991年年采用了新的采用了新的ECUECU和改善了功能的和改善了功能的可靠的可靠的便宜的第二代电磁阀便宜的第二代电磁阀 ECAS IIECAS II19921992年年开发出用于挂车的特殊的开发出用于挂车的特殊的ECASECAS将将ECASECAS引入美国市场引入美国市场 12 12 VV19951995年年开始生产开始生产ESACESAC并将其控制功能集合于并将其控制功能集合于ECASECAS的的ECUECU19961996年年开发出带开发出带CANCAN接口的接口的ECASECAS ECAS CAN 1ECAS CAN 119991999年年开始研制新一代的被称为开始研制新一代的被称为ECAS CAN2ECAS CAN2的的ECUECU19991999年年开始生产开始生产ELMELM一种将高度传感器集合在一个模块中的主要用于挂车的一种将高度传感器集合在一个模块中的主要用于挂车的紧凑式紧凑式ECASECAS20012001年年批量生产新一代电磁阀批量生产新一代电磁阀 ECASIIIECAS III取代取代 ECAS IECAS I和新一代和新一代ECUECUECAS CAN 2ECAS CAN 215032002pptDMG Meise7WABCOVehicle Control SystemsMain CustomersWABCO ECAS Systems Sold World - Wide DaimlerChryslerWABCO SOM 90 since 1997 DAF180000EvoBus160000140000 Freightliner120000100000 共213 000 套IVECO80000 约 12 000 busesMAN6000040000 RVI200000 Scania7 8 9 Truck Bus8 8 8 0 19 9 9 2Total 800011 Systems Truck Bus 791711 Trailer 83001 1 9 9 9 9 3 4 5Trailer K鰃el1 1 9 9 9 9 9 6 71 1 9 9 9 9 9 8 91 1 1 9 9 9 91 1 9 9 Feldbinder1 11987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999Truck Bus 4000 7050 8500 10400 15990 34363 29640 49546 73520 91439 110154 177109 180000Trailer700 1400 2200 4000销量与主要客户 15032002pptDMG Meise8WABCOVehicle Control Systems 空气悬挂系统常规空气悬挂高度阀旋转滑阀管路滤清器溢流阀电磁阀电子控制空气悬挂ECASECU电磁阀及导线高度传感器及导线压力开关压力传感器遥控器15032002pptDMG Meise9WABCOVehicle Control Systems空气悬挂系统的优点空气悬挂系统的优点由于较小的弹簧刚度和较低的固有频率而增加了驾驶的舒适性保持路面和车身间的距离恒定对感载阀控制的良好的适应性用于可换车身车辆上车身下降功能 kneeling 方便乘客上下车空气悬挂的优点15032002pptDMG Meise10WABCOVehicle Control Systems常规空气悬挂管路图15032002pptDMG Meise11WABCOVehicle Control Systems ECAS 工作原理它的基本工作原理是高度传感器负责检测车辆高度车架和车桥间的距离的变化并把这一信息传递给ECU 除高度信息外ECU还接受其它的输入信息如车速信息制动信息车门信息和供气压力信息等然后ECU综合所有的输入信息判断当前车辆状态按照其内部的控制逻辑激发电磁阀工作电磁阀实现对各个气囊的充放气调节15032002pptDMG Meise12WABCOVehicle Control Systems ECAS系统的功能和优势ECAS ECAS 的的优优点点减少了空气消耗--在车辆行驶过程中无空气消耗以低地板城市客车为例与常规空气悬挂相比ECAS可节省25的空气消耗通过自动调节可实现车辆保持不同高度可对两个行驶高度进行编程记忆尽管系统复杂但安装非常简单由于使用了大截面的进出气口而使所有控制过程变得非常迅速通过参数设置ECU可实现不同功能通过使用遥控器减少了装卸操作的危险性增加了许多辅助功能例如升降功能kneeling 侧倾过载保护提升桥控制等压力监视功能ECU检测供气压力处于安全的考虑如果气压低于一定值下降和侧倾功能将受限安全控制ECU根据当前车门开关信息判断是否能提升/下降车辆综合安全概念故障记忆和诊断功能维修检测专用诊断软件和检测设备可做到下线时快速检测及调整方便的闪码功能便于售后维修检测15032002pptDMG Meise13WABCOVehicle Control Systems 常规客车空气悬挂系统带kneeling 功能ECAS 优点举例15032002pptDMG Meise14WABCOVehicle Control SystemsECU度 MV高1 5常正 WS2431 电子控制器 ECU 4 气囊2 电磁阀 5 遥控器3 高度传感器ECAS 系统15032002pptDMG Meise15WABCOVehicle Control Systems ECAS 主要部件1.电控单元电控单元 ECU通常安装在驾驶室或者电气仓内可实现不同高度值的管理和储存控制包括正常高度在内的多个车辆高度ECU负责与诊断工具进行数据交换同时监测系统所有部件的操作检测并储存系统故障2 .电磁阀电磁阀通常安装在车架或车架横梁上ECAS电磁阀是高度集成化和模块化的设计取决于不同的配置在通用的外部壳体内可以布置不同数量的电磁阀部件ECAS组合电磁阀可大大节省了零部件数量和安装空间以及装配费用为了降低排气噪声电磁阀排气口带有消音器3.高度传感器高度传感器的外形看起来与机械高度阀相似它们的安装方式和安装位置完全相同通常布置在车架上传感器内部包含线圈和枢轴当车桥与车身之间的距离发生变化时高度横摆杆转动并带动相应的电枢在线圈中上下直线运动造成线圈的感应系数变化ECU检测此感应系数的变化并将其转换成高度数字信号15032002pptDMG Meise16WABCOECAS - Electronically ControlledAir SuspensionVehicle Control Systems系统部件15032002pptDMG Meise17WABCO系统配置清单 Vehicle Control Systems图号名称备注单车用量个446 055 506 0 ECU 速度信号为 8 脉冲信号 1441 050 011 0 高度传感器单车用量 3 件 3472 900 056 0 电磁阀带 KNEELING 功能 1449 422 100120150 0 电磁阀导线长度101215 米可选 2449 742 100120150 0 高度传感器导线长度101215 米可选 3894 510 764 2 插头体1894 510 297 4 2 30插头用于 05-15 mm 导线894 510 298 4 插头用于 15-25mm2 导线 3441 050 718 2 高度传感器摆杆单车用量 3 件 3433 401 003 0 连接杆单车用量 3 件 3441 014 025 0 压力开关60 bar 1空气悬挂系统15032002pptDMG Meise18WABCOVehicle Control Systems 仅后桥为空气悬挂的ECAS 系统遥控器高度传感器ECU电磁阀气囊后桥4 ×2 车仅后桥为空气悬挂系统布置示意图15032002pptDMG Meise19WABCOVehicle Control Systems客车ECAS前后桥均为空气悬挂的ECAS系统前轴后桥前后桥均为空气悬挂的4 ×2车系统布置 15032002pptDMG Meise20WABCOpair-suspensionVehicle Control SystemsECU 446 055 50 0指标高度的控制正常高度 III用开关按键进行手动高度调节Kneeling监视供气压力如只有特定的环境下允许Kneeling借助压力传感器对轴荷进检测35 Pin ECUECU 功能15032002pptDMG Meise21WABCOVehicle Control SystemsECU 446 055 50 0 ECU 446 055 50 0 工工作作原原理理连续监视输入信号将信号转换为计数比较输入值与指标值在出现偏差的情况下估计所需要的控制反应激发电磁阀不同指标值的管理和储存正常高度故障记忆等系统所有部件可操作性的有规律的监视监视轴荷借助压力传感器用于故障检测的接收信号的可能性检查发现故障ECU15032002pptDMG Meise22WABCOVehicle Control SystemsECU 446 055 50 0 ECU 446 055 50 0 安安装装要要求求ECU 的型号选择446 055 503 0 对应速度信号为C3 信号446 055 506 0 对应速度信号为8 脉冲速度传感器信号安装在防水防尘的位置推荐在驾驶室内接近性要好便于诊断ECU 工作温度范围-40 °C -+80 °用外接电源为车辆充电时要将ECU 电源断开防止外界高电压损伤ECU当车辆需要电焊时断开CEU 不得用万用表测量ECU各部件的拆装必须在停电后进行并保持各部件清洁干燥不得随意改变保险丝容量指示灯坏了应及时更换清洁车辆时ECU 不得进水ECU15032002pptDMG Meise23WABCOVehicle Control Systems通过选择参数对车辆性能进行设置例如参数1的bit2 =0带一个高度传感器的桥的左右kneeling bit2 1 则只有右边kneeling由于有参数设置使得同样的系统部件可以有非常个性化的布置根据需要选用指示灯和开关PARAMETER SETTING参数设置15032002pptDMG Meise24WABCOVehicle Control Systems ECAS 系统指示灯通常系统具有故障灯红色高度指示灯黄色根据车辆功能设置还可具有侧跪灯特殊高度Ⅱ指示灯打开点火开关后故障灯和高度指示灯亮 2 秒然后灭掉表示ECAS系统正常如果高度指示灯黄亮说明当前高度不在正常高度上如车辆气压充足按下恢复正常高度按键黄灯应灭如果故障指示灯红亮说明ECAS系统存在故障当系统出现故障时取决于故障的严重性警告灯将一直亮不严重或闪烁严重以提醒驾驶员系统出现故障当车辆侧跪时当达到侧跪高度时侧跪指示灯亮当按下特殊高度Ⅱ开关时特殊高度Ⅱ指示灯亮15032002pptDMG Meise25WABCOVehicle Control Systems ECAS 系统开关上升下降开关从安全角度考虑ECU允许在一定车速下实现车辆高度的提升或者降低该车速可通过ECU参数设置提升和下降开关均是复位开关下降开关在供气气压大于6 bar时有效当车辆超过设定车速通常15kmh20kmh 时自动回复正常高度-高度复位开关恢复车辆正常行程高度-侧跪开关在车速低于5kmh时使用侧跪开关在供气气压大于6 bar时有效车辆侧跪后当车速大于7 kmh时车辆自动恢复正常行程高度-特殊高度Ⅱ开关仅供特殊路况下短时使用按下特殊高度Ⅱ开关后同时特殊高度Ⅱ指示灯亮不能长时间使用特殊高度Ⅱ15032002pptDMG Meise26WABCOVehicle Control Systems 灯与开关的安装取决于客户对ECAS 功能的选择在仪表板上需增加功能选择开关和指示灯如ECAS 系统警告灯选用红色功率小于5WECAS 指示灯选用黄色功率小于5W用来指示车辆是否在规定高度上特殊高度II 指示灯Kneeling 指示灯正常高度 III 转换开关手动自动提升降低底盘的开关Kneeling 开关Kneeling 停止开关等并非所有开关和指示灯在同一底盘上都需要具体开关和灯的位置及标识由主机厂确定所有指示灯不允许用发光二极管代替15032002pptDMG Meise27WABCOVehicle Control Systems 安装后的测试安装完成后可以通过诊断软件或者诊断仪对系统部件安装情况进行检测如激发电磁阀测试灯与开关测量高度传感器读数检查车速表信号测量工作电压和电磁阀的继动电压等15032002pptDMG Meise28WABCOVehicle Control Systems ECAS Level Sensor功能高度传感器连续不断地测量实际高度的变化并将其转换为电信号传递至ECU可以安装在车架上正常状况传感器两极角间电阻120欧姆左右请注意因为高度传感器靠感应系数工作所以不能在工作时用欧姆表直接测量电阻15032002pptDMG Meise29WABCOVehicle Control Systems通常安装3个高度传感器一个桥安装一个高度传感器 1HSA一个桥安装两个高度传感器 2HSA安装高度传感器测量原理为角度的变化对应高度变化高度传感器左右对称摆杆和连接臂长度相等尽量大地应用其工作范围为充分利用高度传感器的测量范围尽可能地将摆杆中间位置位于车辆正常高度允许垂直或水平安装在所有行程范围内不允许与底盘件干涉允许传感器壳体与摆杆呈一定角度在固定传感器前确定当车身上升时摆杆是顺时针还是逆时针转动很重要避免用力弯摆杆否则会在凸轮上产生扭矩安装时需考虑合适的连接杆长度如长度太短易发生连接杆反跳故障15032002pptDMG Meise30WABCO 高度传感器的安装Vehicle Control Systems多种可能的安装位置感应值增加车身上升感应值减小车身降低观察筋到摆杆位置通过4h8的心轴固定传感器在中心的位置导线无极性之分传感器和ECU之间的导线长度最长15米安装关键 2个原则圆形连接面上的2个凸块应在高度传感器轴线的两侧当车辆上升时2个凸块都应朝高度传感器电插口方向运动15032002pptDMG Meise31WABCOECAS Solenoid ValvesVehicle Control SystemsECAS II ECAS III15032002pptDMG Meise32WABCOVehicle Control Systems双高度传感器桥 2HSA 的电磁阀带一个高度传感器的桥 1HSA 的电磁阀客车带 Kneeling功能的电磁阀正常状态电磁阀每一极角对地电阻75欧姆左右ECAS II电磁阀组件节省了空间和安装费用采用模块设计原则取决于不同的配置用同样的壳体可以包含数量不同的部件ECAS 电磁阀15032002pptDMG Meise33WABCOVehicle Control Systems阀前桥右气囊前桥左气囊供气11 后桥左气囊后桥右气囊供气出气22232627电磁控制611 612 613 614 621622 623 624 631 632 634 472 900 056 0电磁阀安装15032002pptDMG MeiseWABCO供气11Vehicle Control Systems 出气22232627 2223电磁控制611 612 613 614 621 622 624472 900 057 0阀阀前桥右气囊前桥左气囊后桥左气囊后桥右气囊供气电磁阀安装15032002pptDMG Meise35WABCOECAS Solenoid ValvesVehicle Control Systems前桥不带12 12Kneelin 前桥一侧kneelingg23 22 27 2614211411驱动桥2C23 22315032002pptDM。
WABCO 安全节能相关系统的部分英文缩写的解释
英文缩写及注解ABS(Anti-block braking system)制动防抱死系统。
目前WABCO ABS系统可扩展的功能有ASR、EBL、ESC、HSA等功能。
ABS E8,其中ABS(Anti-block braking system)制动防抱死系统,其中E8是WABCO的版本号,即WABCO的最新一代的制动防抱死系统,具有强大的扩展功能。
目前还在研发过程中。
在此系统的基础上可以扩展AEBS、ACC、FCW、CMS、ESCsmart、EC-APU等先进的安全和节能系统。
也包括目前ABS具有的扩展功能ASR、EBL、HSA等。
EBS(Electronic Braking System)电子制动系统。
它是电控气制动系统的简称。
此系统是欧洲主流的商用车制动系统方案。
它可以显著的降低制动系统的响应时间,缩短制动距离,优化制动力分配,提高制动舒适性等优点,同时此系统具有ABS的相应功能。
ASR(Anti-Spin Regulation)或ATC(Automatic Traction Control)驱动防滑控制,防止车辆在不同路面上加速时车轮空转,防止一个或多个车轮失去牵引力。
EBL(Electronic Braking Limit)电子制动力限制,在一定的范围内可以调整后桥滑移率(与前桥对比),从而限制过制动。
当前桥失去制动力时,后桥会进行全制动,直到达到额定减速度或最大压力为止。
ESC(Electronic Stability Control)电子稳定控制,包括防侧翻功能(RSC,Roll stability control)和方向控制功能(YC,Yaw Control)。
防侧翻功能主要针对高速高附附着路面过弯时,车辆容易发生侧翻风险的相应控制功能。
而方向控制功能,主要针对车辆在转向、变道时,路面无法提供足够的侧向附着力导致的车辆偏航的方向纠正功能。
(欧盟法规,2013年起开始逐步实施)ESCsmart,ESC的升级版本。
wabco气囊控制器遥控说明
wabco气囊控制器遥控说明一种用于车辆的控制器,包括处理器和存储处理器可执行指令的存储器。
控制器的处理器编程为:接收表示与车辆的侧面碰撞的侧面撞击信号:接收表明车辆的第一后排座椅被占用的占用信号:并且仅当邻近车辆的该侧面的第二后排座椅未占用时,响应于侧面撞击信号和占用信号而发送用于在邻近车辆的该侧面的前排座椅和该第二后排座椅之间展开安全气囊的输出控制信号。
安全气囊控制器是用于接收碰撞信号并控制安全气囊起爆,向安全气囊发出引爆指令的元件,一般装置于选换档操纵机构下部,驻车制动手刹前部的车体中央通道上。
安全气囊控制器作为整个系统的核心,它是随着电子控制技术逐步发展的。
其核心关键技术的发展将会体现在:对碰撞的准确判断、点火时刻的精确控制、超强的抗干扰能力和超高的可靠性及稳定性。
安全、环保、节能是衡量现代汽车技术发展水平的三个主要指标,而汽车安全技术列居首位。
安全气囊系统是被动安全技术的一种,它是在车辆发生碰撞后,用来保护司机和乘员安全的系统,由碰撞传感器、控制器、气体发生器和气囊组件等部分组成。
其工作原理是:当发生撞车时,通过加速度传感器捕获碰撞信号,安全气囊控制器对捕获的碰撞信号进行采集、分析、判断及处理,对可能会造成司机和乘员安全的碰撞适时地发出点火指令驱动气体发生器点火,从而引爆安全气囊,这样,司机和乘员通过和柔性的安全气囊接触,避免了和车内刚性物体碰撞而引起人员伤害。
从工作原理可以看出,安全气囊控制器是整个系统的核心,它既是传感器获取的碰撞信号的分析与处理装置,同时也是点火指令发出与否的判断装置;除此之外,它还应该能够准确判断碰撞强度,引爆车速、准确判断点火时刻、抗干扰能力等。
安全气囊控制器系统主要有机械式、模拟电子式和智能式几种,带微处理器的智能式安全气囊控制器是目前发展的主流,也是本文的研究对象,它由系统硬件和系统软件构成。
安全气囊控制器是整个安全气囊系统的核心,一方面它接收并处理碰撞传感器获取的碰撞信号;另一方面,碰撞信号经过一点的算法处理后,做出是否发出点火信号的判断,并根据判断结果发出相关指令;同时,还需要和车身其他单元通信等。
WABCO简介
WABCO产品类型WABCO产品系列:空气管理系统、执行器及主制动器、防抱死制动系统、自动牵引控制系统、智能化挂车应用程序、汽车系统、轿车产品电子控制气囊悬挂、真空泵、传动控制、TASC –挂车空气悬挂控制阀、防抱死制动系统、离合器控制、制动气室、电子制动和稳定控制、悬挂控制、制动器、常规制动控制、空气压缩机、整车电控体系、变速自动控制、空气处理系统、先进的驾驶员辅助驾驶系统、悬挂控制、空气气囊空气悬挂高度控制阀、车身高度控制模块、减振器、电控高度调节模块、电子减振控制系统、ECAS(卡车和客车)、提升桥控制阀、旋转滑阀威伯科离合器分泵 | 威伯科气动控制阀 | WABCO空气干燥器总成 |威伯科高度控制阀| WABCO气动阀 | WABCO四LIAN阀 | WABCO调压阀 | WABCO离合器助力泵JDF进口接通储气筒,出气口接制动气室。
当踩下制动踏板时,JDF输出气压作为J 的控制压力输入,在控制压力作用下,将进气阀推开,于是压缩空气便由储气筒直接通进气口进入制动气室,而不用流经制动阀,这大大缩短了制动气室的充气管路,加速了室的充气过程。
因此JDF又叫加速阀。
JDF维修保养:JDF一般装在制动阀至中、后桥的管路中,因为中、后桥离制动阀较远、管道较长,动时高压空气进入制动气室的阻力大,易出现制动滞后;解除制动也出现缓慢现象。
JDF在使用保养。
JDF保养时应注意:①JDF内部应保持清洁,避免活塞及阀杆发卡。
②橡皮膜老化变质,失去弹性,会影响制动强度并使回位慢,应及时更换。
③阀杆密封不严,会使高压空气漏气制动气室而使制动发咬,对此应检查更换阀杆。
JDF作用:JDF用于长管路的末端,储气筒的压缩空气快速充满制动气室,如在挂车或半挂车制动统中。
在载重汽车的制动系统里,JDF起缩短反应时间和压力建立时间的作用,JDF属于汽车制动系统的一部分。
JDF于长管路的末端,储气筒的压缩空气快速充满制动气室,如在挂车或半挂车制动系统中。
wabco abs 原理
wabco abs 原理WABCO ABS 原理引言:WABCO ABS(Anti-lock Braking System,防抱死制动系统)是一种先进的汽车制动系统,旨在提高车辆制动性能和安全性。
本文将介绍WABCO ABS的原理及其工作过程。
一、WABCO ABS的原理WABCO ABS采用了电子控制单元(ECU)和传感器等组件,通过监测车轮的转速和制动压力,实现对车轮制动的准确控制。
其主要原理如下:1. 传感器:WABCO ABS系统通过安装在车轮上的传感器来检测车轮的转速。
这些传感器能够实时监测每个车轮的转速,并将数据传输给ECU。
2. 电子控制单元(ECU):ECU是WABCO ABS系统的核心控制单元,它接收来自传感器的数据,并根据这些数据来判断车轮是否会出现抱死现象。
ECU还控制着制动液的压力,以便在需要时调整制动力度。
3. 制动液压力调节器:当ECU检测到车轮即将抱死时,它会通过制动液压力调节器来减小制动液的压力。
这样可以减少制动力度,避免车轮抱死,保持车辆的稳定性。
4. 制动踏板传感器:WABCO ABS系统还配备了制动踏板传感器,用于监测驾驶员对制动踏板的踩踏力度。
当驾驶员踩下制动踏板时,传感器会将信号发送给ECU,以便系统能够实时调整制动力度。
二、WABCO ABS的工作过程WABCO ABS系统的工作过程如下:1. 启动:当驾驶员启动车辆时,WABCO ABS系统会进行自检,确保系统正常运行。
2. 数据采集:当车辆行驶时,传感器会实时采集每个车轮的转速,并将数据传输给ECU。
3. 数据分析:ECU会对传感器采集到的数据进行分析,并根据预设的算法来判断车轮是否会出现抱死现象。
4. 制动力调节:当ECU检测到车轮即将抱死时,它会通过制动液压力调节器来减小制动液的压力,以调整制动力度。
5. 驾驶员反馈:WABCO ABS系统还会通过制动踏板传感器来感知驾驶员对制动踏板的踩踏力度,并根据驾驶员的需求调整制动力度。
ECAS技术参数
ECAS技术参数一、关于ECAS装置ECAS是Electronically Controlled Air Suspension的缩写,即电子控制空气悬挂系统。
在欧洲及美国等发达国家由于对高档货车及客车有标准要求,在运货时为了保证货物不被震坏,所以在欧洲及美国的货车及客车上应用十分广泛。
中国最早使用ECAS系统的是客车,现在国产的一些货车也在开始尝试应用ECAS系统。
应该说ECAS系统是国内客车及货车悬挂系统发展的方向。
二、气囊标准1、前气囊正常高度应为265 mm,后气囊正常高度应为265 mm,误差范围±5 mm。
2、气囊上升下降标准为升50 mm,降70 mm。
三、ECAS的一些参数1、WABCO公司的ECAS内设高度传感器标定值为:45(车身最低),85(中间高度),125(车身最高)。
设置该值的目的在于防止气囊过低或过高,过低会损坏气囊中的减震器,也可能车身在行走进碰到地面。
过高可能拉坏减震器。
2、WABCO公司的ECAS接线图与客车厂家的左右看法相反,WABCO公司是站在车前方往后看,分左右。
3、客车厂家一般要求的自动恢复正常高度车速为25km/h,里程表速比按624计算。
如果客户使用ECAS的目的主要是过立交桥,则恢复正常高度的车速应在35km/h左右比较合适。
4、WABCO公司给客车厂家提供的ECAS内部都是设定的欧洲标准,若按日本标准供货,会出现一打车车身高度先进行变化的现象。
5、WABCO公司给中国供货的产品,当车速超过5km/h时,车辆行走过程中的颠簸不会导致气囊高度立即变化,目前国内使用的WABCO公司的ECAS,会延迟5秒钟再动作,按照欧洲的标准延迟时间应为60秒。
6、当车速超过5km/h时,按气囊升降开关不起使用,以防在行车过程中操作升降开关。
7、WABCO公司生产的ECAS也能使用遥控器对车辆进行升降操作。
减少货车上升下降时对人造成的危险。
8、现在使用的高度传感器是较老的结构,内部为活塞式运动结构,高度传感器的高角与曲柄同方向,高度传感器的阻值为120Ω,该传感器是通过改变磁芯进入的深度来改变磁感应系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
pair-suspension
标 高 度 的 控 制。 正 常 高 度 I/II。 用 开 关 / 按 键 进 行 手 动 高 度 调 节。 Kneeling。 监 视 供 气 压 力,如 只 有 特 定 的 环 境 下 允 许 Kneeling。 借 助 压 力 传 感 器 对 轴 荷 进 检 测。 35 Pin ECU
SWAP
July 21, 2016
ECU
正常高度
MV
2
1. 电子控制器 (ECU) 2. 电磁阀 3. 高度传感器
WS
1 5 3
4
4. 气囊 5. 遥控器
ECAS 系 统
SWAP
July 21, 2016
客车ECAS/前后桥均为空气悬挂的ECAS系统
前轴
后桥
前后桥均为空气悬挂的4×2车系统布置
•由于有参数设置,使得同样的系统部件可以有非常个性化的布置 •根据需要选用指示灯和开关。
PARAMETER SETTING 参数设置
SWAP
July 21, 2016
C3 技 术 条 件
Uhigh=7.0 伏5% Ulow= max. 1.5 伏 Imax 1mA 边 缘 陡 度=max10sec 脉 冲 范 围:w=1(K=8000 脉 冲/km)t= 2ms2% w=0.5 对 应t=1ms2%
高度传感器的安装
SWAP
July 21, 2016
•双高度传感器桥(2HSA)的电磁阀 •带一个高度传感器的桥 (1HSA)的电磁阀 •客车带 Kneeling功能的电磁阀
•电磁阀组件,节省了空间和安装费用 •采用模块设计原则:取决于不同的配置, 用 同样的壳体可以包含数量不同的部件
ECAS 电 磁 阀
开发过程
SWAP
July 21, 2016
Main Customers
WABCO ECAS Systems Sold World - Wide
WABCO SOM 90% since 1997 180000 160000 140000 120000 100000 80000 60000 40000 20000 0
SWAP
常规空气悬挂管路图
July 21, 2016
空气悬挂系统的优点:
•由于较小的弹簧刚度和较低的固有频率而增加了驾驶的舒适性 • 保持路面和车身间的距离恒定 • 对感载阀控制的良好的适应性
•用于可换车身车辆上
•车身下降功能(kneeling),方便乘客上下车
空气悬挂的优点
SWAP
July 21, 2016
长 度10、12、15 米 可 选 长 度10、12、15 米 可 选
用 于 0.5-1.5 mm2 导 线 用 于 1.5-2.5mm2 导 线 单车用量3件 单车用量3件
441 014 025 0
压力开关
6.0 bar
空 气 悬 挂 系 统
SWAP
July 21, 2016
ECU 446 055 50. 0
电磁阀安装
SWAP
July 21, 2016
472 900 057 0
供气:11 出气:22,23,26,27(22,23) 电磁控制:61.1, 61.2, 61.3, 61.4, 62.1, 62.2, 62.4
阀
阀
前桥右气囊 前桥左气囊 后桥左气囊 后桥右气囊 供气
电磁阀安装
SWAP
输 入 信 号
C3 信 号 ( 反 向 )
速度信号
SWAP
July 21, 2016
新式: 441 050 011 0 带 DIN标准的卡口 线: 1x 449 742 050/100 0 老型号: 441 050 010 0 带 螺 纹 M27x1,5 线: 1x 894 604 215 2
or
ECAS
诊
断
SWAP
July 21, 2016
446 301 520 0 ECAS-PC-Diagnostic-Software, (2 diskettes) 446 301 540 0 EBS-PC-Diagnostic-Software, (2 diskettes) 446 301 501 0 VCS-PC-Diagnostic-Software, (2 diskettes) 446 301 021 0 Set Interface and Cable, (PC和接口之间的连接) 硬件要求: 笔记本电脑 奔腾 PC, 16 MB 内存 600x800彩显 约 5 MB 硬盘空间 带软驱 1 COM 接口 (9针) 用于 WABCO 诊断接口 Windows 95/98 WIN NT
系 统 部 件
SWAP
July 21, 2016
ECAS 的 优 点 :
减少了空气消耗--在车辆行驶过程中无空气消耗。以低地板城市客车为例,与常规空气悬挂相比 ,ECAS可节省25%的空气消耗。 通过自动调节可实现车辆保持不同高度,可对两个高度进行编程记忆。 尽管系统复杂,但安装非常简单。 由于使用了大截面的进(出)气口而使所有控制过程变得非常迅速。 通过参数设置,ECU可实现不同功能。
•用于故障检测的接收信号的可能性检查
•发现故障
SWAP
ECU
July 21, 2016
ECU 446 055 50. 0 安 装 要 求
• ECU 的 型 号 选 择:446 055 503 0 对 应 速 度 信 号 为C3 信 号; 446 055 506 0 对 应 速 度 信 号 为8 脉 冲 速 度 传 感 器 信 号。 •安 装 在 防 水、 防 尘 的 位 置, 推 荐 在 驾 驶 室 内, 接 近 性 要 好, 便 于 诊 断。 •ECU 工 作 温 度 范 围:-40°C-+80 ° • 用 外 接 电 源 为 车 辆 充 电 时, 要 将ECU 电 源 断 开, 防 止 外 界 高 电 压 损 伤ECU • 当 车 辆 需 要 电 焊 时, 断 开CEU。 不 得 用 万 用 表 测 量ECU。 • 各 部 件 的 拆 装 必 须 在 停 电 后 进 行, 并 保 持 各 部 件 清 洁、 干 燥。 • 不 得 随 意 改 变 保 险 丝 容 量。
内
容
简
介
空气悬挂的优点
什么是ECAS
ECAS的附加优点 ECAS系统组成及布置
ECAS 部件功能描述和安装简介
ECAS系统参数设置 诊断
ECAS 开发过程
ECAS发展 ECAS 市场和主要客户
电子控制的空气悬挂 ECAS
SWAP
July 21, 2016
SWAP
July 21, 2016
阀 472 900 056 0
阀
供气:11 出气:22,23,26,27 电磁控制:61.1, 61.2, 61.3, 61.4, 62.1, 62.2, 62.3, 62.4, 63.1, 63.2, 63.4
前桥右气囊
前桥左气囊 后桥左气囊 后桥右气囊 供气
通过使用遥控器减少了装卸操作的危险性。
增加了许多辅助功能,例如 :升降功能,kneeling, 过载保护,提升桥控制等。 综合安全概念,故障记忆和诊断功能。
ECAS 附 加 优 点
SWAP
July 21, 2016
常规客车空气悬挂系统(带kneeling 功能)
ECAS 优 点 举 例
SWAP
July 21, 2016
•常规空气悬挂
•高 度 阀 •旋 转 滑 阀
•管 路 滤 清 器、 溢 流 阀、电 磁 阀
•电子控制空气悬挂(ECAS)
•ECU
•电 磁 阀及 导 线
•高 度 传 感 器 及 导 线 •压力开关
•压力传感器
•遥 控 器
空 气 悬 挂 系 统
SWAP
July 21, 2016
Total: 800.011 Systems (Truck / Bus: 791.711, Trailer: 8.300)
Feldbinder
PC 诊 断 要 求
SWAP
July 21, 2016
ECAS 的开发过程
1986年: 开始采用模块概念。
1991年: 采用了新的ECU和改善了功能的、可靠的、便宜的第二代电磁阀。
1992年:引进了用于挂车的特殊的ECAS。 1995年:开始生产ESAC,并将其控制功能集合于ECAS的ECU。 1996年:引进带CAN接口的ECAS。 1999年:开始研制新一代的被称为“ECAS CAN2”的ECU。 1999年:开始生产ELM,一种将高度传感器集合在一个模块中的主要用于挂车的紧凑式ECAS。
449 422 100 0 449 742 100 0 894 510 764 2 894 510 297 4 894 510 298 4 441 050 718 2 433 401 003 0
电磁阀
电磁阀导线 高度传感器导线 插头体 插头 插头 高度传感器摆杆 连接杆
不 带 KNEELING 功 能
系统配置清单
图号 446 055 503 0 446 055 506 0 441 050 011 0 472 900 056 0 名称 ECU ECU 高度传感器 电磁阀 备注 35 针,速 度 信 号 为C3 信 号 速度信号为8脉冲信号 单车用量3件 带 KNEELING 功 能
472 900 057 0
动很重要。
•避免用力弯摆杆 ,否则会在凸轮上产生扭矩。
高度传感器
SWAP
July 21, 2016