人教版八年级数学上《第15章分式》精品单元测试(6)(有答案)

合集下载

人教版八年级上数学第15章 分式单元检测(含答案)(含答案)

人教版八年级上数学第15章 分式单元检测(含答案)(含答案)

数学人教版八年级上第十五章 分式单元检测一、选择题(本大题共8小题,每小题4分,共32分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.在2a b -,(3)x x x +,5πx +,a b a b +-中,是分式的有( ). A .1个B .2个C .3个D .4个 2.如果把分式2x x y+中的x 和y 都扩大2倍,那么分式的值( ). A .不变B .扩大2倍C .扩大4倍D .缩小2倍 3.分式22x y x y-+有意义的条件是( ). A .x ≠0 B .y ≠0C .x ≠0或y ≠0D .x ≠0且y ≠04.下列分式中,计算正确的是( ).A .2()23()3b c a b c a +=+++ B .222a b a b a b +=++ C .22()1()a b a b -=-+ D .2212x y xy x y y x -=--- 5.化简211a a a a --÷的结果是( ). A .1a B .a C .a -1 D .11a - 6.化简21131x x x +⎛⎫- ⎪--⎝⎭·(x -3)的结果是( ). A .2B .21x -C .23x -D .41x x -- 7.化简1111x x -+-,可得( ). A .221x - B .221x -- C .221x x - D .221x x -- 8.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,则根据题意列出的方程是( ).A .80705x x =-B .80705x x =+C .80705x x =+D .80705x x =- 二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)9.当x =__________时,分式13x -无意义. 10.化简:22x y x y x y---=__________. 11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 mm 2,这个数用科学记数法表示为__________ mm 2. 12.已知x =2 012,y =2 013,则(x +y )·2244x y x y+-=__________. 13.观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,…,根据你发现的规律计算:2222122334(1)n n +++⋅⋅⋅+⨯⨯⨯+=__________(n 为正整数). 14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务,设甲计划完成此项工作的天数是x ,则x 的值是__________.15.含有同种果蔬但浓度不同的A ,B 两种饮料,A 种饮料重40千克,B 种饮料重60千克,现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是__________千克.16.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设x m 管道,那么根据题意,可得方程__________.三、解答题(本大题共5小题,共36分)17.(本题满分6分)化简:32322222b b ab b a b a a b ab b a++÷--+-. 18.(本题满分6分)已知x -3y =0,求2222x y x xy y +-+·(x -y )的值. 19.(本题满分10分,每小题5分)解方程:(1)271326x x x +=++; (2)11222x x x -=---.20.(本题满分7分)已知y =222693393x x x x x x x +++÷-+--.试说明不论x 为任何有意义的值,y 的值均不变.21.(本题满分7分)为抗旱救灾,某部队计划为驻地村民新修水渠3 600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?参考答案1.B 点拨:(3)x x x +和a b a b+-是分式,故选B. 2.A 3.C 点拨:若分式22x y x y-+有意义,则x 2+y 2≠0,所以x ≠0或y ≠0.故选C. 4.D 点拨:2222212(2)()x y x y x y xy x y x xy y x y y x ---===----+---,故选D. 5.B 点拨:221111a a a a a a a a ---÷=⨯-=a .故选B. 6.B 点拨:21131x x x +⎛⎫- ⎪--⎝⎭·(x -3)=1-211x x +-·(x -3)=1-22223222111x x x x x x --+==---.故选B. 7.B 点拨:原式=2211112(1)(1)(1)(1)11x x x x x x x x x x -+----==-+-+---.故选B. 8.D9.3 点拨:当x =3时,分式的分母为0,分式无意义.10.x +y 点拨:2222()()x y x y x y x y x y x y x y x y-+--==----=x +y . 11.7×10-7 12.-1 点拨:(x +y )·2244x y x y +-=(x +y )·222222()()x y x y x y ++-=(x +y )·221x y -=(x +y )·11()()x y x y x y=+--, 当x =2 012,y =2 013时,原式=1120122013x y =--=-1. 13.21n n + 点拨:222122334++⨯⨯⨯+…+211112(1)122334(1)n n n n ⎡⎤=+++⋅⋅⋅+⎢⎥+⨯⨯⨯+⎣⎦ =1111111121223341n n ⎛⎫-+-+-+⋅⋅⋅+- ⎪+⎝⎭=122111n n n ⎛⎫-= ⎪++⎝⎭. 14.6 点拨:由题意得24x x x x--+=1,解得x =6,检验知x =6是原分式方程的根且符合题意.15.24 点拨:设A 种饮料浓度为a ,B 种饮料浓度为b ,倒出的重量为x 千克,由题意得(40)(60)4060bx a x ax b x +-+-=,解得x =24. 16.12030012030(120%)x x -+=+(或1201801.2x x +=30) 点拨:根据题意可得题中的相等关系为前后两次铺设共用的时间等于30天,铺设120 m 后每天的工效为1.2x m ,铺设120 m 所用时间为120x 天,后来所用时间为3001201.2x -天,因此可列方程1206001201.2x x-+=30. 17.解:原式=322()(2)()()b b b a b a b a a ab b a b a b ++÷--+-+- =32()()()()b b b a b a b a a b a b a b ++÷---+- =32()()()()b b a b a b a b a a b b a b -+-+⋅--+ =22()()()b b ab b a b a a b a a b a a b -=----- =2()ab b b a a b a-=-. 18.解:2222x y x xy y +-+·(x -y )=22()x y x y +-·(x -y )=2x y x y +-. 当x -3y =0时,x =3y .原式=677322y y y y y y +==-. 19.解:(1)去分母,得2x ×2+2(x +3)=7,解得,x =16, 经检验,x =16是原方程的解. (2)方程两边同乘(x -2)得,1-x =-1-2(x -2),解得,x =2.检验,当x =2时,x -2=0,所以x =2不是原方程的根,所以原分式方程无解.20.解:2269(3)393x x x x y x x x ++-=÷-+-+=2(3)(3)3 (3)(3)3x x xxx x x+-⨯-+ +-+=x-x+3=3.所以不论x为任何有意义的值,y的值均不变,其值为3. 21.解:设原计划每天修水渠x米.根据题意得360036001.8x x-=20,解得x=80,经检验:x=80是原分式方程的解.答:原计划每天修水渠80米.。

人教版初中数学八年级上册第十五章《分式》测试题(含答案)

人教版初中数学八年级上册第十五章《分式》测试题(含答案)
24.解:(1) + + +…+
=1- + - + - +…+ -
=1-
= ;
(2)①∵ + =
= ,
∴ ,
解得 .
∴A和B的值分别是 和- ;
②∵ = • - •
= •( - )- ( - )
∴原式= • - • + • - • +…+ • - •
= • - •
= -
= .
故 且 .
故答案为 且 .
18.解:(1)去分母得:2x﹣5=3(2x﹣1),解得:x=﹣ ,
经检验x=﹣ 是分式方程的解;
所以原方程的解是x=﹣ ;
(2)去分母得:2x﹣1﹣x+1=0,解得:x=0,
经检验x=0是增根,所以分式方程无解.
19解:设 ,则 , , .
所以 .
20解:原式=[ + ]÷ =( + )•x=x﹣1+x﹣2=2x﹣3
10.计算(a2)3+a2·a3-a2÷a-3的结果是( )
A.2a5-aB.2a5- C.a5D.a6
11.已知关于x的分式方程 =1的解是负数,则m的取值范围是( )
A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2
12.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是( )
八年级上册《第15章分式》单元同步测验卷
一、单选题
1.代数式 中的x取值范围是( )
A.x B.x C.x D.
2.下列各式:2个C.3个D.4个
3.若分式 中的x和y都扩大10倍,那么分式的值()

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷(含答案解析)

人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。

人教版八年级数学上册单元检测卷:第十五章分式(含答案)

人教版八年级数学上册单元检测卷:第十五章分式(含答案)
7.若分式 的值为零,则x的值为()
A.0 B.1 C.-1 D.±1
8.下列计算错误的是()
A. = B. =
C. =-1 D. + =
9.化简 + 的结果是()
A.y-2xB.-2x-yC.2x-yD.y+2x
10.如果不变B.扩大到原来的2倍
A. = B. =
C. = D. =
14.若分式方程 -1= 无解,则m的值为()
A.0或3 B.1
C.1或-2 D.3
三、(本大题共2小题,每小题8分,满分16分)
15.计算:
(1)(-2016)0-2-1+ -(-3)2;
(2)16×2-4- ÷ .
16.化简:
(1) ÷ ;(2) ÷ .
四、(本大题共2小题,每小题8分,满分16分)
(2)原式=16× -1÷(-8)=1+ = .(8分)
16.解:(1)原式= ·(x-2)= .(4分)
(2)原式= ÷ = · = .(8分)
17.解:原式= ÷ = · =x(x+2)=x2+2x.(5分)当x2+2x-1=0时,x2+2x=1,原式=1.(8分)
18.解:(1)方程两边都乘以x(x+2)得2(x+2)=3x,解得x=4.检验:当x=4时,x(x+2)≠0.所以原分式方程的解为x=4.(4分)
八、(本题满分14分)
23.观察下列方程的特征及其解的特点:
①x+ =-3的解为x1=-1,x2=-2;
②x+ =-5的解为x1=-2,x2=-3;
③x+ =-7的解为x1=-3,x2=-4.
解答下列问题:
(1)请你写出一个符合上述特征的方程为______________,其解为________________;

人教版八年级数学上册第十五章分式单元测试题(有答案)

人教版八年级数学上册第十五章分式单元测试题(有答案)

. 若每个甲种零件的进价
比每个乙种零件的进价少 2 元 , 且用 80 元购进甲种零件的数量与用 100 元购进乙种零件的数量相同 .
(1) 求每个甲种零件、每个乙种零件的进价分别为多少元
?
(2) 若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的
3 倍还少 5 个 , 购进两种零件的
总数量不超过 95 个 , 该五金商店每个甲种零件的销售价格为 12 元 , 每个乙种零件的销售价格为 15
由题意 , 得
, 解得 x=10.
检验 : 当 x=10 时 ,x(x- 2) ≠0, 故 x=10 是原分式方程的解 . 10-2=8( 元 ). 故每个甲种零件的进价为 8 元 , 每个乙种零件的进价为 10 元. (2) 设购进乙种零件 y 个, 则购进甲种零件 (3y-5) 个 , 由题意 , 得

.
10. 如果实数 x 满足 x 2+2x-3=0, 那么
的值为
.
11. 若关于 x 的方程
无解 , 则 m的值是
.
12. 甲、乙工程队分别承接了 160 m,200 m 的管道铺设任务 , 已知乙工程队比甲工程队每天多铺设 5
m,甲、乙工程队完成铺设任务的时间相同 , 问甲工程队每天铺设多少米 ?设甲工程队每天铺设 x m,
A. 是原来的 20 倍
B. 是原来的 10 倍
C.
是原来的
D. 不变
3. 计算 -2 2+(-2) 2-
=( )
A.2
B.-2
C.6
4. 能使分式 的值为 0 的 x 的值是 ( )
A.x=0
B.x=1
C.x=0
5. 化简 :

人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】 先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 3.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.4.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义,∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-.故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.7.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .1D 解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a- C 解析:C【分析】根据分式的加减运算的法则计算即可.【详解】 222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题11.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数,∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.若分式方程13322a x x x--=--有增根,则a 的值是________.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b----+-=== 故答案为:3a b. 【点睛】 本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件,依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 解析:(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,解析:(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 解析:1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.。

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有( ) A .1个 B .2个 C .3个 D .4个2.分式32+x x 无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a --的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—a b a - 4.计算(2-a a —2+a a )·a a 24-的结果是( ) A . 4 B . -4 C .2a D .-2a5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D .无解6.把分式(0)xy x y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变 7.若分式34922+--x x x 的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x+=+ C .720720548x -= D .72072054848x -=+ 二、填空题(每小题4分,共32分)9.当x= 时,分式22x x --值为零.10.计算.2323()a b a b --÷= .11.用科学记数法表示0.002 014= . 12.分式222439x x x x --与的最简公分母是____ ______. 13.若方程322x m x x-=--无解,则m =__________________. 14.已知a 1-b 1=21,则b a ab -的值为________________. 15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________.三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程 3x x -= 2 + 3a x -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3.(2)当m 为何值时,方程1y y --2m y y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.114.-2 15.R 1=RR RR -22 16.333.123002300=++x x x 三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23. 20.解:方程两边乘y (y-1),得y 2-m=(y-1)2.化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1.所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意.答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天. 根据题意,得415x x x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.人教版八年级上册第十五章分式单元检测(含答案)一、单选题1.在5x ,38a ,2π,1x a -中,属于分式的个数为( ) A .0个B .1个C .2个D .3个 2.下列分式为最简分式的是( )A .11a a --B .235xy y xy -C .22m n n m +-D .22a b a b++ 3.下列各式中,变形不正确的是( )A .2233x x=-- B .66a a b b -=- C .3344x x y y -=- D .5533n n m m --=- 4.计算322b b 1·a a b⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭的值为 ( ) A .222b a B .6ab 2 C .8a D .15.计算:22m-1m -1m m÷的结果是 ( ) A .m m 1+ B .1m C .m-1 D .1m-16.若111u v f+=,则用u 、v 表示f 的式子应该是( ) A .u v uv + B .uv u v + C .v u D .u v7.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13 B .13- C .12 D .12- 8.纳米材料多被应用于建筑、家电等行业,实际上,纳米(nm)是一种长度的度量单位:1纳米=0.000000001米,用科学记数法表示0.12纳米应为( )A.0.12×10-9米B.0.12×10-8米C.1.2×10-10米D.1.2×10-8米 9.计算20140的结果是( )A .1B .0C .2014D .﹣1 10.当m 为何值时,方程会产生增根( ) A.2 B.-1 C.3 D.-311.下列各式中,是分式方程的是( )A.x+y=5B.C.D.12.已知一汽船在顺流中航行46千米和逆流中航行34千米,共用去的时间,正好等于它在静水中航行80千米用去的时间,且水流速度是2千米/时,求汽船在静水中的速度,若设汽船在静水中速度为x 千米/时,则所列方程正确的是( ) A.+= B.+= C.=- D.=+二、填空题13.当x =_________时,分式242x x -+的值为0. 14.当x =__________时,分式3x x-无意义. 15.若a+b=1,且a ∶b=2∶5,则2a-b=____________.16.计算:(12)﹣2+(﹣2)3﹣20110=__________.三、解答题17.解方程:(1)233011x x x +-=--;(2)1433162x x -=--. 18.计算:①()223·14a aa a a ----; ②211a a a ---; ③225611x x x x x+⎛⎫-÷ ⎪--⎝⎭ 19.22322222244(82)25356a b ab b b a b b ab a b ab a ++-÷⋅---+,其中12a =-,14b =. 20.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本. (1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n 折售完剩余的书,结果第二次共盈利100m 元(n 、m 为正整数),求相应的n 、m 的值.答案1.C 2.D 3.D 4.C 5.A 6.B 7.C 8.C 9.A10.C 11.D 12.B 13.2 14.315.-1 716.﹣517.(1)x=0;(2)23 x=.18.①11aa-+;②11a-;③-5x19.242a ba b+-+,020.(1)第一次购书的进价为5元/本,且第二次买了2500本;(2)当n=4时,m=4;当n=6时,m=11;当n=8时,m=18人教版八年级上数学第十五章分式单元测试(解析)一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=32.下列等式成立的是( )A.+=B.=C.=D.=-3.下列运算结果为x-1的是( )A.1-B.·C.÷D.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.96.计算÷-的结果为( )A. B. C. D.a7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.10.当x= 时,分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .12.计算:÷= .13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-114.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件.15.计算(x+1)的结果是.16.若a2+5ab-b2=0,则-的值为.三、解答题(共52分)17.(4分)化简:-.18.(5分)计算:÷.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)20.(6分)先化简,再求值:÷·,其中a=-,b=.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么?23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?第十五章分式答案解析满分:100分;限时:60分钟一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=3答案 C 由分式有意义的条件得x-3≠0,解得x≠3.故选C.2.下列等式成立的是( )A.+=B.=C.=D.=-答案 C +=,所以A错误;=不成立,所以B错误;==,所以C正确;=-,所以D错误,故选C.3.下列运算结果为x-1的是( )A.1-B.·C.÷D.答案 B 选项A的运算结果为,选项B的运算结果为x-1,选项C的运算结果是,选项D的运算结果为x+1.故选B.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n答案 A +=-==m+n,故选A.5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.9答案 C ·=·=.当x=6,y=3时,原式==6.6.计算÷-的结果为( )A. B. C. D.a答案 C ÷-=÷-=×-=-=,故选C.7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关答案 B 设从A地到B地的距离为2s,∵甲的速度v保持不变,∴甲所用时间为,∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为+=+,∵s>0,v>0,∴+>,故甲先到达B地.8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3答案D解分式方程,得x=-3-m,∵方程的解为正数,∴-3-m>0,解得m<-3,∵x+1≠0,∴x≠-1,∴-3-m≠-1,解得m≠-2,∴m<-3,故选D.二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.答案 6.9×10-7解析0.000 000 69=6.9×10-7.10.当x= 时,分式的值为0.答案 2解析分式的值为0,则即所以当x=2时,原分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .答案+=11解析根据题意,可列方程为+=11.12.计算:÷= .答案解析原式=a4b2c-2÷=a4b2c-2÷=b6c-2=.13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-1答案解析由题意,得=4,解得x=,经检验,x=是方程=4的解.14.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件. 答案9解析设甲每小时做x个零件,则乙每小时做(x-3)个零件,根据题意可得=,解得x=9.经检验,x=9是方程的解,且符合题意.因此甲每小时做9个零件.15.计算(x+1)的结果是.答案x解析(x+1)=(x+1)=(x+1)=x.16.若a2+5ab-b2=0,则-的值为.答案 5解析由a2+5ab-b2=0,得b2-a2=5ab,∴-===5.三、解答题(共52分)17.(4分)化简:-.解析原式=-=-==1.18.(5分)计算:÷.解析原式=·=·=·=.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)解析设A4薄型纸每页的质量为x克,则厚型纸每页的质量为(x+0.8)克.根据题意,得×=.解得,x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.20.(6分)先化简,再求值:÷·,其中a=-,b=.解析÷·=··=··=.当a=-,b=时,原式==-6.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.解析(1)去分母,得x-3+x-2=-3,移项,得x+x=-3+3+2,合并同类项,得2x=2,系数化为1,得x=1,经检验,x=1为原分式方程的根,∴分式方程的解为x=1.(2)两边同时乘(x+1)(x-1),得3(x-1)=x(x+1)-(x+1)(x-1),解得x=2. 检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴原方程的解为x=2.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么? 解析原式=·=·=.(1)当x=3时,原式=2.(2)不能.理由:如果=-1,那么x+1=-x+1,则x=0,当x=0时,原代数式中的除式=0,矛盾, ∴原代数式的值不能等于-1.23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.解析 原式=÷- =×- =- =,∵a=(3-)0+-=1+3-1=3,∴原式===-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售? 解析 (1)设第一次购入的空调每台进价是x 元,依题意,得=2×,解得x=2 400,经检验,x=2 400是原方程的解.答:第一次购入的空调每台进价为2 400元.(2)第一次购进空调的数量为24 000÷2 400=10台,总收入为3 000×10=30 000元, 第二次购进空调的数量为52 000÷(2 400+200)=20台,不妨设打折售出y 台空调, 则总收入为(3 000+200)·(20-y)+(3 000+200)·0.95y=(64 000-160y)元.两次空调销售的总利润为[30 000+(64 000-160y)]-(24 000+52 000)=(18 000-160y)元, 依题意,得18 000-160y≥(24 000+52 000)×22%,解得y≤8.答:最多可将8台空调打折出售.人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( )A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x=20 10.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)241x -+21x x +-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.。

人教版数学八年级上《第15章分式》单元检测试卷含答案

人教版数学八年级上《第15章分式》单元检测试卷含答案

人教版数学八年级上《第15章分式》单元检测试卷含答案(120分,90分钟) 题 号 一 二 三 总 分 得 分一、选择题(每题3分,共30分)1.下列式子是分式的是( ) A.a -b 2 B.5+y πC.x +3x D .1+x 2.下列等式成立的是( )A .(-3)-2=-9B .(-3)-2=19C .(a -12)2=a14D .(-a -1b -3)-2=-a2b63.当x =1时,下列分式中值为0的是( ) A.1x -1 B.2x -2x -2 C.x -3x +1 D.|x|-1x -1 4.分式①a +2a2+3,②a -b a2-b2,③4a 12(a -b ),④1x -2中,最简分式有( )A .1个B .2个C .3个D .4个5.下列各式中,正确的是( ) A .--3x 5y =3x -5y B .-a +b c =-a +b c C.-a -b c =a -b c D .-a b -a =a a -b 6.化简⎝ ⎛⎭⎪⎫1+a21+2a ÷1+a 1+2a 的结果为( ) A .1+a B.11+2a C.11+aD .1-a 7.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.000 000 000 34 m ,那个数用科学记数法表示正确的是( )A .3.4×10-9B .0.34×10-9C .3.4×10-10D .3.4×10-11 8.方程2x +1x -1=3的解是( ) A .-45 B.45 C .-4 D .49.若xy =x -y ≠0,则1y -1x =( )A.1xy B .y -x C .1 D .-110.甲、乙两个搬运工搬运某种物资,已知乙比甲每小时多搬运600 kg ,甲搬运5 000 kg 所用时刻与乙搬运8 000 kg 所用时刻相等,求甲、乙两人每小时分不搬运多少千克物资.设甲每小时搬运x kg 物资,则可列方程为( )A.5 000x -600=8 000xB.5 000x =8 000x +600C.5 000x +600=8 000xD.5 000x =8 000x -600二、填空题(每题3分,共30分)11.运算:3m 2n ·⎝ ⎛⎭⎪⎫p 3n -2÷mn p2=________. 12.若|a|-2=(a -3)0,则a =________. 13.把分式a +13b 34a -b 的分子、分母中各项系数化为整数的结果为________.14.禽流感病毒的形状一样为球形,直径大约为0.000 000 102 m ,该直径用科学记数法表示为________m.15.若分式|y|-55-y 的值为0,则y =________. 16.如果实数x 满足x2+2x -3=0,那么式子⎝ ⎛⎭⎪⎫x2x +1+2÷1x +1的值为________. 17.若分式方程2+1-kx x -2=12-x 有增根,则k =________. 18.一列数:13,26,311,418,527,638,…,它们按一定的规律排列,则第n 个数(n 为正整数)为________.19.小成每周末要到离家5 km 的体育馆打球,他骑自行车前往体育馆比乘汽车多用10 min ,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x km/h ,按照题意列方程为____________________.20.数学家们在研究15 ,12,10这三个数的倒数时发觉:112-115=110-112.因此就将具有如此性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x >5),则x =________.三、解答题(22题6分,21题,26题每题12分,其余每题10分,共60分)21.(1)运算:(-3)2-⎝ ⎛⎭⎪⎫15-1+(-2)0; (2)运算:1x -4-2x x2-16;(3)化简:x2x -2-x -2;(4)化简:⎝ ⎛⎭⎪⎫a a -b -2b a -b ·ab a -2b ÷⎝⎛⎭⎪⎫1a +1b .22.(1)先化简,再求值:x -3x2-1·x2+2x +1x -3-⎝ ⎛⎭⎪⎫1x -1+1,其中x =-65.(2)先化简,再求值:⎝ ⎛⎭⎪⎫1x -3-x +1x2-1·(x -3),从不大于4的正整数中,选择一个合适的x 的值代入求值.23.解分式方程: (1)x -2x +3-3x -3=1; (2)2x +2x -x +2x -2=x2-2x2-2x.24.化简求值:a2-6ab +9b2a2-2ab ÷⎝ ⎛⎭⎪⎫5b2a -2b -a -2b -1a ,其中a ,b 满足⎩⎪⎨⎪⎧a +b =4,a -b =2.25.观看下列等式: 第1个等式:a1=11×3=12×⎝ ⎛⎭⎪⎫1-13;第2个等式:a2=13×5=12×⎝ ⎛⎭⎪⎫13-15; 第3个等式:a3=15×7=12×⎝ ⎛⎭⎪⎫15-17;第4个等式:a4=17×9=12×⎝ ⎛⎭⎪⎫17-19;…. 请回答下面的咨询题:(1)按以上规律列出第5个等式:a5=__________=______________;(2)用含n的式子表示第n个等式:an=__________=______________(n 为正整数);(3)求a1+a2+a3+a4+…+a100的值.26.佳佳果品店在批发市场购买某种水果销售,第一次用1 200元购进若干千克,并以每千克8元出售,专门快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提升了10%,用1 452元所购买的质量比第一次多20千克,以每千克9元售出100千克后,因显现高温天气,水果不易保鲜,为减少缺失,便降价50%售完剩余的水果.(1)求第一次购买的水果的进价是每千克多少元.(2)该果品店在这两次销售中,总体上是盈利依旧亏损?盈利或亏损了多少元?答案一、1.C 2.B 3.B 4.B 5.D 6.A 7.C 8.D9.C 点拨:1y -1x =x xy -y xy =x -y xy =1.10.B二、11.27212.-3 点拨:利用零指数幂的意义,得|a|-2=1,解得a =±3,又a -3≠0,因此a =-3.13.12a +4b 9a -12b14.1.02×10-715.-5 点拨:由题意知,|y|=5,∴y =±5.当y =5时,5-y =0,∴y =5为增根.∴y =-5.16.5 17.1 18.n n2+2 19.5x =52x +1060 20.15 点拨:由题意可知,15-1x =13-15,解得x =15,经检验x =15是该方程的根.三、21.解:(1)原式=9-5+1=5.(2)原式=1x -4-2x (x -4)(x +4)=x +4-2x (x -4)(x +4)=4-x (x -4)(x +4)=-1x +4. (3)原式=x2x -2-(x +2)(x -2)x -2=x2-x2+4x -2=4x -2. (4)原式=a -2b a -b ·ab a -2b ÷b +a ab =ab a -b ·ab a +b =a2b2a2-b2. 22.解:(1)原式=x -3(x -1)(x +1)·(x +1)2x -3-1+x -1x -1=x +1x -1-x x -1=1x -1, 当x =-65时,原式=1-65-1=-511.(2)原式=⎝ ⎛⎭⎪⎫1x -3-1x -1·(x -3)=x -1-x +3(x -3)(x -1)·(x -3)=2x -1,要使原式有意义,则x ≠±1,3,故可取x =4,则原式=23(或取x =2,则原式=2).23.解:(1)方程两边同乘(x +3)(x -3),得(x -2)(x -3)-3(x +3)=(x +3)(x -3),整理得-8x =-6,解得x =34.经检验,x =34是原方程的根.(2)原方程可化为2(x +1)x -x +2x -2=x2-2x (x -2), 方程两边同时乘x(x -2),得2(x +1)(x -2)-x(x +2)=x2-2,整理得-4x =2.解得x =-12.经检验,x =-12是原方程的解.24.解:原式=(a -3b )2a2-2ab ÷9b2-a2a -2b -1a =-(a -3b )2a (a -2b )·a -2b (a -3b )(a +3b )-1a =a -3b -a (a +3b )-1a =-2a +3b.∵a ,b 满足⎩⎪⎨⎪⎧a +b =4,a -b =2.∴⎩⎪⎨⎪⎧a =3,b =1. ∴原式=-23+3=-13. 25.解:(1)19×11;12×⎝ ⎛⎭⎪⎫19-111 (2)1(2n -1)(2n +1);12×(12n -1-12n +1) (3)原式=12×⎝ ⎛⎭⎪⎫1-13+12×⎝ ⎛⎭⎪⎫13-15+12×⎝ ⎛⎭⎪⎫15-17+…+ 12×⎝ ⎛⎭⎪⎫1199-1201=12×(1-13+13-15+15-17+…+1199-1201)=12×⎝ ⎛⎭⎪⎫1-1201=12×200201=100201.26.解:(1)设第一次购买的水果的进价是每千克x 元,则第二次购买的水果的进价是每千克1.1x 元,按照题意得1 4521.1x -1 200x =20,解得x =6.经检验,x =6是原方程的解.因此第一次购买的水果的进价是每千克6元.(2)第一次购买水果1 200÷6=200(千克).第二次购买水果200+20=220(千克).第一次赚钞票为200×(8-6)=400(元),第二次赚钞票为100×(9-6.6)+(220-100)×(9×0.5-6.6)=-12(元).因此两次共赚钞票400-12=388(元).因此该果品店在这两次销售中,总体上是盈利了,盈利了388元.。

人教版八年级上:第15章《分式》全章检测题(含答案)(含答案)

人教版八年级上:第15章《分式》全章检测题(含答案)(含答案)

第十五章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.(2015·黔西南州)分式1x -1有意义,则x 的取值范围是( B ) A .x>1 B .x ≠1 C .x<1 D .一切实数2.下列各分式与b a相等的是( C ) A .b 2a 2 B .b +2a +2C .ab a 2D .a +b 2a 3.下列分式的运算正确的是( D )A .1a +2b =3a +bB .(a +b c )2=a 2+b 2c 2C .a 2+b 2a +b =a +bD .3-a a 2-6a +9=13-a4.(2015·泰安)化简(a +3a -4a -3)(1-1a -2)的结果等于( B ) A .a -2c B .a +2 C .a -2a -3 D .a -3a -25.若x =3是分式方程a -2x -1x -2=0的根,则a 的值是( A ) A .5 B .-5 C .3 D .-36.已知a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,比较a ,b ,c ,d 的大小关系,则有( C )A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b7.学完分式运算后,老师出了一道题“化简:x +3x +2+2-x x 2-4”. 小明的做法是:原式=(x +3)(x -2)x 2-4-x -2x 2-4=x 2+x -6-x -2x 2-4=x 2-8x 2-4; 小亮的做法是:原式=(x +3)(x -2)+(2-x)=x 2+x -6+2-x =x 2-4;小芳的做法是:原式=x +3x +2-x -2(x +2)(x -2)=x +3x +2-1x +2=x +3-1x +2=1. 其中正确的是( C )A .小明B .小亮C .小芳D .没有正确的8.已知关于x 的分式方程m x -1+31-x=1的解是非负数,则m 的取值范围是( C ) A .m>2 B .m ≥2 C .m ≥2且m ≠3 D .m>2且m ≠39.(2015·鄂尔多斯)小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x 本笔记本,则根据题意可列方程( B )A .24x +2-20x =1B .20x -24x +2=1C .24x -20x +2=1D .20x +2-24x=1 10.如果a ,b ,c 是非零实数,且a +b +c =0,那么a |a|+b |b|+c |c|+abc |abc|的所有可能的值为( A )A .0B .1或-1C .2或-2D .0或-2二、填空题(每小题3分,共24分)11.已知空气的单位体积质量是0.001 239 g /cm 3,则用科学记数法表示该数为__1.239×10-3__.12.当x =1时,分式x -b x +a 无意义;当x =2时,分式2x -b 3x +a的值为0,则a +b =__3__. 13.计算:(a 2b)-2÷(2a -2b -3)-2=__4a b __(结果只含有正整数指数幂). 14.(2015·长沙)方程5x =7x -2的解是x =__-5__. 15.若b a -b =12,则3a 2-5ab +2b 22a 2+3ab -6b 2的值是__23__. 16.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y的值是__-32__. 17.轮船在顺流中航行64 km 与在逆流中航行34 km 一共用去的时间,等于该船在静水中航行180 km 所用的时间.已知水流的速度是每小时3 km ,求该船在静水中的速度.设该船在静水中的速度为x km /h ,依题意可列方程__64x +3+34x -3=180x__. 18.(2015·黑龙江)关于x 的分式方程m x 2-4-1x +2=0无解,则m =__0或-4__. 三、解答题(共66分)19.(12分)计算或化简: (1)38-2-1+|2-1|; (2)2x x 2-4-1x -2; (3)3-a 2a -4÷(a +2-5a -2). 解:原式=12+2 解:原式=1x +2 解:原式=-12a +620.(8分)解分式方程: (1)1x -x -2x =1; (2)12x -1=12-34x -2. 解:x =32解:x =321.(10分)化简求值:(1)(2015·淮安)先化简(1+1x -2)÷x -1x 2-4x +4,再从1,2,3三个数中选一个合适的数作为x 的值,代入求值;解:原式=x -2,当x =3时,原式=1(注意x =1,2时分式无意义)(2)已知x 2x 2-2=3,求(11-x -11+x )÷(x x 2-1+x)的值. 解:原式=-2x 2,由已知得x 2=3,∴原式=-2322.(6分)当x 取何值,式子3(2x -3)-1与12(x -1)-1的值相等. 解:令3(2x -3)-1=12(x -1)-1,∴32x -3=12(x -1),解得x =34.经检验,x =34是原方程的解,∴当x =34时,式子3(2x -3)-1与12(x -1)-1的值相等23.(8分)(2015·宜宾)近年来,我国逐步完善养老金保险制度,甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?解:设乙每年缴纳养老保险金为x 万元,则甲每年缴纳养老保险金为(x +0.2)万元.根据题意得15x +0.2=10x,解得x =0.4,经检验,x =0.4是分式方程的解,且符合题意,∴x +0.2=0.4+0.2=0.6(万元),则甲、乙两人计划每年分别缴纳养老保险金0.6万元、0.4万元24.(10分)小明去离家2.4 km 的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有45 min ,于是他立即步行(匀速)回家取票,在家取票用时2 min ,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20 min ,骑自行车的速度是步行速度的3倍.(1)小明步行的速度是多少?(2)小明能否在球赛开始前赶到体育馆?解:(1)设步行的速度为x 米/分钟,则骑自行车的速度为3x 米/分钟.依题意得2400x -24003x=20,解得x =80,则小明步行的速度是80米/分钟(2)来回取票总时间为2400x +24003x+2=42(分钟)<45(分钟),故能在球赛开始前赶到体育馆25.(12分)某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?(总费用=施工费+工程师食宿费)解:(1)设甲队单独完成需x 天,则乙队单独完成需1.5x 天,由题意得120x +1201.5x=1,解得x =200,经检验,x =200是原方程的解,且符合题意,∴1.5x =300,则甲队单独完成需200天,乙队单独完成需300天(2)设甲队每天的施工费为y 元,则200(y +150×2)≤300(10000+150×2),解得y ≤15150,即甲队每天施工费最多为15150元。

人教版八年级上册数学第十五章《分式》单元测试卷(Word版,含答案)

人教版八年级上册数学第十五章《分式》单元测试卷(Word版,含答案)

人教版八年级上册数学第十五章《分式》单元测试卷(60分钟 100分)一、选择题(每小题3分,共30分)1.(南充中考)若1x =-4,则x 的值是( )A .4B .14C .-14D .-42.在第127届“广交会”上,有近26 000家厂家进行“云端销售”.其中数据26 000用科学记数法表示为( )A .26×103B .2.6×103C .2.6×104D .0.26×1053.下列式子:-5x ,1a +b,12 a 2-12 b 2,310m ,2π ,其中分式有( ) A .1个 B .2个 C .3个 D .4个4.计算1m +2 -14-m 2 ÷1m -2的结果为( ) A .0 B .1m +2 C .2m +2 D .m +2m -25.下列等式是四位同学解方程x x -1 -1=2x 1-x过程中去分母的一步,其中正确的是( )A .x -1=2xB .x -1=-2C .x -x -1=-2xD .x -x +1=-2x 6.若a =-0.32,b =-3-2,c =⎝⎛⎭⎪⎫-13 -2 ,d =⎝ ⎛⎭⎪⎫-13 0,则大小关系正确的是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <d D .c <a <d <b7.若a =1,则a 2a +3 -9a +3的值为( ) A .2 B .-2 C .12 D .-128.(呼伦贝尔中考)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x 个零件,下列方程正确的是( )A .240x =280130-xB .240130-x=280x C .240x +280x =130 D .240x -130=280x9.对于两个不相等的实数a ,b ,我们规定符号Min{a ,b }表示a ,b 中的较小的值,如Min{2,4}=2,按照这个规定,方程Min ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1x -2,3x -2 =x -1x -2 -2的解为( )A .0B .0或2C .无解D .不确定10.关于x 的分式方程2x +a x +1=1的解为负数,则a 的取值范围是( ) A .a >1 B .a <1C .a <1且a ≠-2D .a >1且a ≠2二、填空题(每小题3分,共24分)11.(北京中考)若代数式1x -7有意义,则实数x 的取值范围是__ __. 12.(广州中考)方程x x +1 =32x +2的解是 . 13.(呼和浩特中考)分式2x x -2 与8x 2-2x 的最简公分母是__ __,方程2x x -2 -8x 2-2x=1的解是__ __. 14.有一个分式,三位同学分别说出了它的一个特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x ≠±1;丙:当x =-2时,分式的值为1.请你写出满足上述全部特点的一个分式: .15.(嘉兴中考)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程 .16.已知3x -4(x -1)(x -2) =A x -1 +B x -2,则实数A =__ __. 17.若(x -y -2)2+|xy +3|=0,则⎝ ⎛⎭⎪⎪⎫3x x -y -2x x -y ÷1y 的值是 . 18.数学家们在研究15,12,10这三个数的倒数时发现112 -115 =110 -112 .因此就将具有这样性质的三个数称为调和数,如6,3,2也是一组调和数.现有一组调和数x ,5,3(x >5),则x =__ __.三、解答题(共46分)19.(6分)计算或化简:(1)(-1)2 022-|-7|+9 ×(5 -π)0+⎝ ⎛⎭⎪⎫15 -1 . (2)(徐州中考)⎝ ⎛⎭⎪⎫1-1a ÷a 2-2a +12a -2. 20.(6分)解方程:(1)(遵义中考)1x -2 =32x -3. (2)(大庆中考)2x x -1 -1=4x -1. 21.(8分)(鄂州中考)先化简x 2-4x +4x 2-1 ÷x 2-2x x +1 +1x -1,再从-2,-1,0,1,2中选一个合适的数作为x 的值代入求值.22.(8分)某茶店用4 000元购进了A 种茶叶若干盒,用8 400元购进了B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)若第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元,两种茶叶各售出一半后,为庆祝元旦,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5 800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?。

人教版八年级数学上册《第15章分式》单元检测卷(有答案)

人教版八年级数学上册《第15章分式》单元检测卷(有答案)

第十五章检测卷一、选择题.(每小题3分,共30分)1.下列式子 中,分式共有( ) A.2个 B.3个 C.4个 D.5个2.下列各式与yx yx -+相等的是( )3.下列计算中,错误的是( )A.(-2)0=1B.2x -2=22x C.3.2×10-3=0.0032 D.(x 2y-2)÷(x -1y 3)=xy 4.已知b a 11-=21,则ba ab -的值是( ) A.21 B.-21C.2D.-2 5.把分式方程12+-x xx =1化为整式方程正确的是( ) A.2(x+1)-x 2=1 B.2(x+1)+x 2=1 C.2(x+1)-x 2=x(x+1) D.2x-(x+1)=x(x+1) 6.分式方程v +20100=v-2060的解是( ) A.v=20 B.v=25 C.v=-5 D.v=5A.A=4,B=-9B.A=7,B=1C.A=1,B=7D.A=-35,B=13 9.已知关于x 的方程22-+x mx =3的解是正数,则m 的取值范围为( )A.m <-6B.m >-6C.m >-6且m≠-4D.m≠-410.据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.若设一片国槐树叶一年的平均滞尘量为x 毫克,下列方程中正确的是( )二、填空题.(每小题3分,共24分) 11.若代数式(x+2)0-123+x 有意义,则x 的取值范围是 . 12.用科学记数法表示0.00000345是 ,用科学记数法表示的数-2.01×10-5的原数是 .13.已知ab≠0,则(a 0+b -2)-1= . 14.如果分式)2)(1(1||---x x x 的值为零,那么x= .15.若分式方程xmx x -=--223无解,则m= . 16.当x= 时,分式12-x x 的值比分式xx 1-的值大1. 17.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.则文学书的单价是 元.18.观察分析下列方程及其解:①x+x 2=3,②x+x 6=5,③x+x 12=7;(由①x+x21⨯=1+2得x=1或x=2,②x+x 32⨯=2+3得x=2或x=3,③x+x43⨯=3+4得x=3或x=4.)找出其中的规律,求关于x 的方程x+n2+nx-3=2n+4(n 为正整数)的解是: .三、解答题.(共66分)19.(12分)计算:20.(6分)解下列分式方程:(2)在数学课上,教师对同学们说:“你们任意说出一个x的值(x≠0,1,2),我立刻就知道式子的计算结果”.请你说出其中的道理.22.(8分)甲、乙两工程队分别承担一条2千米公路的维修工作.甲队有一半时间每天维修公路x千米,另一半时间每天维修公路y千米.乙队维修前1千米公路时,每天维修x 千米;维修后1千米公路时,每天维修y千米(x≠y).(1)求甲、乙两队完成任务需要的时间;(用含x,y的代数式表示)(2)问甲、乙两队哪队先完成任务?23.(10分)当a为何值时,关于x的方程的解为负数?24.(10分)(2015·江苏苏州)甲、乙两位同学同时为校文化艺术节制作彩旗,已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?25.(12分)(2015·浙江宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)求A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?。

最新人教版八年级数学上册《第15章分式》单元测试含答案解析.doc

最新人教版八年级数学上册《第15章分式》单元测试含答案解析.doc

《第15章分式》一、选择题(本大题共8小题,每小题4分,共32分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.在,,,中,是分式的有()A.1个B.2个C.3个D.4个2.如果把分式中的x和y都扩大2倍,那么分式的值()A.不变 B.缩小2倍 C.扩大2倍 D.扩大4倍3.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠0或y≠0 D.x≠0且y≠04.下列约分正确的是()A.B. =﹣1C. =D. =5.化简的结果是()A.B.a C.a﹣1 D.6.化简:的结果是()A.2 B.C.D.7.化简,可得()A.B.C.D.8.甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)9.当x= 时,分式没有意义.10.化简: = .11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为.12.已知x=2012,y=2013,则(x+y)•= .13.观察下列各等式:,,,…根据你发现的规律,计算: = (n为正整数).14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x,则x的值是.15.含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是千克.16.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程.三、解答题(本大题共5小题,共36分)17.化简: +.18.已知x﹣3y=0,求•(x﹣y)的值.19.解方程:(1)+1=(2)=﹣2.20.已知:,试说明不论x为任何有意义的值,y值均不变.21.某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?《第15章分式》参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.在,,,中,是分式的有()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选B.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数,注意π不是字母,故不是分式.2.如果把分式中的x和y都扩大2倍,那么分式的值()A.不变 B.缩小2倍 C.扩大2倍 D.扩大4倍【考点】分式的基本性质.【分析】依题意,分别用2x和2y去代换原分式中的x和y,利用分式的基本性质化简即可.【解答】解:分别用2x和2y去代换原分式中的x和y,得==,可见新分式与原分式相等.故选A.【点评】解题的关键是抓住分子、分母变化的倍数.规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.3.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠0或y≠0 D.x≠0且y≠0【考点】分式有意义的条件.【分析】分式有意义的条件是分母不为0,则x2+y2≠0.【解答】解:只要x和y不同时是0,分母x2+y2就一定不等于0.故选C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.4.下列约分正确的是()A.B. =﹣1C. =D. =【考点】约分.【分析】根据约分的步骤把分子与分母中约去公因式,分别对每一项进行判断即可.【解答】解:A、不能约分,故本选项错误;B、=1,故本选项错误;C、不能约分,故本选项错误;D、=,故本选项正确;故选D.【点评】此题考查了约分,关键是找出分子与分母的公因式,当分子、分母是多项式时,要把分子与分母分解因式,然后再约分,同时要注意一个分式约分的结果应为最简分式即分子和分母没有公因式.5.化简的结果是()A.B.a C.a﹣1 D.【考点】分式的乘除法.【分析】本题考查的是分式的除法运算,做除法运算时要转化为乘法的运算,注意先把分子、分母能因式分解的先分解,然后约分.【解答】解: =×=a.故选B.【点评】分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.6.化简:的结果是()A.2 B.C.D.【考点】分式的混合运算.【分析】先把括号中的第二个分式约分,再利用乘法分配律把(x﹣3)分别与括号中的式子相乘可使计算简便.【解答】解:=(﹣)•(x﹣3)=•(x﹣3)﹣•(x﹣3)=1﹣=.故选B.【点评】归纳提炼:对于一般的分式混合运算来讲,其运算顺序与整式混合运算一样,是先乘方,再乘除,最后算加减,如果遇括号要先算括号里面的.在此基础上,有时也应该根据具体问题的特点,灵活应变,注意方法.7.化简,可得()A.B.C.D.【考点】分式的加减法.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解: ==.故选B.【点评】本题考查了分式的加减运算,题目比较容易.8.甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】应用题;压轴题.【分析】关键描述语是:“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”;等量关系为:甲班植80棵树所用的天数=乙班植70棵树所用的天数.【解答】解:若设甲班每天植x棵,那么甲班植80棵树所用的天数应该表示为:,乙班植70棵树所用的天数应该表示为:.所列方程为:.故选D.【点评】列方程解应用题的关键步骤在于找相等关系.本题应该抓住“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”的关键语.二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)9.当x= 3 时,分式没有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式无意义的条件是分母等于0.【解答】解:若分式没有意义,则x﹣3=0,解得:x=3.故答案为3.【点评】本题考查的是分式没有意义的条件:分母等于0,这是一道简单的题目.10.化简: = x+y .【考点】分式的加减法.【专题】计算题.【分析】同分母相减,分母不变,分子相减,要利用平方差公式化为最简分式.【解答】解: ==x+y.【点评】本题考查了分式的加减法法则.11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7(毫米2),这个数用科学记数法表示为7×10﹣7.【考点】科学记数法—表示较小的数.【专题】常规题型.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.000 000 7<1时,n为负数.【解答】解:0.000 000 7=7×10﹣7.故答案为:7×10﹣7.【点评】本题考查了用科学记数法表示一个较小的数,为a×10n的形式,注:n为负整数.12.已知x=2012,y=2013,则(x+y)•= ﹣1 .【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x、y的值代入进行计算即可.【解答】解:原式=(x+y)•=,当x=2012,y=2013时,原式==﹣1.故答案为:﹣1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.13.观察下列各等式:,,,…根据你发现的规律,计算: = (n为正整数).【考点】分式的加减法.【专题】压轴题;规律型.【分析】本题重在理解规律,从规律中我们可以发现,中间的数值都是相反数,所以最后的结果就是,化简即可.【解答】解:原式=2(1﹣)+2(﹣)+2(﹣)…+2(﹣)=2(1﹣)=.故答案为.【点评】本题主要是利用规律求值,能够理解本题中给出的规律是解答本题的关键.14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务.设甲计划完成此项工作的天数是x,则x的值是 6 .【考点】分式方程的应用.【专题】应用题.【分析】根据题意,得到甲、乙的工效都是.根据结果提前两天完成任务,知:整个过程中,甲做了(x﹣2)天,乙做了(x﹣4)天.再根据甲、乙做的工作量等于1,列方程求解.【解答】解:根据题意,得=1,解得x=6,经检验x=6是原分式方程的解.故答案是:6.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的公式有:工作总量=工作时间×工效.弄清此题中每个人的工作时间是解决此题的关键.15.含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是24 千克.【考点】一元一次方程的应用.【专题】比例分配问题;压轴题.【分析】由题意可得现在A种饮料的重量为40千克,B种饮料的重量为60千克,可根据“混合后的两种饮料所含的果蔬浓度相同”来列等量关系.【解答】解:设原来A种饮料的浓度为a,原来B种饮料的浓度为b,从每种饮料中倒出的相同的重量是x千克.由题意,得=,化简得(5a﹣5b)x=120a﹣120b,即(a﹣b)x=24(a﹣b),∵a≠b,∴x=24.∴从每种饮料中倒出的相同的重量是24千克.故答案为:24.【点评】此题考查的知识点是一元一次方程的应用,当一些必须的量没有时,可设出相应的未知数,只把所求的量当成未知数求解.找到相应的等量关系是解决问题的关键.16.某市为治理污水,需要铺设一段全长为300m的污水排放管道.铺设120m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务、求原计划每天铺设管道的长度,如果设原计划每天铺设xm管道,那么根据题意,可得方程或.【考点】由实际问题抽象出分式方程.【分析】所求的是原计划的工效,工作总量是300,一定是根据工作时间来列的等量关系.本题的关键描述语是:“后来每天的工效比原计划增加20%”;等量关系为:结果共用30天完成这一任务.【解答】解:因为原计划每天铺设x(m)管道,所以后来的工作效率为(1+20%)x(m),根据题意,得=30.或故答案为:或.【点评】本题考查了由实际问题抽象出分式方程.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=按原计划的工效铺设120m的天数+后来的工效铺设的天数.三、解答题(本大题共5小题,共36分)17.化简: +.【考点】分式的混合运算.【分析】根据分式混合运算的法则进行计算即可.【解答】解:原式=+•=+==.【点评】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.18.已知x﹣3y=0,求•(x﹣y)的值.【考点】分式的化简求值.【专题】计算题.【分析】首先将分式的分母分解因式,然后再约分、化简,最后将x、y的关系式代入化简后的式子中进行计算即可.【解答】解: =(2分)=;当x﹣3y=0时,x=3y;原式=.(8分)【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.19.(2015秋•邢台期末)解方程:(1)+1=(2)=﹣2.【考点】解分式方程.【专题】计算题.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x+2x+6=7,移项合并得:6x=1,解得:x=,经检验是分式方程的解;(2)去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,移项合并得:x=2,经检验x=2是增根,故原方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.已知:,试说明不论x为任何有意义的值,y值均不变.【考点】分式的混合运算.【专题】证明题.【分析】先把分子分母分解因式再化简约分即可.【解答】证明:==x﹣x+3=3.故不论x为任何有意义的值,y值均不变.【点评】本题主要考查了分式的混合运算能力.21.某部队计划为驻地村民新修水渠3600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?【考点】分式方程的应用.【专题】应用题.【分析】设原计划每天修水渠x米.根据“原计划工作用的时间﹣实际工作用的时间=20”这一等量关系列出方程.【解答】解:设原计划每天修水渠x米.根据题意得:,解得:x=80.经检验:x=80是原分式方程的解.答:原计划每天修水渠80米.【点评】本题考查了分式方程的应用,此题中涉及的公式:工作时间=工作量÷工效.。

人教版八年级数学上《第15章分式》单元测试(6)(有答案)

人教版八年级数学上《第15章分式》单元测试(6)(有答案)

《第15章分式》一、选择题1.在,﹣,﹣y2,,,,3x﹣2,a﹣2﹣b﹣2中,属于分式的个数为()A.3 B.4 C.5 D.62.下列代数式:①;②;③;④;⑤3y﹣3+2;⑥;⑦(x﹣2)0中,在字母取任何值的情况下都有意义的代数式个数为()A.2 B.3 C.4 D.53.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是()A.米B.米C.米 D.米4.式子2a﹣1可以化为()A.B.C.﹣2a D.2a﹣15.下列运算正确的是()A.x10÷x5=x2B.x﹣4•x=x﹣3C.x3•x2=x6 D.(2x﹣2)﹣3=﹣8x66.下列分式是最简分式的()A.B.C.D.7.下面约分的式子中,正确的是()A.B.C.D.8.下列各式中,可能取值为零的是()A.B.C.D.9.式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.10.分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y311.把,,通分过程中,不正确的是()A.最简公分母是(x﹣2)(x+3)2 B. =C. =D. =12.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣613.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则正确的为()A.a<b<c<d B.c<a<d<b C.a<d<c<b D.b<a<d<c14.若分式中的m、n的值同时扩大到原来的10倍,则此分式的值()A.不变B.是原来的20倍C.是原来的10倍D.是原来的15.若m人需a天完成某项工程,则这样的人(m+n)个完成这项工程需要的天数是()A.(a+m)B.C.D.16.下列计算正确的是()A.÷﹣÷=B.÷(﹣)=2yC.÷(1﹣)=1 D.(1﹣)÷=117.化简÷(1+)的结果是()A.B.C.D.18.若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.519.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.20.若+=,则用u、v表示f的式子应该是()A.B.C.D.21.已知x﹣=7,则x2+的值是()A.49 B.48 C.47 D.5122.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.二、填空题:23.如果分式的值为零,那么x的值为.24.若关于x的分式方程的解为正数,那么字母a的取值范围是.25.若|a|﹣2=(a﹣3)0,则a= .26.分式,,的最简公分母为.27.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10﹣9米,已知某种植物孢子的直径为45000纳米,用科学记数法表示该孢子的直径为米.28.①若=,则= .②若==,则= .③已知+=4,则= .④若m+n=5,mn=3,则+= .29.不改变分式的值,把分式中的分子、分母中各项的系数都化为整数,且使系数的绝对值最小,则所得的结果为.30.计算:①()﹣2014•(﹣)﹣2015= ;②(π﹣)0+(﹣)﹣3= ;③﹣2﹣3= .31.计算化简(结果若有负指数幂要化为正整数指数幂):= .32.计算(m﹣)÷(n﹣)的结果为.33.若M=,N=,P=,则M﹣N+P= .34.小刚同学不小心弄污了练习本的一道题,这道题是:“化简÷()”,其中“☀”处被弄污了,但他知道这道题的化简结果是,则“☀”处的式子为.35.已知a2﹣6a+9与|b﹣1|互为相反数,则式子()÷(a+b)的值为.36.当x= 时,2x﹣3与的值互为倒数.37.对于实数a、b,定义运算:a▲b=;如:2▲3=2﹣3=,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]= .38.若32m=,()n=262m,则m+n= .39.若a1=1﹣,a2=1﹣,a3=1﹣…则a2014的值为(用含m的式子表示),a2015的值为(用含m的式子表示).40.若x2+4x=1,则①x+= ;②x2+x﹣2= ;③x4+= ;④ = .三、解答题:41.计算:①﹣3﹣2+(﹣3)﹣2+(﹣2)﹣3;②(3×10﹣5)3÷(3×10﹣6)2×(3×10﹣7)2③(﹣1)2014﹣|﹣7|+×(5﹣π)0+(﹣)﹣1.42.计算:①•÷;②b2c﹣3•;③a2b3÷×a2b.43.计算:①(a﹣)÷;②÷(1﹣);③;④+﹣;⑤(﹣)÷(+﹣2)÷;⑥[×(a﹣4+)]÷(﹣1)⑦1﹣ [(1﹣)÷(﹣)]《第15章分式》参考答案与试题解析一、选择题1.在,﹣,﹣y2,,,,3x﹣2,a﹣2﹣b﹣2中,属于分式的个数为()A.3 B.4 C.5 D.6【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,,3x﹣2,a﹣2﹣b﹣2的分母中含有字母,因此是分式.﹣,﹣y2,,分母中均不含有字母,因此它们是整式,而不是分式.故选:C.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.下列代数式:①;②;③;④;⑤3y﹣3+2;⑥;⑦(x﹣2)0中,在字母取任何值的情况下都有意义的代数式个数为()A.2 B.3 C.4 D.5【考点】分式有意义的条件;负整数指数幂;二次根式有意义的条件.【分析】根据分式有意义,分母不等于0,二次根式的被开方数大于等于0,零指数幂和负整数指数幂的底数不等于0,对各小题分析判断即可得解.【解答】解:①,x≠﹣4无意义;②,x取全体实数;③,a=1无意义;④,m=﹣1无意义;⑤3y﹣3+2,y≠0;⑥,b取全体实数;⑦(x﹣2)0,x≠2,所以,在字母取任何值的情况下都有意义的是②⑥共2个.故选A.【点评】本题考查了分式有意义的条件,负整数指数幂,零指数幂,二次根式有意义的条件,是基础题,需熟记.3.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是()A.米B.米C.米 D.米【考点】列代数式(分式).【专题】应用题.【分析】首先根据1米长的电线,称得它的质量为a克,则剩余电线的质量为b克的长度是米,根据题意可求得总长度.【解答】解:根据题意得:剩余电线的质量为b克的长度是米.所以这卷电线的总长度是(+1)米.故选B.【点评】首先根据长度=质量÷每米的质量求得剩余的长度,最后不要忘记加1.解决问题的关键是读懂题意,找到所求的量的等量关系.4.式子2a﹣1可以化为()A.B.C.﹣2a D.2a﹣1【考点】负整数指数幂.【分析】根据负整数指数幂的运算法则进行计算.【解答】解:2a﹣1=2×=.故选:B.【点评】本题考查了负整数指数幂.幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.5.下列运算正确的是()A.x10÷x5=x2B.x﹣4•x=x﹣3C.x3•x2=x6 D.(2x﹣2)﹣3=﹣8x6【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【分析】根据同底数的幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项计算后利用排除法求解.【解答】解:A、应为x10÷x5=x5,故本选项错误;B、x﹣4•x=x﹣3,正确;C、应为x3•x2=x5,故本选项错误;D、应为(2x﹣2)﹣3=x6,故本选项错误.故选B.【点评】本题主要考查同底数幂乘法,同底数幂除法的运算,熟练掌握运算法则是解题的关键,另外负指数次幂是学生容易出错的地方.6.下列分式是最简分式的()A.B.C.D.【考点】最简分式;分式的基本性质;约分.【专题】计算题.【分析】根据分式的基本性质进行约分,画出最简分式即可进行判断.【解答】解:A、=,故本选项错误;B、=,故本选项错误;C、,不能约分,故本选项正确;D、==,故本选项错误;故选C.【点评】本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解此题的关键.7.下面约分的式子中,正确的是()A.B.C.D.【考点】约分.【分析】根据分式的基本性质作答.分子和分母同乘以(或除以)一个不为0的数,分数值不变.【解答】解:A、不能将幂约掉,故A错误;B、分子和分母同时减掉一个数,比值会发生变化,故B错误;C、=,故C错误;D、将分母变为﹣(a﹣b),然后化简得﹣1,故D正确.故选D.【点评】解答此类题一定要熟练掌握分式的基本性质以及约分的概念.8.下列各式中,可能取值为零的是()A.B.C.D.【考点】分式的值为零的条件.【分析】要使分式的值为0,必须使分式分子的值为0,与分母的值不为0,同时成立.【解答】解:根据m2+1≠0一定成立,故选项A,D一定错误;C、m+1=0,解得:m=﹣1,由分子m2﹣1=0解得:m=±1.故C不可能是0;B、m2﹣1=0,解得:m=±1,当m=±1时,分母m2+1=2≠0.所以m=±1时,分式的值是0.故选B.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.9.式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.10.分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选B.【点评】通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.11.把,,通分过程中,不正确的是()A.最简公分母是(x﹣2)(x+3)2 B. =C. =D. =【考点】通分.【分析】按照通分的方法依次验证各个选项,找出不正确的答案.【解答】解:A、最简公分母为最简公分母是(x﹣2)(x+3)2,正确;B、=,通分正确;C、=,通分正确;D、通分不正确,分子应为2×(x﹣2)=2x﹣4;故选:D.【点评】根据分数的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.通分保证(1)各分式与原分式相等;(2)各分式分母相等.12.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣6【考点】科学记数法—表示较小的数.【专题】常规题型.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025=2.5×10﹣6;故选:D.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则正确的为()A.a<b<c<d B.c<a<d<b C.a<d<c<b D.b<a<d<c【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】根据负整数指数幂、有理数的乘方、零指数幂的定义将a、b、c、d的值计算出来即可比较出其值的大小.【解答】解:因为a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣=﹣,c=(﹣)﹣2==9,d=(﹣)0=1,所以c>d>a>b.故选D.【点评】本题主要考查了(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.(2)有理数比较大小:正数大于0;0大于负数;两个负数,绝对值大数的反而小.14.若分式中的m、n的值同时扩大到原来的10倍,则此分式的值()A.不变B.是原来的20倍C.是原来的10倍D.是原来的【考点】分式的基本性质.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解;分式中的m、n的值同时扩大到原来的10倍,则此分式的值扩大10倍,故选:C.【点评】本题考查了分式基本性质,利用了分式的基本性质.15.若m人需a天完成某项工程,则这样的人(m+n)个完成这项工程需要的天数是()A.(a+m)B.C.D.【考点】列代数式(分式).【分析】把某项工程看作单位1,再进一步根据工作总量=工作效率×工作时间×工作人数这一公式灵活变形求解.【解答】解:根据m人需a天完成某项工程,得1人1天完成,则(m+n)个人完成这项工程需要的天数是1÷=.故选B.【点评】此题考查了工程问题中各个量之间的关系,能够求得每人每天的工作效率.16.下列计算正确的是()A.÷﹣÷=B.÷(﹣)=2yC.÷(1﹣)=1 D.(1﹣)÷=1【考点】分式的混合运算.【分析】根据分式的混合运算的顺序即可求解.【解答】解:A、÷﹣÷=•﹣•=﹣=,选项错误;B、÷=•=,选项错误;C、÷(1﹣)=÷=1,选项正确;D、(1﹣)÷=•(2﹣x)=﹣,选项错误.故选C.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.17.化简÷(1+)的结果是()A.B.C.D.【考点】分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.18.若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.5【考点】分式方程的解.【专题】计算题;压轴题.【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.【点评】本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.19.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】工程问题.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.20.若+=,则用u、v表示f的式子应该是()A.B.C.D.【考点】分式的加减法.【专题】计算题.【分析】已知等式左边通分并利用同分母分式的加法法则计算,表示出f即可.【解答】解: +=,变形得:f=.故选B.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.已知x﹣=7,则x2+的值是()A.49 B.48 C.47 D.51【考点】分式的混合运算.【专题】计算题.【分析】将已知等式两边平方,利用完全平方公式展开即可得到所求式子的值.【解答】解:已知等式x﹣=7两边平方得:(x﹣)2=x2+﹣2=49,则x2+=51.故选D.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.【考点】分式的乘除法.【专题】计算题.【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.二、填空题:23.如果分式的值为零,那么x的值为﹣3 .【考点】分式的值为零的条件.【分析】分式的值为0:分子等于0,分母不等于0.【解答】解:依题意得|x|﹣3=0,且2x﹣6≠0,解得 x=﹣3.故答案是:﹣3.【点评】本题考查了分式的值为0的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.24.若关于x的分式方程的解为正数,那么字母a的取值范围是a>1且a≠2 .【考点】分式方程的解.【专题】计算题.【分析】将a看做已知数求出分式方程的解得到x的值,根据解为正数列出不等式,求出不等式的解集即可得到a的范围.【解答】解:分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.【点评】此题考查了分式方程的解,弄清题意是解本题的关键.注意分式方程分母不等于0.25.若|a|﹣2=(a﹣3)0,则a= ﹣3 .【考点】零指数幂.【分析】根据零指数幂的知识可得等式右边为1,然后进行绝对值的化简,求出a的值.【解答】解:∵|a|﹣2=(a﹣3)0=1,∴|a|=3,即a=±3.∵(a﹣3)0=1(a≠3),∴a=﹣3.故答案为:﹣3.【点评】本题考查了零指数幂的知识,关键是掌握a0=1(a≠0).26.分式,,的最简公分母为36m2n(m+n)(m﹣n)2.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,,的分母分别是36m2n,4mn(m ﹣n)2,6mn(m+n)(m﹣n),故最简公分母是36m2n(m+n)(m﹣n)2,故答案是:36m2n(m+n)(m﹣n)2.【点评】本题考查了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.27.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10﹣9米,已知某种植物孢子的直径为45000纳米,用科学记数法表示该孢子的直径为 4.5×10﹣5米.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式).其中1≤|a|<10,n 表示整数,n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:∵1纳米=10﹣9米,∴45 000纳米=4.5×104纳米=4.5×10﹣5米.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).28.①若=,则= ﹣8 .②若==,则= .③已知+=4,则= .④若m+n=5,mn=3,则+= .【考点】分式的化简求值.【专题】计算题.【分析】①对所要求的式子进行变形,即分子和分母都除以式子n2,然后把条件代入即可求值;②令,则x=3k,y=4k,z=5k,然后代入即可求值;③由条件可以得到a+b=4ab,然后代入进行求值即可;④把要求的式子进行变形为,然后把条件代入即可求值.【解答】解:① ==﹣8;②令,则x=3k,y=4k,z=5k,所以==;③由得a+b=4ab,所以=;④=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.29.不改变分式的值,把分式中的分子、分母中各项的系数都化为整数,且使系数的绝对值最小,则所得的结果为.【考点】分式的基本性质.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解;把分式中的分子、分母中各项的系数都化为整数,且使系数的绝对值最小,则所得的结果为,故答案为:.【点评】本题考查了分式的基本性质,利用了分式的基本性质.30.计算:①()﹣2014•(﹣)﹣2015= ﹣24029;②(π﹣)0+(﹣)﹣3= ﹣7 ;③﹣2﹣3= ﹣.【考点】负整数指数幂;零指数幂.【专题】计算题.【分析】原式各项利用负指数幂法则计算即可得到结果.【解答】解:①()﹣2014•(﹣)﹣2015=﹣()﹣4029=﹣24029;②(π﹣)0+(﹣)﹣3=1﹣8=﹣7;③﹣2﹣3=﹣.故答案为:①﹣24029;②﹣7;③﹣【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.31.计算化简(结果若有负指数幂要化为正整数指数幂):= .【考点】负整数指数幂.【专题】计算题.【分析】原式利用积的乘方与幂的乘方运算法则变形,再利用负指数幂法则计算即可得到结果.【解答】解:原式==,故答案为:【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.32.计算(m﹣)÷(n﹣)的结果为.【考点】分式的混合运算.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=.故答案为:.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.33.若M=,N=,P=,则M﹣N+P= 0 .【考点】分式的加减法.【专题】计算题.【分析】将M,N以及P代入M﹣N+P计算即可得到结果.【解答】解:∵M=,N=,P=,∴M﹣N+P=﹣+==0,故答案为:0【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.34.小刚同学不小心弄污了练习本的一道题,这道题是:“化简÷()”,其中“☀”处被弄污了,但他知道这道题的化简结果是,则“☀”处的式子为.【考点】分式的乘除法.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:÷=•=,则“☀”处的式子为.故答案为:.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.35.已知a2﹣6a+9与|b﹣1|互为相反数,则式子()÷(a+b)的值为.【考点】非负数的性质:偶次方;相反数;非负数的性质:绝对值.【专题】配方法.【分析】根据相反数及非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”求出a、b的值,再代入所求代数式计算即可.【解答】解:由题意知a2﹣6a+9+|b﹣1|=(a﹣3)2+|b﹣1|=0,∴a﹣3=0,b﹣1=0,∴a=3,b=1.∴()÷(a+b)=•===.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.36.当x= 3 时,2x﹣3与的值互为倒数.【考点】解一元一次方程.【专题】计算题.【分析】首先根据倒数的定义列出方程2x﹣3=,然后解方程即可.【解答】解:∵2x﹣3与的值互为倒数,∴2x﹣3=,去分母得:5(2x﹣3)=4x+3,去括号得:10x﹣15=4x+3,移项、合并得:6x=18,系数化为1得:x=3.所以当x=3时,2x﹣3与的值互为倒数.【点评】本题主要考查了倒数的定义及一元一次方程的解法,属于基础题比较简单.37.对于实数a、b,定义运算:a▲b=;如:2▲3=2﹣3=,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]= 1 .【考点】负整数指数幂.【专题】新定义.【分析】原式根据题中的新定义计算即可得到结果.【解答】解:根据题意得:2▲(﹣4)=2﹣4=,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]=×16=1,故答案为:1【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.38.若32m=,()n=262m,则m+n= 60 .【考点】负整数指数幂.【分析】将32m=化为=3﹣4,再将()n=262m,化为2﹣2n=262m,根据对应相等求得m,n的值,代入即可.【解答】解:∵32m=,()n=262m,∴=3﹣4,2﹣2n=262m,∴2m=﹣4,﹣2n=62m,∴m=﹣2,n=62,∴m+n=﹣2+62=60,故答案为60.【点评】本题考查了负整数指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.39.若a1=1﹣,a2=1﹣,a3=1﹣…则a2014的值为1﹣()2013(用含m的式子表示),a2015的值为1﹣()2014(用含m的式子表示).【考点】分式的混合运算.【专题】规律型.【分析】根据已知求得a2=1﹣=1﹣,a3=1﹣=1﹣()2,从而找出规律,即可解答.【解答】解:∵a1=1﹣,a2=1﹣,a3=1﹣,∴a2=1﹣=1﹣=1﹣==1﹣,a3=1﹣=1﹣=1﹣==1﹣()2,∴a2014=1﹣()2013,a2015=1﹣()2014.【点评】本题考查了分式的混合运算,找出已知式子的规律是本题的关键.40.若x2+4x=1,则①x+= ±2;②x2+x﹣2= 18 ;③x4+= 322 ;④ =.【考点】分式的混合运算.【分析】(1)移项后两边都除以x,即可求出x﹣,求出x2+的值,再根据完全平方公式求出即可;(2)移项后两边都除以x,即可求出x﹣,求出x2+的值即可;(3)根据完全平方公式变形后,代入求出即可;(4)先分子和分母都除以x2,再代入求出即可.【解答】解:∵x2+4x=1,∴x2+4x﹣1=0,∴x+4﹣=0,∴x﹣=4,∴(x﹣)2=16,∴x2﹣2+=16,∴x2+=18,(1)∵(x+)2=x2++2=18+2=20,∴x+=±2,故答案为:±2;(2)x2+x﹣2=x2+=18,故答案为:18;(3)x4+=(x2+)2﹣2x2•=182﹣2=322,故答案为:322;(4)===,故答案为:.【点评】本题考查了对完全平方公式的灵活运用,注意:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.三、解答题:41.计算:①﹣3﹣2+(﹣3)﹣2+(﹣2)﹣3;②(3×10﹣5)3÷(3×10﹣6)2×(3×10﹣7)2③(﹣1)2014﹣|﹣7|+×(5﹣π)0+(﹣)﹣1.【考点】负整数指数幂;零指数幂.【分析】①根据a﹣p=进行计算即可;②先算乘方,再按同底数幂的乘法运算进行计算即可;③根据乘方、绝对值、算术平方根、零指数幂、负整数指数幂进行计算.【解答】解:①原式=﹣+﹣=﹣;②原式=27×10﹣15÷9×10﹣12×9×10﹣14=3×10﹣3×9×10﹣14=27×10﹣17=2.7×10﹣16,③原式=1﹣7+3﹣5=﹣8.【点评】本题考查了负整数指数幂,零指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.42.计算:①•÷;②b2c﹣3•;③a2b3÷×a2b.【考点】负整数指数幂.【分析】①根据分式的乘方、乘除进行计算即可;②先算乘方,再根据负指数幂运算进行即可;③根据除以一个数等于乘以这个数的倒数进行计算即可.【解答】解:①原式=••=x5;②原式=b2c﹣2•8b6c﹣6=8b8c﹣8=;③原式=a2b3•a2b×a2b=a6b5.【点评】本题考查了负整数指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.43.计算:①(a﹣)÷;②÷(1﹣);③;④+﹣;⑤(﹣)÷(+﹣2)÷;⑥[×(a﹣4+)]÷(﹣1)⑦1﹣ [(1﹣)÷(﹣)]⑧(+)﹣⑨+++⑩(a﹣2﹣b﹣2)÷(a﹣1+b﹣1)+(a﹣2﹣b﹣2)÷(a﹣1﹣b﹣1)【考点】分式的混合运算.【分析】①、②、③、⑤、⑥、⑦、⑧先算括号里面的,再算乘除,最后算加减即可;②根据分式的除法法则进行计算即可;⑨根据分式的加法法则进行计算即可;⑩先根据负整数指数幂的计算法则计算出各数,再根据分式混合运算的法则进行计算即可..【解答】解:①原式=•=•=;②原式=÷=•=;③=•(a﹣1)(a+1)=2a(a+1)﹣a(a﹣1)=2a2+2a﹣a2+a=a2+3a;④原式=+﹣=;⑤(﹣)÷(+﹣2)÷=0÷(+﹣2)÷=0;⑥[×(a﹣4+)]÷(﹣1)=(×)÷.=×=;⑦原式= [÷]= [•]=•=;【点评】本题考查的是分式的混合运算,在解答此类题目时要注意通分及约分的灵活应用.。

人教版数学八年级上册 第15章 分式 单元检测试题(有答案)

人教版数学八年级上册  第15章 分式 单元检测试题(有答案)

第15章 分式 单元检测试题 (满分120分;时间:120分钟) 真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功! 题号 一 二 三 总分 得分一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列说法中,正确的是( )A.−53是分式B.2x 2−x+35是分式C.x 2x 2+3是分式D.x 3−12x 是分式2. 分式x+2y 3xy 中x 和y 同时扩大10倍,那么分式的值( )A.不变B.扩大10倍C.缩小10倍D.缩小100倍3. 使分式13x−1有意义的x 的取值范围是( )A.x <13B.x ≠−13C.x ≠13D.x >134. 代数式(x−yx+y −x+yx−y )÷2xx 2y−y 3的值的大小( )A.只与x 的取值有关B.只与y 的取值有关C.与x ,y 的取值都有关D.与x ,y 的取值都无关5. 若x ,y 的值均扩大为原来的2倍,则下列分式的值不变的是( )A.3x 2yB.3x 2y 2C.3x 22yD.3x 32y 26. 计算(a a−b −b a−b )÷1a+b 的结果是( )A.a −bB.a +bC.abD.a 2−b 27. 若y =92,则2x+612y ÷x+312y 的结果为( )A.6B.9C.92D.8148. 把分式2x 2x+y 中的x ,y 都扩大两倍,那么分式的值( )A.扩大两倍B.不变C.不能确定D.缩小两倍9. 若有意义,那么的取值范围是( ) A.x >2B.x <3C.x ≠3且x ≠4D.x ≠3或x ≠210. 分式m 2−2m+11−m 2约分后等于( ) A.m−11−m B.1−m 1+m C.−1−m 1+m D.1−m二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11.m+2m−1,5m+2的最简公分母是________,通分的结果为________.12. b 2a ,a 2b 2,14ab 的最简公分母为________.13. 在下列方程:①23x 2=1、②2π−x 2=1、③23x =x 、④1x−2+3=x−1x−2、⑤1x =0中,分式方程的个数有________.14. 已知x =2是分式方程3x−1=m x+2的根,则实数m =________.15. 如果(1−3x)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,那么|a 1|+|a 2|+|a 3|+|a 4|+|a 5|的值为________.16. 当x =________时,分式|x|−2x 2−2x 的值为零.17. 如果x 是负整数,并且分式2x+1的值也是负整数,写出符合条件的x 的值________.18. 当y =x +13时,(1y −1x )xy x 2−2xy+y 2的值是________.19. 分式方程2x+5x−2=−1的解为________.20. 如果对任意实数x ,等式:(1−2x)10=a 0+a 1x +a 2x 2+a 3x 3+...+a 10x 10都成立,那么(a 0+a 1)+(a 0+a 2)+(a 0+a 3)+...+(a 0+a 10)=________.(用数字作答)三、 解答题 (本题共计 6 小题 ,共计60分 , )21. 计算:x 2+3x −4x x 2+3=3.22. 已知y =3xy +x ,求代数式2x+3xy−2y x−2xy−y 的值.23. (1)若分式方程x x−5=2−m 5−x 有增根,试求m 的值.(2)当x为何值时,分式3−x2−x 的值比分式1x−2的值大3.24. 计算与化简:(1)6a3b⋅−3b2a2;(2)(−2xy−2)−4;(3)x2−2xy+y2x2+x ⋅x+1x2−y2;(4)3aa2−b2+1a+b.25. 某口罩生产厂在春节期间接到紧急任务,要求几天内生产出70万只口罩,为了战胜疫情,口罩厂工人愿意奉献自己的休息时间来完成这项任务,厂长决定开足全厂口罩生产线进行生产,结果每天比原来多生产3万只,而且提前了3天完成了任务,问原来要求几天完成这项紧急任务?26. A,B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返冋,结果甲、乙两人同时到达B地.请你就“甲从A地到B地步行所用时间,或“甲步行的速度”提出一个用分式方程解决的问题,并写出解题过程.参考答案一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】C【解答】解:A 、B 和D 中的分母中均不含有字母,因此它们是整式,而不是分式.C 分母中含有字母,因此是分式.故选C .2.【答案】C【解答】解:分式x+2y 3xy 中x 和y 同时扩大10倍,原分式变形为10x+20y 3⋅10x⋅10y =110⋅x+2y 3xy ,即分式的值为原来的10分之一.故选C .3.【答案】C【解答】解:由题意得:3x −1≠0,解得:x ≠13.故选C .4.【答案】B【解答】解:原式=(x−y)2−(x+y)2(x+y)(x−y)÷2x y(x+y)(x−y)=−4xy (x +y)(x −y)×y(x +y)(x −y)2x=−2y 2.故选B .5.【答案】A【解答】解:3×2x 2×2y =3x 2y ,分式的值不变;3×2x2×(2y )2=12×3x 2y 2,分式的值改变; 3×(2x )22×2y=2×3x 22y ,分式的值改变; 3×(2x )32×(2y )2=2×3x 32y 2,分式的值改变. 故选A .6.【答案】B【解答】解:原式=a−b a−b ⋅(a +b)=a +b . 故选B 7.【答案】B【解答】解:2x+612y ÷x+312y 2=2(x +3)12y ×12y 2x +3=2y ,当y =92时,原式=2×92=9, 故选B .8.【答案】A【解答】解:将2x 、2y 分别替换x 、y 得:2×(2x)22x+2y =2×2x 2x+y ,较原式扩大了两倍.故选A . 9.【答案】C【解答】根据题意知:{x −3≠02x −8≠0, ∴ x ≥3且x ≠4故选:C .10.【答案】B【解答】解:原式=(m−1)2(1−m)(1+m),=(m−1)2−(m−1)(m+1), =1−m 1+m .故选B .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )11.【答案】(m −1)(m +2),(m+2)2(m−1)(m+2),5(m−1)(m−1)(m+2)【解答】解:设边形有n 条,解得n8.180∘8−2)1080∘,故C .12.【答案】4ab 2【解答】解:第一个分式的分母为2a ;第二个分式的分母为2b 2;第三个分式的分母为4ab ;因此它们的最简公分母为:4×a ×b ×b =4ab 2.13.【答案】3【解答】解:分式方程有:③④⑤,故答案为3.14.【答案】12【解答】解:将x=2代入方程得:32−1=m2+2,解得:m=12,故答案为:12.15.【答案】1023【解答】解法一:∴ (1−3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5其中a0>0,a2>0,a4>0,a1<0,a3<0,a5<0∴ |a0|+|a1|+|a2|+|a3|+|a4|+|a5|=a0−a1+a2−a3+a4−a5将x=−1代入原等式两端得[1−3×(−1)]5=a0+a1⋅(−1)+a2⋅(−1)2+a3⋅(−1)3+a4⋅(−1)4+a5⋅(−1)5即1024=a0−a1+a2−a3+a4−a5、∴ |a0|+|a1|+|a2|+|a3|+|a4|+|a5|=1024−a0=1023解法二:将(1−3x)5用乘法分式逐项展开,得(1−3x)5=1−15x+90x2−270x3+405x4−243x5∴ |a1|+|a2|+|a3|+|a4|+|a5|=90+270+405+243=102316.【答案】−2【解答】解:由题意可得:|x|−2=0且x2−2x≠0,解得x=−2,故答案为:−2.17.【答案】−2或−3【解答】解:当x=−2时,原式=−2;当x=−3时,原式=−1;则x的值为−2或−3.故答案为:−2或−318.【答案】−3【解答】解:原式=x−yxy ⋅xy (x−y)2=1x−y,当y=x+13时,原式=1x−x−13=−3.故答案为:−3.19.【答案】x=−1【解答】解:2x+5x−2=−1,去分母,得2x+5=−x+2,移项,合并同类项得3x=−3,解得x=−1.检验:当x=−1时,x−2≠0故原方程的解为x=−1.故答案为:x=−1.20.【答案】10【解答】解:由题意可知:当x=0时,(1−2x)10=1=a0+a1x+a2x2+a3x3+...+a10x10=a0.当x=1时,(1−2x)10=1=a0+a1x+a2x2+a3x3+...+a10x10=a0+a1+ a2+...+a9+a10.所以(a0+a1)+(a0+a2)+(a0+a3)+...+(a0+a10)=a0+a1+a2+...+a9+a10+9a0=1+9=10.故答案为:10.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】解:设x 2+3x=a,则原方程化为:a−4a=3,解得:a=−4或1,当a=−4时,x 2+3x=−4,x2−4x+3=0,解得:x1=3,x2=1,当a=1时,x 2+3x=1,x2−x+3=0,△=(−1)2−4×1×3<0,所以此时方程无解,检验:当x1=3,x2=1时,分母x(x2+3)≠0,所以都是原方程的解,即原方程的解为x1=3,x2=1.【解答】解:设x 2+3x=a,则原方程化为:a−4a=3,解得:a=−4或1,当a=−4时,x 2+3x=−4,x2−4x+3=0,解得:x1=3,x2=1,当a=1时,x 2+3x=1,x2−x+3=0,△=(−1)2−4×1×3<0,所以此时方程无解,检验:当x1=3,x2=1时,分母x(x2+3)≠0,所以都是原方程的解,即原方程的解为x1=3,x2=1.22.【答案】解:因为y=3xy+x,所以x−y=−3xy,当x−y=−3xy时,2x+3xy−2y x−2xy−y =2(x−y)+3xy(x−y)−2xy=2(−3xy)+3xy −3xy−2xy =35. 【解答】解:因为y =3xy +x ,所以x −y =−3xy ,当x −y =−3xy 时,2x +3xy −2y x −2xy −y =2(x −y)+3xy (x −y)−2xy=2(−3xy)+3xy −3xy−2xy =35. 23.【答案】解:(1)方程两边都乘以(x −5),得x =2(x −5)+m .化简,得m =−x +10.分式方程的增根是x =5,把x =5代入方程得m =−5+10=5;(2)分式3−x 2−x 的值比分式1x−2的值大3,得 3−x 2−x −1x−2=3.方程得两边都乘以(x −2),得x −3−1=3(x −2).解得x =1,检验:把x =1代入x −5≠0,x =1是原分式方程的解,当x =1时,分式3−x 2−x 的值比分式1x−2的值大3.【解答】解:(1)方程两边都乘以(x −5),得x =2(x −5)+m .化简,得m =−x +10.分式方程的增根是x =5,把x =5代入方程得m =−5+10=5;(2)分式3−x 2−x 的值比分式1x−2的值大3,得 3−x 2−x −1x−2=3.方程得两边都乘以(x −2),得x −3−1=3(x −2).解得x =1,检验:把x=1代入x−5≠0,x=1是原分式方程的解,当x=1时,分式3−x2−x 的值比分式1x−2的值大3.24.【答案】解:(1)原式=−9ab2.(2)原式=(−2xy2)−4=(−y22x)4=y816x4.(3)原式=(x−y)2x(x+1)⋅x+1 (x+y)(x−y)=x−yx(x+y).(4)解:原式=3a(a+b)(a−b)+1a+b=3a(a+b)(a−b)+(a−b)(a+b)(a−b)=4a−b(a+b)(a−b).【解答】解:(1)原式=−9ab2.(2)原式=(−2xy2)−4=(−y22x)4=y816x4.(3)原式=(x−y)2x(x+1)⋅x+1 (x+y)(x−y)=x−yx(x+y).(4)解:原式=3a(a+b)(a−b)+1a+b=3a(a+b)(a−b)+(a−b)(a+b)(a−b)=4a−b(a+b)(a−b).25.【答案】解:设原来每天生产x万只口罩,据题意得:70 x −70x+3=3,解之得:x=7,负值舍去,经检验:x=7既适合方程,又适合题意,70 x =707=10,答:原来要求10天完成生产任务.【解答】解:设原来每天生产x万只口罩,据题意得:70 x −70x+3=3,解之得:x=7,负值舍去,经检验:x=7既适合方程,又适合题意,70 x =707=10,答:原来要求10天完成生产任务.26.【答案】解:问题:设甲从A地到B地步行所用时间为x小时,由题意得:30x−1=15x+10化简得:2x2−5x−3=0,解得:x1=3,x2=−12,经检验知x=3符合题意,∴ x=3,∴ 甲从A地到B地步行所用时间为3小时.【解答】解:问题:设甲从A地到B地步行所用时间为x小时,由题意得:30x−1=15x+10化简得:2x2−5x−3=0,解得:x1=3,x2=−12,经检验知x=3符合题意,∴ x=3,∴ 甲从A地到B地步行所用时间为3小时.1、三人行,必有我师。

【精编】人教版八年级人教版数学上册第十五章分式单元测试卷(含答案).doc

【精编】人教版八年级人教版数学上册第十五章分式单元测试卷(含答案).doc

第十五章 分式单元测试卷(时间:60分钟 满分:100分)一、选择题(本大题共有10小题,每小题3分,共30分)1、在x 1、31、212+x 、πy+5、m a 1+中分式的个数有( )A 、2个B 、3个C 、4个D 、5个2 、使分式1122+-a a 有意义的a 的取值是( )A 、a ≠1B 、a ≠±1C 、a ≠-1D 、a 为任意实数3、把分式b a a+2中a 、b 都扩大2倍,则分式的值( )A 、扩大4倍B 、扩大2倍C 、缩小2倍D 、不变4、能使分式122--x xx 的值为零的所有x 的值是( )A 、 0=xB 、1=xC 、0=x 或1=xD 、0=x 或1±=x5、下列计算错误的是( )A 、253--=⋅a a aB 、326a a a =÷C 、33323a a a -=-D 、()1210=+-6、用科学计数法表示的数-3.6×10-4写成小数是 ( )A 、0.00036B 、-0.0036C 、-0.00036D 、-360007、化简x y xx 1⋅÷的结果是( )A 、 1B 、 xyC 、 x yD 、 y x8、下列公式中是最简分式的是( )A 、21227b aB 、22()a b b a --C 、22x y x y ++ D 、22x y x y --9、化简x y y x y x ---22的结果是( )A 、y x --B 、x y -C 、y x -D 、y x +10、一件工作,甲单独做a 小时完成,乙单独做b 小时完成,则甲、乙两人合作完成需要( )小时。

A 、b a 11+ B 、ab 1 C 、b a +1 D 、ba ab + 二、填空题(本大题共有8小题,每空2分,共16分)11、计算:()=⎪⎭⎫⎝⎛+--10311 ;12、当x 时,分式313+-x x 有意义;13、1纳米=0.000000001米,则2纳米用科学记数法表示为 米;14、利用分式的基本性质填空:(1)())0(10 53≠=a axy xy a (2)() 1422=-+a a;15、分式方程1111112-=+--x x x 去分母时,两边都乘以 ;16、要使2415--x x 与的值相等,则x =__________;17、分式12x ,212y ,15xy -的最简公分母为 ;18、若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《第15章分式》一、选择题1.在,﹣,﹣y2,,,,3x﹣2,a﹣2﹣b﹣2中,属于分式的个数为()A.3 B.4 C.5 D.62.下列代数式:①;②;③;④;⑤3y﹣3+2;⑥;⑦(x ﹣2)0中,在字母取任何值的情况下都有意义的代数式个数为()A.2 B.3 C.4 D.53.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是()A.米B.米C.米 D.米4.式子2a﹣1可以化为()A.B.C.﹣2a D.2a﹣15.下列运算正确的是()A.x10÷x5=x2B.x﹣4•x=x﹣3C.x3•x2=x6D.(2x﹣2)﹣3=﹣8x66.下列分式是最简分式的()A.B.C. D.7.下面约分的式子中,正确的是()A.B.C.D.8.下列各式中,可能取值为零的是()A.B.C.D.9.式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.10.分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y311.把,,通分过程中,不正确的是()A.最简公分母是(x﹣2)(x+3)2B.=C.=D.=12.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣613.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则正确的为()A.a<b<c<d B.c<a<d<b C.a<d<c<b D.b<a<d<c14.若分式中的m、n的值同时扩大到原来的10倍,则此分式的值()A.不变B.是原来的20倍 C.是原来的10倍 D.是原来的15.若m人需a天完成某项工程,则这样的人(m+n)个完成这项工程需要的天数是()A.(a+m)B.C.D.16.下列计算正确的是()A.÷﹣÷=B.÷(﹣)=2yC.÷(1﹣)=1 D.(1﹣)÷=117.化简÷(1+)的结果是()A.B.C.D.18.若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.519.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C. D.20.若+=,则用u、v表示f的式子应该是()A.B.C.D.21.已知x﹣=7,则x2+的值是()A.49 B.48 C.47 D.5122.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.二、填空题:23.如果分式的值为零,那么x的值为.24.若关于x的分式方程的解为正数,那么字母a的取值范围是.25.若|a|﹣2=(a﹣3)0,则a= .26.分式,,的最简公分母为.27.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10﹣9米,已知某种植物孢子的直径为45000纳米,用科学记数法表示该孢子的直径为米.28.①若=,则= .②若==,则= .③已知+=4,则= .④若m+n=5,mn=3,则+= .29.不改变分式的值,把分式中的分子、分母中各项的系数都化为整数,且使系数的绝对值最小,则所得的结果为.30.计算:①()﹣2014•(﹣)﹣2015= ;②(π﹣)0+(﹣)﹣3= ;③﹣2﹣3= .31.计算化简(结果若有负指数幂要化为正整数指数幂):= .32.计算(m﹣)÷(n﹣)的结果为.33.若M=,N=,P=,则M﹣N+P= .34.小刚同学不小心弄污了练习本的一道题,这道题是:“化简÷()”,其中“☀”处被弄污了,但他知道这道题的化简结果是,则“☀”处的式子为.35.已知a2﹣6a+9与|b﹣1|互为相反数,则式子()÷(a+b)的值为.36.当x= 时,2x﹣3与的值互为倒数.37.对于实数a、b,定义运算:a▲b=;如:2▲3=2﹣3=,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]= .38.若32m=,()n=262m,则m+n= .39.若a1=1﹣,a2=1﹣,a3=1﹣…则a2014的值为(用含m的式子表示),a2015的值为(用含m的式子表示).40.若x2+4x=1,则①x+= ;②x2+x﹣2= ;③x4+= ;④= .三、解答题:41.计算:①﹣3﹣2+(﹣3)﹣2+(﹣2)﹣3;②(3×10﹣5)3÷(3×10﹣6)2×(3×10﹣7)2③(﹣1)2014﹣|﹣7|+×(5﹣π)0+(﹣)﹣1.42.计算:①•÷;②b2c﹣3•;③a2b3÷×a2b.43.计算:①(a﹣)÷;②÷(1﹣);③;④+﹣;⑤(﹣)÷(+﹣2)÷;⑥[×(a﹣4+)]÷(﹣1)⑦1﹣[(1﹣)÷(﹣)]《第15章分式》参考答案与试题解析一、选择题1.在,﹣,﹣y2,,,,3x﹣2,a﹣2﹣b﹣2中,属于分式的个数为()A.3 B.4 C.5 D.6【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,,,3x﹣2,a﹣2﹣b﹣2的分母中含有字母,因此是分式.﹣,﹣y2,,分母中均不含有字母,因此它们是整式,而不是分式.故选:C.【点评】本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.下列代数式:①;②;③;④;⑤3y﹣3+2;⑥;⑦(x ﹣2)0中,在字母取任何值的情况下都有意义的代数式个数为()A.2 B.3 C.4 D.5【考点】分式有意义的条件;负整数指数幂;二次根式有意义的条件.【分析】根据分式有意义,分母不等于0,二次根式的被开方数大于等于0,零指数幂和负整数指数幂的底数不等于0,对各小题分析判断即可得解.【解答】解:①,x≠﹣4无意义;②,x取全体实数;③,a=1无意义;④,m=﹣1无意义;⑤3y﹣3+2,y≠0;⑥,b取全体实数;⑦(x﹣2)0,x≠2,所以,在字母取任何值的情况下都有意义的是②⑥共2个.故选A.【点评】本题考查了分式有意义的条件,负整数指数幂,零指数幂,二次根式有意义的条件,是基础题,需熟记.3.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是()A.米B.米C.米 D.米【考点】列代数式(分式).【专题】应用题.【分析】首先根据1米长的电线,称得它的质量为a克,则剩余电线的质量为b克的长度是米,根据题意可求得总长度.【解答】解:根据题意得:剩余电线的质量为b克的长度是米.所以这卷电线的总长度是(+1)米.故选B.【点评】首先根据长度=质量÷每米的质量求得剩余的长度,最后不要忘记加1.解决问题的关键是读懂题意,找到所求的量的等量关系.4.式子2a﹣1可以化为()A.B.C.﹣2a D.2a﹣1【考点】负整数指数幂.【分析】根据负整数指数幂的运算法则进行计算.【解答】解:2a﹣1=2×=.故选:B.【点评】本题考查了负整数指数幂.幂的负整数指数运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.5.下列运算正确的是()A.x10÷x5=x2B.x﹣4•x=x﹣3C.x3•x2=x6D.(2x﹣2)﹣3=﹣8x6【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【分析】根据同底数的幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项计算后利用排除法求解.【解答】解:A、应为x10÷x5=x5,故本选项错误;B、x﹣4•x=x﹣3,正确;C、应为x3•x2=x5,故本选项错误;D、应为(2x﹣2)﹣3=x6,故本选项错误.故选B.【点评】本题主要考查同底数幂乘法,同底数幂除法的运算,熟练掌握运算法则是解题的关键,另外负指数次幂是学生容易出错的地方.6.下列分式是最简分式的()A.B.C. D.【考点】最简分式;分式的基本性质;约分.【专题】计算题.【分析】根据分式的基本性质进行约分,画出最简分式即可进行判断.【解答】解:A、=,故本选项错误;B、=,故本选项错误;C、,不能约分,故本选项正确;D、==,故本选项错误;故选C.【点评】本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解此题的关键.7.下面约分的式子中,正确的是()A.B.C.D.【考点】约分.【分析】根据分式的基本性质作答.分子和分母同乘以(或除以)一个不为0的数,分数值不变.【解答】解:A、不能将幂约掉,故A错误;B、分子和分母同时减掉一个数,比值会发生变化,故B错误;C、=,故C错误;D、将分母变为﹣(a﹣b),然后化简得﹣1,故D正确.故选D.【点评】解答此类题一定要熟练掌握分式的基本性质以及约分的概念.8.下列各式中,可能取值为零的是()A.B.C.D.【考点】分式的值为零的条件.【分析】要使分式的值为0,必须使分式分子的值为0,与分母的值不为0,同时成立.【解答】解:根据m2+1≠0一定成立,故选项A,D一定错误;C、m+1=0,解得:m=﹣1,由分子m2﹣1=0解得:m=±1.故C不可能是0;B、m2﹣1=0,解得:m=±1,当m=±1时,分母m2+1=2≠0.所以m=±1时,分式的值是0.故选B.【点评】要注意分母的值一定不能为0,分母的值是0时分式没有意义.9.式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选A.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.10.分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选B.【点评】通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.11.把,,通分过程中,不正确的是()A.最简公分母是(x﹣2)(x+3)2B.=C.=D.=【考点】通分.【分析】按照通分的方法依次验证各个选项,找出不正确的答案.【解答】解:A、最简公分母为最简公分母是(x﹣2)(x+3)2,正确;B、=,通分正确;C、=,通分正确;D、通分不正确,分子应为2×(x﹣2)=2x﹣4;故选:D.【点评】根据分数的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.通分保证(1)各分式与原分式相等;(2)各分式分母相等.12.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣6【考点】科学记数法—表示较小的数.【专题】常规题型.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025=2.5×10﹣6;故选:D.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则正确的为()A.a<b<c<d B.c<a<d<b C.a<d<c<b D.b<a<d<c【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】根据负整数指数幂、有理数的乘方、零指数幂的定义将a、b、c、d的值计算出来即可比较出其值的大小.【解答】解:因为a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣=﹣,c=(﹣)﹣2==9,d=(﹣)0=1,所以c>d>a>b.故选D.【点评】本题主要考查了(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.(2)有理数比较大小:正数大于0;0大于负数;两个负数,绝对值大数的反而小.14.若分式中的m、n的值同时扩大到原来的10倍,则此分式的值()A.不变B.是原来的20倍 C.是原来的10倍 D.是原来的【考点】分式的基本性质.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解;分式中的m、n的值同时扩大到原来的10倍,则此分式的值扩大10倍,故选:C.【点评】本题考查了分式基本性质,利用了分式的基本性质.15.若m人需a天完成某项工程,则这样的人(m+n)个完成这项工程需要的天数是()A.(a+m)B.C.D.【考点】列代数式(分式).【分析】把某项工程看作单位1,再进一步根据工作总量=工作效率×工作时间×工作人数这一公式灵活变形求解.【解答】解:根据m人需a天完成某项工程,得1人1天完成,则(m+n)个人完成这项工程需要的天数是1÷=.故选B.【点评】此题考查了工程问题中各个量之间的关系,能够求得每人每天的工作效率.16.下列计算正确的是()A.÷﹣÷=B.÷(﹣)=2yC.÷(1﹣)=1 D.(1﹣)÷=1【考点】分式的混合运算.【分析】根据分式的混合运算的顺序即可求解.【解答】解:A、÷﹣÷=•﹣•=﹣=,选项错误;B、÷=•=,选项错误;C、÷(1﹣)=÷=1,选项正确;D、(1﹣)÷=•(2﹣x)=﹣,选项错误.故选C.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.17.化简÷(1+)的结果是()A.B.C.D.【考点】分式的混合运算.【分析】首先对括号内的式子通分相加,然后把除法转化成乘法,进行约分即可.【解答】解:原式=÷=•=.故选A.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.18.若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.5【考点】分式方程的解.【专题】计算题;压轴题.【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.【点评】本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.19.某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果共用了18天完成全部任务.设原计划每天加工x套运动服,根据题意可列方程为()A.B.C. D.【考点】由实际问题抽象出分式方程.【专题】工程问题.【分析】关键描述语为:“共用了18天完成任务”;等量关系为:采用新技术前用的时间+采用新技术后所用的时间=18.【解答】解:采用新技术前用的时间可表示为:天,采用新技术后所用的时间可表示为:天.方程可表示为:.故选:B.【点评】列方程解应用题的关键步骤在于找相等关系.找到关键描述语,找到等量关系是解决问题的关键.本题要注意采用新技术前后工作量和工作效率的变化.20.若+=,则用u、v表示f的式子应该是()A.B.C.D.【考点】分式的加减法.【专题】计算题.【分析】已知等式左边通分并利用同分母分式的加法法则计算,表示出f即可.【解答】解:+=,变形得:f=.故选B.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.已知x﹣=7,则x2+的值是()A.49 B.48 C.47 D.51【考点】分式的混合运算.【专题】计算题.【分析】将已知等式两边平方,利用完全平方公式展开即可得到所求式子的值.【解答】解:已知等式x﹣=7两边平方得:(x﹣)2=x2+﹣2=49,则x2+=51.故选D.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.22.如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.【考点】分式的乘除法.【专题】计算题.【分析】分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.【解答】解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,∴1<+1<2,∴1<k<2故选B.【点评】本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.二、填空题:23.如果分式的值为零,那么x的值为﹣3 .【考点】分式的值为零的条件.【分析】分式的值为0:分子等于0,分母不等于0.【解答】解:依题意得|x|﹣3=0,且2x﹣6≠0,解得x=﹣3.故答案是:﹣3.【点评】本题考查了分式的值为0的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.24.若关于x的分式方程的解为正数,那么字母a的取值范围是a>1且a≠2 .【考点】分式方程的解.【专题】计算题.【分析】将a看做已知数求出分式方程的解得到x的值,根据解为正数列出不等式,求出不等式的解集即可得到a的范围.【解答】解:分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.【点评】此题考查了分式方程的解,弄清题意是解本题的关键.注意分式方程分母不等于0.25.若|a|﹣2=(a﹣3)0,则a= ﹣3 .【考点】零指数幂.【分析】根据零指数幂的知识可得等式右边为1,然后进行绝对值的化简,求出a的值.【解答】解:∵|a|﹣2=(a﹣3)0=1,∴|a|=3,即a=±3.∵(a﹣3)0=1(a≠3),∴a=﹣3.故答案为:﹣3.【点评】本题考查了零指数幂的知识,关键是掌握a0=1(a≠0).26.分式,,的最简公分母为36m2n(m+n)(m ﹣n)2.【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,,的分母分别是36m2n,4mn (m﹣n)2,6mn(m+n)(m﹣n),故最简公分母是36m2n(m+n)(m﹣n)2,故答案是:36m2n(m+n)(m﹣n)2.【点评】本题考查了最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.27.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10﹣9米,已知某种植物孢子的直径为45000纳米,用科学记数法表示该孢子的直径为 4.5×10﹣5米.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式).其中1≤|a|<10,n表示整数,n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【解答】解:∵1纳米=10﹣9米,∴45 000纳米=4.5×104纳米=4.5×10﹣5米.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).28.①若=,则= ﹣8 .②若==,则= .③已知+=4,则= .④若m+n=5,mn=3,则+= .【考点】分式的化简求值.【专题】计算题.【分析】①对所要求的式子进行变形,即分子和分母都除以式子n2,然后把条件代入即可求值;②令,则x=3k,y=4k,z=5k,然后代入即可求值;③由条件可以得到a+b=4ab,然后代入进行求值即可;④把要求的式子进行变形为,然后把条件代入即可求值.【解答】解:①==﹣8;②令,则x=3k,y=4k,z=5k,所以==;③由得a+b=4ab,所以=;④=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.29.不改变分式的值,把分式中的分子、分母中各项的系数都化为整数,且使系数的绝对值最小,则所得的结果为.【考点】分式的基本性质.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【解答】解;把分式中的分子、分母中各项的系数都化为整数,且使系数的绝对值最小,则所得的结果为,故答案为:.【点评】本题考查了分式的基本性质,利用了分式的基本性质.30.计算:①()﹣2014•(﹣)﹣2015= ﹣24029;②(π﹣)0+(﹣)﹣3= ﹣7 ;③﹣2﹣3= ﹣.【考点】负整数指数幂;零指数幂.【专题】计算题.【分析】原式各项利用负指数幂法则计算即可得到结果.【解答】解:①()﹣2014•(﹣)﹣2015=﹣()﹣4029=﹣24029;②(π﹣)0+(﹣)﹣3=1﹣8=﹣7;③﹣2﹣3=﹣.故答案为:①﹣24029;②﹣7;③﹣【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.31.计算化简(结果若有负指数幂要化为正整数指数幂):= .【考点】负整数指数幂.【专题】计算题.【分析】原式利用积的乘方与幂的乘方运算法则变形,再利用负指数幂法则计算即可得到结果.【解答】解:原式==,故答案为:【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.32.计算(m﹣)÷(n﹣)的结果为.【考点】分式的混合运算.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:原式=÷=•=.故答案为:.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.33.若M=,N=,P=,则M﹣N+P= 0 .【考点】分式的加减法.【专题】计算题.【分析】将M,N以及P代入M﹣N+P计算即可得到结果.【解答】解:∵M=,N=,P=,∴M﹣N+P=﹣+==0,故答案为:0【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.34.小刚同学不小心弄污了练习本的一道题,这道题是:“化简÷()”,其中“☀”处被弄污了,但他知道这道题的化简结果是,则“☀”处的式子为.【考点】分式的乘除法.【专题】计算题.【分析】根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:÷=•=,则“☀”处的式子为.故答案为:.【点评】此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.35.已知a2﹣6a+9与|b﹣1|互为相反数,则式子()÷(a+b)的值为.【考点】非负数的性质:偶次方;相反数;非负数的性质:绝对值.【专题】配方法.【分析】根据相反数及非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”求出a、b的值,再代入所求代数式计算即可.【解答】解:由题意知a2﹣6a+9+|b﹣1|=(a﹣3)2+|b﹣1|=0,∴a﹣3=0,b﹣1=0,∴a=3,b=1.∴()÷(a+b)=•===.【点评】本题考查了非负数的性质.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.36.当x= 3 时,2x﹣3与的值互为倒数.【考点】解一元一次方程.【专题】计算题.【分析】首先根据倒数的定义列出方程2x﹣3=,然后解方程即可.【解答】解:∵2x﹣3与的值互为倒数,∴2x﹣3=,去分母得:5(2x﹣3)=4x+3,去括号得:10x﹣15=4x+3,移项、合并得:6x=18,系数化为1得:x=3.所以当x=3时,2x﹣3与的值互为倒数.【点评】本题主要考查了倒数的定义及一元一次方程的解法,属于基础题比较简单.37.对于实数a、b,定义运算:a▲b=;如:2▲3=2﹣3=,4▲2=42=16.照此定义的运算方式计算[2▲(﹣4)]×[(﹣4)▲(﹣2)]= 1 .【考点】负整数指数幂.【专题】新定义.【分析】原式根据题中的新定义计算即可得到结果.【解答】解:根据题意得:2▲(﹣4)=2﹣4=,(﹣4)▲(﹣2)=(﹣4)2=16,则[2▲(﹣4)]×[(﹣4)▲(﹣2)]=×16=1,故答案为:1【点评】此题考查了负整数指数幂,熟练掌握运算法则是解本题的关键.38.若32m =,()n =262m ,则m+n= 60 .【考点】负整数指数幂. 【分析】将32m =化为=3﹣4,再将()n =262m ,化为2﹣2n =262m ,根据对应相等求得m ,n 的值,代入即可. 【解答】解:∵32m =,()n =262m ,∴=3﹣4,2﹣2n =262m ,∴2m=﹣4,﹣2n=62m , ∴m=﹣2,n=62, ∴m+n=﹣2+62=60, 故答案为60.【点评】本题考查了负整数指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.39.若a 1=1﹣,a 2=1﹣,a 3=1﹣…则a 2014的值为 1﹣()2013 (用含m 的式子表示),a 2015的值为 1﹣()2014 (用含m 的式子表示).【考点】分式的混合运算. 【专题】规律型.【分析】根据已知求得a 2=1﹣=1﹣,a 3=1﹣=1﹣()2,从而找出规律,即可解答.【解答】解:∵a1=1﹣,a2=1﹣,a3=1﹣,∴a2=1﹣=1﹣=1﹣==1﹣,a3=1﹣=1﹣=1﹣==1﹣()2,∴a2014=1﹣()2013,a2015=1﹣()2014.【点评】本题考查了分式的混合运算,找出已知式子的规律是本题的关键.40.若x2+4x=1,则①x+= ±2;②x2+x﹣2= 18 ;③x4+= 322 ;④= .【考点】分式的混合运算.【分析】(1)移项后两边都除以x,即可求出x﹣,求出x2+的值,再根据完全平方公式求出即可;(2)移项后两边都除以x,即可求出x﹣,求出x2+的值即可;(3)根据完全平方公式变形后,代入求出即可;(4)先分子和分母都除以x2,再代入求出即可.【解答】解:∵x2+4x=1,∴x2+4x﹣1=0,∴x+4﹣=0,∴x﹣=4,∴(x﹣)2=16,∴x2﹣2+=16,∴x2+=18,(1)∵(x+)2=x2++2=18+2=20,∴x+=±2,故答案为:±2;(2)x2+x﹣2=x2+=18,故答案为:18;(3)x4+=(x2+)2﹣2x2•=182﹣2=322,故答案为:322;(4)===,故答案为:.【点评】本题考查了对完全平方公式的灵活运用,注意:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.三、解答题:41.计算:①﹣3﹣2+(﹣3)﹣2+(﹣2)﹣3;②(3×10﹣5)3÷(3×10﹣6)2×(3×10﹣7)2③(﹣1)2014﹣|﹣7|+×(5﹣π)0+(﹣)﹣1.【考点】负整数指数幂;零指数幂.【分析】①根据a﹣p=进行计算即可;②先算乘方,再按同底数幂的乘法运算进行计算即可;③根据乘方、绝对值、算术平方根、零指数幂、负整数指数幂进行计算.【解答】解:①原式=﹣+﹣=﹣;②原式=27×10﹣15÷9×10﹣12×9×10﹣14=3×10﹣3×9×10﹣14=27×10﹣17=2.7×10﹣16,③原式=1﹣7+3﹣5=﹣8.【点评】本题考查了负整数指数幂,零指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.42.计算:①•÷;②b2c﹣3•;③a2b3÷×a2b.【考点】负整数指数幂.【分析】①根据分式的乘方、乘除进行计算即可;②先算乘方,再根据负指数幂运算进行即可;③根据除以一个数等于乘以这个数的倒数进行计算即可.【解答】解:①原式=••=x5;②原式=b2c﹣2•8b6c﹣6=8b8c﹣8=;③原式=a2b3•a2b×a2b=a6b5.【点评】本题考查了负整数指数幂,负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.43.计算:①(a﹣)÷;②÷(1﹣);③;④+﹣;⑤(﹣)÷(+﹣2)÷;⑥[×(a﹣4+)]÷(﹣1)⑦1﹣[(1﹣)÷(﹣)]⑧(+)﹣⑨+++⑩(a﹣2﹣b﹣2)÷(a﹣1+b﹣1)+(a﹣2﹣b﹣2)÷(a﹣1﹣b﹣1)【考点】分式的混合运算.【分析】①、②、③、⑤、⑥、⑦、⑧先算括号里面的,再算乘除,最后算加减即可;②根据分式的除法法则进行计算即可;⑨根据分式的加法法则进行计算即可;⑩先根据负整数指数幂的计算法则计算出各数,再根据分式混合运算的法则进行计算即可.【解答】解:①原式=•=•=;②原式=÷=•=;③=•(a﹣1)(a+1)=2a(a+1)﹣a(a﹣1)=2a2+2a﹣a2+a=a2+3a;④原式=+﹣=;⑤(﹣)÷(+﹣2)÷=0÷(+﹣2)÷=0;⑥[×(a﹣4+)]÷(﹣1)=(×)÷............ =× =;⑦原式= [÷]= [•]=•=; 【点评】本题考查的是分式的混合运算,在解答此类题目时要注意通分及约分的灵活应用.。

相关文档
最新文档