第十章氨基羟基的保护与脱保护

合集下载

羟基的保护与去保护

羟基的保护与去保护
酰化选择性:1. 伯醇 > 仲醇;2. Pv > Bz > Ac
实施:
1. 保护:酰氯 or 酸酐/吡啶回流,有时也用到酰化催化剂DMAP、4-PPY 2. 去保护:碱性水解
方法2.1:硅醚保护
手段:TMS、TES、TIPS、TBDMS、TBDPS …
特性与优势:
1. 在游离伯胺或仲胺基的存在下,能够对羟基进行选择性保护
Deprotection: Hydrolysis was carried out under aprotic condition-anhydrous tetrabutylammonium fluoride
in THF solution.
方法2.1.2:TBDMS保护
1. TBS醚的生成和断裂的难易取决于空间因素,常用于对多官能团、位 阻不同的分子进行选择性保护。 (在伯、仲醇中,TBS 基相对来说较易 于与伯醇反应)

羟基的常见保护策略
转化为酯:糖、核苷、多酚
转化为醚
硅醚
三甲基硅醚 (TMS-OR) 叔丁基二甲基硅醚 (TBDMS-OR or TBS-OR) 叔丁基二苯基硅醚 (TBDPS-OR) …
烷氧基甲基醚或烷氧基取代甲基醚
烷基醚
苄醚 甲基醚 烯丙基醚、叔丁基醚 …
方法1:酰化为酯
手段:乙酰化(Ac)、苯甲酰化(Bz)、特戊酰化(Pv)…
方法2.2.1:THP
1. THP醚引入形成了一个非对映体,使NMR谱的表达有点困难。 2. 成本低,易于分离,对大多数非质子酸试剂有一定的稳定性,易于除去。 3. 引入THP常用三氟化硼醚化物(BF3.Et2O),对甲苯磺酸(TsOH),吡
啶对甲苯磺酸盐(PPTs)作催化剂。 4. 几乎任何酸性试剂或任何可以在原位产生酸的试剂都可被用来引入THP

有机经典反应三(羟基的保护与脱保护)

有机经典反应三(羟基的保护与脱保护)

羟基的保护与去保护羟基广泛存在于许多在生理上和合成上有意义的化合物中,如核苷,碳水化合物、甾族化合物、大环内酯类化合物、聚醚、某些氨基酸的侧链。

另外,羟基也是有机合成中一个很重要的官能基,其可转变为卤素、氨基、羰基、酸基等多种官能团。

在化合物的氧化、酰基化、用卤代磷或卤化氢的卤化、脱水的反应或许多官能团的转化过程中,我们常常需要将羟基保护起来。

在含有多官能团复杂分子的合成中,如何选择性保护羟基和脱保护往往是许多新化合物开发时的关键所在,如紫杉醇的全合成。

羟基保护主要将其转变为相应的醚或酯,以醚更为常见。

一般用于羟基的保护醚主要有硅醚、甲基醚、烯丙基醚、苄基醚、烷氧甲基醚、烷巯基甲基醚、三甲基硅乙基甲基醚等等。

羟基的酯保护一般用的不多,但在糖及核糖化学中较为多见。

有机合成以及全合成最常用策略就是官能团的保护去保护,这里我肤浅总结一下羟基的保护与去保护,希望大家补充与批评.羟基保护主要分为:硅醚保护,苄醚保护和烷氧基甲基醚或烷氧基甲基取代醚这三类.1.硅醚保护和脱保护:硅醚保护基:TMS, TES, TBS, TIPS, TBDPS特点: (1)易保护,易去保护均可以用Bu4NF脱除; (2)在游离的伯胺肿胺存在下可以选择性对羟基进行保护; (3)硅醚对酸碱都敏感,不同的硅醚对酸碱有相对的稳定性; (4) 空间效应和电子效应是羟基保护与脱保护的主要影响因素; (5)对于没有什么空间位组的伯醇和仲醇,一般不用TMS保护,因为TMS在弱酸条件下极易脱除(硅胶柱).硅醚的稳定性:在酸性条件下的稳定性:TMS(1)<tes(64)<tbs(20,000)<tips(700,000)<tbdps(5000,000)碱性条件下的稳定性:TMS(1)<tes(10-100)<tbs~tbdps(20,000)<tips(100,000)硅醚的脱保护:硅醚对酸碱不稳定可以选择性的酸碱脱保护,或者可以用Bu4NF脱除;由于电子效应影响,烷基硅醚在酸性条件下易去保护,酚基硅醚在碱性条件下易去保护.2.苄醚保护(苄基,对甲氧基苄基,三苯甲基)苄醚保护:烷基的羟基苄基保护一般需要用强碱(NaH),酚羟基的苄基保护一般用K2CO3/CH3CN ,DMF, 丙酮.反应溶剂活性一般情况DMF>CH3CN>丙酮,反应体系可以加NaI或者KI催化.苄基的脱除:一般情况用催化加氢的方法,也可以用Lewis酸脱出(TMSI), 催化加氢若分子中有非芳性的胺,会降低了催化剂的活性,阻碍了O-脱苄.在反应体系中加入Na2CO3可以防止苄基脱除,而可以使双键还原.苄醚氢解溶剂影响:THF>Hexanol>MeOH>Toluene(氢解反应速率大小顺序)PMB保护:PMB与苄基类似,均可以通过氢化的方法脱出,PMB还可以通过氧化的方法脱除(DDQ)3.烷氧基甲基醚或烷氧基甲基取代醚常用的有THP, MOM, EE, SEM等,其中THP, EE, MOM对酸不稳定,均可以用酸脱除,对酸的稳定性顺序:MOM>EE>THP, THP和EE的性质类似,用弱酸脱除,而MOM 对弱酸稳定,一般用强酸来脱除,SEM一般酸性条件稳定(AcOH/H2O,THF, 45度, 7h 可以脱除THP, EE和TBS,而SEM是稳定的).。

第十章氨基羟基的保护与脱保护

第十章氨基羟基的保护与脱保护
酰胺化法
将羧酸与胺反应,生成酰胺类化合物。酰胺化反 应可以在酸性或碱性条件下进行,常用的酰胺化 试剂有氯化铵、硫酸铵等。
酰卤法
将羧酸与卤素反应,生成酰卤类化合物。酰卤反 应通常在碱性条件下进行,常用的卤素试剂有氯 气、溴素等。
羧基脱保护方法
酯的水解
在酸性或碱性条件下,酯类化合物可以发生水解反应,生成相应的 羧酸和醇。常用的水解试剂有氢氧化钠、氢氧化钾等。
使用还原剂进行脱保护
在三苯甲基硫醚中加入还原剂,如氢化铝锂或硼氢化钠,可使三苯甲基硫醚分解为硫醇和苯。这种方 法适用于对酸敏感的硫醚,且反应条件温和,产率较高。
硫醇保护反应实例
硫醇与三苯甲基氯的反应
以吡啶为溶剂,将硫醇与三苯甲基氯在 室温下搅拌反应数小时,然后用水淬灭 反应,用乙酸乙酯萃取,经干燥、浓缩 后得到三苯
以甲醇为溶剂,将硫醇与二硫化物在碱性 条件下搅拌反应数小时,然后用水淬灭反 应,用乙酸乙酯萃取,经干燥、浓缩后得 到硫醚。
05
醛酮保护与脱保护
醛酮保护方法
缩醛(酮)法
利用醇与醛酮在酸性条件下形成缩醛(酮) 的反应,保护羰基。
烯胺法
醛酮与仲胺反应生成烯胺,从而保护羰基。
肟法
酰胺的水解
酰胺类化合物在酸性或碱性条件下也可以发生水解反应,生成相应 的羧酸和胺。常用的水解试剂有盐酸、硫酸等。
酰卤的还原
酰卤类化合物可以通过还原反应脱去卤素,生成相应的羧酸。常用 的还原试剂有氢气、氢化铝锂等。
羧基保护反应实例
乙酸乙酯的制备
将乙酸与乙醇在硫酸催化下加热反应,生成乙酸乙酯和水。该反应为典型的酯化反应, 用于保护乙酸的羧基。
氨基保护反应实例
酰胺化反应实例
以苯甲酰氯和氨为例,在碱性条 件下反应生成苯甲酰胺,实现氨 基的保护。

羟基的保护与脱保护

羟基的保护与脱保护

HO 1
OH
i-Pr2NEt/t-BDPSiCl/CH2Cl2 TBDPSO 2 OH . Chem, 1992, 57, 1722
10
三异丙基硅醚保护 ---(TIPS-OR)
酸性水解时,有较大体积的TIPS醚比叔丁基二甲基硅醚要 更稳定些。但稳定性比叔丁基二苯基硅基差。TIPS基碱性 水解时比TBDMS基或TBDPS基稳定。相对于仲羟基,TIPS基 对伯羟基有更好的选择性。
易保护,也容易去保护
随着硅原子上的取代基的不同,保护和去保护的反应活 性均有较大的变化。当分子中有多官能团时,空间效应 及电子效应是影响反应的主要因素。 任何羟基硅醚都可以通过四烷基氟化胺如TBAF脱除,其 主要原因是硅原子对氟原子的亲和性远远大于硅-氧之 间的亲和性。
在游离伯胺或仲胺基的存在下,能够对羟基进行保护
3.1 THP(2-四氢吡喃)保护羟基
THP醚引入到一个手性分子的结果是形成了一个非对映 体,因为在四氢吡喃环上新增了一个手性中心。(有时 它会使NMR谱的表达有点困难)。尽管如此, 它仍是有 机合成中一个非常有用的保护基团,它的成本低,易于 分离,对大多数非质子酸试剂有一定的稳定性,易于被 除去。通常,几乎任何酸性试剂或任何可以在原位产生 17 酸的试剂都可被用来引入THP基团。
羟基的保护与去保护
1
羟基的保护(前言)
羟基广泛存在于许多在生理上和合成上有意义的化合物中, 如核苷,碳水化合物、甾族化合物、大环内酯类化合物、聚 醚、某些氨基酸的侧链。另外,羟基也是有机合成中一个很 重要的官能基,其可转变为卤素、氨基、羰基、酸基等多种 官能团。在化合物的氧化、酰基化、用卤代磷或卤化氢的卤 化、脱水的反应或许多官能团的转化过程中,我们常常需要 将羟基保护起来。 在含有多官能团复杂分子的合成中,如 何选择性保护羟基和脱保护往往是许多新化合物开发时的关 键所在,如紫杉醇的全合成。羟基保护主要将其转变为相应 的醚或酯,以醚更为常见。一般用于羟基的保护醚主要有硅 醚、甲基醚、烯丙基醚、苄基醚、烷氧甲基醚、烷巯基甲基 醚、三甲基硅乙基甲基醚等等。羟基的酯保护一般用的不多 ,但在糖及核糖化学中较为多见。

有机经典反应三(羟基的保护与脱保护)

有机经典反应三(羟基的保护与脱保护)

羟基的保护与去保护羟基广泛存在于许多在生理上和合成上有意义的化合物中,如核苷,碳水化合物、甾族化合物、大环内酯类化合物、聚醚、某些氨基酸的侧链。

另外,羟基也是有机合成中一个很重要的官能基,其可转变为卤素、氨基、羰基、酸基等多种官能团。

在化合物的氧化、酰基化、用卤代磷或卤化氢的卤化、脱水的反应或许多官能团的转化过程中,我们常常需要将羟基保护起来。

在含有多官能团复杂分子的合成中,如何选择性保护羟基和脱保护往往是许多新化合物开发时的关键所在,如紫杉醇的全合成。

羟基保护主要将其转变为相应的醚或酯,以醚更为常见。

一般用于羟基的保护醚主要有硅醚、甲基醚、烯丙基醚、苄基醚、烷氧甲基醚、烷巯基甲基醚、三甲基硅乙基甲基醚等等。

羟基的酯保护一般用的不多,但在糖及核糖化学中较为多见。

有机合成以及全合成最常用策略就是官能团的保护去保护,这里我肤浅总结一下羟基的保护与去保护,希望大家补充与批评•羟基保护主要分为:硅醚保护,苄醚保护和烷氧基甲基醚或烷氧基甲基取代醚这三类1. 硅醚保护和脱保护硅醚保护基:TMS, TES, TBS, TIPS, TBDPS特点:(1)易保护,易去保护均可以用Bu4NF脱除;(2)在游离的伯胺肿胺存在下可以选择性对羟基进行保护;(3)硅醚对酸碱都敏感,不同的硅醚对酸碱有相对的稳定性;(4)空间效应和电子效应是羟基保护与脱保护的主要影响因素;(5)对于没有什么空间位组的伯醇和仲醇,- 般不用TMS保护,因为TMS在弱酸条件下极易脱除(硅胶柱).硅醚的稳定性:在酸性条件下的稳定性:TMS(1) <tes(64)<tbs(20,000)vtips(700,000)vtbdps(5000,000) 碱性条件下的稳定性:TMS(1)<tes(10-100)<tbs~tbdps(20,000)vtips(100,000)硅醚的脱保护:硅醚对酸碱不稳定可以选择性的酸碱脱保护,或者可以用Bu4NF脱除;由于电子效应影响,烷基硅醚在酸性条件下易去保护,酚基硅醚在碱性条件下易去保护.2. 苄醚保护(苄基,对甲氧基苄基,三苯甲基)苄醚保护:烷基的羟基苄基保护一般需要用强碱(NaH),酚羟基的苄基保护一般用K2CO3/CH3CN ,DMF丙酮.反应溶剂活性一般情况DMF>CH3C丙酮,反应体系可以加Nal或者KI催化.苄基的脱除:一般情况用催化加氢的方法,也可以用Lewis酸脱出(TMSI),催化加氢若分子中有非芳性的胺,会降低了催化剂的活性,阻碍了O-脱苄.在反应体系中加入Na2CO可以防止苄基脱除,而可以使双键还原.苄醚氢解溶剂影响:THF>Hexanol>MeOH>Toluene氢解反应速率大小顺序)PMB保护:PMB与苄基类似,均可以通过氢化的方法脱出,PMB还可以通过氧化的方法脱除(DDQ)3. 烷氧基甲基醚或烷氧基甲基取代醚常用的有THP, MOM, EE, SEM等,其中THP, EE, MOM对酸不稳定,均可以用酸脱除,对酸的稳定性顺序:MOM>EE>THP, TH和EE的性质类似,用弱酸脱除,而MOM 对弱酸稳定,一般用强酸来脱除,SEM 一般酸性条件稳定(AcOH/H2O,THF, 45度, 7h 可以脱除THP, EE和TBS,而SEM是稳定的).。

常见的羟基的保护与脱保护方法

常见的羟基的保护与脱保护方法

常见的羟基的保护与脱保护方法保护羟基:羟基在许多有机合成反应中往往需要保护,以防止它们在反应条件下发生不需要的副反应。

常见的羟基保护基包括醚、酯、酮、酚、酰胺、醛等。

以下是一些常用的羟基保护方法:1.醚保护:醚保护可以通过将羟基与醇反应得到,生成醚。

醚保护通常使用对应于醇的活化试剂进行,例如甲基化反应中使用碘甲烷或次氯酸盐。

醚保护可以在中性或碱性条件下进行,但不适合在酸性条件下进行。

2.酯保护:酯保护是通过将羟基与酸酐反应得到,生成酯。

常用的酸酐有酸氯和酸酐等。

酯保护通常在碱性条件下进行,并且在加热时通常反应速率更快。

3.酮保护:酮保护是通过将羟基与酮反应得到,生成酮。

酮保护也通常在碱性条件下进行,使用碱金属如钠作为催化剂。

4.酚保护:酚保护是通过将羟基与酸酐反应得到,生成酯。

酚保护与酯保护原理相同,但需要更强的碱性条件。

5.酰胺保护:酰胺保护是通过将羟基与酰胺反应得到,生成酮。

常用的酰胺有二甲基亚砜、二甲基甲酰胺等。

6.醛保护:醛保护是通过将羟基和醛反应得到,生成醇。

这种保护方法通常使用缩醛反应进行,输入多相催化剂。

脱保护羟基:羟基的脱保护常常需要特定的条件和试剂来进行,以下是一些常用的羟基脱保护方法:1.醚脱保护:醚脱保护通常使用酸性条件进行,例如使用浓硫酸或三氟化硼进行醚的酸性水解。

2.酯脱保护:酯脱保护可以通过酸催化的水解得到,常用的酸催化试剂包括浓硫酸,氢氯酸等。

3.酮脱保护:酮脱保护通常使用还原剂进行,最常用的是氢化钠或氢化钠铝合金。

4.酚脱保护:酚脱保护可以使用酸性条件下的水解反应,例如使用浓硫酸进行酚的酸性水解。

5.酰胺脱保护:酰胺脱保护可以通过酸或碱催化进行,例如使用浓碱水解。

6.醛脱保护:醛脱保护可以通过加热和蒸馏等方法进行,例如使用强酸、碱或硼氢化钠等试剂进行醛的脱保护。

总结:羟基的保护与脱保护方法在有机合成反应中扮演重要的角色,能够有效地保护或脱除羟基。

合理选择适当的保护基和脱保护试剂可以帮助实现合成目标化合物的高产率和高选择性。

羟基的保护与去保护

羟基的保护与去保护
NHBoc
9
叔丁基二苯基硅醚 ---(TBDPS-OR )
在酸性水解条件下TBDPS保护基比TBDMS更加
稳定(约100倍),而TBDPS保护基对碱的稳定性比
TBDMS要差。另外,TBDPS保护基对许多与TBDMS保 护基不相容的试剂显出比TBDMS基团更好的稳定性。 TBDMS基团在酸性条件下不易迁移。
R C C OH 3
C C C6H5 OTHP
R C C OH
C C C6H5 OH
4 .Chem.1977,42,3772
OPMB TBDPSO OH 5 OPMB OMOM CO 2CH 3 O 7
MOMCl,DIEA, CH 2Cl 2
OPMB TBDPSO OMOM 6 OPMB
HCl(gas)/iPrOH,55 oC
OMe Bn O H O 2 H MPM
Bn
DDQ O H O H 2 MPM CH2Cl2-H2O
Bn
O
H
O 1
H
OH
Tetrahedron Lett. 1988, 29, 2459
15
烷氧基甲基醚或烷氧基取代甲基醚
烷氧基甲基醚或烷氧基取代甲基醚在羟基保护中也 是较为多用的一类,常用的有THP (2-四氢吡喃),MOM (甲氧基甲基),EE(2-乙氧基乙基),这类保护基都 对酸不稳定,因此一般都是在酸性条件下脱保护。它们 对酸的稳定性是MOM>EE>THP
Si OR' Si OR' Si OR' Si OR' Ph Si OR' Ph TBDPS-OR'
TMS-OR'
TES-OR'
TBDMS-OR' TBS-OR'

羟基的保护与脱保护27页PPT文档

羟基的保护与脱保护27页PPT文档
5
三甲基硅醚(TMSOR)
许多硅基化试剂(如TMSCl,TMSOTf)均可用于在各种醇 中引入三甲基硅基。一般来说,空间位阻较小的醇最容易 硅基化,但同时在酸或碱中也非常不稳定易水解,三甲基硅 基化广泛用于多官能团化合物,生成的衍生物具有较高的 挥发度而利于气相色谱和质谱分析。
AcO O OTES
3
硅醚保护的稳定性
硅醚对酸和碱都敏感; 但是不同的硅醚对酸,碱有相对的 稳定性。空间效应及电子效应是主要的影响因素 。
在酸中的稳定性为:
TMS (1)<TES (64)<TBDMS (20,000)<TIPS (700,000)<TBDPS (5,000,000);
一般而言,对于没有什么位阻的伯醇和仲醇,尽量不要 选用TMS作为保护基团,因为得到的产物一般在硅胶这 样弱的酸性条件下也会被裂解掉。
2
J.O rg.C hem . 1987, 52, 622
O Si Ph Ph
C 6H 5 C C
OTHP
B u4N +F-/TH F
1
HO THPO
2
C C C6H5 Can. J. Chem . 1975, 53, 2975
TBSO
O O
TBSO 1
NHBoc
A c O H /H 2O /T H F
TBS醚的生成和断裂的难易取决于空间因素,因此常常用于
对多官能团,位阻不同的分子进行选择性保护。在伯、仲醇
中,TBS基相对来说较易于与伯醇反应。TBS醚的断裂除了
常用的四烷基氟化胺外,许多情况下也可用酸来断。当分子
内没有对强酸敏感的官能基存在时,可用 HCl-MeOH, HCl-
Dioxane 体系去除TBS,若有对强酸敏感的官能基存在时,

羟基的保护和去保护

羟基的保护和去保护

羟基的保护和去保护醚酯硅醚羟基的保护保护醇类 ROH 的方法一般是制成醚类(ROR′) 或酯类(ROCOR′),前者对氧化剂或还原剂都有相当的稳定。

1. 形成甲醚类ROCH3可以用碱脱去醇ROH质子,再与合成子+CH3作用,如使用试剂NaH / Me2SO4。

也可先作成银盐RO-Ag+ 并与碘甲烷反应,如使用Ag2O / MeI;但对三级醇不宜使用这一方法。

醇类也可与重氮甲烷CH2N2,在Lewis酸(如BF3·Et2O)催化下形成甲醚.脱去甲基保护基,回复到醇类,通常使用Lewis酸,如BBr3及Me3SiI,也就是引用硬软酸碱原理(hard-soft acids and bases principle),使氧原子与硼或硅原子结合(较硬的共轭酸),而以溴离子或碘离子(较软的共轭碱)将甲基(较软的共轭酸)除去。

2. 形成叔丁基醚类 ROC(CH3)3醇与异丁烯在Lewis 酸催化下制备。

叔丁基为一巨大的取代基(bulky group),脱去时需用酸处理3. 形成苄醚ROCH2Ph:制备时,使醇在强碱下与苄溴(benzyl bromide)反应,通常以加氢反应或锂金属还原,使苄基脱除,并回复到醇类。

4. 形成三苯基甲醚(ROCPh3)制备时,以三苯基氯甲烷在吡啶中与醇类作用,而以4-二甲胺基吡啶(4-dimethyl aminopyridine, DMAP)为催化剂。

5. 形成甲氧基甲醚 ROCH2OCH3制备时,使用甲氧基氯甲烷与醇类作用,并以三级胺吸收生成的HCl。

甲氧基甲醚在碱性条件下和一般质子酸中有相当的稳定性,但此保护基团可用强酸或Lewis酸在激烈条件下脱去。

7. 形成四氢吡喃ROTHP制备时,使用二氢吡喃与醇类在酸催化下进行加成作用。

欲回收恢复到醇类时,则在酸性水溶液中进行水解,即可脱去保护基团。

有机合成中常引用这种保护基团,其缺点是增加一个不对称碳(缩酮上的碳原子),使得NMR谱的解析较复杂。

氨基羟基的保护与脱保护课件

氨基羟基的保护与脱保护课件

其他脱保护方法
总结词
除了水解法、酸解法和碱解法外,还 有一些其他脱保护方法可用于氨基羟 基的释放。
详细描述
这些方法包括氧化还原法、光化学法 、酶催化法等。这些方法通常具有较 高的选择性,适用于特定类型的保护 基团或特定条件下的脱保护反应。
04
氨基羟基保护与脱保护的应用在有机合成中的应用源自氨基羟基保护发挥重要作用。
THANKS
感谢观看
新型的氨基羟基保护与脱保护试剂的开发
新型的氨基羟基保护与脱保护试 剂可以克服现有试剂的缺点,提
高反应效率和选择性。
目前,研究者们正在积极探索各 种新型的氨基羟基保护与脱保护 试剂,包括手性试剂、光敏试剂
、可回收试剂等。
新型氨基羟基保护与脱保护试剂 的应用前景广阔,有望在药物合 成、材料科学、生物科学等领域
保护基的稳定性
形成的酯保护基通常具有较好的稳定性,可以在多种反应条件下保持稳 定,不易发生副反应。
03
脱保护条件
在酸或碱的条件下,酯化保护的氨基羟基可以通过水解反应进行脱保护

形成醚的保护
形成醚类保护基
脱保护条件
氨基羟基可以通过与醇反应形成醚。 醚类保护基在有机合成中也有广泛应 用,因为形成的醚可以提高氨基羟基 的稳定性。
在药物合成中的应用
氨基羟基保护
药物合成中,为了得到目标分子,需 要将一些不希望参与反应的官能团进 行保护。例如,在合成氨基酸和核苷 类药物时,需要将氨基和羟基保护起 来。
氨基羟基脱保护
在药物合成中,脱去氨基和羟基的保 护基团是获得最终药物的关键步骤。 这些药物在人体内发挥作用时,需要 释放出被保护的官能团。
05
氨基羟基保护与脱保护的挑战与 展望

氨基-羟基的保护与脱保护

氨基-羟基的保护与脱保护

氨基-羟基脱保护的应用
在有机合成中,氨基和羟基的保护与脱保护是常见的操作。例如,在合成多肽、核酸等复杂有机分子 时,需要进行一系列的反应,而这些反应可能会涉及到氨基和羟基的参与或干扰。因此,需要进行适 当的保护和脱保护操作,以确保产物的纯度和收率。
在药物合成中,氨基和羟基的保护与脱保护也是常见的操作。例如,在合成某些药物时,需要将某些 官能团进行保护,以避免它们与反应试剂发生不必要的反应。在完成所需的反应后,需要将这些官能 团脱保护,以获得目标产物。
形成醚
形成硅醚
可以使用硅醚试剂如三甲基氯硅烷或 三乙基氯硅烷来保护氨基和羟基。硅 醚试剂可以在温和条件下与醇或酚反 应形成稳定的硅醚。
可以通过与卤代烃反应形成醚来保护 氨基和羟基。醚化反应通常在强酸或 强碱催化下进行。
氨基-羟基保护的应用
01
药物合成
在药物合成中,氨基和羟基的保护对于合成复杂化合物非常重要。通过
绿色化学
环保意识的提高使得绿色化学成为研究热点,氨基-羟基 的保护与脱保护反应也正向着绿色、环保的方向发展。
新技术的应用
随着新技术的不断发展,如计算机辅助设计、人工智能等, 氨基-羟基的保护与脱保护反应的研究和应用将更加广泛 和深入。
研究展望
新型保护基团的开发
01
目前使用的氨基-羟基保护基团种类有限,开发新型保护基团是
有机合成
在有机合成中,氨基-羟基的保护与脱保护有助于控制反应进程和 选择性,提高合成产物的纯度和收率。
生物活性分子合成
在生物活性分子合成中,保护与脱保护反应有助于保持分子的稳定性, 防止在合成过程中发生不希望的反应。
05
氨基-羟基保护与脱保护的发展趋势
和展望
发展趋势

羟基的保护与脱保护-PPT精选文档

羟基的保护与脱保护-PPT精选文档
硅-氮键的结合远比硅-氧键来的弱,硅原子优先与羟基上 的氧原子结合,这正是与其他保护基的不同之处。
4
硅醚保护的稳定性
硅醚对酸和碱都敏感; 但是不同的硅醚对酸,碱有相对的 稳定性。空间效应及电子效应是主要的影响因素 。 在酸中的稳定性为:
TMS (1)<TES (64)<TBDMS (20,000)<TIPS (700,000)<TBDPS (5,000,000);
CH3 CN
P y . C H 3C N
J .O r g .C h e m . 1 9 8 7 , 5 2 , 6 2 2
H O TBS 2
C 6H 5 C C Ph Si Ph 1 O OTHP
一般情况下,在TBDMS基团存在时,断裂DEIPS( 二乙基异丙 基硅基) 基团是较容易的,但实际得出的一些结果是相反的。 在这些例子中,分子结构中空间阻碍是产生相反选择性的原因。 电子效应的不同也会影响反应的选择性。对于两种空间结构相 似的醇来说,电子云密度不同造成酸催化去保护速率不同,因 此可以选择性去保护。这一点对酚基和烷基硅醚特别有效:烷 基硅醚在酸中容易去保护,而酚基醚在碱性条件下更容易去保 护。降低硅的碱性还可以用于改变Lewis酸催化反应的结果, 并且有助于选择性去保护。在硅原子上引入吸电子取代基可以 提高碱性条下水解反应的灵敏性,而对酸的敏感性降低。
羟基的保护与去保护
1
羟基的保护(前言)
羟基广泛存在于许多在生理上和合成上有意义的化合物中, 如核苷,碳水化合物、甾族化合物、大环内酯类化合物、聚 醚、某些氨基酸的侧链。另外,羟基也是有机合成中一个很 重要的官能基,其可转变为卤素、氨基、羰基、酸基等多种 官能团。在化合物的氧化、酰基化、用卤代磷或卤化氢的卤 化、脱水的反应或许多官能团的转化过程中,我们常常需要 将羟基保护起来。 在含有多官能团复杂分子的合成中,如何 选择性保护羟基和脱保护往往是许多新化合物开发时的关键 所在,如紫杉醇的全合成。羟基保护主要将其转变为相应的 醚或酯,以醚更为常见。一般用于羟基的保护醚主要有硅醚 、甲基醚、烯丙基醚、苄基醚、烷氧甲基醚、烷巯基甲基醚 、三甲基硅乙基甲基醚等等。羟基的酯保护一般用的不多, 但在糖及核糖化学中较为多见。

第十章氨基羟基的保护与脱保护

第十章氨基羟基的保护与脱保护

1.2.2 叔丁氧羰基的引入示例(一)
NH2 COOH
Boc2O
NaOH, t-BuOH, H2O 78%
NHBoc COOH
NH2.HCl HO
COOMe
Boc2O
Et3N 95%
NHBoc HO
COOMe
H N
HN
O
NH O
Boc2O
DMAP, Et3N 83%
Bo c N
Boc N O
O
N Boc
O FmocHN
OH Boc N
O
J. Or g. Chem., 2005, 68( 1), 195-197
1.3.3 笏甲氧羰基的脱去
Fmoc同前面提到的Cbz和Boc不同,它对酸稳定,较易通过简单的胺(而不是水解)脱保护,被 保护的胺以游离碱释出。Fmoc-ValOH在DMF中用不同的胺碱去保护的快慢有较大的差异,20% 的哌啶较快。Fmoc保护基一般也能用浓氨水、二氧六环/4M NaOH(30:9:1)以及用哌啶、乙醇胺、 环己胺、吗啡啉、吡咯烷酮、DBU等胺类的50%CH2Cl2的溶液脱去。另外,Bu4N+F-/DMF在室温 的脱去效果也很好。叔胺(如三乙胺)的脱去效果较差,具有空间位阻的胺其脱除效果最差。一 般我们在常规合成(液相反应)不经常性使用该保护基的原因:1.对碱过于敏感;2.反应的副产 物。
R2 N R1 Cbz
H2 Pd-C
R2
CH3 +
N
R1 COOH
H
CH3
+
CO2
+
N R1 R2
1.1.2 苄氧羰基的酸性脱除注意点 苄氧羰基的用强酸或Lewis酸脱除时,会产生苄基的碳正离子,若分子中有捕捉碳正离子的基团时,将

羟基的保护与脱保护

羟基的保护与脱保护
硅-氮键的结合远比硅-氧键来的弱,硅原子优先与羟基上 的氧原子结合,这正是与其他保护基的不同之处。
4
硅醚保护的稳定性
硅醚对酸和碱都敏感; 但是不同的硅醚对酸,碱有相对 的稳定性。空间效应及电子效应是主要的影响因素 。 在酸中的稳定性为:
TMS (1)<TES (64)<TBDMS (20,000)<TIPS (700,000)<TBDPS (5,000,000);
OMe Bn O H O 2 H MPM
Bn
DDQ O H O H 2 MPM CH2Cl2-H2O
Bn
O
H
O 1
H
OH
Tetrahedron Lett. 1988, 29, 2459
16
烷氧基甲基醚或烷氧基取代甲基醚
烷氧基甲基醚或烷氧基取代甲基醚在羟基保护中也是较 为多用的一类,常用的有THP (2-四氢吡喃),MOM(甲 氧基甲基),EE(2-乙氧基乙基),这类保护基都对酸 不稳定,因此一般都是在酸性条件下脱保护。它们对酸 的稳定性是MOM>EE>THP
烷氧基甲基醚或烷氧基取代甲基醚
3.2 MOM保护羟基 MOM一般是通过MOMCl-DIEA 引入;其对酸还是较 为稳定的,一般它的脱除需要在强酸条件下进行。 3.3 EE(CH3CH2OCH2CH2-OR)保护羟基 EE的性质和THP很相似。 3.4 SEM-Cl(TMSCH2CH2OCH2-)保护羟基 SEM-作为羟基的保护基,其主要特点为:脱保护可以 通过四烷基氟化胺来脱去。SEM醚对分解四氢吡喃基 (THP)和叔丁基二甲基硅醚(TBS)的酸性条件(AcOHH2O, THF, 45oC, 7小时)是稳定的。
NHBoc
9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一部分: 烷氧羰基类氨基保护基
1.1 苄氧羰基的引入 用Cbz-Cl与游离氨基在用NaOH 或NaHCO3 控制的碱性条件下可以很容易同Cbz-Cl反应得到 N-苄氧羰基氨基化合物。氨基酸酯同Cbz-Cl的反应则是在有机溶剂中进行,并用碳酸氢盐或三 乙胺来中和反应所产生的HCl。此外,Cbz-ONB(4-O2NC6H4OCOOBn)等苄氧羰基活化酯 也可用来作为苄氧羰基的导入试剂,该试剂使伯胺比仲胺易被保护;苯胺由于亲核性不足,与该 试剂不反应
O
S
Cbz-Cl
O
NH2.HCl
K2CO 3
98%
O S
O NHCbz
Org. Syn., 70, 29
1.1.2 苄氧羰基的脱去 苄氧羰基的脱去主要有以下几种方法
1). 催化氢解 2). 酸解裂解(HBr, TMSI) 3). Na/NH3(液)还原 实验室常用简洁的方法是催化氢解(用H2或其它供氢体,一般常温常压氢化即可); 当分子中存在 对催化氢解敏感(有苄醚,氯溴碘等)或钝化催化剂的基团(硫醚等)时,我们就需要采用化学方法 如酸解裂解HBr或Na/NH3(液)还原等。
R2 N R1 Cbz
H2 Pd-C
R2
CH3 +
N
R1 COOH
H
CH3
+
CO2
+
N R1 R2
1.1.2 苄氧羰基的酸性脱除注意点 苄氧羰基的用强酸或Lewis酸脱除时,会产生苄基的碳正离子,若分子中有捕捉碳正离子的基团时,将
得到相应的副产物.
OH
Cbz
HBr
N
H
HO
OH HO
NH2 .HBr
Cl
NHCbz
AcO Et
NH2
Br S
OMe
Br H 2, R h(P Ph3)3C l
W ilkinson catalyst
OMe S
《 药 明 康 德 化 学 通 讯 》 , 2007, 1(4), 9
1.2 叔丁氧羰基
除Cbz保护基外,叔丁氧羰基(Boc)也是目前多肽合成中广为采用的氨基保护基,特别是在固相 合成中,氨基的保护多用Boc而不用Cbz。Boc具有以下的优点:Boc-氨基酸除个别外都能得到结 晶;易于酸解除去,但又具有一定的稳定性;Boc-氨基酸能较长期的保存而不分解;酸解时产生的 是叔丁基阳离子再分解为异丁烯,它一般不会带来副反应;对碱水解、肼解和许多亲核试剂稳定; Boc对催化氢解稳定,但比Cbz对酸要敏感得多。当Boc和Cbz同时存在时,可以用催化氢解脱去 Cbz,Boc保持不变,或用酸解脱去Boc而Cbz不受影响,因而两者能很好地搭配使用。
3. 常见的烷基类氨基保护基 三苯甲基(Trt) 、2,4-二甲氧基苄基(Dmb) 对甲氧基苄基(PMB) 、苄基(Bn)
氨基保护基的选择策略 选择一个氨基保护基时,必须仔细考虑到所有的反应物,反应条件及所设计的反应过程中会涉及 的底物中的官能团。
➢ 最好的是不保护. 若需要保护,选择最容易上和脱的保护基,当几个保护基需要同时被除去时, 用相同的保护基来保护不同的官能团是非常有效。要选择性去除保护基时,就只能采用不 同种类的保护基。
1.2.1 叔丁氧羰基的引入 叔丁氧羰基的引入一般方法:
游离氨基在用NaOH 或NaHCO3 控制的碱性条件下用二氧六环和水的混合溶剂中很容易与Boc2O 反应得到Boc保护的胺。这是引入Boc常用方法之一,它的优点是副产物无干扰,并容易除去。有 时对一些亲核性较大的胺,一般可在甲醇中和Boc酸酐直接反应即可,无须其他的碱,其处理也 方便(见内部期刊第一期)。 对水较为敏感的氨基衍生物,采用Boc2O/TEA/MeOH or DMF 在40-50℃下进行较好。有空间位 阻的氨基酸而言,用Boc2O/Me4NOH.5H2O/CH3CN是十分有利的。
➢ 要对所有的反应官能团作出评估,确定哪些在所设定的反应条件下是不稳定并需要加以保 护的,选择能和反应条件相匹配的氨基保护基。
➢ 还要从电子和立体的因素去考虑对保护的生成和去除速率的选择性 ➢ 如果难以找到合适的保护基,要么适当调整反应路线使官能团不再需要保护或使原来在反
应中会起反应的保护基成为稳定的;要么重新设计路线,看是否有可能应用前体官能团 (如硝基等);或者设计出新的不需要保护基的合成路线。
E t3N , C H 3C N
56%
N HN N
N
N
N H
NH2
U S 2 0 0 50 2 0 3 0 7 8
O
N
N
H
O
NHCbz
33% HBr EtOO C
AcO H, 91%
O
N
N
S
H
N
N H 2.H B r
O
H etero cycles, 2002, 58, 521
Cl
H 2, P dC l2
H2/10%Pd-C
(Boc)2O 54%
BocHN ON H WO2004092166
H
O
N
N
N
N
Cl
Cl
O O
Et3SiH
PdCl2
74%
Cl
H
O
N
N
N
NH
Cl
US20030144297
1.1.4 苄氧羰基的脱去示例(二)
Cl
N E tO O C
S
N HN N
N
N
N
NHCbz
H
M e3SiI Cl
Cbz N
HBr
N HБайду номын сангаас
H N
N Bn
1.1.3 苄氧羰基的脱去示例(一)
O O
O
HN
O
O
HO O
NH CHb z O
H CO NH 4 10 %Pd -C
98%
O O
O
HN
O
O
O H O O NH2H
Monatsh. Chem., 1997, 128( 6-7), 725-732
H ON
O ON H
H N R 1 R 2
C bz-C l B ase
R 2 N R 1 C bz
O OH
NH2
N H Br
1.1.1 苄氧羰基的引入示例
Cbz-Cl 10% aq. Na2CO3, Et2O
47.1%
O OH O
N HO
N H Br
Tet rahedr on, 2002, 58( 39), 7851-7865
第十章氨基羟基的保护与脱保护
1. 常见的烷氧羰基类氨基保护基
常见氨基保护基
苄氧羰基(Cbz) 、叔丁氧羰基(Boc) 、笏甲氧羰基(Fmoc) 、烯丙氧羰基(Alloc) 、 三甲基硅乙氧 羰基(Teoc) 、甲(或乙)氧羰基
2. 常见的酰基类氨基保护基
邻苯二甲酰基(Pht) 、对甲苯磺酰基(Tos) 、三氟乙酰基(Tfa)邻(对)硝基苯磺酰基(Ns)、特 戊酰基、苯甲酰基
相关文档
最新文档