新人教版九年级数学(下)《第26章 反比例函数》单元测试卷(吉林省延边州珲春七中)
人教版初中数学九年级下册《第26章 反比例函数》单元测试卷(含答案解析
人教新版九年级下学期《第26章反比例函数》单元测试卷一.选择题(共11小题)1.下列函数是反比例函数的是()A.y=x B.y=kx﹣1C.y=D.y=2.对于反比例函数y=的图象的对称性叙述错误的是()A.关于原点中心对称B.关于直线y=x对称C.关于直线y=﹣x对称D.关于x轴对称3.如图,直线y=2x与双曲线y=的图象的一个交点坐标为(2,4),则它们的另一个交点坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(﹣4,﹣2)D.(2,﹣4)4.如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k的图象大致是()A.B.C.D.5.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣1 6.如图,直线y=﹣x+b与双曲线交于点A、B,则不等式组的解集为()A.﹣1<x<0B.x<﹣1或x>2C.﹣1<x≤1D.﹣1<x<1 7.已知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2C.2<y<6D.y>68.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小9.若双曲线位于第二、四象限,则k的取值范围是()A.k<1B.k≥1C.k>1D.k≠110.已知点A(﹣3,y1),B(﹣2,y2),C(3,y3)都在反比例函数y=的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3 11.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小二.填空题(共7小题)12.反比例函数y=﹣的图象的对称中心的坐标是.13.已知反比例函数y=的图象如图,则一元二次方程x2﹣(2k﹣1)x+k2﹣1=0根的情况是.14.一次函数y=ax+b和反比例函数y=在同一坐标系内的大致图象如图所示,则a0,b0.15.如果反比例函数的图象经过点(﹣3,﹣4),那么函数的图象在第象限.16.已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是.17.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为.18.如图,正方形OABC的边长为2,反比例函数y=过点B,则该反比例函数的解析式为.三.解答题(共7小题)19.如图,在△ABC中,AC=BC=5,AB=8,AB⊥x轴,垂足为A,反比例函数y=(x>0)的图象经过点C,交AB于点D.(1)若OA=AB,求k的值;(2)若BC=BD,连接OC,求△OAC的面积.20.如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P(1,4)在C1上,PA⊥x轴于点A,交C2于点B(1,m),求k,m的值及△POB的面积.21.如图,反比例函数的图象在第一象限内经过点A,过点A分别向x轴、y轴作垂线,垂足分别P、Q,若AP=3,AQ=1,求这个反比例函数的解析式.22.已知y+1是x的反比例函数,当x=3时,y=7.(1)写出y与x的函数关系式;(2)求当x=7时y的值.23.如图,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点,交x轴于点C.(1)求m、n的值;(2)请直接写出不等式kx+b<的解集;(3)将x轴下方的图象沿x轴翻折,点B落在点B′处,连接AB′、B′C,求△AB′C 的面积.24.如图,⊙O的直径AB=12cm,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,BN于C,设AD=x,BC=y,求y与x的函数关系式.25.某工厂现有煤200吨,这些煤能烧的天数y与平均每天烧煤的吨数x之间的函数关系式是y=.人教新版九年级下学期《第26章反比例函数》单元测试卷参考答案与试题解析一.选择题(共11小题)1.下列函数是反比例函数的是()A.y=x B.y=kx﹣1C.y=D.y=【分析】根据反比例函数的定义作出选择.【解答】解:A、y=x是正比例函数;故本选项错误;B、y=kx﹣1当k=0时,它不是反比例函数;故本选项错误;C、符合反比例函数的定义;故本选项正确;D、y=的未知数的次数是﹣2;故本选项错误.故选:C.【点评】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.2.对于反比例函数y=的图象的对称性叙述错误的是()A.关于原点中心对称B.关于直线y=x对称C.关于直线y=﹣x对称D.关于x轴对称【分析】根据反比例函数图象的对称性判断即可.【解答】解:反比例函数y=的图象关于原点中心对称、关于直线y=x对称、关于直线y=﹣x对称,∵它的图象在第一、三象限,∴不关于x轴对称,A、B、C说法正确,不符合题意,D说法错误,符合题意,故选:D.【点评】本题考查的是反比例函数的图象和性质,掌握反比例函数图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线y=﹣x;②一、三象限的角平分线y=x;对称中心是:坐标原点是解题的关键.3.如图,直线y=2x与双曲线y=的图象的一个交点坐标为(2,4),则它们的另一个交点坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(﹣4,﹣2)D.(2,﹣4)【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:由于反比例函数是中心对称图形,所以正比例函数y=2x与反比例函数y=的两交点A、B关于原点对称.又因为点(2,4)关于原点对称点的坐标为(﹣2,﹣4).故选:A.【点评】本题考查反比例函数图象的中心对称性,即两点关于原点对称.4.如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k的图象大致是()A.B.C.D.【分析】根据反比例函数y=的图象所在的象限确定k>0.然后根据k>0确定一次函数y=kx﹣k的图象的单调性及与y轴的交点的大体位置,从而确定该一次函数图象所经过的象限.【解答】解:根据图示知,反比例函数y=的图象位于第一、三象限,∴k>0,∴一次函数y=kx﹣k的图象与y轴的交点在y轴的负半轴,且该一次函数在定义域内是增函数,∴一次函数y=kx﹣k的图象经过第一、三、四象限;故选:B.【点评】本题考查了反比例函数、一次函数的图象.反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.5.如果反比例函数y=在各自象限内,y随x的增大而减小,那么m的取值范围是()A.m<0B.m>0C.m<﹣1D.m>﹣1【分析】根据增减性确定m+1的符号,从而确定m的取值范围即可.【解答】解:∵反比例函数y=的图象在所在象限内,y的值随x值的增大而减小,∴m+1>0,解得m>﹣1.故选:D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.6.如图,直线y=﹣x+b与双曲线交于点A、B,则不等式组的解集为()A.﹣1<x<0B.x<﹣1或x>2C.﹣1<x≤1D.﹣1<x<1【分析】根据图象得出A、B的坐标,根据图象得出﹣x+b≥0的解集是x≤1,>﹣x+b的解集是﹣1<x<0或x>2,求出其公共部分即可.【解答】解:∵把A(﹣1,2)代入y=得:k=﹣2,∴y=﹣,∵x=2代入得:y=﹣1,∴B(2,﹣1),∴直线y=﹣x+b与双曲线交点A的坐标是(﹣1,2),B的坐标是(2,﹣1),∴不等式组的解集是:﹣1<x<0,故选:A.【点评】本题考查了一次函数与反比例函数的交点问题的应用,主要考查学生的观察图形的能力和理解能力,题目比较典型,但是一道比较容易出错的题目.7.已知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2C.2<y<6D.y>6【分析】利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.【解答】解:∵k=6>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=6,当x=3时,y=2,∴当1<x<3时,2<y<6.故选:C.【点评】本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x 的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.8.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质:对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大解答即可.【解答】解:函数y=的图象位于第一、第三象限,A正确;图象既是轴对称图形又是中心对称图形,B正确;当x>0时,y随x的增大而减小,C错误;当x<0时,y随x的增大而减小,D正确,由于该题选择错误的,故选:C.【点评】本题考查的是反比例函数的性质,掌握对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大是解题的关键.9.若双曲线位于第二、四象限,则k的取值范围是()A.k<1B.k≥1C.k>1D.k≠1【分析】由反比例函数图象的位置在第二、四象限,可以得出k﹣1<0,然后解这个不等式就可以求出k的取值范围.【解答】解:∵双曲线位于第二、四象限,∴k﹣1<0,∴k<1.故选:A.【点评】本题主要考查了反比例函数的图象及其性质,用到的知识点:对于反比例函数y=来说,当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.10.已知点A(﹣3,y1),B(﹣2,y2),C(3,y3)都在反比例函数y=的图象上,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3【分析】分别把各点代入反比例函数y=求出y1、y2、,y3的值,再比较出其大小即可.【解答】:∵点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=的图象上,∴y1=﹣;y2=﹣2;y3=,∵>﹣>﹣2,∴y3>y1>y2.故选:D.【点评】本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x的增大而增大.11.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小【分析】由双曲线y=(x>0)设出点P的坐标,运用坐标表示出四边形OAPB 的面积函数关系式即可判定.【解答】解:设点P的坐标为(x,),∵PB⊥y轴于点B,点A是x轴正半轴上的一个定点,∴四边形OAPB是个直角梯形,∴四边形OAPB的面积=(PB+AO)•BO=(x+AO)•=+=+•,∵AO是定值,∴四边形OAPB的面积是个减函数,即点P的横坐标逐渐增大时四边形OAPB的面积逐渐减小.故选:C.【点评】本题主要考查了反比例函数系数k的几何意义,解题的关键是运用点的坐标求出四边形OAPB的面积的函数关系式.二.填空题(共7小题)12.反比例函数y=﹣的图象的对称中心的坐标是(0,0).【分析】反比例函数的图象是双曲线,其对称中心是原点.【解答】解:反比例函数y=﹣的图象的对称中心是原点,其坐标为(0,0).故答案是:(0,0).【点评】考查了反比例函数的图象.反比例函数图象是双曲线,它既是轴对称图形,也是中心对称图形.13.已知反比例函数y=的图象如图,则一元二次方程x2﹣(2k﹣1)x+k2﹣1=0根的情况是无实数根.【分析】首先根据反比例函数的性质求得k的取值范围,从而利用根的判别式确定方程的根的情况即可.【解答】解:∵反比例函数y=的图象位于第一、第三象限,∴k﹣2>0,解得:k>2,∴关于x的一元二次方程x2﹣(2k﹣1)x+k2﹣1=0根中△=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5<0,∴方程无实数根,故答案为:无实数根.【点评】本题考查了反比例函数的性质及根的判别式的知识,解题的关键是能够根据反比例函数的性质确定k的取值范围,难度不大.14.一次函数y=ax+b和反比例函数y=在同一坐标系内的大致图象如图所示,则a<0,b>0.【分析】利用一次函数和反比例函数的性质求解.【解答】解:∵反比例函数图象分布在第一、三象限,∴b>0,∵一次函数图象经过第一、二、四象限,∴a<0.故答案为<,>.【点评】本题考查了反比例函数的图象:反比例函数y=的图象为双曲线,当k >0,图象分布在第一、三象限;当k<0,图象分布在第二、四象限;也考查了一次函数的图象.15.如果反比例函数的图象经过点(﹣3,﹣4),那么函数的图象在第一、三象限.【分析】让点的横纵坐标相乘即为反比例函数的比例系数,根据比例系数的符号即可判断反比例函数的两个分支所在的象限.【解答】解:设反比例函数解析式为y=,∵反比例函数的图象经过点(﹣3,﹣4),∴k=﹣3×(﹣4)=12,∴函数的图象在第一、三象限.故答案是:一、三.【点评】用到的知识点为:反比例函数的比例系数等于在它上面的点的横纵坐标的积;比例系数大于0,反比例函数的两个分支在一、三象限.16.已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是k<1.【分析】由于反比例函数y=的图象有一支在第二象限,可得k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1.故答案为:k<1.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.17.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为(,0).【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B 的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故答案为(,0).【点评】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.18.如图,正方形OABC的边长为2,反比例函数y=过点B,则该反比例函数的解析式为y=.【分析】利用正方形的性质得到B点坐标,然后把B点坐标代入y=中求出k 即可.【解答】解:∵正方形OABC的边长为2,∴B点坐标为(﹣2,2),把B(﹣2,2)代入y=得k=﹣2×2=﹣4,∴该反比例函数的解析式为y=﹣.故答案为y=﹣.【点评】本题考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.三.解答题(共7小题)19.如图,在△ABC中,AC=BC=5,AB=8,AB⊥x轴,垂足为A,反比例函数y=(x>0)的图象经过点C,交AB于点D.(1)若OA=AB,求k的值;(2)若BC=BD,连接OC,求△OAC的面积.【分析】(1)过点C作CE⊥AB于点E,CF⊥OA于F,则CF=AE.由AB=8,AC=BC,CE⊥AB,可得AE=BE=CF=4,可求C点坐标,即可求k的值.(2)设A点坐标为(m,0),则C,D两点坐标分别为(m﹣3,4),(m,3),由C,D是反比例函数y=(x>0)的图象上的点.可求m的值,即可求A,C坐标,可得△OAC的面积.【解答】解:(1)过点C作CE⊥AB于点E,CF⊥OA于F,则CF=AE∵AB=8,AC=BC,CE⊥AB∴BE=AE=CF=4∵AB=BC=5∴CE=3∵OA=AB=8∴OF=5∴点C(5,4)∵点C在y=图象上∴k=20(2)∵BC=BD=5,AB=8∴AD=3设A点坐标为(m,0),则C,D两点坐标分别为(m﹣3,4),(m,3)∵C,D在y=图象上∴4(m﹣3)=3m∴m=12∴A(12,0),C(9,4),D(12,3)=×12×4=24∴S△AOC【点评】本题考查了反比例函数系数k的几何意义,等腰三角形的性质,关键是熟练运用反比例函数的性质解决问题.20.如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P(1,4)在C1上,PA⊥x轴于点A,交C2于点B(1,m),求k,m的值及△POB的面积.【分析】把P点坐标代入y=中可求出k的值,把B(1,m)代入y=可计算出m的值,由于S=S△POA﹣S△BOA,则可根据反比例函数的比例系数k的几△POB何意义进行计算.【解答】解:把P(1,4)代入y=得k=1×4=4,把B(1,m)代入y=得m=2,S△POB=S△POA﹣S△BOA=×|4|﹣×|2|=1.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.21.如图,反比例函数的图象在第一象限内经过点A,过点A分别向x轴、y轴作垂线,垂足分别P、Q,若AP=3,AQ=1,求这个反比例函数的解析式.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系S=|k|即可求出k的值,再由函数所在的象限确定函数的解析式.=|k|=3×1=3;【解答】解:由题意得:S四边形APOQ又由于函数图象位于第一象限,k>0,则k=3.所以这个反比例函数的解析式为y=.【点评】本题主要考查了反比例函数y=(k是不等于零的常数)中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.22.已知y+1是x的反比例函数,当x=3时,y=7.(1)写出y与x的函数关系式;(2)求当x=7时y的值.【分析】(1)利用反比例函数的定义得到,设y+1=,把x=3,y=7代入求出k即可得到y与x的函数关系式;(2)计算自变量为7对应的函数值即可.【解答】解:(1)设y+1=,当x=3时,y=7,所以7+1=,解得k=24,∴y=﹣1;(2)当x=7时,y=﹣1=﹣1=【点评】本题考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.23.如图,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点,交x轴于点C.(1)求m、n的值;(2)请直接写出不等式kx+b<的解集;(3)将x轴下方的图象沿x轴翻折,点B落在点B′处,连接AB′、B′C,求△AB′C 的面积.【分析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题,写出直线的图象在反比例函数的图象下方的自变量的取值范围即可;(3)首先证明∠ACB′=90°,求出CB′,AC即可解决问题;【解答】解:(1)把点A(2,4)代入y=,得到m=8,把B(﹣4,n)代入y=得到n=﹣2,∴m=8,n=﹣2(2)观察图象可知:不等式kx+b<的解集为:x<﹣4或0<x<2;(3)如图,设AB交y轴于D.把A(2,4),B(﹣4,﹣2)代入y=kx+b,得到,解得,∴直线AB的解析式为y=x+2,∴D(0,2),C(﹣2,0),∴OC=OD=2,∴∠DCO=45°,∵B与B′关于x轴对称,∴BC=CB′,∠DCB′=90°,∴BC=2,AC=4,∴△ACB′的面积=××=8.【点评】本题考查一次函数与反比例函数的交点问题,待定系数法等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.如图,⊙O的直径AB=12cm,AM和BN是它的两条切线,DE切⊙O于E,交AM于D,BN于C,设AD=x,BC=y,求y与x的函数关系式.【分析】根据切线长定理得到BF=AD=x,CE=CB=y,则DC=DE+CE=x+y,在直角△DFC中根据勾股定理,就可以求出y与x的关系.【解答】解:作DF⊥BN交BC于F;∵AM、BN与⊙O切于点定A、B,∴AB⊥AM,AB⊥BN.又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四边形ABFD是矩形,∴BF=AD=x,DF=AB=12,∵BC=y,∴FC=BC﹣BF=y﹣x;∵DE切⊙O于E,∴DE=DA=x CE=CB=y,则DC=DE+CE=x+y,在Rt△DFC中,由勾股定理得:(x+y)2=(y﹣x)2+122,整理为,∴y与x的函数关系式是.【点评】本题主要考查了切线长定理.梯形的面积可以通过作高线转化为直角三角形的问题.25.某工厂现有煤200吨,这些煤能烧的天数y与平均每天烧煤的吨数x之间的函数关系式是y=.【分析】这些煤能烧的天数=煤的总吨数÷平均每天烧煤的吨数,把相关数值代入即可.【解答】解:∵煤的总吨数为200,平均每天烧煤的吨数为x,∴这些煤能烧的天数为y=,故答案为.【点评】考查列反比例函数关系式,得到这些煤能烧的天数的等量关系是解决本题的关键.。
2022-2023学年人教版九年级下册数学 第二十六章反比例函数 章节测试卷
九年级下册数学《第二十六章反比例函数》章节测试卷测试时间:120分钟试卷满分:120分一.选择题(共10小题,共30分)1.(2022秋•招远市期中)下列函数中,y是x的反比例函数的有()个.①y=−1x;①y=3x;①xy=﹣1;①y=3x;①y=2x−1;①y=1x−1.A.2B.3C.4D.52.(2022秋•沈河区校级期中)关于反比例函数y=−4x下列说法正确的是()A.图象经过点(﹣2,﹣2)B.图象分别在第一、三象限C.在每个象限内,y随x的增大而增大D.当y≤1时,x≤﹣43.(2022•鹿城区校级开学)如图,A为反比例函数y=kx(k>0)图象上一点,AB①x轴于点B,若S①AOB=3,则k的值为()A.1.5B.3C.√3D.64.(2022秋•晋州市期中)在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣k(k为常数,且k≠0)的图象可能是()A .B .C .D .5.(2022•鼓楼区校级模拟)在平面直角坐标系中,若一个反比例函数的图象经过A (m ,6),B (5,n )两点,则m ,n 一定满足的关系式是( ) A .m ﹣n =1B .m n=56C .m n=65D .mn =306.(2022秋•石阡县期中)若P 1(x 1,y 1),P 2(x 2,y 2)是反比例函数y =−6x的图象上的两点,且x 1<x 2<0,则( ) A .0<y 2<y 1B .0<y 1<y 2C .y 1<0<y 2D .y 2<0<y 17.(2022秋•虹口区校级期中)下列函数中,y 的值随x 值的增大而增大的函数是( ) A .y =2xB .y =﹣2x +1C .y =x ﹣2D .y =﹣x ﹣28.(2022春•丰城市校级期末)如图已知反比例函数C 1:y =k x(k <0)的图象如图所示,将该曲线绕点O 顺时针旋转45°得到曲线C 2,点N 是曲线C 2上一点,点M 在直线y =﹣x 上,连接MN 、ON ,若MN =ON ,①MON 的面积为2√3,则k 的值为( )A.﹣2B.﹣4C.−2√3D.−4√39.(2022秋•平桂区期中)如图,正比例函数y1=k1x的图象与反比例函数y2=k2x的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>310.(2022秋•覃塘区期中)如图,已知点A(﹣1,6)在双曲线y=kx(x<0)上,动点P在y轴正半轴上,将点A绕点P逆时针旋转90°,点A的对应点为B,若点B恰好落在双曲线上,则点P的坐标为()A.(0,3)B.(3,0)或(4,0)C.(0,2)或(0,6)D.(0,3)或(0,4)二.填空题(共8小题,共24分)11.(2022秋•蜀山区校级月考)若函数y=(m−1)x m2−2是反比例函数,则m的值是.12.(2022秋•澧县期中)若反比例函数y=kx的图象经过点(﹣2,32),则此函数的解析式为.13.(2022秋•固镇县校级期中)如图,点P(x,y)在双曲线y=kx的图象上,P A①x轴,垂足为A,若S①AOP=4,则该反比例函数的表达式为.14.(2022秋•淄川区月考)在反比例y=k−1x的图象的每一支上,y都随x的增大而减小,且整式x2﹣kx+4是一个完全平方式,则该反比例函数的解析式为.15.(2022秋•冷水滩区校级月考)已知y关于x的函数表达式是y=a−1x,且x=2时,y=3,则a的值为.16.(2022秋•滁州期中)如图,双曲线y=kx(x>0)与正方形ABCD的边BC交于点E,与边CD交于点F,且BE=3CE,A(4,0),B(8,0),则CF=.17.(2022秋•莱阳市期中)如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=kx(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为.18.(2022春•锡山区期末)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 2+S 3=20,则S 1的值为 .三.解答题(共66分)19.(6分)(2022秋•德江县期中)已知反比例函数y =kx (k ≠0)的图象经过点A (2,6). (1)求这个函数的表达式;(2)点B (10,65),C (﹣3,﹣5)是否在这个函数的图象上?20.(7分)(2022秋•青浦区校级期中)已知:y =y 1﹣y 2,并且y 1与x 成正比例,y 2与(x ﹣2)成反比例,且当x =﹣2时,y =﹣7,当x =3时,y =13,求: (1)求y 与x 之间的函数解析式; (2)求当x =√2时的函数值.21.(7分)(2022•游仙区校级二模)如图,菱形ABOC在平面直角坐标系中,边OB在x轴的负半轴上,点C在反比例函数y=kx(k≠0)的图象上.若AB=2,①A=60°,求反比例函数的解析式.22.(9分)(2022秋•中山区月考)某气球内充满了一定量的气体,当温度不变时,气球内气体的压强P(kPa)是气体体积V(m3)的反比例函数,其图象过点A(0.8,120)如图所示.(1)求这一函数的表达式;(2)当气体压强为48kPa时,求V的值;(3)当气球内的体积小于0.6m3时,气球将爆炸,为了安全起见,气体的最大压强为多少?23.(9分)(2022秋•中原区月考)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=m x的图象的两个交点.(1)求反比例函数和一次函数的函数关系式;(2)求①AOB的面积;(3)求出反比例函数大于一次函数的解集.24.(8分)(2022秋•如皋市期中)如图,矩形ABCD的两边AD,AB的长分别为3,8.边BC落在x轴上,E是AB的中点,连接DE,反比例函数y=mx的图象经过点E,与CD交于点F.(1)若B(3,0),求F点坐标;(2)若DF=DE,求反比例函数的解析式.25.(8分)(2022秋•虹口区校级期中)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=1x和y=9x在第一象限的图象于点A,B,过点B作BD①x轴于点D,交y=1x的图象于点C,联结AC,若①ABC是等腰三角形,求k的值.26.(12分)(2022秋•青浦区校级期中)如图,A为反比例函数y=kx(k<0)的图象上一点,AP①y轴,垂足为P.(1)联结AO,当S①APO=2时,求反比例函数的解析式;(2)联结AO,若A(﹣1,2),y轴上是否存在点M,使得S①APM=S①APO,若存在,求出M的坐标:若不存在,说明理由,(3)点B在直线AP上,且PB=3P A,过点B作直线BC①y轴,交反比例函数的图象于点C,若①P AC的面积为4,求k的值.九年级下册数学《第二十六章反比例函数》章节测试卷解析版测试时间:120分钟试卷满分:120分三.选择题(共10小题,共30分)1.(2022秋•招远市期中)下列函数中,y是x的反比例函数的有()个.①y=−1x;①y=3x;①xy=﹣1;①y=3x;①y=2x−1;①y=1x−1.A.2B.3C.4D.5【分析】根据反比例函数的定义(形如y=kx(k为常数,k≠0)的函数称为反比例函数)逐一判断即可得答案.【解答】解:①y=−1x,符合反比例函数的定义,是反比例函数;①y=3x,符合反比例函数的定义,是反比例函数;①xy=﹣1,符合反比例函数的定义,是反比例函数;①y=3x,不符合反比例函数的定义,不是反比例函数;①y=2x−1,不符合反比例函数的定义,不是反比例函数;①y=1x−1,不符合反比例函数的定义,不是反比例函数.故选:B.【点评】本题考查了反比例函数的定义,形如y=kx(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.2.(2022秋•沈河区校级期中)关于反比例函数y=−4x下列说法正确的是()A.图象经过点(﹣2,﹣2)B.图象分别在第一、三象限C.在每个象限内,y随x的增大而增大D.当y≤1时,x≤﹣4【分析】根据反比例函数的性质对各选项进行逐一分析即可.【解答】解:A、①(﹣2)×(﹣2)=4≠﹣4,①图象不经过点(﹣2,﹣2),故本选项不符合题意;B 、①﹣4<0,①图象分别在第二、四象限,故本选项不符合题意; C 、①﹣4<0,①在每个象限内,y 随x 的增大而增大,故本选项符合题意; D 、当0<y ≤1时,x ≤﹣4,故本选项不符合题意. 故选:C .【点评】本题考查的是反比例函数的性质,熟知反比例函数y =kx(k ≠0)的图象是双曲线;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大是解题的关键.3.(2022•鹿城区校级开学)如图,A 为反比例函数y =kx (k >0)图象上一点,AB ①x 轴于点B ,若S ①AOB =3,则k 的值为( )A .1.5B .3C .√3D .6【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S =12|k |.【解答】解:由于点A 是反比例函数y =k x图象上一点,则S ①AOB =12|k |=3; 又由于k >0,则k =6. 故选:D .【点评】本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得三角形面积为12|k |,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.4.(2022秋•晋州市期中)在同一平面直角坐标系中,反比例函数y=kx与一次函数y=kx﹣k(k为常数,且k≠0)的图象可能是()A.B.C.D.【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:A、①由反比例函数的图象在一、三象限可知,k>0,①﹣k<0,①一次函数y=kx﹣k的图象应该经过一、三、四象限,故本选项不符合题意;B、①由反比例函数的图象在二、四象限可知,k<0,①﹣k>0,①一次函数y=kx﹣k的图象应该经过一、二、四象限,故本选项符合题意;C、①由反比例函数的图象在二、四象限可知,k<0,①﹣k>0,①一次函数y=kx﹣k的图象应该经过一、二、四象限,故本选项不符合题意;D、①由反比例函数的图象在一、三象限可知,k>0,①﹣k<0,①一次函数y=kx﹣k的图象应该经过一、三、四象限,故本选项不符合题意;故选:B.【点评】本题考查的是反比例函数及一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.5.(2022•鼓楼区校级模拟)在平面直角坐标系中,若一个反比例函数的图象经过A(m,6),B(5,n)两点,则m,n一定满足的关系式是()A .m ﹣n =1B .m n=56C .m n=65D .mn =30【分析】设该函数解析式为y =k x,由题意可得6m =5n =k ,可求得此题结果. 【解答】解:设该函数解析式为y =kx ,由题意可得: 6m =5n =k , 即6m =5n , 解得m n=56,故选:B .【点评】此题考查了运用待定系数法求反比例函数解析式解决相关问题的能力,关键是能灵活运用该方法进行变式求解.6.(2022秋•石阡县期中)若P 1(x 1,y 1),P 2(x 2,y 2)是反比例函数y =−6x的图象上的两点,且x 1<x 2<0,则( ) A .0<y 2<y 1B .0<y 1<y 2C .y 1<0<y 2D .y 2<0<y 1【分析】根据反比例函数的性质和增减性,结合横坐标的大小和正负,即可得到答案. 【解答】解:①反比例函数y =−6x ,k <0, ①x <0时,y >0,y 随着x 的增大而增大, 又①x 1<x 2<0, ①0<y 1<y 2. 故选:B .【点评】本题考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的性质和增减性是解题的关键.7.(2022秋•虹口区校级期中)下列函数中,y 的值随x 值的增大而增大的函数是( ) A .y =2xB .y =﹣2x +1C .y =x ﹣2D .y =﹣x ﹣2【分析】根据一次函数和反比例函数的性质分别进行判断即可.【解答】解:A、y=2x是反比例函数,k=2>0,在每个象限内,y随x的增大而减小,所以A选项不合题意;B、y=﹣2x+1是一次函数,k=﹣2<0,y随x的增大而减小,所以B选项不合题意;C、y=x﹣2是一次函数,k=1>0,y随x的增大而增大,所以C选项符合题意;D、y=﹣x﹣2是一次函数,k=﹣1<0,y随x的增大而减小,所以D选项不合题意.故选:C.【点评】本题考查了反比例函数的性质,一次函数的性质,熟练掌握反比例函数与一次函数的性质是解题的关键.8.(2022春•丰城市校级期末)如图已知反比例函数C1:y=kx(k<0)的图象如图所示,将该曲线绕点O顺时针旋转45°得到曲线C2,点N是曲线C2上一点,点M在直线y=﹣x上,连接MN、ON,若MN=ON,①MON的面积为2√3,则k的值为()A.﹣2B.﹣4C.−2√3D.−4√3【分析】将直线y=﹣x和曲线C2绕点O逆时针旋转45°,则直线y=﹣x与x轴重合,曲线C2与曲线C1重合,即可求解.【解答】解:①将直线y=﹣x和曲线C2绕点O逆时针旋转45°后直线y=﹣x与x轴重合,①旋转后点N落在曲线C1上,点M落在x轴上,如图所示,设点M和点N的对应点分别为点M'和N',过点N'作N'P①x轴于点P,连接ON',M'N',①MN=ON,①M'N'=ON',M'P=OP,①S①MON=2S①PN'O=2×12|k|=|k|=2√3,①k<0,①k=﹣2√3.故选:C.【点评】本题考查了反比例函数比例系数k的几何意义、旋转的性质,体现了直观想象、逻辑推理的核心素养.9.(2022秋•平桂区期中)如图,正比例函数y1=k1x的图象与反比例函数y2=k2x的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>3【分析】由正、反比例的对称性结合点A的横坐标即可得出点B的横坐标,根据函数图象的上下位置关系结合交点的横坐标,即可得出不等式y1<y2的解集.【解答】解:①正比例函数与反比例函数的图象均关于原点对称,点A的横坐标为3,①点B的横坐标为﹣3.观察函数图象,发现:当0<x<3或x<﹣3时,正比例函数图象在反比例函数图象的下方,①当y1<y2时,x的取值范围是x<﹣3或0<x<3.故选:B.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是找出点B的横坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数的对称性找出两函数交点的横坐标,再根据函数图象的上下位置关系结合交点的横坐标解决不等式是关键.10.(2022秋•覃塘区期中)如图,已知点A(﹣1,6)在双曲线y=kx(x<0)上,动点P在y轴正半轴上,将点A绕点P逆时针旋转90°,点A的对应点为B,若点B恰好落在双曲线上,则点P的坐标为()A.(0,3)B.(3,0)或(4,0)C.(0,2)或(0,6)D.(0,3)或(0,4)【分析】先把A(﹣1,6)代入反比例函数y=kx(x<0)求出k的值,分别过A、B两点作x轴的垂线AC,BD,由旋转的性质证明①APC①①PBD,再设P(0,m),即可得出B 的坐标,由双曲线上的点横坐标与纵坐标的积即相等,列方程求m的值,确定P点坐标.【解答】解:分别过A 、B 两点作AC ①y 轴,BD ①y 轴,垂足为C 、D ,①A (﹣1,6)是双曲线y =k x(x <0)上一点, ①k =﹣6,①反比例函数的解析式为y =−6x , ①①APB =90°, ①①APC +①BPD =90°, 又①APC +①P AC =90°, ①①P AC =①BPD , 在①APC 和①PBD 中, {∠PAC =∠BPD∠ACP =∠PDB =90°AP =PB, ①①APC ①①PBD (AAS ), ①CP =BD ,AC =PD =1, 设P (0,m ), ①OP =m , ①PC =6﹣m , ①B (m ﹣6,m ﹣1), ①点B 在双曲线上,①m ﹣1=−6m−6,解得m =3或m =4, ①P (0,3)或(0,4). 故选:D .【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 四.填空题(共8小题,共24分)11.(2022秋•蜀山区校级月考)若函数y =(m −1)x m2−2是反比例函数,则m 的值是 .【分析】形如y =kx(k 为常数,k ≠0)的函数称为反比例函数,由此即可判断. 【解答】解:因为函数y =(m ﹣1)x m 2−2是自变量为x 的反比例函数,所以m 2﹣2=﹣1,m ﹣1≠0, 所以m =﹣1. 故答案为:﹣1.【点评】本题考查反比例函数的定义,解题的关键是记住反比例函数的定义,属于中考基础题.12.(2022秋•澧县期中)若反比例函数y =kx 的图象经过点(﹣2,32),则此函数的解析式为 .【分析】把(﹣2,32)代入y =kx 中求出k 即可得到反比例函数解析式,【解答】解:把(﹣2,32)代入y =kx 中,得32=k−2,解得k =﹣3,所以反比例函数解析式为y =−3x . 故答案为:y =−3x .【点评】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,熟知待定系数法是解题的关键.13.(2022秋•固镇县校级期中)如图,点P (x ,y )在双曲线y =kx的图象上,P A ①x 轴,垂足为A ,若S ①AOP =4,则该反比例函数的表达式为 .【分析】根据反比例函数的几何意义解答即可.【解答】解:①点P (x ,y )在双曲线y =kx 的图象上,P A ①x 轴, ①xy =k ,OA =﹣x ,P A =y . ①S ①AOP =4, ①12AO •P A =4.①﹣x •y =8. ①xy =﹣8, ①k =xy =﹣8.①该反比例函数的解析式为xy 8﹣=.故答案为:xy 8﹣=.【点评】本题主要考查了反比例函数的几何意义,反比例函数图象上点的坐标的特征,待定系数法,利用点的坐标表示出相应线段的长度是解题的关键.14.(2022秋•淄川区月考)在反比例y =k−1x 的图象的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =k−1x 的图象的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:①整式x2﹣kx+4是一个完全平方式,①k=±4,①反比例函数y=k−1x的图象的每一支上,y都随x的增大而减小,①k﹣1>0,解得k>1,①k=4,①反比例函数的解析式为y=3 x.故答案为:y=3 x.【点评】本题考查反比例函数的图象与性质、完全平方式,熟练掌握反比例函数的图象与性质、完全平方式是解答本题的关键.15.(2022秋•冷水滩区校级月考)已知y关于x的函数表达式是y=a−1x,且x=2时,y=3,则a的值为.【分析】将x=2,y=3代入y=a−1x即可求出a的值.【解答】解:将x=2,y=3代入y=a−1x得,3=a−12,解得a=7,故答案为:7.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的图象上点的坐标特征是解题的关键.16.(2022秋•滁州期中)如图,双曲线y=kx(x>0)与正方形ABCD的边BC交于点E,与边CD交于点F,且BE=3CE,A(4,0),B(8,0),则CF=.【分析】直接利用已知点坐标得出AB=4,则AD=BC=4,F点纵坐标为4,进而利用反比例函数图象上点的坐标特点得出答案.【解答】解:①A(4,0),B(8,0),四边形ABCD是正方形,①AB=4,则AD=BC=4,F点纵坐标为4,①BE=3CE,①BE=3,EC=1,①E(8,3),故k=8×3=24,则设F点横坐标为m,故4m=24,解得:m=6,故FC=8﹣6=2.故答案为:2.【点评】此题主要考查了反比例函数图象上点的坐标特点,正确得出E点坐标是解题关键.17.(2022秋•莱阳市期中)如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=kx(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为.【分析】延长AC交x轴于E,则AE①OC,根据菱形的性质以及勾股定理得出AB=OC=OB=5,即可得出A点坐标,进而求出k的值即可.【解答】解:延长AC交x轴于E,如图所示:则AE①x轴,①C的坐标为(4,3),①OE=4,CE=3,①OC=√42+32=5,①四边形OBAC是菱形,①AB=OB=OC=AC=5,①AE=5+3=8,①点A的坐标为(4,8),把A(4,8)代入函数y=kx(x>0)得:k=4×8=32;故答案为:32.【点评】此题主要考查了菱形的性质、勾股定理和反比例函数图象上点的坐标性质;得出A点坐标是解题关键.18.(2022春•锡山区期末)点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S2+S3=20,则S1的值为.【分析】根据CD =DE =OE 以及反比例函数系数k 的几何意义得到S 1=13k ,S 四边形OGQD =k ,列方程即可得到结论.【解答】解:①CD =DE =OE ,①S 1=13k ,S 四边形OGQD =k ,①S 2=13(k −13k ×2)=k 6,S 3=k −13k −16k =12k ,①16k +12k =20, ①k =30,①S 1=13k =10,故答案为:10.【点评】本题考查反比例函数系数k 的几何意义,矩形的性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.三.解答题(共66分)19.(6分)(2022秋•德江县期中)已知反比例函数y =k x (k ≠0)的图象经过点A (2,6).(1)求这个函数的表达式;(2)点B (10,65),C (﹣3,﹣5)是否在这个函数的图象上?【分析】(1)首先设这个反比例函数的解析式为y =k x(k ≠0),再把点A (2,6)的坐标代入函数关系式,即可算出k 的值,进而可得函数关系式;(2)只要把点B (10,65),C (﹣3,﹣5)分别代入(1)中求出的函数关系式,满足关系式,就是函数图象上的点,反之则不在.【解答】解:(1)设这个反比例函数的解析式为y =k x(k ≠0),依题意得:6=k 2,①k =12,故这个反比例函数解析式为y =12x ;(2)由(1)求得:y =12x ,当x =10时,y =65,当x =﹣3时,y =﹣4,①点B (10,65)在这个函数图象上,C (﹣3,﹣5)不在这个函数的图象上. 【点评】此题主要考查了利用待定系数法求反比例函数解析式,正确求出函数解析式是解题关键.20.(7分)(2022秋•青浦区校级期中)已知:y =y 1﹣y 2,并且y 1与x 成正比例,y 2与(x ﹣2)成反比例,且当x =﹣2时,y =﹣7,当x =3时,y =13,求:(1)求y 与x 之间的函数解析式;(2)求当x =√2时的函数值.【分析】(1)设y 1=kx ,y 2=m x−2,则y =kx −m x−2,然后利用待定系数法即可求得;(2)把x =√2代入(1)求得函数解析式求解.【解答】解:(1)设y 1=kx ,y 2=m x−2,则y =kx −m x−2, 根据题意得:{−2k +m 4=−73k −m =13, 解得:{k =3m =−4, 则函数解析式是:y =3x +4x−2;(2)当x =√2时,y =3√2+√2−2=√2−4. 【点评】本题考查了待定系数法求函数的解析式,注意在本题中的正比例系数和反比例系数是两个不同的值,用不同的字母区分.21.(7分)(2022•游仙区校级二模)如图,菱形ABOC 在平面直角坐标系中,边OB 在x 轴的负半轴上,点C 在反比例函数y =k x(k ≠0)的图象上.若AB =2,①A =60°,求反比例函数的解析式.【分析】连接BC ,过C 作CD ①OB 于D ,根据菱形的性质得出OC =AB =2,①COB =①A =60°,根据直角三角形的性质求出OD 和CD ,得出点C 的坐标,再代入反比例函数的解析式y =kx 即可.【解答】解:连接BC ,过C 作CD ①OB 于D ,则①CDO =90°,①四边形ABOC 是菱形,AB =2,①A =60°,①OC =AB =2,①COB =①A =60°,①①DCO =30°,①OD=12OC=1,①CD=√OC2−OD2=√22−12=√3,①点C的坐标是(﹣1,√3),①点C在反比例函数y=kx(k≠0)的图象上,①k=(﹣1)×√3=−√3,∴反比例函数的解析式是y=−√3 x,【点评】本题考查了菱形的性质,反比例函数图象上点的坐标特征,用待定系数法求反比例函数的解析式,直角三角形的性质等知识点,能求出点C的坐标是解此题的关键.,22.(9分)(2022秋•中山区月考)某气球内充满了一定量的气体,当温度不变时,气球内气体的压强P(kPa)是气体体积V(m3)的反比例函数,其图象过点A(0.8,120)如图所示.(1)求这一函数的表达式;(2)当气体压强为48kPa时,求V的值;(3)当气球内的体积小于0.6m3时,气球将爆炸,为了安全起见,气体的最大压强为多少?【分析】(1)设函数解析式为P=kv,把点(0.8,120)的坐标代入函数解析式求出k值,即可求出函数关系式;(2)将P=48代入(1)中的函数式中,可求气球的体积V.(3)依题意V =0.6,即 96P =0.6,求解即可.【解答】解:(1)设P 与V 的函数关系式为P =k v ,则 k =0.8×120,解得k =96,①函数关系式为P =96v .(2)将P =48代入P =96v 中, 得96v =48,解得V =2,①当气球内的气压为48kPa 时,气球的体积为2立方米.(3)当V =0.6m 3时,气球将爆炸,①V =0.6,即96P =0.6,解得 P =160kpa故为了安全起见,气体的压强不大于160kPa .【点评】本题考查了反比例函数的实际应用,关键是建立函数关系式,并会运用函数关系式解答题目的问题.23.(9分)(2022秋•中原区月考)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y =kx +b 的图象和反比例函数y =m x 的 图象的两个交点.(1)求反比例函数和一次函数的函数关系式;(2)求①AOB 的面积;(3)求出反比例函数大于一次函数的解集.【分析】(1)先把B 点坐标代入反比例函数的解析式中求得反比例解析式,再求A 点坐标,最后用待定系数法求出一次函数的解析式;(2)求出AB 与x 轴的交点C 的坐标,再由OC 求三角形面积;(3)根据函数图象便可求解.【解答】解:(1)把B (2,﹣4)代入y =m x 中,得﹣4=m 2, 解得m =﹣8,①反比例函数的解析式为:y =−8x ,把A (﹣4,n )代入y =−8x 中,得n =−8−4=2,①A (﹣4,2),把A (﹣4,2),B (2,﹣4)代入y =kx +b 中,得{−4k +b =22k +b =−4, 解得{k =−1b =−2, ①一次函数的解析式为:y =﹣x ﹣2;(2)在y =﹣x ﹣2中,令y =0,则﹣x ﹣2=0,解得x =﹣2,①C (﹣2,0),①OC =2,①S ①AOB =S ①AOC +S ①BOC =12×2×(2+4)=6; (3)由函数图象可知,反比例函数大于一次函数的解集为﹣4<x <0或x >2.【点评】本题是反比例函数与一次函数的交点问题,主要考查了待定系数法求函数解析式,利用函数图象求不等式的解集,求三角形的面积,此题难度适中,注意掌握数形结合思想的应用.24.(8分)(2022秋•如皋市期中)如图,矩形ABCD 的两边AD ,AB 的长分别为3,8.边BC 落在x 轴上,E 是AB 的中点,连接DE ,反比例函数y =m x 的图象经过点E ,与CD 交于点F .(1)若B (3,0),求F 点坐标;(2)若DF =DE ,求反比例函数的解析式.【分析】(1)先求得点E 的坐标为(3,4),然后利用待定系数法求得m ,进一步即可求得点F 的坐标.(2)在Rt①ADE 中,利用勾股定理可求出AE 的长,由DF =DE ,BC =3可得出点E 的坐标为(m 3−3,4),再利用反比例函数图象上点的坐标特征,可得出关于m 的一元一次方程,解之即可得出m 的值,进而可得出反比例函数的表达式.【解答】解:(1)①反比例函数y =m x 的图象经过点E ,E 是AB 的中点,AB =8, ①BE =4,①B (3,0),①E (3,4),①反比例函数y =m x的图象经过点E , ①m =3×4=12,①y =12x ,①BC =AD =3,①OC =6, 把x =6代入y =12x 得y =2,①点F 的坐标为(6,2);(2)在Rt①ADE 中,AD =3,AE =4,①A =90°,①DE =5.①DF =DE ,①DF =5,①CF =8﹣5=3,①点E 的坐标为(m 3−3,4).①反比例函数y =m x 的图象经过点F ,①4×(m 3−3)=m ,解得:m =36,①反比例函数的表达式为y =36x .【点评】本题考查了矩形的性质、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、勾股定理,解题的关键是利用含m 的代数式表示出点E ,F 的坐标.25.(8分)(2022秋•虹口区校级期中)如图,在平面直角坐标系xOy 中,已知直线y =kx (k >0)分别交反比例函数y =1x 和y =9x 在第一象限的图象于点A ,B ,过点B 作BD ①x 轴于点D ,交y =1x 的图象于点C ,联结AC ,若①ABC 是等腰三角形,求k 的值.【分析】根据一次函数和反比例函数的解析式,即可求得点A、B、C的坐标(用k表示),再讨论①AB=BC,①AC=BC,即可解题.【解答】解:①点B是y=kx和y=9x的交点,则kx=9x,①点B坐标为(√k,3√k),同理可求出点A的坐标为(√k,√k),①BD①x轴,①点C(√k ,√k3),①BA=√4k+4k,AC=√4k+4k9,BC=83√k,①BA2≠AC2,①BA≠AC,若①ABC是等腰三角形,①AB=BC,则√4k+4k=83√k,解得k=3√7 7;①AC=BC,则√4k+4k9=83√k,解得k=√15 5;故k 的值为3√77或√155. 【点评】本题考查了点的坐标的计算,考查了一次函数和反比例函数交点的计算,本题中用k 表示点A 、B 、C 坐标是解题的关键.26.(12分)(2022秋•青浦区校级期中)如图,A 为反比例函数y =k x (k <0)的图象上一点,AP ①y 轴,垂足为P .(1)联结AO ,当S ①APO =2时,求反比例函数的解析式;(2)联结AO ,若A (﹣1,2),y 轴上是否存在点M ,使得S ①APM =S ①APO ,若存在,求出M 的坐标:若不存在,说明理由,(3)点B 在直线AP 上,且PB =3P A ,过点B 作直线BC ①y 轴,交反比例函数的图象于点C ,若①P AC 的面积为4,求k 的值.【分析】(1)根据反比例函数系数k 的几何意义即可求解;(2)求得S ①APM =S ①APO =1,即可求得PM =2从而求得点M (0,4);(3)当B 点在P 点右侧,如图,设A (t ,k t ),则可表示出B (﹣3t ,k t ),C (﹣3t ,−k 3t),利用三角形面积公式得到12×(﹣t )×(k t+k 3t )=4;当B 点在P 点左侧,设A (t ,k t ),则可表示出B (3t ,k t ),C (3t ,k 3t ),利用三角形面积公式得到12×(﹣t )×(k t −k 3t )=4,然后分别解关于k 的方程即可.【解答】解:(1)①S ①APO =2,AP ①y 轴,①S ①APO =12|k |=2,①反比例函数的解析式为y =−4x ;(2)存在,理由如下:①A (﹣1,2),①AP =1,OP =2,①S ①APO =12×1×2=1, ①S ①APM =S ①APO =1,①12PM •AP =1, ①PM =2,①M (0,4);(3)当B 点在P 点右侧,如图,设A (t ,k t ), ①PB =3P A ,①B (﹣3t ,k t ), ①BC ①y 轴,①C (﹣3t ,−k 3t), ①①P AC 的面积为4,①12×(﹣t )×(k t +k 3t )=4,解得k =﹣6;当B 点在P 点左侧,设A (t ,k t ),①B (3t ,k t ), ①BC ①y 轴,①C (3t ,k 3t ), ①①P AC 的面积为4,①12×(﹣t )×(k t −k 3t )=4,解得k =﹣12;综上所述,k 的值为﹣6或﹣12.【点评】本题考查了反比例函数系数k 的几何意义:在反比例函数y =k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.也考查了反比例函数图象上点的坐标特征.。
九年级数学下《第26章反比例函数》单元测试题(新人教版附答案和解释)
新人教版九年级下册数学《第26章反比例函数》单元测试题一.选择题(共10小题)1.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3C.y=﹣D.y=x2﹣12.在同一平面直角坐标系中,函数y=kx与y=的图象大致是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)3.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小4.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1.7,则S1+S2等于()A.4B.4.2C.4.6D.55.下列各点中,在函数y=﹣图象上的是()A.(﹣3,﹣2)B.(﹣2,3)C.(3,2)D.(﹣3,3)6.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是()A.y=B.y=C.y=D.y=7.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),当y=x的函数值大于y=的函数值时,x的取值范围()A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>28.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=9.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(2,4)在其图象上,则(﹣2,4)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=x和y=﹣x成轴对称10.已知反比例函数y=(k≠0)的图象经过(﹣4,2),那么下列四个点中,在这个函数图象上的是()A.(1,8)B.(3,)C.(,6)D.(﹣2,﹣4)二.填空题(共8小题)11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大”,则此函数的表达式可以为.12.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,连接OA,OB,则△OAC与△OBD的面积之和为.13.已知A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,且x1<0<x2,则y1与y2大小关系是.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为(x>0).15.反比例函数y=的图象与正比例函数y=6x的图象交于点P(m,12),则反比例函数的关系式是.16.如图、点P在反比例函数y=的图象上,PM⊥y轴于M,S=4,则k=.△POM17.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.若点B在x轴上,点A的坐标为(6,4),则△BOC的面积为.18.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=图象上的三个点,则y1、y2、y3的大小关系是.三.解答题(共7小题)19.已知y=(m2+2m)x是关x于的反比例函数,求m的值及函数的解析式.20.已知反比例函数y=(m﹣2)(1)若它的图象位于第一、三象限,求m的值;(2)若它的图象在每一象限内y的值随x值的增大而增大,求m的值.21.已知双曲线y=如图所示,点A(﹣1,m),B(n,2).求S.△AOB22.如图,在平面直角坐标系中,Rt△ABC的边AB⊥x轴,垂足为A,C的坐标为(1,0),反比例函数y=(x>0)的图象经过BC的中点D,交AB于点E.已知AB=4,BC=5.求k的值.23.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.(1)求反比例函数的解析式;(2)直接写出当y<4时x的取值范围.24.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=,n=.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案).25.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上的一点,且△ABP的面积是3,求点P的坐标;(3)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.新人教版九年级下册数学《第26章反比例函数》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3C.y=﹣D.y=x2﹣1【分析】根据反比例函数的定义判断即可.【解答】解:A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选:C.【点评】本题考查的是反比例函数的定义,形如y=(k为常数,k≠0)的函数称为反比例函数.2.在同一平面直角坐标系中,函数y=kx与y=的图象大致是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)【分析】分k>0和k<0两种情况分类讨论即可确定正确的选项.【解答】解:当k>0时,函数y=kx的图象位于一、三象限,y=的图象位于一、三象限,(1)符合;当k<0时,函数y=kx的图象位于二、四象限,y=的图象位于二、四象限,(4)符合;故选:B.【点评】考查了反比例函数和正比例函数的性质,解题的关键是能够分类讨论,难度不大.3.已知反比例函数y =﹣,下列结论中不正确的是( )A .图象必经过点(﹣3,2)B .图象位于第二、四象限C .若x <﹣2,则0<y <3D .在每一个象限内,y 随x 值的增大而减小【分析】根据反比例函数的性质进行选择即可.【解答】解:A 、图象必经过点(﹣3,2),故A 正确;B 、图象位于第二、四象限,故B 正确;C 、若x <﹣2,则y <3,故C 正确;D 、在每一个象限内,y 随x 值的增大而增大,故D 正确;故选:D .【点评】本题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.4.如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1.7,则S 1+S 2等于( )A .4B .4.2C .4.6D .5【分析】根据反比例函数系数k 的几何意义可得S 四边形AEOF =4,S 四边形BDOC =4,根据S 1+S 2=S 四边形AEOF +S 四边形BDOC ﹣2×S 阴影,可求S 1+S 2的值.【解答】解:如图,∵A 、B 两点在双曲线y =上,∴S 四边形AEOF =4,S 四边形BDOC =4,∴S 1+S 2=S 四边形AEOF +S 四边形BDOC ﹣2×S 阴影,∴S 1+S 2=8﹣3.4=4.6故选:C .【点评】本题考查了反比例函数系数k 的几何意义,熟练掌握在反比例函数y =图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.5.下列各点中,在函数y =﹣图象上的是( )A .(﹣3,﹣2)B .(﹣2,3)C .(3,2)D .(﹣3,3)【分析】只需把所给点的横纵坐标相乘,结果是﹣6的,就在此函数图象上.【解答】解:∵反比例函数y =﹣中,k =﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上,四个选项中只有B 选项符合.故选:B .【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.6.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是( )A .y =B .y =C .y =D .y =【分析】利用待定系数法求出反比例函数解析式即可.【解答】解:设反比例函数解析式为y =(k ≠0),把(1,﹣2)代入得:k =﹣2,则反比例函数解析式为y =﹣,故选:D .【点评】此题考查了待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键.7.如图,正比例函数y =x 与反比例函数y =的图象交于A 、B 两点,其中A (2,2),当y =x 的函数值大于y =的函数值时,x 的取值范围( )A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>2【分析】由题意可求点B坐标,根据图象可求解.【解答】解:∵正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),∴点B坐标为(﹣2,﹣2)∴当x>2或﹣2<x<0故选:D.【点评】本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.8.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=【分析】先求得路程,再由等量关系“速度=路程÷时间”列出关系式即可.【解答】解:由于以80千米/时的平均速度用了6小时到达目的地,那么路程为80×6=480千米,∴汽车的速度v(千米/时)与时间t(小时)的函数关系为v=.故选:A.【点评】本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.9.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(2,4)在其图象上,则(﹣2,4)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=x和y=﹣x成轴对称【分析】根据反比例函数的性质一一判断即可;【解答】解:A、若点(2,4)在其图象上,则(﹣2,4)不在其图象上,故本选项不符合题意;B、当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C、错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D、正确,本选项符合题意,故选:D.【点评】本题考查反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.10.已知反比例函数y=(k≠0)的图象经过(﹣4,2),那么下列四个点中,在这个函数图象上的是()A.(1,8)B.(3,)C.(,6)D.(﹣2,﹣4)【分析】根据反比例函数y=(k≠0)的图象经过(﹣4,2),可以得到k的值,从而可以判断各个选项是否符合题意,本题得以解决.【解答】解:∵反比例函数y=(k≠0)的图象经过(﹣4,2),∴k=xy=(﹣4)×2=﹣8,∵1×8=8≠﹣8,故选项A不符合题意,∵3×(﹣)=﹣8,故选项B符合题意,∵×6=3≠﹣8,故选项C不符合题意,∵(﹣2)×(﹣4)=8≠﹣8,故选项D不符合题意,故选:B.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.二.填空题(共8小题)11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大”,则此函数的表达式可以为y=.【分析】根据题意和反比例函数的性质可以写出一个符合要求的函数解析式,本题得以解决.【解答】解:∵当x>0时,y随x的增大而增大,∴此函数的解析式可以为y =,故答案为:y =. 【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,写出相应的函数解析式,注意本题答案不唯一.12.如图,在平面直角坐标系xOy 中,函数y =(x >0)的图象经过点A ,B ,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,连接OA ,OB ,则△OAC 与△OBD 的面积之和为 2 .【分析】根据反比例函数比例系数k 的几何意义可得S △OAC =S △OBD =×2=1,再相加即可.【解答】解:∵函数y =(x >0)的图象经过点A ,B ,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,∴S △OAC =S △OBD =×2=1,∴S △OAC +S △OBD =1+1=2.故答案为2.【点评】本题考查了反比例函数比例系数k 的几何意义:过反比例函数图象上的点向x 轴或y 轴作垂线,这一点和垂足、原点组成的三角形的面积等于|k |.13.已知A (x 1,y 1),B (x 2,y 2)都在反比例函数的图象y =﹣上,且x 1<0<x 2,则y 1与y 2大小关系是 1>2 .【分析】将点A ,点B 坐标代入解析式,可求y 1,y 2,由x 1<0<x 2,可得y 1>0,y 2<0,即可得y 1与y 2大小关系.【解答】解:∵A (x 1,y 1),B (x 2,y 2)都在反比例函数的图象y =﹣上,∴y 1=,y 2=,∵x 1<0<x 2,∴y 1>0>y 2,故答案为:y 1>y 2【点评】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为y=﹣(x>0).【分析】根据关于x轴对称的性质得出点A关于x轴的对称点A′坐标(2,﹣1),从而得出C2对应的函数的表达式.【解答】解:∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A(2,1),∴A′坐标(2,﹣1),∴C2对应的函数的表达式为y=﹣,故答案为y=﹣.【点评】本题考查了反比例函数的性质,掌握关于x轴对称点的坐标是解题的关键.15.反比例函数y=的图象与正比例函数y=6x的图象交于点P(m,12),则反比例函数的关系式是y=.【分析】把点P(m,12)代入正比例函数y=6x得到关于m的一元一次方程,解之求得m的值,把P的坐标代入反比例函数y=,得到关于k的一元一次方程,解之,求得k的值,代入即可得到答案.【解答】解:把点P(m,12)代入正比例函数y=6x得:12=6m,解得:m=2,把点P(2,12)代入反比例函数y=得:12=,解得:k=24,即反比例函数得关系式是y=,故答案为:y=.【点评】本题考查了反比例函数和一次函数的交点问题,正确掌握代入法是解题的关键.16.如图、点P在反比例函数y=的图象上,PM⊥y轴于M,S=4,则k=﹣8.△POM【分析】此题可从反比例函数系数k的几何意义入手,△PMO的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=|k|再结合反比例函数所在的象限确定出k的值即可.=|k|=4,【解答】解:由题意知:S△PMO所以|k|=8,即k=±8.又反比例函数是第二象限的图象,k<0,所以k=﹣8,故答案为:﹣8.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.17.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.若点B在x轴上,点A的坐标为(6,4),则△BOC的面积为3.【分析】由于点A的坐标为(6,4),而点D为OA的中点,则D点坐标为(3,2),利用待定系数法科得到k=6,然后利用k的几何意义即可得到△BOC的面积=|k|=×6=3.【解答】解:∵点A的坐标为(6,4),而点D为OA的中点,∴D点坐标为(3,2),把D(3,2)代入y=得k=3×2=6,∴反比例函数的解析式为y=,∴△BOC的面积=|k|=×|6|=3.故答案为:3;【点评】本题考查了反比例y=(k≠0)数k的几何意义:过反比例函数图象上任意一点分别作x 轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.18.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=图象上的三个点,则y1、y2、y3的大小关系是y2>y3>y1.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可【解答】解:∵1>0,∴反比例函数y=图象在一、三象限,并且在每一象限内y随x的增大而减小,∵﹣1<0,∴A点在第三象限,∴y1<0,∵2>1>0,∴B、C两点在第一象限,∴y2>y3>0,∴y2>y3>y1.故答案是:y2>y3>y1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题(共7小题)19.已知y=(m2+2m)x是关x于的反比例函数,求m的值及函数的解析式.【分析】根据反比例函数的定义知m2+2m=﹣1,且m2+2m≠0,据此可以求得m的值,进而得出反比例函数的解析式.【解答】解:∵y=(m2+2m)x是反比例函数,∴m2+2m=﹣1,且m2+2m≠0,∴(m+1)(m+1)=0,∴m+1=0,即m=﹣1;∴反比例函数的解析式y=﹣x﹣1.【点评】本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx﹣1(k≠0)的形式.20.已知反比例函数y=(m﹣2)(1)若它的图象位于第一、三象限,求m的值;(2)若它的图象在每一象限内y的值随x值的增大而增大,求m的值.【分析】(1)根据反比例函数的定义与性质,得出,进而求解即可;(2)根据反比例函数的定义与性质,得出,进而求解即可.【解答】解:(1)由题意,可得,解得m=3;(2)由题意,可得,解得m=﹣2.【点评】本题考查了反比例函数的性质;用到的知识点为:反比例函数y =kx (k ≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.也考查了反比例函数的定义.21.已知双曲线y =如图所示,点A (﹣1,m ),B (n ,2).求S △AOB .【分析】根据点A 、B 两点在反比例函数图象上得其坐标,再根据S △AOB =S 矩形ODEC ﹣S △AOC ﹣S △BOD﹣S △ABE 可得答案.【解答】解:将点A (﹣1,m )、B (n ,2)代入y =,得:m =6、n =﹣3,如图,过点A 作x 轴的平行线,交y 轴于点C ,过点B 作y 轴的平行线,交x 轴于点D ,交CA 于点E ,则DE =OC =6、BD =2、BE =4、OD =3,AC =1、AE =2,∴S △AOB =S 矩形ODEC ﹣S △AOC ﹣S △BOD ﹣S △ABE=3×6﹣×1×6﹣×3×2﹣×2×4=8.【点评】本题主要考查反比例函数系数k 的几何意义,熟练掌握割补法求三角形的面积是解题的关键.22.如图,在平面直角坐标系中,Rt △ABC 的边AB ⊥x 轴,垂足为A ,C 的坐标为(1,0),反比例函数y =(x >0)的图象经过BC 的中点D ,交AB 于点E .已知AB =4,BC =5.求k 的值.【分析】根据勾股定理可求AC=3,则可求点A(4,0),可得点B(4,4),根据中点坐标公式可求点D坐标,把点D坐标代入解析式可求k的值.【解答】解:∵在Rt△ABC中,AB=4,BC=5∴AC===3∵点C坐标(1,0)∴OC=1∴OA=OC+AC=4∴点A坐标(4,0)∴点B(4,4)∵点C(1,0),点B(4,4)∴BC的中点D(,2)∵反比例函数y=(x>0)的图象经过BC的中点D∴2=∴k=5【点评】本题考查了反比例函数图象上点的坐标特征,勾股定理,中点坐标公式,熟练运用反比例函数图象性质是解决问题的关键.23.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.(1)求反比例函数的解析式;(2)直接写出当y<4时x的取值范围.【分析】(1)把P的坐标代入直线解析式求出a的值,确定出P′的坐标,即可求出反比例解析式;(2)结合图象确定出所求x的范围即可.【解答】解:(1)把P(﹣2,a)代入直线y=﹣2x解析式得:a=4,即P(﹣2,4),∴点P关于y轴对称点P′为(2,4),代入反比例解析式得:k=8,则反比例解析式为y=;(2)当y<4时,反比例函数自变量x的范围为x>2或x<0;一次函数自变量x的范围是x>﹣2.【点评】此题考查了待定系数法求反比例函数解析式,以及一次函数、反比例函数的性质,熟练掌握待定系数法是解本题的关键.24.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=﹣3,n=1.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案)﹣3≤x≤﹣1.【分析】(1)将A点坐标,B点坐标代入解析式可求m,n的值(2)用待定系数法可求一次函数解析式,根据S△AOB =S△AOC﹣S△BOC可求△AOB的面积.(3)由图象直接可得【解答】解:(1)∵反比例函数y=过点A(﹣1,3),B(﹣3,n)∴m =3×(﹣1)=﹣3,m =﹣3n∴n =1故答案为﹣3,1(2)设一次函数解析式y =kx +b ,且过(﹣1,3),B (﹣3,1)∴解得: ∴解析式y =x +4∵一次函数图象与x 轴交点为C∴0=x +4∴x =﹣4∴C (﹣4,0)∵S △AOB =S △AOC ﹣S △BOC∴S △AOB =×4×3﹣×4×1=4(3)∵kx +b ≥∴一次函数图象在反比例函数图象上方∴﹣3≤x ≤﹣1故答案为﹣3≤x ≤﹣1【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法,利用函数图象上的点满足函数关系式解决问题是本题关键.25.如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)与反比例函数y =(m ≠0)的图象交于点A (3,1),且过点B (0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P 是x 轴上的一点,且△ABP 的面积是3,求点P 的坐标;(3)若P 是坐标轴上一点,且满足PA =OA ,直接写出点P 的坐标.【分析】(1)将点A(3,1)代入y=,利用待定系数法求得反比例函数的解析式,再将点A(3,1)和B(0,﹣2)代入y=kx+b,利用待定系数法求得一次函数的解析式;(2)首先求得AB与x轴的交点C的坐标,然后根据S△ABP =S△ACP+S△BCP即可列方程求得P的横坐标;(3)分两种情况进行讨论:①点P在x轴上;②点P在y轴上.根据PA=OA,利用等腰三角形的对称性求解.【解答】解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=,解得m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2),∴,解得:,∴一次函数的表达式为y=x﹣2;(2)如图,设一次函数y=x﹣2的图象与x轴的交点为C.令y=0,则x﹣2=0,x=2,∴点C的坐标为(2,0).∵S△ABP =S△ACP+S△BCP=3,∴PC×1+PC×2=3,∴PC=2,∴点P的坐标为(0,0)、(4,0);(3)若P是坐标轴上一点,且满足PA=OA,则P点的位置可分两种情况:①如果点P在x轴上,那么O与P关于直线x=3对称,所以点P的坐标为(6,0);②如果点P在y轴上,那么O与P关于直线y=1对称,所以点P的坐标为(0,2).综上可知,点P的坐标为(6,0)或(0,2).【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,三角形面积的计算以及等腰三角形的性质,正确求出函数的解析式是关键.。
人教版九年级数学下册《第26章反比例函数》单元测试卷-带参考答案
人教版九年级数学下册《第26章反比例函数》单元测试卷-带参考答案满分120分一、单选题1. ( 3分) 如图,正比例函数y1=k1x和反比例函数y2=k2的图象交于A(﹣1,2)、B(1,﹣2)两点,x若y1<y2,则x的取值范围是()A.x<﹣1或x>1B.x<﹣1或0<x<1C.﹣1<x<0或0<x<1D.﹣1<x<0或x>1【答案】D【考点】反比例函数与一次函数的交点问题【解析】【解答】由图象可得,﹣1<x<0或x>1时y1<y2.故D符合题意.【分析】因为y1<y2,所以正比例函数的图象低于反比例函数的图象,而两图像交于A(﹣1,2)、B (1,﹣2)两点,两交点和原点将图形分成四部分,则x的取值范围是﹣1<x<0或x>1。
的图像上,则k的值是()2. ( 3分) 若点A(-1,6)在反比例函数y=kxA.-6B.-3C.3D.6【答案】A【考点】反比例函数图象上点的坐标特征的图象上【解析】【解答】因为A(-1,6)在反比例函数y=kx所以6= k1解得:k=-6.故答案为:A.的图象上,则点的坐标一定满足解析式,代入就得到k的值.【分析】点A(-1,6)在反比例函数y=kx3. ( 3分) 下列函数的图象,一定经过原点的是()A.y=2B.y=5x2﹣3xC.y=x2﹣1D.y=﹣3x+7x【答案】B【考点】反比例函数的图象,二次函数图象与系数的关系,一次函数图象、性质与系数的关系【解析】【解答】A、x≠0,所以不经过原点,故错误;B、若x=0,则y=5×0﹣3×0=0.所以经过原点.故正确;C、若x=0,则y=﹣1.所以不经过原点.故错误;D、若x=0,则y=7.所以不经过原点.故错误.故答案为:B.【分析】反比例函数中由于自变量的取值范围是不能为零的故图像不可能经过坐标原点;二次函数的图像与y轴的交点取决于常数项C,只有C等于零的时候,图像才会经过坐标原点;一次函数的图像与y轴的交点取决于常数b,只有b=0的时候直线才经过坐标原点。
人教版初三数学9年级下册 第26章(反比例函数)单元测试卷1(含答案)
第1页,共5页人教版九年级数学下册第 26章反比例函数单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.如果函数y =(k +4)x k 2−17是反比例函数,那么( )A. k =4B. k =−4C. k =±4D. k ≠42.如果反比例函数y =a−2x(a 是常数)的图象在第一、三象限,那么a 的取值范围是()A. a <0 B. a >0C. a <2D. a >23.在下列反比例函数中,其图象经过点(3,4)的是( )A. y =−12xB. y =12xC. y =7xD. y =−7x4.如图,反比例函数y =−6x 的图象过点A ,则矩形ABOC 的面积为等于( )A. 3B. 1.5C. 6D. −65.一次函数y =kx−k 与反比例函数y =kx (k ≠0)在同一个坐标系中的图象可能是( )A. B.C. D.6.若点A(2,y 1),B(3,y 2)是反比例函数y=−6x 图象上的两点,则y 1与y 2的大小关系是( ).A. y1<y2B. y1>y2C. y1=y2D. 3y1=2y27.若点A(x1,−6),B(x2,−2),C(x3,2)均在反比例函数y=k2+1x的图象上,则x1,x2,x3的大小关系正确的是()A. x1<x2<x3B. x2<x1<x3C. x2<x3<x1D. x3<x2<x18.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A. 4B. −4C. 2D. ±29.点A(−1,1)是反比例函数y=m+1x的图象上一点,则m的值为( )A. −1B. −2C. 0D. 110.如图,直线y=−3x+3与x轴交于点A,与y轴交于点B,以AB为边在直线AB的左侧作正方形ABDC,反比例函数y=kx的图象经过点D,则k的值是( )A. −3B. −4C. −5D. −6二、填空题(本大题共5小题,共15分)11.反比例函数y=6x的图象经过点(m,−3),则m=________.12.反比例函数y=1−2mx的图象有一支位于第一象限,则常数m满足的条件是__.13.反比例函数y=2m−5x的图象的两个分支分别在第二、四象限,则m的取值范围为______,在每个象限内y随x的增大而______.14.已知同一个反比例函数图象上的两点P1(x1,y1)、P2(x2,y2),若x2=x1+2,且1y2=1 y1+12,则这个反比例函数的解析式为______.15.如图,一次函数y=−x+b与反比例函数y=4x(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D 两点,连结OA,OB,过A作AE⊥x轴于点E,交OB 于点F,设点A的横坐标为m.(1)b=______ (用含m的代数式表示);第3页,共5页(2)若S △OAF +S 四边形EFBC =4,则m 的值是______ .三、解答题(本大题共6小题,共55分)16.在一个不透明的布袋里,装有完全相同的3个小球,小球上分别标有数字1,2,5;先从袋子里任意摸出1个球,记其标有的数字为x ,不放回;再从袋子里任意摸出一个球,记其标有的数字为y ,依次确定有理数xy .(1)请用画树状图或列表的方法,写出xy 的所有可能的有理数;(2)求有理数xy 为整数的概率.17.已知平面直角坐标系xOy 中,O 是坐标原点,点A(2,5)在反比例函数y =kx 的图象上,过点A 的直线y =x +b 交x 轴于点B .(1)求反比例函数解析式;(2)求△OAB 的面积.18.如图,已知反比例函数y =6x 的图象与一次函数y =kx +b 的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;≥kx+b的解集;(2)直接写出不等式6x在第一象限的图像,如图所示,过点A(1,0)作x轴的垂线,交反比19.反比例函数y=kx的图像于点M,△AOM的面积为3.例函数y=kx(1)求反比例函数的解析式.(2)设点B的坐标为(t,0),其中t>1,若以AB为一边的正方形ABCD有一个顶点的图像上,求t的值.在反比例函数y=kx20.阅读材料:公元前3世纪,古希腊学者阿基米德发现了著名的“杠杆原理”.杠杆平衡时,阻力×阻力臂=动力×动力臂.第5页,共5页问题解决:若工人师傅欲用提棍动一块大石头,已知阻力和阻力臂不变,分别为1500N 和0.4m .(1)动力F(N)与动力臂l(m)有怎样的函数关系⋅当动力臂为1.5m 时,提动石头需要多大的力⋅(2)若想使动力F(N)不超过题(1)中所用力的一半,则动力臂至少要加长多少⋅数学思考(3)请用数学知识解释:我们使用攉棍,当阻力与阻力臂一定时,为什么动力臂越长越省力.21.某商场出售一批名牌衬衣,衬衣进价为60元,在营销中发现,该衬衣的日销售量y(件)是日销售价x 元的反比例函数,且当售价定为100元/件时,每日可售出30件.(1)请写出y 关于x 的函数关系式;(2)该商场计划经营此种衬衣的日销售利润为1800元,则其售价应为多少元?。
新人教版九年级下册数学《第26章 反比例函数》单元测试题
新人教版九年级下册数学《第26章反比例函数》单元测试题姓名:________ 班级:________ 成绩:________一、单选题1 . 下列函数关系式中,y是x的反比例函数的是()A.B.C.D.2 . 反比例函数具有的性质是()A.当时,B.在每个象限内,随的增大而减小C.图象分布在第二、四象限D.图象分布在第一、三象限3 . 在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是()A.y=3 000x B.y=6 000xC.y=D.y=4 . 函数y=kx﹣k(k≠0)和y=﹣(k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.5 . 已知y是x的反比例函数,下面表格给出了x与y的一些值,则☆和*所表示的数分别为()x☆-1y2*A.6,2B.-6,2C.6,-2D.-6,-46 . 反比例函数的图象经过点,,当时,的取值范围是()A.B.C.D.7 . 若反比例函数y=﹣的图象经过点A(2,m),则m的值是()A.B.2C.﹣D.﹣28 . 一次函数的图象与反比例函数的图象交点的纵坐标为2,当时,反比例函数中的取值范围是()A.B.C.D.9 . 如图,在反比例函数 y =(x>0) 的图象上有点 P,P,P,P,P,它们的横坐标依次为 2,4,6,8,10,分别过这些点作 x 轴和 y 轴的垂线.图中所构成的阴影部分的面积从左到右依次为 S,S,S,S,则 S+S+S+S的值为()A.4.5B.4.2C.4D.3.810 . 已知是反比例函数,则该函数的图象在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限二、填空题11 . 如图,已知抛物线与反比例函数的图象相交于B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线的顶点,P点是x轴上一动点,当PA+PB最小时,P点的坐标为_____.12 . 如图,反比例函数y=(k≠0)的图象上有一点A,过A作AP⊥x轴于点A,若S△AOP=1,则k=_____.13 . 反比例函数的图象经过点(1,﹣2),则k的值为_____.14 . 已知反比例函数y=(k≠0)的图象经过点(3,-1),则当1<y<3时,自变量x的取值范围是__________.15 . 如图,点P是正比例函数y=x与反比例函数在第一象限内的交点,PA⊥OP交x轴于点A,则△POA 的面积为_______.16 . 如图,已知点A,B分别在反比例函数y1=-和y2=的图象上,若点A是线段OB的中点,则k的值为.17 . 在直角坐标系中,若一点的横坐标与纵坐标互为倒数,则这点一定在函数____________图象上(填函数关系式)18 . 如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB∥x轴,BC∥y轴,点C在x轴上,则△ABC的面积为_____.三、解答题19 . 在同一直角坐标系中画出下列函数的图像:,.20 . 如图,一次函数y=x+m与反比例函数y=的图象相交于A(2,1),B两点.(1)求m及k的值;(2)不解关于x,y的方程组,直接写出点B的坐标;(3)看图象直接写出,x+m>时,自变量x的取值范围.21 . 如图,在平面直角坐标系中,已知一次函数=的图象经过点A(1,0),与反比例函数=(>0)的图象相交于点B(m,1).(1)求m的值和一次函数的解析式;(2)结合图象直接写出:当>0时,不等式>的解集.22 . 画出反比例函数y=的图象,并根据图象回答下列问题:(1)根据图象指出x=-2时y的值.(2)根据图象指出当-2<x<1时,y的取值范围.(3)根据图象指出当-3<y<2时,x的取值范围.23 . 如图,已知反比例函数y=的图象经过点A(2,1),点M(m,n)(0<m<2)是该函数图象上一动点,过点M作直线MB∥x轴,交y轴于点B,过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.(1)求反比例函数的解析式;(2)当∠OAM=90°时,求点M的坐标.24 . 如图,一次函数y=kx+b与反比例函数的图像相交于点A(n,2),和点B(n-3,-1)(1)求一次函数和反比例函数的表达式;(2)直线AB交x轴于点C,P为x轴上一点,若△PBC是等腰三角形,则点P的坐标是;25 . 如图,点P在反比例函数y=﹣的图象上,PB⊥y轴于点B,点A在x轴上,求△PAB的面积.参考答案一、单选题1、2、3、4、5、6、7、8、9、10、二、填空题1、2、3、4、5、6、7、8、三、解答题1、2、3、4、5、6、7、。
九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版
九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果反比例函数的图象经过点P (﹣3,﹣1),那么这个反比例函数的表达式为( ) A .y =3xB .y =﹣3xC .y =13xD .y =﹣13x2.若反比例函数2y x=的图像经过(),n n ,则n 的值是( )A .2±B .CD .3.如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x的图象经过点C和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)4.对于反比例函数4y x=,下列说法错误的是( ) A .它的图象与坐标轴永远不相交 B .它的图象绕原点旋转180°能和本身重合 C .它的图象关于直线y x =±对称D .它的图象与直线y x =-有两个交点5.如图是同一直角坐标系中函数12y x =和22y x=的图象.观察图象可得不等式22x x >的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >6.如图,在平面直角坐标系中直线y mx =(0m ≠,m 为常数)与双曲线ky x=(0k ≠,k 为常数)交于点A ,B ,若()1,A a -和(),3B b -,过点A 作AM x ⊥轴,垂足为M ,连接BM ,则ABM ∆的面积是( )A .2B .1m -C .3D .67.如图,在平面直角坐标系中函数()0ky x x=>的图象经过点P 、Q 、R ,分别过这个三个点作x 轴、y 轴的平行线,阴影部分图形的面积从左到右依次为若OE ED DC ==,1310S S +=则k 的值为( )A .6B .12C .18D .24二、填空题8.平面直角坐标系xOy 中已知点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x =≠图象上的三点.若2ABC S =△,则k 的值为___________.9.如图,△AOB 中AO =AB ,OB 在x 轴上C ,D 分别为AB ,OB 的中点,连接CD ,E 为CD 上任意一点,连接AE ,OE ,反比例函数y k x=(x >0)的图象经过点A .若△AOE 的面积为2,则k 的值是___.10.在平面直角坐标系xOy 中过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长的值与面积的值相等,则这个点叫做“和谐点”.已知直线y =﹣2x +k 1与y 轴交于点A ,与反比例函数y 2k x=的图象交于点P (52-,m ),且点P 是“和谐点”,则△OAP 的面积为___.11.不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有-1,2,3,4四个数,从袋子中随机抽取一个小球,记标号为k ,不放回,将袋子摇匀,再随机抽取一个小球,记标号为b ,两次抽取完毕后,则直线y kx =与反比例函数by x=的图象经过的象限相同的概率为______. 12.如图,点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴,作AC x ⊥轴于点C ,交OB 于点D .若2OD BD =,则k 的值是______.13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =﹣6x(x <0)和y=8x(x >0)的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为__.14.一定质量的二氧化碳,其密度()3kg /m ρ=是体积()3m V 的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式___________,当33m V =时,则ρ=_______3kg /m .三、解答题15.如图1,反比例函数()0my x x=>的图象过点()4,3M .(1)求反比例函数my x=的表达式,判断点()2,8在不在该函数图象上,并说明理由; (2)反比例函数()16my x x=≤≤的图象向左平移2个单位长度,平移过程中图象所扫过的面积是______; (3)如图2,直线:8l y x =-+与x 轴、y 轴分别交于点A 、点B ,点P 是直线l 下方反比例函数my x=图象上一个动点,过点P 分别作PC x ∥轴交直线l 于点C ,作PD y ∥轴交直线l 于点D ,请判断AC BD ⋅的值是否发生变化,并说明理由,如果不变化,求出这个值. 16.阅读下列材料定义运算min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a =.例如:min 1,31-=-与min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4--=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,则()()2min,213kx b x x x x-+=+--.求这两个函数的解析式. 17.在如图平面直角坐标系中矩形OABC 的顶点B 的坐标为(4,2),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将△OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到△ODE ,OD 与CB 相交于点F ,反比例函数y =kx(x >0)的图象经过点F ,交AB 于点G .(1)求k 的值和点G 的坐标;(2)连接FG ,则图中是否存在与△BFG 相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA 上存在这样的点P ,使得△PFG 是等腰三角形.请直接写出点P 的坐标.18.我们不妨约定:在平面直角坐标系中若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则把该函数称之为“()X n 函数”.(1)在下列关于x 的函数中是“()X n 函数”的是________(填序号); ①6y x=,②4y x =,③225y x x =-- (2)若关于x 的函数y x h =-(h 为常数)是“()3X 函数”,与my x=(m 为常数,0m >)相交于A (A x ,A y )、B (B x ,B y )两点,A 在B 的左边,5B A x x -=,求m 的值;(3)若关于x 的“()X n 函数”24y ax bx =++(a ,b 为常数)经过点(1-,1),且1n =,当1t x t -≤≤时,则函数的最大值为1y ,最小值为2y ,且1212y y -=,求t 的值. 19.如图,在平面直角坐标系中四边形ABCD 为正方形,已知点A (0,﹣6)、D (﹣3,﹣7),点B 、C 在第三象限内.(1)求点B 的坐标;(2)在y 轴上是否存在一点P ,使ABP 是AB 为腰的等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.(3)将正方形ABCD 沿y 轴向上平移,若存在某一位置,使在第二象限内点B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上,求该反比例函数的解析式.参考答案与解析1.【答案】A【分析】根据点P 的坐标,利用待定系数法即可得.【详解】解:设这个反比例函数的表达式为(0)ky k x =≠ 由题意,将点(3,1)P --代入得:3(1)3k =-⨯-= 则这个反比例函数的表达式为3y x =故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键. 2.【答案】B【分析】将(),n n 代入解析式中即可求出n 的值. 【详解】解:将(),n n 代入2y x =中得2n n=解得:n =故选B.【点睛】此题考查的是根据点所在的图像求点的坐标,将点的坐标代入解析式求点的坐标是解决此题的关键.3.【答案】B【分析】作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标. 【详解】解:作CE ⊥OA 于E ,如图∵B(5,4),四边形AOCB为平行四边形∴CE=4∵反比例函数y=8x的图象经过点C∴S△COE=12OE•CE=12×8∵CE=4∴OE=2∴C(2,4),OA=BC=5-2=3 ∴A(3,0)∵点D是AB的中点∴点D的坐标为(3+50+422,),即D(4,2)故选:B.【点睛】本题考查了平行四边形的性质,反比例函数系数k的几何意义等,求得点C和点A的坐标是解题的关键.4.【答案】D【分析】当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A.∵反比例函数4yx=中4>0,∴此函数图象在一、三象限,故本选项正确;B.∵反比例函数4yx=的图象双曲线关于原点对称,故本选项正确;C.反比例函数的图象可知,图象关于直线y x=±对称,故本选项正确;D.∵反比例函数4yx=的图象位于第一、三象限,直线y x=-经过第二、四象限,所以直线y x=-与双曲线4yx=无交点,故本选项错误;故选D.【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 5.D【分析】根据图象进行分析即可得结果; 【详解】解:∵22x x> ∴12y y >由图象可知,函数12y x=和22y x =分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-, 由图象可以看出当10x -<<或1x >时,则函数12y x=在22y x =上方,即12y y >故选:D .【点睛】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质是解本题的关键. 6.【答案】C【分析】根据直线y mx =与双曲线k y x =都经过点A ,得出1a mk a =-⎧⎪⎨=⎪⎩-,进而得到k m =,再由直线y mx =与双曲线k y x =都经过点B ,得到33k b bm ⎧-=⎪⎨⎪-=⎩,进而得到2b m k =,进而求出b 的值,得到点A 的坐标,即可得到答案.【详解】由题,直线y mx =与双曲线ky x=都经过点A ∴1a m k a =-⎧⎪⎨=⎪⎩- ,得:k m =直线y mx =与双曲线ky x=都经过点B 33bm k b -=⎧⎪∴⎨-=⎪⎩,得:2b m k = 21b ∴=0b >1b ∴=13B ∴-(,)将点B 代入y mx =,得:3m -=3y x ∴=-13A ∴-(,)111313322ABM S ∆∴=⨯⨯+⨯⨯=故选:C【点睛】本题考查一次函数与反比例函数的图像问题,根据两者的交点结合解析式求出点的坐标是解题关键.7.【答案】B【分析】设未知数,表示出点P 、Q 、R 的坐标,进而表示S 1、S 2、S 3,由S 1+S 3=10列方程求解即可. 【详解】解:设OE =ED =DC =a ∵函数ykx =(x >0)的图象经过点P 、Q 、R∴点P (3k a ,3a ),Q (2k a ,2a ),R (ka ,a )∴OF 3k a =,OG 2k a =,OA k a =∴S 1=OF •CD 3k a =⨯a 3k =S 3=AG •OE =(2k k a a -)×a 2k =又∵S 1+S 3=10 ∴32k k +=10 解得k =12 故选:B .【点睛】本题考查反比例函数系数k 的几何意义以及反比例函数图象上点的坐标特征,用坐标表示线段的长是解决问题的关键. 8.【答案】34##0.75 【分析】由点A 、B 、C 的坐标可知260k m =>,m =n ,点B 、C 关于原点对称,求出直线BC 的解析式,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,根据2ABC S =△列式求出2m ,进而可得k 的值. 【详解】解:∵点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x=≠图象上的三点 ∴260k m => 6k mn = ∴m =n∴(3,2)B m m (3,2)C m m -- ∴点B 、C 关于原点对称∴设直线BC 的解析式为()0y kx k =≠ 代入(3,2)B m m 得:23m mk = 解得:23k =∴直线BC 的解析式为23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D 把x =m 代入23y x =得:23y m =∴D (m ,23m )∴AD =216633m m m -=∴()11633223ABCSm m m =⨯⋅+= ∴218m =∴2136684k m ==⨯=而当m <0时,则同样可得34k =故答案为:34【点睛】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.9.【答案】4【分析】根据等腰△AOB,中位线CD得出AD⊥OB,S△AOE=S△AOD=2,应用|k|的几何意义求k.【详解】解:如图:连接AD△AOB中AO=AB,OB在x轴上,C、D分别为AB,OB的中点∴AD⊥OB,AO∥CD∴S△AOE=S△AOD=2∴k=4.故答案为:4.【点睛】本题考查了反比例函数图象、等腰三角形以及中位线的性质、三角形面积,解题的关键是灵活运用等腰三角形的性质.10.【答案】254或754【分析】先根据“和谐点”的定义求出m的值,进而可求出点A的坐标,根据三角形的面积可求出△OAP的面积.【详解】解:∵点P(52-,m)是“和谐点”∴5+2|m|52=|m|,解得m=±10当m=10时,则P(52-,10)把点P的坐标代入一次函数和反比例的解析式得:k1=5,k2=﹣25∴A(0,5)∴S△OAP15255224=⨯⨯=.当m =﹣10时,则P (52-,﹣10)∴k 1=﹣15,k 2=25 ∴A (0,﹣15) ∴S △OAP 12=⨯1557524⨯=. 故答案为:254或754. 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |,读懂题意,明确和谐点的定义是解题的关键. 11.【答案】12【分析】画树状图,共有12个等可能的结果,直线y kx =与反比例函数by x=的图象经过的象限相同的结果有6个,再由概率公式求解即可. 【详解】解:画树状图如图:∵从袋子中随机抽取一个小球,记标号为k ,不放回后将袋子摇匀,再随机抽取一个小球,记标号为b ,共有12个数组∴直线y kx =与反比例函数by x=的图象经过的象限相同的数组有(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),共有6组∴k ,b 直线y kx =与反比例函数b y x=的图象经过的象限相同的概率为61122=.故答案为:12【点睛】此题考查了用列表法或树状图法求概率及一次函数与反比例函数的性质,熟练掌握利用列表法或树状图列出所有等可能的结果以及一次函数与反比例函数的性质是解题的关键. 12.【答案】9【分析】先求解A 的坐标,再表示B 的坐标,再证明,ABD COD ∽利用相似三角形的性质列方程求解即可.【详解】解: 点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴 63,,3,23kmB2,3,AAC x ⊥轴2,0,CAB x ∥轴,ABD COD ∽,ABBDOC OD而2OD BD = 213,22k 解得:9,k = 故答案为:9【点睛】本题考查的是反比例函数的性质,相似三角形的判定与性质,掌握“反比例函数的图像与性质”是解本题的关键. 13.【答案】7【分析】连接OA ,OB ,利用同底等高的两三角形面积相等得到三角形AOB 面积等于三角形ACB 面积,再利用反比例函数k 的几何意义求出三角形AOP 面积与三角形BOP 面积,即可得到结果. 【详解】解:如图,连接OA ,OB∵△AOB 与△ACB 同底等高 ∴S △AOB =S △ACB ∵AB ∥x 轴∴AB ⊥y 轴∵A 、B 分别在反比例函数y =﹣6x (x <0)和y =8x (x >0)的图象上∴S △AOP =3,S △BOP =4∴S △ABC =S △AOB =S △AOP +S △BOP =3+4=7. 故答案为:7.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数y =kx的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.也考查了三角形的面积. 14.【答案】10V ρ=103【分析】由函数图像信息可得反比例函数过点(5,2),根据待定系数法求解析式;将3V =代入即可求得ρ. 【详解】反比例函数过点(5,2) 设反比例函数解析式为kVρ= 则10k =∴反比例函数解析式为10Vρ=当3V =时,则103ρ= 故答案为:10V ρ=103【点睛】本题考查了反比例函数的应用,待定系数法求反比例函数的解析式,根据解析式求函数值,从图像获取信息是解题的关键.15.【答案】(1)不在,理由见解析 (2)20 (3)不变化,24【分析】对于(1),利用待定系数法求出函数关系式,再代入判断即可;对于(2),设点E 的横坐标和点F 的横坐标,再分别表示出点E ,F ,G ,H 的坐标,进而得出线段的长度,再根据平行四边形面积公式得出答案;对于(3),设点P 的横坐标为t ,分别表示点C ,点D 的坐标,再根据两点之间的距离公式得出AC 和BD 的长,进而得出答案.(1)将点()4,3M 代入m y x =得34m= 12m =∴12y x=;当2x =时,则6y = ∵68≠∴点()2,8不在函数图象上;(2)设点E 的横坐标是1,点F 的横坐标是6,点G ,H 分别对应点E ,F ,如图所示.图形扫过的面积即为平行四边形EFHG 的面积.令12y x=中1x =,则12y = 所以(112)E , -1,12G ()令12y x=中6x =,则2y = 所以(62)F ,,(4,2)H . 因为EG FH ∥,且EM FH = 所以四边形EGHF 为平行四边形所以=()2(122)20E F S EG y y ⋅-=⨯-=. 故答案为:20;(3)不变化,理由如下:因为直线l :8y x =-+与x 轴,y 轴分别交于点A ,点B 所以点A (8,0),B (0,8). 设点P 的横坐标是t 所以12(,)P t t.因为PC x ∥轴交直线l 于点C ,PD y ∥轴交直线l 于点D 所以1212(8,)C tt-+ (,8)D t t -+所以AC =BD =即24AC BD ⋅=⋅=所以AC BD ⋅为定值,为24..【点睛】本题主要考查了反比例函数图象上点的坐标特征,待定系数法求函数关系式,求平行四边形面积等,掌握数形结合思想是解题的关键.16.【答案】(1)①1;②4- (2)12y x=- 223y x =--【分析】(1)根据材料中的定义进行计算,即可求出答案; (2)由函数图像可知当20x -<<时,则2kx bx ,则min ,22k x b x b x-+=-+,结合已知可得()()2213x b x x x -+=+--,即可求出b ,得到一次函数解析式,求出点A 的坐标,再利用待定系数法求出反比例函数解析式. (1)解:根据题意∵min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a = ∴①()0min 3,21-=;∵4-∴②min 44-=-; 故答案为:①1;②4-;(2)解:由函数图像可知当20x -<<时,则2k x bx∴min,22kx b x b x-+=-+ 又∵()()2min,213kx b x x x x-+=+-- ∴()()2213x b x x x -+=+-- ∴3b =-∴一次函数223y x =-- 当x =-2时21y = ∴A (-2,1) 将A (-2,1)代入1ky x=得212k =-⨯=-∴反比例函数12y x=-.【点睛】本题考查了新定义的运算法则,零次幂,反比例函数与一次函数的综合问题,解题的关键是掌握题意,正确的运用数形结合的思想求解.17.【答案】(1)k =2,点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG ,证明详见解析;(3)点P 的坐标为(40)或(158,00). 【分析】(1)证明△COF ∽△AOB ,则CF OCAB OA=,求得:点F 的坐标为(1,2),即可求解; (2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG .证△OAB ∽△BFG :43AO BF = 24332AB BG ==即可求解.(3)分GF =PF 、PF =PG 、GF =PG 三种情况,分别求解即可. 【详解】解:(1)∵四边形OABC 为矩形,点B 的坐标为(4,2) ∴∠OCB =∠OAB =∠ABC =90°,OC =AB =2,OA =BC =4 ∵△ODE 是△OAB 旋转得到的,即:△ODE ≌△OAB ∴∠COF =∠AOB ,∴△COF ∽△AOB ∴CF OC AB OA =,∴2CF =24,∴CF =1∴点F 的坐标为(1,2) ∵y =kx(x >0)的图象经过点F∴2=1k ,得k =2 ∵点G 在AB 上 ∴点G 的横坐标为4对于y =2x ,当x =4,得y =12∴点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG . 下面对△OAB ∽△BFG 进行证明: ∵点G 的坐标为(4,12),∴AG =12 ∵BC =OA =4,CF =1,AB =2∴BF=BC﹣CF=3BG=AB﹣AG=32.∴43AOBF=24332ABBG==∴AO AB BF BG=∵∠OAB=∠FBG=90°∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,12)则FG2=9+94=454,PF2=(m﹣1)2+4,PG2=(m﹣4)2+14当GF=PF时,则即454=(m﹣1)2+4,解得:m;当PF=PG时,则同理可得:m=158;当GF=PG时,则同理可得:m=4综上,点P的坐标为(40)或(158,00).【点睛】本题考查的是反比例函数综合运用,涉及到旋转的性质、三角形相似、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.18.【答案】(1)②③( 2)4 (3)t=2或t=1【分析】(1)根据定义分析判断即可;(2)作出图形,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点,由xB﹣xA=5,设CN=x,则MC=5﹣x,则B(3+x,x),A(x﹣2,5﹣x),根据轴对称的性质以及反比例函数的性质可得(3+x)x+(x﹣2)(5﹣x)=0,继而求得x的值,即可求得B的坐标,根据反比例函数的意义即可求得m的值;(3)根据题意以及二次函数的性质,待定系数求二次函数解析式,进而分类讨论,根据121 2y y-=,即可求得t的值.(1)解:根据定义,函数关于直线x n=(n为常数)对称,即该函数图象是轴对称图形①6yx=的图象是中心对称图象,不符合题意;②4y x=,③225y x x=--的图象是轴对称图形,符合题意故答案为:②③(2)∵y=|x-h|是“X(3)”函数∴h=3如图,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点∴C(3,0),D(0,﹣3)∴∠BCN=∠OCD=45°由对称性可知,∠ACM=∠OCD=45°∴AM=CM,BN=CN∵xB﹣xA=5∴MN=5设CN=x,则MC=5﹣x∴B(3+x,x),A(x﹣2,5﹣x)∴(3+x)x+(x﹣2)(5﹣x)=0∴x=1∴B(4,1)∴m=4;(3)由题意得4112a bba-+=⎧⎪⎨-=⎪⎩解得12 ab=-⎧⎨=⎩∴此“X(n)函数”为y=﹣x2+2x+4①当t<1时x=t时,则y1=﹣t2+2t+4x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=(﹣t2+2t+4)﹣[﹣(t﹣1)2+2(t﹣1)+4]=﹣2t+3=12∴t=54(舍);②当t﹣1≥1,即t≥2时x=t﹣1时,则y1=﹣(t﹣1)2十2(t﹣1)+4x=t时,则y2=﹣t2+2t+4y1-y2=﹣(t﹣1)2+2(t﹣1)+4﹣(﹣t2+2t+4)=2t﹣3=12∴t=74(舍);③当1≤t<32时x=1时,则y1=5x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=5﹣[﹣(t﹣1)2+2(t﹣1)+4]=t2﹣4t+4=12∴t=2±,又因为1≤t<3 2∴t=2-④32≤t<2时x=1时,则y1=5x=t时,则y2=﹣t2十2t+4y1﹣y2=5﹣(﹣t2+2t+4)=t2﹣4t+4=12∴t=1,又因为32≤t<2∴t=1综上所述:t=2-t=1【点睛】本题考查了新定义,一次函数的性质,反比例函数的性质,二次函数的性质,根据新定义以及轴对称的性质求解是解题的关键.19.【答案】(1)B (-1,-3)(2)存在,(06-,或(06-,或()00,(3)6y x =-【分析】(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,证明ADF BAE ≅得出BE 与OE 的长度便可求得B 点坐标;(2)先求出AB 的值,再根据题意可得分类讨论,分为当AB =AP 时有两种情况和当AB =BP 时有一种情况进行求解即可;(3)先设向上平移了m 表示B '和D 的坐标,再根据B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上得B '和D 点的横、纵坐标的积相等,列出关于m 的方程即可求解.(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,如下图则90AFD AEB ∠=∠=︒∵点A (0,-6),D (-3,-7)∴DF =3,AF =1∵四边形ABCD 是正方形∴AB =AD 90BAD ∠=︒∴90DAF BAE DAF ADF ∠+∠=∠+∠=︒∴ADF BAE =∠∠∵ADF BAE F EAD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADF BAE ≅∴DF =AE =3,AF =BE =1∴OE=OA-AE=6-3=3∴B(-1,-3).(2)存在3种情况由(1)得ADF BAE≅且在Rt AFD中AB=AD①当AB=AP时的等腰三角形,如图则AP∵A为(0,-6)∴P点的坐标为(0,);②当AB=AP时,则如下图则AP∵A 为(0,-6)∴P 点的坐标为(0,);③当AB =BP 时,则如下图则BP ,且过B 作BE ⊥AP 于点E∵AB BP BE AP =⊥,∴3PE AE ==∴P 点在原点上则P 为(0,0).综上所述点P 的坐标为(06-,或(06-,或()00,. (3)设向上平移了m 可得B '为(-1,-3+m ),D 为(-3,-7+m ) 反比例函数关系式为k y x=()0k ≠ ∴()()1337k m m =-⨯-+=-⨯-+解得m =9∴k =()13166m -⨯-+=-⨯=- ∴反比例函数解析式为:6y x=- 【点睛】此题是反比例函数与正方形结合的综合体,主要考查了反比例函数的性质、待定系数法、全等三角形的性质和判定和等腰三角形的性质和判定,解决本题的关键是证明全等三角形和分类讨论.。
人教新版九年级下《第26章反比例函数》单元检测试卷(含答案)
人教新版九年级下学期《第26 章反比例函数》一.选择题(共12 小题)1.下列式子中表示y 是x 的反比例函数的是()A.y=2x﹣3 B.xy=5 C.y=x2.若m<0,则下列函数①y=(x>0),②y=﹣mx+1,③y=mx,y的值随x的值的增大而增大的函数有()A.0 个B.1 个C.2 个D.3 个3.A 为反比例函(k<0)图象上一点,AB 垂直x 轴,垂足为B 点,若S△AOB=3,则k 的值为()A.6 B.﹣6 D.不能确定4.当x<0 时,函数y=(m﹣1)x 的y 都随x 的增大而增大,则m 的取值范围是()A.m>1 B.1<m<2 C.m>2 D.m<15.在同一直角坐标系中,函数和y=kx+k 的大致图象是()A.B.C. D.6.已知关于x的函数y=k(x﹣1)和y=﹣(k≠0),它们在同一坐标系内的图象大致是()A.B.C. D.7.设I,R,U 分别表示电流、电阻和电压,现给出以下四个结论:①当I 一定时,U 与R 成反比例函数;②当R 一定时,U 与I 成反比例函数;③当U 一定时,I 与R 成反比例函数;④当R 与U 一定时,I 也一定.其中正确的结论为()A.①,②B.②,③C.③,④D.①,④8.如图,已知双曲(x>0)经过矩形OABC 的边AB 的中点F,交BC 于点E,且四边形OEBF 的面积为2.则k=()A.2 C.1 D.49.函数y=mx﹣m 与(m 为常数)在同一坐标系中的图象可能是()A.B.C.D.10.如图为一次函数y=ax﹣2a 与反比例函数(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C. D.11.二次函数y=ax2+bx+c 的图象如图所示,则反比例函数与一次函数y=ax+b 在同一平面直角坐标系中的大致图象为()A.B.C. D.12.在同一直角坐标系中,函数y=mx+m(m≠0)与y=(m≠0)的图象可能是()A.B.C. D.二.填空题(共19 小题)13.反比例函数y=的图象经过点(﹣2,﹣1),那么k的值为.14.已知点P 在反比例函数的图象上,且点P 的纵坐标是3,则P 点关于x 轴的对称点是.15.反比例函数,当x>0 时,y 的值随x 的值的增大而减小,则m 的取值范围是.16.在反比例函数的图象上,到x 轴距离为1 的点的坐标为.17.某拖拉机油箱内有24 升油,请写出这些油可供使用的时间y 小时与平均每小时耗油量x 升/时之间的函数关系式:.18.已知A(x1,y1),B(x2,y2)是反比例函数的图象上的两点,若x1<x2<0,y1与y2 的大小关系是y1y2(填“>”“<”或“=”).19.已知点A(﹣2,y1)、B(1,y2)、C(2,y3)都在反比例函数y=(k<0)的图象上,那么y1、y2、y3的大小关系是:(用“<”连接).20.如图所示,P 是反比例函图象上一点,过P 分别向x 轴、y 轴引垂线,若S 阴=3,则解析式为.21.是y 关于x 的反比例函数,且图象在第二、四象限,则m 的值为.22.如果一次函数y=kx+b 的图象经过第二、三、四象限,则反比例函的图象位于第象限内.23.如图,若正方形OABC 的顶点B 和正方形ADEF 的顶点E 都在函数(x>0)的图象上,则点B 的坐标为,点E 的坐标为.24.已知反比例函数y=与一次函数y=﹣x+7的图象有一个交点为(a,b),则+=.25.如图,反比例函数的图象经过▱ABCD 对角线的交点P,已知点A,C,D 在坐标轴上,BD⊥DC,▱ABCD 的面积为6,则k=.26.如图,点A,B 是反比例函数(x>0)图象上的两点,过点A,B 分别作AC⊥x 轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=.27.如图,已知一次函数y=kx﹣3(k≠0)的图象与x 轴,y 轴分别交于A,B 两点,与反比例函数(x>0)交于C 点,且AB=AC,则k 的值为.28.如图,点A 在双曲线(x>0)上,过点A 作AC⊥x 轴,垂足为C,OA 的垂直平分线交OC 于点B,当AC=1 时,△ABC 的周长为.29.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为.30.如图,两个反比例函数和在第一象限的图象如图所示,当P 在的图象上,PC⊥x 轴于点C,交y=的图象于点A,PD⊥y 轴于点D,交y=的图象于点B,则四边形PAOB 的面积为.31.如图,反比例函数与⊙O的一个交点为(2,1),则图中阴影部分的面积是.三.解答题(共9 小题)32.如图,已知反比例函数(x>0)的图象与一次函数x+4 的图象交于A 和B (6,n)两点.(1)求k 和n 的值;(2)若点C(x,y)也在反比例函数(x>0)的图象上,求当2≤x≤6 时,函数值y 的取值范围.33.如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出使成立的x 的取值范围;(3)求△AOB 的面积.34.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x 轴,y 轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x 为何值时,y1>0;(3)当x 为何值时,y1<y2,请直接写出x 的取值范围.35.如图,已知一次函数y1=k1x+b 的图象与x 轴、y 轴分别交于A、B 两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点.(1)求一次函数y1=k1x+b 与反比例函数的解析式;(2)求△COD 的面积;(3)直接写出y1>y2 时自变量x 的取值范围.36.如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,﹣2),反比例函数的图象经过点C,一次函数y=ax+b 的图象经过A、C 两点(1)求反比例函数与一次函数的解析式;(2)求反比例函数与一次函数的另一个交点M 的坐标;(3)若点P 是反比例函数图象上的一点,△OAP 的面积恰好等于正方形ABCD 的面积,求P 点的坐标.37.如图,反比例函数y=的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y =在第二、四象限分别相交于P,Q 两点,与x 轴、y 轴分别相交于C,D 两点.(1)求k 的值;(2)当b=﹣2 时,求△OCD 的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b 的值;若不存在,请说明理由.38.如图,A(﹣4,),B(﹣1,2)是一次函数y1=ax+b与反比例函数y2=图象的两个交点,AC⊥x 轴于点C,BD⊥y 轴于点D.(1)根据图象直接回答:在第二象限内,当x 取何值时,y1﹣y2>0?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上一点,连接PC,PD,若△PCA 和△PDB 面积相等,求点P 的坐标.39.已知A(m,2)是直线L 和双曲线的交点.(1)求m 的值.(2)若直线L 分别和x 轴、y 轴交于E、F 两点,且点A 是△EOF 的外心,试确定直线L 的解析式.(3)在双曲上另取一点B,过B 作PK⊥x 轴于K,试问:在y 轴上是否存在点P,使得S△PAF=S△BOK?若存在,请求出P 的坐标;若不存在,请说明理由.40.如图,A(2,1)是矩形OCBD 的对角线OB 上的一点,点E 在BC 上,双曲线经过点A,交BC 于点E,交BD 于点F,若(1)求双曲线的解析式;(2)求点F 的坐标;(3)连接EF、DC,直线EF与直线DC是否一定平行?(只答“一定”或“不一定”)。
人教版九年级下册《第二十六章 反比例函数》单元测试卷及答案
人教版九年级下册《第26章反比例函数》单元测试卷(1)一、选择题1.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数的图象上三点,其中x1<0<x2<x3,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1 2.若点A(﹣2,y1),B(﹣1,y2),C(1,y3)在反比例函数y=﹣的图象上,则下列结论正确的是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y2>y3>y1 3.若反比例函数y=(k≠0)的图象经过点(2,﹣1),则该函数图象一定经过()A.(﹣1,1)B.(4,)C.(﹣1,﹣2)D.(﹣,4)4.近视眼镜的度数y(度)与镜片焦距x(米)之间具有如图所示的反比例函数关系,若要配制一副度数小于400度的近视眼镜,则镜片焦距x的取值范围是()A.0米<x<0.25米B.x>0.25米C.0米<x<0.2米D.x>0.2米5.已知△ABC为直角三角形,且∠A=30°,若△ABC的三个顶点均在双曲线y=(k>0)上,斜边AB经过坐标原点,且B点的纵坐标比横坐标少3个单位长度,C点的纵坐标与B点横坐标相等,则k=()A.4B.C.D.56.某口罩生产企业于2020年1月份开始了技术改造,其月利润y(万元)与月份x之间的变化如图所示,技术改造完成前是反比例函数图象的一部分,技术改造完成后是一次函数图象的一部分,下列选项错误的是()A.4月份的利润为45万元B.改造完成后每月利润比前一个月增加30万元C.改造完成前后共有5个月的利润低于135万元D.9月份该企业利润达到205万元7.在矩形ABCD中,对角线AC=4,AC的垂直平分线EH交CD于点E,交AC于点H.设AB=x,CE=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.8.如图,在平面直角坐标系中,反比例函数y=(k<0,x<0)的图象经过AB上的两点A,P,其中P为AB的中点,若△AOB的面积为18.则k的值为()A.﹣18B.﹣12C.﹣9D.﹣69.如图,在平面直角坐标系中,一次函数y=x+3的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=(x<0)的图象上,则k的值为()A.﹣10B.﹣6C.﹣20D.2010.如图,在平面直角坐标系中,点A、B、C为反比例函数y=(k>0)图象上不同的三点,连接OA、OB、OC,过点A作AD⊥x轴于点D,过点B、C分别作BE,CF垂直y 轴于点E、F,OB与CF相交于点G,记四边形BEFG、△COG、△AOD的面积分别为S1、S2、S3,则()A.S1>S2>S3B.S3<S1=S2C.S1=S2<S3D.S2=S3>S1二、填空题11.如图,A是反比例函数图象上一点,过点A作AB⊥x轴于点B,点P在y轴上,△ABP的面积为1,则k的值为.12.如图,矩形ABCD的顶点A,C在反比例函数的图象上,若点A 的坐标为(2,6),AB=3,AD∥x轴,则点C的坐标为.13.如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA、OE都在x轴上,点C在OB边上,连接AD、BD,S△ABD=,反比例函数的图象经过点B,则k的值为.14.如图,点A,B为反比例函数y=在第一象限上的两点,AC⊥y轴于点C,BD⊥x轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k﹣2,则k的值为.15.如图,P是反比例函数y=(x>0)上的一个动点,过P作PA⊥x轴,PB⊥y轴.(1)若矩形的对角线AB=10,则矩形OAPB的周长为;(2)如图,点E在BP上,且BE=2PE,若E关于直线AB的对称点F恰好落在坐标轴上,连接AE,AF,EF,则△AEF的面积为.三、解答题16.已知A(a,﹣2a)、B(﹣2,a)两点是反比例函数y=与一次函数y=kx+b图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△ABO的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.17.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴上,顶点C(﹣4,3).(1)若顶点B在反比例函数y=的图象上,求k的值;(2)连接OB,过点B作BD⊥OB交x轴于点D,求直线BD的函数解析式.18.如图,反比例函数y=的图象与正比例函数y=x的图象交于点A和B(4,1),点P(1,m)在反比例函数y=的图象上.(1)求反比例函数的表达式和点P的坐标;(2)求△AOP的面积.19.如图,直线y=x和双曲线交于A,B两点,AE⊥x轴,垂足为E,射线AC⊥AD,AC交y轴于点C,AD交x轴于点D,且四边形ACOD的面积为1.(1)求双曲线的解析式.(2)求A,B两点的坐标.20.如图,直线y=x与反比例函数交于点A,过点A作AB⊥x轴于点B,△AOB的面积为2.点P是反比例函数图象上一点,且横坐标为4,点M、N分别是直线y=x和x 轴上的动点,求使△PMN周长最小时点M、N的坐标.21.如图,四边形ABCO是平行四边形且点C(﹣4,0),将平行四边形ABCO绕点A逆时针旋转得到平行四边形ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点A,D在反比例函数y=的图象上,过A作AH⊥x轴,交EF于点H.(1)证明:△AOF是等边三角形,并求k的值;(2)在x轴上找点G,使△ACG是等腰三角形,求出G的坐标;(3)设P(x1,a),Q(x2,b)(x2>x1>0),M(m,y1),N(n,y2)是双曲线y=上的四点,m=,n=,试判断y1,y2的大小,说明理由.22.如图在平面直角坐标系中,一次函数y=2x与反比例函数在第一象限交于点P(1,p),点M的横坐标为m(0<m<1)是反比例函数图象上的一点,MN∥x轴交一次函数于点N.(1)求出k的值;(2)是否存在点M,使△MNP是以MN为底的等腰三角形,若存在求出m,若不存在说明理由;(3)以MN为边长,在MN的下方作正方形MNAB,判断边NA与反比例函数图象是否有交点,若有求出交点坐标,若没有并说明理由.23.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m ≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD =,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.人教版九年级下册《第26章反比例函数》单元测试卷(1)参考答案与试题解析一、选择题1.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数的图象上三点,其中x1<0<x2<x3,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3,则y1,y2,y3的大小关系.【解答】解:∵反比例函数中k=﹣4<0,∴此函数的图象在二、四象限,且在每一各象限内y随x的增大而增大,∵x1<0<x2<x3,∴(x1,y1)在第二象限,(x2,y2),(x3,y3)在第四象限,∴y1>0,y2<y3<0,即y1>y3>y2.故选:C.2.若点A(﹣2,y1),B(﹣1,y2),C(1,y3)在反比例函数y=﹣的图象上,则下列结论正确的是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y2>y3>y1【考点】反比例函数图象上点的坐标特征.【分析】直接把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.【解答】解:∵点A(﹣2,y1),B(﹣1,y2),C(1,y3)都在反比例函数y=﹣的图象上,∴y1=﹣=3,y2=﹣=6,y3=﹣=﹣6.∵6>3>﹣6,∴y2>y1>y3.故选:C.3.若反比例函数y=(k≠0)的图象经过点(2,﹣1),则该函数图象一定经过()A.(﹣1,1)B.(4,)C.(﹣1,﹣2)D.(﹣,4)【考点】反比例函数图象上点的坐标特征.【分析】将(2,﹣1)代入y=(k≠0)即可求出k的值,再根据k=xy解答即可.【解答】解:∵反比例函数y=(k≠0)的图象经过点(2,﹣1),∴k=2×(﹣1)=﹣2,A、﹣1×1=﹣1≠﹣2;B、4×=2≠﹣2;C、﹣1×(﹣2)=2≠﹣2,D、﹣×4=﹣2.故选:D.4.近视眼镜的度数y(度)与镜片焦距x(米)之间具有如图所示的反比例函数关系,若要配制一副度数小于400度的近视眼镜,则镜片焦距x的取值范围是()A.0米<x<0.25米B.x>0.25米C.0米<x<0.2米D.x>0.2米【考点】反比例函数的应用.【分析】由于近视眼镜的度数y(度)与镜片焦距x(米)成反比例,可设y=,把点(0.5,200)代入求得k的值,得到反比例函数解析式,根据题意列出不等式,解不等式即可求出焦距x的取值范围.【解答】解:根据题意,近视眼镜的度数y(度)与镜片焦距x(米)成反比例,设y=,∵点(0.5,200)在此函数的图象上,∴k=0.5×200=100,∴y=(x>0),∵y<400,∴<400,∵x>0,∴400x>100,∴x>0.25,即镜片焦距x的取值范围是x>0.25米,故选:B.5.已知△ABC为直角三角形,且∠A=30°,若△ABC的三个顶点均在双曲线y=(k>0)上,斜边AB经过坐标原点,且B点的纵坐标比横坐标少3个单位长度,C点的纵坐标与B点横坐标相等,则k=()A.4B.C.D.5【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】连接OC.证明BC=OB=OC,利用轴对称的性质和勾股定理解决问题即可.【解答】解:连接OC.∵反比例函数y=(k>0)图象是中心对称图形,∴OB=OA,∵△ABC为直角三角形,且∠A=30°,∠ACB=90°,∴OC=OB=BC,∵反比例函数关于直线y=x对称,OC=OB,∴B、C关于直线y=x对称,∴点C的纵坐标与点B的横坐标相同,∴B(a,b),则C(b,a),∵BC=OB,∴2(a﹣b)2=a2+b2,整理得2ab=(a﹣b)2,∵B点的纵坐标比横坐标少3个单位长,∴a﹣b=3,∴ab=,∵点B在双曲线y=(k>0)上,∴k=ab=.故选:B.6.某口罩生产企业于2020年1月份开始了技术改造,其月利润y(万元)与月份x之间的变化如图所示,技术改造完成前是反比例函数图象的一部分,技术改造完成后是一次函数图象的一部分,下列选项错误的是()A.4月份的利润为45万元B.改造完成后每月利润比前一个月增加30万元C.改造完成前后共有5个月的利润低于135万元D.9月份该企业利润达到205万元【考点】反比例函数的应用.【分析】直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.【解答】解:A、设反比例函数的解析式为y=,把(1,180)代入得,k=180,∴反比例函数的解析式为:y=,当x=4时,y=45,∴4月份的利润为45万元,故此选项正确,不合题意;B、治污改造完成后,从4月到5月,利润从45万到75万,故每月利润比前一个月增加30万元,故此选项正确,不合题意;C、当y=135时,则135=,解得:x=,设一次函数解析式为:y=kx+b,则,解得:,故一次函数解析式为:y=30x﹣75,当x=6时,y=105,当x=7时,y=135,则只有2月,3月,4月,5月,6月共5个月的利润低于135万元,故此选项正确,不符合题意.D、设一次函数解析式为:y=kx+b,则,解得:,故一次函数解析式为:y=30x﹣75,故y=205时,205=30x﹣75,解得:x=,则9月份之后该厂利润达到205万元,故此选项不正确,符合题意.故选:D.7.在矩形ABCD中,对角线AC=4,AC的垂直平分线EH交CD于点E,交AC于点H.设AB=x,CE=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.【考点】动点问题的函数图象;相似三角形的判定与性质.【分析】根据两角可得△ECH∽△CAB,再利用对应边成比例可得y与x的关系式,进而可得对应图象.【解答】解:∵四边形ABCD是矩形,∴DC∥AB,∠B=90°,∴∠ECH=∠CAB.∵AC的垂直平分线EH交CD于点E,交AC于点H,∴∠EHC=90°,CH=AC=2,∴△ECH∽△CAB,∴,即,∴y=(0<x<4).故选:A.8.如图,在平面直角坐标系中,反比例函数y=(k<0,x<0)的图象经过AB上的两点A,P,其中P为AB的中点,若△AOB的面积为18.则k的值为()A.﹣18B.﹣12C.﹣9D.﹣6【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.=S△POD=|k|,再证【分析】连接OP,作PD⊥OB于点D,AE⊥OB于E,求得S△AOE=S△POB=6.明BD=DE=OE,得S△POD【解答】解:连接OP,作PD⊥OB于点D,AE⊥OB于E,∵P为AB的中点,∴BD=DE,PD=AE,∵反比例函数y=(k<0,x<0)的图象经过AB上的两点A,P,=S△POD=|k|,∴S△AOE∴,∴OD=2OE,∴BD=DE=OE,=S△POB,∴S△POD∵△AOB的面积为18,∵P为AB的中点,=S△AOB=9,∴S△POB=S△POB=6,∴S△POD∴|k|=6,∵k<0,∴k=﹣12.故选:B.9.如图,在平面直角坐标系中,一次函数y=x+3的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=(x<0)的图象上,则k的值为()A.﹣10B.﹣6C.﹣20D.20【考点】反比例函数图象上点的坐标特征;正方形的性质;一次函数图象上点的坐标特征.【分析】过点C作CE⊥x轴于E,证明△AOB≌△BEC,可得点C坐标,代入求解即可.【解答】解:∵当x=0时,y=×0+3=3,∴A(0,3),∴OA=3;∵当y=0时,0=x+3,∴x=﹣2,∴B(﹣2,0),∴OB=2;过点C作CE⊥x轴于E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠CBE+∠ABO=90°,∠BAO+∠ABO=90°,∴∠CBE=∠BAO.在△AOB和△BEC中,,∴△AOB≌△BEC(AAS),∴BE=AO=3,CE=OB=2,∴OE=3+2=5,∴C点坐标为(﹣5,2),∵点C在反比例函数y=(x<0)的图象上,∴k=﹣5×2=﹣10.故选:A.10.如图,在平面直角坐标系中,点A、B、C为反比例函数y=(k>0)图象上不同的三点,连接OA、OB、OC,过点A作AD⊥x轴于点D,过点B、C分别作BE,CF垂直y 轴于点E、F,OB与CF相交于点G,记四边形BEFG、△COG、△AOD的面积分别为S1、S2、S3,则()A.S1>S2>S3B.S3<S1=S2C.S1=S2<S3D.S2=S3>S1【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】根据反比例函数系数k的几何意义得到S1=S2<S3,即可判断.【解答】解:∵点A、B、C为反比例函数y=(k>0)上不同的三点,AD⊥x轴,BE,CF垂直y轴于点E、F,=S△COF=S△AOD=k,∴S△BOE﹣S△GOF=S△COF﹣S△GOF,∴S△BOE∴S1=S2<S3,∴S1﹣S2=0,故A、B、D错误,C正确;故选:C.二、填空题11.如图,A是反比例函数图象上一点,过点A作AB⊥x轴于点B,点P在y轴上,△ABP的面积为1,则k的值为﹣2.【考点】反比例函数系数k的几何意义.【分析】连接OA,作AC⊥y轴于C点,由于AB⊥x轴,则AB∥OP,根据同底等高的=S△P AB=1,则有S矩形ABOC=2S△OAB=2,根据k的几何意义三角形面积相等得到S△OAB得到|k|=2,即k=2或k=﹣2,然后根据反比例函数性质即可得到k=﹣2.【解答】解:连接OA,作AC⊥y轴于C点,如图∵AB⊥x轴,∴AB∥OP,=S△P AB=1,∴S△OAB=2S△OAB=2,∴S矩形ABOC∴|k|=2,即k=2或k=﹣2,∵反比例函数图象过第二象限,∴k=﹣2.故答案为﹣2.12.如图,矩形ABCD的顶点A,C在反比例函数的图象上,若点A 的坐标为(2,6),AB=3,AD∥x轴,则点C的坐标为(4,3).【考点】反比例函数图象上点的坐标特征;矩形的性质.【分析】根据矩形的性质和A点的坐标,即可得出C的纵坐标为3,设C(x,3),根据反比例函数图象上点的坐标特征得出k=3x=2×6,解得x=4,从而得出C的坐标为(3,4).【解答】解:∵点A的坐标为(2,6),AB=3,∴B(2,3),∵四边形ABCD是矩形,∴AD∥BC,∵AD∥x轴,∴BC∥x轴,∴C点的纵坐标为3,设C(x,3),∵矩形ABCD的顶点A,C在反比例函数的图象上,∴k=3x=2×6,∴x=4,∴C(4,3),故答案为(4,3).13.如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA、OE都在x轴上,点C在OB边上,连接AD、BD,S△ABD=,反比例函数的图象经过点B,则k的值为2.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;等边三角形的性质;菱形的性质.【分析】连接OD,由△OAB是等边三角形,得到∠AOB=60°,根据平行线的性质得到∠DEO=∠AOB=60°,推出△DEO是等边三角形,得到∠DOE=∠BAO=60°,得=S△AOD,推出S△AOB=S△ABD=2,过B作BH⊥OA于H,到OD∥AB,求得S△BDO=,于是得到结论.由等边三角形的性质得到OH=AH,求得S△OBH【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,=S△AOD,∴S△BDO=S△ADO+S△ABD=S△BDO+S△AOB,∵S四边形ABDO=S△ABD=2,∴S△AOB过B作BH⊥OA于H,∴OH=AH,=,∴S△OBH∵反比例函数y=(x>0)的图象经过点B,∴k的值为2,故答案为:.14.如图,点A,B为反比例函数y=在第一象限上的两点,AC⊥y轴于点C,BD⊥x轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k﹣2,则k的值为.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征,设B(t,),则可表示出A(2t,),由三角形中位线定理,EM=OD=t,EN=OC=,然后根据三角形面积公式得到关于k的方程,解此方程即可.【解答】解:设B(t,),∵AC⊥y轴于点C,BD⊥x轴于点D,B点的横坐标是A点横坐标的一半,∴A(2t,),根据三角形中位线定理,EM=OD=t,EN=OC=,∴阴影部分的面积=EM•BE+=+=k﹣2,∴•+•t=k﹣2.解得,k=,故答案为.15.如图,P是反比例函数y=(x>0)上的一个动点,过P作PA⊥x轴,PB⊥y轴.(1)若矩形的对角线AB=10,则矩形OAPB的周长为4;(2)如图,点E在BP上,且BE=2PE,若E关于直线AB的对称点F恰好落在坐标轴上,连接AE,AF,EF,则△AEF的面积为4或.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;矩形的性质;轴对称的性质.【分析】(1)设矩形OAPB的两边为m、n,利用反比例函数k的几何意义得到mn=6,再根据勾股定理得到m2+n2=102,根据完全平方公式变形得到(m+n)2﹣2mn=100,则可计算出m+n=2,从而得到矩形OAPB的周长;(2)当E关于直线AB的对称点F恰好落在x轴上,如图2,AB与EF相交于点Q,利=4,再根据对称轴的性质得AB垂直平分EF,EQ=FQ,用三角形面积公式得到S△ABE=S△ABE=2,则S△AEF=2S△AQE 接着证明FQ垂直平分AB得到BQ=AQ,所以S△AQE=4;当E关于直线AB的对称点F恰好落在y轴上,如图3,证明四边形OAPB为正方=,而S△AOE=S△APE=2,于是得到S△AEF 形得到P(2,2),则可计算出S△BEF=.【解答】解:(1)设矩形OAPB的两边为m、n,则mn=12,∵矩形的对角线AB=10,∴m2+n2=102,∴(m+n)2﹣2mn=100,∴(m+n)2=100+2×12,∴m+n=2,∴矩形OAPB的周长为4,故答案为4;(2)当E关于直线AB的对称点F恰好落在x轴上,如图2,AB与EF相交于点Q,∵矩形OAPB的面积=12,而BE=2PE,=4,∴S△ABE∵点E与点F关于AB对称,∴AB垂直平分EF,EQ=FQ,∴AE=AF,∴∠AEF=∠AFE,∵PB∥OA,∴∠AFE=∠BEF,∴∠BEF=∠AEF,∴FQ垂直平分AB,∴BQ=AQ,=S△ABE=2,∴S△AQE=2S△AQE=4;∴S△AEF当E关于直线AB的对称点F恰好落在y轴上,如图3,∵点E与点F关于AB对称,∴BE=BF,AB⊥EF,∴△BEF为等腰直角三角形,∴AB平分∠OBP,∴四边形OAPB为正方形,∴P(2,2),∴BE=BF=,=××=,∴S△BEF=S△APE=2,而S△AOF=12﹣﹣2﹣2=,∴S△AEF综上所述,△AEF的面积为4或,故答案为4或.三、解答题16.已知A(a,﹣2a)、B(﹣2,a)两点是反比例函数y=与一次函数y=kx+b图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△ABO的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A(a,﹣2a)、B(﹣2,a),代入反比例函数y=,即可求出a、m的值;可得A、B的坐标,再由点A、B的坐标利用待定系数法即可求出一次函数解析;(2)求得C的坐标,然后根据三角形面积公式求得即可;(3)结合函数图象的上下位置关系结合交点的坐标,即可得出不等式的解集;【解答】解:(1)∵A(a,﹣2a)、B(﹣2,a)两点在反比例函数y=的图象上,∴m=﹣2a•a=﹣2a,解得a=1,m=﹣2,∴A(1,﹣2),B(﹣2,1),反比例函数的解析式为y=﹣.将点A(1,﹣2)、点B(﹣2,1)代入到y=kx+b中,得:,解得:,∴一次函数的解析式为y=﹣x﹣1.(2)在直线y=﹣x﹣1中,令y=0,则﹣x﹣1=0,解得x=﹣1,∴C(﹣1,0),=S△AOC+S△BOC=×1×2+×1=;∴S△AOB(3)观察函数图象,发现:当x<﹣2或0<x<1时,反比例函数图象在一次函数图象的下方,∴不等式kx+b﹣>0的解集为x<﹣2或0<x<1.17.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴上,顶点C(﹣4,3).(1)若顶点B在反比例函数y=的图象上,求k的值;(2)连接OB,过点B作BD⊥OB交x轴于点D,求直线BD的函数解析式.【考点】反比例函数图象上点的坐标特征;菱形的性质.【分析】(1)由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数法求出反比例函数解析式即可;(2)由菱形的性质得出OA=AB,即可得出∠ABO=∠AOB,由∠OBD=90°得出∠ADB =∠ABD,即可得出AD=AB=5,则OD=10,得到D(﹣10,0),然后根据待定系数法即可求得直线BD的解析式.【解答】解:(1)如图,延长BC交y轴于点E,∵C(﹣4,3),∴CE=4,OE=3,∴OC==5,∴BC=5,∴B(﹣9,3),∵顶点B在反比例函数y=的图象上,∴k=﹣9×3=﹣27;(2)∵OA=AB,∴∠ABO=∠AOB,又∵∠DBO=90°,∴∠ADB=∠ABD,∴AD=AB=5,∴OD=10,∴D(﹣10,0),设直线BD的解析式为y=ax+b,∵过D(﹣10,0),B(﹣9,3),∴,解得,直线BD解析式为:y=3x+30.18.如图,反比例函数y=的图象与正比例函数y=x的图象交于点A和B(4,1),点P(1,m)在反比例函数y=的图象上.(1)求反比例函数的表达式和点P的坐标;(2)求△AOP的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法即可求得反比例函数的解析式,然后把P(1,m)代入到求得的解析式,即可求得m的值;(2)根据函数的对称性求得A的坐标,即可根据待定系数法求得直线AP的解析式,从=S△AOC+S△POC求得即可.而求得直线AP与y轴的交点C的坐标,然后根据S△AOP【解答】解.(1)把点B(4,1)代入y=,得k=4,∴反比例函数的表达式为y=,∵把P(1,m)代入y=得:m==4,∴点P坐标为(1,4);(2)∵点A与点B关于原点对称,点B(4,1),∴点A(﹣4,﹣1),设AP与y轴交于点C,直线AP的函数关系式为y=ax+b,把点A(﹣4,﹣1)、P(1,4)分别代入得,,解得,∴直线AP的函数关系式为y=x+3,∴点C的坐标(0,3),=S△AOC+S△POC=+=.∴S△AOP19.如图,直线y=x和双曲线交于A,B两点,AE⊥x轴,垂足为E,射线AC⊥AD,AC交y轴于点C,AD交x轴于点D,且四边形ACOD的面积为1.(1)求双曲线的解析式.(2)求A,B两点的坐标.【考点】反比例函数与一次函数的交点问题.=S四【分析】(1)作AF⊥y轴于F,证得△CAF≌△DAE(AAS),即可得出S正方形AFOE=1,从而求得k=S正方形AFOE=1;边形ACOD(2)两解析式联立,组成方程组,解方程组即可求得.【解答】解:(1)作AF⊥y轴于F,∵点A在直线y=x上,∴AF=AE,∵∠CAF+∠DAF=∠DAE+∠DAF=90°,∴∠CAF=∠DAE,在△CAF和△DAE中,,∴△CAF≌△DAE(AAS),=S四边形ACOD=1,∴S正方形AFOE=1,∴k=S正方形AFOE∴双曲线的解析式为;(2)解得或,∴A(1,1),B(﹣1,﹣1).20.如图,直线y=x与反比例函数交于点A,过点A作AB⊥x轴于点B,△AOB的面积为2.点P是反比例函数图象上一点,且横坐标为4,点M、N分别是直线y=x和x 轴上的动点,求使△PMN周长最小时点M、N的坐标.【考点】反比例函数与一次函数的交点问题.【分析】根据反比例系数k的几何意义求得k,得到反比例函数的解析式,代入x=4,即可求得P的坐标,作P关于直线y=x的对称点C,则C为(1,4),作P关于x轴的对称点D,则D为(4,﹣1),连接CD交直线y=x于M,交x轴于N,此时△PMN周长最小,根据待定系数法求得直线CD的解析式,进而即可求得M、N的坐标.【解答】解:∵点A是反比例函数的图象上一点,过点A作AB⊥x轴于点B,△AOB 的面积为2.=|k|=2,∴S△AOB∴|k|=2×2=4,∵图象在第一象限,∴k=4,∴反比例函数y=(x>0),把x=4代入得y=1,∴P(4,1),作P关于直线y=x的对称点C,则C为(1,4),作P关于x轴的对称点D,则D为(4,﹣1),连接CD交直线y=x于M,交x轴于N,此时△PMN周长最小.最小值为CD,设直线CD的解析式y=mx+n,则,解得,∴直线CD的解析式为y=﹣x+,令y=0,则﹣x+=0,解得x=,∴N(,0),令x=﹣x+,解得x=,∴M(,).21.如图,四边形ABCO是平行四边形且点C(﹣4,0),将平行四边形ABCO绕点A逆时针旋转得到平行四边形ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点A,D在反比例函数y=的图象上,过A作AH⊥x轴,交EF于点H.(1)证明:△AOF是等边三角形,并求k的值;(2)在x轴上找点G,使△ACG是等腰三角形,求出G的坐标;(3)设P(x1,a),Q(x2,b)(x2>x1>0),M(m,y1),N(n,y2)是双曲线y=上的四点,m=,n=,试判断y1,y2的大小,说明理由.【考点】反比例函数综合题.【分析】(1)由旋转的性质可知AO=AF,且∠AOF=∠BAO,可证得△AOF为等边三角形,由题意可知A、D关于原点对称,则可求得OA的长,设AH交x轴于点K,则可中求得OK和AK的长,可求得A点坐标,代入反比例函数解析式可求得k的值;(2)设G(x,0),由A、C的坐标可分别表示出AG、CG和AC的长,分AG=CG、AG=AC和CG=AC三种情况分别得到关于x的方程,可求得x的值,则可求得G点坐标;(3)把P、Q的坐标代入反比例函数解析式可用x1、x2分别表示出a、b,则可比较m、n的大小关系,利用反比例函数的性质可求得y1,y2的大小.【解答】解:(1)由旋转的性质可得AO=AF=DE=BC,∠BAO=∠OAF,∵AB∥OC,∴∠BAO=∠AOF,∴∠AOF=∠OAF,∴AF=OF,∴AF=OF=OA,∴△AOF为等边三角形,∵点A,D在反比例函数y=的图象上,∴A、D关于原点对称,∴AO=OD=AD=OC=2,如图1,设AH交x轴于点K,在Rt△AOK中,可得∠OAK=30°,∴OK=OA=1,AK=OA=,∴A(1,),∴k=1×=;(2)设G(x,0),且A(1,),C(﹣4,0),∴AG==,CG=|x+4|,AC==2,∵△ACG是等腰三角形,∴有AG=CG、AG=AC和CG=AC三种情况,①当AG=CG时,则=|x+4|,解得x=﹣,此时G点坐标为(﹣,0);②当AG=AC时,则=2,解得x=﹣4(与C点重合,舍去)或x=6,此时G点坐标为(6,0);③当CG=AC时,则|x+4|=2,解得x=﹣4+2或x=﹣4﹣2,此时G点坐标为(﹣4+2,0)或(﹣4﹣2,0);综上可知G点坐标为(﹣,0)或(6,0)或(﹣4+2,0)或(﹣4﹣2,0);(3)y1<y2.理由如下:由(1)可知反比例函数解析式为y=,∵P(x1,a),Q(x2,b)(x2>x1>0)在反比例函数图象上,∴a=,b=,∴m===,∴m2﹣n2=﹣==,∵x2>x1>0,∴>0,即m2﹣n2>0,∴m2>n2,又由题意可知m>0,n>0,∴m>n,∵M(m,y1),N(n,y2)在反比例函数y=的图象上,且在第一象限,∴y1<y2.22.如图在平面直角坐标系中,一次函数y=2x与反比例函数在第一象限交于点P(1,p),点M的横坐标为m(0<m<1)是反比例函数图象上的一点,MN∥x轴交一次函数于点N.(1)求出k的值;(2)是否存在点M,使△MNP是以MN为底的等腰三角形,若存在求出m,若不存在说明理由;(3)以MN为边长,在MN的下方作正方形MNAB,判断边NA与反比例函数图象是否有交点,若有求出交点坐标,若没有并说明理由.【考点】反比例函数综合题.【分析】(1)先求出点P坐标代入解析式可求解;(2)先求出点N坐标代入解析式,可求m的值,与题意相矛盾;(3)求出点A坐标,判断出点A在双曲线的上方,即可求解.【解答】解:(1)∵一次函数y=2x的图象过点P(1,p),∴p=2,∴点P(1,2),∵反比例函数过点P(1,2),∴k=2;(2)不存在,理由如下:由(1)可知:反比例函数的解析式为y=,∴点M(m,),若△MNP是以MN为底的等腰三角形,∴点P在MN的垂直平分线上,∴点N(2﹣m,),∵点N在直线y=2x上,∴=2(2﹣m),∴m=1,∵0<m<1,∴m=1不合题意舍去,∴不存在点M,使△MNP是以MN为底的等腰三角形;(3)没有交点,理由如下:∵点M(m,),MN∥x轴,∴点N(,),∴MN=﹣m,∵四边形MNAB是正方形,∴MN=AN=﹣m,AN⊥MN,∴点A(,+m),当x=时,y=2m,∵0<m<1,∴2m<+m,∴点A在双曲线的上方,∴NA与反比例函数图象没有交点.23.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m ≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD =,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)由垂直的定义及锐角三角函数定义求出AO的长,利用勾股定理求出OD 的长,确定出A坐标,进而求出m的值确定出反比例解析式,把B的坐标代入反比例解析式求出n的值,确定出B坐标,利用待定系数法求出一次函数解析式即可;(2)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.【解答】解:(1)∵一次函数y=kx+b与反比例函数y=图象交于A与B,且AD⊥x 轴,∴∠ADO=90°,在Rt△ADO中,AD=4,sin∠AOD=,∴=,即AO=5,根据勾股定理得:DO==3,∴A(﹣3,4),代入反比例解析式得:m=﹣12,即y=﹣,把B坐标代入得:n=6,即B(6,﹣2),代入一次函数解析式得:,解得:,即y=﹣x+2;(2)当OE3=OE2=AO=5,即E2(0,﹣5),E3(0,5);当OA=AE1=5时,得到OE1=2AD=8,即E1(0,8);当AE4=OE4时,由A(﹣3,4),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1.5,2),∴AO垂直平分线方程为y﹣2=(x+),令x=0,得到y=,即E4(0,),综上,当点E(0,8)或(0,5)或(0,﹣5)或(0,)时,△AOE是等腰三角形.。
人教版九年级数学下册《第26章反比例函数》单元综合测试卷(含答案)
第26章《反比例函数》单元综合测试卷第Ⅰ卷(选择题)一.选择题(共10小题)1.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小2.在反比例函数y=﹣图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y23.如图,直线y=x﹣3与双曲线y=的图象交于A、B两点,则不等式|x﹣3|>||的解集为()A.﹣1<x<0或x>4B.﹣1<x<0或0<x<4C.x<﹣1或x>4D.x<﹣1或0<x<44.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S=8,则k的值是()△ABOA.﹣12B.﹣8C.﹣6D.﹣45.如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为()A.2B.2C.D.26.如图,已知直线y=﹣x+与与双曲线y=(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为()A.B.C.D.7.如图,在平面直角坐标系中,点A、B的坐标分别为(0,4)、(4,0),点C 在第一象限内,∠BAC=90°,AB=2AC,函数y=(x>0)的图象经过点C,将△ABC沿x轴的正方向向右平移m个单位长度,使点A恰好落在函数y=(x >0)的图象上,则m的值为()A.B.C.3D.8.如图,Rt△AOC的直角边OC在x轴上,∠ACO=90°,反比例函数y=(x>0)=3,则k=()的图象与另一条直角边相C交于点D,=,S△AO CA.1B.2C.3D.49.如图,矩形OABC的顶点A在y轴的正半轴上,点C在x轴的正半轴上,反比例函数y=(k≠0)的图象的一个分支与AB交于点D,与BC交于点E,DF⊥x轴于点F,EG⊥y轴于点G,交DF于点H.若矩形OGHF和矩形HDBE 的面积分别是2和5,则k的值是()A.7B.C.2+D.1010.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为()A.5B.6C.4D.5第Ⅱ卷(非选择题)二.填空题(共6小题)11.如图,在平面直角坐标系中,平行四边形ABOC的边OB在x轴上,过点C (3,4)的双曲线与AB交于点D,且AC=2AD,则点D的坐标为.12.如图,矩形OABC的两边落在坐标轴上,反比例函数y=的图象在第一象限的分支过AB的中点D交OB于点E,连接EC,若△OEC的面积为12,则k=.13.如图,已知点A在反比例函数y=(x>0)的图象上,作Rt△ABC,边BC 在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE 的面积为4,则k=.14.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与正比例函数y=kx、y=x(k>1)的图象分别交于点A、B.若∠AOB=45°,则△AOB的面积是.15.过双曲线y=(k>0)上的动点A作AB⊥x轴于点B,P是直线AB上的点,且满足AP=2AB,过点P作x轴的平行线交此双曲线于点C.如果△APC的面积为8,则k的值是.16.如图,已知反比例函数y=在第一象限内的图象上一点A,且OA=4,AB⊥x 轴,垂足为B,线段OA的垂直平分线交x轴于点C(点C在点B的左侧),则△ABC的周长等于.三.解答题(共7小题)17.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=,n=.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案).18.如图,在平面直角坐标系中,面积为4的正方形OABC的顶点O与坐标原点重合,边OA、OC分别在x轴、y轴的正半轴上,点B、P都在函数y=(x >0)的图象上,过动点P分别作轴x、y轴的平行线,交y轴、x轴于点D、E.设矩形PDOE与正方形OABC重叠部分图形的面积为S,点P的横坐标为m.(1)求k的值;(2)用含m的代数式表示CD的长;(3)求S与m之间的函数关系式.19.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)20.如图:直线y=x与反比例函数y=(k>0)的图象在第一象限内交于点A(2,m).(1)求m、k的值;(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式;(3)将△AOB沿直线AB向上平移,平移后A、O、B的对应点分别为A'、O'、B',当点O'恰好落在反比例函数y=的图象上时,求点A'的坐标.21.如图,在平面直角坐标系中,O为坐标原点,▱AOBC的顶点A、C的坐标分别为A(﹣2,0)、C(0,3),反比例函数的图象经过点B.(1)求反比例函数的表达式;(2)这个反比例函数的图象与一个一次函数的图象交于点B、D(m,1),根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.22.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y1=(x>0)的图象经过菱形对角线的交点A,且交另一边BC交于点F,点A的坐标为(4,2).(1)求反比例的函数的解析式;(2)设经过B,C两点的一次函数的解析式为y2=mx+b,求y1<y2的x的取值范围.23.如图1,在矩形ABCD中,点A(1,1),B(3,1),C(3,2),反比例函数y=(x>0)的图象经过点D,且与AB相交于点E.(1)求反比例函数的解析式.(2)过点C、E作直线,求直线CE的解析式.(3)如图2,将矩形ABCD沿直线CE平移,使得点C与点E重合,求线段BD 扫过的面积.参考答案一.选择题1.D.2.C.3.C.4.C.5.A.6.B.7.C.8.D.9.C.10.D.二.填空题11.(7,).12.12.13.8.14.215.12或4.16.2.三.解答题17.解:(1)∵反比例函数y=过点A(﹣1,3),B(﹣3,n)∴m=3×(﹣1)=﹣3,m=﹣3n∴n=1故答案为﹣3,1(2)设一次函数解析式y=kx+b,且过(﹣1,3),B(﹣3,1)∴解得:∴解析式y=x+4∵一次函数图象与x轴交点为C∴0=x+4∴x=﹣4∴C(﹣4,0)=S△AOC﹣S△BOC∵S△AOB=×4×3﹣×4×1=4∴S△AOB(3)∵kx+b≥∴一次函数图象在反比例函数图象上方∴﹣3≤x≤﹣1故答案为﹣3≤x≤﹣118.解(1)∵正方形OABC的面积4,∴BA=BC=OA=OC=2.∴点B(2,2)∵点B、P都在函数y=(x>0)的图象上∴k=2×2=4∴解析式y=(2)∵点P在y=的图象上,且横坐标为m,∴当0<m≤2时,CD=﹣2当m>2时,CD=2﹣(3)当0<m≤2时,S=2m当m>2时,S=2×=19.解:(1)设,由题意知,所以k=96,故;(2)当v=1m3时,;(3)当p=140kPa时,.所以为了安全起见,气体的体积应不少于0.69m3.20.解:(1)∵直线y=x经过A(2,m),∴m=2,∴A(2,2),∵A在y=的图象上,∴k=4.(2)设B(0,n),由题意:×(﹣n)×2=2,∴n=﹣2,∴B(0,﹣2),设直线AB的解析式为y=k′x+b,则有,∴,∴直线AB的解析式为y=2x+2.(3)当点O'恰好落在反比例函数y=的图象上时,点A'的坐标(4,4).21.解:(1)∵四边形ABCD是平行四边形,∴OA=BC,OA∥BC,而A(﹣2,0)、C(0,3),∴B(2,3);设所求反比例函数的表达式为y=(k≠0),把B(2,3)代入得k=2×3=6,∴反比例函数解析式为y=;(2)把D(m,1)代入y=得m=6,则D(6,1),∴当0<x<2或x>6时,反比例函数的值大于一次函数的值.22.解:(1)∵反比例函数y=的图象经过点A(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)如图,过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x﹣,根据题意得方程组,解此方程组得:或,∵点F在第一象限,∴点F的坐标为F(6,),∴y1<y2的x的取值范围是x>6.23.解:(1)由题可得,AD=CB=1,A(1,1),∴点D的坐标为(1,2),∵反比例函数y=(x>0)的图象经过点D,∴m=1×2=2,∴反比例函数的解析式为y=.(2)当y=1时,1=,∴x=2,∴E(2,1),设直线CE的解析式为y=kx+b,依题意得,解得,∴直线CE的解析式为y=x﹣1;(3)如图2,∵矩形ABCD沿着C E平移,使得点C与点E重合,∴点D'(0,1),B'(2,0),'=2S△BD'D=2××3×1=3.∴S四边形BDD'B。
新人教版九年级下《第26章反比例函数》单元测试题(含答案解析)
新人教版九年级下册数学《第26章反比例函数》单元测试题一.选择题(共10小题)1.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3C.y=﹣D.y=x2﹣12.在同一平面直角坐标系中,函数y=kx与y=的图象大致是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)3.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小4.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1.7,则S1+S2等于()A.4B.4.2C.4.6D.55.下列各点中,在函数y=﹣图象上的是()A.(﹣3,﹣2)B.(﹣2,3)C.(3,2)D.(﹣3,3)6.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是()A.y=B.y=C.y=D.y=7.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),当y=x的函数值大于y=的函数值时,x的取值范围()A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>28.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=9.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(2,4)在其图象上,则(﹣2,4)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=x和y=﹣x成轴对称10.已知反比例函数y=(k≠0)的图象经过(﹣4,2),那么下列四个点中,在这个函数图象上的是()A.(1,8)B.(3,)C.(,6)D.(﹣2,﹣4)二.填空题(共8小题)11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大”,则此函数的表达式可以为.12.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,连接OA,OB,则△OAC与△OBD的面积之和为.13.已知A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,且x1<0<x2,则y1与y2大小关系是.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为(x>0).15.反比例函数y=的图象与正比例函数y=6x的图象交于点P(m,12),则反比例函数的关系式是.16.如图、点P在反比例函数y=的图象上,PM⊥y轴于M,S=4,则k=.△POM17.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.若点B在x轴上,点A的坐标为(6,4),则△BOC的面积为.18.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=图象上的三个点,则y1、y2、y3的大小关系是.三.解答题(共7小题)19.已知y=(m2+2m)x是关x于的反比例函数,求m的值及函数的解析式.20.已知反比例函数y=(m﹣2)(1)若它的图象位于第一、三象限,求m的值;(2)若它的图象在每一象限内y的值随x值的增大而增大,求m的值.21.已知双曲线y=如图所示,点A(﹣1,m),B(n,2).求S.△AOB22.如图,在平面直角坐标系中,Rt△ABC的边AB⊥x轴,垂足为A,C的坐标为(1,0),反比例函数y=(x>0)的图象经过BC的中点D,交AB于点E.已知AB=4,BC=5.求k的值.23.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.(1)求反比例函数的解析式;(2)直接写出当y<4时x的取值范围.24.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=,n=.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案).25.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上的一点,且△ABP的面积是3,求点P的坐标;(3)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.新人教版九年级下册数学《第26章反比例函数》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3C.y=﹣D.y=x2﹣1【分析】根据反比例函数的定义判断即可.【解答】解:A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选:C.【点评】本题考查的是反比例函数的定义,形如y=(k为常数,k≠0)的函数称为反比例函数.2.在同一平面直角坐标系中,函数y=kx与y=的图象大致是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)【分析】分k>0和k<0两种情况分类讨论即可确定正确的选项.【解答】解:当k>0时,函数y=kx的图象位于一、三象限,y=的图象位于一、三象限,(1)符合;当k<0时,函数y=kx的图象位于二、四象限,y=的图象位于二、四象限,(4)符合;故选:B.【点评】考查了反比例函数和正比例函数的性质,解题的关键是能够分类讨论,难度不大.3.已知反比例函数y =﹣,下列结论中不正确的是( )A .图象必经过点(﹣3,2)B .图象位于第二、四象限C .若x <﹣2,则0<y <3D .在每一个象限内,y 随x 值的增大而减小【分析】根据反比例函数的性质进行选择即可.【解答】解:A 、图象必经过点(﹣3,2),故A 正确;B 、图象位于第二、四象限,故B 正确;C 、若x <﹣2,则y <3,故C 正确;D 、在每一个象限内,y 随x 值的增大而增大,故D 正确;故选:D .【点评】本题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.4.如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1.7,则S 1+S 2等于( )A .4B .4.2C .4.6D .5【分析】根据反比例函数系数k 的几何意义可得S 四边形AEOF =4,S 四边形BDOC =4,根据S 1+S 2=S 四边形AEOF +S 四边形BDOC ﹣2×S 阴影,可求S 1+S 2的值.【解答】解:如图,∵A 、B 两点在双曲线y =上,∴S 四边形AEOF =4,S 四边形BDOC =4,∴S 1+S 2=S 四边形AEOF +S 四边形BDOC ﹣2×S 阴影,∴S 1+S 2=8﹣3.4=4.6故选:C .【点评】本题考查了反比例函数系数k 的几何意义,熟练掌握在反比例函数y =图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.5.下列各点中,在函数y =﹣图象上的是( )A .(﹣3,﹣2)B .(﹣2,3)C .(3,2)D .(﹣3,3)【分析】只需把所给点的横纵坐标相乘,结果是﹣6的,就在此函数图象上.【解答】解:∵反比例函数y =﹣中,k =﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上,四个选项中只有B 选项符合.故选:B .【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.6.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是( )A .y =B .y =C .y =D .y =【分析】利用待定系数法求出反比例函数解析式即可.【解答】解:设反比例函数解析式为y =(k ≠0),把(1,﹣2)代入得:k =﹣2,则反比例函数解析式为y =﹣,故选:D .【点评】此题考查了待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键. 7.如图,正比例函数y =x 与反比例函数y =的图象交于A 、B 两点,其中A (2,2),当y =x 的函数值大于y =的函数值时,x 的取值范围( )A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>2【分析】由题意可求点B坐标,根据图象可求解.【解答】解:∵正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),∴点B坐标为(﹣2,﹣2)∴当x>2或﹣2<x<0故选:D.【点评】本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.8.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=【分析】先求得路程,再由等量关系“速度=路程÷时间”列出关系式即可.【解答】解:由于以80千米/时的平均速度用了6小时到达目的地,那么路程为80×6=480千米,∴汽车的速度v(千米/时)与时间t(小时)的函数关系为v=.故选:A.【点评】本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.9.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(2,4)在其图象上,则(﹣2,4)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=x和y=﹣x成轴对称【分析】根据反比例函数的性质一一判断即可;【解答】解:A、若点(2,4)在其图象上,则(﹣2,4)不在其图象上,故本选项不符合题意;B、当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C、错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D、正确,本选项符合题意,故选:D.【点评】本题考查反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.10.已知反比例函数y=(k≠0)的图象经过(﹣4,2),那么下列四个点中,在这个函数图象上的是()A.(1,8)B.(3,)C.(,6)D.(﹣2,﹣4)【分析】根据反比例函数y=(k≠0)的图象经过(﹣4,2),可以得到k的值,从而可以判断各个选项是否符合题意,本题得以解决.【解答】解:∵反比例函数y=(k≠0)的图象经过(﹣4,2),∴k=xy=(﹣4)×2=﹣8,∵1×8=8≠﹣8,故选项A不符合题意,∵3×(﹣)=﹣8,故选项B符合题意,∵×6=3≠﹣8,故选项C不符合题意,∵(﹣2)×(﹣4)=8≠﹣8,故选项D不符合题意,故选:B.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.二.填空题(共8小题)11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大”,则此函数的表达式可以为y=.【分析】根据题意和反比例函数的性质可以写出一个符合要求的函数解析式,本题得以解决.【解答】解:∵当x>0时,y随x的增大而增大,∴此函数的解析式可以为y =,故答案为:y =. 【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,写出相应的函数解析式,注意本题答案不唯一.12.如图,在平面直角坐标系xOy 中,函数y =(x >0)的图象经过点A ,B ,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,连接OA ,OB ,则△OAC 与△OBD 的面积之和为 2 .【分析】根据反比例函数比例系数k 的几何意义可得S △OAC =S △OBD =×2=1,再相加即可.【解答】解:∵函数y =(x >0)的图象经过点A ,B ,AC ⊥x 轴于点C ,BD ⊥y 轴于点D , ∴S △OAC =S △OBD =×2=1,∴S △OAC +S △OBD =1+1=2.故答案为2.【点评】本题考查了反比例函数比例系数k 的几何意义:过反比例函数图象上的点向x 轴或y 轴作垂线,这一点和垂足、原点组成的三角形的面积等于|k |.13.已知A (x 1,y 1),B (x 2,y 2)都在反比例函数的图象y =﹣上,且x 1<0<x 2,则y 1与y 2大小关系是 y 1>y 2 .【分析】将点A ,点B 坐标代入解析式,可求y 1,y 2,由x 1<0<x 2,可得y 1>0,y 2<0,即可得y 1与y 2大小关系.【解答】解:∵A (x 1,y 1),B (x 2,y 2)都在反比例函数的图象y =﹣上,∴y 1=,y 2=,∵x 1<0<x 2,∴y 1>0>y 2,故答案为:y 1>y 2【点评】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为y=﹣(x>0).【分析】根据关于x轴对称的性质得出点A关于x轴的对称点A′坐标(2,﹣1),从而得出C2对应的函数的表达式.【解答】解:∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A(2,1),∴A′坐标(2,﹣1),∴C2对应的函数的表达式为y=﹣,故答案为y=﹣.【点评】本题考查了反比例函数的性质,掌握关于x轴对称点的坐标是解题的关键.15.反比例函数y=的图象与正比例函数y=6x的图象交于点P(m,12),则反比例函数的关系式是y=.【分析】把点P(m,12)代入正比例函数y=6x得到关于m的一元一次方程,解之求得m的值,把P的坐标代入反比例函数y=,得到关于k的一元一次方程,解之,求得k的值,代入即可得到答案.【解答】解:把点P(m,12)代入正比例函数y=6x得:12=6m,解得:m=2,把点P(2,12)代入反比例函数y=得:12=,解得:k=24,即反比例函数得关系式是y=,故答案为:y=.【点评】本题考查了反比例函数和一次函数的交点问题,正确掌握代入法是解题的关键.16.如图、点P在反比例函数y=的图象上,PM⊥y轴于M,S=4,则k=﹣8.△POM【分析】此题可从反比例函数系数k的几何意义入手,△PMO的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=|k|再结合反比例函数所在的象限确定出k的值即可.=|k|=4,【解答】解:由题意知:S△PMO所以|k|=8,即k=±8.又反比例函数是第二象限的图象,k<0,所以k=﹣8,故答案为:﹣8.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.17.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.若点B在x轴上,点A的坐标为(6,4),则△BOC的面积为3.【分析】由于点A的坐标为(6,4),而点D为OA的中点,则D点坐标为(3,2),利用待定系数法科得到k=6,然后利用k的几何意义即可得到△BOC的面积=|k|=×6=3.【解答】解:∵点A的坐标为(6,4),而点D为OA的中点,∴D点坐标为(3,2),把D(3,2)代入y=得k=3×2=6,∴反比例函数的解析式为y=,∴△BOC的面积=|k|=×|6|=3.故答案为:3;【点评】本题考查了反比例y=(k≠0)数k的几何意义:过反比例函数图象上任意一点分别作x 轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.18.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=图象上的三个点,则y1、y2、y3的大小关系是y2>y3>y1.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可【解答】解:∵1>0,∴反比例函数y=图象在一、三象限,并且在每一象限内y随x的增大而减小,∵﹣1<0,∴A点在第三象限,∴y1<0,∵2>1>0,∴B、C两点在第一象限,∴y2>y3>0,∴y2>y3>y1.故答案是:y2>y3>y1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题(共7小题)19.已知y=(m2+2m)x是关x于的反比例函数,求m的值及函数的解析式.【分析】根据反比例函数的定义知m2+2m=﹣1,且m2+2m≠0,据此可以求得m的值,进而得出反比例函数的解析式.【解答】解:∵y=(m2+2m)x是反比例函数,∴m2+2m=﹣1,且m2+2m≠0,∴(m+1)(m+1)=0,∴m+1=0,即m=﹣1;∴反比例函数的解析式y=﹣x﹣1.【点评】本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx﹣1(k≠0)的形式.20.已知反比例函数y=(m﹣2)(1)若它的图象位于第一、三象限,求m的值;(2)若它的图象在每一象限内y的值随x值的增大而增大,求m的值.【分析】(1)根据反比例函数的定义与性质,得出,进而求解即可;(2)根据反比例函数的定义与性质,得出,进而求解即可.【解答】解:(1)由题意,可得,解得m=3;(2)由题意,可得,解得m=﹣2.【点评】本题考查了反比例函数的性质;用到的知识点为:反比例函数y =kx (k ≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.也考查了反比例函数的定义.21.已知双曲线y =如图所示,点A (﹣1,m ),B (n ,2).求S △AOB .【分析】根据点A 、B 两点在反比例函数图象上得其坐标,再根据S △AOB =S 矩形ODEC ﹣S △AOC ﹣S △BOD﹣S △ABE 可得答案.【解答】解:将点A (﹣1,m )、B (n ,2)代入y =,得:m =6、n =﹣3,如图,过点A 作x 轴的平行线,交y 轴于点C ,过点B 作y 轴的平行线,交x 轴于点D ,交CA 于点E ,则DE =OC =6、BD =2、BE =4、OD =3,AC =1、AE =2,∴S △AOB =S 矩形ODEC ﹣S △AOC ﹣S △BOD ﹣S △ABE=3×6﹣×1×6﹣×3×2﹣×2×4=8.【点评】本题主要考查反比例函数系数k 的几何意义,熟练掌握割补法求三角形的面积是解题的关键.22.如图,在平面直角坐标系中,Rt △ABC 的边AB ⊥x 轴,垂足为A ,C 的坐标为(1,0),反比例函数y =(x >0)的图象经过BC 的中点D ,交AB 于点E .已知AB =4,BC =5.求k 的值.【分析】根据勾股定理可求AC=3,则可求点A(4,0),可得点B(4,4),根据中点坐标公式可求点D坐标,把点D坐标代入解析式可求k的值.【解答】解:∵在Rt△ABC中,AB=4,BC=5∴AC===3∵点C坐标(1,0)∴OC=1∴OA=OC+AC=4∴点A坐标(4,0)∴点B(4,4)∵点C(1,0),点B(4,4)∴BC的中点D(,2)∵反比例函数y=(x>0)的图象经过BC的中点D∴2=∴k=5【点评】本题考查了反比例函数图象上点的坐标特征,勾股定理,中点坐标公式,熟练运用反比例函数图象性质是解决问题的关键.23.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.(1)求反比例函数的解析式;(2)直接写出当y<4时x的取值范围.【分析】(1)把P的坐标代入直线解析式求出a的值,确定出P′的坐标,即可求出反比例解析式;(2)结合图象确定出所求x的范围即可.【解答】解:(1)把P(﹣2,a)代入直线y=﹣2x解析式得:a=4,即P(﹣2,4),∴点P关于y轴对称点P′为(2,4),代入反比例解析式得:k=8,则反比例解析式为y=;(2)当y<4时,反比例函数自变量x的范围为x>2或x<0;一次函数自变量x的范围是x>﹣2.【点评】此题考查了待定系数法求反比例函数解析式,以及一次函数、反比例函数的性质,熟练掌握待定系数法是解本题的关键.24.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=﹣3,n=1.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案)﹣3≤x≤﹣1.【分析】(1)将A点坐标,B点坐标代入解析式可求m,n的值(2)用待定系数法可求一次函数解析式,根据S△AOB =S△AOC﹣S△BOC可求△AOB的面积.(3)由图象直接可得【解答】解:(1)∵反比例函数y=过点A(﹣1,3),B(﹣3,n)∴m =3×(﹣1)=﹣3,m =﹣3n∴n =1故答案为﹣3,1(2)设一次函数解析式y =kx +b ,且过(﹣1,3),B (﹣3,1)∴解得: ∴解析式y =x +4∵一次函数图象与x 轴交点为C∴0=x +4∴x =﹣4∴C (﹣4,0)∵S △AOB =S △AOC ﹣S △BOC∴S △AOB =×4×3﹣×4×1=4(3)∵kx +b ≥∴一次函数图象在反比例函数图象上方∴﹣3≤x ≤﹣1故答案为﹣3≤x ≤﹣1【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法,利用函数图象上的点满足函数关系式解决问题是本题关键.25.如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)与反比例函数y =(m ≠0)的图象交于点A (3,1),且过点B (0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P 是x 轴上的一点,且△ABP 的面积是3,求点P 的坐标;(3)若P 是坐标轴上一点,且满足PA =OA ,直接写出点P 的坐标.【分析】(1)将点A(3,1)代入y=,利用待定系数法求得反比例函数的解析式,再将点A(3,1)和B(0,﹣2)代入y=kx+b,利用待定系数法求得一次函数的解析式;(2)首先求得AB与x轴的交点C的坐标,然后根据S△ABP =S△ACP+S△BCP即可列方程求得P的横坐标;(3)分两种情况进行讨论:①点P在x轴上;②点P在y轴上.根据PA=OA,利用等腰三角形的对称性求解.【解答】解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=,解得m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2),∴,解得:,∴一次函数的表达式为y=x﹣2;(2)如图,设一次函数y=x﹣2的图象与x轴的交点为C.令y=0,则x﹣2=0,x=2,∴点C的坐标为(2,0).∵S△ABP =S△ACP+S△BCP=3,∴PC×1+PC×2=3,∴PC=2,∴点P的坐标为(0,0)、(4,0);word 版数学21 / 21 (3)若P 是坐标轴上一点,且满足PA =OA ,则P 点的位置可分两种情况:①如果点P 在x 轴上,那么O 与P 关于直线x =3对称,所以点P 的坐标为(6,0);②如果点P 在y 轴上,那么O 与P 关于直线y =1对称,所以点P 的坐标为(0,2).综上可知,点P 的坐标为(6,0)或(0,2).【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,三角形面积的计算以及等腰三角形的性质,正确求出函数的解析式是关键.。
(新)人教版九年级数学下册第26章《反比例函数》单元检测及答案
人教版数学九年级下学期第26章《反比例函数》单元测试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分) 1.下列函数是反比例函数的是( )A .y=xB .y=kx ﹣1 C .y=-8x D .y=28x2.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A .两条直角边成正比例B .两条直角边成反比例C .一条直角边与斜边成正比例D .一条直角边与斜边成反比例3.在双曲线y=1-kx的任一支上,y 都随x 的增大而增大,则k 的值可以是( )A .2B .0C .﹣2D .14.函数y=﹣x +1与函数y= -2x在同一坐标系中的大致图象是( )C BAy yy y5.若正比例函数y=﹣2x 与反比例函数y=kx图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为( ) A .(2,﹣1) B .(1,﹣2)C .(﹣2,﹣1)D .(﹣2,1)6.如图,过反比例函数y=kx(x >0)的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )xC .4D .5 k ≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点( )A.(1,﹣1) B.(﹣12,4)C.(﹣2,﹣1) D.(12,4)8.图象经过点(2,1)的反比例函数是()A.y=﹣2xB.y=2xC.y=12xD.y=2x9.若一次函数y=mx+6的图象与反比例函数y=nx在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤010.一个三角形的面积是12cm2,则它的底边y(单位:cm)是这个底边上的高x(单位:cm)的函数,它们的函数关系式(其中x>0)为()A.y=12xB.y=6x C.y=24xD.y=12x二、填空题(共6小题,每小题3分,共18分)11.若反比例函数y=(m+1)22mx-的图象在第二、四象限,m的值为.12.若函数y=(3+m)28mx-是反比例函数,则m=.13.已知反比例函数y=kx(k>0)的图象与经过原点的直线L相交于点A、B两点,若点A的坐标为(1,2),14.反比例函数y=kx的图象过点P(2,6),那么k的值是.15.已知:反比例函数y=kx的图象经过点A(2,﹣3),那么k=.16.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,分别过点A、B向xD、C,若矩形ABCD的面积是8,则k的值为.x72分)取何值时,函数y=2m113x+是反比例函数?OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx(k>0)的图象与BC边交于点E.当F为AB的中点时,求该函数的解析式;、y 2在第一象限的图象,1y =4x,过y 1上的任意一点A ,作x 轴S △AOB =1,求双曲线y 2的解析式. =4xy=kx的图象上,过点C 作CD ⊥y 轴,交y 轴负半轴于y 轴对称的点的坐标是 .(2)反比例函数y=x 关于y 轴对称的函数的解析式为 .(3)求反比例函数y=kx(k ≠0)关于x 轴对称的函数的解析式.22.(本题10分)如图,Rt △ABC 的斜边AC 的两个顶点在反比例函数y=1kx的图象上,点B 在反比例函数y=2kx的图象上,AB 与x 轴平行,BC=2,点A 的坐标为(1,3).(1)求C 点的坐标;(2)求点B 所在函数图象的解析式.y=x+b的图象与反比例函数y=kx(k为常数,k≠0)的图象交b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.O为坐标原点,△ABO的边AB垂直与x轴,垂足AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=kx的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.第26章《反比例函数》单元测试卷解析一、选择题1. 【答案】A 、y=x 是正比例函数;故本选项错误;B 、y=kx ﹣1当k=0时,它不是反比例函数;故本选项错误; C 、符合反比例函数的定义;故本选项正确;D 、y=28x的未知数的次数是﹣2;故本选项错误.故选C .2.【答案】设该直角三角形的两直角边是a 、b ,面积为S .则 S=12ab . ∵S 为定值,∴ab=2S 是定值,则a 与b 成反比例关系,即两条直角边成反比例. 故选:B .3.【答案】∵y 都随x 的增大而增大, ∴此函数的图象在二、四象限, ∴1﹣k <0, ∴k >1.故k 可以是2(答案不唯一), 故选A .4.【答案】函数y=﹣x +1经过第一、二、四象限,函数y=﹣2x分布在第二、四象限.故选A .5.【答案】∵正比例函数与反比例函数的图象均关于原点对称, ∴两函数的交点关于原点对称, ∵一个交点的坐标是(﹣1,2), ∴另一个交点的坐标是(1,﹣2). 故选B .6.【答案】∵点A 是反比例函数y=kx图象上一点,且AB ⊥x 轴于点B ,∴S △AOB =12|k |=2,解得:k=±4.∵反比例函数在第一象限有图象, ∴k=4. 故选C .7.【答案】∵反比例函数y=kx(k ≠0)的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,A 、1×(﹣1)=﹣1≠﹣2,故此点不在反比例函数图象上;B 、﹣12×4=﹣2,故此点,在反比例函数图象上;C 、﹣2×(﹣1)=2≠﹣2,故此点不在反比例函数图象上;D 、12×4=2≠﹣2,故此点不在反比例函数图象上. 故选B .8.【答案】设反比例函数解析式y=kx,把(2,1)代入得k=2×1=2,所以反比例函数解析式y=2x.故选B .9.【答案】依照题意画出图形,如下图所示.x+6x ﹣n=0, 故选A .10.【答案】由题意得y=2×12÷x=24x.故选C .二、填空题11.【答案】由题意得:2﹣m 2=﹣1,且m +1≠0, 解得:m=∵图象在第二、四象限, ∴m+1<0, 解得:m <﹣1, ∴m=故答案为:12.【答案】根据题意得:8-m 2= -1,3+m ≠0,解得:m=3.故答案是:3. 13.【答案】∵点A (1,2)与B 关于原点对称, ∴B 点的坐标为(﹣1,﹣2). 故答案是:(﹣1,﹣2).14.【答案】:∵反比例函数y=kx 的图象过点P (2,6),∴k=2×6=12,故答案为:12.15.【答案】根据题意,得﹣3=k2,解得,k=﹣6.16. 【答案】过点A 作AE ⊥y 轴于点E ,∵点A 在双曲线y=4x上,∴矩形EODA 的面积为:4, ∵矩形ABCD 的面积是8,∴矩形EOCB 的面积为:4+8=12, 则k 的值为:xy=k=12.x2m 113x 是反比例函数,∴2m +1=1,解得:m=0.OABC 中,OA=3,OC=2,∴B (3,2), F (3,1),∵点F 在反比例函数y=k x (k >0)的图象上,∴k=3,∴该函数的解析式为y= 3x(x >0);19.【解答】设双曲线y 2的解析式为y 2=kx,由题意得:S △BOC ﹣S △AOC =S △AOB ,k 2﹣42=1,解得;k=6;则双曲线y 2的解析式为y 2=6x . 20.【解答】(1)设C 点坐标为(x ,y ),∵△ODC 的面积是3,∴12 OD •DC=12x •(﹣y )=3,∴x •y=﹣6,而xy=k ,∴k=﹣6,∴所求反比例函数解析式为y=﹣6x;(2)∵CD=1,即点C ( 1,y ),把x=1代入y=﹣6x,得y=﹣6.∴C 点坐标为(1,﹣6),设直线OC 的解析式为y=mx ,把C (1,﹣6)代入y=mx 得﹣6=m ,∴直线OC 的解析式为:y=﹣6x . 21.【解答】(1)由于两点关于y 轴对称,纵坐标不变,横坐标互为相反数; 则点(3,6)关于y 轴对称的点的坐标是(﹣3,6);(2)由于两反比例函数关于y 轴对称,比例系数k 互为相反数;则k=﹣3,即反比例函数y=3x 关于y 轴对称的函数的解析式为y=﹣3x;(3)由于两反比例函数关于x 轴对称,比例系数k 互为相反数;则反比例函数y=k x (k ≠0)关于x 轴对称的函数的解析式为:y=﹣kx.22.【解答】(1)把点A (1,3)代入反比例函数y=1kx 得k 1=1×3=3,所以过A 点与C 点的反比例函数解析式为y=3x,∵BC=2,AB 与x 轴平行,BC 平行y 轴,∴B 点的坐标为(3,3),C 点的横坐标为3,把x=3代入y=3x得y=1,∴C 点坐标为(3,1);(2)把B (3,3)代入反比例函数y=2kx 得k 2=3×3=9,所以点B 所在函数图象的解析式为y=9x.23.【解答】(1)∵点A (﹣1,4)在反比例函数y=kx(k 为常数,k ≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣4x. 把点A (﹣1,4)、B (a ,1)分别代入y=x +b 中,解得:a= -4,b=5. (2)连接AO ,设线段AO 与直线l 相交于点M ,如图所示.OA 的中点,12,2).,2).24..【解答】(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),∵点C 为线段AO 的中点,∴点C 的坐标为(2,3m2+).∵点C 、点D 均在反比例函数y=kx 的函数图象上,解得:m=1,k=4.∴反比例函数的解析式为y=4x.(2)∵m=1,∴点A 的坐标为(4,4),∴OB=4,AB=4. 在Rt △ABO 中,OB=4,AB=4,∠ABO=90°,∴cos ∠OAB=AB OA ==. (3))∵m=1,∴点C 的坐标为(2,2),点D 的坐标为(4,1). 设经过点C 、D 的一次函数的解析式为y=ax +b ,解得:a= -12,b=3.∴经过C 、D 两点的一次函数解析式为y=﹣12x +3.。
人教版初三数学9年级下册 第26章(反比例函数)单元测试卷(含解析)
第二十六章反比例函数一.选择题1.反比例函数y=(a﹣1)x a的图象在( )A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2.已知点A(﹣1,y1),B(1,y2),C(2,y3)是函数图象上的三点,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.无法确定3.在同一直角坐标系中反比例函数y=与一次函数y=x+a(a≠0)的图象大致是( )A.B.C.D.4.将函数y=的图象沿x轴向右平移1个单位长度,得到的图象所相应的函数表达式是( )A.y=B.y=C.y=+1D.y=﹣15.已知A(x1,y1),B(x2,y2)都在y=图象上,若x1•x2=﹣3,则y1•y2的值为( )A.﹣3B.﹣18C.﹣12D.﹣366.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数y=上,顶点B在反比例函数y=上,点C在x轴的正半轴上,则平行四边形OABC 的面积为( )A.4B.4.5C.5D.5.57.如图,在平面直角坐标系中,点A、C在反比例函数y=的图象上,点B、D在反比例函数y=的图象上,a>b>0,AB∥CD∥x轴,AB、CD在x轴的两侧,AB=2,CD=2,AB与CD间的距离为6,则a﹣b的值为( )A.3B.4C.5D.68.如图,Rt△ACB的顶点A,C的坐标分别为(0,3),(3,0),∠ACB=90°,AC=2BC,函数(k>0)的图象经过点B,则k的值为( )A.B.C.D.9.如图,正比例函数y1=k1x的图象与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是( )A.﹣2<x<0或x>2B.x<﹣2或0<x<2C.x<﹣2或x>2D.﹣2<x<0或0<x<210.如图,已知双曲线y=(k>0)经过△OAB的顶点A交边AB于点C,AD平分∠OAB 交OB于点D,若OA=AC=2BC,S△ABD=12,则k的值为( )A.5B.6C.10D.12二.填空题11.如图,反比例函数y=的图象经过点A(m,3),则当y>3时,x的取值范围为 .12.如图,双曲线y=(x>0)经过A,B两点,过点A作AC⊥y轴于点C,过点B作BD ⊥y轴于点D,作BE⊥x于点E,连接AD,如果AC=BE=2,S四边形BEOD=16,那么S= .△ACD13.如图,在平面直角坐标系内,O为坐标原点,点A为直线y=2x+1上一动点,过A作AC⊥x轴,交x轴于点C(点C在原点右侧),交双曲线y=于点B,且AC+BC=4,则当△OAB存在时,其面积为 .14.如图,反比例函数y=(k≠0)的图象经过A,B两点,过点A作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为3,则k的值为 .15.如图,已知动点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA,交以A为圆心,AB为半径的圆弧于点D;延长BA,交以A为圆心,AC为半径的圆弧于点E.直线DE分别交x,y轴于点P,Q,当QE:DP=4:9时,图中阴影部分的面积等于 .三.解答题16.已知一次函数y=kx+b与反比例函数y=的图象交于A(﹣3,2)、B(1,n)两点.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)请观察图象,直接写出不等式kx+b≤的解集.17.某气象研究中心观测到一场沙尘暴从发生到减弱的全过程.开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y(千米/小时)与时间x(小时)成反比例函数关系缓慢减弱.(1)这场沙尘暴的最高风速是 千米/小时,最高风速维持了 小时;(2)当x≥20时,求出风速y(千米/小时)与时间x(小时)的函数关系式;(3)在这次沙尘暴形成的过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻为“危险时刻”,那么在沙尘暴整个过程中,“危险时刻”共有 小时.18.如图,点A为反比例函数的图象上一点,在x轴正半轴上有一点B,OB=4,连接OA,AB,且.(1)求反比例函数的表达式;(2)过点B作BC⊥x轴交反比例函数的图象于点C,连接AC,求四边形AOBC的面积.19.如图,反比例函数y1=的图象与一次函数y2=x的图象交于点A,B,点B的横坐标是6,点P(1,m)在反比例函数y1=的图象上.(1)求反比例函数的表达式;(2)点A的坐标是 ;观察图象回答:当x的取值范围是 时,y1<y2;(3)连接OP,求△PAO的面积.20.如图Rt△ABC中,∠ACB=90°,顶点A、B都在反比例函数y=(x>0)的图象上,直线AC⊥x轴,垂足为D,连结OA使OA⊥AB于A,连结OC,并延长交AB于点E,当AB=2OA时,点E恰为AB的中点,若A(1,n).(1)求反比例函数的解析式;(2)求∠EOD的度数.参考答案一.选择题1.解:∵函数y=(a﹣1)x a是反比例函数,∴a=﹣1,则a﹣1=﹣2,故此函数图象位于第二、四象限.故选:B.2.解:∵点A(﹣1,y1),B(1,y2),C(2,y3)是函数图象上的三点,∴y1=﹣=1,y2=﹣=﹣1,y3=﹣=﹣.∵﹣1<﹣<1,∴y2<y3<y1故选:B.3.解:∵一次函数y=x+a(a≠0),∴一次函数图象y随x增大而增大,故A,D不符合题意;在B中,反比例函数过一、三象限,故a>0,一次函数过一、三、四象限,故a<0,不合题意;在C中,反比例函数过一、三象限,故a>0,一次函数过一、二、四象限,故a>0,符合题意;故选:C.4.解:将函数y=的图象沿x轴向右平移1个单位长度,得到的图象所相应的函数表达式是y=,故选:B.5.解:∵A(x1,y1),B(x2,y2)都在y=图象上,∴x1y1=6,x2y2=6,∴x1y1•x2y2=36,∵x1•x2=﹣3,∴y1•y2=﹣12,故选:C.6.解:如图,作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根据系数k的几何意义,S矩形BDOE=6,S△AOE=1,∴四边形OABC的面积=6﹣1﹣1=4,故选:A.7.解:延长AB、CD交y轴于点E、F,∵点A、C在反比例函数y=的图象上,点B、D在反比例函数y=的图象上,a>b>0,AB∥CD∥x轴,∴S△AOE=|a|=a=S△COF,S△BOE=|b|=b=S△DOF,∴S△AOB=S△AOE﹣S△BOE=a﹣b=AB•OE=OE,S△COD=S△COF﹣S△DOF=a﹣b=CD•OF=OF,∴S△AOB+S△COD=a﹣b=OE+OF=6,故选:D.8.解:过点B作BD⊥x轴,垂足为D,∵A、C的坐标分别是(0,3)、(3、0),∴OA=OC=3,在Rt△AOC中,AC===3,又∵AC=2BC,∴BC=,又∵∠ACB=90°,∴∠OAC=∠OCA=45°=∠BCD=∠CBD,∴CD=BD==,∴OD=3+=,∴B(,)代入y=得:k=,故选:D.9.解:∵正比例函数与反比例函数的图象均关于原点对称,点A的横坐标为2,∴点B的横坐标为﹣2.∵由函数图象可知,当x>2或﹣2<x<0时,正比例函数的图象在反比例函数图象的上方,∴当y1>y2时,x的取值范围是x>2或﹣2<x<0.故选:A.10.解:连接OC、CD,作AE⊥x轴于E,CF⊥x轴于F,∵AC=2BC,S△ABD=12,∴S△ACD=S△ABD=8,∵AD平分∠OAB交OB于点D,∴∠OAD=∠CAD,在△AOD和△ACD中,,∴△AOD≌△ACD(SAS),∴S△AOD=S△ACD=8,∴S△AOB=20,∴S△AOC=S△AOB=,∵CF∥AE,∴△BCF∽△BAE,∴==,∴CF=AE,设A(m,),则C(3m,),∵S△AOC=S梯形ACFE+S△AOE﹣S△COF,∵S△AOE=S△COF=|k|,∴S△AOC=S梯形ACFE=(+)(3m﹣m)=,解得k=10,故选:C.二.填空题(共5小题)11.解:由题意可知:m==2,∴y=>3,由图象可知:0<x<2.故答案为:0<x<2.12.解:∵BE⊥x轴于E,BD⊥y轴于D,∴S矩形BEOD=|k|=16,而k<0,∴k=16,∴反比例函数的解析式为y=,∵AC⊥y轴,AC=2,∴A点的横坐标为2,当x=2时,y==8,∴CD=OC﹣OD=8﹣2=6,∴S△ACD=×2×6=6.故答案为6.13.解:根据题意设点A(m,2m+1),B(m,),所以AC=2m+1,BC=.∵AC+BC=4,∴可列方程2m+1+=4,即2m2﹣3m+1=0解得:m=或1,∴A(,2)或(1,3),B(,2)或(1,1),∵△OAB存在,∴m=舍去,∴AB=3﹣1=2.∴△OAB的面积=×2×1=1.故答案为1.14.解:如图所示,∵AC⊥x轴,BD⊥x轴,∴BD∥AC,∴△OCE∽△ODB,∴=()2,∵OC=CD,∴=,∵四边形BDCE的面积为3,∴△ODB的面积为4,∵点B在反比例函数y=的图象上,∴k=﹣8.故答案为:﹣8.15.解:作EF⊥y轴于点F,DG⊥x轴于G,∴△GDP∽△FQE,∵QE:DP=4:9,∴==,设EF=4t,则PG=9t,∴A(4t,),由AC=AE,AB=AD,∴AE=4t,AD=,DG=,∵△AED∽△GDP,∴AE:DG=AD:GP,∴4t:=:9t,即36t2=,∴t2=,∴图中阴影部分的面积=+=π+π=π,故答案为:.三.解答题(共5小题)16.解:(1)∵反比例函数y=的图象经过点A(﹣3,2),∴m=﹣3×2=﹣6,∵点B(1,n)在反比例函数图象上,∴n=﹣6.∴B(1,﹣6),把A,B的坐标代入y=kx+b,则,解得,∴一次函数的解析式为y=﹣2x﹣4,反比例函数的解析式为y=﹣;(2)如图设直线AB交y轴于C,则C(0,﹣4),∴S△AOB=S△OCA+S△OCB=×4×3+×4×1=8;(3)观察函数图象知,不等式kx+b≤的解集为﹣3≤x<0或x≥1.17.解:(1)0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,10~20时,风速不变,最高风速维持时间为20﹣10=10小时;故答案为:32,10;(2)设y=,将(20,32)代入,得32=,解得k=640.所以当x≥20时,风速y(千米/小时)与时间x(小时)之间的函数关系为y=;(3)∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米,∴4.5时风速为10千米/时,将y=10代入y=,得10=,解得x=64,64﹣4.5=59.5(小时).故在沙尘暴整个过程中,“危险时刻”共有59.5小时.故答案为:59.5.18.解:(1)过A作AE⊥x轴于E,∵OA=AB=2,OB=4,∴OE=BE=OB=×4=2,在Rt△OAE中,根据勾股定理得:AE===6,∴点A的坐标为(2,6),把A(2,6)代入y=得:6=,∴k=2×6=12,则反比例函数解析式为y=;(2)当x=4时,y==3,∴点C的坐标为(4,3),即OB=4,BC=3,则S四边形AOBC=S△AOE+S梯形AEBC=AE•OE+(BC+AE)•BE=×2×6+×(3+6)×2=6+9=15.19.解:(1)把x=6代入y2=x得:y=1,∴B(6,1),把8(6,1)代入y1=中得1=,∴k=6,∴反比例函数的表达式为y1=;(2)∵点A和点B关于原点对称,B(6,1),∴点A的坐标是(﹣6,﹣1),观察图象回答:当x的取值范围是﹣6<x<0或x>6时,y1<y2;故答案为(﹣6,﹣1),﹣6<x<0或x>6;(3)连接PO,过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,∵点P(1,m)在反比例函数y=的图象上,∴P(1,6),设直线AP的函数关系式为y=mx+n,把点A(﹣6,﹣1)、P(1,6)代入y=mx+n得,解得,故直线AP的函数关系式为y=x+5,则点C的坐标(0,5),OC=5,∵A(﹣6,﹣1)P(1,6),∴AR=6,PS=1,∴S△AOP=S△AOC+S△POC=5×6+×1=.20.解:(1)∵OA⊥AB于A,∴∠OAD+∠BAC=90°,∵AC⊥x轴,垂足为D,∴∠OAD+∠AOD=90°,∴∠BAC=∠AOD,∵∠ADO=∠ACB=90°,∴△AOD∽△BAC,∴==,∵AB=2OA,A(1,n),∴==,∴AC=2OD=2,BC=2AD=2n,∴B(2n+1,n﹣2),∵顶点A、B都在反比例函数y=(x>0)的图象上,∴k=1×n=(2n+1)(n﹣2),解得n=1+,k=1+,∴反比例函数的解析式为y=(x>0);(2)∵AB=2OA,点E恰为AB的中点,∴OA=AE,∴∠AOE=∠AEO=45°,∵Rt△ABC中,∠ACB=90°,∴CE=AE,∴∠ACE==67.5°,∵∠OCD=∠ACE=67.5°,∴∠EOD=90°﹣67.5°=22.5°.。
人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案
人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案(考试时间:90分钟 试卷满分:100分)一、选择题:(本大题共10小题,每小题3分,满分30分) 1.在下列函数中,y 是x 的反比例函数的是( ) A .2y x = B .2x y =C .2y x=D .21yx【答案】C【详解】A .该函数是正比例函数,故本选项错误; B .该函数是正比例函数,故本选项错误; C .该函数符合反比例函数的定义,故本选项正确; D .y 是()1x -的反比例函数,故本选项错误; 故选:C . 2.若双曲线(0)ky k x=<,经过点()12,A y -,()25,B y -则1y 与2y 的大小关系为( ) A .12y y < B .12y y > C .12y y = D .无法比䢂1y 与2y 的大小 【答案】B【详解】解: (0)ky k x=< ∴ 在同一象限内,y 随着x 的增大而增大即可求解()12,A y -,()25,B y -都在第二象限,且25->-∴12y y >.故选:B .3.已知反比例函数4y x=,则它的图象经过点( ) A .(2,8) B .(1,4)- C .(4,1) D .(2,2)-【答案】C【详解】解:由反比例函数4y x=可得:4xy = 2816⨯=,故A 选项不符合题意; 144-⨯=-,故B 选项不符合题意; 414⨯=,故C 选项符合题意;()224⨯-=-,故D 选项不符合题意.故选:C4.反比例函数5m y x-=的图象在第一、三象限,则m 的取值范围是( ) A .5m ≥ B .5m > C .5m ≤ D .5m <【答案】B【详解】解:∵反比例函数5m y x-=图象在第一、三象限 50m ∴->解得5m >. 故选:B5.如图,一次函数1y ax b 的图象与反比例函数2ky x=图象交于()2,A m 、()1,B n -两点,则当12y y >时,x 的取值范围是( )A .1x <-或2x >B .10x -<<或2x >C .12x -<<D .1x <-或02x <<【答案】B【详解】解:∵图象交于()2,A m 、()1,B n -两点 ∵当12y y >时,10x -<<或2x >. 故选B .6.若0ab >,则反比例函数aby x=与一次函数y ax b =+在同一坐标系中的大致图象可能是( )A .B .C .D .【答案】A【详解】解:0ab > ∴aby x=的图象在第一、三象限,排除B ,D ; 0ab >∴a ,b 同号当0a >,0b >时,y ax b =+的图象经过第一、二、三象限 当a<0,0b <时,y ax b =+的图象经过第二、三、四象限 综上可知,只有A 选项符合条件 故选A .7.在平面直角坐标系中,若反比例函数()0ky k x=≠的图像经过点()1,2A 和点()2,B m -,则m 的值为( ) A .1 B .1- C .2 D .2-【答案】B【详解】解:根据题意,将点()1,2A 代入()0ky k x =≠中得:21k =解得:2k =∵反比例函数解析式为2y x =将()2,B m -代入2y x =中得212m ==--故选:B .8.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流(A)I 与电阻()R Ω成反比例函数的图像,该图像经过点()880,0.25P .根据图像可知,下列说法正确的是( )A .当0.25I <时,880R <B .I 与R 的函数关系式是()2000I R R=> C .当1000R >时,0.22I >D .当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【详解】解:设I 与R 的函数关系式是(0)UI R R=>∵该图像经过点()880,0.25P ∵0.25880U= ∵220U =∵I 与R 的函数关系式是220(0)I R R=>,故选项B 不符合题意; 当0.25I =时,880R =,当1000R =时0.22I = ∵反比例函数(0)UI R R=>I 随R 的增大而减小 当0.25R <时880I >,当1000R >时0.22I <,故选项A ,C 不符合题意; ∵0.25R =时880I =,当1000R =时0.22I =∵当8801000R <<时,I 的取值范围是0.220.25I <<,故D 符合题意; 故选:D .9.正比例函数y x =与反比例函数1y x=的图象相交于A 、C 两点,AB x ⊥轴于点B ,CD x ⊥轴于点D (如图),则四边形ABCD 的面积为( )A .1B .32C .2D .52【答案】C【详解】解:解方程组1y xy x =⎧⎪⎨=⎪⎩,得:11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩ 即:正比例函数y x =与反比例函数1y x=的图象相交于两点的坐标分别为(1,1)A (1,1)C -- ∵AB x ⊥ CD x ⊥ ∵(1,0)D - (1,0)B ∵1111212122222四边形=⋅+⋅=⨯⨯+⨯⨯=ABCD S BD AB BD CD 即:四边形ABCD 的面积是2. 故选:C10.如图,正方形ABCD 的顶点分别在反比例函数11(0)k y k x=>和22(0)ky k x =>的图象上.若BD y ∥轴,点C 的纵坐标为4,则12k k +=( )A .32B .30C .28D .26【答案】A【详解】解:连接AC 交BD 于E ,延长BD 交x 轴于F ,连接OD 、OB 如图:四边形ABCD 是正方形AE BE CE DE ∴===设AE BE CE DE m ==== (,4)C aBD y ∥轴(,4)B a m m ∴++ (2,4)A a m + (,4)D a m m +-A ,B 都在反比例函数11(0)k y k x=>的图象上 14(2)(4)()k a m m a m ∴=+=++0m ≠4m a ∴=- (4,8)B a ∴-()4,D a(4,8)B a -在反比例函数11(0)k y k x=>的图象上,(4,)D a 在22(0)ky k x =>的图象上14(8)324k a a ∴=-=- 24k a =12324432k k a a ∴+=-+=;故选:A .二、填空题:(本大题共6小题,每小题3分,满分18分)11.已知反比例函数(0)ky kx=≠ 当x = y =- 则比例系数k 的值是______.【答案】4-【详解】解:把x = y =-4k =-=-;故答案为4-.12.如图 若反比例函数(0)ky x x=<的图像经过点A AB x ⊥轴于B 且AOB 的面积为5 则k =______.【答案】10-【详解】解:∵反比例函数(0)ky x x=<的图像经过点A AB OB ⊥ ∵设,k A a a ⎛⎫ ⎪⎝⎭∵12AOB k S a a=△ ∵反比例函数的图像在第二象限 ∵0k < a<0 则0ka> ∵11522AOB k S a k a ===△ ∵10k =- 故答案为:10-. 13.已知反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 则k 的取值范围是_____.【答案】3k >##3k < 【详解】解:∵反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 ∵30k -< ∵3k >.故答案为:3k >.14.如图 点M 和点N 分别是反比例函数a y x =(0x <)和by x=(0x >)的图象上的点MN x ∥轴 点P 为x 轴上一点 若4b a -= 则MNP S △的值为_______.【答案】2【详解】解:如图 连接,OM ON∵MN x ∥轴 ∵ ||||22MNP MNO a b S S ∆∆==+ ∵点M 和点N 分别是反比例的数(0)ay x x =<和(0)b y x x=> 的图象上的点 ∵0,0a b <> ∵||||4222222a b a b b a -+=-+== ∵2MNP S =△; 故答案为:2.15.已知点(3,)C n 在函数ky x=(k 是常数 0k ≠)的图象上 若将点C 先向下平移2个单位 再向左平移4个单位 得点D 点D 恰好落在此函数的图象上 n 的值是______. 【答案】12##0.5【详解】解:点(3,)C n 向下平移2个单位 再向左平移4个单位得(,)n --12; ∵(,)D n --12 ∵点C 、点D 均在函数k y x=上 ∵3k n = ()k n =--2 ∵()n n =--32 解得:12n =故答案为:1216.如图 正方形ABCD 的边长为5 点A 的坐标为(4,0) 点B 在y 轴上 若反比例函数(0)ky k x=≠的图象过点C 则k 的值为_______.【答案】3-【详解】解:如图 过点C 作CE y ⊥轴于E 在正方形ABCD 中 AB BC = 90ABC ∠=︒90ABO CBE ∴∠+∠=︒ 90OAB ABO ∠+∠=︒ OAB CBE ∴∠=∠点A 的坐标为(4,0)4∴=OA 5AB =3OB ∴= 在ABO 和BCE 中OAB CBE AOB BEC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABO BCE ∴≌4OA BE ∴== 3CE OB ==431OE BE OB ∴=-=-= ∴点C 的坐标为(3,1)-反比例函数(0)ky k x=≠的图象过点C 313k xy ∴==-⨯=-故答案为:3-.三、解答题(本大题共6题 满分52分) 17.(8分)已知反比例函数12y x=-. (1)说出这个函数的比例系数和自变量的取值范围. (2)求当3x =-时函数的值.(3)求当y =x 的值. 【答案】(1)12,0k x =-≠ (2)4(3)【详解】(1)解:∵12y x=- ∵12,0k x =-≠;(2)解:把3x =- 代入12y x =-得:1243y =-=-; ∵当3x =-时函数的值为:4;(3)解:把y = 代入12y x =-得:12x - 解得:43x ;∵当y =x 的值为:18.(9分)已知一次函数y =kx +b 与反比例函数y mx=的图像交于A (﹣3 2)、B (1 n )两点.(1)求一次函数和反比例函数的表达式; (2)求∵AOB 的面积;(3)结合图像直接写出不等式kx +b mx>的解集. 【答案】(1)一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=- (2)8(3)x <﹣3或0<x <1【详解】(1)解:∵反比例函数y mx =的图象经过点A (﹣3 2)∵m =﹣3×2=﹣6∵点B (1 n )在反比例函数图象上 ∵n =﹣6. ∵B (1 ﹣6)把A B 的坐标代入y =kx +b 则326k b k b -+=⎧⎨+=-⎩ 解得k =﹣2 b =﹣4∵一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=-; (2)解:如图 设直线AB 交y 轴于C则C (0 ﹣4)∵S △AOB =S △OCA +S △OCB 12=⨯4×312+⨯4×1=8; (3)解:观察函数图象知 不等式kx +b mx>的解集为x <﹣3或0<x <1. 19.(6分)某气球内充满一定质量的气体 当温度不变时 气球内气体的压强(kPa)p 与气体的体积()3m V 成反比例.当气体的体积30.8m V =时 气球内气体的压强112.5kPa p =.(1)当气体的体积为31m 时 它的压强是多少?(2)当气球内气体的压强大于150kPa 时 气球就会爆炸.问:气球内气体的体积应不小于多少气球才不会爆炸?【答案】(1)当气体的体积为31m 时 它的压强是90kPa (2)当气球内气体的体积应不小于30.6m 时 气球才不会爆炸 【详解】(1)解:设k V p=由题意得:0.8112.5k= ∵90k = ∵90V p=∵当1V =时 90p =∵当气体的体积为31m 时 它的压强是90kPa ; (2)解:当150p =时 900.6150V == ∵900k =>∵V 随p 的增大而增大∵要使气球不会爆炸 则0.6V ≥∵当气球内气体的体积应不小于30.6m 时 气球才不会爆炸.20.(9分)如图 一次函数28y x =-+与函数(0)ky x x=>的图像交于(,6)A m (,2)B n 两点 AC y ⊥轴于C BD x ⊥轴于D .(1)求k 的值;(2)连接OA OB 求AOB 的面积;(3)在x 轴上找一点P 连接AP BP 使ABP 周长最小 求点P 坐标. 【答案】(1)6 (2)8 (3)5,02⎛⎫ ⎪⎝⎭【详解】(1)解:∵一次函数28y x =-+与函数(0)k y x x=>的图像交于(,6)A m (,2)B n 两点 ∵628m =-+ 228n =-+ 解得1m = 3n = ∵点(1,6)A (3,2)B 代入反比例函数得 61k= ∵616k =⨯=.(2)解:如图所示设一次函数图像与x 轴的交点为M 在一次函数28y x =-+中 令0y = 则4x = ∵(4,0)M 且(1,6)A (3,2)B∵114642822AOB AOM BOM S S S =-=⨯⨯-⨯⨯=△△△.(3)解:已知(1,6)A (3,2)B 则点A 关于x 轴的对称点A '的坐标(1,6)- 如图所示 A P AP '= 则ABP 的周长为AP BP AB A P BP AB '++=++设直线BA '的解析式为y kx b =+将点(3,2)B 、(1,6)A '-代入 得326k b k b +=⎧⎨+=-⎩解得410k b =⎧⎨=-⎩ ∵直线BA '的解析式为410=-y x 当0y =时 则4100x -= 解方程得 52x = ∵点P P 的坐标为5,02⎛⎫⎪⎝⎭.21.(10分)已知一次12y x a =-+的图象与反比例函数()20ky k x=≠的图象相交. (1)判断2y 是否经过点(),1k .(2)若1y 的图象过点(),1k 且25a k +=. ∵求2y 的函数表达式.∵当0x >时 比较1y 2y 的大小. 【答案】(1)过 (2)∵21=y x;∵当01x <<时 12y y < 当1x >时 12y y > 当1x =时 12y y = 【详解】(1)∵()20ky k x =≠∵把点(),1k 代入反比例函数 得1kk= ∵2y 经过点(),1k . (2)①∵1y 的图象过点(),1k∵把点(),1k 代入12y x a =-+ 得12k a =-+ 又∵25a k += ∵解得2a = 1k = ∵21=y x∵2y 的函数表达式为:21=y x②如图所示:由函数图象得 当01x <<时 12y y <;当1x >时 12y y >;当1x =时 12y y =.22.(10分)图1 已知双曲线(0)ky k x=>与直线y k x '=交于A 、B 两点 点A 在第一象限 试回答下列问题:(1)若点A 的坐标为(3,1) 则点B 的坐标为 ;(2)如图2 过原点O 作另一条直线l 交双曲线(0)ky k x=>于P Q 两点 点P 在第一象限.∵四边形ABPQ 一定是 ;∵若点A 的坐标为(3,1) 点P 的横坐标为1 求四边形ABPQ 的面积.(3)设点A 、P 的横坐标分别为m 、n 四边形ABPQ 可能是矩形吗?可能是正方形吗?若可能 直接写出m 、n 应满足的条件;若不可能 请说明理由. 【答案】(1)(3,1)-- (2)∵平行四边形;∵16(3)mn k =时 四边形ABPQ 是矩形 不可能是正方形 理由见解析 【详解】(1)A 、B 关于原点对称 (3,1)A ∴点B 的坐标为(3,1)--故答案为:(3,1)--(2)∵A 、B 关于原点对称 P 、Q 关于原点对称 ∴OA OB = OP OQ = ∴四边形ABPQ 是平行四边形故答案为:平行四边形 ∵点A 的坐标为(3,1) ∴313k =⨯=∴反比例函数的解析式为3y x=点P 的横坐标为1 ∴点P 的纵坐标为3∴点P 的坐标为(1,3)由双曲线关于原点对称可知 点Q 的坐标为(1,3)-- 点B 的坐标为(3,1)--如图 过点A 、B 分别作y 轴的平行线 过点P 、Q 分别作x 轴的平行线 分别交于C 、D 、E 、F则四边形CDEF 是矩形 6CD = 6DE = 4DB DP == 2CP CA ==则四边形ABPQ 的面积=矩形CDEF 的面积-ACP △的面积-PDB △的面积-BEQ 的面积-AFQ △的面积36282816=----=(3)当AB PQ ⊥时四边形ABPQ 是正方形 此时点A 、P 在坐标轴上 由于点A P 不可能在坐标轴上且都在第一象限故不可能是正方形 即90POA ∠≠︒ PO AO BO QO ===时 四边形ABPQ 是矩形此时P 、A 关于直线y x =对称 即22k k m n m n ++=化简得mn k =∴mn k =时 四边形ABPQ 是矩形 不可能是正方形。
人教版九年级下《第二十六章反比例函数》单元测试题(含答案)
人教版九年级下《第二十六章反比例函数》单元测试题(含答案)一、选择题(本大题共6小题,每小题5分,共30分)1.点(-3,4)在反比例函数y =kx的图象上,则下列各点中不在此函数图象上的是( )A .(-4,3)B .(3,-4)C .(2,-6)D .(-6,-2)2.已知反比例函数y =-2x,下列结论不正确的是( )A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-23.当x >0时,四个函数y =-x ,y =2x +1,y =-1x ,y =2x,其中y 随x 的增大而增大的有( )A .1个B .2个C .3个D .4个4.二次函数y =ax 2+b (b >0)与反比例函数y =a x在同一平面直角坐标系中的图象可能是( )图15.已知(x 1,y 1),(x 2,y 2),(x 3,y 3)是反比例函数y =-4x的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A .y 3<y 1<y 2B .y 2<y 1<y 3C .y 1<y 2<y 3D .y 3<y 2<y 16.反比例函数y 1=k x(0<k <3,x >0)与y 2=3x(x >0)的图象如图2所示,反比例函数y 1的图象上有一点A ,其横坐标为a ,过点A 作x 轴的平行线交反比例函数y 2的图象于点B ,连接AO ,BO ,若△ABO 的面积为S ,则S 关于a 的函数的大致图象是( )图2图3二、填空题(本大题共6小题,每小题5分,共30分)7.已知点P (3,-2)在反比例函数y =kx(k ≠0)的图象上,则k =________;在第四象限内,y 随x 的增大而________.8.已知反比例函数y =2a -1x的图象有一支位于第一象限,则常数a 的取值范围是________.9.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图4所示.如果以此蓄电池为电源的用电器的限制电流不超过12 A ,那么该用电器的可变电阻R 应控制的范围是________.图410.如图5,点A 在函数y =4x(x >0)的图象上,且OA =4,过点A 作AB ⊥x 轴于点B ,则△ABO 的周长为________.图511.如图6,已知双曲线y 1=1x (x >0),y 2=4x (x >0),P 为双曲线y 2=4x上的一点,且PA⊥x 轴于点A ,PB ⊥y 轴于点B ,PA ,PB 分别交双曲线y 1=1x于D ,C 两点,则△PCD 的面积为________.图612.如图7,直线y =x +4与双曲线y =k x(k ≠0)相交于A (-1,a ),B 两点,在y 轴上找一点P ,当PA +PB 的值最小时,点P 的坐标为________.图7三、解答题(本大题共4小题,共40分)13.(8分)已知反比例函数y =k x(k 为常数,k ≠0)的图象经过点A (2,3).(1)求这个函数的解析式;(2)判断点B (-1,6),C (3,2)是否在这个函数的图象上,并说明理由; (3)当-3<x <-1时,求y 的取值范围.14.(10分)已知函数y 1=x -1和y 2=6x.(1)在所给的坐标系中画出这两个函数的图象; (2)求这两个函数图象的交点坐标; (3)观察图象,当x 在什么范围内时,y 1>y 2?图815.(10分)反比例函数y=k2x和一次函数y=2x-1的图象如图9所示,其中一次函数的图象经过点(a,b),(a+k,b+k+2),且点A在第一象限,是两个函数图象的一个交点.(1)求反比例函数的解析式.(2)在x轴上是否存在点P,使△AOP为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.图916.(12分)如图10①所示,在△OAB 中,A (0,2),B (4,0),将△AOB 沿x 轴向右平移m 个单位长度,得到△O ′A ′B ′.(1)当m =4时,如图②所示,若反比例函数y =k x的图象经过点A ′,一次函数y =ax +b 的图象经过A ′,B ′两点,求反比例函数及一次函数的解析式;(2)若反比例函数y =k x的图象经过点A ′及A ′B ′的中点M ,求m 的值.图10详解详析1.[解析] D ∵点(-3,4)在反比例函数y =k x的图象上,∴k =(-3)×4=-12. A 项,∵(-4)×3=-12,∴此点在该反比例函数的图象上,故本选项不符合题意. B 项,∵3×(-4)=-12,∴此点在该反比例函数的图象上,故本选项不符合题意. C 项,∵2×(-6)=-12,∴此点在该反比例函数的图象上,故本选项不符合题意. D 项,∵(-6)×(-2)=12≠-12,∴此点不在该反比例函数的图象上,故本选项符合题意. 故选D. 2.B3.[解析] B 正比例函数y =-x 中,y 随x 的增大而减小;一次函数y =2x +1中,y 随x 的增大而增大;反比例函数y =-1x中,k <0,x >0时,y 随x 的增大而增大;反比例函数y =2x中,k >0,x >0时,y 随x 的增大而减小.所以符合题意的有2个.故选B.4.B5.[解析] A ∵在反比例函数y =-4x中,k =-4<0,∴函数图象在第二、四象限,在每一象限内,y 随x 的增大而增大. ∵x 1<x 2<0,∴0<y 1<y 2. ∵x 3>0,∴y 3<0,∴y 3<y 1<y 2.故选A.6.[解析] B 延长BA 交y 轴于点C ,如图所示.∵S =S △OBC -S △OAC =12×3-12k =12(3-k ),∴S 为定值.故选B. 7.[答案] -6 增大[解析] ∵点P (3,-2)在反比例函数y =kx(k ≠0)的图象上,∴k =3×(-2)=-6. ∵k =-6<0,∴反比例函数y =-6x的图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.∴在第四象限内,y 随x 的增大而增大. 8.[答案] a >12[解析] ∵函数图象有一支位于第一象限, ∴2a -1>0,∴a >12.故填a >12.9.[答案] R ≥3 Ω[解析] 由题意可得I =UR .将(9,4)代入I =U R,得U =IR =36.∵以此蓄电池为电源的用电器的限制电流不超过12 A ,∴36R≤12,解得R ≥3 Ω.10.[答案] 2 6+4[解析] ∵点A 在函数y =4x (x >0)的图象上,∴设点A 的坐标为(n ,4n)(n >0).在Rt △ABO 中,∠ABO =90°,OA =4, ∴OA 2=AB 2+OB 2. 又∵AB ·OB =4n·n =4,∴(AB +OB )2=AB 2+OB 2+2AB ·OB =42+2×4=24, ∴AB +OB =2 6或AB +OB =-2 6(舍去). ∴C △ABO =AB +OB +OA =2 6+4. 11.[答案] 98[解析] ∵点P 在双曲线y 2=4x 上,∴可设点P 的坐标为(a ,4a ),∴点C 的纵坐标为4a,点D 的横坐标为a .∵点C ,D 在双曲线y 1=1x 上,∴点C ,D 的坐标分别为(a 4,4a ),(a ,1a),∴PC =a -a 4=34a ,PD =4a -1a =3a,∴S △PCD =12·34a ·3a =98.12.[答案] (0,52)[解析] 把点A 的坐标(-1,a )代入y =x +4,得-1+4=a ,解得a =3,即A (-1,3).把点A 的坐标代入双曲线的解析式y =kx,得3=-k ,解得k =-3.联立两函数解析式,得⎩⎪⎨⎪⎧y =x +4,y =-3x ,解得⎩⎪⎨⎪⎧x 1=-1,y 1=3,⎩⎪⎨⎪⎧x 2=-3,y 2=1,∴点B 的坐标为(-3,1).作点A 关于y 轴的对称点C ,连接BC ,与y 轴的交点即为满足要求的点P ,此时PA +PB 的值最小,点C 的坐标为(1,3).设直线BC 的解析式为y =mx +b ,把B ,C 两点的坐标代入y =mx +b ,得⎩⎪⎨⎪⎧-3m +b =1,m +b =3,解得⎩⎪⎨⎪⎧m =12,b =52,∴直线BC 的函数解析式为y =12x +52,与y 轴的交点坐标为(0,52).13.解:(1)∵反比例函数y =k x的图象经过点A (2,3),把点A 的坐标代入解析式,得3=k2,解得k =6.∴这个函数的解析式为y =6x.(2)点B 不在这个函数的图象上,点C 在这个函数的图象上. 理由:分别把点B ,C 的坐标代入y =6x,可知点B 的坐标不满足函数解析式,点C 的坐标满足函数解析式, ∴点B 不在这个函数的图象上,点C 在这个函数的图象上. (3)∵当x =-3时,y =-2; 当x =-1时,y =-6.又由k >0,知当x <0时,y 随x 的增大而减小, ∴当-3<x <-1时,-6<y <-2.14.[解析] (1)画图的步骤:列表,描点,连线.需注意函数y 1的自变量取值范围是全体实数;函数y 2的自变量取值范围是x ≠0.(2)交点都适合这两个函数解析式,应让这两个函数解析式组成方程组求解即可.(3)从交点入手,看在交点的哪一边一次函数的函数值大于反比例函数的函数值. 解:(1)函数y 1的自变量的取值范围是全体实数;函数y 2的自变量的取值范围是x ≠0.列表可得:(2)联立两个函数解析式,得⎩⎪⎨⎪⎧y =x -1,y =6x, 解得⎩⎪⎨⎪⎧x 1=-2,y 1=-3,⎩⎪⎨⎪⎧x 2=3,y 2=2. ∴两函数图象的交点坐标分别为(-2,-3),(3,2).(3)观察图象可得:当-2<x <0或x >3时,y 1>y 2.15.解:(1)∵一次函数y =2x -1的图象经过点(a ,b ),(a +k ,b +k +2), ∴⎩⎪⎨⎪⎧b =2a -1,b +k +2=2(a +k )-1,解得k =2,∴反比例函数的解析式为y =1x. (2)存在.由⎩⎪⎨⎪⎧y =1x ,y =2x -1,解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-12,y =-2,∴点A 的坐标是(1,1),∴OA = 2.①当OA =OP 时,点P 的坐标为(-2,0)或(2,0);②当AO =AP 时,点P 的坐标为(2,0);③当PO =PA 时,点P 的坐标为(1,0).综上所述,点P 的坐标为(-2,0)或(2,0)或(2,0)或(1,0).16.解:(1)由题意知:点A ′的坐标为(4,2),点B ′的坐标为(8,0),∵反比例函数y =k x的图象经过点A ′, ∴k =4×2=8,∴反比例函数的解析式为y =8x. 分别把(4,2),(8,0)代入y =ax +b ,得⎩⎪⎨⎪⎧4a +b =2,8a +b =0,解得⎩⎪⎨⎪⎧a =-12,b =4.∴经过A ′,B ′两点的一次函数的解析式为y =-12x +4. (2)当△AOB 沿x 轴向右平移m 个单位长度时,点A ′的坐标为(m ,2),点B ′的坐标为(m +4,0),则A ′B ′的中点M 的坐标为(m +2,1),∴2m =m +2,解得m =2,k x 的图象经过点A′及A′B′的中点M.∴当m=2时,反比例函数y=。
新人教版九年级数学下学期《第 26 章 反比例函数》单元检测题(含答案)
新人教版九年级数学下学期《第26 章反比例函数》单元检测题一.选择题(共12 小题)1.下列式子中表示y 是x 的反比例函数的是()A.y=2x﹣3 B.xy=5 C.y=x2.若m<0,则下列函数①y=(x>0),②y=﹣mx+1,③y=mx,y的值随x的值的增大而增大的函数有()A.0 个B.1 个C.2 个D.3 个3.A 为反比例函(k<0)图象上一点,AB 垂直x 轴,垂足为B 点,若S△AOB=3,则k 的值为()A.6 B.﹣6 D.不能确定4.当x<0 时,函数y=(m﹣1)x 的y 都随x 的增大而增大,则m 的取值范围是()A.m>1 B.1<m<2 C.m>2 D.m<15.在同一直角坐标系中,函数和y=kx+k 的大致图象是()A.B.C. D.6.已知关于x的函数y=k(x﹣1)和y=﹣(k≠0),它们在同一坐标系内的图象大致是()A.B.C. D.7.设I,R,U 分别表示电流、电阻和电压,现给出以下四个结论:①当I 一定时,U 与R 成反比例函数;②当R 一定时,U 与I 成反比例函数;③当U 一定时,I 与R 成反比例函数;④当R 与U 一定时,I 也一定.其中正确的结论为()A.①,②B.②,③C.③,④D.①,④8.如图,已知双曲(x>0)经过矩形OABC 的边AB 的中点F,交BC 于点E,且四边形OEBF 的面积为2.则k=()A.2 C.1 D.49.函数y=mx﹣m 与(m 为常数)在同一坐标系中的图象可能是()A.B.C.D.10.如图为一次函数y=ax﹣2a 与反比例函数(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C. D.11.二次函数y=ax2+bx+c 的图象如图所示,则反比例函数与一次函数y=ax+b 在同一平面直角坐标系中的大致图象为()A.B.C. D.12.在同一直角坐标系中,函数y=mx+m(m≠0)与y=(m≠0)的图象可能是()A.B.C. D.二.填空题(共19 小题)13.反比例函数y=的图象经过点(﹣2,﹣1),那么k的值为.14.已知点P 在反比例函数的图象上,且点P 的纵坐标是3,则P 点关于x 轴的对称点是.15.反比例函数,当x>0 时,y 的值随x 的值的增大而减小,则m 的取值范围是.16.在反比例函数的图象上,到x 轴距离为1 的点的坐标为.17.某拖拉机油箱内有24 升油,请写出这些油可供使用的时间y 小时与平均每小时耗油量x 升/时之间的函数关系式:.18.已知A(x1,y1),B(x2,y2)是反比例函数的图象上的两点,若x1<x2<0,y1与y2的大小关系是y1y2(填“>”“<”或“=”).19.已知点A(﹣2,y1)、B(1,y2)、C(2,y3)都在反比例函数y=(k<0)的图象上,那么y1、y2、y3的大小关系是:(用“<”连接).20.如图所示,P 是反比例函图象上一点,过P 分别向x 轴、y 轴引垂线,若S 阴=3,则解析式为..21 是y 关于x 的反比例函数,且图象在第二、四象限,则m的值为.22.如果一次函数 y =kx +b的图象经过第二、三、四象限,则反比例函的图象位于第象限内.23.如图,若正方形 OABC 的顶点 B 和正方形 ADEF 的顶点 E 都在函数 (x >0)的图 象上,则点 B 的坐标为,点 E 的坐标为.24.已知反比例函数 y =与一次函数 y =﹣x +7 的图象有一个交点为(a ,b ),则+ =.25.如图,反比例函数的图象经过▱ABCD 对角线的交点 P ,已知点 A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为 6,则 k =.26.如图,点 A ,B 是反比例函数 (x >0)图象上的两点,过点 A ,B 分别作 AC ⊥x 轴于点 C ,BD ⊥x 轴于点 D ,连接 OA ,BC ,已知点 C (2,0),BD =2,S △BCD =3,则 S △AOC =.27.如图,已知一次函数y=kx﹣3(k≠0)的图象与x 轴,y 轴分别交于A,B 两点,与反比例函数(x>0)交于C 点,且AB=AC,则k 的值为.28.如图,点A 在双曲线(x>0)上,过点A 作AC⊥x 轴,垂足为C,OA 的垂直平分线交OC 于点B,当AC=1 时,△ABC 的周长为.29.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为.30.如图,两个反比例函数和在第一象限的图象如图所示,当P 在的图象上,PC⊥x 轴于点C,交y=的图象于点A,PD⊥y 轴于点D,交y=的图象于点B,则四边形PAOB 的面积为.31.如图,反比例函数与⊙O的一个交点为(2,1),则图中阴影部分的面积是.三.解答题(共9 小题)32.如图,已知反比例函数(x>0)的图象与一次函数x+4 的图象交于A 和B (6,n)两点.(1)求k 和n 的值;(2)若点C(x,y)也在反比例函数(x>0)的图象上,求当2≤x≤6 时,函数值y 的取值范围.33.如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出使成立的x 的取值范围;(3)求△AOB 的面积.34.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x 轴,y 轴相交于点A,B,与反比例函数y2=的图象相交于点C(﹣4,﹣2),D(2,4).(1)求一次函数和反比例函数的表达式;(2)当x 为何值时,y1>0;(3)当x 为何值时,y1<y2,请直接写出x 的取值范围.35.如图,已知一次函数y1=k1x+b 的图象与x 轴、y 轴分别交于A、B 两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点.(1)求一次函数y1=k1x+b 与反比例函数的解析式;(2)求△COD 的面积;(3)直接写出y1>y2 时自变量x 的取值范围.36.如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,﹣2),反比例函数的图象经过点C,一次函数y=ax+b 的图象经过A、C 两点(1)求反比例函数与一次函数的解析式;(2)求反比例函数与一次函数的另一个交点M 的坐标;(3)若点P 是反比例函数图象上的一点,△OAP 的面积恰好等于正方形ABCD 的面积,求P 点的坐标.37.如图,反比例函数y=的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y =在第二、四象限分别相交于P,Q 两点,与x 轴、y 轴分别相交于C,D 两点.(1)求k 的值;(2)当b=﹣2 时,求△OCD 的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b 的值;若不存在,请说明理由.38.如图,A(﹣4,),B(﹣1,2)是一次函数y1=ax+b与反比例函数y2=图象的两个交点,AC⊥x 轴于点C,BD⊥y 轴于点D.(1)根据图象直接回答:在第二象限内,当x 取何值时,y1﹣y2>0?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上一点,连接PC,PD,若△PCA 和△PDB 面积相等,求点P 的坐标.39.已知A(m,2)是直线L 和双曲线的交点.(1)求m 的值.(2)若直线L 分别和x 轴、y 轴交于E、F 两点,且点A 是△EOF 的外心,试确定直线L 的解析式.(3)在双曲上另取一点B,过B 作PK⊥x 轴于K,试问:在y 轴上是否存在点P,使得S△PAF=S△BOK?若存在,请求出P 的坐标;若不存在,请说明理由.40.如图,A(2,1)是矩形OCBD 的对角线OB 上的一点,点E 在BC 上,双曲线经过点A,交BC 于点E,交BD 于点F,若(1)求双曲线的解析式;(2)求点F 的坐标;(3)连接EF、DC,直线EF与直线DC是否一定平行?(只答“一定”或“不一定”)参考答案一.选择题(共12 小题)1.【解答】解:A、y=2x﹣3是一次函数,故本选项错误;B、xy=5 是反比例函数,故本选项正确;C、y=不是函数,故本选项错误;D、y=x 是正比例函数,故本选项错误.故选:B.2.【解答】解:①当m<0时,反比例函数y=(x>0)的图象在第四象限内y随x的增大而增大,故正确;②当m<0 时,﹣m>0,则一次函数y=﹣mx+1 的图象是y 随x 的增大而增大,故正确;③当当m<0 时,正比例函数y=mx 的图象是y 随x 的增大而减小,故错误;综上所述,正确的结论有2 个.故选:C.3.【解答】解:由题意可得:S△AOB=|k|=3,∵k<0,∴k=﹣6.故选:B.4.【解答】解:∵当x<0时,函数y=(m﹣1)x与的y都随x的增大而增大,∴,解得m>1,m>2,∴m>2,故选:C.5.【解答】解:①当k>0时,一次函数y=kx﹣k 经过一、二、三象限,反比例函数的(k≠0)的图象经过一、三象限,故D 选项的图象符合要求;②当k<0 时,一次函数y=kx﹣k 经过二、三、四象限,反比例函数的(k≠0)的图象经过二、四象限,没有符合该条件的选项.故选:D.6.【解答】解:A、由反比例函数图象可得k>0,∴一次函数y=k(x﹣1)应经过一三四象限,故A 选项正确;B、由反比例函数图象可得k<0,∴一次函数y=k(x﹣1)应经过一三四象限,故B 选项错误;C、由反比例函数图象可得k<0,∴一次函数y=k(x﹣1)应经过一三四象限,故C 选项错误;D、由反比例函数图象可得k<0,∴一次函数y=k(x﹣1)应经过一二四象限,故D 选项错误;故选:A.7.【解答】解:①当I一定时,R=,U与R成正比例函数;②当R 一定时,U 与I 成正比例函数;③当U 一定时,I 与R 成反比例函数;④当R 与U 一定时,I 也一定,正确;故选:C.8.【解答】解:设B点坐标为(a,b),∵矩形OABC 的边AB 的中点为F,∴F点的坐标为(a,),=S△OEC=|k|=a•,∴S△OAF∴ab=2k,∵S 矩形=S+S△OAF+S△OEC,四边形OEBF∴ab=2+k+k,∴2k=k+2,∴k=2.故选:A.9.【解答】解:当m>0时,双曲线在第二、四象限,一次函数y=mx﹣m图象经过第一、三、四象限;当m<0 时,双曲线在第一、三象限,一次函数y=mx﹣m 图象经过第一、二、四象限故选:A.10.【解答】解:ax﹣2a=﹣,则,整理得,x2﹣2x+1=0,△=0,∴一次函数y=ax﹣2a 与反比例函数只有一个公共点,故选:B.11.【解答】解:由二次函数图形可得:开口向上,则a>0,对称轴在x轴的右侧,则﹣>0,故b<0,图象与y 轴交在正半轴上,故c>0;则反比例函数图象分布在第一、三象限,一次函数y=ax+b 图象经过第一、三象限,且图象与y 轴交在负半轴上,故选:D.12.【解答】解:A、由反比例函数图象得m<0,则一次函数图象经过第二、三、四象限,所以A 选项错误;B、由反比例函数图象得m>0,则一次函数图象经过第一、二、三象限,所以B 选项错误;C、由反比例函数图象得m>0,则一次函数图象经过第一、二、三象限,所以C 选项正确;D、由反比例函数图象得m<0,则一次函数图象经过第二、三、四象限,所以D 选项错误.故选:C.二.填空题(共19 小题)13.【解答】解:∵反比例函数y=的图象经过点(﹣2,﹣1),∴﹣1=,解得k=2.故答案为:2.14.【解答】解:∵点P在反比例函数y=的图象上,且点P的纵坐标是3,∴P(2,3),∴P点关于x轴的对称点是(2,﹣3).故答案为:(2,﹣3).15.【解答】解:∵反比例函数y=,当x>0时,y的值随x的值的增大而减小,∴m+1>0,解得m>﹣1.故答案为:m>﹣1.16.【解答】解:把y=1代入y=得=1,解得x=3;把y=﹣1代入y=得=﹣1,解得x=﹣3,所以在反比例函数y=的图象上,到x轴距离为1的点的坐标为(3,1),(﹣3,﹣1).故答案为(3,1),(﹣3,﹣1).17.【解答】解:由题意得:这些油可供使用的时间y小时与平均每小时耗油量x升/时之间的函数关系式为.故本题答案为.18.【解答】解:根据题意得x1•y1=x2•y2=,而x1<x2<0,∴y1>y2.故答案为>.19.【解答】解:∵反比例函数y=(k<0)中k<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y 随x 的增大而增大,∵﹣2<0,∴点A(﹣2,y1)位于第二象限,∴y1>0;∵2>1>0,∴B(1,y2)、C(2,y3)在第四象限,∵2>1,∴y2<y3<0,∴y2<y3<y1.故答案为:y2<y3<y1.20.【解答】解:由题意得:矩形面积等于|k|,∴|k|=3,又∵反比例函数图象在二、四象限.∴k<0∴k=﹣3,∴反比例函数的解析式是.故答案为.21.【解答】解:由题意得:m2﹣m﹣7=﹣1,且m﹣1≠0,解得:m1=3,m2=﹣2,∵图象在第二、四象限,∴m﹣1<0,∴m<1,∴m=﹣2,故答案为:﹣2.22.【解答】解:∵一次函数y=kx+b的图象经过第二、三、四象限,∴k<0,b<0,∴kb>0,∴反比例函的图象位于第一、三象限内.故答案为一、三.23.【解答】解:依据比例系数k的几何意义可得正方形OABC的面积为1,所以其边长为1,故B(1,1).设点E 的纵坐标为m,则横坐标为1+m,所以m(1+m)=1,解得m1=,m2=,由于 m =不合题意,所以应舍去, 故 m =, 即 1+m = ,故点 E 的坐标是( ,). 故答案是:(1,1);(, ). 24.【解答】解:反比例函数 y =与一次函数 y =﹣x +7 的图象有一个交点为(a ,b ), ab =5,a +b =7,=,故答案为. 25.【解答】解:过点 P 做 PE ⊥y 轴于点 E∵四边形 ABCD 为平行四边形∴AB =CD又∵BD ⊥x 轴∴ABDO 为矩形∴AB =DO∴S 矩形 ABDO =S ▱ABCD =6∵P 为对角线交点,PE ⊥y 轴∴四边形 PDOE 为矩形面积为 3即 DO •EO =3=∴设P 点坐标为(x,y)k=xy=﹣3故答案为:﹣3 26.【解答】解:∵BD⊥CD,BD=2,=BD•CD=3,即CD=3,∴S△BCD∵C(2,0),即OC=2,∴OD=OC+CD=2+3=5,∴B(5,2),代入反比例解析式得:k=10,即,则S△AOC=5,故答案为:5 27.【解答】解:作CD⊥x轴于D,则OB∥CD,在△AOB 和△ADC 中,∴△AOB≌△ADC,∴OB=CD,由直线y=kx﹣3(k≠0)可知B(0,﹣3),∴OB=3,∴CD=3,把y=3 代入(x>0)解得,x=4,∴C(4,3),代入y=kx﹣3(k≠0)得,3=4k﹣3,解得,故答案为.28.【解答】解:∵OA的垂直平分线交OC于点B,∴OB=AB,∴C△ABC=AB+BC+CA=OB+BC+CA=OC+CA.∵点A 在双曲线(x>0)上,AC=1,∴点A的坐标为(,1),=OC+CA=∴C△ABC+1.故答案为+1.29.【解答】解:设C的坐标为(m,n),又A(﹣2,﹣2),∴AN=MD=2,AF=2,CE=OM=FD=m,CM=n,∴AD=AF+FD=2+m,AB=BN+NA=2+n,∵∠A=∠OMD=90°,∠MOD=∠ODF,∴△OMD∽△DAB,∴=,=,整理得:4+2m=2m+mn,即mn=4,则k=4.故答案为4.30.【解答】解:由于P点在y=上,则S□PCOD=2,A、B两点在y=上,=S△ACO=×1=.则S△DBO∴S﹣=1.四边形∴四边形PAOB 的面积为1.故答案为:1.31.【解答】解:∵圆和反比例函数一个交点P的坐标为(2,1),∴可知圆的半径=,∵反比例函数的图象关于坐标原点对称,是中心对称图形,∴图中两个阴影面积的和圆的面积,∴S 阴影=.故答案为.三.解答题(共9 小题)32.【解答】解:(1)当x=6时,n=﹣×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.(2)∵k=6>0,∴当x>0 时,y 随x 值增大而减小,∴当2≤x≤6 时,1≤y≤3.33.【解答】解:(1)∵点A(m,6),B(3,n)两点在反比例函数y=(x>0)的图象上,∴m=1,n=2,即A(1,6),B(3,2).又∵点A(m,6),B(3,n)两点在一次函数y=kx+b的图象上,∴.解得,则该一次函数的解析式为:y=﹣2x+8;(2)根据图象可知使成立的x 的取值范围是0<x<1 或x>3;(3)分别过点A、B 作AE⊥x 轴,BC⊥x 轴,垂足分别是E、C 点.直线AB 交x 轴于D 点.令﹣2x+8=0,得x=4,即D(4,0).∵A(1,6),B(3,2),∴AE=6,BC=2,=S△AOD﹣S△BOD=×4×6﹣×4×2=8.∴S△AOB34.【解答】解:(1)∵一次函数y1=k1x+b的图象经过点C(﹣4,﹣2),D(2,4),∴,解得.∴一次函数的表达式为y1=x+2.∵反比例函数的图象经过点D(2,4),∴.∴k2=8.∴反比例函数的表达式.(2)由y1>0,得x+2>0.∴x>﹣2.∴当x>﹣2 时,y1>0.(3)x<﹣4 或0<x<2.35.【解答】解:∵点D(2,﹣3)在反比例函数y2=的图象上,∴k2=2×(﹣3)=﹣6,∴y2=﹣;作DE⊥x 轴于E,∵D(2,﹣3),点B是线段AD的中点,∵A(﹣2,0),D(2,﹣3)在y1=k1x+b的图象上,∴,解得,b=﹣,∴y1=﹣x﹣;(2)由,解得,,∴C(﹣4,),=S△AOC+S△AOD=×+×2×3=;∴S△COD(3)当x<﹣4 或0<x<2 时,y1>y2.36.【解答】解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD 为正方形,∴Bc=3,把C(3,﹣2)代入得k=3×(﹣2)=﹣6,∴反比例函数解析式为,把C(3,﹣2),A(0,1)代入y=ax+b得,解得,∴一次函数解析式为y=﹣x+1;(2)解方程组或,∴M点的坐标为(﹣2,3);(3)设P(t,﹣),∵△OAP 的面积恰好等于正方形ABCD 的面积,∴×1×|t|=3×3,解得t=18 或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).37.【解答】解:(1)∵反比例函数y=的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)当b=﹣2 时,直线解析式为y=﹣x﹣2,∵y=0 时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0 时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S=×2×2=2;△OCD(3)存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),=S△OCD,∵S△ODQ∴点Q 和点C 到OD 的距离相等,而Q 点在第四象限,∴Q 的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q 在反比例函数的图象上,∴﹣b•2b=﹣4,解得b=﹣或b=(舍去),∴b 的值为.38.【解答】解:(1)当y1﹣y2>0,即:y1>y2,∴一次函数y1=ax+b 的图象在反比例函数图象的上面,∵A(﹣4,),B(﹣1,2)∴当﹣4<x<﹣1 时,y1﹣y2>0;(2)∵y2=图象过B(﹣1,2),∴m=﹣1×2=﹣2,∵y1=ax+b过A(﹣4,),B(﹣1,2),∴,解得,∴一次函数解析式为;y=x+ ,(3)设P(m,m+),过P作PM⊥x轴于M,PN⊥y轴于N,∴PM=m+,PN=﹣m,∵△PCA 和△PDB 面积相等,∴BD•DN,即,解得,∴P(﹣,).39.【解答】解:(1)把A(m,2)代入得2m=3,解得m=;(2)∵△OEF 为直角三角形,点A 是△EOF 的外心,∴点,2)为EF 的中点,∴E点坐标为(3,0),F点坐标为(0,4),设直线l 的解析式为y=kx+b,把E(3,0),F(0,4)代入得,解得,∴直线l 的解析式为x+4;(3)存在.理由如下:连结OA,设P(0,t),=S△BOK=×3=,∵S△P AF∴|4﹣t|•=,∴4﹣t=±2,∴t=6 或t=2∴满足条件的P点坐标为(0,6)或(0,2).40.【解答】解:(1)∵双曲线y=经过点A(2,1),∴1=,∴k=2,∴双曲线的解析式为;(2)设直线OB 的解析式为y=ax,∵直线y=ax经过点A(2,1),∴a=,∴直线的解析式为x,∵CE=,代入双曲线解析式得到点E的坐标为(3,),∴点B 的横坐标为3,代入直线解析式,得到点B的坐标为(3,),∴点F 的纵坐标,代入双曲线的解析式,得到点F的坐标为(,);(3)连接EF、CD,∵B的坐标为(3,),E的坐标为(3,),F的坐标为(,);∴C点坐标为(3,0),D点坐标为(0,),∴BF==,BD==,BC==,∴=,==,=,∴EF∥CD.一定.。
春九年级数学下册《第26章 反比例函数》单元测试卷2含解析新版新人教版
《第26章反比率函数》单元测试卷一.选择题(共10小题)1.以下函数是反比率函数的是()A.B.y=x2+x C. D.y=4x+82.以下函数中,属于反比率函数的有()A.y=B.y=C.y=8﹣2x D.y=x2﹣13.已知函数y=kx中y随x的增大而减小,那么它和函数y=在同向来角坐标系内的大概图象可能是()A.B.C.D.4.在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大概是()A.B.C.D.5.如图,A、B是双曲线y=上对于原点对称的随意两点,AC∥y轴,BD∥y轴,则四边形ACBD 的面积S知足()A.S=1 B.1<S<2 C.S=2 D.S>26.如图,以原点为圆心的圆与反比率函数y=的图象交于A、B、C、D四点,已知点A的横坐标为1,则点C的横坐标()A.﹣4 B.﹣3 C.﹣2 D.﹣17.反比率函数y=﹣的图象在()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限8.已知反比率函数(k≠0),当x<0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限9.如图,两个反比率函数y1=(此中k1>0)和y2=在第一象限内的图象挨次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延伸线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A.:1 B.2:C.2:1 D.29:1410.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出以下结论:①△ODB与△OCA的面积相等;②PA与PB一直相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.此中全部正确结论的序号是()A.①②③B.②③④C.①③④D.①②④二.填空题(共5小题)11.已知:是反比率函数,则m=.12.一次函数y=﹣x+1与反比率函数,x与y的对应值以下表:x ﹣3 ﹣2 ﹣1 1 2 3y=﹣x+1 4 3 2 0 ﹣1 ﹣21 2 ﹣2 ﹣1 ﹣不等式﹣x+1>﹣的解为.13.如图,在平面直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(2a,a)是反比率函数y=的图象与正方形的一个交点,则图中暗影部分的面积是.14.写出一个图象位于第一、三象限的反比率函数的表达式:.15.如图,矩形ABOC的面积为3,反比率函数y=的图象过点A,则k=.三.解答题(共4小题)16.已知函数分析式y=1+.(1)在下表的两个空格中分别填入适合的数:(2)察看上表可知,当x的值愈来愈大时,对应的y值愈来愈靠近于一个常数,这个常数是什么?x 5 500 5000 50000 …y=1+ 1.2 1.02 1.002 1.0002 …17.如图,是反比率函数y=的图象的一支.依据给出的图象回答以下问题:(1)该函数的图象位于哪几个象限?请确立m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).假如y1<y2,那么x1与x2有如何的大小关系?18.有这样一个问题:研究函数y=+x的图象与性质.小东依据学习函数的经验,对函数y=+x的图象与性质进行了研究.下边是小东的研究过程,请增补完好:(1)函数y=+x的自变量x的取值范围是;(2)下表是y与x的几组对应值.x …﹣3 ﹣2 ﹣1 0 2 3 4 5 …y …﹣﹣﹣﹣1 ﹣﹣ 3 m …求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,依据描出的点,画出该函数的图象;(4)进一步研究发现,该函数图象在第一象限内的最低点的坐标是(2,3),联合函数的图象,写出该函数的其余性质(一条即可):.19.如图,在平面直角坐标系中,O 为坐标原点,P是反比率函数y=(x>0)图象上随意一点,以P为圆心,PO为半径的圆与x轴交于点A、与y轴交于点B,连结AB.(1)求证:P为线段AB的中点;(2)求△AOB的面积.2019年人教版九年级下册数学《第26章反比率函数》单元测试卷参照答案与试题分析一.选择题(共10小题)1.以下函数是反比率函数的是()A.B.y=x2+x C. D.y=4x+8【剖析】依据反比率函数的定义进行判断.反比率函数的一般形式是(k≠0).【解答】解:A、该函数切合反比率函数的定义,故本选项正确.B、该函数是二次函数,故本选项错误;C、该函数是正比率函数,故本选项错误;D、该函数是一次函数,故本选项错误;应选:A.【评论】本题考察了反比率函数的定义.判断一个函数是不是反比率函数,第一看看两个变量能否拥有反比率关系,而后依据反比率函数的意义去判断,其形式为(k为常数,k≠0)或y=kx﹣1(k为常数,k≠0).2.以下函数中,属于反比率函数的有()A.y=B.y=C.y=8﹣2x D.y=x2﹣1【剖析】本题应依据反比率函数的定义,分析式切合y=(k≠0)的形式为反比率函数.【解答】解:选项A是正比率函数,错误;选项B属于反比率函数,正确;选项C是一次函数,错误;选项D是二次函数,错误.应选:B.【评论】本题考察了反比率函数的定义,注意在分析式的一般式(k≠0)中,特别注意不要忽视k≠0这个条件.3.已知函数y=kx中y随x的增大而减小,那么它和函数y=在同向来角坐标系内的大概图象可能是()A.B.C.D.【剖析】先依据正比率函数的性质判断出k的符号,再依据反比率函数的性质利用清除法求解即可.【解答】解:∵函数y=kx中y随x的增大而减小,∴k<0,∴函数y=kx的图象经过二、四象限,故可清除A、B;∵k<0,∴函数y=的图象在二、四象限,故C错误,D正确.应选:D.【评论】本题考察的是正比率函数及反比率函数的性质,熟知以上知识是解答本题的要点.4.在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大概是()A.B.C.D.【剖析】依据一次函数及反比率函数的图象与系数的关系作答.【解答】解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,故A选项正确;B、因为y=kx+3的图象交y轴于正半轴,故B选项错误;C、因为y=kx+3的图象交y轴于正半轴,故C选项错误;D、由函数y=的图象可知k>0与y=kx+3的图象k<0矛盾,故D选项错误.应选:A.【评论】本题主要考察了反比率函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵巧解题.5.如图,A、B是双曲线y=上对于原点对称的随意两点,AC∥y轴,BD∥y轴,则四边形ACBD 的面积S知足()A.S=1 B.1<S<2 C.S=2 D.S>2【剖析】依据过双曲线上随意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S=|k|可知,S△AOC=S△BOD=|k|,再依据反比率函数的对称性可知,O为DC 中点,则S△AOD=S△AOC=|k|,S△BOC=S△BOD=|k|,从而求出四边形ADBC的面积.【解答】解:∵A,B是函数y=的图象上对于原点O对称的随意两点,且AC平行于y轴,BD 平行于y轴,∴S△AOC=S△BOD=,假定A点坐标为(x,y),则B点坐标为(﹣x,﹣y),则OC=OD=x,∴S△AOD=S△AOC=,S△BOC=S△BOD=,∴四边形ABCD面积=S△AOD+S△AOC+S△BOC+S△BOD=×4=2.应选:C.【评论】本题主要考察了反比率函数中比率系数k的几何意义,难易程度适中.过双曲线上随意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S=|k|.6.如图,以原点为圆心的圆与反比率函数y=的图象交于A、B、C、D四点,已知点A的横坐标为1,则点C的横坐标()A.﹣4 B.﹣3 C.﹣2 D.﹣1【剖析】因为圆既是轴对称图形又是中心对称图形,故对于原点对称;而双曲线也既是轴对称图形又是中心对称图形,故对于原点对称,且对于y=x和y=﹣x对称.【解答】解:把x=1代入y=,得y=3,故A点坐标为(1,3);∵A、B对于y=x对称,则B点坐标为(3,1);又∵B和C对于原点对称,∴C点坐标为(﹣3,﹣1),∴点C的横坐标为﹣3.应选:B.【评论】本题主要考察了反比率函数图象的中心对称性和轴对称性,要求同学们要娴熟掌握,灵巧运用.7.反比率函数y=﹣的图象在()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限【剖析】依据反比率函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:∵k=﹣1,∴图象在第二、四象限,应选:C.【评论】本题主要考察了反比率函数的性质,要点是掌握反比率函数图象的性质.8.已知反比率函数(k≠0),当x<0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限【剖析】由反比率函数的性质可判断k的符号,再依据一次函数的性质即可判断一次函数的图象经过的象限.【解答】解:因为反比率函数(k≠0),当x<0时,y随x的增大而增大,依据反比率函数的性质,k<0,再依据一次函数的性质,一次函数y=kx﹣k的图象经过第一、二、四象限.应选:B.【评论】本题考察了反比率函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.9.如图,两个反比率函数y1=(此中k1>0)和y2=在第一象限内的图象挨次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延伸线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A.:1 B.2:C.2:1 D.29:14【剖析】第一依据反比率函数y2=的分析式可获得S△ODB=S△OAC=×3=,再由暗影部分面积为6可获得S矩形PDOC=9,从而获得图象C1的函数关系式为y=,再算出△EOF的面积,能够获得△AOC与△EOF的面积比,而后证明△EOF∽△AOC,依据对应边之比等于面积比的平方可获得EF:AC的值.【解答】解:∵A、B反比率函数y2=的图象上,∴S△ODB=S△OAC=×3=,∵P在反比率函数y1=的图象上,∴S矩形PDOC=k1=6++=9,∴图象C1的函数关系式为y=,∵E点在图象C1上,∴S△EOF=×9=,∴==3,∵AC⊥x轴,EF⊥x轴,∴AC∥EF,∴△EOF∽△AOC,∴=,应选:A.【评论】本题主要考察了反比率函数系数k的几何意义,以及相像三角形的性质,要点是掌握在反比率函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|;在反比率函数的图象上随意一点象坐标轴作垂线,这一点和垂足以及坐标原点所组成的三角形的面积是|k|,且保持不变.10.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出以下结论:①△ODB与△OCA的面积相等;②PA与PB一直相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.此中全部正确结论的序号是()A.①②③B.②③④C.①③④D.①②④【剖析】因为A、B是反比函数y=上的点,可得出S△OBD=S△OAC=,故①正确;当P的横纵坐标相等时PA=PB,故②错误;依据反比率函数系数k的几何意义可求出四边形PAOB 的面积为定值,故③正确;连结PO,依据底面同样的三角形面积的比等于高的比即可得出结论.【解答】解:∵A、B是反比函数y=上的点,∴S△OBD=S△OAC=,故①正确;当P的横纵坐标相等时PA=PB,故②错误;∵P是y=的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正确;连结OP,===4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正确;综上所述,正确的结论有①③④.应选:C.【评论】本题考察的是反比率函数综合题,熟知反比率函数中系数k的几何意义是解答本题的要点.二.填空题(共5小题)11.已知:是反比率函数,则m=﹣2.【剖析】依据反比率函数的定义.即y=(k≠0),只要令m2﹣5=﹣1、m﹣2≠0即可.【解答】解:因为是反比率函数,因此x的指数m2﹣5=﹣1,即m2=4,解得:m=2或﹣2;又m﹣2≠0,因此m≠2,即m=﹣2.故答案为:﹣2.【评论】本题考察了反比率函数的定义,要点是将一般式(k≠0)转变为y=kx﹣1(k≠0)的形式.12.一次函数y=﹣x+1与反比率函数,x与y的对应值以下表:x ﹣3 ﹣2 ﹣1 1 2 3y=﹣x+1 4 3 2 0 ﹣1 ﹣21 2 ﹣2 ﹣1 ﹣不等式﹣x+1>﹣的解为x<﹣1或0<x<2.【剖析】先判断出交点坐标,从而判断在交点的哪侧同样横坐标时一次函数的值都大于反比率函数的值即可.【解答】解:易得两个交点为(﹣1,2),(2,﹣1),经过察看可得在交点(﹣1,2)的左侧或在交点(2,﹣1)的左侧,y轴的右边,同样横坐标时一次函数的值都大于反比率函数的值,因此不等式﹣x+1>﹣的解为x<﹣1或0<x<2.【评论】给出相应的函数值,求自变量的取值范围应当从交点下手思虑.13.如图,在平面直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(2a,a)是反比率函数y=的图象与正方形的一个交点,则图中暗影部分的面积是4.【剖析】先利用反比率函数分析式y=确立P点坐标为(2,1),因为正方形的中心在原点O,则正方形的面积为16,而后依据反比率函数图象对于原点中心对称获得暗影部分的面积为正方形面积的.【解答】解:把P(2a,a)代入y=得2a?a=2,解得a=1或﹣1,∵点P在第一象限,∴a=1,∴P点坐标为(2,1),∴正方形的面积=4×4=16,∴图中暗影部分的面积=S正方形=4.故答案为4.【评论】本题考察了反比率函数图象的对称性:反比率函数图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角均分线y=﹣x;②一、三象限的角均分线y=x;对称中心是:坐标原点.14.写出一个图象位于第一、三象限的反比率函数的表达式:.【剖析】第一设反比率函数分析式为y=,再依据图象位于第一、三象限,可得k>0,再写一个k大于0的反比率函数分析式即可.【解答】解;设反比率函数分析式为y=,∵图象位于第一、三象限,∴k>0,∴可写分析式为y=,故答案为:y=.【评论】本题主要考察了反比率函数的性质,要点是掌握反比率函数(k≠0),(1)k>0,反比率函数图象在一、三象限;(2)k<0,反比率函数图象在第二、四象限内.15.如图,矩形ABOC的面积为3,反比率函数y=的图象过点A,则k=﹣3.【剖析】在反比率函数y=的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.【解答】解:∵矩形ABOC的面积为3,∴|k|=3.∴k=±3.又∵点A在第二象限,∴k<0,∴k=﹣3.故答案为:﹣3.【评论】本题主要考察的是反比率函数系数k的几何意义,掌握反比率函数系数k的几何意义是解题的要点.三.解答题(共4小题)16.已知函数分析式y=1+.(1)在下表的两个空格中分别填入适合的数:(2)察看上表可知,当x的值愈来愈大时,对应的y值愈来愈靠近于一个常数,这个常数是什么?x 5 500 5000 50000 …y=1+ 1.2 1.02 1.002 1.0002 …【剖析】(1)用代入法,分别把x=5、y=1.2代入函数分析式中即可;(2)由表格可知,当x趋近于正无量大时,y愈来愈靠近1.【解答】解:(1)x=5时,y=3;y=1.2时,x=50;填入表格以下:x 5 50 500 5000 50000 …y=1+ 3 1.2 1.02 1.002 1.0002 …(2)由上表可知,当x的值愈来愈大时,对应的y值愈来愈靠近于常数1.【评论】本题主要考察已知分析式时,求对应的自变量和函数的值.17.如图,是反比率函数y=的图象的一支.依据给出的图象回答以下问题:(1)该函数的图象位于哪几个象限?请确立m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).假如y1<y2,那么x1与x2有如何的大小关系?【剖析】(1)依据反比率函数图象的对称性可知,该函数图象位于第二、四象限,则m﹣5<0,据此能够求得m的取值范围;(2)依据函数图象中“y值随x的增大而增大”进行判断.【解答】解:(1)∵反比率函数图象对于原点对称,图中反比率函数图象位于第四象限,∴函数图象位于第二、四象限,则m﹣5<0,解得,m<5,即m的取值范围是m<5;(2)由(1)知,函数图象位于第二、四象限.因此在每一个象限内,函数值y随自变量x增大而增大.①当y1<y2<0时,x1<x2.②当0<y1<y2,x1<x2.③当y1<0<y2时,x2<x1.【评论】本题考察了反比率函数的图象,反比率函数图象上点的坐标特点.注意:解答(2)题时,必定要分类议论,以防错解.18.有这样一个问题:研究函数y=+x的图象与性质.小东依据学习函数的经验,对函数y=+x的图象与性质进行了研究.下边是小东的研究过程,请增补完好:(1)函数y=+x的自变量x的取值范围是x≠1;(2)下表是y与x的几组对应值.x …﹣3 ﹣2 ﹣1 0 2 3 4 5 …y …﹣﹣﹣﹣1 ﹣﹣ 3 m …求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,依据描出的点,画出该函数的图象;(4)进一步研究发现,该函数图象在第一象限内的最低点的坐标是(2,3),联合函数的图象,写出该函数的其余性质(一条即可):该函数没有最大值,也没有最小值.【剖析】(1)由图表可知x≠0;(2)依据图表可知当x=4时的函数值为m,把x=4代入分析式即可求得;(3)依据坐标系中的点,用光滑的直线连结即可;(4)察看图象即可得出该函数的其余性质.【解答】解:(1)x≠1,故答案为x≠1;(2)令x=4,∴y=+4=;∴m=;(3)如图(4)该函数的其余性质:该函数没有最大值,也没有最小值;故答案为该函数没有最大值,也没有最小值.【评论】本题考察了反比率函数的图象和性质,依据图表画出函数的图象是解题的要点.19.如图,在平面直角坐标系中,O 为坐标原点,P是反比率函数y=(x>0)图象上随意一点,以P为圆心,PO为半径的圆与x轴交于点A、与y轴交于点B,连结AB.(1)求证:P为线段AB的中点;(2)求△AOB的面积.【剖析】(1)利用圆周角定理的推论得出AB是⊙P的直径即可;(2)第一假定点P坐标为(m,n)(m>0,n>0),得出OA=2OM=2m,OB=2ON=2n,从而利用三角形面积公式求出即可.【解答】(1)证明:∵点A、O、B在⊙P上,且∠AOB=90°,∴AB为⊙P直径,即P为AB中点;(2)解:∵P为(x>0)上的点,设点P的坐标为(m,n),则mn=12,过点P作PM⊥x轴于M,PN⊥y轴于N,∴M的坐标为(m,0),N的坐标为(0,n),且OM=m,ON=n,∵点A、O、B在⊙P上,∴M为OA中点,OA=2 m;N为OB中点,OB=2 n,∴S△AOB=OA?O B=2mn=24.【评论】本题主要考察了反比率函数综合以及三角形面积求法和圆周角定理推论等知识,娴熟利用反比率函数的性质得出OA,OB的长是解题要点.。
【3套】人教版九下数学《第26章 反比例函数》单元测试卷(解析版)
人教版九下数学《第26章反比例函数》单元测试卷(解析版)一.选择题(共10小题)1.下列函数中,是反比例函数的是()A.y=x﹣1B.C.D.2.在同一坐标系中,函数y=和y=kx+1的图象大致是()A.B.C.D.3.如图,以原点为圆心的圆与反比例函数的图象交于A、B、C、D四点,已知点A的横坐标为1,则点C的横坐标()A.﹣3B.﹣2C.﹣1D.﹣44.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,3)B.若x>1,则﹣3<y<0C.图象在第二、四象限内D.y随x的增大而增大5.如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1B.2C.3D.46.已知点M(﹣2,3)在双曲线y=上,则下列各点一定在该双曲线上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(2,3)D.(3,2)7.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y=B.y=﹣C.y=D.y=﹣8.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20B.8≤k≤20C.5≤k≤8D.9≤k≤209.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=10.当温度不变时,气球内气体的气压P(单位:kPa)是气体体积V(单位:m3)的函数,下表记录了一组实验数据:P与V的函数关系式可能是()A.P=96V B.P=﹣16V+112C.P=16V2﹣96V+176D.P=二.填空题(共5小题)11.若函数是反比例函数,则m=.12.函数y=,当y≥﹣2时,x的取值范围是(可结合图象求解).13.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为.14.若反比例函数的图象经过第一、三象限,则k的取值范围是.15.如图,函数y=﹣x与函数y=﹣的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D.则四边形ACBD的面积为.三.解答题(共6小题)16.已知函数解析式y=1+.(1)在下表的两个空格中分别填入适当的数:(2)观察上表可知,当x的值越来越大时,对应的y值越来越接近于一个常数,这个常数是什么?17.如图,A、B两点在函数y=(x>0)的图象上.(1)求m的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.18.已知实数a,b满足a﹣b=1,a2﹣ab+2>0,当1≤x≤2时,函数y=(a≠0)的最大值与最小值之差是1,求a的值.19.如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A 作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.20.在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.21.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.2019年人教版九下数学《第26章反比例函数》单元测试卷参考答案与试题解析一.选择题(共10小题)1.下列函数中,是反比例函数的是()A.y=x﹣1B.C.D.【分析】根据反比例函数的一般形式即可作出判断.【解答】解:A、是一次函数,故选项错误;B、不符合y=的形式,故选项错误;C、正确;D、不符合y=的形式,是正比例函数,故选项错误.故选:C.【点评】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.2.在同一坐标系中,函数y=和y=kx+1的图象大致是()A.B.C.D.【分析】根据k的情况对反比例函数与一次函数的图象位置进行讨论即可.【解答】解:当k>0时,反比例函数的图象分布于一、三象限,一次函数的图象经过一、二、三象限,当k<0时,反比例函数的图象分布于二、四象限,一次函数的图象经过一、二、四象限,联立可得:kx2+x﹣k=0,△=1+4k2>0,所以此时反比例函数与一次函数的有两个交点.故选:A.【点评】本题考查反比例函数与一次函数的图象性质,解题的关键是根据k的值来分情况讨论,本题属于基础题型.3.如图,以原点为圆心的圆与反比例函数的图象交于A、B、C、D四点,已知点A的横坐标为1,则点C的横坐标()A.﹣3B.﹣2C.﹣1D.﹣4【分析】因为圆既是轴对称图形又是中心对称图形,故关于原点对称;而双曲线也既是轴对称图形又是中心对称图形,故关于原点对称,且关于y=x和y=﹣x对称.【解答】解:把x=1代入y=,得y=3,故A点坐标为(1,3);∵A、B关于y=x对称,则B点坐标为(3,1);又∵B和C关于原点对称,∴C点坐标为(﹣3,﹣1),∴点C的横坐标为﹣3.故选:A.【点评】本题主要考查了反比例函数图象的中心对称性和轴对称性,要求同学们要熟练掌握,灵活运用.4.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,3)B.若x>1,则﹣3<y<0C.图象在第二、四象限内D.y随x的增大而增大【分析】根据反比例函数的比例系数的符号和其性质分别判断后即可确定正确的选项.【解答】解:A、将x=﹣1代入反比例解析式得:y=3,∴反比例函数图象过(﹣1,3),本选项正确;B、由反比例函数图象可得:当x>1时,y>﹣3,本选项正确,C、由反比例函数的系数k=﹣3<0,得到反比例函数图象位于第二、四象限,本选项正确;D、反比例函数y=﹣,在第二或第四象限y随x的增大而增大,本选项错误;综上,不正确的结论是D.故选:D.【点评】此题考查了反比例函数的性质,反比例函数y=(k≠0),当k>0时,图象位于第一、三象限,且在每一个象限,y随x的增大而减小;当k<0时,图象位于第二、四象限,且在每一个象限,y随x的增大而增大.5.如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1B.2C.3D.4【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB 的面积为1,即可求得k的值.【解答】解:设点A的坐标为(a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(﹣a,),∴点B的坐标为(0,),∴=1,解得,k=4,故选:D.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.6.已知点M(﹣2,3)在双曲线y=上,则下列各点一定在该双曲线上的是()A.(3,﹣2)B.(﹣2,﹣3)C.(2,3)D.(3,2)【分析】根据反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k进行分析即可.【解答】解:∵M(﹣2,3)在双曲线y=上,∴k=﹣2×3=﹣6,A、3×(﹣2)=﹣6,故此点一定在该双曲线上;B、﹣2×(﹣3)=6≠﹣6,故此点一定不在该双曲线上;C、2×3=6≠﹣6,故此点一定不在该双曲线上;D、3×2=6≠﹣6,故此点一定不在该双曲线上;故选:A.【点评】此题主要考查了反比例函数图象上点的坐标特征,关键是掌握凡是反比例函数y=经过的点横纵坐标的积是定值k.7.已知反比例函数的图象过点M(﹣1,2),则此反比例函数的表达式为()A.y=B.y=﹣C.y=D.y=﹣【分析】函数经过一定点,将此点坐标代入函数解析式(k≠0),即可求得k的值.【解答】解:设反比例函数的解析式为(k≠0).∵该函数的图象过点M(﹣1,2),∴2=,得k=﹣2.∴反比例函数解析式为y=﹣.故选:B.【点评】此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.8.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20B.8≤k≤20C.5≤k≤8D.9≤k≤20【分析】根据题意可以分别求得点B、点C的坐标,从而可以得到k的取值范围,本题得以解决.【解答】解:∵过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,∴点B的纵坐标为5,点C的横坐标为4,将y=5代入y=﹣x+6,得x=1;将x=4代入y=﹣x+6得,y=2,∴点B的坐标为(1,5),点C的坐标为(4,2),∵函数y=(x>0)的图象与△ABC的边有公共点,点A(4,5),点B(1,5),∴1×5≤k≤4×5即5≤k≤20,故选:A.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件.9.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320t B.v=C.v=20t D.v=【分析】根据路程=速度×时间,利用路程相等列出方程即可解决问题.【解答】解:由题意vt=80×4,则v=.故选:B.【点评】本题考查实际问题的反比例函数、路程、速度、时间之间的关系,解题的关键是构建方程解决问题,属于中考常考题型.10.当温度不变时,气球内气体的气压P(单位:kPa)是气体体积V(单位:m3)的函数,下表记录了一组实验数据:P与V的函数关系式可能是()A.P=96V B.P=﹣16V+112C.P=16V2﹣96V+176D.P=【分析】观察表格发现vp=96,从而确定两个变量之间的关系即可.【解答】解:观察发现:vp=1×96=1.5×64=2×48=2.5×38.4=3×32=96,故P与V的函数关系式为p=,故选:D.【点评】本题考查了反比例函数的应用,解题的关键是能够观察表格并发现两个变量的乘积为常数96,难度不大.二.填空题(共5小题)11.若函数是反比例函数,则m=3.【分析】根据反比例函数的一般形式:x的次数是﹣1,且系数不等于0,即可求解.【解答】解:根据题意得:,解得:m=3.故答案是:3.【点评】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.12.函数y=,当y≥﹣2时,x的取值范围是x≤﹣2或x>0(可结合图象求解).【分析】本题要注意的是当y≥﹣2时,反比例函数图象位于直线y=﹣2的上方,结合图象可直观判断.【解答】解:当y≥﹣2时,反比例函数图象位于直线y=﹣2的上方,它的图象在一、三象限,所以对应的x的取值范围是x≤﹣2或x>0.【点评】主要考查了反比例函数的图象性质.反比例函数y=的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.13.如图,点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为y=.【分析】根据圆的对称性以及反比例函数的对称性可得,阴影部分的面积等于圆的面积的,即可求得圆的半径,再根据P在反比例函数的图象上,以及在圆上,即可求得k 的值.【解答】解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π解得:r=2.∵点P(3a,a)是反比例函y=(k>0)与⊙O的一个交点.∴3a2=k.=r∴a2=×(2)2=4.∴k=3×4=12,则反比例函数的解析式是:y =.故答案是:y =.【点评】本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键.14.若反比例函数的图象经过第一、三象限,则 k 的取值范围是 k < .【分析】先根据反比例函数的性质列出关于k 的不等式,求出k 的取值范围即可.【解答】解:∵反比例函数的图象经过第一、三象限,∴1﹣3k ≥0,解得k <.故答案为:k <.【点评】本题考查的是反比例函数的性质,熟知反比例函数y =(k ≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限是解答此题的关键.15.如图,函数y =﹣x 与函数y =﹣的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为 8 .【分析】首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S =|k |,得出S △AOC =S △ODB =2,再根据反比例函数的对称性可知:OC =OD ,AC =BD ,即可求出四边形ACBD 的面积.【解答】解:∵过函数y =﹣的图象上A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D ,∴S △AOC =S △ODB =|k |=2, 又∵OC =OD ,AC =BD ,∴S △AOC =S △ODA =S △ODB =S △OBC =2,∴四边形ABCD 的面积为:S △AOC +S △ODA +S △ODB +S △OBC =4×2=8. 故答案为:8.【点评】本题主要考查了反比例函数y =中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |;图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S =|k |,是经常考查的一个知识点;同时考查了反比例函数图象的对称性. 三.解答题(共6小题)16.已知函数解析式y =1+.(1)在下表的两个空格中分别填入适当的数:(2)观察上表可知,当x 的值越来越大时,对应的y 值越来越接近于一个常数,这个常数是什么?【分析】(1)用代入法,分别把x =5、y =1.2代入函数解析式中即可; (2)由表格可知,当x 趋近于正无穷大时,y 越来越接近1. 【解答】解:(1)x =5时,y =3;y =1.2时,x =50; 填入表格如下:(2)由上表可知,当x 的值越来越大时,对应的y 值越来越接近于常数1. 【点评】此题主要考查已知解析式时,求对应的自变量和函数的值.17.如图,A 、B 两点在函数y =(x >0)的图象上. (1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.【分析】(1)将A点或B点的坐标代入y=求出m,再将这两点的坐标代入y=kx+b 求出k、b的值即可得到这个函数的解析式;(2)画出网格图帮助解答.【解答】解:(1)由图象可知,函数(x>0)的图象经过点A(1,6),可得m=6.设直线AB的解析式为y=kx+b.∵A(1,6),B(6,1)两点在函数y=kx+b的图象上,∴,解得.∴直线AB的解析式为y=﹣x+7;(2)图中阴影部分(不包括边界)所含格点是(2,4),(3,3),(4,2)共3个.【点评】本题考查了一次函数和反比例函数的图象性质,综合性较强,体现了数形结合的思想.18.已知实数a,b满足a﹣b=1,a2﹣ab+2>0,当1≤x≤2时,函数y=(a≠0)的最大值与最小值之差是1,求a的值.【分析】首先根据条件a﹣b=1,a2﹣ab+2>0可确定a>﹣2,然后再分情况进行讨论:①当﹣2<a<0,1≤x≤2时,函数y=的最大值是y=,最小值是y=a,②当a>0,1≤x≤2时,函数y=的最大值是y=a,最小值是y=,再分别根据最大值与最小值之差是1,计算出a的值.【解答】解:∵a2﹣ab+2>0,∴a2﹣ab>﹣2,a(a﹣b)>﹣2,∵a﹣b=1,∴a>﹣2,①当﹣2<a<0,1≤x≤2时,函数y=的最大值是y=,最小值是y=a,∵最大值与最小值之差是1,∴﹣a=1,解得:a=﹣2,不合题意,舍去;②当a>0,1≤x≤2时,函数y=的最大值是y=a,最小值是y=,∵最大值与最小值之差是1,∴a﹣=1,解得:a=2,符合题意,∴a的值是2.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数(k≠0),当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.19.如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A 作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.【分析】(1)根据待定系数法,可得函数解析式,根据图象上的点满足函数解析式,可得D点坐标,根据三角形的面积公式,可得答案;(2)根据BE的长,可得B点的纵坐标,根据点在函数图象上,可得B点横坐标,根据两点间的距离公式,可得答案.【解答】解;(1)y=(x>0)的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴.(2)∵BE=,∴.∵BE⊥CD,点B的纵坐标=2﹣=,由反比例函数y=,点B的横坐标x=2÷=,∴点B的横坐标是,纵坐标是.∴CE=.【点评】本题考查了反比例函数k的几何意义,利用待定系数法求解析式,图象上的点满足函数解析式.20.在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.(1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么?(2)M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n的代数式表示);(3)在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣的图象上,直线AB经过点P(,),求此抛物线的表达式.【分析】(1)设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,于是得到结论;(2)把M(m,n),N(n,m)代入y=cx+d,即可得到结论;(3)设点A(p,q),则,由直线AB经过点P(,),得到p+q=1,得到q =﹣1或q=2,将这一对“互换点”代入y=x2+bx+c得,于是得到结论.【解答】解:(1)不一定,设这一对“互换点”的坐标为(a,b)和(b,a).①当ab=0时,它们不可能在反比例函数的图象上,②当ab≠0时,由可得,即(a,b)和(b,a)都在反比例函数(k≠0)的图象上;(2)由M(m,n)得N(n,m),设直线MN的表达式为y=cx+d(c≠0).则有解得,∴直线MN的表达式为y=﹣x+m+n;(3)设点A(p,q),则,∵直线AB经过点P(,),由(2)得,∴p+q=1,∴,解并检验得:p=2或p=﹣1,∴q=﹣1或q=2,∴这一对“互换点”是(2,﹣1)和(﹣1,2),将这一对“互换点”代入y=x2+bx+c得,∴解得,∴此抛物线的表达式为y=x2﹣2x﹣1.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,正确的理解题意是解题的关键.21.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.【分析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=5,由AB∥x轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.【解答】解:(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=x,由可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.【点评】本题主要考查一次函数与反比例函数的交点问题,解题的关键是掌握待定系数法求函数解析式及求直线、双曲线交点的坐标和割补法求三角形的面积.人教版九年级下册第二十六章反比例函数单元练习题(含答案)一、选择题1.如图,直线y=-x+a-1与双曲线y=交于A,B两点,则线段AB的长度取最小值时,a的值为()A.0B.1C.2D.32.购买x斤水果需24元,购买一斤水果的单价y与x的关系式是()A.y=(x>0)B.y=(x为自然数)C.y=(x为整数)D.y=(x为正整数)3.若式子有意义,则函数y=kx+1和y=的图象可能是()A.B.C.D.4.一个矩形的长为x,宽为y,其面积为2,则y与x之间的关系用图象表示大致为() A.B.C.D.5.如图,直线y=-x+3与y轴交于点A,与反比例函数y=(k≠0)的图象交于点C,过点C 作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A.y=B.y=-C.y=D.y=-6.用规格为50 cm×50 cm的地板砖密铺客厅恰好需要60块.如果改用规格为a cm×a cm的地板砖y块也恰好能密铺该客厅,那么y与a之间的关系为()A.y=B.y=C.y=150 000a2D.y=150 000a7.反比例函数y=中,当x=-1时,y=-4,如果y的取值范围为-4≤y≤-1,则x的取值范围是()A.1<x<4B.4<x<1C.-1<x<-4D.-4≤x≤-18.若反比例函数y=的图象位于第一、三象限,则a的取值范围是()A.a>0B.a>3C.a>D.a<9.若函数y=与y=x-1的图象交于点A(a,b),则-的值为()A.B.3C.-D.-310.已知反比例函数y=-,下列结论不正确的是()A.图象必经过点(-1,3)B.两个分支分布在第二、四象限C.若x>1,则-3<y<0D.y随x的增大而增大二、填空题11.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t(小时)与Q之间的函数表达式__________.12.某工厂现有煤200吨,这些煤能烧的天数y与平均每天烧煤的吨数x之间的函数关系式是y=____________.13.一批零件600个,一个工人每小时做15个,用关系式表示人数x与完成任务所需的时间y之间的函数关系式为_______________.14.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=(x>0)和y=-(x<0)的图象交于点P、Q,连接PO、QO,则△POQ的面积为________.15.反比例函数y=-,当y≤3时,x的取值范围是____________.16.如图,点A、B在函数y=(x>0)的图象上,过点A、B分别向x、y轴作垂线,若阴影部分图形的面积恰好等于S1,则S1+S2=__________.17.上海世博会召开后,更多的北京人坐火车去上海参观.京沪线铁路全程为1 463km,某次列车的全程运行时间t(单位:h)与此次列车的平均速度v(单位:km/h)的函数关系式是___________.(不要求写出自变量v的取值范围)18.请你写出一个反比例函数的解析式,使它的图象在第一、三象限__________.19.已知点A(2,-1)在反比例函数y=(k≠0)的图象上,那么当x>0时,y随x的增大而__________.20.在某一电路中,保持电压不变,电流I(单位:A)与电阻R(单位:Ω)成反比例,当电阻R =5 Ω时,电流I=2A.则I与R之间的函数关系式为_________.三、解答题21.如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6,(1)求函数y=和y=kx+b的解析式.(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.22.如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.求反比例函数的解析式.23.已知反比例函数y=的图象过点A(3,1).(1)求反比例函数的解析式;(2)若一次函数y=ax+6(a≠0)的图象与反比例函数的图象只有一个交点,求一次函数的解析式.24.已知反比例函数y=-.(1)说出这个函数的比例系数;(2)求当x=-10时函数y的值;(3)求当y=6时自变量x的值.25.在同一直角坐标系上画出函数y=x+2,y=-的图象.26.如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成的矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.27.如图所示,一个反比例函数的图象在第二象限内,点A是图象上的任意一点,AM⊥x轴于M,O是原点,若S△AOM=3,求该反比例函数的解析式,并写出自变量的取值范围.28.作出反比例函数y=-的图象,并结合图象回答:(1)当x=2时,y的值;(2)当1<x≤4时,y的取值范围;(3)当1≤y<4时,x的取值范围.答案解析1.【答案】B【解析】直线y=-x+a-1与双曲线y=交于A,B两点,则线段AB的长度取最小值时,∴a-1=0,a=1,故选B.2.【答案】A【解析】单价=总价÷数量,把相关数值代入即可求解.∵总价为24,数量为x,∴单价y=(x>0),故选A.3.【答案】B【解析】∵式子有意义,∴k<0,当k<0时,一次函数y=kx+1的图象经过原点,过第一、二、四象限,反比例函数y=的图象在第一、三象限,四个选项中只有B符合,故选B.4.【答案】B【解析】由矩形的面积知,xy=9,可知它的长x与宽y之间的函数关系式为y=(x>0),是反比例函数图象,且其图象在第一象限.故选B.5.【答案】D【解析】∵直线y=-x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为-1,∵点C在直线y=-x+3上,∴点C(-1,4),∴反比例函数的解析式为y=-.故选D.6.【答案】A【解析】客厅面积为:50×50×60=150 000,那么所需地板砖块数=客厅面积÷一块地板砖的面积.由题意设y与a之间的关系为y=,由于用规格为50 cm×50 cm的地板砖密铺客厅恰好需要60块,则k=50×50×60=150 000,∴y=.故选A.7.【答案】D【解析】∵当x=-1时,y=-4,∴k=(-1)×(-4)=4,∴函数解析式为y=,在每个象限内,y随x的增大而减小,∴≤x≤,即-4≤x≤-1.故选D.8.【答案】C【解析】∵反比例函数y=的图象在第一、第三象限,∴2a-3>0,解得a>.故选C.9.【答案】C【解析】把A(a,b)代入y=与y=x+1,得b=,b=a-1,即ab=3,b-a=-1,所以-==-.故选C.10.【答案】D【解析】A.∵(-1)×3=-3,∴图象必经过点(-1,3),故本选项正确;B.∵k=-3<0,∴函数图象的两个分支分布在第二、四象限,故本选项正确;C.∵x=1时,y=-3且y随x的增大而增大,又由于此时图象在第四象限,∴x>1时,-3<y<0,故本选项正确;D.函数图象的两个分支分布在第二、四象限,在每一象限内,y随x的增大而增大,故本选项错误.故选D.11.【答案】t=【解析】根据蓄水量=每小时排水量×排水时间,即可算出该蓄水池的蓄水总量,再由防水时间=蓄水总量÷每小时的排水量即可得出时间t(小时)与Q之间的函数表达式.∵某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空,∴该水池的蓄水量为8×6=48(立方米),∵Qt=48,∴t=.12.【答案】【解析】根据等量关系“工作时间=工作总量÷工效”即可列出关系式.由题意,得煤能烧的天数y与平均每天烧煤的吨数x之间的函数关系式是y=.13.【答案】y=【解析】设有x人加工这批零件,则一天加工15x件,∴加工600个所需天数为=,∴完成600个零件所需人数x与完成任务所需的时间y之间的函数关系式为y=.14.【答案】7【解析】如图,∵直线l∥x轴,∴S△OQM=×|-8|=4,S△OPM=×|6|=3,∴S△POQ=S△OQM+S△OPM=7.15.【答案】x≤-1或x>0【解析】∵k=-3<0,∴在每个象限内y随x的增大而增大,又当x=-1,y=3,∴当x≤-1或x>0时,y≤3.故答案为x≤-1或x>0.16.【答案】4【解析】∵点A、B在函数y=(x>0)的图象上,∴S1+S=4,S阴影+S2=4.阴影∴S1+S2=4.17.【答案】t=【解析】由题意,有全程除以平均速度等于全程所用时间.即t=.18.【答案】y=(答案不唯一)【解析】∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:2.故答案为y=等.19.【答案】增大【解析】∵点A(2,-1)在反比例函数y=(k≠0)的图象上,∴k=2×(-1)=-2<0,∴在每一象限内y随着x的增大而增大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.(6,1)
B.(3,2)
C.(2,3)
D.(﹣3,2)
3.(3 分)下列四个点中,有三个点在同一反比例函数 的图象上,则不在这
个函数图象上的点是( )
A.(5,1)
B.(﹣1,5)
C.( ,3)
D.(﹣3,﹣ )
4.(3 分)如图,函数 y1= 与 y2=k2x 的图象相交于点 A(1,2)和点 B,当 y1 <y2 时,自变量 x 的取值范围是( )
第6页(共6页)
15.﹣2; 16. ;
三、解答题
17.
; 18.4; 19.
声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
;
日期:2018/ 12/ 25 13:57:05 ;用户:qgjyus e r10416;邮 箱:qgjyus er104 16.219577 50;学号:2 1985423
函数值 y 的取值范围是( )
A.y>1
B.0<y<l
C.y>2
7.(3 分)下列选项中,函数 y= 对应的图象为(
D.0<y<2 )
A.
B.
C.
D.
8.(3 分)若函数 y= (k≠0)的图象过点( , ),则此函数图象位于( )
A.第一、二象限 C.第二、三象限
B.第一、三象限 D.第二、四象限
(1)连接 OE,若△EOA 的面积为 2,则 k=
;
(2)连接 CA、DE 与 CA 是否平行?请说明理由;
(3)是否存在点 D,使得点 B 关于 DE 的对称点在 OC 上?若存在,求出点 D 的
坐标;若不存在,请说明理由.
19.如图 1,点 A(8,1)、B(n,8)都在反比例函数 y= (x>0)的图象上, 过点 A 作 AC⊥x 轴于 C,过点 B 作 BD⊥y 轴于 D.
点 P、Q 分别是 x 轴、y 轴上的动点,当四边形 PABQ 的周长取最小值时,PQ
所在直线的解析式为
.
13.(3 分)若反比例函数 的图象经过点(2,4),则 k 的值为
.
14.(3 分)已知晋江市的耕地面积约为 375km2,人均占有的土地面积 S(单位:
km2/人),随全市人口 n(单位:人)的变化而变化,则 S 与 n 的函数关系式
(1)求 m 的值和直线 AB 的函数关系式; (2)动点 P 从 O 点出发,以每秒 2 个单位长度的速度沿折线 OD﹣DB 向 B 点运
动,同时动点 Q 从 O 点出发,以每秒 1 个单位长度的速度沿折线 OC 向 C 点 运动,当动点 P 运动到 B 时,点 Q 也停止运动,设运动的时间为 t 秒. ①设△OPQ 的面积为 S,写出 S 与 t 的函数关系式; ②如图 2,当点 P 在线段 OD 上运动时,如果作△OPQ 关于直线 PQ 的对称图形 △O′PQ,是否存在某时刻 t,使得点 O′恰好落在反比例函数的图象上?若存在, 求 O′的坐标和 t 的值;若不存在,请说明理由.
第4页(共6页)
第5页(共6页)
新人教版九年级数学下册《第 26 章 反比例函数》单元 测试卷(吉林省延边州珲春七中)
参考答案
一、选择题 1.C; 2.D; 3.B; 4.C; 5.A; 6.D; 7.A; 8.B; 二、填空题 9.1; 10.﹣1; 11.k< ; 12.y=x+1; 13.8; 14.S= (n 是正整数);
新人教版九年级数学下册《第 26 章 反比例函数》单元测试卷(吉
林省延边州珲春七中)
一、选择题 1.(3 分)对于反比例函数 y= (k<0),下列说法正确的是( )
A.图象经过点(1,﹣k)
B.图象位于第一、三象限
C.图象是中心对称图形
D.当 x<0 时,y 随 x 的增大而减小
2.(3 分)若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是( )
A.x>1
B.﹣1<x<0
C.﹣1<x<0 或 x>1
D.x<﹣1 或 0<x<1
5.(3 分)若 ab>0,则一次函数 y=ax+b 与反比例函数 y= 在同一坐标中的
大致图象是( )
第1页(共6页)
A.
B.
C.
D.
6.(3 分)如图,反比例函数 y= 的图象经过点 A(﹣1,﹣2).则当 x>1 时,
是
.
15.(3 分)已知反比例函数 的图象经过点(﹣2,1),则当 x=1 时,y=
.
16.(3 分)如图,在第一象限内,点 P(2,3),M(a,2)是双曲线 y= (k
≠0)上的两点,PA⊥x 轴于点 A,MB⊥x 轴于点 B,PA 与 OM 交于点 C,则
△OAC 的面积为
.
三、解答题 17.已知函数 y 与 x+1 成反比例,且当 x=﹣2 时,y=﹣3.
第3页(共6页)
(1)求 y 与 x 的函数关系式; (2)当 时,求 y 的值.
18.如图,在矩形 OABC 中,OA=3,OC=5,分别以 OA、OC 所在直线为 x 轴、y 轴,建立平面直角坐标系,D 是边 CB 上的一个动点(不与 C、B 重合),反比 例函数 y= (k>0)的图象经过点 D 且与边 BA 交于点 E,连接 DE.
第2页(共6页)
二、填空题 9.(3 分)已知反比例函数 y= (k 为常数,k≠0)的图象位于第一、第三象限,
写出一个符合条件的 k 的值为
.
10.(3 分)若反比例函数 y= 的图象经过点(1,﹣1),则 k=
.
11.(3 分)若双曲线
的图象经过第二、四象限,则 k 的取值范围是
.
12.(3 分)如图,点 A(a,1)、B(﹣1,b)都在双曲线 y=﹣ (x<0)上,