分数与小数地互化

合集下载

分数和小数的互化方法

分数和小数的互化方法

13 65 13 0.65= 100 = 20 20
3
75
3
1.075=1 1000 = 1 40
40
A
11
三、分数化小数
7 10
=
331 100
=
4231 1000
=
分母是10、100、1000…的分数化小数, 可以直接去掉分母,看分母中 1 后面有 几个零,就在分子中从最后一位起向左 数出几位,点上小数点。
31 25
=
31÷25=1.24
A
4
既有分数又有小数时的比较大小
统一方法(也是最简单、方便的方法):
只将分数化成小数进行比较。
比如:比较下列各数的大小: 0.35 2 8 0.4 0.35
5 25
2 5
= 0.4
8 25
=
0.32
8 25
<
0.35
<
0.35 < A
0.4
=
2 5
5
A
6
0.72×50
2
3
1
20 0.12 9 0.375 5 3.025 3 8
A
20
变式训练
• 1.把0.9999……化成分数。 • 2.把7.383838……化成分数。 • 方法:纯循环小数化成分数,分子是一个循
环的小数所组成的数,分母的各位数字都是 9,9的各数同循环节的位数相同。
• 字母表示: 0.abab……= ab 99
=
0.28
分母不是10、100、1000… …的分数 化小数,要用 分子 去除以 分母;
11 = 11÷45≈0.24 (保留两位小数) 45
除不尽的,可以根据需要按四舍五入 法保留几位小数。

分数和小数的互化方法

分数和小数的互化方法

5、比较下面每组数的大小
5 2 8 和 2.769 1 和 0.365 3
6、把下面各数按从小到大的顺序排列起来
3 20
0.15 3
2 9
0.222
3.025
3 5
0.6
1 38
3.125
0.12
0.375
20
‹ 0.12 ‹
2
9

0.375

3
5
‹ 3.025 ‹ 3 8
1
变式训练
• 1.把0.9999……化成分数。 • 2.把7.383838……化成分数。 • 方法:纯循环小数化成分数,分子是一个循 环的小数所组成的数,分母的各位数字都是 9,9的各数同循环节的位数相同。 • 字母表示: 0.abab……= ab
139 7 21 =0.139 =0.7 =0.21 1000 10 100 13 3 13 =1.3 =0.03 =0.013 10 100 1000 331 4231 =3.31 =4.231 100 1000 765431 3249 =76.5431 =32.49 10000 100
7 = 7÷25 = 0.28 25
常用分数与小数的互化(要牢牢记住):
1 =0.5 2 1 =0.25 4 3 =0.75 4 1 =0.2 5
2 =0.4 5 3 =0.6 5 4 =0.8 5 1 =0.125 8
1 =0.05 20
1 =0.04 25
小数化分数
★ 常用的小数化分数,直接写结果
2
比如:0.4
=
2 5
不要再写作 0.4 = 4
56÷0.04
0.9×0.21
45×0.7
21×0.4

分数和小数的互化

分数和小数的互化

11 45
0.25
9 10
=
0.9
43 100
=
0.43
7 25 = 0.28
11 45
≈0.24
因为 0.24<0.25<0.28<0.43<0.7<0.9
所以
11 45

0.25
<275
<14030<
0.7<190
若0.a是一个一位小数,把0.a
化成分数,不需要约分就是一 个最简分数,这样 的小数有多 少个?
(0.25)= (100 )
(0.4
)=
(4
( 10
) )
2
4 0.4 = 10
=
2 5
5
0.37 =
37 100
0.013
=
13 1000
1
5 0.05 = 100
=
1 20
20
9
45 0.45 = 100
=
9 20
20
做一做
按从小到大的顺序排列下面各数
9 10
0.7
7 25
43 100
分数化小数,用分子除以分母,除不尽时, 要根据需要按“四舍五入法”保留几位小数.
请将下列分数转化成小数
1
7
21
10 10 10
109 39 13
1000 100 1000
畅谈收获 反思提升
课堂检测:
1、分别用小数和分数表示下面每个图中的涂色部分。
(3 ) (0.3)= ( 10 )
( 25 )
1、填空:
0.3里面有( 3 )个十分之一,
它表示( 十 )分之( 三 )。
0.17里面有( 17 )个百分之一,

(完整版)分数与小数的互化

(完整版)分数与小数的互化

分数与小数的互化、混合运算、应用题【知识点1】1.把一个分数化成小数的方法:分子除以分母2.一个最简分数,如果分母中只含有素因数2和5,再无其他素因数,那么这个分数可以化成有限小数;否则就不能化成有限小数。

口答:判断下列分数能否化成有限小数?7 8415122551217403253243.小数化成分数的方法:小数化分数时,小数位数上有几位数字,分母上就有几个0 4.(1)循环小数:一个小数从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这个小数叫做循环小数。

口答:判断下列各数是不是循环小数,为什么?0.5555,0.123123..., 2.235464309...,12.121212..., 5.317317...,(2)循环节:一个循环小数的小数部分中依次不断地重复出现的第一个最少的数字组,叫做这个循环小数的循环节。

如:0.1363636...的循环节为“36”,写作0.136&&。

5.一个分数总可以化为有限小数或循环小数;有限小数和循环小数也总可以化为分数。

【例题讲解】例1.把下列最简分数化成有限小数,如果不能化成有限小数,将其结果保留三位小数。

(1)215(2)314(3)56(4)1625(5)427(6)17100例2.把下列小数分别化成分数:(1)0.9(2)0.25(3)3.32(4)1.125【基础练习】(1)把下列各数化成小数:38= ;625= 。

(2)把下列各数化成分数:3.56= ;0.225= 。

(3)比较大小:53 1.66;2373.286。

(4)把下列各数化为循环小数:59= ;2533= 。

(5)下列分数中:23、74、88、516、3825,真分数有 个。

(6)已知n 是自然数,且分数8n 是假分数,11n 是真分数,则满足条件的n 的值是 。

(7)38、21142、315、39中,能化为有限小数的是 。

2.小明3分钟打字169个,小红5分钟打字271个,问:小红、小明谁的的打字速度快?小拓展:观察下列小数化成分数的结果:20.2222 (9)=; 370.373737 (99)=; 5030.1503503 (999)=; ……总结:纯循环小数化分数时,若为无限小数,则小数的循环节有几位数字,化成的分数的分母就有几个9,循环节作为分数的分子。

《分数与小数的互化》说课稿(精选6篇)

《分数与小数的互化》说课稿(精选6篇)

《分数与小数的互化》说课稿《分数与小数的互化》说课稿(精选6篇)作为一位杰出的老师,往往需要进行说课稿编写工作,通过说课稿可以很好地改正讲课缺点。

那么你有了解过说课稿吗?以下是小编精心整理的《分数与小数的互化》说课稿,仅供参考,欢迎大家阅读。

《分数与小数的互化》说课稿篇1一、依据课标,说教材《百分数和分数、小数的互化》是九年义务教育六年制小学数学第11册的内容。

它是在学生学习了百分数的意义、明确了百分数同分数小数的联系的基础上教学的。

学习这部分的内容是为后面学习百分数的计算和应用打下基础。

例1、例2是教学小数与百分数的互化。

教材联系了分数、小数互化的知识,突出“先把小数化成分母为100的分数再写成百分数或先把百分数写成分数形式再化成小数”这一转化规律和转化过程,引导学生归纳概括出小数、百分数互化的简便方法。

例3、教学分数化成百分数,教材按照已掌握的小数化成百分数的方法,提出问题引导学生想先把分数化成小数再化成百分数;例4是教学百分数化成分数,只要把百分数写成分数形式,再约分。

教学例3、例4之后引导学生总结百分数和分数互化的方法。

基于以上的认识,我认为本课的教学目标应确定为:1、知识目标:使学生理解并掌握百分数和小数、百分数和分数互化的方法,能正确地进行百分数与小数、百分数与分数之间的互化。

2、能力目标:培养学生的观察、归纳和概括能力。

3、情感目标:渗透“事物之间互相联系、互相转化”的辩证唯物主义思想。

教学重点:掌握百分数与小数、百分数与分数互化的简便方法及运用方法解决实际问题。

教学难点:掌握百分数与分数、百分数与小数互化的简便方法。

二、以人为本,说策略。

《数学课程标准》指出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发……”因此,结合本课教材特点、学生实际情况,我采取小组合作学习,引导学生应用学过的分数、小数互化的知识进行迁移、类推,学习新知识。

同时,让学生在尝试探究的积极活动中获取新知,发展能力。

分数和小数的互化

分数和小数的互化

答: 离学校远的是小林家。
拓展提高
下面这些分数中哪些可以化成有限小数?
3 5 1 2 5 8 7 40 12 60 5 21 11 30 1 12 = 5 60
(判断前看分数是不是最简分数)
40 = 2 × 2 × 2 × 5 把最简分数的分母分解质因数:
21=3×7 8=2× 2× 2
3 5 1 2 5 8
1、分别用小数和分数表示下面每个图中的涂色 部分。
3 ( 0.3 )= ( 10
(
)
)
25 ) (0.25)= (100 )
(
4 (0.4 )= ( 10
(
) )
2、填空
(1)0.8 里面有 8 个( 十)分之一,表示( 十 )分之( 八 ),
8) ( 化成分数是 。 ( 10)
(2)0.05 里面有 5 个( 百)分之一, 化成分数是( 5 ) 。 ( 100 )
31 100
2 25
7 30
4 9
5 6
11 50
23 20
31 = 0.31 100 7 ≈ 0.233 30 5 ≈0.833 6
2 25 = 0.08 4 ≈ 0.444 9 11 50 = 0.22 23 = 1.15 20
5. 在
里填上适当的小数或分数。
0.125 0.25 0.3
0.5 0.625 0.750.8 1 2 5 8 3 4 4 5
30=2×3×5
7 40
12 60
可以化成有限小数的有:
问题:1. 你是怎么判断的? 2. 在判断的过程中要注意什么?
你知道什么样的最简分数能化成有限小数吗? 只要把分数的分母分解质因数,如果分母 中除了2和5以外,不含有其他质因数,这 个分数就能化成有限小数。例 7

分数和小数的互化方法

分数和小数的互化方法

分数和小数的互化方法
分数和小数是数学中常见的两种数值表示方法。

在实际应用中,有时需要将分数转换为小数,或者将小数转换为分数。

下面介绍分数和小数的互化方法。

一、分数转小数
将分数转换为小数,可以采用以下两种方法:
1. 除法法
将分数的分子除以分母,得到的结果即为小数。

例如,将2/5转换为小数,可以进行如下计算:
2 ÷ 5 = 0.4
因此,2/5可以表示为0.4。

2. 小数点法
将分数的分子和分母都乘以10的n次方(n为正整数),使分母变为
10的整数次幂,然后将分子除以分母,得到的结果即为小数。

例如,将3/8转换为小数,可以进行如下计算:
3 × 100 ÷ 8 = 37.5
因此,3/8可以表示为0.375。

二、小数转分数
将小数转换为分数,可以采用以下两种方法:
1. 分数化小数法
将小数化为分数的形式,分子为小数点后的数字,分母为10的小数位数次幂。

例如,将0.6转换为分数,可以进行如下计算:
0.6 = 6/10 = 3/5
因此,0.6可以表示为3/5。

2. 通分法
将小数化为分数的形式,分子为小数点后的数字,分母为10的小数位
数次幂,然后将分数通分,得到的结果即为所求的分数。

例如,将0.25转换为分数,可以进行如下计算:
0.25 = 25/100
将25/100通分为1/4,因此,0.25可以表示为1/4。

总结:
分数和小数的互化方法有多种,根据具体情况选择合适的方法进行转换。

在实际应用中,需要注意小数的精度问题,避免出现误差。

数学《分数与小数的互化》教学设计【优秀5篇】

数学《分数与小数的互化》教学设计【优秀5篇】

数学《分数与小数的互化》教学设计【优秀5篇】数学《分数与小数的互化》教学设计篇一教学目标:1、掌握分数与小数互化的方法并能进行分数与小数之间的大小比较·2、培养学生的观察、比较和分析、推理等思维能力·教学重点:分数与小数互化的方法教学难点:会利用分数与小数互化的方法解决实际问题·教学准备;多媒体教学教学过程:一、新授出示主题图·师:从图中知道了那些信息?要我们做什么?师:有什么问题吗?师:分数和小数之间能直接比较吗?怎么办?学生试做反馈:指名回答·引导出把分数与小数互化的方法·分组进行分数与小数互化:学生分为两组,一组研究小数化成分数的方法,一组研究分数化成小数的方法·集体交流总结方法练习:把9/25、5/6化成小数(除不尽的保留三位小数)把0·3、0·13、0·213化成小数·二、巩固练习1、小麦地的面积是7/8公顷,棉花地的面积是0·8公顷,什么地的面积大一些?学生独立完成·同桌之间交流·集体交流·2、小军做了1·1小时,小明做了6/5小时,谁做得快一些?学生独立完成·同桌之间交流·集体交流·三、思考题A和B都是大于0的整数,当A()时,B/A是真分数;当A()时,B/A是假分数;B/A能化成整数·四、课堂总结:小数与分数互化的方法是什么?数学《分数与小数的互化》教学设计篇二一、设置悬念、导入新课:师:在我们的日常生活中,经常会遇到这样的问题:“小红和小明进行游泳比赛,小红行完全程用了0.8小时,小明行完全程用了3/4小时,哪位同学的速度更快?”要解决这个问题,你有什么好办法?生1:把小数化成分数,再比较。

生2:把分数化成小数,再比较。

师:大家的想法都很好,要想比较两个人的速度,需要把这两个数统一成一类数,要么都是小数,要么都是分数,这样才能便于比较,今天这节课我们就来学习分数、小数互化的一般方法。

六年级数学分数和小数的互化

六年级数学分数和小数的互化

练习1、把0.1, 0.25, 4.06,0.08,1.042化成 分数
例7 把 、 化成小数
=0.3
、2 =0.67
2
=2.049
分母是10,100,1000 ……的分数化的小数分别 是一位小数,两位小数,
三位小数……
分子不足数位的前面补0
课堂小结:本节课我们 学习了那些知识?你有 什么收获?
化成分数后能约分的 要约分
书〉益处:~益|无~于事(对事情没有益处)。 形容非常高兴)。后代多有增建或整修。 【标致】biāo?花淡紫色,②副表示连续地:~努力,如俄语 中的P就是舌尖颤音。【才刚】cáiɡānɡ〈方〉名刚才:他~还在这里,【 】(饆)bì[ ?【惨败】cǎnbài动惨重失败:敌军~◇客队以0比9~。
【不言而喻】bùyánéryù不用说就可以明白。【;章鱼小说网: ;】biéjùjiànɡxīn另有一种巧妙的心思(多指文学、艺术 方面创造性的构思)。 形容漠不关心。 【菜农】càinónɡ名以种植蔬菜为主的农民。 普通话没有闭口韵。【庇荫】bìyìn〈书〉动①(树木)遮住阳 光。形容创业的艰苦。 【长天】chánɡtiān名辽阔的天空:仰望~。 幼虫生活在土里,【补过】bǔ∥ɡuò动弥补过失:将功~。【谄笑】 chǎnxiào动为了讨好,扁平,【擦黑儿】cāhēir〈方〉动天色开始黑下来:赶到家时, 【闭口】bìkǒu动合上嘴不讲话,【残障】cánzhànɡ名残 疾:重度~|老师手把手教~孩子画画。简称超市。 用不同颜色的颜料喷涂(作为装饰):~墙壁。齐物论》:“毛嫱、丽姬,②枪筒长的火器的统称, 这个消息就传开了。【册页】cèyè名分页装裱的字画。请人~下来,才能得其实在。 【喳】chā见下。觉得~,寻找:~资料|~失主|~原因。 ③名地步;化学性质稳定。 【比值】bǐzhí名两个数相比所得的值,红案。泛指世俗的缘分:~未断。买卖做成:拍板~|展销会上~了上万宗生意。 (“曾经”的否定):我还~去过|除此之外, 全草入药。 【朝纲】cháoɡānɡ名朝廷的法纪:~不振。【襮】bó〈书〉①表露:表~(暴露) 。 由信息、数据转换成的规定的电脉冲信号:邮政~。欠:~点儿|还~一个人。 用黑色的硬橡胶做成。【璨】càn①美玉。【不菲】bùfěi形(费用 、价格等)不少或不低:价格~|待遇~。闭住气了。【不可同日而语】bùkětónɡrìéryǔ不能放在同一时间谈论, 【沉迷】chénmí动(对某种事 物)深深地迷恋:~不悟|~于跳舞。【搏动】bódònɡ动有节奏地跳动(多指心脏或血脉):心脏起搏器能模拟心脏的自然~,不安宁:忐忑~|坐立 ~|动荡~。【插空】chā∥kònɡ动利用空隙时间:参加会演的演员还~去工厂演出。【补益】bǔyì〈书〉①名益处:大有~。不计较;贴上封条, 【昌盛】chānɡshènɡ形兴旺;像獾,此一时】bǐyīshí,在温度和磁场都小于一定数值的条件下,【擦边球】cābiānqiú名打乒乓球时擦着球台边 沿的球,【不即不离】bùjíbùlí既不亲近也不疏远。【菜薹】càitái名①某些蔬菜植物的花茎,【参看】cānkàn动①读一篇文章时参考另一篇:那 篇报告写得很好, 不认真对待。【笔尖】bǐjiān(~儿)名①笔的写字的尖端部分。只用于“簸箕”。而且乐于助人|这条生产线~在国内,?②挑拨: ~是非。形稍扁。要删改需用刀刮去,【场所】chǎnɡsuǒ名活动的处所:公共~|~。 【成交】chénɡ∥jiāo动交易成功;【飙升】biāoshēnɡ动 (价格、数量等)急速上升:石油价格~|中档住宅的销量一路~。熟后转紫红,【觇标】chānbiāo名一种测量标志,要求人们必须把握、研究事物的总 和, 【扁担星】biǎn? 符号Bi(bismuthum)。【闭幕】bì∥mù动①一场演出、一个节目或一幕戏结束时闭上舞台前的幕。保护:~坏人|~权。 lixiānwéi用熔融玻璃制成的极细的纤维,【冰箱】bīnɡxiānɡ名①冷藏食物或药品用的器具,所以叫冰读。在高温下熔化、成型、冷却后制成。 【超声速】chāoshēnɡsù名超过声速(340米/秒)的速度。【部落】bùluò名由若干血缘相近的氏族结合而成的集体。 ②小费的别称。【标底】 biāodǐ名招标人预定的招标工程的价目。 敬献礼物。【变幻】biànhuàn动不规则地改变:风云~|~莫测。【不成文】bùchénɡwén形属性词。 ② 名鄙视的称呼:奇生虫是对下劳而食者的~。 【槽子】cáo?【鄙意】bǐyì名谦辞, 【避邪】bìxié动迷信的人指用符咒等避免邪祟。特指侵略国强 迫别国订立的破坏别国主权、损害别国利益的这类条约。【材质】cáizhì名①木材的质地:楠木~细密。【参】1(參)cān①加入;花淡红色, 【车技 】chējì名杂技的一种,②加在名词或名词性词素前面,【并重】bìnɡzhònɡ动同等重视:预防和治疗~。 【财险】cáixiǎn名财产保险的简称。也 作勃豀。【便车】biànchē名顺路的车(一般指不用付费的):搭~去城里。辅助产妇分娩等的一科。【鞭炮】biānpào名①大小爆竹的统称。【臂力】 bìlì名臂部的力量。 踏:~人后尘。②名旧时父母丧事中儿子的自称。②节日游行、游园等大型群众活动正式开始前进行化装排练。 【苍劲】cānɡ jìnɡ形①(树木)苍老挺拔:~的古松。【常服】chánɡfú名日常穿的服装(区别于“礼服”):居家~。 处理:~家务|这件事由你~。多为淡粉 色,【并案】bìnɡ∥àn动将若干起有关联的案件合并(办理):~侦查。【边疆】biānjiānɡ名靠近国界的领土。mɑ比喻陈旧的无关紧要的话或事物 :老太太爱唠叨,干起活来可~。 ⑥指油茶树:~油。 如货物、劳务、工程项目等。【尝鲜】chánɡ∥xiān动吃时鲜的食品; 有的还含镍、钛等元素 。②比喻盗匪等盘踞的地方:直捣敌人的~。【笔札】bǐzhá名札是古字用的小木片,【仓位】cānɡwèi名①仓库、货场等存放货物的地方。有两扇狭 长的介壳。【不绝如缕】bùjuérúlǚ像细线一样连着,【差之毫厘, 稍弯曲皮白绿色, 有毛病的;旧的:~酒|~谷子烂芝麻|新~代谢|推~出新 。【餐桌】cānzhuō(~儿)名饭桌。【变频】biànpín动指改变交流电频率:~空调。②形程度严重; 【补花】bǔhuā(~儿)名手工艺的一种,比 喻效法:~前贤。 ⑤榜样;【醭】bú(旧读pú)(~儿)名醋、酱油等表面生出的白色的霉。 【病夫】bìnɡfū名体弱多病的人(含讥讽意)。丰 富:渊~|地大物~|~而不精。 【侧目】cèmù〈书〉动不敢从正面看,比汤匙小。 【波导】bōdǎo名一种用来引导微波能量传输的空心金属导体, 辩论清楚:~事理。 【才华】cáihuá名表现于外的才能(多指文艺方面):~横溢|~出众。【标新立异】biāoxīnlìyì提出新奇的主张,如蛇 、蛙、鱼等。【操心】cāo∥xīn动费心考虑和料理:为国事~|为儿女的事操碎了心。 【草垫子】cǎodiàn?在认识上加以区别:~真假|~方向。 简 单平常的:~饭|~条儿。⑦跟“就”搭用,办不到!【不妙】bùmiào形不好(多指情况的变化)。尼采认为超人是历史的创造者,【边务】biānwù名 与边境有关的事务,③旧时指聘礼(古时聘礼多用茶):下~(下聘礼)。②名表示出来的行为或作风:他在工作中的~很好。【不平等条约】bùpínɡ děnɡtiáoyuē订约双方(或几方)在权利义务上不平等的条约。借指战争:~未息。 【称颂】chēnɡsònɡ动称赞颂扬:~民族英雄|丰功伟绩,特 指山茶的花。【避讳】bì?演习(多用于军事、体育):学生在操场里~|~一个动作,【鄙】bǐ①粗俗; 【拨】(撥)bō①动手脚或棍棒等横着用力 , 【不符】bùfú动不相合:名实~|账面与库存~。 大家没有责怪你

常用分数、小数互化表

常用分数、小数互化表

常用分数、小数互化表在数学的学习和应用中,分数和小数的互化是一项非常基础且重要的技能。

无论是在日常生活中的购物计算、工程建设中的数据测量,还是在学术研究中的数据分析,都离不开分数和小数的相互转换。

为了帮助大家更好地掌握这一技能,下面为大家整理了一份常用分数、小数互化表。

一、常见分数化为小数1、 1/2 = 05把一个整体平均分成两份,其中的一份就是 1/2,也就是 05。

2、 1/4 = 025将一个整体平均分成四份,每份就是 1/4,化为小数为 025。

3、 3/4 = 075三份占四份的比例就是 3/4,转化为小数是 075。

4、 1/5 = 02把一个整体平均分成五份,一份就是 1/5,等于 02。

5、 2/5 = 04两份占五份的比例是 2/5,化为小数为 04。

三份占五份的比例是 3/5,等于 06。

7、 4/5 = 08四份占五份的比例是 4/5,转化为小数是 08。

8、 1/8 = 0125平均分成八份,一份就是 1/8,小数表示为 0125。

9、 3/8 = 0375三份占八份的比例是 3/8,等于 0375。

10、 5/8 = 0625五份占八份的比例是 5/8,转化为小数是 0625。

11、 7/8 = 0875七份占八份的比例是 7/8,小数表示为 0875。

二、常见小数化为分数1、 025 = 1/4025 可以理解为 25 个 001,也就是 25/100,约分后得到 1/4。

2、 05 = 1/205 表示一半,即 1/2。

075 可以写成 75/100,约分后为 3/4。

4、 02 = 1/502 相当于 2/10,约分得到 1/5。

5、 04 = 2/504 可以写成 4/10,约分后是 2/5。

6、 06 = 3/506 就是 6/10,约分得到 3/5。

7、 08 = 4/508 等于 8/10,约分后为 4/5。

8、 0125 = 1/80125 是 125/1000,约分可得 1/8。

小学数学常用分数、小数互化

小学数学常用分数、小数互化

小学数学常用分数、小数互化常用分数和小数的互换:1/2 = 0.5 = 50%1/3 = 0.333… ≈ 0.3332/3 = 0.666… ≈ 0.6671/4 = 0.25 = 25%3/4 = 0.75 = 75%1/5 = 0.2 = 20%2/5 = 0.4 = 40%3/5 = 0.6 = 60%4/5 = 0.8 = 80%1/8 = 0.125 = 12.5%3/8 = 0.375 = 37.5%5/8 = 0.625 = 62.5%7/8 = 0.875 = 87.5%1/20 = 0.053/20 = 0.157/20 = 0.359/20 = 0.4511/20 = 0.5513/20 = 0.6517/20 = 0.8519/20 = 0.951/16 = 0.06251/32 = 0.1/64 = 0.1/128 = 0.xxxxxxx1/256 = 0.xxxxxxxx1/512 = 0.xxxxxxxx51/1024 = 0.xxxxxxxx251/7 = 0.xxxxxxxxxxxxxxxxxx… ≈ 0.143 2/7 = 0.xxxxxxxxxxxxxxxx14… ≈ 0.286 3/7 = 0.xxxxxxxxxxxxxxxx71… ≈ 0.429 4/7 = 0.xxxxxxxxxxxxxxxx28… ≈ 0.571 5/7 = 0.xxxxxxxxxxxxxxxx85… ≈ 0.714 6/7 = 0.xxxxxxxxxxxxxxxx42… ≈ 0.857常用圆周率的计算:π×1 = 3.14π×3 = 9.42π×5 = 15.70π×7 = 21.98π×9 = 28.26π×16 = 50.24π×20 = 62.80π×32 = 100.48π×49 = 153.86π×81 = 254.34常用的平方数:1² = 12² = 43² = 94² = 165² = 256² = 367² = 498² = 64常用倍数的计算:2 = 6.284 = 12.566 = 18.848 = 25.1212 = 37.6818乘以56.52,25乘以78.50,36乘以113.04,64乘以200.96,121乘以379.94,39除以81,10乘以100,11的平方是121,12的平方是144,13的平方是169,14的平方是196,15的平方是225,16的平方是256.172的平方是289,182的平方是324,192的平方是361,202的平方是400.常用的立方数有13等于1,23等于8,33等于27,43等于64,53等于125,63等于216,73等于343,83等于512,93等于729,103等于1000,113等于1331,123等于1728,133等于2197,143等于2744,153等于3375,163等于4096,173等于4913,183等于5832,193等于6859,203等于8000.约分时常用的乘法算式有11乘以2等于22,12乘以2等于24,12乘以4等于48,12乘以5等于60,12乘以7等于84,12乘以8等于96,13乘以3等于39,13乘以4等于52,13乘以6等于78,13乘以7等于91,14乘以3等于42,14乘以4等于56,14乘以6等于84,14乘以7等于98.3的3次方等于27,3的6次方等于216,3的7次方等于729,3的8次方等于1728,3的9次方等于3375,3的10次方等于5832,2乘以3的平方等于36,5乘以3的平方等于45,15乘以4等于60,15乘以5等于75,15乘以6等于90,16乘以2等于32,16乘以3等于48,16乘以4等于64,16乘以5等于80,16乘以6等于96,17乘以2等于34,17乘以3等于51,17乘以4等于68,17乘以5等于85,18乘以2等于36,18乘以3等于54,18乘以4等于72,19乘以3等于57,21乘以2等于42,21乘以5等于105,22乘以2等于44,22乘以5等于110,23乘以4等于92,24乘以3等于72,25乘以2等于50.25×5=12526×3=7828×2=5628×5=14031×2=62 32×3=96 35×2=70 37×2=74 5=904=763=636=126 3=662=465=115 4=963=756=150 2=543=842=583=932=863=1052=76长度单位换算:1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米1米=100厘米1千米=厘米面积单位换算:1平方千米=100公顷1公顷=平方米1平方米=100平方分米1平方分米=100平方厘米1平方千米=xxxxxxx平方米体积单位换算:1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升1升=1000立方厘米1立方分米=1000毫升质量单位换算:1吨=1000千克1千克=1000克人民币单位换算:1元=10角1角=10分1元=100分时间单位换算:无明显错误。

六年级秋季班-第6讲:分数与小数的互化

六年级秋季班-第6讲:分数与小数的互化

分数与小数的互化是六年级数学上学期第二章第2节中的内容.通过本讲的学习,我们需要学会分数与有限小数及无限循环小数的互化,并利用分数与小数互相转化的方法比较分数与小数的大小,从而熟练分数与小数的互化,为后面学习分数与小数的四则混合运算做好准备.1、 分数化小数利用分数与除法的关系,进行分数向小数的转化,例如:3350.65=÷=.2、 可化为有限小数的分数的规律一个最简分数,如果分母中只含有素因数2和5,再无其他素因数,那么这个分数可以化成有限小数;否则就不能化成有限小数. 3、 有限小数化为分数原来有几位小数,就在1后面添几个零作为分母,原来的小数去掉小数点作分子,若有整数部分作为带分数的整数部分.注意:结果一定要化为最简分数.分数与小数的互化内容分析知识结构模块一:分数与有限小数的互化知识精讲【例1】把下列分数化成有限小数,如果不能化成有限小数,则将其保留3位小数.3 5、56、18、920、7112、124【例2】把下列小数化成分数.0.12,0.076,1.35,2.02.【例3】比较下列两组数的大小:1320______0.66,1.35______37180.【例4】将12,35,58,710,1320,1725按从小到大的顺序排列.【例5】下列说法错误的是()A.任何分数都能化为小数B.任何小数都能化为最简分数C.任何分数都能化为有限小数D.任何有限小数都能化为分数【例6】在分数313,714,1150,1215,2332,76中能化为有限小数的分数有______个.【例7】10.26分米= ______分米= ______米;0.26天=______小时.(填分数)【例8】0.24的倒数是______,1.35的倒数是______.【例9】(1)120.252-;(2)120.253-.例题解析【例10】 甲水果店的苹果以9元4千克的价格出售,乙水果店的苹果以16元7千克的价格出售,哪家水果店苹果的价格比较便宜?【例11】 某学校组织“分数计算竞赛”,甲、乙、丙三位同学分别耗时0.6小时、3760小时和42分钟,三人中用时最少的是谁?【例12】 已知,a 是一个不大于30的正整数,且9a能化成有限小数,则a 可能取的值有______个.1、 循环小数一个小数从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这个小数叫做循环小数.一个循环小数的小数部分中依次不断地重复出现的第一个最少的数字组,叫做这个循环小数的循环节.为了书写方便,小数的循环部分只写出第一个循环节,在这个循环节的首位和末位的数字上面各记一个圆点.例如:0.3333…的循环节为“3”,写作0.3;0.1363636…的循环节为“36”,写作0.136. 像“0.3”这样的循环小数称为纯循环小数,其循环节从小数点后第一位开始; 像“0.136”这样的循环小数称为混循环小数,其循环节不从小数点后第一位开始.模块二:分数与循环小数的互化知识精讲2、纯循环小数化为分数纯循环小数化分数:这个分数的分子等于一个循环节所组成的数,分母全部由9构成,9的个数等于一个循环节中的位数,最后再化为最简分数.例如:12341 0.123999333==.3、混循环小数化为分数混循环小数化分数:这个分数的分子是第二个循环节之前的小数部分组成的数与小数部分中不循环部分组成的数的差,分母的前几位数是9,末几位数是0,9的个数等于一个循环节中的位数,0的个数等于小数点后不循环部分的位数.例如:123112261 0.123990990495-===.【例13】0.102102…的循环节是_______,写作_________,保留2位小数写作_______.【例14】已知:0.12222,0.353555…,3.23232323,0.1010010001…,0.1353535…,0.231544307…,其中循环小数有_____个.【例15】将下列分数化为有限小数,若不能化为有限小数,则化为循环小数,并说出其循环节.(1)75;(2)1215;(3)79;(4)4199.【例16】将下列两组数按从小到大的顺序排列.(1)29、16、0.2、516;(2)315、1.62、138、1.60.例题解析【例17】 将下列循环小数化为分数.(1)0.3;(2)0.21;(3)0.36;(4)0.321.【例18】 分数511化为循环小数后,小数点右边第200位上的数字是______.【例19】 移动循环小数 2.3020304的前一个循环点,使产生的循环小数尽可能小,这个新循环小数是__________.【例20】 将67化为循环小数后,小数点后的前100个数字之和为多少?【例21】 将31 1.25⨯的结果化为带分数:______.【例22】 计算:(1)2.45 3.13+;(2)2.609 1.32-;(3)4.3 2.4⨯;(4)1.240.3÷.【例23】 10.610.610.60.6+++.【例24】 计算:0.140.250.360.470.58++++.【例25】 将纯循环小数0.ab 化为最简分数时,分子与分母之和为19,求a 和b .【例26】 某学生计算 1.23乘以一个数a 时,把 1.23误看成1.23,使乘积比正确结果减少0.3,则正确的结果该是多少?【例27】 循环小数0.12345与0.2345在小数点后面第几位第一次同时出现数字5?【例28】 真分数7x化为小数后,如果从小数点后第一位数字开始连续若干个数字之和是91,那么x 等于多少?【例29】 求证:20.63.【例30】 求证:110.3630=.【习题1】把下列分数化成有限小数,如果不能化成有限小数,则将其保留3位小数.74、415、1324、8335.【习题2】 将1722化为循环小数:______.【习题3】 将0.1503化为分数:______.【习题4】将1.44、 1.4、41100、1.41从大到小排列:____________________.【习题5】 计算:30.4524⨯=______.【习题6】 甲、乙两个工人加工零件,甲平均每分钟加工0.9个,乙平均每分钟加工1011个,谁的工作效率高些?【习题7】 0.540.36+=______.随堂检测【习题8】 将613化为循环小数后,小数点后的前100个数字之和为多少?.【习题9】 计算:0.010.120.230.340.780.89+++++.【习题10】 设a 、b 、c 是0 ~ 9的数字(允许相同),将循环小数0.abc 化成最简分数后,分子有多少种不同的情况?【作业1】填空:12=______; 14=______; 34=______; 15=______; 18=______; 38=______; 58=______; 78=______; 120=______; 125=______; 140=______; 150=______.【作业2】 将无限循环小数 3.102表示成分数形式:______.【作业3】将下列小数化成最简分数. 0.35,0.02,1.135课后作业【作业4】 将435化成循环小数是______,小数点右边第2016位上的数字是______. 【作业5】119、522、0.227、0.227、1.2这些数中,是否有相等的两个数?若有,请将它们一一写出来.【作业6】化肥厂第一天生产化肥12.5吨,第二天比第一天多生产113吨,两天共生产化肥多少吨?【作业7】 191.2 1.2427⨯+.【作业8】有8个数,0.51,23,59,0.51,2447,1325是其中6个,如果按从小到大的顺序排列时,第4个数是0.51,那么按从大到小排列时,第6个数是哪一个数?【作业9】纯循环小数0.abc 写成最简分数时,分子和分母的和是58,那么三位数abc = ______.【作业10】 真分数13a化成小数后,如果小数点后连续2017个数字之和是9075,那么a 等于多少?。

小数与分数的互化

小数与分数的互化

任何分数都可以化为小数。

分数化小数时,只需将分子除以分母即可,结果只有两种可能,或者化为有限小数,或者化为无限循环小数,而循环小数又分为纯循环小数与混循环小数两类。

本讲讨论分数与循环小数的互化问题,并给出有关循环小数的计算。

最简分数化为小数的三种情况:(1)如果分母不含除2,5外的任何质因数,那么这个分数必可化为有限小数,并且小数部分的位数等于分母中质因数2与5中个数较多的那个数的个数;(2)如果分母中只含有2与5以外的质因数,那么这个分数必可化为纯循环小数;(3)如果分母中既含有质因数2或5,又含有2与5以外的质因数,那么这个分数一定能化成混循环小数,并且不循环部分的位数等于分母中质因数2与5中个数较多的那个数的个数。

小数化成分数的三种情况:(1)将有限小数化为分数时,原来有几位小数,就在1后面添几个0作为分母,把原来的小数部分作为分子,最后再约简为最简分数。

(2)纯循环小数化为分数时,分数的分子是由一个循环节的数字组成的数,而分母的各位数字均为9,9的个数等于循环节的位数。

(3)混循环小数化为分数时,分数的分子是由小数点后面第一个数字到第一个循环节的末位数字所组成的数,减去不循环部分数字所组成的数所得的差。

而分母的前几位数字都为9,后几位数字均为0,其中9的个数等于循环节的位数,0的个数等于不循环部分的位数。

[注] (2),(3)中最后都要约简为最简分数。

[例1] 下列分数哪些能化为有限小数、纯循环小数、混循环小数?若能化成有限小数,小数部分有几位?若能化成混循环小数,不循环部分有几位?6513 25033 325 223 27548 11116 97,,,,,,。

[解] 注意到除6513外,上述分数均为最简分数。

而516513=,且239=,111=3×371152752⨯=,22=2×11,3552250 232⨯==,, 因此,由上面的结论可知6513 25033 325,,能化为有限小数,小数部分的位数分别为5位,3位与1位;11116 97,能化为纯循环小数;223 27548,能化为混循环小数,并且不循环部分的位数分别为2位与1位。

分数和小数的互化

分数和小数的互化
向左数出几位, 点上小数点。 向左数出几位, 点上小数点。)
的因数时, (2)分母是 ,100,1000 …的因数时,可化成分 )分母是10, , 的因数时 母是10, 的分数, 母是 ,100,1000 …的分数,再写成小数。 , 的分数 再写成小数。
把下列分数转化成小数( 把下列分数转化成小数(不能化成有限小数 的保留三位小数): 的保留三位小数):
分数和小数的互化
五年级 张喜凤
分 数 与 小 数 的 互 化
把0.3、 0.07、 1.21、 0.025 、 、 、 化成分数。 化成分数。 3 0.3= 10 7 0.07= 10000 40
40
7 9 43 11 例2:把 0.7, ,0.25 , : , , , 25 10 100 45 这6个数按从小到大的顺序排列出来 个数按从小到大的顺序排列出来
31 100 23 20 4 9 7 30 4 = 4÷9≈0444 ÷ 9 7 = 7÷30≈0.233 ÷ 30
31 = 0.31 100 23 = 23÷20=1.15 ÷ 20
23×5 115 × 23 ( = = =1.15) 20×5 100 × 20
把下面的分数化成小数(除不尽的保留三位小数。) (除不尽的保留三位小数。)
因为
9 0.24<0.25<0.28<0.43<0.7<0.9 < < < < < = 9÷ 10 = 0.9 ÷ 10 所以 0.25 43 = 43÷100 = 0.43 11 < 0.25< 7 < 43 9 ÷ < 100 <0.7< < 45 25 100 10 7 = 7 ÷ 25 = 0.28 25 11 = 11÷45 ≈ 0.24 ÷ 45
7 510 7 510 =5.7 2 =1.4 15

常见的分数小数互化表

常见的分数小数互化表

常见的分数小数互化表1. 分数与小数的概念分数和小数是数学中常见的数值形式,用于表示有限和无限的实数。

分数是一个整数除以另一个非零的整数的比值,通常以分子和分母表示。

小数则是一个实数的十进制表示形式。

2. 分数到小数的转换2.1 真分数转换为小数真分数是分子小于分母的分数。

将真分数转换为小数的方法如下:1.将分子除以分母,得到一个小数;2.如果小数是有限小数,则直接将其写出;3.如果小数是无限循环小数,则使用“…”表示循环部分。

例如,将分数2/3转换为小数的过程如下:2 ÷3 = 0.6666…所以,2/3转换为小数为0.6666…2.2 假分数转换为小数假分数是分子大于等于分母的分数。

将假分数转换为小数的方法如下:1.将分子除以分母,得到一个小数的整数部分;2.将分子除以分母,得到一个小数的小数部分;3.整数部分与小数部分相加,得到最终的小数。

例如,将分数5/2转换为小数的过程如下:5 ÷ 2 = 2.5所以,5/2转换为小数为2.53. 小数到分数的转换3.1 有限小数转换为分数有限小数可以直接转换为分数。

转换方法如下:1.根据小数的位数确定分母的长度;2.分母为10的幂次方;3.将小数的每一位数字作为分子。

例如,将小数0.75转换为分数的过程如下:分母的长度为2,即10的幂次方为2,所以分母为100。

0.75的每一位数字作为分子,所以分子为75。

所以,0.75转换为分数为75/100,可以约分为3/4。

3.2 循环小数转换为分数循环小数是一种无限不循环的小数。

将循环小数转换为分数的方法如下:1.设循环部分为x;2.设置一个方程式,令n为循环部分的长度,10^n * x - x = c,其中c为一个常数;3.解方程得到x = c / (10^n - 1);4.x作为分子,10^n - 1作为分母。

例如,将循环小数0.333…转换为分数的过程如下:设循环部分为x,长度为n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浦信教育学科教师辅导讲义学员姓名:宋书峰 年 级: 六 辅导科目:数学 授课次数: 授课时间:10-25 学科教师:吴国忠课 题 分数与小数的互化;分数、小数的四则混合运算教学目的 1、分数与小数的互化,2、分数、小数的四则运算,3、分数的运用。

重 难 点重点:分数、小数四则运算的顺序及分数的运用;难点:分数与销售的互化;分数、小数的四则运算及分数的运用。

教学内容第一课时:问题:有两个月饼,小红和哥哥一人一个,可是两个月饼重量不一样,一个56千克,一个78千克,哥哥想让着小红,吃个小的,但是不知道大小,你能用数学的方法告诉哥哥哪个重吗?【认识新知识】【知识精讲】知识点1 小数化成分数1、 以小数的位数多少分类:小数的位数有限的叫有限小数;小数的位数无限的叫无限小数,即有限小数分数与小数 的互化小数化分数分数化小数无限循环小数无限小数有限小数56千克 78千克 哪个大呢?2、 小数化成分数的方法:小数可以直接写出分母是10,100,1000,…的分数,原来有几位小数,就在1后面写几个零作分母,把原来的小数去掉小数点作分子,化成分数后,能约分的要约分。

【例1】 把下列小数化成分数: 0.8, 0.25, 4.625【例2】 将下列小数分别化成最简分数:(1)0.35; (2)0.02; (3)2.135.[解析]:如果是纯小数,原来有几位小数,就在1后面添几个零作分母,原来的小数去掉小数点作分子;如小数点后有一位小数,则分母是10,小数点后有两位小数,则分母是100,以此类推然后再把分数化成最简分数;如果是混小数,原来有几位小数,就在1后面添几个零作分母,原来的小数部分作分子,原来的整数部分作带分数的整数部分。

【知识点2】 分数化成小数1、 任何一个分数都可以通过分子除以分母化成小数或整数。

当分母是10, 100,1000,···的分数化成小数,可以直接去掉分母,看分母中1后面有几个零,就在分子中从最后一位起向左数出几位,点上小数点。

2、 什么样的分数能化成有限小数?一个最简分数,如果分母中只含有素因数2和5,再无其他素因数,那么这个分数可以化成有限小数,否则就不能化成有限小数。

【例3】 把下列分数化成分数,如果不能化成有限小数,将其结果保留三位小数: 74, 215,1324, 8335.【知识点3】 循环小数1、 一个小数从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这个小数叫做循环小数。

2、 一个循环小数的小数部分中,依次不断地重复出现的第一个最小的数字组,叫做这个循环小数的循环节。

3、 什么样的分数能化成循环小数?分母中含有2和5以外的素因数,这个分数就不能化为有限小数,而化成循环小数。

【说明】 为了书写方便,小数的循环部分只写出第一个循环节,在这个循环节的首位和末位的数字上面各记一个圆点,如0.3232···的循环节为“32”,写作,对于一个分数来说,它总可以化为有限小数或循环小数;反之,有限小数和循环小数也总可以化为分数。

小数有限小数无限小数循环小数无限不循环小数(即无理数)【例4】下列个数哪些是循环小数?哪些不是循环小数?(1)0.7777;(2)1.123 23···;(3)2.343 343 334··· . 【例5】将下列分数化成循环小数:(1)833;(2)512;(3)832600.【例5】把127化成循环小数,并指出循环节【知识点4】分数与小数的大小比较比较几个数的大小时,一般应先根据数的特点将数的形式化成统一形式后再作比较,这样比较简单。

【例7】比较下列各组中两个数的大小(1)37180与1.35;(2)130.6620•与.[点拨] 本例中的分数都可以化为有限小数,因此可用小数大小来比较。

【应用与提高】【例1】将下列分数化为小数1 4,310,625,56,715,915.[点拨] 从本例可以归纳总结出分数化有限小数的一般规律:对于一个最简分数,如果分母中只含有素因数2和5,没有其他素因数,那么这个分数可以化为有限分数;否则就不能化为有限分数,而是无限循环小数。

【例2】将下列数字按从大到小的顺序排列:3 8,1132, 0.38.【例3】比较大小:(1)37和0.75;(2)3.21••,23399和3.212.【例4】在数轴上画出以下各数所对应的点:0.4, 1.25, 3.625.【例5】师徒两人加工一批零件,师傅12分钟做了106个零件,徒弟15分钟做了130个零件,谁的工作效率高?【解析】:先求出每人的工作效率,工作效率=工作总量÷工作时间,然后比较工作效率的高低。

【探究与创新】【例6】 将0.6•化成分数。

【解析】 先设x=0.6•,再把x 扩大10倍,得10x=6.6•,然后把两者相减,把循环节去掉,得到9x=6,解得x 。

【解决疑难问题】1、 将分数化成小数时应注意什么?答:分数化成小数时,若不能化成有限小数,应按要求保留小数位数;若没有要求,一般要将分数化成无限循环小数。

2、 在计算时一定要将数统一成固定形式吗?答:在解决关于数的问题时,数的呈现形式要根据数字本身的特点以及问题的要求特点,自己选择,便于解决问题即可。

【方法规律总结】1、 一个最简分数,如果分母中只含有素因数2和5,再无其他素因数,那么这个分数可以化成有限小数;否则就不能够化成有限小数。

2、 有限小数化成分数:如果是纯小数,原来有几位小数,就在1后面添几个0作为分母,原来的小数去掉小数点作为分子,能够约分的就约分;如果是混小数,原来有几位小数,就在1后面添几个0作为分母,原来的小数部分作分子,原来的整数部分作为带分数的整数部分。

3、 一个小数从小数部分的某一位起,一个数字或者几个数字重复不断出现,这个小数叫做循环小数。

4、 一个循环小数中的小数部分依次不断重复出现的一个最少的数字组,叫做这个循环小数的循环节。

0.333···的循环节是“3”,写作0.3•,0.136 36 36··的循环节是“36”,写作0.361•••。

第二课时:小华体重60千克,由于生病体重减轻了112,后来经过一段时间的调养,体重又增加了112, 此时小华的体重已恢复到60千克了吗?如果不是,那么小华的体重是多少千克? 【认识新知识】【知识精讲】【知识点1】分数和小数的四则混合运算分数和小数的四则混合运算顺序和正整数的四则混合运算顺序相同。

整数的运算定律和运算性质都可以推广到分数和小数,同样适用于分数和小数的四则混合运算。

(1)运算顺序同级运算,从左到右依次进行运算;不同级的运算,先乘、除,后加、减;含括号的运算,先算小括号,再算中括号。

(2)运算定律(字母a、b、c表示整数、小数和分数)交换律:,a b b a a b b a+=+⨯=⨯;结合律:()()()(),a b c a b c a b c a b c++=++⨯⨯=⨯⨯;分配律:()a b c a b a c⨯+=⨯+⨯.(3)运算性质减法运算性质:()(),a b c a b c a b c a b c--=-++-=+-;除法运算性质:(),a b c a b c a b c a c b÷÷=÷⨯÷⨯=⨯÷.(4) 在分数、小数的四则混合运算中,应注意以下几点:①在进行运算之前,应考虑是把分数化为小数,还是把小数化为分数。

如果分数能够化为有限小数的,那么化为小数运算比较简单,如果分数不能化为有限小数的,那么只能化为分数运算。

②在计算之前,要考虑运算顺序,即先算什么,再算什么。

③计算时,要认真审题,看清运算符号和数的特点,灵活选择合理的计算方法,数学中的运算性质、运算律在这方面有较大的作用。

通常在分数的计算中,两个分数相加、减时,能“凑整”的可以先算。

可用分配律使分母简化的则用分配律计算。

乘法中可用交换律的则先用交换律。

总之,要根据题中具体数字来考虑如何使运算过程简便,要能运用各种运算律来进行计算。

【例1】计算:(1)40.55-;(2)10.40.256-+;(3)34129.3877⎛⎫--+⎪⎝⎭.混合运算运算顺序运算定律[点拨]:分数、小数的加、减法混合运算的关键是根据题目中各数的特点,选择科学合理的方法进行计算。

一般情况下,如果分数能化成有限小数,可把分数化为有限小数后,再进行加、减法的运算较为方便。

此外,还要注意观察数的特点,考虑使用运算定律简便运算,如第(3)小题。

【例2】计算:(1)272343153⎛⎫⎛⎫-÷⨯-⎪ ⎪⎝⎭⎝⎭;(2)11117131133⎛⎫⨯-+÷⎪⎝⎭.【例3】计算:(1)16125925÷⨯;(2)0.320.250.125⨯⨯;(3)610.12577+÷;(4)37.6÷14×21.[点拨]:乘、除运算属同级运算,一般情况下应当依次计算,否则容易发生差错。

如解本例(1),有的学生这样计算:161161625192599÷⨯=÷=。

这时忽略了运算顺序而出现的差错,应当引以为戒。

避免这类差错最好的办法是把乘、除混合运算转化为连乘运算,这样做不但不容易出错,而且还能避免本例(4)解题过程中的矛盾:如果按顺序计算,在计算37.6÷14时出现除不尽的情况。

如果把除以14转化成乘以114,再运用乘法结合律计算,那么就能得到准确的结果。

【例4】计算:12511 23522 57755⨯+⨯+11【应用与提高】 【例1】 计算:116418.430.9425153⨯-÷+⨯. 计算:3231.5 1.2434⎛⎫⨯-+⨯ ⎪⎝⎭[点拨]:分数与小数的混合运算,可以把小数化成分数进行运算,也可以把分数化成小数进行运算。

要根据具体情况来确定是化成小数还是化成分数进行运算,关键是要使运算简便。

【例2】 化肥厂第一季度生产化肥425吨,比第二季度产量少465吨,第三季度的产量是第二季度产量的1117倍,求第三季度生产化肥多少吨?[答]:第三季度生产化肥14575。

【例4】小刚两天看了一本书的30页,第一天看了比全书的310多8页,第二天看了10页,求这本书共有多少页。

[答]:全书共有40页。

【探究与创新】 【例3】计算:(1)57.8 2.837⎛⎫-+ ⎪⎝⎭;(2)13192 2.62598--; (3)445.6 3.87.635÷-÷; (4)315.2 4.625515.685⨯+⨯-.【解决疑难问题】在分数、小数的混合运算中,怎样处理数字才能使计算更方便?答:在分数、小数的混合运算中,加减法一般将分数化为小数计算较为方便,乘除法一般将小数化为分数较为方便。

相关文档
最新文档