A Time Delay Neural Network Algorithm for Real-time Pedestrian Recognition

合集下载

matlab工具箱安装教程

matlab工具箱安装教程

1.1 如果是Matlab安装光盘上的工具箱,重新执行安装程序,选中即可;1.2 如果是单独下载的工具箱,一般情况下仅需要把新的工具箱解压到某个目录。

2 在matlab的file下面的set path把它加上。

3 把路径加进去后在file→Preferences→General的Toolbox Path Caching里点击update Toolbox Path Cache更新一下。

4 用which newtoolbox_command.m来检验是否可以访问。

如果能够显示新设置的路径,则表明该工具箱可以使用了。

把你的工具箱文件夹放到安装目录中“toolbox”文件夹中,然后单击“file”菜单中的“setpath”命令,打开“setpath”对话框,单击左边的“ADDFolder”命令,然后选择你的那个文件夹,最后单击“SAVE”命令就OK了。

MATLAB Toolboxes============================================/zsmcode.htmlBinaural-modeling software for MATLAB/Windows/home/Michael_Akeroyd/download2.htmlStatistical Parametric Mapping (SPM)/spm/ext/BOOTSTRAP MATLAB TOOLBOX.au/downloads/bootstrap_toolbox.htmlThe DSS package for MATLABDSS Matlab package contains algorithms for performing linear, deflation and symmetric DSS. http://www.cis.hut.fi/projects/dss/package/Psychtoolbox/download.htmlMultisurface Method Tree with MATLAB/~olvi/uwmp/msmt.htmlA Matlab Toolbox for every single topic !/~baum/toolboxes.htmleg. BrainStorm - MEG and EEG data visualization and processingCLAWPACK is a software package designed to compute numerical solutions to hyperbolic partial differential equations using a wave propagation approach/~claw/DIPimage - Image Processing ToolboxPRTools - Pattern Recognition Toolbox (+ Neural Networks)NetLab - Neural Network ToolboxFSTB - Fuzzy Systems ToolboxFusetool - Image Fusion Toolboxhttp://www.metapix.de/toolbox.htmWAVEKIT - Wavelet ToolboxGat - Genetic Algorithm ToolboxTSTOOL is a MATLAB software package for nonlinear time series analysis.TSTOOL can be used for computing: Time-delay reconstruction, Lyapunov exponents, Fractal dimensions, Mutual information, Surrogate data tests, Nearest neighbor statistics, Return times, Poincare sections, Nonlinear predictionhttp://www.physik3.gwdg.de/tstool/MATLAB / Data description toolboxA Matlab toolbox for data description, outlier and novelty detectionMarch 26, 2004 - D.M.J. Taxhttp://www-ict.ewi.tudelft.nl/~davidt/dd_tools/dd_manual.htmlMBEhttp://www.pmarneffei.hku.hk/mbetoolbox/Betabolic network toolbox for Matlabhttp://www.molgen.mpg.de/~lieberme/pages/network_matlab.htmlPharmacokinetics toolbox for Matlabhttp://page.inf.fu-berlin.de/~lieber/seiten/pbpk_toolbox.htmlThe SpiderThe spider is intended to be a complete object orientated environment for machine learning in Matlab. Aside from easy use of base learning algorithms, algorithms can be plugged together and can be compared with, e.g model selection, statistical tests and visual plots. This gives all the power of objects (reusability, plug together, share code) but also all the power of Matlab for machine learning research.http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.htmlSchwarz-Christoffel Toolbox/matlabcentral/fileexchange/loadFile.do?objectId=1316&objectT ype=file#XML Toolbox/matlabcentral/fileexchange/loadFile.do?objectId=4278&object Type=fileFIR/TDNN Toolbox for MATLABBeta version of a toolbox for FIR (Finite Impulse Response) and TD (Time Delay) NeuralNetworks./interval-comp/dagstuhl.03/oish.pdfMisc.http://www.dcsc.tudelft.nl/Research/Software/index.htmlAstronomySaturn and Titan trajectories ... MALTAB astronomy/~abrecht/Matlab-codes/AudioMA Toolbox for Matlab Implementing Similarity Measures for Audiohttp://www.oefai.at/~elias/ma/index.htmlMAD - Matlab Auditory Demonstrations/~martin/MAD/docs/mad.htmMusic Analysis - Toolbox for Matlab : Feature Extraction from Raw Audio Signals for Content-Based Music Retrihttp://www.ai.univie.ac.at/~elias/ma/WarpTB - Matlab Toolbox for Warped DSPBy Aki Härmä and Matti Karjalainenhttp://www.acoustics.hut.fi/software/warp/MATLAB-related Softwarehttp://www.dpmi.tu-graz.ac.at/~schloegl/matlab/Biomedical Signal data formats (EEG machine specific file formats with Matlab import routines)http://www.dpmi.tu-graz.ac.at/~schloegl/matlab/eeg/MPEG Encoding library for MATLAB Movies (Created by David Foti)It enables MATLAB users to read (MPGREAD) or write (MPGWRITE) MPEG movies. That should help Video Quality project.Filter Design packagehttp://www.ee.ryerson.ca:8080/~mzeytin/dfp/index.htmlOctave by Christophe COUVREUR (Generates normalized A-weigthing, C-weighting, octave and one-third-octave digital filters)/matlabcentral/fileexchange/loadFile.do?objectType=file&object Id=69Source Coding MATLAB Toolbox/users/kieffer/programs.htmlBio Medical Informatics (Top)CGH-Plotter: MATLAB Toolbox for CGH-data AnalysisCode: http://sigwww.cs.tut.fi/TICSP/CGH-Plotter/Poster: http://sigwww.cs.tut.fi/TICSP/CSB2003/Posteri_CGH_Plotter.pdfThe Brain Imaging Software Toolboxhttp://www.bic.mni.mcgill.ca/software/MRI Brain Segmentation/matlabcentral/fileexchange/loadFile.do?objectId=4879Chemometrics (providing PCA) (Top)Matlab Molecular Biology & Evolution Toolbox(Toolbox Enables Evolutionary Biologists to Analyze and View DNA and Protein Sequences) James J. Caihttp://www.pmarneffei.hku.hk/mbetoolbox/Toolbox provided by Prof. Massart research grouphttp://minf.vub.ac.be/~fabi/publiek/Useful collection of routines from Prof age smilde research grouphttp://www-its.chem.uva.nl/research/pacMultivariate Toolbox written by Rune Mathisen/~mvartools/index.htmlMatlab code and datasetshttp://www.acc.umu.se/~tnkjtg/chemometrics/dataset.htmlChaos (Top)Chaotic Systems Toolbox/matlabcentral/fileexchange/loadFile.do?objectId=1597&objectT ype=file#HOSA Toolboxhttp://www.mathworks.nl/matlabcentral/fileexchange/loadFile.do?objectId=3013&objectTy pe=fileChemistry (Top)MetMAP - (Metabolical Modeling, Analysis and oPtimization alias Met. M. A. P.)http://webpages.ull.es/users/sympbst/pag_ing/pag_metmap/index.htmDoseLab - A set of software programs for quantitative comparison of measured and computed radiation dose distributions/GenBank Overview/Genbank/GenbankOverview.htmlMatlab: /matlabcentral/fileexchange/loadFile.do?objectId=1139CodingCode for the estimation of Scaling Exponentshttp://www.cubinlab.ee.mu.oz.au/~darryl/secondorder_code.htmlControl (Top)Control Tutorial for Matlab/group/ctm/AnotherCommunications (Top)Channel Learning Architecture toolbox(This Matlab toolbox is a supplement to the article "HiperLearn: A High Performance Learning Architecture")http://www.isy.liu.se/cvl/Projects/hiperlearn/Source Coding MATLAB Toolbox/users/kieffer/programs.htmlTCP/UDP/IP Toolbox 2.0.4/matlabcentral/fileexchange/loadFile.do?objectId=345&objectT ype=fileHome Networking Basis: Transmission Environments and Wired/Wireless Protocols Walter Y. Chen/support/books/book5295.jsp?category=new&language=-1MATLAB M-files and Simulink models/matlabcentral/fileexchange/loadFile.do?objectId=3834&object Type=file•OPNML/MATLAB Facilities/OPNML_Matlab/Mesh Generation/home/vavasis/qmg-home.htmlOpenFEM : An Open-Source Finite Element Toolbox/CALFEM is an interactive computer program for teaching the finite element method (FEM)http://www.byggmek.lth.se/Calfem/frinfo.htmThe Engineering Vibration Toolbox/people/faculty/jslater/vtoolbox/vtoolbox.htmlSaGA - Spatial and Geometric Analysis Toolboxby Kirill K. Pankratov/~glenn/kirill/saga.htmlMexCDF and NetCDF Toolbox For Matlab-5&6/staffpages/cdenham/public_html/MexCDF/nc4ml5.htmlCUEDSID: Cambridge University System Identification Toolbox/jmm/cuedsid/Kriging Toolbox/software/Geostats_software/MATLAB_KRIGING_TOOLBOX.htmMonte Carlo (Dr Nando)http://www.cs.ubc.ca/~nando/software.htmlRIOTS - The Most Powerful Optimal Control Problem Solver/~adam/RIOTS/ExcelMATLAB xlsheets/matlabcentral/fileexchange/loadFile.do?objectId=4474&objectTy pe=filewrite2excel/matlabcentral/fileexchange/loadFile.do?objectId=4414&objectTy pe=fileFinite Element Modeling (FEM) (Top)OpenFEM - An Open-Source Finite Element Toolbox/NLFET - nonlinear finite element toolbox for MATLAB ( framework for setting up, solving, and interpreting results for nonlinear static and dynamic finite element analysis.)/GetFEM - C++ library for finite element methods elementary computations with a Matlabinterfacehttp://www.gmm.insa-tlse.fr/getfem/FELIPE - FEA package to view results ( contains neat interface to MATLA/~blstmbr/felipe/Finance (Top)A NEW MATLAB-BASED TOOLBOX FOR COMPUTER AIDED DYNAMIC TECHNICAL TRADINGStephanos Papadamou and George StephanidesDepartment of Applied Informatics, University Of Macedonia Economic & Social Sciences, Thessaloniki, Greece/fen31/one_time_articles/dynamic_tech_trade_matlab6.htm Paper: :8089/eps/prog/papers/0201/0201001.pdfCompEcon Toolbox for Matlab/~pfackler/compecon/toolbox.htmlGenetic Algorithms (Top)The Genetic Algorithm Optimization Toolbox (GAOT) for Matlab 5/mirage/GAToolBox/gaot/Genetic Algorithm ToolboxWritten & distributed by Andy Chipperfield (Sheffield University, UK)/uni/projects/gaipp/gatbx.htmlManual: /~gaipp/ga-toolbox/manual.pdfGenetic and Evolutionary Algorithm Toolbox (GEATbx)/Evolutionary Algorithms for MATLAB/links/ea_matlab.htmlGenetic/Evolutionary Algorithms for MATLABhttp://www.systemtechnik.tu-ilmenau.de/~pohlheim/EA_Matlab/ea_matlab.html GraphicsVideoToolbox (C routines for visual psychophysics on Macs by Denis Pelli)/VideoToolbox/Paper: /pelli/pubs/pelli1997videotoolbox.pdf4D toolbox/~daniel/links/matlab/4DToolbox.htmlImages (Top)Eyelink Toolbox/eyelinktoolbox/Paper: /eyelinktoolbox/EyelinkToolbox.pdfCellStats: Automated statistical analysis of color-stained cell images in Matlabhttp://sigwww.cs.tut.fi/TICSP/CellStats/SDC Morphology Toolbox for MATLAB (powerful collection of latest state-of-the-art gray-scale morphological tools that can be applied to image segmentation, non-linear filtering, pattern recognition and image analysis)/Image Acquisition Toolbox/products/imaq/Halftoning Toolbox for MATLAB/~bevans/projects/halftoning/toolbox/index.htmlDIPimage - A Scientific Image Processing Toolbox for MATLABhttp://www.ph.tn.tudelft.nl/DIPlib/dipimage_1.htmlPNM Toolboxhttp://home.online.no/~pjacklam/matlab/software/pnm/index.htmlAnotherICA / KICA and KPCA (Top)ICA TU Toolboxhttp://mole.imm.dtu.dk/toolbox/menu.htmlMISEP Linear and Nonlinear ICA Toolboxhttp://neural.inesc-id.pt/~lba/ica/mitoolbox.htmlKernel Independant Component Analysis/~fbach/kernel-ica/index.htmMatlab: kernel-ica version 1.2KPCA- Please check the software section of kernel machines.KernelStatistical Pattern Recognition Toolboxhttp://cmp.felk.cvut.cz/~xfrancv/stprtool/MATLABArsenal A MATLAB Wrapper for Classification/tmp/MATLABArsenal.htmMarkov (Top)MapHMMBOX 1.1 - Matlab toolbox for Hidden Markov Modelling using Max. Aposteriori EM Prerequisites: Matlab 5.0, Netlab. Last Updated: 18 March 2002./~parg/software/maphmmbox_1_1.tarHMMBOX 4.1 - Matlab toolbox for Hidden Markov Modelling using Variational Bayes Prerequisites: Matlab 5.0,Netlab. Last Updated: 15 February 2002../~parg/software/hmmbox_3_2.tar/~parg/software/hmmbox_4_1.tarMarkov Decision Process (MDP) Toolbox for MatlabKevin Murphy, 1999/~murphyk/Software/MDP/MDP.zipMarkov Decision Process (MDP) Toolbox v1.0 for MATLABhttp://www.inra.fr/bia/T/MDPtoolbox/Hidden Markov Model (HMM) Toolbox for Matlab/~murphyk/Software/HMM/hmm.htmlBayes Net Toolbox for Matlab/~murphyk/Software/BNT/bnt.htmlMedical (Top)EEGLAB Open Source Matlab Toolbox for Physiological Research (formerly ICA/EEG Matlabtoolbox)/~scott/ica.htmlMATLAB Biomedical Signal Processing Toolbox/Toolbox/Powerful package for neurophysiological data analysis ( Igor Kagan webpage)/Matlab/Unitret.htmlEEG / MRI Matlab Toolbox/Microarray data analysis toolbox (MDAT): for normalization, adjustment and analysis of gene expression_r data.Knowlton N, Dozmorov IM, Centola M. Department of Arthritis and Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA 73104. We introduce a novel Matlab toolbox for microarray data analysis. This toolbox uses normalization based upon a normally distributed background and differential gene expression_r based on 5 statistical measures. The objects in this toolbox are open source and can be implemented to suit your application. AVAILABILITY: MDAT v1.0 is a Matlab toolbox and requires Matlab to run. MDAT is freely available at:/publications/2004/knowlton/MDAT.zipMIDI (Top)MIDI Toolbox version 1.0 (GNU General Public License)http://www.jyu.fi/musica/miditoolbox/Misc. (Top)MATLAB-The Graphing Tool/~abrecht/matlab.html3-D Circuits The Circuit Animation Toolbox for MATLAB/other/3Dcircuits/SendMailhttp://carol.wins.uva.nl/~portegie/matlab/sendmail/Coolplothttp://www.reimeika.ca/marco/matlab/coolplots.htmlMPI (Matlab Parallel Interface)Cornell Multitask Toolbox for MATLAB/Services/Software/CMTM/Beolab Toolbox for v6.5Thomas Abrahamsson (Professor, Chalmers University of Technology, Applied Mechanics,Göteborg, Sweden)http://www.mathworks.nl/matlabcentral/fileexchange/loadFile.do?objectId=1216&objectType =filePARMATLABNeural Networks (Top)SOM Toolboxhttp://www.cis.hut.fi/projects/somtoolbox/Bayes Net Toolbox for Matlab/~murphyk/Software/BNT/bnt.htmlNetLab/netlab/Random Neural Networks/~ahossam/rnnsimv2/ftp: ftp:///pub/contrib/v5/nnet/rnnsimv2/NNSYSID Toolbox (tools for neural network based identification of nonlinear dynamic systems) http://www.iau.dtu.dk/research/control/nnsysid.htmlOceanography (Top)WAFO. Wave Analysis for Fatigue and Oceanographyhttp://www.maths.lth.se/matstat/wafo/ADCP toolbox for MATLAB (USGS, USA)Presented at the Hydroacoustics Workshop in Tampa and at ADCP's in Action in San Diego /operations/stg/pubs/ADCPtoolsSEA-MAT - Matlab Tools for Oceanographic AnalysisA collaborative effort to organize and distribute Matlab tools for the Oceanographic Community /Ocean Toolboxhttp://www.mar.dfo-mpo.gc.ca/science/ocean/epsonde/programming.htmlEUGENE D. GALLAGHER(Associate Professor, Environmental, Coastal & Ocean Sciences)/edgwebp.htmOptimization (Top)MODCONS - a MATLAB Toolbox for Multi-Objective Control System Design/mecheng/jfw/modcons.htmlLazy Learning Packagehttp://iridia.ulb.ac.be/~lazy/SDPT3 version 3.02 -- a MATLAB software for semidefinite-quadratic-linear programming .sg/~mattohkc/sdpt3.htmlMinimum Enclosing Balls: Matlab Code/meb/SOSTOOLS Sum of Squares Optimi zation Toolbox for MATLAB User’s guide/sostools/sostools.pdfPSOt - a Particle Swarm Optimization Toolbox for use with MatlabBy Brian Birge ... A Particle Swarm Optimization Toolbox (PSOt) for use with the Matlab scientific programming environment has been developed. PSO isintroduced briefly and then the use of the toolbox is explained with some examples. A link to downloadable code is provided.Plot/software/plotting/gbplot/Signal Processing (Top)Filter Design with Motorola DSP56Khttp://www.ee.ryerson.ca:8080/~mzeytin/dfp/index.htmlChange Detection and Adaptive Filtering Toolboxhttp://www.sigmoid.se/Signal Processing Toolbox/products/signal/ICA TU Toolboxhttp://mole.imm.dtu.dk/toolbox/menu.htmlTime-Frequency Toolbox for Matlabhttp://crttsn.univ-nantes.fr/~auger/tftb.htmlVoiceBox - Speech Processing Toolbox/hp/staff/dmb/voicebox/voicebox.htmlLeast Squared - Support Vector Machines (LS-SVM)http://www.esat.kuleuven.ac.be/sista/lssvmlab/WaveLab802 : the Wavelet ToolboxBy David Donoho, Mark Reynold Duncan, Xiaoming Huo, Ofer Levi /~wavelab/Time-series Matlab scriptshttp://wise-obs.tau.ac.il/~eran/MATLAB/TimeseriesCon.htmlUvi_Wave Wavelet Toolbox Home Pagehttp://www.gts.tsc.uvigo.es/~wavelets/index.htmlAnotherSupport Vector Machine (Top)MATLAB Support Vector Machine ToolboxDr Gavin CawleySchool of Information Systems, University of East Anglia/~gcc/svm/toolbox/LS-SVM - SISTASVM toolboxes/dmi/svm/LSVM Lagrangian Support Vector Machine/dmi/lsvm/Statistics (Top)Logistic regression/SAGA/software/saga/Multi-Parametric Toolbox (MPT) A tool (not only) for multi-parametric optimization. http://control.ee.ethz.ch/~mpt/ARfit: A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive modelshttp://www.mat.univie.ac.at/~neum/software/arfit/The Dimensional Analysis Toolbox for MATLABHome: http://www.sbrs.de/Paper: http://www.isd.uni-stuttgart.de/~brueckner/Papers/similarity2002.pdfFATHOM for Matlab/personal/djones/PLS-toolbox/Multivariate analysis toolbox (N-way Toolbox - paper)http://www.models.kvl.dk/source/nwaytoolbox/index.aspClassification Toolbox for Matlabhttp://tiger.technion.ac.il/~eladyt/classification/index.htmMatlab toolbox for Robust Calibrationhttp://www.wis.kuleuven.ac.be/stat/robust/toolbox.htmlStatistical Parametric Mapping/spm/spm2.htmlEVIM: A Software Package for Extreme Value Analysis in Matlabby Ramazan Gençay, Faruk Selcuk and Abdurrahman Ulugulyagci, 2001.Manual (pdf file) evim.pdf - Software (zip file) evim.zipTime Series Analysishttp://www.dpmi.tu-graz.ac.at/~schloegl/matlab/tsa/Bayes Net Toolbox for MatlabWritten by Kevin Murphy/~murphyk/Software/BNT/bnt.htmlOther: /information/toolboxes.htmlARfit: A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models/~tapio/arfit/M-Fithttp://www.ill.fr/tas/matlab/doc/mfit4/mfit.htmlDimensional Analysis Toolbox for Matlab/The NaN-toolbox: A statistic-toolbox for Octave and Matlab®... handles data with and without MISSING VALUES.http://www-dpmi.tu-graz.ac.at/~schloegl/matlab/NaN/Iterative Methods for Optimization: Matlab Codes/~ctk/matlab_darts.htmlMultiscale Shape Analysis (MSA) Matlab Toolbox 2000p.br/~cesar/projects/multiscale/Multivariate Ecological & Oceanographic Data Analysis (FATHOM)From David Jones/personal/djones/glmlab (Generalized Linear Models in MATLA.au/staff/dunn/glmlab/glmlab.htmlSpacial and Geometric Analysis (SaGA) toolboxInteresting audio links with FAQ, VC++, on the topic机器学习网站北京大学视觉与听觉信息处理实验室北京邮电大学模式识别与智能系统学科复旦大学智能信息处理开放实验室IEEE Computer Society北京映象站点计算机科学论坛机器人足球赛模式识别国家重点实验室南京航空航天大学模式识别与神经计算实验室- PARNEC南京大学机器学习与数据挖掘研究所- LAMDA南京大学人工智能实验室南京大学软件新技术国家重点实验室人工生命之园数据挖掘研究院微软亚洲研究院中国科技大学人工智能中心中科院计算所中科院计算所生物信息学实验室中科院软件所中科院自动化所中科院自动化所人工智能实验室ACL Special Interest Group on Natural Language Learning (SIGNLL)ACMACM Digital LibraryACM SIGARTACM SIGIRACM SIGKDDACM SIGMODAdaptive Computation Group at University of New MexicoAI at Johns HopkinsAI BibliographiesAI Topics: A dynamic online library of introductory information about artificial intelligence Ant Colony OptimizationARIES Laboratory: Advanced Research in Intelligent Educational SystemsArtificial Intelligence Research in Environmental Sciences (AIRIES)Austrian Research Institute for AI (OFAI)Back Issues of Neuron DigestBibFinder: a computer science bibliography search engine integrating many other engines BioAPI ConsortiumBiological and Computational Learning Center at MITBiometrics ConsortiumBoosting siteBrain-Style Information Systems Research Group at RIKEN Brain Science Institute, Japan British Computer Society Specialist Group on Expert SystemsCanadian Society for Computational Studies of Intelligence (CSCSI)CI Collection of BibTex DatabasesCITE, the first-stop source for computational intelligence information and services on the web Classification Society of North AmericaCMU Advanced Multimedia Processing GroupCMU Web->KB ProjectCognitive and Neural Systems Department of Boston UniversityCognitive Sciences Eprint Archive (CogPrints)COLT: Computational Learning TheoryComputational Neural Engineering Laboratory at the University of FloridaComputational Neurobiology Lab at California, USAComputer Science Department of National University of SingaporeData Mining Server Online held by Rudjer Boskovic InstituteDatabase Group at Simon Frazer University, CanadaDBLP: Computer Science BibliographyDigital Biology: about creating artificial lifeDistributed AI Unit at Queen Mary & Westfield College, University of LondonDistributed Artificial Intelligence at HUJIDSI Neural Networks group at the Université di Firenze, ItalyEA-related literature at the EvALife research group at DAIMI, University of Aarhus, Denmark Electronic Research Group at Aberdeen UniversityElsevierComputerScienceEuropean Coordinating Committee for Artificial Intelligence (ECCAI)European Network of Excellence in ML (MLnet)European Neural Network Society (ENNS)Evolutionary Computing Group at University of the West of EnglandEvolutionary Multi-Objective Optimization RepositoryExplanation-Based Learning at University of Illinoise at Urbana-ChampaignFace Detection HomepageFace Recognition Vendor TestFace Recognition HomepageFace Recognition Research CommunityFingerpassftp of Jude Shavlik's Machine Learning Group (University of Wisconsin-Madison)GA-List Searchable DatabaseGenetic Algorithms Digest ArchiveGenetic Programming BibliographyGesture Recognition HomepageHCI Bibliography Project contain extended bibliographic information (abstract, key words, table of contents, section headings) for most publications Human-Computer Interaction dating back to 1980 and selected publications before 1980IBM ResearchIEEEIEEE Computer SocietyIEEE Neural Networks SocietyIllinois Genetic Algorithms Laboratory (IlliGAL)ILP Network of ExcellenceInductive Learning at University of Illinoise at Urbana-ChampaignIntelligent Agents RepositoryIntellimedia Project at North Carolina State UniversityInteractive Artificial Intelligence ResourcesInternational Association of Pattern RecognitionInternational Biometric Industry AssociationInternational Joint Conference on Artificial Intelligence (IJCAI)International Machine Learning Society (IMLS)International Neural Network Society (INNS)Internet Softbot Research at University of WashingtonJapanese Neural Network Society (JNNS)Java Agents for Meta-Learning Group (JAM) at Computer Science Department, Columbia University, for Fraud and Intrusion Detection Using Meta-Learning AgentsKernel MachinesKnowledge Discovery MineLaboratory for Natural and Simulated Cognition at McGill University, CanadaLearning Laboratory at Carnegie Mellon UniversityLearning Robots Laboratory at Carnegie Mellon UniversityLaboratoire d'Informatique et d'Intelligence Artificielle (IIA-ENSAIS)Machine Learning Group of Sydney University, AustraliaMammographic Image Analysis SocietyMDL Research on the WebMirek's Cellebration: 1D and 2D Cellular Automata explorerMIT Artificial Intelligence LaboratoryMIT Media LaboratoryMIT Media Laboratory Vision and Modeling GroupMLNET: a European network of excellence in Machine Learning, Case-based Reasoning and Knowledge AcquisitionMLnet Machine Learning Archive at GMD includes papers, software, and data sets MIRALab at University of Geneva: leading research on virtual human simulationNeural Adaptive Control Technology (NACT)Neural Computing Research Group at Aston University, UKNeural Information Processing Group at Technical University of BerlinNIPSNIPS OnlineNeural Network Benchmarks, Technical Reports,and Source Code maintained by Scott Fahlman at CMU; source code includes Quickprop, Cascade-Correlation, Aspirin/Migraines Neural Networks FAQ by Lutz PrecheltNeural Networks FAQ by Warren S. SarleNeural Networks: Freeware and Shareware ToolsNeural Network Group at Department of Medical Physics and Biophysics, University ofNeural Network Group at Université Catholique de LouvainNeural Network Group at Eindhoven University of TechnologyNeural Network Hyperplane Animator program that allows easy visualization of training data and weights in a back-propagation neural networkNeural Networks Research at TUT/ELENeural Networks Research Centre at Helsinki University of Technology, FinlandNeural Network Speech Group at Carnegie Mellon UniversityNeural Text Classification with Neural NetworksNonlinearity and Complexity HomepageOFAI and IMKAI library information system, provided by the Department of Medical Cybernetics and Artificial Intelligence at the University of Vienna (IMKAI) and the Austrian Research Institute for Artificial Intelligence (OFAI). It contains over 36,000 items (books, research papers, conference papers, journal articles) from many subareas of AI OntoWeb: Ontology-based information exchange for knowledge management and electronic commercePortal on Neural Network ForecastingPRAG: Pattern Recognition and Application Group at University of CagliariQuest Project at IBM Almaden Research Center: an academic website focusing on classification and regression trees. Maintained by Tjen-Sien LimReinforcement Learning at Carnegie Mellon UniversityResearchIndex: NECI Scientific Literature Digital Library, indexing over 200,000 computer science articlesReVision: Reviewing Vision in the Web!RIKEN: The Institute of Physical and Chemical Research, JapanSalford SystemsSANS Studies of Artificial Neural Systems, at the Royal Institute of Technology, Sweden Santa-Fe InstituteScirus: a search engine locating scientific information on the InternetSecond Moment: The News and Business Resource for Applied AnalyticsSEL-HPC Article Archive has sections for neural networks, distributed AI, theorem proving, and a variety of other computer science topicsSOAR Project at University of Southern CaliforniaSociety for AI and StatisticsSVM of ANU CanberraSVM of Bell LabsSVM of GMD-First BerlinSVM of MITSVM of Royal Holloway CollegeSVM of University of SouthamptonSVM-workshop at NIPS97TechOnLine: TechOnLine University offers free online courses and lecturesUCI Machine Learning GroupUMASS Distributed Artificial Intelligence LaboratoryUTCS Neural Networks Research Group of Artificial Intelligence Lab, Computer Science Department, University of Texas at AustinVivisimo Document Clustering: a powerful search engine which returns clustered results Worcester Polytechnic Institute Artificial Intelligence Research Group (AIRG)Xerion neural network simulator developed and used by the connectionist group at the University of TorontoYale's CTAN Advanced Technology Center for Theoretical and Applied Neuroscience ZooLand: Artificial Life Resource。

国际自动化与计算杂志.英文版.

国际自动化与计算杂志.英文版.

国际自动化与计算杂志.英文版.1.Improved Exponential Stability Criteria for Uncertain Neutral System with Nonlinear Parameter PerturbationsFang Qiu,Ban-Tong Cui2.Robust Active Suspension Design Subject to Vehicle Inertial Parameter VariationsHai-Ping Du,Nong Zhang3.Delay-dependent Non-fragile H∞ Filtering for Uncertain Fuzzy Systems Based on Switching Fuzzy Model and Piecewise Lyapunov FunctionZhi-Le Xia,Jun-Min Li,Jiang-Rong Li4.Observer-based Adaptive Iterative Learning Control for Nonlinear Systems with Time-varying DelaysWei-Sheng Chen,Rui-Hong Li,Jing Li5.H∞ Output Feedback Control for Stochastic Systems with Mode-dependent Time-varying Delays and Markovian Jump ParametersXu-Dong Zhao,Qing-Shuang Zeng6.Delay and Its Time-derivative Dependent Robust Stability of Uncertain Neutral Systems with Saturating ActuatorsFatima El Haoussi,El Houssaine Tissir7.Parallel Fuzzy P+Fuzzy I+Fuzzy D Controller:Design and Performance EvaluationVineet Kumar,A.P.Mittal8.Observers for Descriptor Systems with Slope-restricted NonlinearitiesLin-Na Zhou,Chun-Yu Yang,Qing-Ling Zhang9.Parameterized Solution to a Class of Sylvester MatrixEquationsYu-Peng Qiao,Hong-Sheng Qi,Dai-Zhan Cheng10.Indirect Adaptive Fuzzy and Impulsive Control of Nonlinear SystemsHai-Bo Jiang11.Robust Fuzzy Tracking Control for Nonlinear Networked Control Systems with Integral Quadratic ConstraintsZhi-Sheng Chen,Yong He,Min Wu12.A Power-and Coverage-aware Clustering Scheme for Wireless Sensor NetworksLiang Xue,Xin-Ping Guan,Zhi-Xin Liu,Qing-Chao Zheng13.Guaranteed Cost Active Fault-tolerant Control of Networked Control System with Packet Dropout and Transmission DelayXiao-Yuan Luo,Mei-Jie Shang,Cai-Lian Chen,Xin-Ping Guanparison of Two Novel MRAS Based Strategies for Identifying Parameters in Permanent Magnet Synchronous MotorsKan Liu,Qiao Zhang,Zi-Qiang Zhu,Jing Zhang,An-Wen Shen,Paul Stewart15.Modeling and Analysis of Scheduling for Distributed Real-time Embedded SystemsHai-Tao Zhang,Gui-Fang Wu16.Passive Steganalysis Based on Higher Order Image Statistics of Curvelet TransformS.Geetha,Siva S.Sivatha Sindhu,N.Kamaraj17.Movement Invariants-based Algorithm for Medical Image Tilt CorrectionMei-Sen Pan,Jing-Tian Tang,Xiao-Li Yang18.Target Tracking and Obstacle Avoidance for Multi-agent SystemsJing Yan,Xin-Ping Guan,Fu-Xiao Tan19.Automatic Generation of Optimally Rigid Formations Using Decentralized MethodsRui Ren,Yu-Yan Zhang,Xiao-Yuan Luo,Shao-Bao Li20.Semi-blind Adaptive Beamforming for High-throughput Quadrature Amplitude Modulation SystemsSheng Chen,Wang Yao,Lajos Hanzo21.Throughput Analysis of IEEE 802.11 Multirate WLANs with Collision Aware Rate Adaptation AlgorithmDhanasekaran Senthilkumar,A. Krishnan22.Innovative Product Design Based on Customer Requirement Weight Calculation ModelChen-Guang Guo,Yong-Xian Liu,Shou-Ming Hou,Wei Wang23.A Service Composition Approach Based on Sequence Mining for Migrating E-learning Legacy System to SOAZhuo Zhang,Dong-Dai Zhou,Hong-Ji Yang,Shao-Chun Zhong24.Modeling of Agile Intelligent Manufacturing-oriented Production Scheduling SystemZhong-Qi Sheng,Chang-Ping Tang,Ci-Xing Lv25.Estimation of Reliability and Cost Relationship for Architecture-based SoftwareHui Guan,Wei-Ru Chen,Ning Huang,Hong-Ji Yang1.A Computer-aided Design System for Framed-mould in Autoclave ProcessingTian-Guo Jin,Feng-Yang Bi2.Wear State Recognition of Drills Based on K-means Cluster and Radial Basis Function Neural NetworkXu Yang3.The Knee Joint Design and Control of Above-knee Intelligent Bionic Leg Based on Magneto-rheological DamperHua-Long Xie,Ze-Zhong Liang,Fei Li,Li-Xin Guo4.Modeling of Pneumatic Muscle with Shape Memory Alloy and Braided SleeveBin-Rui Wang,Ying-Lian Jin,Dong Wei5.Extended Object Model for Product Configuration DesignZhi-Wei Xu,Ze-Zhong Liang,Zhong-Qi Sheng6.Analysis of Sheet Metal Extrusion Process Using Finite Element MethodXin-Cun Zhuang,Hua Xiang,Zhen Zhao7.Implementation of Enterprises' Interoperation Based on OntologyXiao-Feng Di,Yu-Shun Fan8.Path Planning Approach in Unknown EnvironmentTing-Kai Wang,Quan Dang,Pei-Yuan Pan9.Sliding Mode Variable Structure Control for Visual Servoing SystemFei Li,Hua-Long Xie10.Correlation of Direct Piezoelectric Effect on EAPap under Ambient FactorsLi-Jie Zhao,Chang-Ping Tang,Peng Gong11.XML-based Data Processing in Network Supported Collaborative DesignQi Wang,Zhong-Wei Ren,Zhong-Feng Guo12.Production Management Modelling Based on MASLi He,Zheng-Hao Wang,Ke-Long Zhang13.Experimental Tests of Autonomous Ground Vehicles with PreviewCunjia Liu,Wen-Hua Chen,John Andrews14.Modelling and Remote Control of an ExcavatorYang Liu,Mohammad Shahidul Hasan,Hong-Nian Yu15.TOPSIS with Belief Structure for Group Belief Multiple Criteria Decision MakingJiang Jiang,Ying-Wu Chen,Da-Wei Tang,Yu-Wang Chen16.Video Analysis Based on Volumetric Event DetectionJing Wang,Zhi-Jie Xu17.Improving Decision Tree Performance by Exception HandlingAppavu Alias Balamurugan Subramanian,S.Pramala,B.Rajalakshmi,Ramasamy Rajaram18.Robustness Analysis of Discrete-time Indirect Model Reference Adaptive Control with Normalized Adaptive LawsQing-Zheng Gao,Xue-Jun Xie19.A Novel Lifecycle Model for Web-based Application Development in Small and Medium EnterprisesWei Huang,Ru Li,Carsten Maple,Hong-Ji Yang,David Foskett,Vince Cleaver20.Design of a Two-dimensional Recursive Filter Using the Bees AlgorithmD. T. Pham,Ebubekir Ko(c)21.Designing Genetic Regulatory Networks Using Fuzzy Petri Nets ApproachRaed I. Hamed,Syed I. Ahson,Rafat Parveen1.State of the Art and Emerging Trends in Operations and Maintenance of Offshore Oil and Gas Production Facilities: Some Experiences and ObservationsJayantha P.Liyanage2.Statistical Safety Analysis of Maintenance Management Process of Excavator UnitsLjubisa Papic,Milorad Pantelic,Joseph Aronov,Ajit Kumar Verma3.Improving Energy and Power Efficiency Using NComputing and Approaches for Predicting Reliability of Complex Computing SystemsHoang Pham,Hoang Pham Jr.4.Running Temperature and Mechanical Stability of Grease as Maintenance Parameters of Railway BearingsJan Lundberg,Aditya Parida,Peter S(o)derholm5.Subsea Maintenance Service Delivery: Mapping Factors Influencing Scheduled Service DurationEfosa Emmanuel Uyiomendo,Tore Markeset6.A Systemic Approach to Integrated E-maintenance of Large Engineering PlantsAjit Kumar Verma,A.Srividya,P.G.Ramesh7.Authentication and Access Control in RFID Based Logistics-customs Clearance Service PlatformHui-Fang Deng,Wen Deng,Han Li,Hong-Ji Yang8.Evolutionary Trajectory Planning for an Industrial RobotR.Saravanan,S.Ramabalan,C.Balamurugan,A.Subash9.Improved Exponential Stability Criteria for Recurrent Neural Networks with Time-varying Discrete and Distributed DelaysYuan-Yuan Wu,Tao Li,Yu-Qiang Wu10.An Improved Approach to Delay-dependent Robust Stabilization for Uncertain Singular Time-delay SystemsXin Sun,Qing-Ling Zhang,Chun-Yu Yang,Zhan Su,Yong-Yun Shao11.Robust Stability of Nonlinear Plants with a Non-symmetric Prandtl-Ishlinskii Hysteresis ModelChang-An Jiang,Ming-Cong Deng,Akira Inoue12.Stability Analysis of Discrete-time Systems with Additive Time-varying DelaysXian-Ming Tang,Jin-Shou Yu13.Delay-dependent Stability Analysis for Markovian Jump Systems with Interval Time-varying-delaysXu-Dong Zhao,Qing-Shuang Zeng14.H∞ Synchronization of Chaotic Systems via Delayed Feedback ControlLi Sheng,Hui-Zhong Yang15.Adaptive Fuzzy Observer Backstepping Control for a Class of Uncertain Nonlinear Systems with Unknown Time-delayShao-Cheng Tong,Ning Sheng16.Simulation-based Optimal Design of α-β-γ-δ FilterChun-Mu Wu,Paul P.Lin,Zhen-Yu Han,Shu-Rong Li17.Independent Cycle Time Assignment for Min-max SystemsWen-De Chen,Yue-Gang Tao,Hong-Nian Yu1.An Assessment Tool for Land Reuse with Artificial Intelligence MethodDieter D. Genske,Dongbin Huang,Ariane Ruff2.Interpolation of Images Using Discrete Wavelet Transform to Simulate Image Resizing as in Human VisionRohini S. Asamwar,Kishor M. Bhurchandi,Abhay S. Gandhi3.Watermarking of Digital Images in Frequency DomainSami E. I. Baba,Lala Z. Krikor,Thawar Arif,Zyad Shaaban4.An Effective Image Retrieval Mechanism Using Family-based Spatial Consistency Filtration with Object RegionJing Sun,Ying-Jie Xing5.Robust Object Tracking under Appearance Change ConditionsQi-Cong Wang,Yuan-Hao Gong,Chen-Hui Yang,Cui-Hua Li6.A Visual Attention Model for Robot Object TrackingJin-Kui Chu,Rong-Hua Li,Qing-Ying Li,Hong-Qing Wang7.SVM-based Identification and Un-calibrated Visual Servoing for Micro-manipulationXin-Han Huang,Xiang-Jin Zeng,Min Wang8.Action Control of Soccer Robots Based on Simulated Human IntelligenceTie-Jun Li,Gui-Qiang Chen,Gui-Fang Shao9.Emotional Gait Generation for a Humanoid RobotLun Xie,Zhi-Liang Wang,Wei Wang,Guo-Chen Yu10.Cultural Algorithm for Minimization of Binary Decision Diagram and Its Application in Crosstalk Fault DetectionZhong-Liang Pan,Ling Chen,Guang-Zhao Zhang11.A Novel Fuzzy Direct Torque Control System for Three-level Inverter-fed Induction MachineShu-Xi Liu,Ming-Yu Wang,Yu-Guang Chen,Shan Li12.Statistic Learning-based Defect Detection for Twill FabricsLi-Wei Han,De Xu13.Nonsaturation Throughput Enhancement of IEEE 802.11b Distributed Coordination Function for Heterogeneous Traffic under Noisy EnvironmentDhanasekaran Senthilkumar,A. Krishnan14.Structure and Dynamics of Artificial Regulatory Networks Evolved by Segmental Duplication and Divergence ModelXiang-Hong Lin,Tian-Wen Zhang15.Random Fuzzy Chance-constrained Programming Based on Adaptive Chaos Quantum Honey Bee Algorithm and Robustness AnalysisHan Xue,Xun Li,Hong-Xu Ma16.A Bit-level Text Compression Scheme Based on the ACW AlgorithmHussein A1-Bahadili,Shakir M. Hussain17.A Note on an Economic Lot-sizing Problem with Perishable Inventory and Economies of Scale Costs:Approximation Solutions and Worst Case AnalysisQing-Guo Bai,Yu-Zhong Zhang,Guang-Long Dong1.Virtual Reality: A State-of-the-Art SurveyNing-Ning Zhou,Yu-Long Deng2.Real-time Virtual Environment Signal Extraction and DenoisingUsing Programmable Graphics HardwareYang Su,Zhi-Jie Xu,Xiang-Qian Jiang3.Effective Virtual Reality Based Building Navigation Using Dynamic Loading and Path OptimizationQing-Jin Peng,Xiu-Mei Kang,Ting-Ting Zhao4.The Skin Deformation of a 3D Virtual HumanXiao-Jing Zhou,Zheng-Xu Zhao5.Technology for Simulating Crowd Evacuation BehaviorsWen-Hu Qin,Guo-Hui Su,Xiao-Na Li6.Research on Modelling Digital Paper-cut PreservationXiao-Fen Wang,Ying-Rui Liu,Wen-Sheng Zhang7.On Problems of Multicomponent System Maintenance ModellingTomasz Nowakowski,Sylwia Werbinka8.Soft Sensing Modelling Based on Optimal Selection of Secondary Variables and Its ApplicationQi Li,Cheng Shao9.Adaptive Fuzzy Dynamic Surface Control for Uncertain Nonlinear SystemsXiao-Yuan Luo,Zhi-Hao Zhu,Xin-Ping Guan10.Output Feedback for Stochastic Nonlinear Systems with Unmeasurable Inverse DynamicsXin Yu,Na Duan11.Kalman Filtering with Partial Markovian Packet LossesBao-Feng Wang,Ge Guo12.A Modified Projection Method for Linear FeasibilityProblemsYi-Ju Wang,Hong-Yu Zhang13.A Neuro-genetic Based Short-term Forecasting Framework for Network Intrusion Prediction SystemSiva S. Sivatha Sindhu,S. Geetha,M. Marikannan,A. Kannan14.New Delay-dependent Global Asymptotic Stability Condition for Hopfield Neural Networks with Time-varying DelaysGuang-Deng Zong,Jia Liu hHTTp://15.Crosscumulants Based Approaches for the Structure Identification of Volterra ModelsHouda Mathlouthi,Kamel Abederrahim,Faouzi Msahli,Gerard Favier1.Coalition Formation in Weighted Simple-majority Games under Proportional Payoff Allocation RulesZhi-Gang Cao,Xiao-Guang Yang2.Stability Analysis for Recurrent Neural Networks with Time-varying DelayYuan-Yuan Wu,Yu-Qiang Wu3.A New Type of Solution Method for the Generalized Linear Complementarity Problem over a Polyhedral ConeHong-Chun Sun,Yan-Liang Dong4.An Improved Control Algorithm for High-order Nonlinear Systems with Unmodelled DynamicsNa Duan,Fu-Nian Hu,Xin Yu5.Controller Design of High Order Nonholonomic System with Nonlinear DriftsXiu-Yun Zheng,Yu-Qiang Wu6.Directional Filter for SAR Images Based on NonsubsampledContourlet Transform and Immune Clonal SelectionXiao-Hui Yang,Li-Cheng Jiao,Deng-Feng Li7.Text Extraction and Enhancement of Binary Images Using Cellular AutomataG. Sahoo,Tapas Kumar,B.L. Rains,C.M. Bhatia8.GH2 Control for Uncertain Discrete-time-delay Fuzzy Systems Based on a Switching Fuzzy Model and Piecewise Lyapunov FunctionZhi-Le Xia,Jun-Min Li9.A New Energy Optimal Control Scheme for a Separately Excited DC Motor Based Incremental Motion DriveMilan A.Sheta,Vivek Agarwal,Paluri S.V.Nataraj10.Nonlinear Backstepping Ship Course ControllerAnna Witkowska,Roman Smierzchalski11.A New Method of Embedded Fourth Order with Four Stages to Study Raster CNN SimulationR. Ponalagusamy,S. Senthilkumar12.A Minimum-energy Path-preserving Topology Control Algorithm for Wireless Sensor NetworksJin-Zhao Lin,Xian Zhou,Yun Li13.Synchronization and Exponential Estimates of Complex Networks with Mixed Time-varying Coupling DelaysYang Dai,YunZe Cai,Xiao-Ming Xu14.Step-coordination Algorithm of Traffic Control Based on Multi-agent SystemHai-Tao Zhang,Fang Yu,Wen Li15.A Research of the Employment Problem on Common Job-seekersand GraduatesBai-Da Qu。

应用人工神经网络算法的冷水机组能效提升策略

应用人工神经网络算法的冷水机组能效提升策略

doi: 10.3969/j.issn.2095-4468.2022.02.201应用人工神经网络算法的冷水机组能效提升策略张梦华1,周镇新1,刘念2,韩林志1,陈焕新 1(1-华中科技大学能源与动力工程学院,湖北武汉 430074;2-上海叠腾网络科技有限公司,上海 200000) [摘 要] 针对冷水机组蓄水池延迟造成的系统反馈调节不及时,从而增加建筑能耗的问题,本文提出了一种基于人工神经网络的冷水机组回水温度预测模型。

模型中包括利用专家知识设置变量、建立模型、训练模型和测试模型4个主要步骤,并在建立模型后以此来预测t 时刻后的回水温度。

结果表明:在原来11个相关变量基础上,增加的3个专家变量,使得4个模型预测回水温度的相关系数都较高,且发现与10、15、20 min 相比,5 min 前的测量参数可以更加准确预测此时的冷水机组回水温度,均方误差达到0.106 9、R 2达到0.992 3,并以此信息来对系统进行反馈调节,以解决由于蓄水池的延迟性因素给系统带来的增加能耗等不良影响。

[关键词] 冷水机组;神经网络;冷却水回水温度;蓄水池延迟时间;冷却塔风机功率 中图分类号:TQ051.5; TK173文献标识码:AEnergy Efficiency Improvement Strategy of Water Chiller Using Artificial NeuralNetwork AlgorithmZHANG Menghua 1, ZHOU Zhenxin 1, LIU Nian 2, HAN Linzhi 1, CHEN Huanxin *1(1-School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China;2-Shanghai Dieteng Network Technology Co., Ltd., Shanghai 200000, China)[Abstract] Aiming at the problem that the system feedback adjustment is not timely caused by the delay of the water chiller reservoir, thereby increasing the energy consumption of the building, this paper is proposed a prediction model of the return water temperature of the chiller based on the artificial neural network. The model includes the use of expert knowledge to set variables, build models, train models, and test the four main steps, and use this to predict the return water temperature after time t after the model is built. The results show that, based on the original 11 related variables, the addition of 3 expert variables makes the four models have higher correlation coefficients for predicting the return water temperature, and it is found that compared with 10, 15, 20 min, the value of 5 min before the measured parameters can more accurately predict the return water temperature of the chiller at this time. The mean square error reaches 0.106 9 and the R 2 reaches 0.992 3. This information is used to feedback and adjust the system to solve the delay factor due to the reservoir. The adverse effects such as increased energy consumption. [Keywords] Chiller; Neural network; Cooling water return temperature; Delay time of the reservoir; Cooling tower fan power*陈焕新(1964—),男,教授,博士。

电子信息工程专业英语词汇

电子信息工程专业英语词汇

n.晶体管n.二极管n 半导体resistor n 电阻器capacitor n 电容器alter nati ng adj 交互的amplifier n 扩音器,放大器in tegrated circuit 集成电路lin ear time inv aria nt systems 线性时不变系统voltage n 电压,伏特数tolera nee n 公差;宽容;容忍conden ser n 电容器;冷凝器dielectric n 绝缘体;电解质electromag netic adj 电磁的deflection n偏斜;偏转;偏差lin ear device 线性器件in tegrated circuits 集成电路an alog n 模拟digital adj 数字的,数位的horiz on tal adj, 水平的,地平线的vertical adj 垂直的,顶点的amplitude n 振幅,广阔,丰富atte nu ati on 衰减;变薄;稀薄化multimeter 万用表freque ney 频率,周率the cathode-ray tube dual-trace oscilloscope 阴极射线管双踪示波器sig nal gen erati ng device 信号发生器peak-to-peak output voltage 输岀电压峰峰值sine wave 正弦波trian gle wave 三角波square wave 方波amplifier 放大器,扩音器oscillator 振荡器feedback 反馈,回应phase 相,阶段,状态filter 滤波器,过滤器rectifier 整流器;纠正者1ban d-stop filter 带阻滤波器ban d-pass filter 带通滤波器decimal adj 十进制的,小数的hexadecimal adj/n 十六进制的bin ary adj 二进制的;二元的1 octal adj 八进制的domai n n 域;领域code n代码,密码,编码v编码the Fourier tra nsform 傅里叶变换Fast Fourier Transform快速傅里叶变换microc on troller n 微处理器;微控制器beam n (光线的)束,柱,梁polarize v (使)偏振,(使)极化fuzzy adj模糊的|Artificial In tellige nee Shell 人工智能外壳程序Expert Systems 专家系统Artificial In tellige nee 人工智能Perceptive Systems 感知系统neural network 神经网络fuzzy logic 模糊逻辑in tellige nt age nt 智能代理electromag netic adj 电磁的coaxial adj同轴的,共轴的microwave n 微波charge v充电,使充电two-dime nsio nal 二维的;缺乏深度的three-dime nsio nal 三维的;立体的;真实的object-orie nted programm ing 面向对象的程序设计spectral adj 光谱的attenuation n衰减;变薄;稀释distortion n失真,扭曲,变形wavelength n 波长refractive adj 折射的ATM 异步传输模式Asynchronous Transfer ModeADSL 非对称用户数字线Asymmetric digital subscriberlineVDSL 甚高速数字用户线very high data rate digitalsubscriber lineHDSL 高速数据用户线high rate digital subscriber lineFDMA 频分多址(Frequency Division Multiple Access)TDMA 时分多址(Time Division Multiple Access) CDMA 同步码分多址方式(Code Division Multiple Access)WCDMA宽带码分多址移动通信系统(WidebandCodeDivisio n Multiple Access)TD-SCDMA(Time Divisio n Sy nchro nous Code Divisio nMultiple Access)时分同步码分多址SDLC(sy nchro nous data link con trol) 同步数据链路控制HDLC(high-level data link con trol) 高级数据链路控制IP/TCP(i nter net protocol /tra nsfer Co ntrol Protocol)网络传输控制协议ITU (I nternatio nal Telecomm un icati on Union) 国际电彳言联盟ISO 国际标准化组织(In ter natio nal Sta ndardizatio nOrganization );OSI开放式系统互联参考模型(Open SystemIn terc onn ect )GSM 全球移动通信系统( Global System for Mobile Communi cati ons )GPRS 通用分组无线业务(Gen eral Packet Radio Service)FDD(freque ncy divisi on duplex) 频分双工TDD(time divisi on duplex) 时分双工VPI 虚路径标识符(Virtual Path Identifier );ISDN ( Integrated Services Digital Network )综合业务数字网IDN 综合数字网(integrated digital network )HDTV (high defi ni tion televisi on) 高清晰度电视DCT(Discrete Cos ine Tra nsform) 离散余弦变换VCI(virtual circuit address) 虚通路标识MAN 城域网Metropolitan area networks LAN 局域网localarea network WAN 广域网wide area network 同步时分复统计时分复用STDM Statistical Time Divisio nMultiplexi ng 单工传输simplex transmission 半双工传输half-duplex tran smissi on 全双工传输full-duplex tra nsmissi on 交换矩阵Switching Matrix 电路交换circuit switchi ng 分组交换packet switching扌报文交换message switching 奇偶校验paritychecking 循环冗余校验CRC Cyclic Redu nda ncyCheck 虚过滤Virtual filter 数字滤波digital filtering伪随机比特Quasi Ra ndom Bit 带宽分配Bandwidth allocatio n信源information source 信宿destination 数字化digitalize 数字传输技术Digital tra nsmissio n techno logy 灰度图像Grey scale images 灰度级Greyscale level 幅度谱Magnitude spectrum 相位谱Phase spectrum 频谱frequency spectrum 智能设备Smart Device 软切换Soft handover 硬切换HardHa ndover 相干检测Cohere nt detecti on 边缘检测Edge detection 冲突检测collision detection 业务集合service integration 业务分离/综合serviceseparation/ integration 网络集合networkintegration 环形网Ring networks 令牌环网TokenRing network 网络终端Network Terminal 用户终端user terminal 用户电路line circuit 电路利用率channel utilization (通道利用率)相关性cohere nee 相干解调cohere nt demodulation 数字图像压缩digital image compressi on 图像编码image encoding 有损/无损压缩lossy/losslesscompression 解压decompression 呼叫控制CallControl 误差控制error eontrol 存储程序控制storedprogram eon trol 存储转发方式store-a nd-forwardmanner 语音视频传输voice\video transmission 视频点播video-on-demand(VOD) 会议电视VideoCon fere nee 有线电视cable television 量化quantization 吞吐量throughput 话务量traffic 多径分集Multipath diversity 多媒体通信MDM MultimediaCommu nicatio n 多址干扰Multiple AccessInterferenee 人机交互man machi ne in terface 交互式会话Conv ersati onal in teracti on 路由算法Routing Algorithm 目标识另U Object recognition 话音变换Voice transform 中继线trunkline 传输时延transmission delay 远程监控remote monitoring 光链路optical link 拓扑结构Topology 均方根rootmean square whatsoever=whatever 0switchboard (电话)交换台bipolar (电子)双极的tran sistor diode semic on ductoranode n 阳极,正极cathoden 阴极|breakdow n n 故障;崩溃terminal n 终点站;终端,接线端emitter n 发射器collect v 收集,集聚,集中oscilloscope 示波镜;示波器gain 增益,放大倍数forward biased 正向偏置reverse biased 反向偏置P-N junction PN 结MOS( metal-oxide semiconductor ) 金属氧化物半导体enhan ceme nt and exhausted 增强型和耗尽型chip n 芯片,碎片modular adj 模块化的;模数的sensor n 传感器plug vt 堵,塞,插上n塞子,插头,插销coaxial adj 同轴的,共轴的fiber n 光纤relay eon tact 继电接触器sin gle in structi on programmer 单指令编程器dedicated manu factures programm ing unit 专供制造厂用的编程单元in sulator n绝缘体,绝缘物noneon ductive adj非导体的,绝缘的antenna n天线;触角modeli ng n 建模,造型simulati on n仿真;模拟prototype n 原型array n排队,编队vector n 向量,矢量wavelet n微波,小浪sine 正弦cosine 余弦inv erse adj 倒转的,反转的n反面;相反v倒转high-performa nee 高精确性,高性能the in sulati on resista nee 绝缘电阻assembly lan guage in structi ons n 汇编语言指令premise (复)房屋,前提cursor (计算机尺的)游标,指导的elapse (时间)经过,消失vaporize (使)蒸发subsystem (系统的)分部,子系统,辅助系统metallic (像)金属的,含金属的,(声音)刺耳的dispatch (迅速)派遣,急件consen sus (意见)一致,同意deadli ne (最后)期限,截止时间tomographic X线体层摄像的alas 唉,哎呀cluster把…集成一束,一组,一簇,一串,一群en cyclopedia 百科全书millio nfold 百万倍的semic on ductor 半导体radius半径范围,半径,径向射线half-duplex tra nsmissi on 半双工传输accompa nime nt 伴随物,附属物reservati on 保留,预定quotatio n 报价单,行情报告,引语memora ndum 备忘录red undancy 备用be viewed as 被看作…be regards as 被认为是as such 本身;照此;以这种资格textual本文的,正文的verge 边界variati on 变化,变量conv ersi on 变化,转化ide ntity 标识;标志criterio n 标准,准则in parallel o n 并联到,合并到juxtapose 并置,并歹卩dial ing pulse 拨号脉冲wave-guide 波导wavele ngth divisi on multiplexed 波分复用baud rate 波特率playback 播放(录音带,唱片)no greater tha n 不大于update不断改进,使…适合新的要求,更新asymmetric 不对称的irrespective 不考虑的,不顾的in evitably 不可避免的in evitable 不可避免的,不可逃避的,必定的segme nt 部分abrasion 擦伤,磨损deploy采用,利用,推广应用take the form of 采用…的形式parameter 参数,参量layer 层dope 掺杂FET(field effect tra nsistors)场效应管audio recordi ng 卩昌片ultra-high-freque ncy(UHF)超高频in excess of 超过in excess of 超过hypertext 超文本in gredie nt 成分,因素in gredie nt 成分,组成部分,要素metropolita n-area n etwork(WAN)城域网metropolitan area network(WAN)城域网,城市网络con gestio n 充满,拥挤,阻塞collisio n 冲突extractive 抽岀;释放岀extract抽取,取岀,分离lease 出租,租约,租界期限,租界物pass on 传递,切换tran smissi on 传输facsimile 传真inno vative二inno vatory 仓新的,富有革新精神的track 磁道impetus 促进,激励cluster 簇stored-program con trol(SPC) 存储程序控制a large nu mber of 大量的peal 大声响,发岀supersede 代替suppla nt 代替,取代out-of-ba nd sig nali ng 带外信号simplex tran smissi on 单工传输con ductor 导体等级制度,层次底层结构,基础结构地理的,地区的地理上GIS(grou nd in strume ntation system) 地面测量系统gro und stati on 地面站earth orbit 地球轨道Lan d-sat 地球资源卫星rug 地毯,毯子ignite 点火,点燃,使兴奋electromag netic 电磁的in ductive 电感arc 电弧teleph ony 电话(学),通话dielectric 电介质,绝缘材料;电解质的,绝缘的capacitor 电容telecomm uni catio n 电信,无线电通讯sce nario 电影剧本,方案modem pool 调制解调器(存储)池superimpos ing 叠加,重叠pin 钉住,扣住,抓住customize 定做,定制mono lithic 独立的,完全统一的alumi nize 镀铝strategic 对全局有重要意义的,战略的substa ntial 多的,大的,实际上的multi-path fadi ng 多径衰落multi-path 多路,多途径;多路的,多途径的multi-access 多路存取,多路进入multiplex 多路复用multiplex 多路复用的degradation 恶化,降级dioxide 二氧化碳LED(light-emitti ng-diode)发光二极管evolution 发展,展开,渐进feedback 反馈,回授dime nsion 范围,方向,维,元sce nario 方案sce nario 方案,电影剧本amplifer 放大器nonin vasive 非侵略的,非侵害的tariff 费率,关税率;对…征税distributed fun ctio nal pla ne(DFP)分布功能平面DQDB(distributed queue dual bus)分布式队列双总线hierarchy 分层,层次partiti on 分成segme ntati on 分割in terface 分界面,接口asu nder 分开地,分离地detached 分离的,分开的,孤立的dispe nse 分配allocate 分配,配给;配给物cen tigrade 分为百度的,百分度的,摄氏温度的fractal 分形molecule 分子,微小,些微cellular蜂窝状的cellular蜂窝状的,格形的,多孔的auxiliary storage(also called sec on dary storage) 辅助存储器decay 腐烂,衰减,衰退n egative 负电vicinity附近,邻近vicinity附近地区,近处sophisticated 复杂的,高级的,现代化的high-freque ncy(HF) 高频high defi ni tion televisi on 高清晰度电视铬给…作注解根据,按照公布,企业决算公开公用网功能,功能度汞共鸣器共振古怪的,反复无常的管理,经营cursor光标(显示器),游标,指针opticalcomputer 光计算机photoco nductor 光敏电阻optical disks 光盘optically光学地,光地wide-area n etworks 广域网specification规范,说明书silicon 硅the in ter nati onal telecomm un icatio n union(ITU)际电信联盟excess过剩obsolete 过时的,废弃的maritime 海事的syn thetic 合成的,人造的,综合的syn thetic 合成的,综合性的rati onal 合乎理性的rati on alizati on 合理化streamli ne 合理化,理顺in frared 红夕卜线的,红外线skepticism 怀疑论ring n etwork 环形网hybrid混合物coun terpart 伙伴,副本,对应物electromecha nical 机电的,电动机械的Robot机器人Robotics 机器人技术,机器人学accumulati on 积累in frastructure 基础,基础结构substrate 基质,底质upheaval 激变,剧变compact disc 激光磁盘(CD)concen trator 集中器,集线器cen trex system 集中式用户交换功能系统conv erge on 集中于,聚集在…上lumped eleme nt 集总元件CAI(computer-aided in structio n) 计算机辅助教学computer-i ntegrated manu facturi ng(CIM) 计算机集成制造computer mediated comm un icatio n( CMC) 介通信record 记录register expedite weight 力口权acceleratecategorize in additi on hypothetical rigidly兼容性,相容性监视监视mono chromatic 单色的,单色光的,黑白的ballistic 弹道的,射击的,冲击的hierarchy infrastructuregeographicgeographicallyextraterrestrial 地球外的,地球大气圈外的chromiumanno tate interms ofdisclosurepublic n etworkfun cti on alitymercury res onator resonancewhimsicaladmi nistration计算机中记录器,寄存器加快,促进加速,加快,促进加以类别,分类加之,又,另外假设的坚硬的,僵硬的compatibilitysurveilla neesurveilla neeretrieval 检索,(可)补救 verificati on 检验 simplicity 简单,简明film胶片,薄膜 take over 接管,接任 rugged ness 结实threshold 界限,临界值 with the aid of 借助于,用,通过 wire line 金属线路,有线线路 cohere nt 紧凑的,表达清楚的,粘附的,相干的 compact 紧密的 approximati on 近似 un dertake 进行,从事 tran sistor 晶体管 elaborate 精心制作的,细心完成的,周密安排的 vigilant 警戒的,警惕的 alcohol 酒精,酒 local area n etworks(LANs) 局域网 local-area n etworks(LANs) 局域网 drama 剧本,戏剧,戏剧的演岀 focus on聚集在,集中于,注视in sulator 绝缘 root mean square 均方根 un iform 均匀的 ope n-system-i nterc onn ectio n(OSI) 开放系统互连 expire 开始无效,满期,终止 immu nity 抗扰,免除,免疫性 take …into account 考虑,重视… programmable in dustrial automati on 可编程工业自动化demo un table tun ablereliable 可靠 be likely tovideotex video n egligible可拆卸的可调的 可能,大约,像要 可视图文电视 可以忽略的deviate 偏离,与…不同 spectrum 频谱 come into play 其作用 en trepre neurial 企业的 heuristic methods启发式方法 play a •••role(part) 起…作用stem from 起源于;由…发生organic 器官的,有机的,组织的 hypothesis前提 fron t-e nd 前置,前级 pote ntial 潜势的,潜力的 inten sity 强度coin cide nee 巧合,吻合,一致scalpel 轻便小刀,解剖刀 inven tory 清单,报表spherical 球的,球形的 disti nguish 区别,辨别 succumb屈服,屈从,死global fun ctio nal pla ne(GFP) 全局功能平面 full-duplex tra nsmissi on 全双工传输hologram 全息照相,全息图 deficie ncy缺乏therm onu clear 热 核的 artifact 人工制品 AI(artificial in tellige nee)人工智能fusion 熔解,熔化 diskettes(also called floppy disk)软盘sector 扇区 en tropy 熵upli nk 上行链路 arsenic 砷simulta neous 同时发生的,同时做的 simulta neous 同时发生的,一齐的 coaxial 同轴的 copper 铜 statistical 统计的,统计学的 domin ate 统治,支配 in vest in 投资perspective 透视,角度,远景 graphics 图示,图解 pictorial图像的coat ing 涂层,层 deduce 推理reas oning strategies 推理策略 inference engine 推理机topology 拓扑结构 heterod yne 夕卜差法的peripheral 夕卜界的,外部的,周围的 gateway 网关 hazardous 危险的 microwave 微波(的)microprocessor 微处理机,微处理器 microelectro nic微电子nua nee 微小的差别(色彩等) en compass围绕,包围,造成,设法做到mai nte nance 维护;保持;维修satellite comm uni cati on 卫星通彳言 satellite network 卫星网络 tran sceiver无线电收发信机radio-relay tra nsmissi on 无线电中继传输without any doubt 无疑passive satellite无源卫星n eural n etwork神经网络very-high-freque ncy(VHF) 甚高频 sparse 稀少的, dow nli nk aerial 空气的,空中的,无形的,虚幻的;天线broadba nd 宽(频)带pervasive扩大的,渗透的 tensile 拉力的,张力的roma nticism 浪漫精神,浪漫主义discrete 离散,不连续 ion 离子 force 力量;力 stereoph onic 立体声的 contin uum 连续统一体,连续统,闭联集 smart 灵巧的;精明的;洒脱的 toke n 令牌on the other hand另一方面 hexago nal 六边形的,六角形的 hexag on 六角形,六边形 mon opoly 垄断,专禾U video-clip 录像剪辑 alumi num 铝pebble 卵石,水晶透镜 forum 论坛,讨论会logical relati on ships 逻辑关系 code book 码本pulse code modulatio n(PCM) 脉冲编码调制 roam 漫步,漫游bps(bits per sec on d) 每秒钟传输的比特 ZIP codes美国邮区划分的五位编码susceptible(to) 敏感的,易受…的 analog 模拟,模拟量patter n recog niti on 模式识另 U bibliographic 目录的,文献的 n eodymium 钕the europea n telecomm uni cati on sta ndardizati on in stitute(ETSI) 欧洲电信标准局coordi nate配合的,协调的;使配合,调整ratify 批准,认可 bias 偏差;偏置 upgrade distortio n iden tification 升级失真,畸变 识别,鉴定,验明precursor visualizati on pragmatic 实际的 impleme ntation 实施,实现,执行,敷设en tity 实体,存在 vector qua ntificati on 矢量量化mislead 使…误解,给…错误印象,引错vex使烦恼,使恼火defy 使落空 facilitate 使容易,促进 reti na 视网膜 compatible 适合的,兼容的tra nsceiver 收发两用机 authorize 授权,委托,允许 data security数据安全性data in depe ndence 数据独立 data man ageme nt 数据管理 database数据库database man ageme nt system(DBMS) 理信息系统database tran sacti on 数据库事务 data in tegrity 数据完整性,数据一致性 atte nu ati on衰减fadi ng 衰落,衰减,消失 dual 双的,二重的 tra nsie nt瞬时的determi ni stic 宿命的,确定的 algorithm 算法 dissipatio n 损耗carbon 碳 diabetes 糖尿病cumbersome 讨厌的,麻烦的,笨重的 razor 剃刀,剃 go by the name of通称,普通叫做commucati on sessi on 通信会话 traffic 通信业务(量) syn chr onous tra nsmissi on 同步传输con curre nt同时发生的,共存的数据库管feasibility lin earity con strain considerablegeo-stati onaryby con trast coorelati on mutual 相互的 稀疏的 下行链路 先驱,前任 显像现实性,可行性 线性度限制,约束,制约 相当的,重要的 相对地面静止 相反,而,对比起来 相关性相互的,共同的 相互连接,互连one after the other 相继,依次小型计算机 协议,草案 协议,规约,规程心理(精神)听觉的;传音的 通信信道选择行程编码mutually in terc onn ectmini computer protocolprotocol psycho-acoustic cha nn elizati on 信道化, run len gth en coding groom 修饰,准备虚拟许多, virtual ISDN multitude ISDN大批,大量whirl 旋转 prefere nee avalanche pursue 寻求, interrogation dumb 哑的, subcategory喜欢 选择, 雪崩从事 询问不说话的,无声的亚类,子种类,子范畴orbital 眼眶;轨道oxygen 氧气,氧元素service switchi ng and con trol poin ts(SSCPs) 控制点service con trol poi nts(SCPs) 业务控制点service con trol fun ctio n(SCF) 业务控制功能in con cert 一致,一齐 han dover移交,越区切换 at a rate of以 .... 的速率in the form of 以…的形式业务交换base on…以…为基础yttrium钇(稀有金属,符号Y)asyn chr onous tra nsmissi on 异步传输asyn chr onous 异步的exceptio nal 异常的,特殊的voice-grade 音频级indium 铟give rise to 引起,使产生cryptic隐义的,秘密的hard disk 硬盘hard automati on 硬自动化by means of 用,依靠equip with 用…装备subscriber 用户telex 用户电报PBX(private branch excha nge)用户小交换机或专用交换机be called upon to 用来…,(被)要求…superiority 优势predom inance 优势,显著active satellite 有源卫星in comparis on with 与…比较comparable to 与…可比prelim in ary 预备的,初步的prem on iti on 预感,预兆nu cleus 原子核vale nee 原子价circumfere nee 圆周,周围teleprocessi ng 远程信息处理,遥控处理perspective 远景,前途con strain 约束,强迫mobile运动的,流动的,机动的,装在车上的convey运输,传递,转换impurity 杂质impurity 杂质,混杂物,不洁,不纯rege nerative 再生的improve over 在 ....... 基础上改善play importa nt role in 在…中起重要作用in close proximity 在附近,在很近un derly ing 在下的,基础的in this respect 在这方面en tail遭遇,导致prese ntation 赠与,图像,呈现,演示n arrowba nd 窄(频)带deploy展开,使用,推广应用megabit 兆比特germa nium 锗positive 正电quadrature 正交orthog onal 正交的quadrature amplitude modulatio n(QAM)正交幅度调制on the right track 正在轨道上sustain支撑,撑住,维持,持续outgrowh 支派;长岀;副产品domin ate 支配,统治kno wledge represe ntati on 矢口识表示kno wledge engin eeri ng 矢口识工程kno wledge base 矢口识库in diameter 直径helicopter 直升飞机acro nym 只取首字母的缩写词as long as 只要,如果tutorial指导教师的,指导的coin 制造(新字符),杜撰fabricatio n 制造,装配;捏造事实proton 质子in tellige nce 智能,智力,信息in tellige nt n etwork 智能网in termediate 中间的nu cleus(pl. nu clei) 中心,核心n eutr ons 中子termi nal 终端,终端设备overlay重叠,覆盖,涂覆highlight 重要的部分,焦点charge主管,看管;承载domi nant 主要的,控制的,最有力的cyli nder 柱面expert system 专家系统private network 专用网络tra nsiti on 转变,转换,跃迁relay 转播relay 转播,中继repeater 转发器,中继器pursue追赶,追踪,追求,继续desktop publish 桌面岀版ultraviolet 紫外线的,紫外的;紫外线辐射field 字段vendor自动售货机,厂商n aturally 自然的;天生具备的syn thesize 综合,合成in tegrate 综合,使完全ISDN(i ntergrated services digital n etwork)综合业务数字网as a whole 总体上bus network 总线形网crossbar 纵横,交叉impeda nce 阻抗ini tial 最初的,开始的optimum 最佳条件appear as 作为…岀现A An alog 模拟A/D An alog to Digital 模-数转换AAC Adva need Audio Codi ng 高级音频编码ABB Automatic Black Bala nce 自动黑平衡ABC American Broadcast ing Compa ny 美国广播公司Automatic Bass Compe nsati on 自动低音补偿Automatic Bright ness Con trol 自动亮度控制ABL Automatic Black Level 自动黑电平ABLC Automatic Bright ness Limiter Circuit 自动亮度限制电路ABU Asia n Broadcast ing Un io n 亚洲广播联盟(亚广联ABS American Bureau of Sta ndard 美国标准局AC Access Con ditio ns 接入条件Audio Cen ter 音频中心ACA Adjace nt Cha nnel Atte nuati on 邻频道衰减ACC Automatic Ce nteri ng Co ntrol 自动中心控制Automatic Chroma Control 自动色度(增益ACK Automatic Chroma Killer 自动消色器ACP Additive Colour Process 加色法ACS Access Co ntrol SystemAdva need Comm uni cati on Service 高级通信业务Area Comm uni cati on System区域通信系统ADC An alog to Digital Con verter 模-数转换器Automatic Degaussirng Circuit 自动消磁电路ADL Acoustic Delay Li ne 声延迟线ADS Audio Distribution System 音频分配系统AE Audio Erasi ng 音频(声音AEF Automatic Editi ng Fun ction 自动编辑功能AES Audio Engin eeri ng Society 音频工程协会AF AudioFreque ncy 音频AFA Audio Freque ncy Amplifier 音频放大器AFC Automatic Freque ncy Coder 音频编码器Automatic Freque ncy Co ntrol 自动频率控制AFT Automatic Fi ne Tuning 自动微调Automatic Freque ncy Track 自动频率跟踪Automatic Freque ncy Trim 自动额率微调AGC Automatic Ga in Con trol 自动增益控制AI ArtificialIn tellige nce 人工智能ALM Audio-Level Meter 音频电平表AM Amplitude Modulation 调幅AMS Automatic Music Se nsor置ANC Automatic Noise Ca nceller 自动噪声消除器ANT ANTe nna 天线AO An alog Output 模拟输岀APS Automatic Program Search 自动节目搜索APPS Automatic Program Pause System 自动节目暂停系统APSS Automatic Program Search System 自动节目搜索系统AR Audio Respo nse 音频响应ARC Automatic Remote Con trol 自动遥控ASCII American Standard Code for InformationIn tercha nge 美国信息交换标准AST Automatic Sca nning Tracki ng 自动扫描跟踪ATC Automatic Timi ng Co ntrol 自动定时控制Automatic Tone Correcti on 自动音频校正ATM Asy nchro nous Tra nsfer Mode 异步传输模式ATF Automatic Track Fi ndi ng 自动寻迹ATS Automatic Test System 自动测试系统ATSC Adva need Televisio n Systems Committee(美国高级电视制式委员会)***C Automatic Volume Con trol 自动音量控制***R Automatic Voltage Regulator 自动稳压器AWB Automatic White Bala nee 自动白平衡AZCAutomatic Zoomi ng Con trol 自动变焦控制AZSAutomatic Zero Setti ng 自动调零BA Bra nch Amplifier 分支放大器Buffer Amplifier 缓冲放大器BAC Bin ary-A nalog Co nversion 二进制模拟转换BB Black Burst 黑场信号BBC British Broadcast ing Corporation 英国广播公司BBI Beiji ng Broadcasti ng In stitute 北京广播学院BC Bin ary Code 二进制码Bala need Curre nt 平衡电流Broadcast Con trol 广播控制BCT Ban dwidth Compressi on Tech nique 带宽压缩技术BDB Bi-directio nal Data Bus 双向数据总线BER Basic En codi ng Rules 基本编码规则Bit Error Rate 比特误码率BF Burst Flag 色同步旗脉冲BFA Bare Fiber Adapter 裸光纤适配器Brilloui n Fiber Amplifier 布里渊光纤放大器BGM Backgrou nd Music 背景音乐BIOS Basic In put / Output System 基本输入输出系统B-ISDN Broadba nd-ISDN 宽带综合业务数据网BIU Basic In formation Un it 基本信息单元Bus In terface Unit 总线接口单元BM Bi-phase Modulation 双相调制BML Busi ness Man ageme nt Layer 商务管理层BN Backbo ne Network 主干网BNT Broadba nd Network Termi natio n 宽带网络终端设备BO Bus Out 总线输岀BPG Basic Pulse Gen erator 基准脉冲发生器BPS Ba nd Pitch Shift 分频段变调节器BSI British Sta ndard In stitute 英国标准学会BSS Broadcast Satellite Service 广播卫星业务BT Block Term in al 分线盒、分组终端British Telecom 英国电信BTA Broadba nd Termi nal Adapter 宽带终端适配器Broadcasti ng Tech no logy Associati on (日本BTL Bala need Tran sformer-Less 桥式推挽放大电路BTS Broadcast Tech nical Sta ndard 广播技术标接入控制系统自动音乐传感装BTU Basic Tra nsmission Un it 基本传输单元BVU Broadcasting Video Unit 广播视频型(一种3/4英寸带录像机记录格式BW Ban dWidth 带宽BWTV Black and White Televisio n 黑白电视CA Co nditio nal Access 条件接收CAC Con ditio nal Access Con trol 条件接收控制CAL Co nti nuity Accept Limit 连续性接受极限CAS Con ditio nal Access System 条件接收系统Co nditio nalAccess Sub-system 条件接收子系统CATV Cable Televisi on 有线电视,电缆电视Commu nity An te nna Televisio n 共用天线电视C*** Con sta nt An gular Velocity 恒角速度CBC Can adia n Broadcasti ng Corporati on 力口拿大广播公司CBS Columbia Broadcasti ng System (美国哥伦比亚广播公司CC Concen tric Cable 同轴电缆CCG Chi nese Character Gen erator 中文字幕发生器CCIR In ter nati onal Radio Con sultativeCommittee 国际无线电咨询委员会CCITT In ter nati onal Telegraph and Teleph oneCon sultativeCommittee 国际电话电报咨询委员会CCR Cen tral Co ntrol Room 中心控制室CCTV Chi na Ce ntral Televisio n 中国中央电视台Close-Circuit Televisio n 闭路电视CCS Cen ter Cen tral System 中心控制系统CCU Camera Con trol Un it 摄像机控制器CCW Cou nter Clock-Wise 反时针方向CD Compact Disc 激光唱片CDA Curre nt Dumpi ng Amplifier 电流放大器CD-E Compact Disc Erasable 可抹式激光唱片CDFM Compact Disc File Man ager 光盘文件管理(程序CDPG Compact-Disc Plus Graphic 带有静止图像的CD唱盘CD-ROM Compact Disc-Read Only Memory 只读式紧凑光盘CETV Chi na Educatio nal Televisio n 中国教育电视台CF Color Frami ng 彩色成帧CGA Color Graphics Adapter 彩色图形(显示卡CI Common In terface 通用接口CGA Color Graphics Adapter 彩色图形(显示卡CI Common In terface 通用接口CIE Chin ese In stitute of ElectronicsCII China Information Infrastructure础设施CIF Comm on In termediate FormatCIS Chin ese In dustrial Sta ndardCLV Con sta nt Lin ear Velocity 恒定线速度CM Colour Mon itor 彩色监视器CMTS Cable Modem Termi nation System 线缆调制解调器终端系统CNR Carrier-to-Noise Ratio 载噪比CON Co nsole 操纵台Con troller 控制器CPB Corporation of Public Broadcasti ng (美国公共广播公司CPU Central Processi ng Un it 中央处理单元CRC Cyclic Redu nda ncy Check 循环冗余校验CRCC CRI Cyclic Redu ndan cy Check Code 循环冗余校验码CROM Chi na Radio In ter natio nal 中国国际广播电台CRT Con trol Read Only Memory 控制只读存储器CS Cathode-Ray Tube 阴极射线管CSC Commu nication Satellite 通信卫星CSS Color Sub-carrier 彩色副载波Cen ter Storage Server 中央存储服务器Con te nt Scrambl ing System 内容加扰系统CSU Cha nnel Service Un it 信道业务单元CT Color Temperature 色温CTC Cassette Tape Co ntroller 盒式磁带控制器Cha nnel Traffic Con trol 通道通信量控制Cou nter Timer Circuit 计数器定时器电路Cou nter Timer Con trol 计数器定时器控制CTE Cable Term in ation Equipme nt 线缆终端设备Customer Term inal Equipme nt 用户终端设备CTV Color Televisi on 彩色电视CVD Chi na Video Disc 中国数字视盘CW Carrie Wave 载波DAB Digital Audio Broadcast ing 数字音频广播DASH Digital Audio Statio nary Head 数字音频静止磁头DAT Digital Audio Tape 数字音频磁带DBMS Data Base Man ageme nt System 数据库管理系统DBS Direct Broadcast Satellite 直播卫星DCC Digital Compact Cassette 数字小型盒带Dyn amic Co ntrast Co ntrol 动态对比度控制DCT Digital Compo nent Tech nology 数字分量技术Discrete Cosi ne Tra nsform 离散余弦变换DCTV Digital Color Televisio n 数字彩色电视DD DirectDrive 直接驱动DDC Direct Digital C on trol 直接数字控制DDE Dy namic Data Excha nge 动态数据交换DDM Data Display Mon itor 数据显示监视器DES Data Eleme ntary Stream 数据基本码流Data En cryption Sta ndard 美国数据加密标准DF Dispersio n Flatte ned 色散平坦光纤DG Differe ntial Gai n 微分增益DI Digital In terface 数字接口DITEC Digital Televisio n Camera 数字电视摄像机DL Delay Line 延时线DLD Dyn amic Lin ear Drive 动态线性驱动DM Delta Modulation 增量调制Digital Modulation 数字调制DMB Digital Multimedia Broadcasti ng 数字多媒体广播DMC Dyn amic Motio n Co ntrol 动态控制DME Digital Multiple Effect 数字多功能特技DMS Digital Masteri ng System 数字主系统DN Data Network 数据网络DNG Digital News Gatheri ng 数字新闻采集DNR Digital Noise Reducer 数字式降噪器DOB Data Output Bus 数据输岀总线DOCSIS Data Over Cable Service In terfaceSpecificatio ns 有线数据传输业务接口规范DOC Drop Out Compe nsati on 失落补偿DOS Disc Operat ing System 磁盘操作系统DP Differe ntial Phase 微分相位Data Pulse 数据脉冲DPCM Differe ntial Pulse Code Modulation 差值脉冲编码调制DPL Dolby Pro Logic 杜比定向逻辑DSB Digital Satellite Broadcasti ng 数字卫星广播DSC Digital Studio Con trol 数字演播室控制DSD Dolby Surrou nd Digital 杜比数字环绕声DSE Digital Special Effect 数字特技DSK Dow n-Stream Key 下游键DSP Digital Sig nal Process ing 数字信号处理Digital Sou nd Processor 数字声音处理器DSS Digital Satellite System 数字卫星系统DT Digital Tech ni que 数字技术Digital Televisio n 数字电视Data Term in al 数据终端Data Tran smissi on 数据传输DTB Digital Terrestrial Broadcast ing 数字地面广播DTBC Digital Time-Base Corrector 数字时基校正器DTC Digital Televisio n Camera 数字电视摄像机DTS Digital Theater System 数字影院系统Digital Tuning System 数字调谐系统Digital Televisio n Sta ndard 数字电视标准DVB Digital Video Broadcast ing 数字视频广播DVC Digital Video Compressio n 数字视频压缩DVE Digital Video Effect 数字视频特技DVS Desktop Video Studio 桌上视频演播DVTR Digital Video Tape Recorder 数字磁带录像机EA Exte nsion Ampl ifier 延长放大器EB Electro n Beam 电子束EBS Emerge ncy Broadcast ing System 紧急广播系统EBU European Broadcast ing Un io n 欧洲广播联盟EC Error Correctio n 误差校正ECN Emerge ncy Comm un icati ons Network 应急通信网络ECS European Comm un icatio n Satellite 欧洲通信卫星EDC Error Detection Code 错误检测码EDE Electro nic Data Excha nge 电子数据交换EDF Erbium-Doped Fiber 掺饵光纤EDFA Erbium-Doped Fiber Amplifier 掺饵光纤放大器EDL Edit Decisi on List 编辑点清单EDTV Exte nded Defi niti on Televisi on 扩展清晰度电视EE Error Excepted 允许误差EFM Eight to Fourteen Modulation 8-14 调制EFP Electro nic Field Production 电子现场节目制作EH Ether net Hosts 以太网主机EIN Equivale nt m put Noise 等效输入噪声EIS Electro nic In formation System 电子信息系统EISA Exte nded In dustrial Sta ndard Architecture扩展工业标准总线EL Electro-Lum in esce nt 场致发光EM Error Mo nitori ng 误码监测EN End Node 末端节点ENG Electro nic News Gatheri ng 电子新闻采集EOT End of Tape 带尾EP Edit Poi nt 编辑点Error Protocol 错误协议EPG Electro nic Program Guides 电子节目指南EPS Emerge ncy Power Supply 应急电源ERP Effective Radiated Power 有效辐射功率ES Eleme ntary Stream 基本码流End System 终端系统ESA European Space Age ncy 欧洲空间局ETV Educati on Televisio n 教育电视FA Enhan ced Televisio n 增强电视FABM FAS Facial An imatio n 面部动画FC Fiber Amp li fier Booster Module 光纤放大器增强模块Fiber Access System 光纤接入系统Freque ncy Chan ger 变频器FCC Fiber Cha nnel 光纤通道FD Film Composer 电影编辑系统Federal Comm un icatio ns Commissio n 美国联邦通信委员会FDCT Freque ncy Divider 分频器FDDI FDM Fiber Duct 光纤管道FDP Forward Discrete Cos ine Tran sform 离散余弦正变换FE Fiber Distributed Data In terface 分布式光纤数据接口Freque ncy-Divisi on Multiplexi ng 频分复用中国电子学会中国信息基通用中间格式中国工业标准。

神经网络参考文献列表

神经网络参考文献列表

神经网络参考文献[1] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: Perceptron,madaline, and backpropagation,” Proc. IEEE, vol. 78, pp. 1415-1442, Sept.1990.[2] Jian Hua Li, Anthony N. Michel, and Wolfgang Porod. “Analysis and synthesisof a class neural networks: Linear systems operating on closed hypercube,”IEEE Trans. Circuits Syst., 36(11):1405-1422, November 1989.[3] R. P. Lippmann, “An introduction to computing with neural nets,” IEEEAcoustics, Speech and Signal Processing Magazine, 2(4):4-22, April 1987.[4] S. Grossberg, E. Mingolla, and D. Todovoric,“A neural network architecture forpreattentive vision,” IEEE Trans. Biomed. Eng., 36:65-83, 1989.[5] Wang, D.and Arbib, M. A., “Complex temporal sequence learning based onshort-term memory,” Proc. IEEE, vol. 78, pp. 1536-1543, Sept. 1990.[6] Amari, S.-i., “Mathematical foundations of neurocomputing,” Proc. IEEE, vol.78, pp. 1443-1463, Sept. 1990.[7] Poggio, T. and Girosi, F., “Networks for approximation and learning,” Proc.IEEE, vol. 78, pp. 1481-1497, Sept. 1990.[8] Barnard, E., “Optimization for training neural nets,” IEEE Trans. NeuralNetwork, vol. 3, pp. 232-240, Mar. 1992.[9] Kohonen, T., “The self-organizing map,” Proc. IEEE, vol. 78, pp. 1464-1480,Sept. 1990.[10] Hagan, M.T. and Menhaj, M.B., “Training feedforward networks with theMarquardt algorithm,” IEEE Trans. Neural Network, vol. 5, pp. 989-993, Nov.1994.[11] Pei-Yih Ting and Iltis, R.A., “Diffusion network architectures forimplementation of Gibbs samplers with applications to assignment problems,”IEEE Trans. Neural Network, vol. 5, pp. 622-638, July 1994.[12] Iltis, R. A. and Ting, P.-Y., “Computing association probabilities using parallelBoltzmann machines,” IEEE Trans. Neural Network, vol. 4, pp. 221-233, Mar.1993.[13] R. Battiti, “First and second order methods for learning: Between steepestdescent and Newton's method,” Neural Computation, vol. 4, no. 2, pp. 141-166, 1992.[14] G. A. Carpenter and S. Grossberg, “A massively parallel architecture for aself-organizing neural pattern recognition machine,” Computer Vision, Graphics, and Image Processing, vol. 37, pp. 54-115, 1987.[15] C. Charalambous, “Conjugate gradient algorithm for efficient training ofartificial neural networks,” IEEE Proceeding, vol. 139, no. 3, pp. 301-310, 1992.[16] M. A. Cohen and S. Grossberg, “Absolute stability of global pattern formationand parallel memory storage by competitive neural networks,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 13, no. 5, pp. 815-826, 1983.[17] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp. 179-211,1990.[18] K. Fukushima, S. Miyake and T. Ito, “Neocognitron: A neural network modelfor a mechanism of visual pattern recognition,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 13, no. 5, pp. 826-834, 1983.[19] K. Fukushima, “Neocognitron: A hierarchical neural network capable of visualpattern recognition,” Neural Networks, vol. 1, pp. 119-130, 1988.[20] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and theBayesian restoration of images,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 6, pp. 721-741, 1984.[21] S. Grossberg, “How does the brain build a cognitive code?,” PsychologicalReview, vol. 87, pp. 1-51, 1980.[22] M. Heywood and P. Noakes, “A framework for improved training of sigma-pinetworks,” IEEE Transactions of Neural Networks, vol. 6, no. 4, pp. 893-903, 1995.[23] J. J. Hopfield, “Neural networks and physical systems with emergent collectivecomputational properties,” Proceedings of the National Academy of Sciences, vol. 79, pp. 2554-2558, 1982.[24] J. J. Hopfield, “Neurons with graded response have collective computationalproperties like those of two-state neurons,” Proceedings of the National Academy of Sciences, vol. 81, pp. 3088-3092, 1984.[25] J. J. Hopfield and D. W. Tank, “'Neural computation of decisions inoptimization problems,” Biological Cybernetics, vol. 52, pp. 141-152, 1985.[26] K. M. Hornik, M. Stinchcombe and H. White, “Multilayer feedforward networksare universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359-366, 1989.[27] R. A. Jacobs, “Increased rates of convergence through learning rate adaptation,”Neural Networks, vol. 1, no. 4, pp. 295-308, 1988.[28] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive mixturesof local experts,” Neural Computation, vol. 3, pp. 79-87, 1991.[29] T. Kohonen, “Correlation matrix memories,” IEEE Transactions on Computers,vol. 21, pp. 353-359, 1972.[30] B. Kosko, “Bidirectional associative memories,” IEEE Transactions on Systems,Man, and Cybernetics, vol. 18, no. 1, pp. 49-60, 1988.[31] D. J. C. MacKay, “A practical bayesian framework for backproagationnetworks,” Neural Computation, vol. 4, pp. 448-472, 1992.[32] A. N. Michel and J. A. Farrell, “Associative memories via artificial neuralnetworks,” IEEE Control Systems Magazine, April, pp. 6-17, 1990.[33] A. K. Rigler, J. M. Irvine and T. P. Vogl, “Rescaling of variables inbackpropagation learning,” Neural Networks, vol. 4, no. 2, pp. 225-229, 1991. [34] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations byback-propagating errors,” Nature, vol. 323, pp. 533-536, 1986.[35] D. F. Specht, “Probabilistic neural networks,” Neural Networks, vol. 3, no. 1, pp.109-118, 1990.[36] D. F. Specht, “A General regression neural network,” IEEE Transactions onNeural Networks, vol. 2, no. 6, pp. 568-576, 1991.[37] D. W. Tank and J. J. Hopfield, “Simple 'neural' optimization networks: An A/Dconverter, signal decision circuit and a linear programming circuit,” IEEE Transactions on Circuits and Systems, vol. 33, no. 5, pp. 533-541, 1986.[38] T. P. Vogl, J. K. Mangis, A. K. Zigler, W. T. Zink, and D. L. Alkon,“Accelerating the convergence of the backpropagation method,” Biological Cybernetics, vol. 59, pp. 256-264, Sept. 1988.[39] P. J. Werbos, “Backpropagation through time: What it is and how to do it,”Proceedings of the IEEE, vol. 78, pp. 1550-1560, Oct. 1990.[40] B. Widrow and R. Winter, “Neural nets for adaptive filtering and adaptivepattern recognition,” IEEE Computer Magazine, pp. 25-39, March 1988.[41] R. J. Williams and D. Zipser, “A learning algorithm for continually running fullyrecurrent neural networks,” Neural Computation, vol. 1, pp. 270-280, 1989. [42] A. Waibel, Tl Hanazawa, G. Hinton, K. Shikano and K. J. Lang, “Phonemerecognition using time-delay neural networks,” IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 37, pp. 328-339, 1989.[43] Linske, R., “Self-organization in a perceptual network,” IEEE ComputerMagazine, vol. 21, pp. 105-117, March 1988.[44] Carpenter, G.A. and Grossberg, S., “The ART of adaptive pattern recognition bya self-organizing neural network,” IEEE Computer Magazine, vol. 21, pp. 77-88,March 1988.[45] Fukushima, K., “A neural network for visual pattern recognition,” IEEEComputer Magazine, vol. 21, pp. 65-75, March 1988.[46] Kohonen, T., “The 'neural' phonetic typewriter,” IEEE Computer Magazine, vol.21, pp. 11-22, March 1988.。

Gradient-based learning applied to document recognition

Gradient-based learning applied to document recognition

Gradient-Based Learning Appliedto Document RecognitionYANN LECUN,MEMBER,IEEE,L´EON BOTTOU,YOSHUA BENGIO,AND PATRICK HAFFNER Invited PaperMultilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient-based learning technique.Given an appropriate network architecture,gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns,such as handwritten characters,with minimal preprocessing.This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task.Convolutional neural networks,which are specifically designed to deal with the variability of two dimensional(2-D)shapes,are shown to outperform all other techniques.Real-life document recognition systems are composed of multiple modules includingfield extraction,segmentation,recognition, and language modeling.A new learning paradigm,called graph transformer networks(GTN’s),allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure.Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training,and theflexibility of graph transformer networks.A graph transformer network for reading a bank check is also described.It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal checks.It is deployed commercially and reads several million checks per day. Keywords—Convolutional neural networks,document recog-nition,finite state transducers,gradient-based learning,graphtransformer networks,machine learning,neural networks,optical character recognition(OCR).N OMENCLATUREGT Graph transformer.GTN Graph transformer network.HMM Hidden Markov model.HOS Heuristic oversegmentation.K-NN K-nearest neighbor.Manuscript received November1,1997;revised April17,1998.Y.LeCun,L.Bottou,and P.Haffner are with the Speech and Image Processing Services Research Laboratory,AT&T Labs-Research,Red Bank,NJ07701USA.Y.Bengio is with the D´e partement d’Informatique et de Recherche Op´e rationelle,Universit´e de Montr´e al,Montr´e al,Qu´e bec H3C3J7Canada. Publisher Item Identifier S0018-9219(98)07863-3.NN Neural network.OCR Optical character recognition.PCA Principal component analysis.RBF Radial basis function.RS-SVM Reduced-set support vector method. SDNN Space displacement neural network.SVM Support vector method.TDNN Time delay neural network.V-SVM Virtual support vector method.I.I NTRODUCTIONOver the last several years,machine learning techniques, particularly when applied to NN’s,have played an increas-ingly important role in the design of pattern recognition systems.In fact,it could be argued that the availability of learning techniques has been a crucial factor in the recent success of pattern recognition applications such as continuous speech recognition and handwriting recognition. The main message of this paper is that better pattern recognition systems can be built by relying more on auto-matic learning and less on hand-designed heuristics.This is made possible by recent progress in machine learning and computer ing character recognition as a case study,we show that hand-crafted feature extraction can be advantageously replaced by carefully designed learning machines that operate directly on pixel ing document understanding as a case study,we show that the traditional way of building recognition systems by manually integrating individually designed modules can be replaced by a unified and well-principled design paradigm,called GTN’s,which allows training all the modules to optimize a global performance criterion.Since the early days of pattern recognition it has been known that the variability and richness of natural data, be it speech,glyphs,or other types of patterns,make it almost impossible to build an accurate recognition system entirely by hand.Consequently,most pattern recognition systems are built using a combination of automatic learning techniques and hand-crafted algorithms.The usual method0018–9219/98$10.00©1998IEEE2278PROCEEDINGS OF THE IEEE,VOL.86,NO.11,NOVEMBER1998Fig.1.Traditional pattern recognition is performed with two modules:afixed feature extractor and a trainable classifier.of recognizing individual patterns consists in dividing the system into two main modules shown in Fig.1.Thefirst module,called the feature extractor,transforms the input patterns so that they can be represented by low-dimensional vectors or short strings of symbols that:1)can be easily matched or compared and2)are relatively invariant with respect to transformations and distortions of the input pat-terns that do not change their nature.The feature extractor contains most of the prior knowledge and is rather specific to the task.It is also the focus of most of the design effort, because it is often entirely hand crafted.The classifier, on the other hand,is often general purpose and trainable. One of the main problems with this approach is that the recognition accuracy is largely determined by the ability of the designer to come up with an appropriate set of features. This turns out to be a daunting task which,unfortunately, must be redone for each new problem.A large amount of the pattern recognition literature is devoted to describing and comparing the relative merits of different feature sets for particular tasks.Historically,the need for appropriate feature extractors was due to the fact that the learning techniques used by the classifiers were limited to low-dimensional spaces with easily separable classes[1].A combination of three factors has changed this vision over the last decade.First, the availability of low-cost machines with fast arithmetic units allows for reliance on more brute-force“numerical”methods than on algorithmic refinements.Second,the avail-ability of large databases for problems with a large market and wide interest,such as handwriting recognition,has enabled designers to rely more on real data and less on hand-crafted feature extraction to build recognition systems. The third and very important factor is the availability of powerful machine learning techniques that can handle high-dimensional inputs and can generate intricate decision functions when fed with these large data sets.It can be argued that the recent progress in the accuracy of speech and handwriting recognition systems can be attributed in large part to an increased reliance on learning techniques and large training data sets.As evidence of this fact,a large proportion of modern commercial OCR systems use some form of multilayer NN trained with back propagation.In this study,we consider the tasks of handwritten character recognition(Sections I and II)and compare the performance of several learning techniques on a benchmark data set for handwritten digit recognition(Section III). While more automatic learning is beneficial,no learning technique can succeed without a minimal amount of prior knowledge about the task.In the case of multilayer NN’s, a good way to incorporate knowledge is to tailor its archi-tecture to the task.Convolutional NN’s[2],introduced in Section II,are an example of specialized NN architectures which incorporate knowledge about the invariances of two-dimensional(2-D)shapes by using local connection patterns and by imposing constraints on the weights.A comparison of several methods for isolated handwritten digit recogni-tion is presented in Section III.To go from the recognition of individual characters to the recognition of words and sentences in documents,the idea of combining multiple modules trained to reduce the overall error is introduced in Section IV.Recognizing variable-length objects such as handwritten words using multimodule systems is best done if the modules manipulate directed graphs.This leads to the concept of trainable GTN,also introduced in Section IV. Section V describes the now classical method of HOS for recognizing words or other character strings.Discriminative and nondiscriminative gradient-based techniques for train-ing a recognizer at the word level without requiring manual segmentation and labeling are presented in Section VI. Section VII presents the promising space-displacement NN approach that eliminates the need for segmentation heuris-tics by scanning a recognizer at all possible locations on the input.In Section VIII,it is shown that trainable GTN’s can be formulated as multiple generalized transductions based on a general graph composition algorithm.The connections between GTN’s and HMM’s,commonly used in speech recognition,is also treated.Section IX describes a globally trained GTN system for recognizing handwriting entered in a pen computer.This problem is known as “online”handwriting recognition since the machine must produce immediate feedback as the user writes.The core of the system is a convolutional NN.The results clearly demonstrate the advantages of training a recognizer at the word level,rather than training it on presegmented, hand-labeled,isolated characters.Section X describes a complete GTN-based system for reading handwritten and machine-printed bank checks.The core of the system is the convolutional NN called LeNet-5,which is described in Section II.This system is in commercial use in the NCR Corporation line of check recognition systems for the banking industry.It is reading millions of checks per month in several banks across the United States.A.Learning from DataThere are several approaches to automatic machine learn-ing,but one of the most successful approaches,popularized in recent years by the NN community,can be called“nu-merical”or gradient-based learning.The learning machine computes afunction th input pattern,andtheoutputthatminimizesand the error rate on the trainingset decreases with the number of training samplesapproximatelyasis the number of trainingsamples,is a number between0.5and1.0,andincreases,decreases.Therefore,when increasing thecapacitythat achieves the lowest generalizationerror Mostlearning algorithms attempt tominimize as well assome estimate of the gap.A formal version of this is calledstructural risk minimization[6],[7],and it is based on defin-ing a sequence of learning machines of increasing capacity,corresponding to a sequence of subsets of the parameterspace such that each subset is a superset of the previoussubset.In practical terms,structural risk minimization isimplemented byminimizingisaconstant.that belong to high-capacity subsets ofthe parameter space.Minimizingis a real-valuedvector,with respect towhichis iteratively adjusted asfollows:is updated on the basis of a singlesampleof several layers of processing,i.e.,the back-propagation algorithm.The third event was the demonstration that the back-propagation procedure applied to multilayer NN’s with sigmoidal units can solve complicated learning tasks. The basic idea of back propagation is that gradients can be computed efficiently by propagation from the output to the input.This idea was described in the control theory literature of the early1960’s[16],but its application to ma-chine learning was not generally realized then.Interestingly, the early derivations of back propagation in the context of NN learning did not use gradients but“virtual targets”for units in intermediate layers[17],[18],or minimal disturbance arguments[19].The Lagrange formalism used in the control theory literature provides perhaps the best rigorous method for deriving back propagation[20]and for deriving generalizations of back propagation to recurrent networks[21]and networks of heterogeneous modules[22].A simple derivation for generic multilayer systems is given in Section I-E.The fact that local minima do not seem to be a problem for multilayer NN’s is somewhat of a theoretical mystery. It is conjectured that if the network is oversized for the task(as is usually the case in practice),the presence of “extra dimensions”in parameter space reduces the risk of unattainable regions.Back propagation is by far the most widely used neural-network learning algorithm,and probably the most widely used learning algorithm of any form.D.Learning in Real Handwriting Recognition Systems Isolated handwritten character recognition has been ex-tensively studied in the literature(see[23]and[24]for reviews),and it was one of the early successful applications of NN’s[25].Comparative experiments on recognition of individual handwritten digits are reported in Section III. They show that NN’s trained with gradient-based learning perform better than all other methods tested here on the same data.The best NN’s,called convolutional networks, are designed to learn to extract relevant features directly from pixel images(see Section II).One of the most difficult problems in handwriting recog-nition,however,is not only to recognize individual charac-ters,but also to separate out characters from their neighbors within the word or sentence,a process known as seg-mentation.The technique for doing this that has become the“standard”is called HOS.It consists of generating a large number of potential cuts between characters using heuristic image processing techniques,and subsequently selecting the best combination of cuts based on scores given for each candidate character by the recognizer.In such a model,the accuracy of the system depends upon the quality of the cuts generated by the heuristics,and on the ability of the recognizer to distinguish correctly segmented characters from pieces of characters,multiple characters, or otherwise incorrectly segmented characters.Training a recognizer to perform this task poses a major challenge because of the difficulty in creating a labeled database of incorrectly segmented characters.The simplest solution consists of running the images of character strings through the segmenter and then manually labeling all the character hypotheses.Unfortunately,not only is this an extremely tedious and costly task,it is also difficult to do the labeling consistently.For example,should the right half of a cut-up four be labeled as a one or as a noncharacter?Should the right half of a cut-up eight be labeled as a three?Thefirst solution,described in Section V,consists of training the system at the level of whole strings of char-acters rather than at the character level.The notion of gradient-based learning can be used for this purpose.The system is trained to minimize an overall loss function which measures the probability of an erroneous answer.Section V explores various ways to ensure that the loss function is differentiable and therefore lends itself to the use of gradient-based learning methods.Section V introduces the use of directed acyclic graphs whose arcs carry numerical information as a way to represent the alternative hypotheses and introduces the idea of GTN.The second solution,described in Section VII,is to eliminate segmentation altogether.The idea is to sweep the recognizer over every possible location on the input image,and to rely on the“character spotting”property of the recognizer,i.e.,its ability to correctly recognize a well-centered character in its inputfield,even in the presence of other characters besides it,while rejecting images containing no centered characters[26],[27].The sequence of recognizer outputs obtained by sweeping the recognizer over the input is then fed to a GTN that takes linguistic constraints into account andfinally extracts the most likely interpretation.This GTN is somewhat similar to HMM’s,which makes the approach reminiscent of the classical speech recognition[28],[29].While this technique would be quite expensive in the general case,the use of convolutional NN’s makes it particularly attractive because it allows significant savings in computational cost.E.Globally Trainable SystemsAs stated earlier,most practical pattern recognition sys-tems are composed of multiple modules.For example,a document recognition system is composed of afield loca-tor(which extracts regions of interest),afield segmenter (which cuts the input image into images of candidate characters),a recognizer(which classifies and scores each candidate character),and a contextual postprocessor,gen-erally based on a stochastic grammar(which selects the best grammatically correct answer from the hypotheses generated by the recognizer).In most cases,the information carried from module to module is best represented as graphs with numerical information attached to the arcs. For example,the output of the recognizer module can be represented as an acyclic graph where each arc contains the label and the score of a candidate character,and where each path represents an alternative interpretation of the input string.Typically,each module is manually optimized,or sometimes trained,outside of its context.For example,the character recognizer would be trained on labeled images of presegmented characters.Then the complete system isLECUN et al.:GRADIENT-BASED LEARNING APPLIED TO DOCUMENT RECOGNITION2281assembled,and a subset of the parameters of the modules is manually adjusted to maximize the overall performance. This last step is extremely tedious,time consuming,and almost certainly suboptimal.A better alternative would be to somehow train the entire system so as to minimize a global error measure such as the probability of character misclassifications at the document level.Ideally,we would want tofind a good minimum of this global loss function with respect to all theparameters in the system.If the loss functionusing gradient-based learning.However,at first glance,it appears that the sheer size and complexity of the system would make this intractable.To ensure that the global loss functionwithrespect towith respect toFig.2.Architecture of LeNet-5,a convolutional NN,here used for digits recognition.Each plane is a feature map,i.e.,a set of units whose weights are constrained to be identical.or other2-D or one-dimensional(1-D)signals,must be approximately size normalized and centered in the input field.Unfortunately,no such preprocessing can be perfect: handwriting is often normalized at the word level,which can cause size,slant,and position variations for individual characters.This,combined with variability in writing style, will cause variations in the position of distinctive features in input objects.In principle,a fully connected network of sufficient size could learn to produce outputs that are invari-ant with respect to such variations.However,learning such a task would probably result in multiple units with similar weight patterns positioned at various locations in the input so as to detect distinctive features wherever they appear on the input.Learning these weight configurations requires a very large number of training instances to cover the space of possible variations.In convolutional networks,as described below,shift invariance is automatically obtained by forcing the replication of weight configurations across space. Secondly,a deficiency of fully connected architectures is that the topology of the input is entirely ignored.The input variables can be presented in any(fixed)order without af-fecting the outcome of the training.On the contrary,images (or time-frequency representations of speech)have a strong 2-D local structure:variables(or pixels)that are spatially or temporally nearby are highly correlated.Local correlations are the reasons for the well-known advantages of extracting and combining local features before recognizing spatial or temporal objects,because configurations of neighboring variables can be classified into a small number of categories (e.g.,edges,corners,etc.).Convolutional networks force the extraction of local features by restricting the receptive fields of hidden units to be local.A.Convolutional NetworksConvolutional networks combine three architectural ideas to ensure some degree of shift,scale,and distortion in-variance:1)local receptivefields;2)shared weights(or weight replication);and3)spatial or temporal subsampling.A typical convolutional network for recognizing characters, dubbed LeNet-5,is shown in Fig.2.The input plane receives images of characters that are approximately size normalized and centered.Each unit in a layer receives inputs from a set of units located in a small neighborhood in the previous layer.The idea of connecting units to local receptivefields on the input goes back to the perceptron in the early1960’s,and it was almost simultaneous with Hubel and Wiesel’s discovery of locally sensitive,orientation-selective neurons in the cat’s visual system[30].Local connections have been used many times in neural models of visual learning[2],[18],[31]–[34].With local receptive fields neurons can extract elementary visual features such as oriented edges,endpoints,corners(or similar features in other signals such as speech spectrograms).These features are then combined by the subsequent layers in order to detect higher order features.As stated earlier,distortions or shifts of the input can cause the position of salient features to vary.In addition,elementary feature detectors that are useful on one part of the image are likely to be useful across the entire image.This knowledge can be applied by forcing a set of units,whose receptivefields are located at different places on the image,to have identical weight vectors[15], [32],[34].Units in a layer are organized in planes within which all the units share the same set of weights.The set of outputs of the units in such a plane is called a feature map. Units in a feature map are all constrained to perform the same operation on different parts of the image.A complete convolutional layer is composed of several feature maps (with different weight vectors),so that multiple features can be extracted at each location.A concrete example of this is thefirst layer of LeNet-5shown in Fig.2.Units in thefirst hidden layer of LeNet-5are organized in six planes,each of which is a feature map.A unit in a feature map has25inputs connected to a5case of LeNet-5,at each input location six different types of features are extracted by six units in identical locations in the six feature maps.A sequential implementation of a feature map would scan the input image with a single unit that has a local receptive field and store the states of this unit at corresponding locations in the feature map.This operation is equivalent to a convolution,followed by an additive bias and squashing function,hence the name convolutional network.The kernel of the convolution is theOnce a feature has been detected,its exact location becomes less important.Only its approximate position relative to other features is relevant.For example,once we know that the input image contains the endpoint of a roughly horizontal segment in the upper left area,a corner in the upper right area,and the endpoint of a roughly vertical segment in the lower portion of the image,we can tell the input image is a seven.Not only is the precise position of each of those features irrelevant for identifying the pattern,it is potentially harmful because the positions are likely to vary for different instances of the character.A simple way to reduce the precision with which the position of distinctive features are encoded in a feature map is to reduce the spatial resolution of the feature map.This can be achieved with a so-called subsampling layer,which performs a local averaging and a subsampling,thereby reducing the resolution of the feature map and reducing the sensitivity of the output to shifts and distortions.The second hidden layer of LeNet-5is a subsampling layer.This layer comprises six feature maps,one for each feature map in the previous layer.The receptive field of each unit is a 232p i x e l i m a g e .T h i s i s s i g n i fic a n tt h e l a r g e s t c h a r a c t e r i n t h e d a t a b a s e (a t28fie l d ).T h e r e a s o n i s t h a t i t it h a t p o t e n t i a l d i s t i n c t i v e f e a t u r e s s u c h o r c o r n e r c a n a p p e a r i n t h e c e n t e r o f t h o f t h e h i g h e s t l e v e l f e a t u r e d e t e c t o r s .o f c e n t e r s o f t h e r e c e p t i v e fie l d s o f t h e l a y e r (C 3,s e e b e l o w )f o r m a 2032i n p u t .T h e v a l u e s o f t h e i n p u t p i x e l s o t h a t t h e b a c k g r o u n d l e v e l (w h i t e )c o ro fa n d t h e f o r e g r o u n d (b l ac k )c o r r e s p T h i s m a k e s t h e m e a n i n p u t r o u g h l y z e r o r o u g h l y o n e ,w h i c h a c c e l e r a t e s l e a r n i n g I n t h e f o l l o w i n g ,c o n v o l u t i o n a l l a y e r s u b s a m p l i n g l a y e r s a r e l a b e l ed S x ,a n d l a ye r s a r e l a b e l e d F x ,w h e r e x i s t h e l a y L a y e r C 1i s a c o n v o l u t i o n a l l a y e r w i t h E a c h u n i t i n e a c hf e a t u r e m a p i s c o n n e c t28w h i c h p r e v e n t s c o n n e c t i o n f r o m t h e i n p t h e b o u n d a r y .C 1c o n t a i n s 156t r a i n a b l 122304c o n n e c t i o n s .L a y e r S 2i s a s u b s a m p l i n g l a y e r w i t h s i s i z e 142n e i g h b o r h o o d i n t h e c o r r e s p o n d i n g f T h e f o u r i n p u t s t o a u n i t i n S 2a r e a d d e d ,2284P R O C E E D I N G S O F T H E I E E E ,V O L .86,N O .11,N O VTable 1Each Column Indicates Which Feature Map in S2Are Combined by the Units in a Particular Feature Map ofC3a trainable coefficient,and then added to a trainable bias.The result is passed through a sigmoidal function.The25neighborhoods at identical locations in a subset of S2’s feature maps.Table 1shows the set of S2feature maps combined by each C3feature map.Why not connect every S2feature map to every C3feature map?The reason is twofold.First,a noncomplete connection scheme keeps the number of connections within reasonable bounds.More importantly,it forces a break of symmetry in the network.Different feature maps are forced to extract dif-ferent (hopefully complementary)features because they get different sets of inputs.The rationale behind the connection scheme in Table 1is the following.The first six C3feature maps take inputs from every contiguous subsets of three feature maps in S2.The next six take input from every contiguous subset of four.The next three take input from some discontinuous subsets of four.Finally,the last one takes input from all S2feature yer C3has 1516trainable parameters and 156000connections.Layer S4is a subsampling layer with 16feature maps of size52neighborhood in the corresponding feature map in C3,in a similar way as C1and yer S4has 32trainable parameters and 2000connections.Layer C5is a convolutional layer with 120feature maps.Each unit is connected to a55,the size of C5’s feature maps is11.This process of dynamically increasing thesize of a convolutional network is described in Section yer C5has 48120trainable connections.Layer F6contains 84units (the reason for this number comes from the design of the output layer,explained below)and is fully connected to C5.It has 10164trainable parameters.As in classical NN’s,units in layers up to F6compute a dot product between their input vector and their weight vector,to which a bias is added.This weighted sum,denotedforunit (6)wheredeterminesits slope at the origin.Thefunctionis chosen to be1.7159.The rationale for this choice of a squashing function is given in Appendix A.Finally,the output layer is composed of Euclidean RBF units,one for each class,with 84inputs each.The outputs of each RBFunit(7)In other words,each output RBF unit computes the Eu-clidean distance between its input vector and its parameter vector.The further away the input is from the parameter vector,the larger the RBF output.The output of a particular RBF can be interpreted as a penalty term measuring the fit between the input pattern and a model of the class associated with the RBF.In probabilistic terms,the RBF output can be interpreted as the unnormalized negative log-likelihood of a Gaussian distribution in the space of configurations of layer F6.Given an input pattern,the loss function should be designed so as to get the configuration of F6as close as possible to the parameter vector of the RBF that corresponds to the pattern’s desired class.The parameter vectors of these units were chosen by hand and kept fixed (at least initially).The components of thoseparameters vectors were set to1.While they could have been chosen at random with equal probabilities for1,or even chosen to form an error correctingcode as suggested by [47],they were instead designed to represent a stylized image of the corresponding character class drawn on a7。

电子信息工程专业英语词汇(精华整理版)

电子信息工程专业英语词汇(精华整理版)

电子信息工程专业英语词汇(精华整理版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(电子信息工程专业英语词汇(精华整理版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为电子信息工程专业英语词汇(精华整理版)的全部内容。

transistor n 晶体管diode n 二极管semiconductor n 半导体resistor n 电阻器capacitor n 电容器alternating adj 交互的amplifier n 扩音器,放大器integrated circuit 集成电路linear time invariant systems线性时不变系统voltage n 电压,伏特数tolerance n 公差;宽容;容忍condenser n 电容器;冷凝器dielectric n 绝缘体;电解质electromagnetic adj 电磁的adj 非传导性的deflection n偏斜;偏转;偏差linear device 线性器件the insulation resistance 绝缘电阻anode n 阳极,正极cathode n 阴极breakdown n 故障;崩溃terminal n 终点站;终端,接线端emitter n 发射器collect v 收集,集聚,集中insulator n 绝缘体,绝热器oscilloscope n 示波镜;示波器gain n 增益,放大倍数forward biased 正向偏置reverse biased 反向偏置P-N junction PN结MOS(metal-oxide semiconductor)金属氧化物半导体enhancement and exhausted 增强型和耗尽型integrated circuits 集成电路analog n 模拟digital adj 数字的,数位的horizontal adj, 水平的,地平线的vertical adj 垂直的,顶点的amplitude n 振幅,广阔,丰富attenuation n衰减;变薄;稀薄化multimeter n 万用表frequency n 频率,周率the cathode-ray tube 阴极射线管dual—trace oscilloscope 双踪示波器signal generating device 信号发生器peak-to—peak output voltage 输出电压峰峰值sine wave 正弦波triangle wave 三角波square wave 方波amplifier 放大器,扩音器oscillator n 振荡器feedback n 反馈,回应phase n 相,阶段,状态filter n 滤波器,过滤器rectifier n整流器;纠正者band-stop filter 带阻滤波器band-pass filter 带通滤波器decimal adj 十进制的,小数的hexadecimal adj/n十六进制的binary adj 二进制的;二元的octal adj 八进制的domain n 域;领域code n代码,密码,编码v编码the Fourier transform 傅里叶变换Fast Fourier Transform 快速傅里叶变换microcontroller n 微处理器;微控制器assembly language instrucionsn 汇编语言指令chip n 芯片,碎片modular adj 模块化的;模数的sensor n 传感器plug vt堵,塞,插上n塞子,插头,插销coaxial adj 同轴的,共轴的fiber n 光纤relay contact 继电接触器single instruction programmer单指令编程器dedicated manufacturesprogramming unit 专供制造厂用的编程单元beam n (光线的)束,柱,梁polarize v(使)偏振,(使)极化Cathode Ray Tube(CRT)阴极射线管neuron n神经元;神经细胞fuzzy adj 模糊的Artificial Intelligence Shell人工智能外壳程序Expert Systems 专家系统Artificial Intelligence 人工智能Perceptive Systems 感知系统neural network 神经网络fuzzy logic 模糊逻辑intelligent agent 智能代理electromagnetic adj 电磁的coaxial adj 同轴的,共轴的microwave n 微波charge v充电,使充电insulator n 绝缘体,绝缘物nonconductive adj非导体的,绝缘的antenna n天线;触角modeling n建模,造型simulation n 仿真;模拟prototype n 原型array n 排队,编队vector n 向量,矢量wavelet n 微波,小浪sine 正弦 cosine 余弦inverse adj倒转的,反转的n反面;相反v倒转high—performance 高精确性,高性能two—dimensional 二维的;缺乏深度的three—dimensional 三维的;立体的;真实的object—oriented programming面向对象的程序设计spectral adj 光谱的attenuation n衰减;变薄;稀释distortion n 失真,扭曲,变形wavelength n 波长refractive adj 折射的ATM 异步传输模式AsynchronousTransfer ModeADSL非对称用户数字线Asymmetricdigital subscriber lineVDSL甚高速数字用户线very highdata rate digital subscriberlineHDSL高速数据用户线 high ratedigital subscriber lineFDMA频分多址(Frequency DivisionMultiple Access)TDMA时分多址(Time DivisionMultiple Access)CDMA同步码分多址方式(CodeDivision Multiple Access)WCDMA宽带码分多址移动通信系统(Wideband Code DivisionMultiple Access)TD—SCDMA(Time DivisionSynchronous Code DivisionMultiple Access)时分同步码分多址SDLC(synchronous data linkcontrol)同步数据链路控制HDLC(high—level data linkcontrol)高级数据链路控制IP/TCP(internet protocol/transfer Control Protocol)网络传输控制协议ITU (InternationalTelecommunication Union)国际电信联盟ISO国际标准化组织(InternationalStandardization Organization);OSI开放式系统互联参考模型(OpenSystem Interconnect)GSM全球移动通信系统(GlobalSystem for Mobile Communications)GPRS通用分组无线业务(GeneralPacket Radio Service)FDD(frequency division duplex)频分双工TDD(time division duplex)时分双工VPI虚路径标识符(Virtual PathIdentifier);ISDN(Integrated ServicesDigital Network)综合业务数字网IDN综合数字网(integrateddigital network)HDTV (high definitiontelevision)高清晰度电视DCT(Discrete Cosine Transform)离散余弦变换VCI(virtual circuit address)虚通路标识MAN城域网Metropolitan areanetworksLAN局域网local area networkWAN广域网wide area network同步时分复用STDM SynchronousTime Division Multiplexing统计时分复用STDM StatisticalTime Division Multiplexing单工传输simplex transmission半双工传输half-duplex transmission全双工传输full-duplex transmission交换矩阵Switching Matrix电路交换 circuit switching分组交换packet switching报文交换message switching奇偶校验parity checking循环冗余校验CRC Cyclic Redundancy Check虚过滤Virtual filter数字滤波digital filtering伪随机比特Quasi Random Bit带宽分配 Bandwidth allocation信源information source信宿destination数字化digitalize数字传输技术Digital transmission technology灰度图像Grey scale images灰度级Grey scale level幅度谱Magnitude spectrum相位谱Phase spectrum频谱frequency spectrum智能设备Smart Device软切换Soft handover硬切换 Hard Handover相干检测Coherent detection边缘检测Edge detection冲突检测collision detection业务集合service integration业务分离/综合service separation/ integration网络集合network integration环形网Ring networks令牌环网Token Ring network网络终端Network Terminal用户终端user terminal用户电路line circuit电路利用率channel utilization (通道利用率)相关性coherence相干解调coherent demodulation数字图像压缩digital image compression图像编码image encoding有损/无损压缩lossy/lossless compression解压decompression呼叫控制Call Control误差控制error control存储程序控制stored program control存储转发方式store-and-forward manner语音\视频传输voice\video transmission视频点播video—on-demand(VOD)会议电视Video Conference有线电视cable television量化quantization吞吐量throughput话务量traffic多径分集Multipath diversity多媒体通信MDM Multimedia Communication多址干扰Multiple Access Interference人机交互man machine interface 交互式会话Conversationalinteraction路由算法Routing Algorithm目标识别Object recognition话音变换Voice transform中继线trunk line传输时延transmission delay远程监控remote monitoring光链路optical link拓扑结构Topology均方根root mean squarewhatsoever=whatever 0switchboard (电话)交换台bipolar (电子)双极的premise (复)房屋,前提cursor (计算机尺的)游标,指导的elapse (时间)经过,消失vaporize (使)蒸发subsystem (系统的)分部,子系统,辅助系统metallic (像)金属的,含金属的,(声音)刺耳的dispatch (迅速)派遣,急件consensus (意见)一致,同意deadline (最后)期限,截止时间tomographic X线体层摄像的alas 唉,哎呀cluster把…集成一束,一组,一簇,一串,一群encyclopedia 百科全书millionfold 百万倍的semiconductor 半导体radius 半径范围,半径,径向射线half-duplex transmission 半双工传输accompaniment 伴随物,附属物reservation 保留,预定quotation 报价单,行情报告,引语memorandum 备忘录redundancy 备用be viewed as 被看作…be regards as 被认为是as such 本身;照此;以这种资格textual 本文的,正文的verge 边界variation 变化,变量conversion 变化,转化identity 标识;标志criterion 标准,准则in parallel on 并联到,合并到juxtapose 并置,并列dialing pulse 拨号脉冲wave-guide 波导wavelength division multiplexed波分复用baud rate 波特率playback 播放(录音带,唱片)no greater than 不大于update不断改进,使…适合新的要求,更新asymmetric 不对称的irrespective 不考虑的,不顾的inevitably 不可避免的inevitable 不可避免的,不可逃避的,必定的segment 部分abrasion 擦伤,磨损deploy 采用,利用,推广应用take the form of 采用…的形式parameter 参数,参量layer 层dope 掺杂FET(field effect transistors) 场效应管audio recording 唱片ultra—high—frequency(UHF)超高频in excess of 超过in excess of 超过hypertext 超文本ingredient 成分,因素ingredient 成分,组成部分,要素metropolitan—area network(WAN)城域网metropolitan area network(WAN)城域网,城市网络congestion 充满,拥挤,阻塞collision 冲突extractive 抽出;释放出extract 抽取,取出,分离lease 出租,租约,租界期限,租界物pass on 传递,切换transmission 传输facsimile 传真innovative=innovatory 创新的,富有革新精神的track 磁道impetus 促进,激励cluster 簇stored-program control(SPC)存储程序控制a large number of 大量的peal 大声响,发出supersede 代替supplant 代替,取代out—of—band signaling 带外信号simplex transmission 单工传输monochromatic 单色的,单色光的,黑白的ballistic 弹道的,射击的,冲击的conductor 导体hierarchy 等级制度,层次infrastructure 底层结构,基础结构geographic 地理的,地区的geographically 地理上GIS(ground instrumentationsystem) 地面测量系统ground station 地面站earth orbit 地球轨道extraterrestrial 地球外的,地球大气圈外的Land-sat 地球资源卫星rug 地毯,毯子ignite 点火,点燃,使兴奋electromagnetic 电磁的inductive 电感arc 电弧telephony 电话(学),通话dielectric 电介质,绝缘材料;电解质的,绝缘的capacitor 电容telecommunication 电信,无线电通讯scenario 电影剧本,方案modem pool 调制解调器(存储)池superimposing 叠加,重叠pin 钉住,扣住,抓住customize 定做,定制monolithic 独立的,完全统一的aluminize 镀铝strategic 对全局有重要意义的,战略的substantial 多的,大的,实际上的multi-path fading 多径衰落multi—path 多路,多途径;多路的,多途径的multi-access 多路存取,多路进入multiplex 多路复用multiplex 多路复用的degradation 恶化,降级dioxide 二氧化碳LED(light—emitting—diode)发光二极管evolution 发展,展开,渐进feedback 反馈,回授dimension 范围,方向,维,元scenario 方案scenario 方案,电影剧本amplifer 放大器noninvasive 非侵略的,非侵害的tariff 费率,关税率;对…征税distributed functional plane(DFP)分布功能平面DQDB(distributed queue dual bus)分布式队列双总线hierarchy 分层,层次partition 分成segmentation 分割interface 分界面,接口asunder 分开地,分离地detached 分离的,分开的,孤立的dispense 分配allocate 分配,配给;配给物centigrade 分为百度的,百分度的,摄氏温度的fractal 分形molecule 分子,微小,些微cellular 蜂窝状的cellular 蜂窝状的,格形的,多孔的auxiliary storage(also called secondary storage) 辅助存储器decay 腐烂,衰减,衰退negative 负电vicinity 附近,邻近vicinity 附近地区,近处sophisticated 复杂的,高级的,现代化的high-frequency(HF) 高频high definition television 高清晰度电视chromium 铬annotate 给…作注解in terms of 根据,按照disclosure 公布,企业决算公开public network 公用网functionality 功能,功能度mercury 汞resonator 共鸣器resonance 共振whimsical 古怪的,反复无常的administration 管理,经营cursor 光标(显示器),游标,指针optical computer 光计算机photoconductor 光敏电阻optical disks 光盘optically 光学地,光地wide—area networks 广域网specification 规范,说明书silicon 硅the internationaltelecommunication union(ITU) 国际电信联盟excess 过剩obsolete 过时的,废弃的maritime 海事的synthetic 合成的,人造的,综合的synthetic 合成的,综合性的rational 合乎理性的rationalization 合理化streamline 合理化,理顺infrared 红外线的,红外线skepticism 怀疑论ring network 环形网hybrid 混合物counterpart 伙伴,副本,对应物electromechanical 机电的,电动机械的Robot 机器人Robotics 机器人技术,机器人学accumulation 积累infrastructure 基础,基础结构substrate 基质,底质upheaval 激变,剧变compact disc 激光磁盘(CD)concentrator 集中器,集线器centrex system 集中式用户交换功能系统converge on 集中于,聚集在…上lumped element 集总元件CAI(computer-aided instruction)计算机辅助教学computer—integratedmanufacturing(CIM)计算机集成制造computer mediated communication(CMC)计算机中介通信record 记录register 记录器,寄存器expedite 加快,促进weight 加权accelerate 加速,加快,促进categorize 加以类别,分类in addition 加之,又,另外hypothetical 假设的rigidly 坚硬的,僵硬的compatibility 兼容性,相容性surveillance 监视surveillance 监视retrieval 检索,(可)补救verification 检验simplicity 简单,简明film 胶片,薄膜take over 接管,接任ruggedness 结实threshold 界限,临界值with the aid of 借助于,用,通过wire line 金属线路,有线线路coherent 紧凑的,表达清楚的,粘附的,相干的compact 紧密的approximation 近似undertake 进行,从事transistor 晶体管elaborate 精心制作的,细心完成的,周密安排的vigilant 警戒的,警惕的alcohol 酒精,酒local area networks(LANs)局域网local-area networks(LANs)局域网drama 剧本,戏剧,戏剧的演出focus on 聚集在,集中于,注视insulator 绝缘root mean square 均方根uniform 均匀的open—system-interconnection(OSI)开放系统互连expire 开始无效,满期,终止immunity 抗扰,免除,免疫性take…into account考虑,重视…programmable industrialautomation 可编程工业自动化demountable 可拆卸的tunable 可调的reliable 可靠be likely to 可能,大约,像要videotex video 可视图文电视negligible 可以忽略的aerial 空气的,空中的,无形的,虚幻的;天线broadband 宽(频)带pervasive 扩大的,渗透的tensile 拉力的,张力的romanticism 浪漫精神,浪漫主义discrete 离散,不连续ion 离子force 力量;力stereophonic 立体声的continuum 连续统一体,连续统,闭联集smart 灵巧的;精明的;洒脱的token 令牌on the other hand 另一方面hexagonal 六边形的,六角形的hexagon 六角形,六边形monopoly 垄断,专利video-clip 录像剪辑aluminum 铝pebble 卵石,水晶透镜forum 论坛,讨论会logical relationships 逻辑关系code book 码本pulse code modulation(PCM)脉冲编码调制roam 漫步,漫游bps(bits per second) 每秒钟传输的比特ZIP codes 美国邮区划分的五位编码susceptible(to)敏感的,易受…的analog 模拟,模拟量pattern recognition 模式识别bibliographic 目录的,文献的neodymium 钕the european telecommunicationstandardization institute(ETSI)欧洲电信标准局coordinate 配合的,协调的;使配合,调整ratify 批准,认可bias 偏差;偏置deviate 偏离,与…不同spectrum 频谱come into play 其作用entrepreneurial 企业的heuristic methods 启发式方法play a …role(part)起…作用stem from 起源于;由…发生organic 器官的,有机的,组织的hypothesis 前提front-end 前置,前级potential 潜势的,潜力的intensity 强度coincidence 巧合,吻合,一致scalpel 轻便小刀,解剖刀inventory 清单,报表spherical 球的,球形的distinguish 区别,辨别succumb 屈服,屈从,死global functional plane(GFP) 全局功能平面full-duplex transmission 全双工传输hologram 全息照相,全息图deficiency 缺乏thermonuclear 热核的artifact 人工制品AI(artificial intelligence) 人工智能fusion 熔解,熔化diskettes(also called floppy disk) 软盘sector 扇区entropy 熵uplink 上行链路arsenic 砷neural network 神经网络very-high—frequency(VHF) 甚高频upgrade 升级distortion 失真,畸变identification 识别,鉴定,验明pragmatic 实际的implementation 实施,实现,执行,敷设entity 实体,存在vector quantification 矢量量化mislead 使…误解,给…错误印象,引错vex 使烦恼,使恼火defy 使落空facilitate 使容易,促进retina 视网膜compatible 适合的,兼容的transceiver 收发两用机authorize 授权,委托,允许data security 数据安全性data independence 数据独立data management 数据管理database 数据库database management system(DBMS)数据库管理信息系统database transaction 数据库事务data integrity 数据完整性,数据一致性attenuation 衰减fading 衰落,衰减,消失dual 双的,二重的transient 瞬时的deterministic 宿命的,确定的algorithm 算法dissipation 损耗carbon 碳diabetes 糖尿病cumbersome 讨厌的,麻烦的,笨重的razor 剃刀,剃go by the name of 通称,普通叫做commucation session 通信会话traffic 通信业务(量)synchronous transmission 同步传输concurrent 同时发生的,共存的simultaneous 同时发生的,同时做的simultaneous 同时发生的,一齐的coaxial 同轴的copper 铜statistical 统计的,统计学的dominate 统治,支配invest in 投资perspective 透视,角度,远景graphics 图示,图解pictorial 图像的coating 涂层,层deduce 推理reasoning strategies 推理策略inference engine 推理机topology 拓扑结构heterodyne 外差法的peripheral 外界的,外部的,周围的gateway 网关hazardous 危险的microwave 微波(的)microprocessor 微处理机,微处理器microelectronic 微电子nuance 微小的差别(色彩等)encompass 围绕,包围,造成,设法做到maintenance 维护;保持;维修satellite communication 卫星通信satellite network 卫星网络transceiver 无线电收发信机radio—relay transmission 无线电中继传输without any doubt 无疑passive satellite 无源卫星sparse 稀少的,稀疏的downlink 下行链路precursor 先驱,前任visualization 显像feasibility 现实性,可行性linearity 线性度constrain 限制,约束,制约considerable 相当的,重要的geo-stationary 相对地面静止by contrast 相反,而,对比起来coorelation 相关性mutual 相互的mutually 相互的,共同的interconnect 相互连接,互连one after the other 相继,依次minicomputer 小型计算机protocol 协议,草案protocol 协议,规约,规程psycho-acoustic 心理(精神)听觉的;传音的channelization 信道化,通信信道选择run length encoding 行程编码groom 修饰,准备virtual ISDN 虚拟ISDNmultitude 许多,大批,大量whirl 旋转preference 选择,喜欢avalanche 雪崩pursue 寻求,从事interrogation 询问dumb 哑的,不说话的,无声的subcategory 亚类,子种类,子范畴orbital 眼眶;轨道oxygen 氧气,氧元素service switching and controlpoints(SSCPs)业务交换控制点service control points(SCPs) 业务控制点service control function(SCF) 业务控制功能in concert 一致,一齐handover 移交,越区切换at a rate of 以……的速率in the form of 以…的形式base on… 以…为基础yttrium 钇(稀有金属,符号Y)asynchronous transmission 异步传输asynchronous 异步的exceptional 异常的,特殊的voice—grade 音频级indium 铟give rise to 引起,使产生cryptic 隐义的,秘密的hard disk 硬盘hard automation 硬自动化by means of 用,依靠equip with 用…装备subscriber 用户telex 用户电报PBX(private branch exchange)用户小交换机或专用交换机be called upon to 用来…,(被)要求…superiority 优势predominance 优势,显著active satellite 有源卫星in comparison with 与…比较comparable to 与…可比preliminary 预备的,初步的premonition 预感,预兆nucleus 原子核valence 原子价circumference 圆周,周围teleprocessing 远程信息处理,遥控处理perspective 远景,前途constrain 约束,强迫mobile 运动的,流动的,机动的,装在车上的convey 运输,传递,转换impurity 杂质impurity 杂质,混杂物,不洁,不纯regenerative 再生的improve over 在……基础上改善play important role in 在…中起重要作用in close proximity 在附近,在很近underlying 在下的,基础的in this respect 在这方面entail 遭遇,导致presentation 赠与,图像,呈现,演示narrowband 窄(频)带deploy 展开,使用,推广应用megabit 兆比特germanium 锗positive 正电quadrature 正交orthogonal 正交的quadrature amplitudemodulation(QAM) 正交幅度调制on the right track 正在轨道上sustain 支撑,撑住,维持,持续outgrowh 支派;长出;副产品dominate 支配,统治knowledge representation 知识表示knowledge engineering 知识工程knowledge base 知识库in diameter 直径helicopter 直升飞机acronym 只取首字母的缩写词as long as 只要,如果tutorial 指导教师的,指导的coin 制造(新字符),杜撰fabrication 制造,装配;捏造事实proton 质子intelligence 智能,智力,信息intelligent network 智能网intermediate 中间的nucleus(pl.nuclei) 中心,核心neutrons 中子terminal 终端,终端设备overlay 重叠,覆盖,涂覆highlight 重要的部分,焦点charge 主管,看管;承载dominant 主要的,控制的,最有力的cylinder 柱面expert system 专家系统private network 专用网络transition 转变,转换,跃迁relay 转播relay 转播,中继repeater 转发器,中继器pursue 追赶,追踪,追求,继续desktop publish 桌面出版ultraviolet 紫外线的,紫外的;紫外线辐射field 字段vendor 自动售货机,厂商naturally 自然的;天生具备的synthesize 综合,合成integrate 综合,使完全ISDN(intergrated servicesdigital network) 综合业务数字网as a whole 总体上bus network 总线形网crossbar 纵横,交叉impedance 阻抗initial 最初的,开始的optimum 最佳条件appear as 作为…出现A Analog 模拟A/D Analog to Digital 模—数转换AAC Advanced Audio Coding高级音频编码ABB Automatic Black Balance 自动黑平衡ABC American Broadcasting Company 美国广播公司Automatic Bass Compensation 自动低音补偿 Automatic BrightnessControl 自动亮度控制ABL Automatic Black Level自动黑电平ABLC Automatic BrightnessLimiter Circuit 自动亮度限制电路ABU Asian BroadcastingUnion 亚洲广播联盟(亚广联ABS American Bureau ofStandard 美国标准局AC Access Conditions 接入条件Audio Center 音频中心ACA Adjacent ChannelAttenuation 邻频道衰减ACC Automatic CenteringControl 自动中心控制Automatic Chroma Control 自动色度(增益ACK Automatic Chroma Killer自动消色器ACP Additive Colour Process加色法ACS Access Control System接入控制系统Advanced CommunicationService 高级通信业务Area Communication System区域通信系统ADC Analog to DigitalConverter 模-数转换器Automatic DegaussirngCircuit 自动消磁电路ADL Acoustic Delay Line 声延迟线ADS Audio DistributionSystem 音频分配系统AE Audio Erasing 音频(声音AEF Automatic EditingFunction 自动编辑功能AES Audio EngineeringSociety 音频工程协会AF Audio Frequency 音频AFA Audio FrequencyAmplifier 音频放大器AFC Automatic FrequencyCoder 音频编码器Automatic Frequency Control自动频率控制AFT Automatic Fine Tuning自动微调Automatic Frequency Track自动频率跟踪Automatic Frequency Trim 自动额率微调AGC Automatic Gain Control自动增益控制AI Artificial Intelligence人工智能ALM Audio—Level Meter 音频电平表AM Amplitude Modulation 调幅AMS Automatic Music Sensor自动音乐传感装置ANC Automatic NoiseCanceller 自动噪声消除器ANT ANTenna 天线AO Analog Output 模拟输出APS Automatic ProgramSearch 自动节目搜索APPS Automatic ProgramPause System 自动节目暂停系统APSS Automatic ProgramSearch System 自动节目搜索系统AR Audio Response 音频响应ARC Automatic RemoteControl 自动遥控ASCII American StandardCode for InformationInterchange 美国信息交换标准AST Automatic ScanningTracking 自动扫描跟踪ATC Automatic TimingControl 自动定时控制Automatic Tone Correction自动音频校正ATM Asynchronous TransferMode 异步传输模式ATF Automatic Track Finding自动寻迹ATS Automatic Test System自动测试系统ATSC Advanced TelevisionSystems Committee (美国高级电视制式委员会)***C Automatic VolumeControl 自动音量控制***R Automatic VoltageRegulator 自动稳压器AWB Automatic White Balance自动白平衡AZC Automatic ZoomingControl 自动变焦控制AZS Automatic Zero Setting自动调零BA Branch Amplifier 分支放大器Buffer Amplifier 缓冲放大器BAC Binary-AnalogConversion 二进制模拟转换BB Black Burst 黑场信号BBC British BroadcastingCorporation 英国广播公司BBI Beijing BroadcastingInstitute 北京广播学院BC Binary Code 二进制码Balanced Current 平衡电流Broadcast Control 广播控制BCT Bandwidth CompressionTechnique 带宽压缩技术BDB Bi-directional Data Bus双向数据总线BER Basic Encoding Rules 基本编码规则Bit Error Rate 比特误码率BF Burst Flag 色同步旗脉冲BFA Bare Fiber Adapter 裸光纤适配器Brillouin Fiber Amplifier布里渊光纤放大器BGM Background Music 背景音乐BIOS Basic Input/OutputSystem 基本输入输出系统B—ISDN Broadband—ISDN 宽带综合业务数据网BIU Basic Information Unit基本信息单元Bus Interface Unit 总线接口单元BM Bi-phase Modulation 双相调制BML Business ManagementLayer 商务管理层BN Backbone Network 主干网BNT Broadband NetworkTermination 宽带网络终端设备BO Bus Out 总线输出BPG Basic Pulse Generator 基准脉冲发生器BPS Band Pitch Shift 分频段变调节器BSI British Standard Institute 英国标准学会BSS Broadcast Satellite Service 广播卫星业务BT Block Terminal 分线盒、分组终端British Telecom 英国电信BTA Broadband Terminal Adapter 宽带终端适配器Broadcasting Technology Association (日本BTL Balanced Transformer—Less 桥式推挽放大电路BTS Broadcast Technical Standard 广播技术标准BTU Basic Transmission Unit 基本传输单元BVU Broadcasting Video Unit 广播视频型(一种3/4英寸带录像机记录格式BW BandWidth 带宽BWTV Black and White Television 黑白电视CA Conditional Access 条件接收CAC Conditional Access Control 条件接收控制CAL Continuity AcceptLimit 连续性接受极限CAS Conditional Access System 条件接收系统Conditional Access Sub—system 条件接收子系统CATV Cable Television 有线电视,电缆电视Community Antenna Television 共用天线电视C*** Constant Angular Velocity 恒角速度CBC Canadian Broadcasting Corporation 加拿大广播公司CBS Columbia Broadcasting System (美国哥伦比亚广播公司CC Concentric Cable 同轴电缆CCG Chinese Character Generator 中文字幕发生器CCIR International Radio Consultative Committee 国际无线电咨询委员会CCITT International Telegraph and Telephone ConsultativeCommittee 国际电话电报咨询委员会CCR Central Control Room 中心控制室CCTV China Central Television 中国中央电视台Close-Circuit Television 闭路电视CCS Center Central System 中心控制系统CCU Camera Control Unit 摄像机控制器CCW Counter Clock—Wise 反时针方向CD Compact Disc 激光唱片 CDA Current DumpingAmplifier 电流放大器CD—E Compact Disc Erasable可抹式激光唱片CDFM Compact Disc FileManager 光盘文件管理(程序CDPG Compact—Disc PlusGraphic 带有静止图像的CD唱盘CD-ROM Compact Disc—ReadOnly Memory 只读式紧凑光盘CETV China EducationalTelevision 中国教育电视台CF Color Framing 彩色成帧CGA Color Graphics Adapter彩色图形(显示卡CI Common Interface 通用接口CGA Color Graphics Adapter 彩色图形(显示卡CI Common Interface 通用接口CIE Chinese Institute ofElectronics 中国电子学会CII China InformationInfrastructure 中国信息基础设施CIF Common IntermediateFormat 通用中间格式CIS Chinese IndustrialStandard 中国工业标准CLV Constant Linear Velocity恒定线速度CM Colour Monitor 彩色监视器CMTS Cable Modem TerminationSystem 线缆调制解调器终端系统CNR Carrier-to—Noise Ratio载噪比CON Console 操纵台Controller 控制器CPB Corporation of PublicBroadcasting (美国公共广播公司CPU Central Processing Unit中央处理单元CRC Cyclic Redundancy Check循环冗余校验CRCC CRI Cyclic RedundancyCheck Code 循环冗余校验码CROM China RadioInternational 中国国际广播电台CRT Control Read Only Memory控制只读存储器CS Cathode—Ray Tube 阴极射线管CSC Communication Satellite通信卫星CSS Color Sub-carrier 彩色副载波Center Storage Server 中央存储服务器Content Scrambling System 内容加扰系统CSU Channel Service Unit 信道业务单元CT Color Temperature 色温CTC Cassette Tape Controller盒式磁带控制器Channel Traffic Control 通道通信量控制Counter Timer Circuit 计数器定时器电路Counter Timer Control 计数器定时器控制CTE Cable TerminationEquipment 线缆终端设备Customer Terminal Equipment用户终端设备CTV Color Television 彩色电视CVD China Video Disc 中国数字视盘CW Carrie Wave 载波DAB Digital AudioBroadcasting 数字音频广播DASH Digital AudioStationary Head 数字音频静止磁头DAT Digital Audio Tape 数字音频磁带DBMS Data Base ManagementSystem 数据库管理系统DBS Direct BroadcastSatellite 直播卫星DCC Digital Compact Cassette数字小型盒带Dynamic Contrast Control 动态对比度控制DCT Digital ComponentTechnology 数字分量技术Discrete Cosine Transform 离散余弦变换DCTV Digital ColorTelevision 数字彩色电视DD Direct Drive 直接驱动DDC Direct Digital Control直接数字控制DDE Dynamic Data Exchange 动态数据交换DDM Data Display Monitor 数据显示监视器DES Data Elementary Stream数据基本码流Data Encryption Standard 美国数据加密标准DF Dispersion Flattened 色散平坦光纤DG Differential Gain 微分增益DI Digital Interface 数字接口DITEC Digital TelevisionCamera 数字电视摄像机DL Delay Line 延时线DLD Dynamic Linear Drive 动态线性驱动DM Delta Modulation 增量调制Digital Modulation 数字调制DMB Digital MultimediaBroadcasting 数字多媒体广播DMC Dynamic Motion Control动态控制DME Digital Multiple Effect数字多功能特技DMS Digital Mastering System数字主系统DN Data Network 数据网络DNG Digital News Gathering数字新闻采集DNR Digital Noise Reducer 数字式降噪器DOB Data Output Bus 数据输出总线DOCSIS Data Over CableService Interface Specifications有线数据传输业务接口规范DOC Drop Out Compensation 失落补偿DOS Disc Operating System 磁盘操作系统DP Differential Phase 微分相位Data Pulse 数据脉冲DPCM Differential Pulse Code Modulation 差值脉冲编码调制DPL Dolby Pro Logic 杜比定向逻辑DSB Digital Satellite Broadcasting 数字卫星广播DSC Digital Studio Control 数字演播室控制DSD Dolby Surround Digital 杜比数字环绕声DSE Digital Special Effect 数字特技DSK Down-Stream Key 下游键DSP Digital Signal Processing 数字信号处理Digital Sound Processor 数字声音处理器DSS Digital Satellite System 数字卫星系统DT Digital Technique 数字技术Digital Television 数字电视Data Terminal 数据终端Data Transmission 数据传输DTB Digital Terrestrial Broadcasting 数字地面广播DTBC Digital Time—Base Corrector 数字时基校正器DTC Digital Television Camera 数字电视摄像机DTS Digital Theater System 数字影院系统Digital Tuning System 数字调谐系统Digital Television Standard 数字电视标准DVB Digital Video Broadcasting 数字视频广播DVC Digital Video Compression 数字视频压缩DVE Digital Video Effect 数字视频特技DVS Desktop Video Studio 桌上视频演播DVTR Digital Video Tape Recorder 数字磁带录像机EA Extension Amplifier 延长放大器EB Electron Beam 电子束EBS Emergency Broadcasting System 紧急广播系统EBU European Broadcasting Union 欧洲广播联盟EC Error Correction 误差校正 ECN Emergency Communications Network 应急通信网络ECS European Communication Satellite 欧洲通信卫星EDC Error Detection Code 错误检测码EDE Electronic Data Exchange 电子数据交换EDF Erbium—Doped Fiber 掺饵光纤EDFA Erbium-Doped Fiber Amplifier 掺饵光纤放大器EDL Edit Decision List 编辑点清单EDTV Extended Definition Television 扩展清晰度电视EE Error Excepted 允许误差EFM Eight to Fourteen Modulation 8-14调制 EFP Electronic FieldProduction 电子现场节目制作EH Ethernet Hosts 以太网主机EIN Equivalent Input Noise等效输入噪声EIS Electronic InformationSystem 电子信息系统EISA Extended IndustrialStandard Architecture 扩展工业标准总线EL Electro—Luminescent 场致发光EM Error Monitoring 误码监测EN End Node 末端节点ENG Electronic NewsGathering 电子新闻采集EOT End of Tape 带尾EP Edit Point 编辑点Error Protocol 错误协议EPG Electronic Program Guides 电子节目指南EPS Emergency Power Supply应急电源ERP Effective Radiated Power 有效辐射功率ES Elementary Stream 基本码流End System 终端系统ESA European Space Agency 欧洲空间局ETV Education Television 教育电视FA Enhanced Television 增强电视FABM FAS Facial Animation 面部动画FC Fiber Amplifier BoosterModule 光纤放大器增强模块Fiber Access System 光纤接入系统Frequency Changer 变频器FCC Fiber Channel 光纤通道FD Film Composer 电影编辑系统Federal CommunicationsCommission 美国联邦通信委员会FDCT Frequency Divider 分频器FDDI FDM Fiber Duct 光纤管道FDP Forward Discrete CosineTransform 离散余弦正变换FE Fiber Distributed DataInterface 分布式光纤数据接口Frequency-Division Multiplexing频分复用FF Fiber Distribution Point光纤分配点FG Front End 前端FH Framing Error 成帧误差FIT Fast Forward 快进FN Frequency Generator 频率发生器FOA Frequency Hopping 跳频FOC Frame—Interline Transfer帧一行间转移Fiber Node 光纤节点Fiber Optic Amplifier 光纤放大器FOM Fiber Optic Cable 光缆FON Fiber Optic Communications光纤通信FOS Fiber Optic Coupler 光纤耦合器FOTC Fiber Optic Modem 光纤调制解调器FS Fiber Optic Net 光纤网Factor of Safety 安全系数Fiber Optic Trunk Cable 光缆干线FT Frame Scan 帧扫描FTP Frame Store 帧存储器FTTB Frame Synchro 帧同步机FTTC France Telecom 法国电信Absorber Circuit 吸收电路AC/AC Frequency Converter 交交变频电路AC power control交流电力控制AC Power Controller交流调功电路AC Power Electronic Switch交流电力电子开关Ac Voltage Controller交流调压电路Asynchronous Modulation异步调制Baker Clamping Circuit贝克箝位电路Bi—directional Triode Thyristor双向晶闸管Bipolar Junction Transistor-—BJT双极结型晶体管Boost—Buck Chopper升降压斩波电路Boost Chopper升压斩波电路Boost Converter升压变换器Bridge Reversible Chopper桥式可逆斩波电路Buck Chopper降压斩波电路Buck Converter降压变换器Commutation换流Conduction Angle导通角Constant Voltage ConstantFrequency —-CVCF 恒压恒频Continuous Conduction—-CCM(电流)连续模式Control Circuit 控制电路Cuk Circuit CUK 斩波电路Current Reversible Chopper电流可逆斩波电路Current Source Type Inverter--CSTI 电流(源)型逆变电路Cyclo convertor周波变流器DC-AC-DC Converter直交直电路DC Chopping直流斩波DC Chopping Circuit直流斩波电路DC—DC Converter直流-直流变换器Device Commutation器件换流Direct Current Control直接电流控制Discontinuous Conduction mode(电流)断续模式displacement factor 位移因数distortion power 畸变功率double end converter 双端电路driving circuit 驱动电路electrical isolation 电气隔离fast acting fuse 快速熔断器fast recovery diode快恢复二极管fast revcovery epitaxial diodes快恢复外延二极管fast switching thyristor快速晶闸管。

IEEE Xplore Full-Text PDF_

IEEE Xplore Full-Text PDF_
Manuscript received October 10, 2005; revised December 22, 2005. The work of Y. He and M. Wu was supported in part by the National Science Foundation of China under Grants 60425310 and 60574014. Y. He is with the Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119260, Singapore, on leave from the School of Information Science and Engineering, Central South University, Changsha 410083, China. Q.-G. Wang and C. Lin are with the Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119260, Singapore (e-mail: elewqg@.sg). M. Wu is with the School of Information Science and Engineering, Central South University, Changsha 410083, China. Digital Object Identifier 10.1109/TNN.2006.875969
1

自动化英语专业英语词汇表

自动化英语专业英语词汇表

自动化英语专业英语词汇表文章摘要:本文介绍了自动化英语专业的一些常用的英语词汇,包括自动化技术、控制理论、系统工程、人工智能、模糊逻辑等方面的专业术语。

本文按照字母顺序,将这些词汇分为26个表格,每个表格包含了以相应字母开头的词汇及其中文释义。

本文旨在帮助自动化专业的学习者和从业者掌握和使用这些专业英语词汇,提高他们的英语水平和专业素养。

A英文中文acceleration transducer加速度传感器acceptance testing验收测试accessibility可及性accumulated error累积误差AC-DC-AC frequency converter交-直-交变频器AC (alternating current) electric drive交流电子传动active attitude stabilization主动姿态稳定actuator驱动器,执行机构adaline线性适应元adaptation layer适应层adaptive telemeter system适应遥测系统adjoint operator伴随算子admissible error容许误差aggregation matrix集结矩阵AHP (analytic hierarchy process)层次分析法amplifying element放大环节analog-digital conversion模数转换annunciator信号器antenna pointing control天线指向控制anti-integral windup抗积分饱卷aperiodic decomposition非周期分解a posteriori estimate后验估计approximate reasoning近似推理a priori estimate先验估计articulated robot关节型机器人assignment problem配置问题,分配问题associative memory model联想记忆模型associatron联想机asymptotic stability渐进稳定性attained pose drift实际位姿漂移B英文中文attitude acquisition姿态捕获AOCS (attritude and orbit control system)姿态轨道控制系统attitude angular velocity姿态角速度attitude disturbance姿态扰动attitude maneuver姿态机动attractor吸引子augment ability可扩充性augmented system增广系统automatic manual station自动-手动操作器automaton自动机autonomous system自治系统backlash characteristics间隙特性base coordinate system基座坐标系Bayes classifier贝叶斯分类器bearing alignment方位对准bellows pressure gauge波纹管压力表benefit-cost analysis收益成本分析bilinear system双线性系统biocybernetics生物控制论biological feedback system生物反馈系统C英文中文calibration校准,定标canonical form标准形式canonical realization标准实现capacity coefficient容量系数cascade control级联控制causal system因果系统cell单元,元胞cellular automaton元胞自动机central processing unit (CPU)中央处理器certainty factor确信因子characteristic equation特征方程characteristic function特征函数characteristic polynomial特征多项式characteristic root特征根英文中文charge-coupled device (CCD)电荷耦合器件chaotic system混沌系统check valve单向阀,止回阀chattering phenomenon颤振现象closed-loop control system闭环控制系统closed-loop gain闭环增益cluster analysis聚类分析coefficient of variation变异系数cogging torque齿槽转矩,卡齿转矩cognitive map认知图,认知地图coherency matrix相干矩阵collocation method配点法,配置法combinatorial optimization problem组合优化问题common mode rejection ratio (CMRR)共模抑制比,共模抑制率commutation circuit换相电路,换向电路commutator motor换向电动机D英文中文damping coefficient阻尼系数damping ratio阻尼比data acquisition system (DAS)数据采集系统data fusion数据融合dead zone死区decision analysis决策分析decision feedback equalizer (DFE)决策反馈均衡器decision making决策,决策制定decision support system (DSS)决策支持系统decision table决策表decision tree决策树decentralized control system分散控制系统decoupling control解耦控制defuzzification去模糊化,反模糊化delay element延时环节,滞后环节delta robot德尔塔机器人demodulation解调,检波density function密度函数,概率密度函数derivative action微分作用,微分动作design matrix设计矩阵E英文中文eigenvalue特征值,本征值eigenvector特征向量,本征向量elastic element弹性环节electric drive电子传动electric potential电势electro-hydraulic servo system电液伺服系统electro-mechanical coupling system电机耦合系统electro-pneumatic servo system电气伺服系统electronic governor电子调速器encoder编码器,编码装置end effector末端执行器,末端效应器entropy熵equivalent circuit等效电路error analysis误差分析error bound误差界,误差限error signal误差信号estimation theory估计理论Euclidean distance欧几里得距离,欧氏距离Euler angle欧拉角Euler equation欧拉方程F英文中文factor analysis因子分析factorization method因子法,因式分解法feedback反馈,反馈作用feedback control反馈控制feedback linearization反馈线性化feedforward前馈,前馈作用feedforward control前馈控制field effect transistor (FET)场效应晶体管filter滤波器,滤波环节finite automaton有限自动机finite difference method有限差分法finite element method (FEM)有限元法finite impulse response (FIR) filter有限冲激响应滤波器first-order system一阶系统fixed-point iteration method不动点迭代法flag register标志寄存器flip-flop circuit触发器电路floating-point number浮点数flow chart流程图,流程表fluid power system流体动力系统G英文中文gain增益gain margin增益裕度Galerkin method伽辽金法game theory博弈论Gauss elimination method高斯消元法Gauss-Jordan method高斯-约当法Gauss-Markov process高斯-马尔可夫过程Gauss-Seidel iteration method高斯-赛德尔迭代法genetic algorithm (GA)遗传算法gradient method梯度法,梯度下降法graph theory图论gravity gradient stabilization重力梯度稳定gray code格雷码,反向码gray level灰度,灰阶grid search method网格搜索法ground station地面站,地面控制站guidance system制导系统,导航系统gyroscope陀螺仪,陀螺仪器H英文中文H∞ control H无穷控制Hamiltonian function哈密顿函数harmonic analysis谐波分析harmonic oscillator谐振子,谐振环节Hartley transform哈特利变换Hebb learning rule赫布学习规则Heisenberg uncertainty principle海森堡不确定性原理hidden layer隐层,隐含层hidden Markov model (HMM)隐马尔可夫模型hierarchical control system分层控制系统high-pass filter高通滤波器Hilbert transform希尔伯特变换Hopfield network霍普菲尔德网络hysteresis滞后,迟滞,磁滞I英文中文identification识别,辨识identity matrix单位矩阵,恒等矩阵image processing图像处理impulse response冲激响应impulse response function冲激响应函数inadmissible control不可接受控制incremental encoder增量式编码器indefinite integral不定积分index of controllability可控性指标index of observability可观测性指标induction motor感应电动机inertial navigation system (INS)惯性导航系统inference engine推理引擎,推理机inference rule推理规则infinite impulse response (IIR) filter无限冲激响应滤波器information entropy信息熵information theory信息论input-output linearization输入输出线性化input-output model输入输出模型input-output stability输入输出稳定性J英文中文Jacobian matrix雅可比矩阵jerk加加速度,冲击joint coordinate system关节坐标系joint space关节空间Joule's law焦耳定律jump resonance跳跃共振K英文中文Kalman filter卡尔曼滤波器Karhunen-Loeve transform卡尔胡南-洛维变换kernel function核函数,核心函数kinematic chain运动链,运动链条kinematic equation运动方程,运动学方程kinematic pair运动副,运动对kinematics运动学kinetic energy动能L英文中文Lagrange equation拉格朗日方程Lagrange multiplier拉格朗日乘子Laplace transform拉普拉斯变换Laplacian operator拉普拉斯算子laser激光,激光器latent root潜根,隐根latent vector潜向量,隐向量learning rate学习率,学习速度least squares method最小二乘法Lebesgue integral勒贝格积分Legendre polynomial勒让德多项式Lennard-Jones potential莱纳德-琼斯势level set method水平集方法Liapunov equation李雅普诺夫方程Liapunov function李雅普诺夫函数Liapunov stability李雅普诺夫稳定性limit cycle极限环,极限圈linear programming线性规划linear quadratic regulator (LQR)线性二次型调节器linear system线性系统M英文中文machine learning机器学习machine vision机器视觉magnetic circuit磁路,磁电路英文中文magnetic flux磁通量magnetic levitation磁悬浮magnetization curve磁化曲线magnetoresistance磁阻,磁阻效应manipulability可操作性,可操纵性manipulator操纵器,机械手Markov chain马尔可夫链Markov decision process (MDP)马尔可夫决策过程Markov property马尔可夫性质mass matrix质量矩阵master-slave control system主从控制系统matrix inversion lemma矩阵求逆引理maximum likelihood estimation (MLE)最大似然估计mean square error (MSE)均方误差measurement noise测量噪声,观测噪声mechanical impedance机械阻抗membership function隶属函数N英文中文natural frequency固有频率,自然频率natural language processing (NLP)自然语言处理navigation导航,航行negative feedback负反馈,负反馈作用neural network神经网络neuron神经元,神经细胞Newton method牛顿法,牛顿迭代法Newton-Raphson method牛顿-拉夫逊法noise噪声,噪音nonlinear programming非线性规划nonlinear system非线性系统norm范数,模,标准normal distribution正态分布,高斯分布notch filter凹槽滤波器,陷波滤波器null space零空间,核空间O英文中文observability可观测性英文中文observer观测器,观察器optimal control最优控制optimal estimation最优估计optimal filter最优滤波器optimization优化,最优化orthogonal matrix正交矩阵oscillation振荡,振动output feedback输出反馈output regulation输出调节P英文中文parallel connection并联,并联连接parameter estimation参数估计parity bit奇偶校验位partial differential equation (PDE)偏微分方程passive attitude stabilization被动姿态稳定pattern recognition模式识别PD (proportional-derivative) control比例-微分控制peak value峰值,峰值幅度perceptron感知器,感知机performance index性能指标,性能函数period周期,周期时间periodic signal周期信号phase angle相角,相位角phase margin相位裕度phase plane analysis相平面分析phase portrait相轨迹,相图像PID (proportional-integral-derivative) control比例-积分-微分控制piezoelectric effect压电效应pitch angle俯仰角pixel像素,像元Q英文中文quadratic programming二次规划quantization量化,量子化quantum computer量子计算机quantum control量子控制英文中文queueing theory排队论quiescent point静态工作点,静止点R英文中文radial basis function (RBF) network径向基函数网络radiation pressure辐射压random variable随机变量random walk随机游走range范围,区间,距离rank秩,等级rate of change变化率,变化速率rational function有理函数Rayleigh quotient瑞利商real-time control system实时控制系统recursive algorithm递归算法recursive estimation递归估计reference input参考输入,期望输入reference model参考模型,期望模型reinforcement learning强化学习relay control system继电器控制系统reliability可靠性,可信度remote control system遥控系统,远程控制系统residual error残差误差,残余误差resonance frequency共振频率S英文中文sampling采样,取样sampling frequency采样频率sampling theorem采样定理saturation饱和,饱和度scalar product标量积,点积scaling factor缩放因子,比例系数Schmitt trigger施密特触发器Schur complement舒尔补second-order system二阶系统self-learning自学习,自我学习self-organizing map (SOM)自组织映射sensitivity灵敏度,敏感性sensitivity analysis灵敏度分析,敏感性分析sensor传感器,感应器sensor fusion传感器融合servo amplifier伺服放大器servo motor伺服电机,伺服马达servo valve伺服阀,伺服阀门set point设定值,给定值settling time定常时间,稳定时间T英文中文tabu search禁忌搜索,禁忌表搜索Taylor series泰勒级数,泰勒展开式teleoperation遥操作,远程操作temperature sensor温度传感器terminal终端,端子testability可测试性,可检测性thermal noise热噪声,热噪音thermocouple热电偶,热偶threshold阈值,门槛time constant时间常数time delay时延,延时time domain时域time-invariant system时不变系统time-optimal control时间最优控制time series analysis时间序列分析toggle switch拨动开关,切换开关tolerance analysis公差分析torque sensor扭矩传感器transfer function传递函数,迁移函数transient response瞬态响应U英文中文uncertainty不确定性,不确定度underdamped system欠阻尼系统undershoot低于量,低于值unit impulse function单位冲激函数unit step function单位阶跃函数unstable equilibrium point不稳定平衡点unsupervised learning无监督学习upper bound上界,上限utility function效用函数,效益函数V英文中文variable structure control变结构控制variance方差,变异vector product向量积,叉积velocity sensor速度传感器verification验证,校验virtual reality虚拟现实viscosity粘度,黏度vision sensor视觉传感器voltage电压,电位差voltage-controlled oscillator (VCO)电压控制振荡器W英文中文wavelet transform小波变换weighting function加权函数Wiener filter维纳滤波器Wiener process维纳过程work envelope工作空间,工作范围worst-case analysis最坏情况分析X英文中文XOR (exclusive OR) gate异或门,异或逻辑门Y英文中文yaw angle偏航角Z英文中文Z transform Z变换zero-order hold (ZOH)零阶保持器zero-order system零阶系统zero-pole cancellation零极点抵消。

构建时延基因调控网络的多数据源融合算法徐赛娟

构建时延基因调控网络的多数据源融合算法徐赛娟

Abstract : In order to further improve the accuracy of the constructed gene regulation network, this paper puts forward an algorithm to conthe algorithm estistruct timelagged gene regulation network based on multisource fusion. Based on recurrent fuzzy neural network model, mates transcription delay between genes using time series mutual information and also limits potential regulation genes of each gene,thus effectively improves the efficiency of the constructed network. In the phase of structure learning,the algorithm commonly constructs gene regulation network from time series gene expression data and CHIPchip data using discrete multiobjective particle swarm optimization ( dMOPSO) algorithm. Experimental results on artificial simulation data and yeast cell cycle expression data show that the proposed algorithm can correctly choose potential regulation genes,and thereby more accurately constructs gene regulation network. Key words: gene regulation network; recurrent fuzzy neural network; multisource fusion; time lag; time series mutual information

安徽师范大学学报(自然科学版)第45卷第1-6期(总第192-197期)2022年总目次

安徽师范大学学报(自然科学版)第45卷第1-6期(总第192-197期)2022年总目次

安徽师范大学学报(自然科学版)第45卷第1-6期(总第192-197期)2022年总目次古典诗词中的运动相对性……………………………………………………………………………丁光涛(1.1)主题内容智能聚合技术的研究和应用…………………………………………邵德奇,关培培,石聪(2.103)旋转式超导磁通泵电磁特性分析………………………………………………方进,陈海峰,陈洁(3.205)网络舆情对公共政策影响的研究…………………………………………………邵德奇,冯超,王丽萍(5.409)铅冷快堆中铁基结构材料液态金属腐蚀的第一性原理研究………………刘长松,张静丹,张艳革,等(6.511)基于高阶矩冲击机器学习Multi-LSTM模型的中国碳价预测…………………云坡,陈江华,唐文之(1.6)关于近拟常曲率空间中2-调和子流形…………………………………………叶闻,宋卫东,耿杰(1.13)Q-m-clean环及其推广……………………………………………………………………李莹,殷晓斌(1.18)图的全-Domination染色……………………………………………………………………………王彩云(1.23)基于数值积分的最佳平方逼近样条函数………………………………………………钱江,刘雯星(2.107)近拟常曲率空间中某类紧致超曲面……………………………………………………钟家伟,宋卫东(2.117)一类具有时滞的捕食—食饵模型的Hopf分支…………………………………………赵童,袁海龙(2.121)基于深度神经网络的WiFi室内定位算法研究……………………………李志祥,丁绪星,陈兴盛,等(2.131)一元五次B样条拟插值研究……………………………………………………………钱江,王永杰(3.212)隐变量对EM算法的影响………………………………………………………刘芝秀,吕凤姣,李运通(3.221)变系数Pavlov方程的李对称分析、精确解和守恒律…………………………胡玉茹,张峰,辛祥鹏(4.307)几类操作图的全控制染色………………………………………………………王彩云,李敏慧,张淑敏(4.318)具有惯性项的粘性Cahn-Hilliard方程的指数吸引子……………………张晓雨,姜金平,王小霞,等(4.325)同时反演时间分数阶方程的灌注系数和初始温度………………………………………………黄洁(5.415)一种充分下降的修正共轭梯度法………………………………………………胡倩蕊,周光辉,曹尹平(5.424)基于INF-Deffuant模型的网络用户观点演化分析…………………………刘玉文,翟菊叶,潘玮,等(5.433)具有收获和避难所效应的捕食—食饵系统Hopf分支分析…………………张道祥,李梦婷,闫晴,等(6.522)Medium J 12-clean环和Medium J12-∗-clean环………………………………………………陶丹丹,殷晓斌(6.534)基于拉格朗日方程导出的三模耦合模理论及实验验证…………………张亚博,丁中正,彭雪城,等(3.227)II安徽师范大学学报(自然科学版)2022年从采样的角度谈信号与系统中的傅里叶变换…………………………………王琳,胡耀,王世元(4.332)电力设备巡检缺陷图像智能识别技术研究…………………………………吕强,王伟,马国强,等(6.545)矿物掺合料对轻骨料混凝土耐久性的影响………………………………………………………唐鹏(2.139)食品中多环芳烃检测方法的研究进展………………………………………秦正波,汪桥林,王林,等(1.29)马鞍山市生态网络识别与优化………………………………………………周振宏,王绘绘,朱庆山,等(1.35)2014—2020年供暖期间我国北方核心城市大气污染物污染特征及潜在源区解析…………………………………………………………………………………………………………………马康,林跃胜,方凤满(3.237)2015—2020年合肥都市圈生态效率水平测度与提升研究……………………………刘玉婉,伍旭中(3.244)多金属矿区周边土壤重金属污染及风险评价…………………………………操院丹,曹玉红,余代良(4.338)六安市土地利用动态模拟及景观生态风险评价……………………………周振宏,刘东义,王诗琪,等(5.443)褪黑素对荻种子萌发及幼苗生长和生理的影响……………………………梁宇鹏,张杰,梁晓宁,等(6.553)不同地域香果树群落的区系差异……………………………………………臧敏,陈晓钰,黄雯孜,等(1.42)安徽青阳县、石台县两栖爬行动物生物多样性及区系特征分析…………王彬,杨刘洋,王明胜,等(2.144)长三角农村居民点用地时空变化特征及影响因素……………………………钟骏玉,杨兴柱,朱跃(1.49)基于成本距离的铁路客运站交通可达性空间特征研究——以甘肃省为例…………………………………………………………………………………………………………………………汪延彬,何瑞东,王娅妮,等(1.58)中小城市咖啡馆空间分布特征及其影响因素——以芜湖市为例…………………………尹寿兵,张健(1.64)云南省A级旅游景区与入境旅游质量的空间错位研究……………………吴佳倚,陈亚颦,焦敏,等(1.71)社会临场感对旅游在线社群价值共创行为的影响………………………………………………邹燕(1.78)庐山土壤黑碳分布特征及影响因素………………………………………崔梦凡,汪青,封伟豪,等(2.154)山区村域土地利用转型特征测度研究——以桐城市石窑村为例……………汪勇政,占安庭,余浩然,等(2.160)职前地理教师核心素养评价体系的构建………………………………………苗雨青,张汝南,梁宁(2.170)高速交通系统对六安区域可达性的影响——基于公平与效率的视角………张璐璐,吴威,王进,等(3.251)皖江流域中小城市空间形态演变研究——以池州市贵池区为例…………………………刘洋,陈保平(3.260)旅游地“三生冶空间格局演变特征及影响因素——以浙皖闽赣生态旅游协作区为例…………………………………………………………………………………………………………………郭雨云,杨兴柱,朱跃,等(3.267)宣城市民宿空间分布特征及影响因素…………………………………………………王玺,杨效忠(3.278)基于NDVI的安徽省城市化对植被变化影响的研究……………………黄作辉,梁栋栋,桂翔,等(4.345)合肥市区33年间城市化变化轨迹对地表温度的热贡献度………………周华,吴庆双,李强,等(4.356)区域协同视角下延安红色旅游体验度优化研究………………………………………崔琰,刘冬(4.365)III 45卷第6期《安徽师范大学学报(自然科学版)》2022年(第45卷)总目次故宫博物院云旅游的游客感知价值研究………………………………………………成汝霞,黄安民(4.373)长江下游沿江丘岗圩田地形区土壤养分空间分布特征及影响因素…………曹雨,房莉,余健,等(5.453)长三角地区植被覆盖时空变化特征及气候响应分析……………………………………王义玲,梁栋栋(5.462)中国城市群发展的空间分异研究…………………………………………………………代合治,江歌(5.469)中国城市韧性时空分异特征及其影响因素分析…………………………单薪蒙,何敏,李睿,等(5.476)货币化安置对房价的影响——基于安徽省地级市面板的实证研究…………………侯习武,王满银,吴鑫(6.561)基于PCA-PLS的池州市乡村旅游驱动因子的识别及响应…………………纪凯婷,王文琴,李琼,等(6.567)我国文化旅游研究的知识图谱分析……………………………………………巫程成,周国忠,王蕴韵(6.575)功能性训练对高校龙舟运动员运动素质影响的实验研究……………………刘笑,王结春,吕光明(1.85)安徽省高职院校《国家学生体质健康标准(2014年修订)》实施效果分析………………沈彩蝶,刘应(1.91)武术拳种的拳场多元化表征——基于影像民族志《藏着的武林》的文本考查………………王洁,花家涛(1.97)对初学者爬泳上肢力量训练的教学实证研究…………………………………吴佳芳,张楠,周坤(2.177)网球发球技术环节肩关节动作机理分析…………………………………………………………孙永梅(2.183)快速伸缩复合训练对变向速度影响的Meta分析…………………………李学亮,李春满,房作铭,等(3.288)韩国体育旅游发展经验及启示……………………………………………王宁,王路娟,孙皖挺,等(3.299)提升我国优秀游泳运动员基础体能训练水平的实施路径研究——以备战东京奥运会为例………………………………………………………………………………………………………董琦,王结春,崔登荣,等(4.380)价值、问题、对策:乡村振兴中的体育发展………………………………………………张长念,敖文杰(4.387)大学生运动参与对体质健康影响的多元回归分析………………………………………………黄正锋(4.395)女子体操运动员何骊澄平衡木项目表面肌电用力特征研究……………王峥,岳建军,徐壮壮,等(4.402)发展乡村运动休闲产业的现实审视………………………………………………………单福彬,程金阳(5.485)“十四五”时期加快体育强国建设的多维阐释……………………………………………沈伟,刘利(5.492)论中国羽毛球队技术风格发展中的变与不变……………………………………………………杨叙(5.499)论一门新兴学科:体育学习科学构建的研究……………………………………………江明,张振华(5.506)网球运动体能训练的差异化发展现状探析………………………………………………………李祝青(6.584)安徽省高中生体育“三个维度”核心素养现状及提升路径研究…………………………葛蓓,吴晶鑫(6.589)理工科人才对企业全要素生产率的影响研究——来自高校扩招的证据…………………周端明,侯效茹(2.189)读者大数据在高校图书馆阅读推广中的运用——基于南京大学图书馆NLSP系统数据的分析………………………………………………………………………………………………………………………张侃宁(2.197)A移动公司5G业务竞争战略选择研究……………………………………………………杨阳,张廷龙(6.597)青年职业女性工作家庭平衡与社会支持的关系:基于潜在剖面分析…………………王静,方双虎(6.607)JOURNAL OF ANHUI NORMAL UNIVERSITY (Natural Science)Vol.45No.1-6(Sum No.192-197)2022CONTENTSMotion Relativity in Chinese Classic Poetry………………………………………………DING Guang-tao(1.1)Research and Application of Intelligent Aggregation Technology for Subject Content…………………………………………………………………………………………………SHAO De-qi,GUAN Pei-pei,SHI Cong(2.103)Analysis of Electromagnetic Characteristics of Rotating Superconducting Flux Pump…………………………………………………………………………………………………F ANG Jin,CHEN Hai-feng,CHEN Jie(3.205)Research on the Impact of Online Public Opinion on Public Policy……………………………………………………………………………………………………………………SHAO De-qi,FENG Chao,WANG Li-ping(5.409)First-Principles Study on Liquid Metal Corrosion of Iron-Based Structure Materials in Lead-Cooling Fast Reactor ………………………………………………LIU Chang-song,ZHANG Jing-dan,ZHANG Yang-ge,et,al.(6.511)China's Carbon Price Prediction Based on Machine Learning Multi-LSTM Model from the Perspective of High-Order Moment Impact………………………………………YUN Po,CHEN Jiang-hua,TANG Wen-zhi(1.6)On the2-Harmonic Submaniflods of Nearly Quasi Constant Curvature Space………………………………………………………………………………………………………………YE Wen,SONG Weidong,Geng Jie(1.13)Q-m-clean Rings and its Generalization………………………………………………LI Ying,YIN Xiao-bin(1.18)Total-Domination Coloring of Graphs………………………………………………………WANG Cai-yun(1.23)The Best Square Approximating Spline Functions Based upon Numerical Inteyration………………………………………………………………………………………………………………QAIN Jiang,LIU Wen-xing(2.107)On Compact Hypersurfaces in Nearly Quasi Constant Curvature Space…ZHONG Jia-wei,SONG Wei-dong(2.117)Bifurcation Analysis of a Predator-Prey System with Time Delay…………ZHAO Tong,YUAN Hai-long(2.121)Indoor Positioning Algorithm for WiFi Based on Deep Neural Network…………………………………………………………………………………………………LI Zhi-xiang,DING Xu-xing,CHEN Xing-sheng,et al.(2.131)On Univariate Quintic B Spline Quasi-Interpolation………………………QIAN Jiang,WANG Yong-jie(3.212)Influence of Hidden Variables on EM Algorithm…………………LIU Zhi-xiu,LV Feng-jiao,LI Yun-tong(3.221)Lie symmetry Analysis,Exact Solutions and Conservation Laws to the Variable Coefficients Pavlov Equation……………………………………………………………………HU Yu-ru,ZHANG Feng,XIN Xiang-peng(4.307)《安徽师范大学学报(自然科学版)》2022年(第45卷)总目次45卷第6期Total Dominator Chromatic Number with Several Types of Operations Graphs…………………………………………………………………………………………………WANG Cai-yun,LI Min-hui,ZHANG Shu-min(4.318)Exponential Attractors for Viscous Cahn-Hilliard Equation with Inertial Term………………………………………………………………………………………ZHANG Xiao-yu,JIANG Jin-ping,WANG Xiao-xia,et al.(4.325)Simultaneous Inversion of Perfusion Coefficient and Initial Temperature of Time Fractional Equation…………………………………………………………………………………………………………………HUANG Jie(5.415)A Modified Conjugate Gradient Method With Sufficient Descent………………………………………………………………………………………………………………HU Qian-rui,ZHOU Guang-hui,CAO Yin-ping(5.424)Evolutional Analysis of Network Users’Opinion Based on an INF-Deffuant Model…………………………………………………………………………………………………LIU Yu-wen,ZHAI Ju-ye,P AN Wei,et al.(5.433)Hopf Bifurcation Analysis in a Predator-Prey Model with Predator Harvesting and Prey Refuge……………………………………………………………………ZHANG Dao-xiang,LI Meng-ting,YAN Qing,et al.(6.522)Medium J 12-clean rings and Medium J12-∗-clean rings…………………………TAO Dan-dan,YIN Xiao-bin(6.534)Research on Intelligent Image Identification Technology of Power Equipment Inspection Defects………………………………………………………………………………LYU Qiang,WANG Wei,MA Guo-qiang,et al.(6.545)Theory and Experimental Verification of Three-Mode Coupled Mode Based on Lagrange Equation……………………………………………………………Z HANG Ya-bo,DING Zhong-zheng,PENG Xue-cheng,et al.(3.227)Fourier Transforms in Signals and Systems from the Perspective of Sampling……………………………………………………………………………………………………………WANG Lin,HU Yao,WANG Shi-yuan(4.332)Study on the Influence of Mineral Admixtures on the Durability of Lightweight Aggregate Concrete………………………………………………………………………………………………………………TANG Peng(2.139)Research Progress in the Detection Methods of Polycyclic Aromatic Hydrocarbons in Foods………………………………………………………………………………QIN Zheng-bo,WANG Qiao-lin,WANG Lin,et al.(1.29)Identification and Optimization of Ecological Network in Ma'anshan City……………………………………………………………………………………………ZHOU Zhen-hong,WANG Hui-hui,ZHU Qing-shan,et al.(1.35)Pollution Characteristics and Potential Source Areas of Gaseous Pollutants During the Heating Period in Northern Core Cities from2014to2020…………………………MA Kang,LIN Yue-sheng,F ANG Feng-man(3.237)Research on the Measurement and Improvement of Ecological Efficiency Level in Hefei Metropolitan Area from 2015—2020………………………………………………………………LIU Yu-wan,WU Xu-zhong(3.244)Heavy Metal Pollution and Risk Assessment of Soil around Polymetallic Mining Area……………………………………………………………………………………………CAO Yuan-dan,CAO Yu-hong,YU Dai-liang(4.338)Dynamic Simulation of Land Use and Landscape Ecological Risk Assessment in Lu'an City……………………………………………………………………………ZHOU Zhen-hong,LIU Dong-yi,WANG Shi-qi,et al.(5.443)VVI安徽师范大学学报(自然科学版)2022年The Effects of Melatonin on Seed Germination,Seedling Growth and Physiology of Miscanthus Sacchariflorus ………………………………………………………LIANG Yu-peng,ZHANG Jie,LIANG Xiao-ning,et al.(6.554)Floristic Difference of Emmenopterys henryi munity in Different Regions………………………………………………………………………………………ZANG Min,CHEN Xiao-yu,HUANG Wen-zi,et al.(1.42)Analysis of Amphibian and Reptile Biodiversity and Floristic Characteristics in Qingyang County and Shitai County,Anhui,China……………………WANG Bin,YANG Liu-yang,WANG Ming-sheng,et al.(2.144)Spatiotemporal Change Characteristics and Influencing Factors of Rural Residential Land Use in the Yangtze Riv-er Delta…………………………………………………ZHONG Jun-yu,YANG Xing-zhu,ZHU Yue(1.49)Research on Spatial Characteristic of Railway Passenger Station Accessibility Based on Cost Distance…………——A Case of Gansu Province……………………WANG Yan-bin,HE Ruidong,WANG Ya-ni,et al.(1.58)Spatial Distribution Characteristics and Influencing Factors of Cafes in Small and Medium-Sized Cities…………——A Case Study of Wuhu City………………………………………YIN Shou-bing,ZHANG Jian(1.64)Study on the Spatial Mismatch Between the A-Level Tourist Attractions and the Quality of Inbound Tourism in Yunnan Province…………………………………………WU Jia-yi,CHEN Ya-pin,JIAO Min,et al.(1.71)The Influence of Social Presence on the Value Co-Creation Behavior of Online Tourism Community……………………………………………………………………………………………………………………ZOU Yan(1.78)Distribution Characteristics and Influencing Factors of Soil Black Carbon in Lushan Mountain…………………………………………………………………………CUI Meng-fan,WANG Qing,FENG Wei-hao,et al.(2.154)Study on the Measurement of the Characteristics of Land Use Transformation in Mountainous Villages ——A Case Study of Shiyao Village in Tongcheng City……………………………………………………………………………………………………………WANG Yong-zheng,ZHAN An-ting,YU Hao-ran,et al.(2.160)The Construction of Evaluation System of Pre-Service Geography Teachers’Key Competencies………………………………………………………………………………MIAO Yu-qing,ZHANG Ru-nan,LIANG Ning(2.170)The Impacts of High-Speed Transportation on Regional Accessibility in Lu'an——From the Perspective of Equity and Efficiency……………………………………………ZHANG Lu-lu,WU Wei,WANG Jin,et al.(3.251)Study on the Change of Spatial Form of Small and Medium-Sized Cities in Wanjiang Basin——Take Guichi Dis-trict of Chichou City as an Example……………………………………LIU Yang,CHEN Bao-ping(3.260)Characteristics of the Spatial Pattern Evolution and Its Influencing Factors of Production-Living-Ecological Space in Tourist Destinations——Take the Eco-Tourism Cooperation Zone of Zhejiang-Anhui-Fujian-Jiangxi as an Example……………………………………………GUO Yu-yun,YANG Xing-zhu,ZHU Yue,et al.(3.267)Spatial Distribution Characteristics and Influencing Factors of Homestays in Xuancheng…………………………………………………………………………………………………………WANG Xi,YANG Xiao-zhong(3.278)VII 45卷第6期《安徽师范大学学报(自然科学版)》2022年(第45卷)总目次Effects of Urbanization on Vegetation Change in Anhui Province Based on NDVI…………………………………………………………………………………HUANG Zuo-hui,LIANG Dong-dong,GUI Xiang,et al.(4.345)The Thermal Contribution of Urbanization Change Trajectory to Surface Temperature in Hefei City during33 Years………………………………………………ZHOU Hua,WU Qing-shuang,LI Qiang,et al.(4.356)Research on the Optimization of Red Tourism Experience Degree in Yan'an from the Perspective of Regional Syn-ergy………………………………………………………………………………CUI Yan,LIU Dong(4.365)Research on Tourists蒺Perceived Value of Cloud Tourism of the Palace Museum…………………………………………………………………………………………………………CHENG Ru-xia,HUANG An-min(4.373)Spatial Distribution Characteristics and Influencing Factors of Soil Nutrient in the Hilly Polder Terrain Area along the River in the Lower Reaches of the Yangtze River…………CAO Yu,F ANG Li,YU Jian,et al.(5.453)Temporal and Spatial Variation Characteristics of Vegetation Cover and Climate Response in the Yangtze River Delta………………………………………………………………WANG Yi-ling,LIANG Dong-dong(5.462)Spatial Differentiation of Urban Agglomeration Development in China……………DAI He-zhi,JIANG-Ge(5.469)The Spatial-Temporal Differentiation haracteristics of Urban Resilience and Influencing Factors in China……………………………………………………………………………SHAN Xin-meng,HE Min,LI Rui,et al.(5.476)The Impact of Monetization Resettlement on House Prices——Based on the Empirical Evidence of Prefecture-Level Cities in Anhui Province………………………………HOU Xi-wu,WANG Man-yin,WU Xin(6.561)Identification and Response of Driving Factors of Rural Tourism in Chizhou City Based on PCA-PLS Analysis ………………………………………………………JI Kai-ting,WANG Wen-qin,LI Qiong,et,al.(6.567)Knowledge Mapping Analysis of Cultural Tourism Reserach in China………………………………………………………………………………………………WU Cheng-cheng,ZHOU Guo-zhong,WANG Yun-yun(6.575)Experimental Research on the Influence of Functional Training on the Sports Quality of University Dragon Boat Athletes…………………………………………………LIU Xiao,WANG Jie-chun,LV Guang-ming(1.85)Analysis of the Implementation Effect of National Students'Physical Health Standard(Revised in2014)in High-er V ocational Colleges of Anhui Province……………………………………SHEN Cai-die,LIU Ying(1.91)Characterization of Martial Arts Field Diversity of Martial Arts Types——Textual Examination Based on the Vid-eo Ethnography The Hidden Martial Arts……………………………………WANG Jie,HUA Jia-tao(1.97)An Empirical Study on the Teaching of Upper Limb Strength Training for Beginners in Crawl Swimming……………………………………………………………………………WU Jia-fang,ZHANG Nan,ZHOU Kun(2.177)Analysis on the Action Mechanism of Shoulder Joint in Tennis Serve Technique…………SUN Yong-mei(2.183)Meta鄄Analysis about the Effects of Plyometric Training on Change of Direction Speed………………………………………………………………………………LI Xue-liang,LI Chun-man,F ANG Zuo-ming,et al.(3.288)VIII安徽师范大学学报(自然科学版)2022年South Korean Sports Tourism Development Experience and Inspiration…………………………………………………………………………………………………WANG Ning,WANG Lu-juan,SUN Wan-ting,et al.(3.299)Research on the Implementation Path of Improving the Basic Physical Fitness Training Level of Chinese Elite Swimmers——Take Preparation for Tokyo Olympic Games as an Example…………………………………………………………………………………………DONG-Qi,WANG Jie-chun,CUI Deng-rong,et al.(4.380)Value,Problems and Countermeasures:Development of Sports in Rural Revitalization……………………………………………………………………………………………………ZHANG Chang-nian,AO Wen-jie(4.387)Multiple Regression Analysis of the Influence of College Students'Sports Participation on their Physical Health …………………………………………………………………………………………HUANG Zheng-feng(4.395)Study on the Surface Electromyographic Force Characteristics of Female Gymnast He Licheng in the Sports Event of Balance Beam……………………WANG Zheng,YUE Jian-jun,XU Zhuang-zhuang,et al.(4.402)The Reality Examination about Development of Rural Sports Leisure Industry…………………………………………………………………………………………………………………SHAN Fu-bin,CHENG Jin-yang(5.485)Multi-Dimensional Interpretation of Accelerating China’s Sports Power Construction during the14th Five-Year Plan Period…………………………………………………………………………SHEN Wei,LIU Li(5.492)On Changes and Invariance in the Development of Technical Style of Chinese Badminton Team………………………………………………………………………………………………………………………YANG Xu(5.499)On a New Discipline:the Construction of Sports Learning Sciences……………………………………………………………………………………………………………………………JIANG Ming,ZHANG Zhen-hua(5.506)Analysis on the Current Situation of Differentiated Development of Tennis Physical Fitness Training………………………………………………………………………………………………………………LI Zhu-qing(6.584)Research on the Current Situation and Improvement Path of"Three Dimensions"of Physical Education Core Competence of High School Students in Anhui Province………………………GE Bei,WU Jing-xin(6.589)Research on the Influence of Science and Engineering Talents on Total Factor Productivity of Enterprises ——Evidence from College Enrollment Expansion………………ZHOU Duan-ming,HOU Xiao-ru(2.189)The Application of Big Data for Readers in Reading Promotion of University Libraries——Based on Data of NLSP from Nanjing University Library……………………………………………ZHANG Kan-ning(2.197)Research on the Competitive Strategy Choice of5G Service of A Mobile Company…………………………………………………………………………………………………………YANG Yang,ZHANG Ting-long(6.596)The Relationship Between Work-family Balance and Social Support Among Young Professional Women:Based on potential Profile Analysis…………………………………………WANG Jing,F ANG Shuang-hu(6.607)。

基于CNN网络的手写体数字识别系统的实现

基于CNN网络的手写体数字识别系统的实现

第13卷㊀第4期Vol.13No.4㊀㊀智㊀能㊀计㊀算㊀机㊀与㊀应㊀用IntelligentComputerandApplications㊀㊀2023年4月㊀Apr.2023㊀㊀㊀㊀㊀㊀文章编号:2095-2163(2023)04-0158-05中图分类号:TP389.1文献标志码:A基于CNN网络的手写体数字识别系统的实现杨之杰,林雪刚,阮㊀杰(江苏大学计算机科学与通信工程学院,江苏镇江212013)摘㊀要:手写体数字识别现在仍是图像识别分类的一个热点,而基于卷积神经网络的深度学习算法具有局部区域连接㊁权值共享㊁降采样的结构特点,使得卷积神经网络在图像处理领域有出色表现㊂以实现手写体数字高精度识别为目标,设计并实现一个基于卷积神经网络的高精度手写体数字识别系统㊂首先,通过Pyqt5平台设计一个人机交互的GUI界面,其次进行手写体数字图像的采集与预处理,变换成规范的三维向量输入到CNN网络卷积层中,接着进行各个网络层的运算处理,最后通过Softmax输出分类结果㊂仿真实验结果下MNIST数据集识别模式下的识别率为99.9%,手写输入识别模式下的识别率为98%㊂结果表明:基于CNN的神经网络识别准确率高,实现技术简单,实用性高㊂关键词:卷积神经网络;GUI界面系统;Pyqt5;手写体数字识别ImplementationofhandwrittendigitrecognitionsystembasedonCNNnetworkYANGZhijie,LINXuegang,RUANJie(SchoolofComputerScienceandCommunicationEngineering,JiangsuUniversity,ZhenjiangJiangsu212013,China)ʌAbstractɔHandwrittendigitrecognitionisstillahotspotinimagerecognitionandclassification,andthedeeplearningalgorithmbasedonconvolutionalneuralnetworkhasthestructuralcharacteristicsoflocalareaconnection,weightsharinganddownsampling,whichmakesconvolutionalneuralnetworkperformwellinthefieldofimageprocessing.Aimingatrealizinghigh-precisionhandwrittendigitrecognition,ahigh-precisionhandwrittendigitrecognitionsystembasedonconvolutionalneuralnetworkisdesignedandimplemented.Firstly,usethePyqt5platformtobuildaGUIinterfaceforhuman-computerinteraction;secondly,carryoutthecollectionandpreprocessingofhandwrittendigitalimages,whichareconvertedintostandardizedthree-dimensionalvectorsandinputintotheconvolutionlayeroftheCNNnetwork,andthenstarttheoperationprocessingofeachnetworklayer;finally,theclassificationresultsareoutputthroughSoftmax.ThesimulationresultsshowthattherecognitionrateintheMNISTdatasetrecognitionmodeis99.9%,andtherecognitionrateinthehandwritinginputrecognitionmodeis98%.TheresultsshowthattheneuralnetworkbasedonCNNhashighrecognitionaccuracy,simpleimplementationtechnologyandhighpracticability.ʌKeywordsɔconvolutionalneuralnetwork;GUIinterfacesystem;Pyqt5;handwrittendigitrecognition作者简介:杨之杰(2000-),男,本科生,主要研究方向:通信系统;林雪刚(2001-),男,本科生,主要研究方向:人工智能;阮㊀杰(2001-),男,本科生,主要研究方向:机器学习㊂通讯作者:杨之杰㊀㊀Email:2643291352@qq.com收稿日期:2022-05-070㊀引㊀言随着机器学习的发展,基于神经网络的深度学习已成为热点,深度学习技术已被广泛应用在文字㊁图像识别分类研究中㊂目前在国内外,针对手写体数字识别技术已经比较成熟,相较于传统光学字符识别(OCR)图像识别技术,基于深度学习的卷积神经网络算法可以在复杂场景下快速㊁准确㊁有效地获取并识别场景中文字㊂由于手写体存在形态各异㊁千差万别㊁随意性大㊁书写不规范的情况,同时还会存在数据采集时的光线㊁角度不同等问题,手写数字识别问题有着很大的挑战性[1]㊂卷积神经网络是一种受到人类的视觉神经系统和早期的时延神经网络(Time-DelayNeuralNetWork)的启发而设计提出的多层神经网络㊂卷积神经网络结合了共享权重㊁局部感受野㊁空间或时间上的下采样三种思想,使得网络具有较少的训练参数㊁简单的网络结构且适应性强等优点[2]1994年,文献[3]提出LeNet,定义了卷积神经网络的基本架构是卷积和池化,在手写体数字领域识别率达到99.13%㊂2012年,文献[4]提出AlexNet,采用双GPU网络结构并使用ReLU作为激活函数,使得网络能够获得更加丰富的特征㊂2014年,文献[5]提出VGG系列模型(包括VGG-11/VGG-13/VGG-16/VGG-19),使用很 深 的网络结构并在同年的ImageNetChallenge上获得分类任务第二名㊁定位(Localization)任务第一名㊂随着神经网络的发展,网络结构越来越深,但是对于小图像容量的手写体数字识别的实现并不需要大而深的网络结构,否则对计算机处理性能将会造成巨大负担,因此,本文设计一个简单适宜的CNN网络结构,实现了一个可以用于高精度识别的手写体数字识别系统㊂本文研发的手写体数字识别系统主要分为2个部分:GUI交互界面与CNN网络模型㊂其中,GUI交互界面是通过Pyqt5工具包进行搭建,再通过所搭建CNN网络模型进行相应的图像训练与测试,实验仿真不同模式下的图像识别场景,得出结论为:基于CNN网络的图像识别算法的识别率可以达到99.9%,具有高精度的识别性能㊂本文实现的CNN手写体数字识别系统不仅可以有效实现手写体数字识别,同时还具有简单易行㊁识别性能优良的优点㊂1㊀基于CNN的手写体数字识别系统1.1㊀系统实现概述本文提出的手写体数字识别系统是基于卷积神经网络模型实现的一种高效简易的图像识别系统㊂主要实现流程如图1所示㊂M N I S T 数据集鼠标手写输入输入层卷积层池化层全连接层输出层G U I 界面C N N 模型实现手写体数字识别系统图1㊀手写体数字识别系统实现流程图Fig.1㊀Theflowchartofhandwrittendigitrecognitionsystemimplementation㊀㊀由图1可见,手写体数字识别系统主要分为2个主要模块,分别是:基于Pyqt5的GUI界面和基于CNN的深度学习模型㊂其中,Pyqt5实现的GUI界面用于用户与PC端的人机交互,用户可以选择系统识别的模式:MNIST数据集随机抽取㊁鼠标手写输入;基于卷积神经网络的识别模型主要通过5个网络层:输入层㊁卷积层㊁池化层㊁全连接层以及输出层,实现对用户所选取的识别模式下的手写体图片识别㊂1.2㊀图像采集与处理1.2.1㊀MNIST数据集识别模式MNIST数据集是由手写数字的图片和相应的标签组成,共有10类,分别对应数字为0 9㊂训练图片一共有60000张,可采用学习方法训练出相应的模型㊂测试图片一共有10000张,可用于评估训练模型的性能[6]㊂MNIST数据集预处理过程如图2所示㊂MNIST数据集抽取模式,要先将MNIST数据集下载,手写数字识别系统使用自定义load_mnist函数进行数据集的下载与本地保存㊂本文中先将训练集与测试集中的手写体图像进行预处理,下载的数据集图像保存为归一化的像素值(范围是0.0 1.0),同时将对应的数字标签输入展开为一个784的一维数组㊂这样有助于后续网络模型的输入处理㊂同时,在GUI界面的画板区域内将MNIST数据集的抽取图像转换成Qimage对象,用于后续的识别图像处理㊂容量为784的一维数组归一化到[0.0,1.0]R e s h a p e784个像素值L a b e l数字标签对应M N I S T 数据集输入图2㊀MNIST数据集预处理过程Fig.2㊀PreprocessingprocessofMNISTdataset1.2.2㊀手写输入识别模式鼠标手写模式是基于Pyqt5的GUI开发框架实现的[7],在GUI界面上设置一个空白画板,背景色设置RGB(0,0,0),也就是纯黑色;设置画笔颜色为(255,255,255),也就是纯白色㊂利用Pyqt5类库中的绘图工具进行手写数字的交互事件实现,本文实现的鼠标手写图像是只有黑白色的图像,以方便2种图像输入模式后续使用相同的图像识别处理过程㊂用户在GUI界面的画板上写下相应的数字,点击 识别 后,本程序就可以将画板的内容获取并转换成Qimage对象,再通过Reshape将其变换成符合网络输入规范的三维向量,用于后续CNN网络模型识别处理㊂手写模式的图像采集过程如图3所示㊂1.2.3㊀CNN网络实现识别处理是针对上述的2种输入识别模式所采集的手写体数字图像进行CNN网络模型输入的规范化图像对象处理,保证统一化的网络输入层的参951第4期杨之杰,等:基于CNN网络的手写体数字识别系统的实现数输入㊂在获取了Qimage对象后,需要将其转换成Python中的PILimage对象,将图像大小修改成1通道的28ˑ28像素大小,同时批量大小为1,再将其转换成灰度值归一化的数组,规范成网络输入类型㊂手写体数字图像的预处理过程如图4所示㊂㊀㊀相比较传统神经网络,CNN网络新增了卷积层(Convolution层)和池化层(Pooling层),因此一般的CNN模型就是由卷积层㊁池化层和全连接层构成的㊂Convolution层实现结构如图5所示㊂本文通过一个简单合适的CNN模型进行手写体数字识别实现,网络结构为 Convolution-ReLU-Pooling-Affine-ReLU-Affine-Softmax ㊂CNN网络模型实现架构如图6所示㊂由图6可看到,对其中各组成部分拟展开阐释分述如下㊂获取图像手写模式下输入转换成Q i m a g e 对象图3㊀手写模式的图像采集过程Fig.3㊀Imageacquisitionprocessinhandwritingmode输入图像预处理I n p u t图4㊀手写体数字图像的预处理过程Fig.4㊀PreprocessingofhandwrittendigitalimagesFi l t e r N u m 30F i l t e r N u m30CW H(1,28,28)(30,1,5,5)(30,24,24)输入卷积核(滤波器)特征图输出图5㊀Convolution层实现结构Fig.5㊀Convolutionlayerimplementationstructure㊀㊀(1)卷积层㊂在通过前一步的图像采集与预处理后,输入到卷积层(Convolution层),该层的参数是通过反向传播算法优化得到的,随后再将输入元素进行卷积运算输入到激活函数中,得到该层的输出特征图,卷积运算见式(1):Xlj=ReLUðiXl-1i∗klij+b()(1)㊀㊀其中,Xl-1j表示卷积层特征图被j个卷积所覆盖的元素;klij表示该层卷积核中的元素;b表示偏置;ReLU表示激活函数㊂卷积层的作用相当于图像处理过程中的 滤波器 运算,以此获取图像的特征,本文设计的卷积层的卷积核(滤波器)的数量为30,大小为5ˑ5,步幅为1,填充为0㊂㊀㊀(2)ReLU层㊂ReLU层可以理解为激活函数层,当输入为正的时候,导数不为零,从而进行基于梯度的学习,对于图像数据输入而言,ReLU函数很适合进行模型中非线性映射学习,减少了参数之间的相互依存关系,避免了过拟合现象的发生[8]㊂ReLU函数的数学公式为:y=x㊀㊀x>00㊀㊀xɤ0{(2)㊀㊀(3)池化层(Pooling层)㊂可以缩小图像尺寸,减少运算量,通常在卷积层之后会得到维度很大的特征,将特征切分为多个区域,取其最大值,得到新的㊁维度较小的特征,并在偏置处理后通过激活函数输出,如式(3)所示:Xlj=ReLUμl-1j+b()(3)㊀㊀其中,μl-1j是卷积层图像块降采样后得到的输出;Xlj是该层输出,也是下一层的输入元素;ReLU表示激活函数㊂本文实现的池化层,主要通过数据展开㊁求最大值㊁Reshape成规范大小三个步骤来实现㊂其中,数据展开是为了简化本网络中的向量运算,将四维向量展开成二维向量,便于数据处理;接着,求出每一行的最大值,作为输出的元素;最后,将先前处理后的元素Reshape成一个(30,1,12,12)的四维向量,输入到下一层㊂061智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第13卷㊀(4)Affine层㊂可以理解为全连接层,在网络层中的正向传播中进行矩阵乘积运算,主要是进行神经网络中的加权运算与偏置运算,在本文系统设计中运算为:np.dot(X,W)+B㊂(5)Softmax层㊂作为最后的输出层,主要用来将前一层(全连接层)的输出作为输入值进行正规化,调整到0 1之间后再输出,用于实现最终的图像识别分类㊂此处需用到的数学公式为:Softmaxy()i=eyiðnj=1eyi(4)㊀㊀其中,yi是前一层的输出目标值㊂输入图像数据卷积层激活函数层池化层激活函数层全连接层输出层图6㊀CNN网络模型实现架构Fig.6㊀ImplementationarchitectureofCNNnetworkmodel1.2.4㊀界面显示本文实现的PC端的手写体数字识别系统界面是通过Pyqt工具包搭建的,Pyqt是一个用于创建GUI应用程序的跨平台工具包,可将Python与Qt库融为一体㊂也就是说,PyQt允许使用Python语言调用Qt库中的API㊂本文使用Python3.0版本在VScode编辑器进行手写体数字识别GUI应用开发㊂通过Qt界面生成器(Qtdesigner)[9],可以将所需要的控件进行可视化的拖拽放置,大大提高了界面设计效率㊂手写体数字识别系统设计界面如图7所示㊂由图7可看到,本文的系统界面主要是2个部分㊂第一部分是手写体数字识别模式选择,模式选择的布局就是通过QLabel㊁QComboBox以及QPushButton控件组成的㊂其中,QComboBox下拉框组件实现 MNIST随机抽取 与 鼠标手写输入 模式选择,3个QPushButton按钮用于实现MNIST图片抽取㊁清除数据㊁识别事件㊂第二个部分是显示区域,主要是实现所识别手写体数字图像的显示与识别结果㊁识别率的显示㊂通过一个QLabel组件用于显示当前所识别的手写体数字图像,后续的图像采集和预处理过程都是通过Qimage对象变换实现的㊂图7㊀手写体数字识别系统设计界面Fig.7㊀Designinterfaceofhandwrittendigitrecognitionsystem2㊀仿真结果与分析基于上述的GUI界面与网络模型的实现,本小节主要针对实验仿真结果进行分析,并且得出有效的实验结论,证明本文所实现的手写体数字识别系统有着优良性能㊂实验仿真测试分为2部分㊂第一部分是按照MNIST随机抽取 识别模式进行仿真测试,第二部分是按照 鼠标手写输入 识别模式进行仿真测试㊂2种模式下分别进行10组手写体数字图像识别仿真测试,每组选取10张手写体图像进行识别㊂在第一种识别模式下,通过MNIST数据集连续抽取10张图片进行识别,分别进行10组图像随机抽取实验,以每组的识别率均值作为本组实验数据;在第二种模式下,通过本系统的GUI界面连续手写输入0 9㊁共10个数字进行识别,重复实验10组,以每组的识别率均值作为本组实验数据㊂MNIST随机抽取识别率如图8所示,手写输入的识别率如图9所示㊂1.00000.99950.99900.99850.9980012345678910G r o u p N u m b e raccuracya c c u r a c y图8㊀MNIST随机抽取识别率Fig.8㊀RecognitionrateofMNISTrandomextraction161第4期杨之杰,等:基于CNN网络的手写体数字识别系统的实现1.0000.9950.9900.9850.9800.97512345678910G r o u p N u m b e ra c c u r a c ya c c u r a c y图9㊀手写输入的识别率Fig.9㊀Recognitionrateofhandwritteninput㊀㊀实验结果显示,MNIST随机抽取的10组实验图像识别率都在99.9%以上,识别准确率很高;相比之下,鼠标手写输入的仿真结果中,识别率分布在98.75% 99.75%区间,相较于MNIST数据集测试的识别率而言,有所降低㊂对于手写输入模式下的手写体数字识别,在仿真实验中可以观察到不同手写数字的识别率会出现较大差异,如图10所示㊂由图10可看到,数字中 0 ㊁ 1 ㊁ 2 ㊁ 3 ㊁ 5 ㊁ 6 ㊁ 7 ㊁ 8 的识别率都较稳定,在99%左右,而数字 4 的识别率在97.5%左右,数字 9 的识别率在94%左右,识别精确度相较于其他数字较低㊂1.000.950.900.850.8012345678910N u m b e ra c c u r a c y图10㊀数字0 9的识别率Fig.10㊀Recognitionrateofnumbers0 9㊀㊀以数字 9 为例,数字 9 的手写体与 1 ㊁ 7数字的形体十分相似,对识别造成了干扰㊂误判结果如图11所示,即使识别率达到了99.94%但是却误判成数字 1 ,也就是本文设计实现得到的CNN深度学习网络对容易混淆的数字手写体的识别会出现误判现象[10]㊂即使是人为判断,因个体差异也会出现对数字的错误辨别,对于机器识别出现特殊字体的误判也在合理范围内㊂图11㊀数字 9 的误判Fig.11㊀Misjudgmentofthenumber 93㊀结束语从2种识别模式下的仿真结果可以看出,MNIST数据集抽取的图像,系统识别率接近99.9%,说明本文实现的CNN网络的识别性能优良,简单易行,具有很好的实用性,基本达到了高精度目标识别的要求;而鼠标手写输入下的图像,系统识别率却会在98% 99%之间波动,同时也会根据用户书写规范程度有很大关系,这说明了本文的CNN网络模型出现了过拟合现象,只针对MNIST数据集中的数据有很好的识别性能,而对于个体差异的书写体却不能做到精准识别㊂因此需要对网络模型进行再深层的优化,提高可信度㊂参考文献[1]LIUChenglin,NAKASHIMAK,SAKOH,etal.Handwrittendigitrecognition:benchmarkingofstate-of-the-arttechniques[J].PatternRecognition,2003,36(10):2271-2285.[2]肖驰.四种机器学习算法在MNIST数据集上的对比研究[J].智能计算机与应用,2020,10(12):185-188.[3]BOTTOUL,CORTESC,DENKERJS,etal.Comparisonofclassifiermethods:Acasestudyinhandwrittendigitrecognition[C]//InternationalConferenceonPatternRecognition.Jerusalem,Israel:IEEEComputerSociety,1994:77-82.[4]KRIZHEVSKYA,SUTSKEVERI,HINTONGE.ImageNetclassificationwithdeepconvolutionalneuralnetworks[C]//InternationalConferenceonNeuralInformationProcessingSystems.Doha,Qatar:CurranAssociatesInc.,2012:1097–1105.[5]SIMONYANK,ZISSERMANA.Verydeepconvolutionalnetworksforlarge-scaleimagerecognition[J].CoRRabs/1409.1556,2014.[6]郑继燕.基于CNN的手写数字识别与试卷管理系统设计[D].北京:北京邮电大学,2020.[7]肖文鹏.用PyQt进行Python下的GUI开发[J].中文信息:程序春秋,2002(07):73-75.[8]曲景影,孙显,高鑫.基于CNN模型的高分辨率遥感图像目标识别[J].国外电子测量技术,2016,35(08):45-50.[9]桑晓丹,郭锐.基于PyQt5的数字图像处理实验平台设计[J].电子技术与软件工程,2021(18):129-130.[10]刘辰雨.基于卷积神经网络的手写数字识别研究与设计[D].成都:成都理工大学,2018.261智㊀能㊀计㊀算㊀机㊀与㊀应㊀用㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第13卷㊀。

基于k-近邻的多元时间序列局部异常检测

基于k-近邻的多元时间序列局部异常检测

基于k-近邻的多元时间序列局部异常检测郭小芳;李锋;王卫东【摘要】为了提高多元时间序列异常检测算法的效率,在k-近邻局部异常检测算法的基础上,采用基于主成分分析的多元时间序列的降维方法,按照累积贡献率选择主成分序列,利用局部异常检测方法对多元时间序列进行异常检测.为验证了算法的有效性和合理性,对股票数据进行了异常检测实验,实验结果表明该算法提高了多元时间序列异常检测的准确性.%In order to improve the efficiency of outlier detection algorithm for multivariate time series, in the framework of the κ-nearest neighbor local outlier detection algorithm, dimensionality reduction based on principal component analysis are carried out, principal components are selected according to the cumulative contribution rate, and local anomaly detection method are used for multivariate time series outlier detection. Stock data anomaly detection experiments are carried out in order to verify the validity of the algorithm proposed here. Experimental results show that the algorithm can improve the multivariate time series outlier detection accuracy further.【期刊名称】《江苏科技大学学报(自然科学版)》【年(卷),期】2012(026)005【总页数】5页(P505-508,513)【关键词】多元时间序列;主成分分析;k-近邻;异常检测【作者】郭小芳;李锋;王卫东【作者单位】江苏科技大学计算机科学与工程学院,江苏镇江212003;江苏科技大学电子信息学院,江苏镇江212003;江苏科技大学计算机科学与工程学院,江苏镇江212003【正文语种】中文【中图分类】TP391异常检测(outlier detection)也称为异常挖掘、孤立点分析,其目标是在数据集中发现不正常的数据点[1].目前异常检测方法主要有:基于距离的异常点检测方法,基于密度的异常检测方法,基于模型的异常检测方法[2].基于距离的异常点检测方法简单高效,但当数据包含多种不同分布的数据时效果就不是很好;基于密度的异常检测方法检测精度较高,但当数据集较大时,计算量大,复杂度过高,响应速度较慢;基于模型的异常检测方法将具有较低概率的数据点作为异常点检出,该方法具有坚实的数学理论基础,其难点在于数据分布的识别和模型参数的估计[3].多元时间序列(multivariate time series, MTS)同时具有数据量大、维度高、变量相关性高、大量噪声干扰等特点,使异常检测更加困难[4].文中在k-近邻局部异常检测算法的基础上,结合基于主成分分析的多元时间序列的降维方法,按照累积贡献率选择主成分序列;利用局部异常检测方法对多元时间序列进行异常检测.以股票数据异常检测实验验证了算法的有效性和合理性.1 异常序列及相关概念对于时间序列中的异常点通常采用是Hawkhi给出的定义:异常是在数据集中偏离大部分数据的数据,使人们怀疑这些数据是由不同的机制产生而非随机偏差[5].按照异常的表现形式不同,时间序列的异常可以分为3种:序列异常,在时间序列数据集中与其它时间序列显著不同的、来源于不同产生机制的时间序列;点异常,在一条时间序列上与其它序列点存在显著差异的、具有异常特征的序列点;模式异常,在一条时间序列上与其它模式存在显著差异的、具有异常行为的模式.时间序列X的模式可以表示为[6]X=<(l1,m1),(l2,m2),…,(lc,mc)>(1)模式p1=(l1,k1)和p2=(l2,k2)之间的距离为[6](2)每个直线段采用如下二元组表示,其中li为X第i段的长度,代表了趋势变化的长短,mi为每个直线段的斜率,表示变化趋势,li,ki(i=1,2)分别表示模式的长度和斜率.2 PCA主成分分析主成分分析技术(principal component analysis,PCA) [7]可以有效的找出数据中最“主要”的元素和结构,对原有数据进行简化,并揭示隐藏在复杂数据背后的简单关系.其基本思想是对原始变量的适当线性组合形成少数几个原始变量主要信息的新变量,并采用新变量来分析问题和解决问题.其原理如图1所示,原始变量X1和X2相关性很强(点分布在倾斜的椭圆内),在适当的坐标变换下(如逆时针旋转一个角度θ),则新旧坐标之间关系为(3)图1 主成分分析的几何意义Fig.1 Geometric meaning of the principal component analysis从图1可以看出n个点的波动主要在Z1方向,Z2方向上的波动可以忽略,这样可以将二维问题降为一维处理,达到降维的目的[8].对于代表MTS项的两个矩阵A和B(要求列数相同),首先通过奇异值分解获得每个矩阵的主成分,然后试探性选择最初的z个主成分(如选取代表变化95%的前z个主成分),其相似性矩阵为[9](4)其中,L和M包含矩阵A和B的前z个主成分,θi j为A的第i个主成分与B的第j 个主成分之间的夹角.SPCA从0到z变化,通过计算2个矩阵的前z个主成分的所有组合的余弦平方值来测量其相似性[10-11].3 k-近邻局部异常检测1) 对于给定一个正整数k和一个数据点集合D,在D中p点的k近邻距离k-dist(p)满足:① 至少有k个点o∈D\{p},d(p,o)≤k-dist(p);② 最多有k-1个点o∈D\{p},d(p,o)<k-dist(p).那么称dist(p,o)是p的kth 距离.在图2中当k=3时,k-dist(p)=d(p,o),其中d(p,o)表示p点到o点的距离.图2 k=3时的k-dist(p)=d(p,o)Fig.2 When k=3, k-dist(p)=d(p,o)2) 若q点到p点的k-近邻距离满足r-distk(q,p)=max(d(q,p),k-dist(p))(5)则称其为p点的k-近邻可达距离r-distk(q,p).在图2中,因为d(q,p)>k-dist(p),所以q点到p点的r-distk(q,p)=d(q,p);而r点到p点的d(r,p)<k-dist(p),因此,r-distk(r,p)=k-dist(p).3) 点q的k局部可达密度lrd(q)(6)其中K(q)表示在数据集D中与对象q的距离不超过k-dist(p)的所有点的集合.lrd(q)反映了q点周围点分布密度.如果lrd(q)较小,说明q点成为局部异常点的可能性比较大.4) q点的局部异常系数LOF(q)(7)LOF(q)的值反映q点在其k领域内所含点是否稀疏.如果LOF(q)的值较大则该点的局部范围点比较稀疏,说明该点是异常的可能性比较大.值得注意的是,这里的对象间距离不是计算MTS对象间距离,而是MTS对象经过主成分分析后的主成分序列间距离.各主成分所包含的信息占原来变量所包含信息的比重可以通过计算贡献率获得.贡献率大的权值大,权值一般由特征值获得.4 异常检测算法与分析多元时间序列异常检测首先利用主成分分析对多元时间序列进行降维处理,得到多元时间序列的主成分序列,在此基础上找出每个MTS的k-近邻序列,然后根据(6,7)式计算各MTS序列的异常因子LOF(q),并对异常因子进行排序,输出λ最异常的MTS序列.具体算法如下:算法1: 多元时间序列异常检测算法输入多元时间序列集MTS,近邻数k,异常点个数λ,输出多元时间序列集MTS的λ个异常模式.① [a.zcf,w]←PCA(MTS);∥主成分分析给出主成分和权向量② sn←length(MTS);∥计算序列长度③ For i=1:sn④ data(i).point←compute(a(i).zcf,k);⑤ data(i).distk←distk(i);∥计算每个模式子序列的k近距离⑥ s←0, t←0;⑦ for j=1:k⑧ v←data(i).point(j,1);⑨ s←s+max(data(i).point(j,2),data(v).distk);⑩ data(i).lrd←k/s;∥计算局部可达密度t←t+data(v).lrd;end. data(i).lof←t/k/data(i).lrd;∥局部异常系数end算法的复杂度分析:对于由n个p×p矩阵构成的MTS序列(一般情况下p≪n),奇异值分解的时间复杂度为O(n×p3),查找k-近邻序列采用分层顺序扫方法,时间复杂度为O(n×p2),采用(6,7)式计算各MTS序列的异常因子并对其进行排序,时间复杂度为O(k×n).考虑p≪n的情况,该算法的总体复杂度为O(n×p3).5 实验结果与分析5.1 实验数据集在某股市的股票数据集中选取了300家上市公司的交易情况组成一个MTS数据集,MTS的长度为300个交易日的观测值,对各股票的起始收盘价、结束收盘价、股票波动的最高价、最低价进行长时间跨度趋势分析.选定参照股并对其他股票数据进行标准化,以标准化后的最高与最低指数的差值为基准,定义一个差值上下波动区间,如果一段时间某只股票最高和最低价出现的先后顺序与参照股的相异或两者的差值超出上下波动区间,则可认为这只股票属于异常股票.对于主成分z=2的取值,通过其贡献率的大小来确定,一般的多元时间序列主成分取前2个就可以很好的代表原始数据,但是对于高维多段时间序列如维数有36,42的等序列,z的取值还待研究.针对该数据集MTS经过主成分分析后,得到特征值矩阵,主成分z取值从1~5下,在试验中当主成分z=2时,它们的累积贡献率就高达99%,这说明主成分取前2个就可以很好的代表原始数据,所以一般在验证算法时取z=2即可.然后对每个维度主成分序列分别进行BU分段,然后根据多元时间序列相似性度量公式计算任意两只股票的相似度(相似距离),根据相似度通过异常检测算法计算每只股票的局部异常系数.所有实验过程在Matlab平台上完成.5.2 实验结果为了证明该算法对多元时间序列异常检测的准确性和有效性.取k=8,主成分取z=2,前两个主成分的累积贡献率达99%以上[12],文中与ELOF异常检测方法做比较,ELOF异常检测是文献[13]中提出了一种基于EROS距离的k近邻局部多元时间序列异常检测算法.两个实验使用相同的数据集,分别采用ELOF和基于主成分分析方法.通过算法1计算每个MTS序列的异常因子结果见图3.计算结果是每只股票的局部异常系数,局部异常系数越大,则该股票是异常的可能性也就越大.根据本实验的异常定义,文中提出的异常检测方法检测出了13只相关的预期异常股票,序号分别是4,24,58,62,86,123,131,158,174,203,212,247,279.而ELOF只检测出6只相关的异常股票:24,62,123,174,212,279.观察两种算法各自的局部异常系数图,可以说明本文异常检测算法比ELOF的异常检测效果更好,对于未能检测出的异常股票也有更好的处理结果.分析两种异常检测算法,主要的不同就是两股票间距离的计算.ELOF用到的距离是使用EROS距离函数计算得到的结果值,它用Svd函数分解得到右特征向量矩阵.右特征向量矩阵是一个P×P的矩阵(P为变量个数).文中的异常检测算法用到的主成分进行降维,根据累计方差贡献率分析选取z个特征向量,将这z个特征向量与原始序列进行乘计算得到新的序列.新序列则是一个m×z的矩阵(m为记录的时间点数,z为新序列变量个数),相较于右特征向量矩阵,新序列所含的信息更多;所以异常检测的结果才会更精确,从而说明了本文算法的有效性和准确性.图3 MTS异常检测结果Fig.3 Rsults of multivariate time series outlier detectionMTS的长度和的k取值都有可能影响到算法效率,针对上述股票数据集,图4给出MTS数据序列个数(n)对算法执行速度的影响,比较了在不同的序列个数条件下算法的运行时间,可以看出随着序列个数的增加,算法消耗时间是逐步增加的.图5给出了近邻值k对算法执行速度的影响,比较了在不同的k值条件下,算法与耗费时间的关系.k值分别取5~30,从图中可以看出算法的执行时间效率上在k在5~12时,算法运行时间基本固定,随后随着k的增加,算法消耗时间也是逐步增加的.图4 序列个数对算法的影响Fig.4 Influence of sequence number on the algorithm图5 k近邻个数对算法的影响Fig.5 Influence of k-nearest neighbor number on the algorithm基于k-近邻的多元时间序列的局部异常检测算法不是对原始多元时间序列的直接处理,而是在主成分序列基础上进行的异常检测.这种方法去除了多变量相关性对异常检测的影响,减少了参与异常检测的变量数,提高了异常检测精度.6 结论文中在k-近邻局部异常检测算法的基础上,结合基于主元分析的多元时间序列的降维方法,给出了一种高效率的多元时间序列异常检测算法.通过对股票数据的异常检测验证了算法的有效性和合理性.但在线实时地进行多元时间序列异常检测,还是是今后进一步研究的内容.参考文献[1] Rahmani B, Markazi A H D, Mozayani N. Real time prediction of time delays in a networked control system[C]∥International Symposium onCommunications, Control and Signal Processing(ISCCSP). Cagliari, Sardinia, Italy:[s.n.],2008: 1242-1245.[2] Sadeghzadeh N, Afshar A, Menhaj M B. An MLP neural network for time delay prediction in networked control systems[C]∥Chinese Control and Decision Conference. Shanghai, China:[s.n.],2008: 5314-5318.[3] Liu Jianggang, Liu Biyu, Zhang Ruifang, et al. The new variable-period sampling scheme for networked control systems with random time delay based on BP neural network prediction[C]∥Proceeding of the 26th Chinese Control Conference. Zhangjiajie, Hunan, China:[s.n.], 2007: 81-83.[4] 刘懿,鲍德沛,杨泽红,等. 新型时间序列相似性度量方法研究[J]. 计算机应用研究, 2007, 24(5):112-114.Liu Yi, Biao Depei, Yang Zehong, et al. Research of New similarity measure method on time series data[J]. Application Research of Computers,2007, 24(5):112-114. (in Chinese)[5] 肖辉.时间序列的相似性查询与异常检测[D].上海,复旦大学, 2005:33-40.[6] Keogh E. Ex act indexing of dynamie time warping[C]∥Proceeding of the 28th Very Large Databases. HongKong, China:[s.n.],2002:406-417.[7] Baragona R, Battaglia F. Outlier detection in multivariate time series by independent component analysis [J]. Neural Computation,2007, 19(1): 1962-1984.[8] Yamanlsh K, Takeuch J. A unifying framework to detecting outliers and change-points from nonstationary data [C]∥Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD2002). New York: ACM Press, 2002: 676-681.[9] 郭小芳,张绛丽.基于加权范数的多维时间序列相似性主成分分析[J]. 江苏科技大学学报:自然科学版, 2011, 25(5): 466-469.Guo Xiaofang, Zhang Jiangli. PCA analysis of multivariate time series based on extended frobenius norm[J]. Journal of Jiangsu University of Science and Technology: Natural Science Edition, 2011, 25(5): 466-469.(in Chinese) [10] Agyemang M, Ezeife CI. LSC-mine:algorithm for mining localoutliers[C]∥Proceedings of the 15th Information Resource Management Association(IRMA) Intemational Conferenee. New Orleans:[s.n.],2004, 1:5-8.[11] 曲吉林.时间序列挖掘中索引与查询技术的研究[D].天津:天津大学,2006:38-44.[12] Chen Y, Nascimento M A, Ooi B C, et al. SpADe: On shape-based pattern detection in streaming time series[C]∥Proceeding of the 21st international Conference on Data Engineering(ICDE). Long Beach, California, USA:[s.n.],2007:668-679.[13] 周大镯,刘月芬,马文秀.时间序列异常检测[J].计算机工程与应用,2008,44(35):145-147.Zhou Dazhuo, Liu Yuefen, Ma Wenxiu. Effective time series outlier detection algorithm based on segmentation[J]. Computer Engineering and Applications,2008,44(35):145-147. (in Chinese)。

高阶HBAM方法一般模型还可以

高阶HBAM方法一般模型还可以
Keywords: High-order neural networks; Exponential stability; Bidirectional associative memory (BAM); Time delays; Linear matrix inequality; Lyapunov fuIn recent years, Hopfield neural networks and their various generalizations have attracted the attention of many scientists (e.g., mathematicians, physicists, computer scientists and so on), due to their potential for the tasks of classification, associative memory, parallel computation and their ability to solve difficult optimization problems, see for example [1–9]. For Hopfield neural networks characterized by first-order interactions, Abu-Mostafa and Jacques [10], McEliece et al. [11], and Baldi [12] presented their intrinsic limitations. As a consequence, different architecture with high-order interactions [13–17] have been successively introduced to design neural networks which have stronger approximation property, faster convergence rate, greater storage capacity, and higher fault tolerance than lower-order neural networks; while the stability properties of these models for fixed weights have been studied in [18–21].

电力系统常用英文词汇

电力系统常用英文词汇

电力专业英语词汇(较全)1、元件设备三绕组变压器three—column transformer ThrClnTrans 双绕组变压器double-column transformer DblClmnTrans电容器Capacitor并联电容器shunt capacitor电抗器Reactor母线Busbar输电线TransmissionLine发电厂power plant断路器Breaker刀闸(隔离开关)Isolator分接头tap电动机motor2状态参数有功active power无功reactive power电流current容量capacity电压voltage档位tap position有功损耗reactive loss无功损耗active loss空载损耗no-load loss铁损iron loss铜损copper loss空载电流no-load current阻抗impedance正序阻抗positive sequence impedance负序阻抗negative sequence impedance零序阻抗zero sequence impedance无功负载reactive load 或者QLoad有功负载: active load PLoad遥测YC(telemetering)遥信YX 励磁电流(转子电流)magnetizing current定子stator功角power-angle 上限:upper limit下限lower limit并列的apposable高压: high voltage低压low voltage中压middle voltage电力系统power system发电机generator励磁excitation励磁器excitor电压voltage电流current母线bus变压器transformer升压变压器step-up transformer高压侧high side输电系统power transmission system输电线transmission line固定串联电容补偿fixed series capacitor compensation 稳定stability电压稳定voltage stability功角稳定angle stability暂态稳定transient stability电厂power plant能量输送power transfer交流AC装机容量installed capacity电网power system落点drop point开关站switch station双回同杆并架double-circuit lines on the same tower 变电站transformer substation补偿度degree of compensation高抗high voltage shunt reactor无功补偿reactive power compensation故障fault调节regulation裕度magin三相故障three phase fault故障切除时间fault clearing time极限切除时间critical clearing time切机generator triping 高顶值high limited value强行励磁reinforced excitation线路补偿器LDC(line drop compensation)机端generator terminal静态static (state)动态dynamic (state)单机无穷大系统one machine —infinity bus system 机端电压控制AVR 功角power angle有功功率active power无功功率reactive power功率因数power factor无功电流reactive current下降特性droop characteristics斜率slope额定rating变比ratio参考值reference value电压互感器PT分接头tap下降率droop rate仿真分析simulation analysis传递函数transfer function框图block diagram受端receive—side裕度margin同步synchronization失去同步loss of synchronization 阻尼damping摇摆swing保护断路器circuit breaker电阻resistance电抗reactance阻抗impedance电导conductance电纳susceptance导纳admittance电感inductance电容:capacitanceAGC Automatic Generation Control自动发电控制AMR Automatic Message Recording 自动抄表ASS Automatic Synchronized System 自动准同期装置ATS Automatic Transform System 厂用电源快速切换装置AVR Automatic Voltage Regulator 自动电压调节器BCS Burner Control System 燃烧器控制系统BMS Burner Management System 燃烧器管理系统CCS Coordinated Control System 协调控制系统CRMS Control Room Management System 控制室管理系统CRT Cathode Ray Tube 阴极射线管DAS Data Acquisition System 数据采集与处理系统DCS Distributed Control System 分散控制系统DDC Direct Digital Control 直接数字控制系统DEH Digital Electronic Hydraulic Control 数字电液(调节系统)DPU Distributed Processing Unit 分布式处理单元EMS Energy Management System 能量管理系统ETS Emergency Trip System 汽轮机紧急跳闸系统EWS Engineering Working Station 工程师工作站FA Feeder Automation 馈线自动化FCS Field bus Control System 现场总线控制系统FSS Fuel Safety System 燃料安全系统FSSS Furnace Safeguard Supervisory System 炉膛安全监控系统GIS Gas Insulated Switchgear 气体绝缘开关设备GPS Global Position System 全球定位系统HCS Hierarchical Control System 分级控制系统LCD Liquid Crystal Display 液晶显示屏LCP Local Control Panel 就地控制柜MCC Motor Control Center 电动机马达控制中心MCS Modulating Control System 模拟量控制系统MEH Micro Electro Hydraulic Control System 给水泵汽轮机电液控制系统MIS Management Information System 管理信息系统NCS Net Control System 网络监控系统OIS Operator Interface Station 操作员接口站OMS Outage Management System 停电管理系统PID Proportion Integration Differentiation 比例积分微分PIO Process Output 过程输入输出通道PLC Programmable Logical Controller 可编程逻辑控制器PSS Power System Stabilizator 电力系统稳定器SCADA Supervisory Control And Data Acquisition 数据采集与监控系统SCC Supervisory Computer Control 监督控制系统SCS Sequence Control System 顺序(程序)控制系统SIS Supervisory Information System 监控信息系统TDCS TDC Total Direct Digital Control 集散控制系统TSI Turbine Supervisory Instrumentation 汽轮机监测仪表UPS Uninterrupted Power Supply 不间断供电标准的机组数据显示(Standard Measurement And Display Data)负载电流百分比显示Percentage of Current load(%)单相/三相电压Voltage by One/Three Phase (Volt。

人工神经网络与神经网络优化算法

人工神经网络与神经网络优化算法

其中P为样本数,t j, p 为第p个样本的第j个输
出分量。
感知器网络
1、感知器模型 2、学习训练算法 3、学习算法的收敛性 4.例题
感知器神经元模型
感知器模型如图Fig2.2.1 I/O关系
n
y wipi bi
i 1
y {10
y0 y0
图2.2.1
单层感知器模型如图2.2.2
定义加权系数
10.1 人工神经网络与神经网络优化算法
③第 l 1层第 i个单元到第个单元的权值表为
; l1,l ij
④第 l 层(l >0)第 j 个(j >0)神经元的
输入定义为 , 输出定义 Nl1
x
l j
y l 1,l ij
l 1 i

yLeabharlann l jf (xlj )
, 其中 i0 f (•)为隐单元激励函数,
人工神经网络与神经网络优化算法
自20世纪80年代中期以来, 世界上许多国 家掀起了神经网络的研究热潮, 可以说神 经网络已成为国际上的一个研究热点。
1.构成
生物神经网
枝蔓(Dendrite)
胞体(Soma)
轴突(Axon) 胞体(Soma)
2.工作过程
突触(Synapse)
生物神经网
3.六个基本特征: 1)神经元及其联接; 2)神经元之间的联接强度决定信号传递的强
函数的饱和值为0和1。
4.S形函数
o
a+b
c=a+b/2
(0,c)
net
a
2.2.3 M-P模型
McCulloch—Pitts(M—P)模型, 也称为处理单元(PE)
x1 w1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
II. Detection and Tracking by Stereo Vision
The UTA system is equipped witБайду номын сангаас a stereo-based object detection and tracking module that detects potential obstacles in real-time, including leading vehicles and pedestrians. This stereo system is based on a non-linear feature extraction which classi es each pixel according to the gray Christian Wohler, Till Portner, and Uwe Franke are with the values of its 4 direct neighbors. We check whether each Daimler-Benz Research, FT3 AB, D-89081 Ulm, Germany. Joachim K. Anlauf is with the Rheinische Friedrich-Wilhelm- neighbor is much brighter, much darker or has similar Universitat, Institut fur Informatik II, D-53117 Bonn, Germany. brightness compared to the considered central pixel. This
Our application domain is vision-based driver assistance in the inner city environment. In this scenario, the recognition and tracking of pedestrians is essential to avoid dangerous tra c situations. In the following, we will brie y describe some recent approaches for recognizing pedestrians on single images and image sequences. Due to the fact that pedestrians are non-rigid objects and thus show a high variability especially in outdoor scenes, there are only few approaches that do not rely on motion information. Most methods use motion to extract moving pedestrians from a stationary background a survey about human motion analysis can be found in 6 . In 11 Haar wavelet templates are extracted from single images which are then used for classifying frontal and rear views of pedestrians with a support vector machine. Segmentation and tracking of walking persons is discussed in 13 , 14 . In 17 a real-time system for detecting and tracking a single person in front of a non-stationary background is presented. In this algorithm, a Gaussian model of the background and the person is generated based on color and location in the image. Other methods detect typical motion patterns generated by the legs of walking pedestrians in the xt plane 9 and in xyt space 10 . The algorithm presented in 12 does not require a stationary camera. This method searches for independently moving objects, for each of which a temporal sequence of image regions which are normalized in size is produced. The motion pattern appearing in such a sequence is classi ed based on optical ow.
A Time Delay Neural Network Algorithm for Real-Time Pedestrian Recognition
Christian Wohler, Joachim K. Anlauf, Till Portner, and Uwe Franke
Abstract |In this paper we present an algorithm for recognizing walking pedestrians in sequences of grayscale stereo images taken from a moving camera pair. The method has been designed for use in a driver assistance system for the inner city environment warning the car driver of tra c participants that might cause dangerous situations. Our algorithm is divided into two parts: First, a preliminary detection and tracking stage consisting of a real-time stereo algorithm yields image regions possibly containing a pedestrian. During the subsequent classi cation stage, these temporal sequences of regions of interest are classi ed by a feed-forward time delay neural network TDNN with spatio-temporal receptive elds. It is possible to stabilize the recognition process by integrating feedback loops into the TDNN architecture. The complete detection and recognition algorithm runs at a speed of about 70 ms per cycle on a Power PC 604e. Keywords | Image sequence, time delay neural network, pedestrian recognition, stereo vision
1998 IEEE International Conference on Intelligent Vehicles 247
A. Preprocessing of the detection results The pedestrian recognition process is based on the characteristic criss-cross motion of the legs of a laterally walking pedestrian, i. e. walking at an angle smaller than about 45 with respect to the image plane. We therefore crop the lower half of the regions of interest delivered by the stereo algorithm and normalize them in size. We then combine them into image sequences covering a temporal range that Fig. 2. Disparity image left and corresponding 2D depth map. approximately corresponds to one walking step. This leads to a sequence length of eight single images since each second stereo image pair is evaluated, i. e. 640 ms. After each stereo detection procedure, the batch of images is shifted backwards by one image, discarding the least recent image while plac
相关文档
最新文档