北师大版七年级下册三角形全等证明及其性质(试题集)

合集下载

最新北师大版七年级下册三角形全等的证明试题以及答案(SSS、AAS、ASA、SAS、HL)(各10题)

最新北师大版七年级下册三角形全等的证明试题以及答案(SSS、AAS、ASA、SAS、HL)(各10题)

最新七年级下册三角形全等的证明试题1、如图,DE=DF ,BF=CD ,BC=BF+CE ,证明∠EDF=90°-A 21。

2、如图,AB=CQ ,AP=AQ ,BE=AC+PE ,证明∠QAC 与∠APE 互补。

3、如图,AB=CD,AC=BD,BE=CE,证明AE=DE。

4、如图,AE=CF,AD=BC,DF=BE,证明AE∥CF。

5、如图,AB=AD,AC=AE,BD+DC=DE,证明∠1=∠EDC。

6、如图,AB=BD,AC=BE,BC=DE,∠D=90°,证明AC⊥BE。

7、如图,O是BD的中点,OE=OF,DE=BF,证明AD∥BC。

8、如图,O是EF、BD的公共中点,AD=BC,AF=EC,证明AV=CD。

9、如图,AC=BF,AD=DF,BD=DC,证明∠B=∠C。

10、如图DF=DE,AC=BC,AF=BE,证明∠A=∠B。

11、如图,F是CD的中点,A点到C点与A点到D点到距离相等,AB=AE,∠BAF=∠EAF,证明∠B=∠E。

1、如图,AC∥DF,且AC=DF,∠C=∠F,说明BC和EF关系。

2、如图,AB=AC,∠BAC=∠DAE,∠ABD=∠2,证明∠3=∠1+∠2.3、如图,AB=AC,∠BAC=∠DAE,∠ADB=∠AEC,证明∠ADE=∠ACB。

4、如图,E在△ABC的边AC上,且∠AEB=∠ABC.求证:(1)∠ABE=∠C;(2)求∠BAE的平分线AF交BE于点F,FD∥BC交AC于点D,设AB=8,AC=10,求DC的长。

5、如图,MQ、NR是△PMN的高线,且MQ=NQ,证明PM=HN。

6、如图,BD⊥AC,CE⊥AB,AB=AC,证明∠B=∠C。

7、如图,BC=CD,∠BCE=∠ACD,∠B=∠D,证明AB=ED。

8、如图,AB∥CF,AD=CF,说明E是AC、DF的公共中点。

9、如图,BD⊥DE,CE⊥DE,AB⊥AC,且AB=AC,说明BD、CE和DE 关系。

最新北师大版七年级下册三角形全等证明测试试题以及答案

最新北师大版七年级下册三角形全等证明测试试题以及答案

最新七年级下册数学三角新全等的证明测试试题1. 如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE2.下列给出的四组条件中,能判定△ABC≌△DEF的是[]A.∠A=∠D,∠C=∠F,AC=EFB.AB=DE,BC=EF,∠A=∠DC.AB=DE,BC=EF,△ABC的周长等于△DEFD.∠A=∠D,∠B=∠E,AC=EF3. 如图,AC=AD,BC=BD,则图中全等三角形共有______对.4.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去和蕴含的道理是().A.①、SASB.②、AASC.③、ASAD.①和②、ASA5.如图,∠1=∠2,∠E=∠A,EC=AD,则△ABD≌△EBC,此时运用的判断依据是()。

A、SSSB、ASAC、AASD、SAS6.如图,AC,BD相交于点O,∠A=∠D,请你再补充一个条件,使△AOB≌△DOC,你补充的条件是(填一个即可)7、如图,能用AAS来判断△ACD≌△ABE,需要添加的条件是[] A.∠ACD=∠ABC,∠C=∠B B.∠AEB=∠ADC,CD=BE C.AC=AB,AD=AE D.AC=AB,∠C=∠B8、如图所示,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,则△DBE的周长= cm。

A. 10B. 8C. 6D. 99、如图,已知∠1 =∠2. 则不一定能使△ABD≌△ACD的条件是[]A. AB=ACB. BD= CDC. ∠B=∠CD.∠BDA= ∠CDA10、如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲乙B.甲丙C.乙丙D.乙11、如图,∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的条件有[ ] A.1个B.2个C.3个D.4个12、如图所示,太阳光线AC与A'C'是平行的,AB表示一棵塔松,A'B'表示一棵小杨树,同一时刻两棵树的影长相等,已知小杨树高3米,则塔松高()A.大于3米B.等于3米C.小于3米D.和影子的长相同13、如图,AB、CD表示两根长度相等的铁条,若O为AB、CD的中点,经测量AC=15cm,则容器内径BD为()A.12cm B.13cm C.14cm D.15cm14、如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PO B.PQC.MO D.MQ15、如图,将两根钢条、的中点O连在一起,使、可以绕着点0自由转动,就做成了一个测量工件,则AB、的长等于内槽宽AB,那么判定△AOB≌△的理由是()A.边边边B.边角边C.角边角D.角角边16、下面结论:(1)一锐角和斜边对应相等两个直角三角形全等;(2)顶角和底角对应相等的两个等腰三角形全等;(3)顶角和底边对应相等的两个等腰三角形全等;(4)有两个角和一边对应相等的两个三角形全等.其中正确的个数为()A.1个B.2个C.3个D.4个17、如图,已知AB=CD且∠ABD=∠BDC,要证∠A=∠C,判定△ABD ≌△CDB的方法是[]A.AAS B.SAS C.ASA D.SSS17、如图,给出下列四组条件:①AB=ED,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其.其中,能使△ABC≌△DEF的条件共有( )A.1组B.2组C.3组D.4组18、如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC19、如图,小华书上的三角形被墨水弄污了一部分,她想在作业本上作一个完全一样的三角形,其根据是()A. SSS B.ASA C.SAS D.AAS21、下列各条件中,不能作出惟一三角形的是()A. 已知两边和夹角B. 已知两角和夹边C. 已知两边和其中一边的对角D. 已知三边22、用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.ASA D.AAS23、直尺和圆规作一个角的角平分线示意图,说明∠AOC=∠BOC依据。

最新北师大版七年级下册三角形全等(SSS)的证明试题以及答案(共41道证明题)

最新北师大版七年级下册三角形全等(SSS)的证明试题以及答案(共41道证明题)

最新七年级下册三角形全等的证明试题1、如图,AB=DE,AC=EF,BE=CF,证明∠A=∠D。

2、如图,AB=CD,BE=DF,AF=EC,证明AB∥CD。

3、如图,AC=DF,EF=BC,AD=BE,证明∠F=∠C。

4、如图,AB=AC,AD=AE,BE=DC,证明∠ABD=∠AEC。

5、如图,AB=AD,AE=AC,BC=ED,证明∠ABE=∠ACD。

6、如图,AD=AB,DC=BC,证明∠B=∠D。

7、如图,AB=AC,BD=DC,证明∠1=∠2.8、如图,∠C=90°,AD=BD,DE=DC,AE=BC,说明AB和DE的关系。

9、如图,AB=DE,BC=EF,AF=CD,证明AB∥DE。

10、如图,AB=AC,D是BC的中点,证明AD⊥BC。

11、如图,AE=DF,AB=CD,CE=BF,证明AE∥DF。

12、如图,AB=AD,AE=AC,BC=DE,证明∠E=∠C。

13、如图,BC=BE,DE=DC,∠C=90°,证明(1)DE⊥AB(2)BD是∠ABC的角平分线。

14、如图,AB=EF,AD=CF,DE=BC,证明∠B=∠E。

15、如图,OA=OB,AC=BD,AD=BC,证明∠ACB=∠ADB。

16、如图,AD=BC,A0=OB,OC=OD,证明∠BAD=∠ABC。

17、如图,AD=BD,BE=AC,AD+DE=BC,AD⊥BC,证明BE⊥AC。

18、如图,AD=BC,AF=EC,DE=BF,证明DE∥BF,AD∥BC。

19、如图,AB=DC,AC=BD,AO=OD,证明∠B=∠C。

20、如图,AB=AD,AE=AC,BC=DE,证明∠1=∠2.21、如图,AC⊥CE,AC=CE,AB=CD,且AB+DE=BD,AB∥DE。

22、如图,AE=AB,AC=AF,EC=BF,证明∠BAE=∠CAF。

23、如图,AD=BC,AC=BD,证明∠ADO=∠BCO。

24、如图,AB=AC,BD=CE,AD=AE,证明∠ABC=∠ADE。

最新北师大版七年级下册三角形全等(AAS或ASA)的证明试题以及答案 (共50道)

最新北师大版七年级下册三角形全等(AAS或ASA)的证明试题以及答案 (共50道)

最新七年级下册三角形全等的证明试题两角一边的证明题如下图模型。

1、如图,AB∥CD,且AB=CD,证明O是AD、BC的公共中点。

2、如图,CA⊥OM,CB⊥ON,OC平分∠MON,证明(1)OA=OB(2)连接AB,证明AB⊥OC。

3、如图,∠B=∠C,AD=AE,证明BD=CE。

4、如图,AC平分∠BAD,AB⊥BC,AD⊥DC,证明CA平分∠BCD。

5、如图,AB∥DE,BF=CE,∠A=∠D,试着说明AC和DF的关系。

6、如图,AB=CD,∠A=∠D,证明∠1=∠2.7、如图,∠A=∠D,∠BCE=∠ACD,CB=CE,证明AB=ED。

8、如图,DE⊥AB,DF⊥AC,D是BC的中点,∠BDF=∠CDE,证明AB=AC。

9、如图,∠1=∠2,AB=AE,∠B=∠E,证明∠D=∠C。

10、如图,AB⊥BC,DC⊥BC,BE=CF,∠BED=∠ACF,证明AF⊥DE。

11、如图,CE、BD分别是三角形的两条高线,且AB=AC,证明∠CBD=∠BCE。

12、如图,BE=CF,∠A=∠D,AB∥DE,说明AC和DF的关系。

13、如图,∠C=∠D,∠ABD=∠BAC,证明DE=CE。

14、如图,AB∥CF,AD=CF,证明E是AC的中点。

15、如图,AF=CE,AD∥BC,DF∥BE,说明AB和CD关系。

16、如图,BE⊥CE,AD⊥CE,AC⊥BC,且AC=BC,说明线段BE、AD、DE之间的关系。

17、如图,∠A+∠C=180°,BD平分∠ABC,证明AD=CD。

18、如图,∠1=∠2,∠E=∠D,AE=AD,证明EC=BD。

19、如图,AD=BC,∠A=∠C,说明A、C的连线和B、D的连线的关系。

20、如图,∠1=∠2,∠D=∠E,AB=AC,证明BD=CE。

21、如图,BD平分∠ABC,∠A=∠C,证明A、C的连线和BD垂直。

22、如图,△ABD是以AB为斜边的等腰直角三角形,∠C与∠AEB互补,说明BE和AC的关系。

最新北师大版七年级下册三角形全等的证明练习题以及答案

最新北师大版七年级下册三角形全等的证明练习题以及答案

最新七年级下册三角形全等的证明1、已知:如图,四边形ABCD中,AC平分角BAD,CE垂直AB 于E,且角B+角D=180度,求证:AE=AD+BEA B DCE 122、已知,如图,AB=CD,DF⊥AC于F,BE⊥AC于E,DF=BE。

求证:AF=CE。

FE A CDB3、已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。

求证:BE =CD 。

AEDC B4、如图,DE⊥AB,DF⊥AC,垂足分别为E、F,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。

①AB=AC ②BD=CD ③BE=CFBD C5、如图,△ABC中,AB=AC,过A作GE∥BC,角平分线BD、CF 交于点H,它们的延长线分别交GE于E、G,试在图中找出三对全等三角形,并对其中一对给出证明。

E G6、如图,在△ABC中,点D在AB上,点E在BC上,BD=BE。

(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明。

你添加的条件是:________ ___(2)根据你添加的条件,再写出图中的一对全等三角形:______________(不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)7、已知:如图,AB⊥BC,AD⊥DC,AB=AD,若E是AC上一点。

求证:EB=ED。

DA E CB8、已知:如图,AB、CD交于O点,CE//DF,CE=DF,AE=BF。

求证:∠ACE=∠BDF。

AB CDEFO9、已知:如图,△ABC中,AD⊥BC于D,E是AD上一点,BE的延长线交AC于F,若BD=AD,DE=DC。

求证:BF⊥AC。

AE FDB C10、. 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。

求证:△ABC ≌△A’B’C’。

(完整版)北师大七年级下全等三角形测试题(50分钟)

(完整版)北师大七年级下全等三角形测试题(50分钟)

DACFD D EC FDE 图 9H一.选择题: 全等三角形测试题13. 已知,如图 13-6,D 是△ABC 的边 ABA上一点, DF 交 AC 于点 E, DE=FE, FC ∥AB,F 1.在△ABC 和△A’B’C’中, AB=A’B’, ∠B=∠B’, 补充条件后仍不一定能保 证△ABC ≌△A’B’C’, 则补充的这个条件是( ) A .BC=B’C’ B .∠A=∠A’ C .AC=A’C’ D .∠C=∠C’2. 直角三角形两锐角的角平分线所交成的角的度数是( )A .45°B .135°C .45°或 135°D .都不对 3.现有两根木棒,它们的长分别是 40cm 和 50cm ,若要钉成一个三角形木 求证:AD=CF .BC图 13-6 架,则在下列四根木棒中应选取( ) A .10cm 的木棒 B .40cm 的木棒 C .90cm 的木棒 D .100cm 的木棒二、填空题: 4. 三角形 ABC 中,∠A 是∠B 的 2 倍,∠C 比∠A +∠B 还大 12 度,则这个三角形是__三角形.5. 以三条线段 3、4、x -5 为这组成三角形,则 x 的取值为____.6. 杜师傅在做完门框后,为防止门框变形常常需钉两根斜拉的木条,这样做的数学原理是____.7. △ABC 中,∠A +∠B =∠C ,∠A 的平分线交 BC 于点 D ,若CD =8cm ,则点 D 到 AB 的距离为____cm .8..AD 是△ABC 的边 BC 上的中线,AB =12,AC =8,则边 BC 的取值范围是____;中线 AD 的取值范围是____. 三、解答题:11. 已知:如图 13-4,AE=AC , AD=AB ,∠EAC=∠DAB , 14. 如图 5-7,△ABC 的边 BC 的中垂线 DF 交△BAC 的外角平分线 AD 于 D, F 为垂足, DE ⊥AB 于 E ,且 AB>AC , 求证:BE -AC=AE .BF C16.如图 9 所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是 BC 边上的中线,过 C 作 AD 的垂线,交 AB 于点 E ,交 AD 于点 F ,求证: ∠ADC =∠BDE .求证:△EAD ≌△CAB . EB图 13-4AEB图 9AB CD⎪⎩六、参考答案提示1. C .(提示:边边角不能判定两个三角形全等.)2. C .(提示:由三角形内角和为 180°可求,要注意有两个不同的角.)3. B .(提示:利用三角形三边的关系,第三根木棒 x 的取值范围是:10cm <x <90cm .= ∠ECB , 又 ∵∠ABE=∠ACE ,∴∠ABC=∠ACB , ∴AB=AC. 在△ AEB 和△AEC 中, AE=AE. BE=CE, AB=AC, ∴△AEB ≌△AEC,∠BAE=∠CAE. C16.如图 11 所示,过 B 点作 BH ⊥BC 交 CE 的延长线于 H 点.∵∠CAD +∠ACF =90°,∠BCH +∠ACF =90°,FD∴∠CAD =∠BCH .在△ACD 与△CBH 中,AEB4.C . (提示:A 不能构成三角形,B 满足边边角,不能判定三角形全等,D 项 可 画 出 无 数 个 三 角 形 .) 5.B .(提示:∠CDE =∠B +∠-∠=∠-∠B ,故得到 2(∠B -∠)+∠=0.又∵∠-∠B =∠-∠C =∠CDE ,所以可得到∠CDE = ,故当∠为定值时,∠CDE 为定值.)∵∠CAD =∠BCH ,AC =CB ,∠ACD =∠CBH =90°,∴△ACD ≌△CBH .∴∠ADC =∠H ① CD =BH , ∵CD =BD ,∴BD =BH .∵△ABC 是等腰直角三角形,∠CBA =∠HBE =45°⎧BD = BH ,图 11H 26.钝角.(提示:由三角形的内角和可求出∠A 、∠B 和∠C 的度数) 7.6<x<12.(提示:由三边关系可知:4-3<x -5<4+3. 8.三角形的稳定性.9.8.(提示:点 D 到 AB 的距离与 CD 的长相等.) 10.4<BC <20;2<AD <10.(提示:要注意三角形一边上的中线的取值范围是大于另两边之差的一半,小于两边之和的一半.) 11. 提示:先证∠EAD=∠CAB ,再由 SAS 即可证明.12. ①△ABC ≌△DBE ,BC=BE ,∠ABC=∠DBE=90°,AB=BD ,符合SAS ;②△ACB 与△ABD 不全等,因为它们的形状不相同,△ACB 只是直角三角形,△ABD 是等腰直角三角形;③△CBE 与△BED 不全等, 理由同②;④△ACE 与△ADE 不全等,它们只有一边一角对应相等. 13. 提示:由 ASA 或 AAS ,证明△ADE ≌△CFE .14. 过 D 作 DN ⊥AC, 垂足为 N, 连结 DB 、DC 则 DN=DE ,DB=DC ,又 ∵DE ⊥AB, DN ⊥AC, ∴Rt △DBE ≌Rt △DCN , ∴BE=CN .又 ∵AD=AD ,DE=DN ,∴Rt △DEA ≌Rt △DNA ,∴AN=AE ,∴BE=AC+AN=AC+AE ,∴BE -AC=AE . 15. 上面证明过程不正确; 错在第一步. 正确过程如下:在△BEC 中, ∵BE=CE , ∴∠EBC=∴在△BED 和 BEH 中, ⎨∠EBD =∠EBH, ,∴△BED ≌△BEH .⎪BE =BE, ∴∠BDE =∠H , ② 由①②得,∠ADC =∠BDE .。

最新北师大版七年级下册三角形全等的证明单元测试试题以及答案

最新北师大版七年级下册三角形全等的证明单元测试试题以及答案

最新七年级下册三角形单元测试试题一、选择题1.一定在△ABC内部的线段是()。

A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2.下列说法中,正确的是()。

A.一个钝角三角形一定不是等腰三角形,也不是等边三角形B.一个等腰三角形一定是锐角三角形,或直角三角形C.一个直角三角形一定不是等腰三角形,也不是等边三角形D.一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC中,D、E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有()。

A.4对 B.5对 C.6对 D.7对4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.无法确定5.下列各题中给出的三条线段不能组成三角形的是()A.4厘米、5厘米、6厘米B.4厘米、4厘米、4厘米C.5厘米、13厘米、6厘米D.7厘米、9厘米、7厘米6.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是()。

A.18 B.15 C.18或15 D.无法确定7.两根木棒分别为6cm和9cm,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有()种。

A.3 B.4 C.5 D.68.△ABC的三边a、b、c都是正整数,且满足a≤b≤c,如果b=4,那么这样的三角形共有()个。

A.4 B.6 C.8 D.109.各边长均为整数的不等边三角形的周长小于13,这样的三角形有()A.1个 B.2个 C.3个 D.4个10.三角形所有外角的和是()A.180° B.360° C.720° D.540°11.锐角三角形中,最大角α的取值范围是( ) A .0°<α<90°; B .60°<α<180°; C .60°<α<90°; D .60°≤α<90°12.如果三角形的一个外角不大于和它相邻的内角,那么这个三角形为( )A .锐角或直角三角形;B .钝角或锐角三角形C .直角三角形;D .钝角或直角三角形13.已知△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,则∠BOC 一定( )A .小于直角;B .等于直角;C .大于直角;D .大于或等于直角 二、填空题1.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高, ∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,∠________=∠________=∠________,AH叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.212.如图,∠ABC=∠ADC=∠FEC=90°.(1)在△ABC中,BC边上的高是________;(2)在△AEC中,AE边上的高是________;(3)在△FEC中,EC边上的高是________;(4)若AB=CD=3,AE=5,则△AEC的面积为________.3.在等腰△ABC中,如果两边长分别为6cm、10cm,则这个等腰三角形的周长为________.4.五段线段长分别为1cm、2cm、3cm、4cm、5cm,以其中三条线段为边长共可以组成________个三角形.5.已知三角形的两边长分别为3和10,周长恰好是6的倍数,那么第三边长为________.6.一个等腰三角形的周长为5cm,如果它的三边长都是整数,那么它的腰长为________cm.7.在△ABC中,若∠A∶∠B∶∠C=5∶2∶3,则∠A=______;∠B =______;∠C=______.8.如图,△ABC中,∠ABC、∠ACB的平分线相交于点I.(1)若∠ABC=70°,∠ACB=50°,则∠BIC=________;(2)若∠ABC+∠ACB=120°,则∠BIC=________;(3)若∠A=60°,则∠BIC=________;(4)若∠A=100°,则∠BIC=________;(5)若∠A=n°,则∠BIC=________.三、解答题1.在△ABC中,∠BAC是钝角.画出:(1)∠ABC的平分线;(2)边AC上的中线;(3)边AC上的高.2.△ABC 的周长为16cm ,AB =AC ,BC 边上的中线AD 把△ABC 分成周长相等的两个三角形.若BD =3cm ,求AB 的长.3.如图,AB ∥CD ,BC ⊥AB ,若AB =4cm ,,求△ABD 中AB 边上的高.212cm =∆ABCS4.学校有一块菜地,如下图.现计划从点D 表示的位置(BD ∶DC =2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D 是BC 的中点的话,由此点D 笔直地挖至点A 就可以了.现在D 不是BC 的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?5.在直角△ABC 中,∠BAC =90°,如下图所示.作BC 边上的高,图中出现三个直角三角形(3=2×1+1);又作△ABD 中AB 边上的高,这时图中便出现五个不同的直角三角形(5=2×2+1);按照同样的方法作、、……、.当作出时,图中共有多少个不同的直角三角形?1DD 21D D 32D D k k D D 1-k k D D 1-6.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.7.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.8.已知△ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求△ABC各边的长.9.已知三角形三边的长分别为:5、10、a-2,求a的取值范围.10.已知等腰三角形中,AB=AC,一腰上的中线BD把这个三角形的周长分成18cm和9cm两部分,求这个等腰三角形的底边的长.11.如图,已知△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.12.如图,△ABC 中,D 是AB 上一点.求证:(1)AB +BC +CA >2CD ;(2)AB +2CD >AC +BC .13.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G ,(1)完成下面的证明:∵ MG 平分∠BMN ( ),∴ ∠GMN =∠BMN ( ),同理∠GNM =∠DNM .∵ AB ∥CD ( ),∴ ∠BMN +∠DNM =________( ).∴ ∠GMN +∠GNM =________.2121∵∠GMN+∠GNM+∠G=________(),∴∠G= ________.∴ MG与NG的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_________________________________________________.14.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.15.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC =60°,求∠BOC的度数.16.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线.求∠DAE的度数.17.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE于E.求证:∠EBC<∠ACE.18.画出图形,并完成证明:已知:AD是△ABC的外角∠EAC的平分线,且AD∥BC.求证:∠B=∠C.。

北师大版七年级下册三角形全等的证明练习题以及答案

北师大版七年级下册三角形全等的证明练习题以及答案
4、如图,DE⊥AB,DF⊥AC,垂足分别为E、F,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。①AB=AC②BD=CD③BE=CF
5、如图,△ABC中,AB=AC,过A作GE∥BC,角平分线BD、CF交于点H,它们的延长线分别交GE于E、G,试在图中找出三对全等三角形,并对其中一对给出证明。
最新七年级下册三角形全等的证明
1、已知:如图,四边形ABCD中,AC平分角BAD,CE垂直AB于E,且角B+角D=180度,求证:AE=AD+BE
2、已知,如图,AB=CD,DF⊥AC于F,BE⊥AC于E,DF=BE。求证:AF=CE。
3、已知,如图,AB⊥AC,AB=AC,AD⊥AE,AD=AE。求证:BE=CD。
25、(1)如图,在正方形一边上取中点,并沿虚线剪开,用两块图形拼一拼,能否拼出平行四边形、梯形或三角形画图解释你的判断.
(2)如图(2)E为正方形ABCD边BC的中点,F为DC的中点,BF与AE有何关系请解释你的结论。
26、如图 四点在同一直线上,请你从下面四项中选出三个作为条件,其余一个作为结论,构成一个真命题,并进行证明.
① ,② ,③ ,④
27、已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。(1)BF=AC(2)CE= BF(3)CE与BC的大小关系如何。
28、如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连结BD,AE,并延长AE交BD于F.求证:
7、已知:如图,AB⊥BC,AD⊥DC,AB=AD,若E是AC上一点。求证:EB=ED。
8、已知:如图,AB、CD交于O点,CE 已知:如图,△ABC和△A'B'C'中,∠BAC=∠B'A'C',∠B=∠B',AD、A'D'分别是∠BAC、∠B'A'C'的平分线,且AD=A'D'。求证:△ABC≌△A’B’C’。

最新北师大版七年级下册数学 全等三角形的证明专题

最新北师大版七年级下册数学 全等三角形的证明专题

最新北师大版七年级下册数学 全等三角形的证明专题【温故而知新】全等三角形的判定:边边边 (SSS ) 【稳定性】角边角 (ASA ) 三角形全等的条件边角边(SAS )角角边 (AAS )1、判定三角形全等的条件一 边边边三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”。

例题1)已知,如图AD=CB ,AB=CD ,试证明ΔABD ≌ΔCDB2)已知:如图,A 、B 、E 、F 在一条直线上,且AC=BD ,CE=DF ,AF=BE 。

求证: △ACE ≌△BDFDBD C B课堂练习1、已知:如图,B 、E 、C 、F 在一条直线上,且BE=CF ,AB=DE ,AC=DF 。

求证:△ABC ≌△DEF 。

2、已知:如图,AB=DC ,AD=BC ,求证:∠A=∠C 。

3、如图,△ABC 中,D 是BC 边的中点,AB=AC ,求证:∠B=∠C 。

2、判定三角形全等的条件二 角边角两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA ”。

例题1、如图,∠ABC=∠DCB ,∠ACB=∠DCB ,试说明△ABC ≌△DCB.A DB CFCEDCB DCB2、已知:如图,∠DAB=∠CAB,∠ABD=∠ABC。

求证:△ABD≌△ABC.DA B EC课堂练习1、如图:在△ABC和△DBC中,∠ABD=∠DCA,∠DBC=∠ACB,求证:AC=DB.A DB C2、如图,D、E分别在AB、AC上,且AB=AC,∠B=∠C,求证:△ABE≌△ACD.B3、已知:如图 , AB=AC , ∠B=∠C,BE、DC交于O点。

求证:BD=CE.AD EOB C4、图,已知:AE=CE ,∠A=∠C ,∠BED=∠AEC ,求证:△ABE ≌△CDE A EC B D3、判定三角形全等的条件三 边角边两边及它们的夹角对应相等的两个三角形全等,简写为“角边角”或“SAS ”。

例题1.已知如图,AE =AC,AB =AD,∠EAB =∠CAD,试说明:∠B =∠D2、如图,△ABC 中,AB =AC ,AD 平分∠BAC ,试说明△ABD ≌△ACD 。

(完整版)北师大版七年级下册_全等三角形证明经典题

(完整版)北师大版七年级下册_全等三角形证明经典题

七年级下册《全等三角形》证明专题练习1、 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2、已知:D 是AB 中点,∠ACB=90°,求证:12CD AB =3、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,证21∠=∠4、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACADBCBA CDF2 1 E5、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C6、已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE7、已知:AB=6,AC=2,D 是BC 中线,求AD 的取值范围。

8. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

9、已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠CADBCCDB DCBA FEA10、已知:AB=CD ,∠A=∠D ,求证:∠B=∠C11、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE12.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .13.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA14.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP于D .求证:AD +BC =AB .15.如图,△ABC 中,AD 是∠CAB 的平分线,且∠C =2∠B,求证:AB=AC+CDAB C DPEDCB A D CBA16.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.17.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):18.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .19、如图:DF=CE ,AD=BC ,∠D=∠C 。

最新北师大版七年级下册三角形全等的证明单元测试试题以及答案(共5套题)

最新北师大版七年级下册三角形全等的证明单元测试试题以及答案(共5套题)

七年级下册三角形全等的证明单元测试试题一、选择题。

(共12道选择题,每道选择题只有一个正确答案)1、如图,△AEM ≌△AFN ,下列结论中,其中错误的是( )。

A 、CF=BEB 、∠CMD=∠ANFC 、AM=AFD 、∠ANC=∠AMB2、如图,DF=21EF ,BC=2BD ,下列说法:①BF ∥EC ;②1:1 ADC ABD S S △△:;③△BDF ≌△DCE ;④△ABD ≌△ACD ;⑤∠BAD=∠CAD ,其中正确结论有( )个。

A 、1B、2C、3D、43、如图,下图是由三个全等三角形组成,则图中∠1+∠2+∠3的和是()。

A、90°B、180°C、270°D、360°4、下列条件中,能证明△ABC≌△DMN的是()。

A、AB=DM,BC=MN,∠A=∠DB、∠A=∠D,∠C=∠N,AC=MNC、AB=DM,BC=MN,△ABC的周长=△DMN的周长D、∠A=∠D,∠B=∠M,∠C=∠N5、下列各组线段中,能够成三角形的是()。

A、5厘米、6厘米、11厘米B、4厘米、6厘米、12厘米C、3厘米、15厘米、10厘米D、3厘米、3厘米、3厘米6、下列结论错误的是()。

A、全等三角形对应边上的高相等B、全等三角形对应边上的角平风险和中线相等C、两个直角三角形中,如果有一个边和一个锐角对应相等,则两个直角三角形全等D、两个直角三角形中,如果两个锐角对应相等,则两个直角三角形全等7、下列说法中:①如果三角形的三个内角比是1:2:6,这个三角形是直角三角形;②如果三角形的三条高线交于三角形的一个顶点处,这个三角形是钝角三角形或直角三角形;③如果三角形的一个内角等于另外两个内角的差,这个三角形是直角三角形;④三角形的三条高线、角平分线和中线一定都是线段;⑤等边三角形的三条高线、角平分线和中线一定分别相等。

其中错误的有()个。

A、1B、2C、3D、48、在△ABC中,CD、BE是AB、AC边上的高,∠A=70°,则∠BPC 等于()。

最新北师大版七年级下册数学期末复习三角形全等证明练习试题以及答案

最新北师大版七年级下册数学期末复习三角形全等证明练习试题以及答案

七年级下册数学期末复习试题1、已知:如图,∠A=∠B,∠3=∠4,求证:AC=BD.2、如图,D在AB上,E在AC上,BD、CE交于O,若AB=AC,∠B=∠C.求证:AD=AE.3、已知:如图,D是△ABC的边AB上一点,DF交AC于点E,DE=FE,FC∥AB。

求证:AE=CE。

5、已知:如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C .求证:AF=DE。

6、将两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC,求证:(1)DC=BE;(2)(2)DC⊥BE。

7、已知:如图,AD=AE,点D、E在BC上,BD=CE,∠1=∠2。

求证:△ABD≌△ACE.8、已知:如图,△ABC中,∠BAC=90°,AB=AC,直线DE经过点A,BD⊥DE,CE⊥DE,垂足为D、E.求证:BD=AE。

9、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E.AD⊥CE于点D.求证:BE+DE=AD.10、已知:如图3,AB∥CD,AD∥BC.求证:AB=CD,AD=BC.11、如图,已知AB=CD,AC=BD,求证:∠A=∠D.12、已知:如图,在△ABC和△DBC中,∠1=∠2,∠3=∠4,P是BC上任意一点.求证:PA=PD.13、14、15、16、如图所示,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)试说明:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.17、把两个含有45°角的直角三角板如图放置,点D在AC上连接AE、BD,试判断AE与BD的关系,并说明理由。

18、如图:E在线段CD上,EA、EB分别平分∠DAB和∠CBA, 点F在线段AB上运动,AD=4㎝,BC=3㎝, 且AD∥BC(1)你认为AE和BE有什么位置关系?并验证你的结论;(2)当点F运动到离点A多少㎝时,△ADE才能和△AFE全等?为什么?(3)在(2)的情况下,此时BF=BC吗?为什么?并求出AB的长。

最新北师大版七年级下册三角形全等(HL)的证明试题以及答案(30道题)

最新北师大版七年级下册三角形全等(HL)的证明试题以及答案(30道题)

最新七年级下册三角形全等的证明试题1、如图,∠B=∠D=90°,CD=BC,证明AC平分∠BAD。

2、如图,CE⊥AB,DF⊥AB,CE=DF,AC=DB,证明AF=BE。

5、如图,AB⊥BD,AC⊥CD,AC=AB,证明BC⊥AD。

6、如图,AB⊥BD,ED⊥BD,AC=EF,BF=CD,说明AB、DE的关系。

7、如图,CE⊥AB,BD⊥AC,AE=AD,找出图中的全等三角形,并证明其中一个。

8、如图,AD⊥BD,DF=DC,BF=AC,证明BE⊥AC。

9、如图,AD⊥DE,BE⊥DE,AD=CE,AC=BC,证明AD+BE=DE。

10、如图,DF⊥AC,BE⊥AC,AF=EC,DC=AB,证明DF=BE。

11、如图,∠C=90°,MN⊥AB,AM=AC,证明MN=NC。

12、如图,AC⊥CE,DF⊥BD,AF=BE,AC=BD,说明DF和CE的关系。

13、如图,已知AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别为E、F,证明CE=DF。

14、如图,CF⊥AF,CE⊥AB,BC=DC,CE=CF,证明BE=DF。

15、如图,D是BC的中点,DE⊥AB,DF⊥AC,DE=DF,A、D的连线和BC垂直。

16、如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.(1)若BC在DE的同侧(如图①)且AD=CE,说明:BA⊥AC.(2)若BC在DE的两侧(如图②)其他条件不变,问AB与AC仍垂直吗?若是请予证明,若不是请说明理由.17、如图,DE⊥AB,DF⊥AC,DE=DF,证明D是BC的中点。

18、如图,∠ACF=∠ABD=∠CDF=90°,AB=CD,AC=CF,说明DF、AB、BD的关系。

19、如图,∠B=∠D=90°,AD=AB,∠CAD=∠BAE,证明CF=EF。

20、如图,AB⊥BD,DE⊥BD,点C是BD上一点,且BC=DE,CD=AB.(1)试判断AC与CE的位置关系,并说明理由.(2)如图⑵,若把△CDE沿直线BD向左平移,使△CDE的顶点C与B重合,此时第⑴问中AC与BE的位置关系还成立吗?(注意字母的变化)21、如图,AB⊥BD,DF⊥BD,DF=BC,CF=AC。

北师大数学七年级下册第三章-全等三角形

北师大数学七年级下册第三章-全等三角形

第02讲_全等三角形知识图谱全等三角形知识精讲一.全等的概念与性质三点剖析一.考点:全等的概念,全等三角形的性质二.重难点:全等三角形的性质三.易错点:利用全等的性质时容易忽略对应关系,导致找错对应边或对应角.全等图形例题1、 下列图形中,与右图全等的是( )全等图形(1)能够完全重合的两个图形就是全等图形(2)平移、旋转、对称前后的图形是一组全等图形四边形四边形全等多边形(1)相互重合的顶点为对应点,相互重合的边为对应边,相互重合的 角为对应角 (2)对应边、对应角分别相等全等三角形的性质 (1)对应边相等 ( 2)对应角相等(3)对应边上的高相等 (4)周长、面积相等易错点:1.利用全等的性质时注意不要找错对应边或对应角A B C DA.A选项B.B选项C.C选项D.D选项【答案】A【解析】观察图形上实心点与空心点的位置得出全等图形即可,原图与选项A全等.例题2、下列说法中,错误的是()A.全等三角形的周长相等B.全等三角形的对应角相等C.全等三角形的面积相等D.面积相等的两个三角形全等【答案】D【解析】暂无解析随练1、用两个全等的直角三角形(非等腰直角三角形)拼成凸四边形,拼法共有()A.3种B.4种C.5种D.6种【答案】B【解析】拿两个“90︒,60︒,30︒”的三角板试一试即可得.随练2、如图,ADE BDE≌,若ADC∆∆∆的周长为12,AC的长为5,则CB的长为()A.8B.7C.6D.5【答案】B【解析】解:∵ADE BDE∆≅∆,∴DA DB=,AC=,∴7BC=,故选B.=++=++=+=,又5ADC∆的周长12AC CD AD AC CD BD AC BC随练3、下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=___________.【答案】27cm【解析】因为AB=3cm,所以CD=2AB=6cm,所以AF=3AB+3CD=3×3+3×6=27(cm).全等三角形的性质例题1、下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等【答案】D【解析】全等三角形的对应边相等,对应角相等.同时,全等三角形对应边上的高、对应边上的中线,对应角的角平分线也分别相等,一定要注意“对应”二字.例题2、如图,在△ABC中,AB=AC,E、D分别为AB、AC边上的中点,连接BD、CE交于O,此图中全等三角形的对数为()对.A.4B.3C.2D.1【答案】B【解析】∵AB=AC,∴∠EBC=∠DCB,∵AE=BE,AD=DC,∴BE=DC,∵BC=CB,∴△EBC≌△DCB,∴∠ECB=∠DBC,∴∠EBO=∠DCO,∵BE=CD,∴∠BOE=∠COD,∴△BOE≌△COD,∵∠A=∠A,AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE,共有3对全等三角形.例题3、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C【答案】A【解析】暂无解析例题4、如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB =∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.例题5、 如图,△ABC 一个等腰三角形,其中AB =A C .分别以AB ,AC 为腰向外作等腰三角形△ADB 和△ACE ,且∠BAD =∠CAE =84°,连接CD 和BE ,相交于点F ,连接AF ,则∠AFD 的度数为________.【答案】 48°【解析】 暂无解析随练1、 下列四个命题中,真命题的是( ) A.相等的圆心角所对的弧相等 B.同旁内角互补 C.平行四边形是轴对称图形 D.全等三角形对应边上的高相等 【答案】 D【解析】 A 、在同圆或等圆中,相等的圆心角所对的弧相等; B 、两直线平行,同旁内角互补; C 、平行四边形是中心对称图形; D 、全等三角形对应边上的高相等 随练2、 已知∆≅∆ABC DEF ,DEF ∆的周长为32cm ,9cm 12cm DE EF ==,,则AB =________,BC =________,AC =________【答案】 9cm ;12cm ;11cm【解析】 由于∆≅∆ABC DEF ,所以AB 与DE 、AC 与DF 、BC 与EF 分别是对应边,即AB DE =,AC DF =,BC EF =.又DEF ∆的周长为32cm ,9cm 12cm DE EF ==,,则()3291211cm DF =--=.因此9cm AB =,12cm BC =,11cm AC =随练3、 如图ABC DEF ∆≅∆,30A ∠=︒,50B ∠=︒,2BF =,求DFE ∠的度数与EC 的长.【答案】 =100DFE ∠︒,2EC =.【解析】 在ABC ∆中,180ACB A B ∠=︒-∠-∠.又∵30A ∠=︒,50B ∠=︒ ∴1803050100ACB ∠=︒-︒-︒=︒∵ABC DEF ∆≅∆,∴ACB DFE ∠=∠,∴=100DFE ∠︒, ∵BC EF =,∴BC CF EF CF -=-, ∴2EC =全等三角形的判定知识精讲一.全等三角形的判定方法:FE DCBA二.思路点拨边边角(SSA )不能证明两个三角形全等常见全等图形共线三等角模型4.“AAS ”与“ASA ”易混,要注意区分“边”“角”的位置关系5. 错用“AAA ”,“SSA ”证三角形全等.三点剖析一.考点:全等三角形的判定二.重难点:全等三角形的判定三.易错点:1.边边角(SSA )在一般情况下是不能证明两个三角形全等的; 2.斜边、直角边定理(HL)必须是在直角三角形中才能使用;3.在使用判定定理证明两个三角形全等时要注意条件的顺序必须和判定定理要求的一样.SSS例题1、 如图,AB AC =,AD AE =,BE CD =,求证:ABD ACE ∆∆≌.【答案】 见解析【解析】 由SSS 可得ABD ACE ∆∆≌.随练1、 已知:如图,AC=EC ,E 、A 、D 在同一条直线上,∠1=∠2=∠3.试说明:△ABC ≌△EDC .A BCABCDDABCE90°CEDA BD E CBA【答案】 见解析【解析】 证明:∵∠1=∠2,∴∠1+∠ACD=∠2+∠ACD ,∴∠ACB=∠ECD , ∵∠1=∠3,∠4=∠5,∴∠B=∠D , 在△ABC 和△CDE 中,,∴△ABC ≌△EDC (AAS ).SAS例题1、 已知:如图,E 为BC 上一点,AC ∥BD ,AC BE =,BC BD =. 求证:AB DE =【答案】 见解析【解析】 证明:∵AC ∥BD ,∴C CBD ∠=∠ 在△ACB 和△EBD 中: AC BE C CBD BC BD =⎧⎪∠=∠⎨⎪=⎩,∴△CBM ≌△DBM (SAS ),∴AB DE =. 例题2、 已知AB =AC ,AD =AE ,∠BAC =∠DAE ,直线BD 、CE 交于点G ,(1)如图1,点D 在AC 上,求证:∠BGC =∠BAC ; (2)如图2,当点D 不在AC 上,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图7北师大版七年级下册三角形综合检测题一、选择填空题1.如图,为了使一扇旧木门不变形,木工师傅在木门的背面 加钉了一根木条,这样做的道理是 。

2.一个三角形的两边长为2和6,第三边为偶数.则这个 三角形的周长为 ( )A .10B .12C .14 D.163.适合条件∠A =∠B =31∠C 的三角形一定是( )A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形 4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .无法确定5.下列语句:①面积相等的两个三角形全等; ②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同; ④边数相同的图形一定能互相重合。

其中错误的说法有( )A 、4个B 、3个C 、2个D 、1个6.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠A ′O ′B ′=∠AOB ,需要证明△A ′O ′B ′≌△AOB ,则这两个三角形全等的依据是 (写出全等的简写)7.A =45º,∠E =30º,则两条斜边相交所成的钝角∠AOE 的度数为 度8.如图,AB ∥CD,AD 、BC 交于点O ,∠A=420,∠C=580则∠AOB=( ) A .420 B .580 C .800 D .10009.如图, ΔABC ≌ΔADE,AB 和AD,AC 和AE 是对应边,那么∠DAC 等于( ) A.∠ACB B.∠CAE C.∠BAE D.∠BAC10.如图,已知∠1=∠2,要说明⊿ABD ≌⊿ACD ,还需从下列条件中选一个,错误的选法是( )图1图11BCD 1 2图10图12图13A 、∠ADB=∠ADCB 、∠B=∠C C 、DB=DCD 、AB=AC11.如图,有两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平 方向的长度DF 相等,若∠CBA=320,则∠FED= ,∠EFD= 。

12.如图,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,且PD =PE ,则△APD 与△APE 全等的理由是( ).(A )SAS (B )AAS (C )SSS (D )HL13.小涛在家打扫卫生,一不小心把一块三角形的玻璃台板打碎了,如图所示,如果要配一块完全一样的玻璃,至少要带 块,序号分别是 。

14.如果一个三角形三边上的高的交点在三角形的外部,那么这个三角形是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、任意三角形 15.如图,⊿ABC 中,∠ACB=900,把⊿ABC 沿AC 翻折180°,使点B 落在B ’的位置,则关于线段AC 的性质中,准确的说法是( ) A 、是边BB ’上的中线 B 、是边BB ’上的高C 、是∠BAB ’的角平分线D 、以上三种性质都有 16.如图,在△ABC 中,AD ⊥BC ,GC ⊥BC ,CF ⊥AB ,BE ⊥AC ,垂足分别为D 、C 、F 、E ,则_______是△ABC 中BC 边上的高,_________是△ABC 中AB 边上的高,_________是 △ ABC 中AC 边上的高,CF 是△ABC 的高,也是△_______、△_______、△_______、△_________的高.17.如图,△ABC 的两个外角的平分线相交于点D ,如果∠A =50°,那么∠D =_____.ABC DO图8C图15A18.如图,已知OA=OB ,OC=OD ,下列结论中(1)∠A =∠B;(2)DE=CE (3)连OE ,OE 平分∠O,正确的有 。

19.如图,在 △ABC 中AB=AC, AD 为BC 边上的中线,∠BAD=25°,AE=AD,则∠EDC = 。

20.如图所示,已知∠A=90°,BD 是∠ABC 的平分线, AC=10,DC=6,则D•点到BC 的距离是__________.二、证明题1. 如图,已知OA =OC ,OB =OD ,∠1=∠2,求证:∠B =∠D.2.(1题的变型)如图,已知: AC AB =,AE AD =,21∠=∠。

求证:ACE ABD ∆≅∆。

3.如图,已知A 、B 、C 、D 在一条直线上,AB =CD , AE ∥DF ,BF ∥EC ,求证:∠E =∠F (6分)DAC图204.(3题的变型一)如图,已知: AD ∥BC ,CB AD =,CF AE =。

求证:CEB AFD ∆≅∆。

5.(3题的变型二)如图,已知:点A 、B 、C 、D 在同一条直线上,DB AC =,DF AE =,AD EA ⊥,AD FD ⊥,垂足分别是A 、D 。

求证:FDC EAB ∆≅∆。

6.(3题的变型三)如图,已知:点E 、F 在BC 上,CF BE =,DC AB =,C B ∠=∠。

求证:DE AF =。

7. (3题的变型四)如图,已知:点B 、E 、C 、F 在同一直线上,DE AB =,DF AC =,CF BE =。

求证:D A ∠=∠。

8. 如图,已知: 21∠=∠,43∠=∠。

求证:AD AC =。

9.如图,在ABC ∆中,D 是AB 上一点,DF 交AC 于点E ,FE DE =,CE AE =,AB 与CF 有什么位置关系?说明你判断的理由。

10.已知:如图,DBA CAB ∠=∠,BD AC =。

AO 等于BO 吗?说明你判断的理由。

11.如图,点E 在AC 上,∠1=∠2,∠3=∠4.BE 与DE 相等吗?为什么?(10分)12.如图,已知AE ⊥BC 于E ,DF ⊥BC 于F ,AE =DF ,AB =DC ,AC 与BD 有怎样的关系?你能进行证明吗?13.如图所示,有一直角三角形△ABC ,∠C=900,AC=10cm ,BC=5cm ,一条线段PQ=AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AM 上运动,问P 点运动到AC 上什么位置时,△ABC 才能和△APQ 全等。

Q14.如图,在△ABC 中,AB=AC ,D 是BC 的中点,点E 在AD 上,找出图中全等的三角形,并说明它们为什么是全等的。

15.(9分)如图:已知AB=AE ,BC =ED ,∠B =∠E ,AF ⊥CD ,F 为垂足, 求证: ① AC =AD ; ②CF =DF 。

三、实际应用题1.尺规作图:小明作业本上画的三角形被墨迹污染,他想画出一个与原来完全一样的三角形,请帮助小明想办法用尺规作图法画一个出来,并说明你的理由。

2.如图,是一座大楼相邻两面墙,现需测量外墙根部两点A 、B 之间的距离(人不能进入墙内测量)。

请你按以下要求设计一个方案测量A 、B 的距离。

(1)画出测量图案; (2)写出方案步骤; (3)说明理由A BO· ·B3.(2题的变型)如图,有一湖的湖岸在A 、B 之间呈一段圆弧状,A 、B 间的距离不能直接测得,其余都是空地,你能用已学过的知识或方法设计测量方案,求出A 、B 间的距离吗?3.如图,两根钢绳一端固定在地面两个铁勾上,另一端固定在电线杆上(电线杆垂直于地面),已知两根钢绳的长度相等,则两个铁柱到电线杆底部的距离即BO 与CO 相等吗?为什么?(6分)4.(1)如图1,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A =30°,则∠ABC +∠ACB = 度,∠XBC +∠XCB = 度;(2)如图2,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY 、XZ 仍然分别经过点B 、C ,那么∠ABX +∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX +∠ACX 的大小.图O CB A5.如图,没有量角器,利用刻度尺或三角板也能画出一个角的平分线吗?下面是小彬与小红的做法,他们的画法正确吗?请说明理由. (1) 小彬的做法如图1,角平分线刻度尺画法: ①利用刻度尺在∠AOB 的两边上,分别取OD =OC . ②连结CD ,利用刻度尺画出CD 的中点E .③画射线OE .所以射线OE 为∠AOB 的角平分线.(2) 小红的做法 如图2,角平分线三角板画法: ①利用三角板在∠AOB 的两边上,分别取OM =ON . ②分别过M 、N 画OM 、ON 的垂线,交点为P . ③画射线OE .所以射线OP 为∠AOB 的角平分线.四、探索与思考1.如图1、图2,△AOB ,△COD 均是等腰直角三角形,∠AOB =∠COD =90º, (1)在图1中,AC 与BD 相等吗?请说明理由B图1(2)若△COD 绕点O 顺时针旋转一定角度后,到达图2的位置,请问AC 与BD 还相等吗?为什么?2.(1)如图1,A 、B 、C 三点在一直线上,分别以AB 、BC 为边在AC 同侧作等边△ABD 和等边△BCE ,AE 交BD 于点F ,,DC 交BE 于点G 。

则AE=DC 吗?BF=BG 吗?请说明理由。

(2)如图2,若A 、B 、C 不在同一直线上,那么这时上述结论成立吗?若成立请证明.(3)在图1中,若连结F 、G ,你还能得到什么结论?(写出结论,不需证明)ABCDEFG 图1A BC DE FG 图23.如图1,A、E、F、C在同一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,若AB=CD,(1)试说明BD平分EF;(2)若将△DEC的边EC沿AC方向移动变为图2时,其余条件不变,BD是否还平分EF,请说明理由。

4.如图,在△ABC中,AB=AC、D是AB上一点,E是AC延长线上一点,且CE=BD,连结DE交BC于F。

(1)猜想DF与EF的大小关系;(2)请证明你的猜想。

五、三角形的相关性质解答题1.如图,DB 是△ABC 的高,AE 是角平分线,∠BAE=260,求∠BFE 的度数.2. 如图,已知:在△ABC 中,∠BAC=800,AD ⊥BC 于D ,AE 平分∠DAC ,∠B=600; 求∠AEC 的度数.2.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G ,(1)完成下面的证明:∵ MG 平分∠BMN ( ),∴ ∠GMN =21∠BMN ( ), 同理∠GNM =21∠DNM . ∵ AB ∥CD ( ),∴ ∠BMN +∠DNM =________( ).∴ ∠GMN +∠GNM =________.∵ ∠GMN +∠GNM +∠G =________( ),∴ ∠G = ________.∴ MG 与NG 的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:_______________________________________________________________.A B C D EF3.已知,如图D是△ABC中BC边延长线上一点,DF⊥AB交AB于F,交AC于E,∠A=46°,∠D=50°.求∠ACB的度数.4.已知,如图△ABC中,三条高AD、BE、CF相交于点O.若∠BAC=60°,求∠BOC的度数.5.已知,如图△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC 的平分线.求∠DAE的度数.6.已知,如图CE是△ABC的外角∠ACD的平分线,BE是∠ABC内任一射线,交CE 于E.求证:∠EBC<∠ACE.。

相关文档
最新文档