点的投影练习
(完整word版)点投影练习
1、已知各点的空间地点,画出其投影图(尺寸由立体图量取,并取整)2、已知点的一个投影和以下条件,求其他两个投影。
(1) A 点与 V 面的距离为 20mm。
(2) B 点在 A 点的左方 10mm。
3、已知点 A(35、20、20),B(15、0、25),求作它们的投影图。
4、已知各点的两个投影,求作出第三投影。
5、判断以下各点的相对地点。
6、已知点 B 在点 A 的左方 10mm,下方15mm,前面 10mm;点 C 在点 D 的正前面 10mm,作出点 B 和点 C的三面投影。
7、已知A 点(10,10,15);点B 距离投投影面W、V、H分别为20、15、5;点 C在点 A 左方 10,前面 10,上方5,作出 A、B、C的三面投影。
8、已知点 A 到 H、V 面的距离相等,求a′、 a″。
假如使点 B 到 H、V、W 面的距离相等,点 B 的三个坐标值有什么关系,作出点 B 的各投影。
9、判断以下各直线对投影面的相对地点,并画出三面投影。
10、过点A 作线段,使其知足以下各条件(议论:以下各题有几解,只作出一个解)。
11、求线段 AB的实长及其与 H、V 面的倾角α、β知识点:直角三角形法求直线的倾角及线段实长。
1、剖析:1)依据用直角三角形法求解直线与投影面的倾角及其线段的实长过程可知,在由线段两头点的 Z 坐标差和线段的水平投影长为两直角边的三角形中,斜边等于线段的实长,斜边与水平投影长的直角边的夹角等于α;2)在由线段两头点的 Y 坐标差和正面投影长为直角边的三角形中,可以反应线段与 V 面的夹角和线段的实长。
3)由投影图中可知,线段的水平投影长、正面投影长,线段两头点的 Y 坐标差和 Z 坐标差均可经过作图求得。
2、作图步骤:1)过 a′,b 分别作水平线,二直线分别交 bb′连线和 aa′连线于点 1 和点 2;2)过点 a′作 a′ b′的垂线,过点 b 作 ab 的垂线;并分别在二垂线上截取 a′ A1=a2( Y ab),bb=b′ 1( Z ab)3)用线段分别连结b′ A1和 aB1;结果如下图。
投影知识点练习测试题
29.1 投影测试题时限:45分钟姓名:分数:一、精心选一选(每小题5分,共50分)1.下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间的先后顺序正确的是( )(A)A→B→C→D. (B)D→B→C→A.(C)C→D→A→B.(D)A→C→B→D.2.球的正投影是( )(A)圆面. (B)椭圆面.(C)点.(D)圆环.3.在同一时刻,两根长度不等的竿子置于阳光之下,但看到它们的影长相等,那么这两根竿子的相对位置是( )(A)两竿都垂直于地面. (B)两竿平行斜插在地上.(C)两根竿子不平行.(D)一根竿倒在地上.4.平行投影中的光线是( )(A)平行的. (B)聚成一点的.(C)不平行的.(D)向四面发散的.5.两个不同长度的的物体在同一时刻同一地点的太阳光下得到的投影是( )(A)相等. (B)长的较长.(C)短的较长.(D)不能确定.6.正方形在太阳光的投影下得到的几何图形一定是( )(A)正方形. (B)平行四边形或一条线段. (C)矩形.(D)菱形.7.下列图中是太阳光下形成的影子是( )(A) (B) (C) (D)8.底面与投影面垂直的圆锥体的正投影是( )(A)圆. (B)三角形. (C)矩形.(D)正方形. 9.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是( )10.人离窗子越远,向外眺望时此人的盲区是( )(A)变小. (B)变大.(C)不变.(D)以上都有可能.二、耐心填一填(每小题4分,共20分)11.同一形状的图形在同一灯光下可以得到的图形 .(填“相同”或“不同”)12.直角三角形的正投影可能是 .13.平行于投影面的平行四边形的面积与它的正投影的面积的大小关系是 .14. 小芳的房间有一面积为3m2的玻璃窗,她站在室内离窗子4m的地方向外看,她能看到窗前面一幢楼房的面积有 m2(楼之间的距离为20m).15.一位画家把边长为1米的7个相同正方体摆成如图的形式,然后把露出的表面涂上颜色,那涂色面积为 .三、用心想一想(每小题10分,共30分)16.路灯下站着小赵、小芳、小刚三人,小芳和小刚的影长如图,确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.17.指出如图所示的立体图各个面的正投影图形,并画出投影线的方向如箭头所示立体图的正投影.18.已知,如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.第二十九章投影与视图29.1投影测试题参考答案1.C2.D3.C4.A5.D6.B7.A8.D9.C 10.B 11.不同 12.三角形或线段 13.相等 14.108m2 15.2316.略 17.略 18.(1)略(2)DE=10m。
初中数学北师大版九年级上册第五章投影与视图练习题
初中数学北师大版九年级上册第四章投影与视图练习题一、选择题1.如图,路灯灯柱OP的长为8米,身高米的小明从距离灯的底部点米的点A处,沿AO所在的直线行走14米到达点B处,人影的长度A. 变长了米B. 变短了米C. 变长了米D. 变短了米2.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是A. B.C. D.3.如图,在直角坐标系中,点是一个光源.木杆AB两端的坐标分别为,则木杆AB在x轴上的投影长为A. 3B. 5C. 6D. 74.在相同时刻的物高与影长成比例,如果高为m的测杆的影长为m,那么影长为30m的旗杆的高是A. 20mB. 16mC. 18mD. 15m5.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能是A. B.C. D.6.在相同时刻的物高与影长成比例,如果高为的测杆的影长为3m,那么影长为30m的旗杆的高是A. 15mB. 16mC. 18mD. 20m7.相同时刻太阳光下,若高为的测杆的影长为3m,则影长为30m的旗杆的高是A. 15mB. 16mC. 18mD. 20m8.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿,它的影子,木竿PQ的影子有一部分落在了墙上,它的影子,,木竿PQ的长度为A. 3mB.C.D.9.如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是A. B.C. D.10.如图,该几何体的俯视图是A. B. C. D.11.如图所示,该几何体的俯视图是A. B. C. D.12.如图所示的几何体的主视图为A. B. C. D.13.观察如图所示的三种视图,与之对应的物体是A.B.C.D.14.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为A. 3,B. 2,C. 3,2D. 2,315.下列四个几何体中,主视图与俯视图不同的共有.A. 1个B. 2个C. 3个D. 4个二、填空题16.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为______17.如图,AB和DE是直立在地面上的两根立柱,米,某一时刻AB在阳光下的投影米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_________.18.一个长方体的主视图和左视图如图所示单位:,则这个长方体的体积是______.19.用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要_____个立方块,最多要_________个立方块.20.如图所示是若干个大小相同的小正方体搭成的几何体从三个不同方向看到的图形,则搭成这个几何体的小正方体的个数是______.三、解答题21.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.22.如图,灯杆AB与墙MN的距离为18米,小丽在离灯杆底部米的D处测得其影长DF为3m,设小丽身高为.求灯杆AB的高度;小丽再向墙走7米,她的影子能否完全落在地面上?若能,求此时的影长;若不能,求落在墙上的影长.23.一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC 方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得,已知标杆直立时的高为,求路灯的高CD的长.24.一个几何体从三个方向看到的图形如图所示单位:.写出这个几何体的名称:_____;若其从上面看为正方形,根据图中数据计算这个几何体的表面积.答案和解析1.【答案】D【解析】【分析】此题考查中心投影及相似三角形的应用,应注意题中三角形的变化.小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x米,B处时影长为y米.则米,米,,,∽,∽,,,则,;,,,故变短了米.故选D.2.【答案】C【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.3.【答案】C【解析】【分析】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大即位似变换的关系.利用中心投影,延长PA、PB分别交x轴于、,作轴于E,交AB于D,如图,证明∽,然后利用相似比可求出的长.【解答】解:延长PA、PB分别交x轴于、,作轴于E,交AB于D,如图,,,.,,,,∽,,即,,故选C.4.【答案】C【解析】【分析】本题考查的是中心投影,熟知同一时刻物高与影长成正比是解答此题的关键.设影长为30m的旗杆的高是xm,再由同一时刻物高与影长成正比列式计算即可得出结论.【解答】解:设影长为30m的旗杆的高是xm,在相同时刻物高与影长成比例,高为的测杆的影长为,,解得.故选C.5.【答案】B【解析】【分析】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:当等边三角形木框与阳光平行时,投影是A;当等边三角形木框与阳光垂直时,投影是C;当等边三角形木框与阳光有一定角度时,投影是D;投影不可能是B.故选B.6.【答案】A【解析】【分析】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.设影长为30m的旗杆的高是xm,再由同一时刻物高与影长成正比即可得出结论.【解答】解:设影长为30m的旗杆的高是xm,在相同时刻物高与影长成比例,高为的测杆的影长为3m,,.故选A.7.【答案】A【解析】【分析】此题考查了物高与影长的关系,解题的关键是将实际问题转化为数学问题,根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.【解答】解:,,解得:旗杆的高度米.故选A.8.【答案】B【解析】【分析】此题主要考查了平行投影以及相似三角形的应用有关知识,直接利用同一时刻物体影子与实际高度成比例,进而得出答案.【解答】解:连接AC,过点M作,同一时刻物体影子与实际高度成比例,,解得:,,故选B.9.【答案】B【解析】解:从正面看第一层是3个小正方形,第二层右边1个小正方形.故选:B.根据从正面看是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10.【答案】A【解析】解:从几何体的上面看可得,故选:A.找到从几何体的上面所看到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握所看的位置.11.【答案】D【解析】解:从上边看是三个矩形,故选:D.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.【答案】D【解析】解:从几何体的正面看,是一个矩形,矩形的中间有一条纵向的实线.故选:D.利用主视图的定义,即从几何体的正面观察得出视图即可.此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.13.【答案】D【解析】【分析】本题考查了由三视图判断几何体的知识,解题的关键是结合三视图及三个几何体确定正确的答案,难度不大,首先根据主视图中有两条虚线,发现该几何体的应该有两条从正面看不到的棱,然后结合俯视图及提供的三个几何体确定正确的序号.【解答】解:结合主视图和俯视图发现几何体的背面应该有个凸起,故淘汰选项ABC,选D.故选:D.14.【答案】C【解析】【分析】本题考查简单几何体的三视图,由俯视图和主视图知道棱柱顶的正方形对角线长是,根据勾股定理列出方程求解.【解答】解:设底面边长为x,则,解得,即底面边长为2,根据图形,这个长方体的高是3,根据求出的底面边长是2 ,故选C.15.【答案】B【解析】【分析】本题考查了几何体的三种视图,掌握定义及各几何体的特点是关键.主视图是从正面看到的图形,俯视图是从物体的上面看到的图形,可根据各几何体的特点进行判断即可.【解答】解:圆柱的主视图是矩形,俯视图是圆,它的主视图与俯视图不同;圆锥的主视图是等腰三角形,俯视图是圆,它的主视图与俯视图不同;球体的三视图均为圆,故它的主视图和俯视图相同;正方体的三视图均为正方形,故它的主视图和俯视图也相同;所以主视图与俯视图不同的是圆柱和圆锥,故选B.16.【答案】24【解析】解:设这栋建筑物的高度为xm,由题意得,,解得,即这栋建筑物的高度为24m.故答案为:24.根据同时同地的物高与影长成正比列式计算即可得解.本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.17.【答案】10米【解析】【分析】本题通过投影的知识结合图形相似的性质巧妙地求出灯泡离地面的距离,是平行投影性质在实际生活中的应用.根据平行的性质可知∽,利用相似三角形对应边成比例即可求出DE的长.【解答】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,由题意得,∽,,,,,,米.故答案为10米.18.【答案】24【解析】解:由主视图可知,这个长方体的长和高分别为3和4,由左视图可知,这个长方体的宽和高分别为2和4,因此这个长方体的长、宽、高分别为3、2、4,因此这个长方体的体积为.故答案为:24.由所给的视图判断出长方体的长、宽、高,根据体积公式计算即可.本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.19.【答案】10,14【解析】【分析】本题主要考查了三视图判断几何体,要分成最多,最少两种情况进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”算出个数.根据“俯视图打地基,正视图疯狂盖,左视图拆违章”解答即可.【解答】解:根据主视图和俯视图可知,正方体的分布的情况如下图所示:最多的正方体需要14个;正方体的分布最少的情况如下图所示:最少需要10个.故答案为10,14.20.【答案】7【解析】解:在俯视图标出相应位置摆放小立方体的个数,如图所示:因此需要小立方体的个数为7,故答案为:7.在俯视图上摆小立方体,确定每个位置上摆小立方体的个数,得出答案.考查简单几何体的三视图的画法,画三视图时还要注意“长对正、宽相等、高平齐”.21.【答案】解:如图所示:【解析】读图可得,从正面看有3列,每列小正方形数目分别为1,2,1;从左面看有3列,每列小正方形数目分别为2,1,1;从上面看有3行,每行小正方形数目分别为2,2,2,依此画出图形即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.22.【答案】解:,,∽,,.灯杆AB的高度为米.将CD往墙移动7米到,作射线交MN于点P,延长AP交地面BN于点Q,如图所示.,,∽,,即,.同理,可得出∽,,即,.小丽的影子不能完全落在地面上,小丽落在墙上的影长为1米.【解析】由、可得出∽,根据相似三角形的性质可求出AB的长度,此题得解;将CD往墙移动7米到,作射线交MN于点P,延长AP交地面BN于点Q,由、可得出∽,根据相似三角形的性质可求出的长度,同理可得出∽,再利用相似三角形的性质可求出PN的长度,此题得解.本题考查了相似三角形的应用以及中心投影,解题的关键是:由∽利用相似三角形的性质求出AB的长度;由∽利用相似三角形的性质求出PN的长度.23.【答案】解:设CD长为x米,,,,,,米,∽,,即,解得:.经检验,是原方程的解,路灯高CD为米.【解析】根据,,,得到,从而得到∽,利用相似三角形对应边的比相等列出比例式求解即可.本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.24.【答案】解:长方体;由三视图知,几何体是一个长方体,长方体的底面是边长为3的正方形,高是4,则这个几何体的表面积是答:这个几何体的表面积是.【解析】【分析】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.由2个视图是长方形,那么这个几何体为棱柱,另一个视图是正方形,那么可得该几何体是长方体;由三视图知,长方体的底面是边长为3的正方形,高是4,根据长方体表面积公式列式计算即可.【解答】解:根据三视图可得这个几何体是长方体.故答案为长方体;见答案.。
《机械制图与计算机绘图(第3版)》拓展练习答案
拓展练习1-1.1 选择填空(1)制图国家标准规定,图纸幅面尺寸应优先选用( C )种基本幅面尺寸。
A.3;B.4;C.5;D.6(2)1:2是( B )的比例A.放大;B.缩小;C.优先选用;D.尽量不用(3)某产品用放大一倍的比例绘图,在标题栏的比例栏中应填写( D )。
A.放大一倍;B.1×2;C.2/1;D.2:1(4)若采用1:5的比例绘制一个直径为40的圆时,其绘图直径为( A )。
A.Φ8;B.Φ10;C.Φ40;D.Φ200(5)机械图样中常用的图线类型有粗实线、( C )、虚线、细点画线等。
A.轮廓线;B.基准线;C.细实线;D.轨迹线(6)机械图样中各种类型图线的宽度分为( B )种。
A.1;B.2;C.3;D.4(7)绘制机械图样时,粗实线的宽度不应小于( A )mm。
A.0.5;B.0.7;C.1;D.2(8)在以下选项中,( C )是制图国家标准规定的字体高度。
A.3;B.4;C.5;D.6(9)图样中的尺寸一般以( D )为单位时,不需标注其计量单位符号,若采用其他计量单位时必须标明。
A.km;B.dm;C.cm;D.mm(10)机件的真实大小应以图样上( A )为依据。
A.所注尺寸数值;B.所画图形大小;C.所标绘图比例;D.所加文字说明1-1.2 尺寸注法练习(1)找出左图中尺寸标注的错误,并在右图中正确注出(2)按1:1的比例标注尺寸(数值从图中量取,取整数)拓展练习2-1.1 根据轴测图,绘制物体的三视图(尺寸从轴测图中量取)2-1.2 参照轴测图,补画视图中所缺的图线2-1.3 看懂三视图,补画视图中所缺的图线2-1.4 点的投影(1)根据A点的坐标(20,10,15),求作其三面投影。
(2)已知B点距离V面为15mm,距离H面为10mm,距离W面为0,求B点的三面投影。
2-1.5 平面的投影(1)已知三角形ABC三个顶点的坐标A(22,12,10)、(2)已知平面的两个投影,求第三个投影。
工程图学习题答案(田凌)
5. 根据线段AB的两个投影,求作第三投影。
6. 已知线段AB、BC、CD的两个投影,求作侧面投影,并判断其各为何种位置直线。
AB是
BC是 CD是
水平
一般位置 侧垂
线
线 线
7. 在线段AB上取一点C,使A、C两点之间的距离为20。
* 8. 在线段AB上取一点C ,使它与H面和V面的距离相等。
2. 求作俯视图,并标出表面上各点的其余两个投影。
2. 求作俯视图,并标出表面上各点的其余两个投影。
3. 求作左视图,并标出表面上各点的其余两个投影。
3. 求作左视图,并标出表面上各点的其余两个投影。
4. 求作左视图,并标出表面上各点的其余两个投影。
4. 求作左视图,并标出表面上各点的其余两个投影。
12. 求作左视图。
12. 求作左视图。
13. 求作左视图。
13. 求作左视图。
14. 求作左视图。
14. 求作左视图。
15. 求作俯视图。
15. 求作俯视图。
16. 求作俯视图。
16. 求作俯视图。
17. 求作左视图。
17. 求作左视图。
18. 求作俯视图。
18. 求作俯视图。
6.3 多形体相交
1. 补全主视图中所缺的线。
1. 补全主视图中所缺的线。
* 2. 补全主视图、俯视图中所缺的线。
交线Ⅲ-Ⅳ为侧垂线。 求解顺序为: 3″,4″→ 4(→ 4′)→ 3→ 3′ 或 4′→ 4 → 3 → 3′
* 2. 补全主视图、俯视图中所缺的线。
7 组合体
7.1 根据组合体的两个视图 和直观图画第三视图
注:c′1′∥n′m′ , c1∥nm ; b 在 a1 的延长线上
机械制图-点、线、面的投影
a " B
a' A
b'
a " W B o
b b
X
"
b
X a H Y
a
H
" Y
投影面平行线在所平行的投影面上的投 影反映实长、反映与另外两个投影面的 夹角实际大小;另两个投影平行于相应 的轴,且缩短。
V Z
d’ c’
d' c' D C d” W X d O
d”
c”
YW
c”
d
H
c
c
YH
Z
V
a到OX轴的距离= a到OZ轴的距离 aa⊥OX轴; aa⊥OZ轴;
练习:点的二求三
已知点的两个投影,可利用点的三面投影特性 求其第三个投影。
Z
a'
X O
a”
YW
aa⊥OX轴; aa⊥OZ轴; a到OX轴的 距离= a到OZ 轴的距离
a
YH
a'
aZ
Z
a''
水平面投影a 正立面投影a’
b”
a”
YW
b”
W
X
b
O
a”
a
a
YH
练习:判断下列直线的类型 并画出第三个视图
a' b' a'
b' a b
b a
练习:立体上的直线
a’
b’
a ’’
c’ d’
b ’’
(c ’’ )
(d ’’ )
a
b
c (d )
一般位置
铅垂
练习:投影二求三
Z b’
b ’’ c ’’
制图第二章练习题
第二章投影基础一、选择题1、下列投影法中不属于平行投影法的是()A、中心投影法B、正投影法C、斜投影法2、当一条直线平行于投影面时,在该投影面上反映()A、实形性B、类似性C、积聚性3、当一条直线垂直于投影面时,在该投影面上反映()A、实形性B、类似性C、积聚性4、在三视图中,主视图反映物体的()A、长和宽B、长和高C、宽和高5、主视图与俯视图()A、长对正B、高平齐C、宽相等6、主视图与左视图()A、长对正B、高平齐C、宽相等7、为了将物体的外部形状表达清楚,一般采用()个视图来表达。
A、三B、四C、五8、三视图是采用()得到的A、中心投影法B、正投影法C、斜投影法9、当一个面平行于一个投影面时,必()于另外两个投影面A、平行B、垂直C、倾斜10、当一条线垂直于一个投影面时,必()于另外两个投影面A、平行B、垂直C、倾斜11.当平面平行于投影面时,平面在该投影面上的投影()。
A.积聚成一条曲线 B.为一形状类似但缩小了的图形C.积聚成一条直线 D.反映实形12.右图中的直线LM应是( )。
A. 水平线B. 侧平线C. 正垂线D. 侧垂线13.右图中的直线AB应是( )。
A. 水平线B. 侧平线C. 正垂线D. 侧垂线14.下列关于点的投影的描述中,正确的是( )A.点的X坐标表示空间点到正立投影面的距离B.点的Y坐标表示空间点到侧立投影面的距离C.点的Z坐标表示空间点到水平投影面的距离15.直线AB是()A.一般位置直线B.正垂线C.水平线D.侧平线16.投影面垂直线有()反映实长。
A.一个投影 B.两个投影C.三个投影D.四个投影二、判断题1、水平线的正面投影与X轴平行,水平投影反映线段的真实长度。
()2、正平面的正面投影积聚为直线。
()3、铅垂面的水平投影积聚成平行X轴的直线段。
()4、正投影的基本特性是实形性,积聚性和类似性。
()5、中心投影法是投射线互相平行的。
()6、水平线的水平投影反映真实长度。
_北师大版九年级数学上册第五章 投影与视图练习题
第五章投影与视图一.选择题1.有阳光的某天下午,小明在不同时刻拍了相同的三张风景照A,B,C,冲选后不知道拍照的时间顺序了,已知投影长度l A>l C>l B,则A,B,C的先后顺序是()A.A、B、C B.A、C、B C.B、A、C D.B、C、A2.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.3.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4.5m.则路灯的高度OP为()A.3m B.4m C.4.5m D.5m4.如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB 在x轴上的投影长为()A.3B.5C.6D.75.下列现象不属于投影的是()A.皮影B.素描画C.手影D.树影6.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形7.如图1是用5个相同的小立方块搭成的几何体,若由图1变化至图2,则从正面、上面、左面看到的形状图发生变化的是()A.从正面看到的形状图B.从左面看到的形状图C.从上面看到的形状图D.从上面、左面看到的形状图8.下列几何体中,从左面看到的图形是圆的是()A.B.C.D.9.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A.3cm3B.14cm3C.5cm3D.7cm310.如图是由几个大小相同的小立方块搭成的几何体从上面看到的形状图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体从正面看到的形状图是( )A .B .C .D .二.填空题11.一天下午,小红先参加了校运动会女子200m 比赛,然后又参加了女子400m 比赛,摄影师在同位置拍摄了她参加这两场比赛的照片,如图所示,则小红参加200m 比赛的照片是 .(填“图1”或“图2”)12.如图,一棵树(AB )的高度为7.5米,下午某一个时刻它在水平地面上形成的树影长(BE )为10米,现在小明想要站这棵树下乘凉,他的身高为1.5米,那么他最多离开树干 米才可以不被阳光晒到?13.如图,甲楼AB 高18米,乙楼CD 坐落在甲楼的正北面,已知当地冬至中午12时,物高与影长的比是1:,已知两楼相距20米,那么甲楼的影子落在乙楼上的高DE=米.(结果保留根号)14.如图,物体在灯泡发出的光照射下形成的影子是 投影.(填“平行”或“中心”).15.由若干个相同的小正方体搭成的几何体的三视图相同,如图所示.至少再加 个小正方体,该几何体可成为一个正方体.16.如图所示是若干个大小相同的小正方体搭成的几何体从三个不同方向看到的图形,则搭成这个几何体的小正方体的个数是 .17.如图,是一个实心圆柱体的三视图(单位:cm ),根据图中数据计算这个圆柱体的体积是 cm 3.(圆柱体体积公式:πr 2h ,r 为底面圆的半径,h 为圆柱体的高)18.一个几何体从正面和上面看到的图形如图所示,若这个几何体最多有a 个小正方体组成,最少有b 个小正方体组成,则a +b = .三.解答题19.画出如图所示几何体的三视图.20.如图,在平整的地面上,由若干个完全相同小正方体堆成一个几何体,请在网格中画出它的三视图.21.由几个相同的棱长的小正方体搭成的几何体的俯视图如图所示,正方形中的数字表示该位置上小正方体的个数,在网格中画出这个几何体的主视图和左视图.(注:网格中小正方形的边长等于小正方体的棱长)22.画出下面几何体的三视图.23.如图1,在平整的地面上,用8个棱长都为1cm的小正方体堆成一个几何体.(1)请利用图2中的网格画出这个几何体从正面看、从左面看和从上面看到的形状图.(一个网格为小立方体的一个面)(2)图1中8个小正方体搭成的几何体的表面积(包括与地面接触的部分)是cm2.24.如图,在路灯下,小明的身高如图中线段AB所示,他在地面上的影子如图中线段AC所示,小亮的身高如图中线段FG所示,路灯灯泡在线段DE上.(1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子.(2)如果小明的身高AB=1.6m,他的影子长AC=1.4m,且他到路灯的距离AD=2.1m,求灯泡的高.25.如图,在地面上竖直安装着AB、CD、EF三根立柱,在同一时刻同一光源下立柱AB、CD形成的影子为BG 与DH.(1)填空:判断此光源下形成的投影是:投影.(2)作出立柱EF在此光源下所形成的影子.。
【推荐】人教版九年级数学下册29.1 投影同步练习3附答案
29.1投影专题一太阳光下的投影1.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是()A.①②③④B.④①③②C.②③①④D.④③②①2.兴趣小组的同学要测量某棵树的高度.在阳光下,一名同学测得一根长为1米的直立竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.3米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.8米,则树高为多少米?3.某校初三课外活动小组,在测量树高的一次活动中,如图所示,测得树底部中心A到斜坡底C 的水平距离为8.8 m.在阳光下某一时刻测得1米的标杆影长为0.8 m,树影落在斜坡上的部分CD=3.2 m.已知斜坡CD的坡比i=1:3,求树高AB.(结果保留整数,参考数据:3 1.7)专题二灯光下的投影4.如图,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕点A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC﹙假定AC>AB﹚,影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中,正确结论的序号是.5.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).6.如图所示,点P表示广场上的一盏照明灯.(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);(2)若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)专题三正投影7.如图,投影面上垂直立一线段AB,线段长为2 cm.(1)当投影线垂直照射投影面时,线段在地面上的投影是什么图形?请在左图中画出来.(2)当投影线与投影面的倾斜角为60°时,线段在投影面上的投影是什么图形?并画出投影示意图.(3)上面(1)、(2)问题中的投影都是正投影吗?为什么?8.在正投影中,正方形倾斜于投影面放置时,它的投影是什么图形?若正方形的面积为10,它的正投影的面积是5,你知道正方形与投影面的倾斜角是多少度吗?专题四 规律探究题9.学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时刻,身高为1.6 m 的小明(AB )的影子BC 的长是3 m ,而小颖(EH )刚好在路灯灯泡的正下方H 点,并测得HB =6 m .(1)请你在图中画出形成影子的光线,并确定路灯灯泡所在的位置G ; (2)求路灯灯泡的垂直高度GH ;(3)如果小明沿线段BH 向小颖(点H )走去,当小明走到BH 的中点B 1处时,求其影子B 1C 1的长;当小明继续走剩下路程的13到B 2处时,求其影子B 2C 2的长;当小明继续走剩下路程的14到B 3处时,……,按此规律继续走下去,当小明走剩下路程的11n 到B n 处时,其影子B n C n 的长为 m (用含n 的代数式表示).【知识要点】1.投影:一个物体放在阳光下或灯光前,就会在地面上或墙壁上留下它的影子,这个影子称为物体的投影.投影要有照射光线和形成影子的地方,这就是投影线和投影面. 2.平行投影:由平行光线形成的投影是平行投影.3.中心投影:由同一个点(点光源)发出的光线所形成的投影为中心投影.4.正投影的概念:在平行投影中,如果投射线垂直于投影面,那么这种投影称为正投影.几何体在一个平面上的正投影叫做这个几何体的视图.5.(1)当线段AB 平行于投影面P 时,它的正投影是线段A 1B 1,线段AB 与它的投影的大小关 系为AB =A 1B 1;(2)当线段AB 倾斜于投影面P 时,它的正投影是线段A 2B 2,线段AB 与它的投影的大小关系为AB >A 2B 2;(3)当线段AB 垂直于投影面P 时,它的正投影是一个点. 6.(1)当纸板Q 平行于投影面P 时,Q 的正投影与Q 的形状、大小一样;(2)当纸板Q 倾斜于投影面P 时,Q 的正投影与Q 的形状、大小发生变化; (3)当纸板Q 垂直于投影面P 时,Q 的正投影成为一条线段.故当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.【温馨提示】1.平行投影与中心投影的区别与联系.2.在平行投影下,一个图形上的点被投影后,对应点的连线互相平行.同一时刻,平行投影的影子方向和大小不随物体位置的变化而变化.区别联系光线 物体与投影面平行时的投影平行投影 平行的投影线 全等都是物体在光线的照射下,在某个平面内形成的影子(即都是投影)中心投影从一点出发的投影线放大(位似变换)3.中心投影的投射光线相交于一点,同一时刻,中心投影的影子方向随物体位置的变化而发生变化. 4.正投影是平行投影的一种特例,正投影的特征是每条投影线都垂直于投影面.【方法技巧】1.因为一天之中,太阳东升西落,所以早晨物体的影子朝西,傍晚物体的影子朝东,但因为地处北半球,即使是夏天的正午,也由于太阳直射点的关系,物体的影子略微向北偏移,故一天之中影子方向的变化顺序为:正西→北偏西→正北→北偏东→正东;一天之中影子的长度的变化规律为:长→短→长.2.确定点光源的位置的方法:两个物体影子的顶端与物体的顶端的连线的交点为点光源的位置. 3.分别自两个物体的顶端及其影子的顶端作一条直线,若两直线平行,则为平行投影;若两直线相交,则为中心投影,其交点是光源的位置.参考答案1.C 【解析】太阳由东升起的过程中,物体的影子投向西侧,且由长到短,太阳偏西,物体的影子也转投向东侧,且由短到长. 故选C.2.解:画出示意图如图所示.从图中我们看到小树在一组平行光的照射下,影子分成了三部分AC 、CD 、DG .因为小树和竖直台阶是水平的,所以四边形CDEF 是平行四边形,EF =CD ,因为同一时刻,不同物体的物高与影长之比相等,所以6.01==AC AF DG BE . 即6.018.43.0==AF BE . 解得BE =0.5,AF =8.所以小树的高AB =AF +EF +BE =8+0.3+0.5=8.8(米).3.解:如图所示,延长BD 与AC 的延长线交于点E ,过点D 作DH ⊥AE 于点H .∵i =tan ∠DCH =CH DH =31=33, ∴∠DCH =30°. ∴DH =12CD =1.6 m ,CH =3DH ≈2.7 m.由题意可知10.8DH HE =, ∴HE =0.8DH =1.28 m.∴AE =AC +CH +HE ≈8.8+2.7+1.28=12.78(m). ∵8.01=AE AB ,所以168.078.128.0≈==AE AB (m).4.①③④ 【解析】当木杆绕点A 按逆时针方向旋转时,如图所示,m >AC ,①成立;①成立,那么②不成立;当旋转到达地面时,有最短影长,等于AB ,③成立;由上可知,影子的长度先增大后减小,④成立.5.解:如图所示.(1)点P 就是所求的点;(2)EF 就是小华此时在路灯下的影子.6.解:(1)如图,线段AC 是小敏的影子.(2)过点Q 作QE ⊥MO 于E ,过点P 作PF ⊥AB 于F ,交EQ 于点D ,则PF ⊥EQ . 在Rt △PDQ 中,∠PQD =55°,DQ =EQ -ED =4.5-1.5=3(米). ∵tan55°=错误!未找到引用源。
人教版九年级下册数学 第29章 投影与视图 同步练习题(含答案)
人教版九年级下册数学第29章投影与视图同步练习题29.1 投影1.小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()2.小飞晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说,广场上的大灯泡一定位于两人.3.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是() A.AB=CD B.AB≤CDC.AB>CD D.AB≥CD4.如图,如果在阳光下你的身影的方向是北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60° D.北偏东30°5.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()6.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD. (1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).7.如图,已知线段AB=2 cm,投影面为P,太阳光线与地面垂直.(1)当AB垂直于投影面P时(如图1),请画出线段AB的投影;(2)当AB平行于投影面P时(如图2),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图3中画出线段AB的正投影,并求出其正投影长.29.2 三视图第1课时几何体的三视图1.下列立体图形中,主视图是圆的是()2.如图是由四个小正方体叠成的一个几何体,它的左视图是()3.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()4.如图所示几何体的左视图是()5.将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.图中物体的一个视图(a)的名称为.7.画出如图所示圆柱的三视图.8.画出如图所示几何体三视图.9.下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个C.3个D.4个10.如图是一个空心圆柱体,其左视图正确的是()11.形状相同、大小相等的两个小木块放置于桌面,其俯视图如图,则其主视图是()12.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()13.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).14.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.15.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为下列几何体中的哪一个?选择并说明理由.第2课时由三视图确定几何体1.如图是某几何体的三视图,则这个几何体是()A.棱柱 B.圆柱C.棱锥 D.圆锥2.一个几何体的三视图如图所示,这个几何体是()A.圆柱 B.棱柱C.圆锥 D.球3.如图所示,所给的三视图表示的几何体是()A.圆锥 B.正三棱锥C.正四棱锥 D.正三棱柱4.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()5.图中的三视图所对应的几何体是()6.已知一个正棱柱的俯视图和左视图如图,则其主视图为()7.某几何体的三视图如图所示,则组成该几何体共用了小方块()A.12块B.9块C.7块D.6块8.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体不可能是()A.6个B.7个 C.8个 D.9个第3课时由三视图确定几何体的表面积或体积1.如图是一个几何体的三视图,根据图中提供的数据(单位: cm)可求得这个几何体的体积为()A.2 cm3B.3 cm3C.6 cm3D.8 cm32.如图是一几何体的三视图,由图中数据计算此几何体的侧面积为.(结果保留π)3.如图是某工件的三视图,求此工件的全面积.4.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积,结果为 cm2.(结果可保留根号)5.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.6.如图是一个几何体的三视图(单位:cm).(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个路线的最短长度.参考答案:第二十九章投影与视图29.1 投影1.B2.中间的上方.3.D4.A5.D6.解:如图所示.7.解:(1)点C为所求的投影.(2)线段CD为所求的投影,CD=2 cm.(3)线段CD为所求的投影,CD=2cos30°= 3 cm.29.2 三视图第1课时几何体的三视图1.D2.A3.D4.A5.D6.主视图.7.解:如图所示.8.解:如图所示.9. D10.B11.D12.D13.解:如图.14.解:如图.15.解:比较各几何体的三视图,考虑是否有长方形,圆及三角形即可.对于A,三视图分别为长方形、三角形、圆(含直径),符合题意;对于B,三视图分别为三角形、三角形、圆(含圆心),不符合题意;对于C,三视图分别为正方形、正方形、正方形,不符合题意;对于D,三视图分别为三角形、三角形、矩形(含对角线),不符合题意;故选A.第2课时由三视图确定几何体1.D2.A3.D4.B5.B6.D7.D8.D 提示:如图,根据左视图可以推测d=e=1,a,b,c中至少有一个为2. 当a,b,c中一个为2时,小立方体的个数为:1+1+2+1+1=6;当a,b,c中两个为2时,小立方体的个数为:1+1+2+2+1=7;当a,b,c三个都为2时,小立方体的个数为:1+1+2+2+2=8.所以小立方体的个数可能为6个、7个或8个.故选D.第3课时由三视图确定几何体的表面积或体积1.B2.10π.3.解:由三视图可知,该工件为底面半径为10 cm、高为30 cm的圆锥体.圆锥的母线长为302+102=1010(cm),圆锥的侧面积为12×20π×1010= 10010π(cm 2),圆锥的底面积为102π=100π(cm 2),圆锥的全面积为100π+10010π=100(1+10)π(cm 2).45.解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为 4 cm ,3 cm.∴菱形的边长为(32)2+22=52(cm ),棱柱的侧面积为52×8×4=80(cm 2). 6.解:(1)圆锥.(2)表面积S =S 扇形+S 圆=πrl +πr 2=12π+4π=16π(cm 2).(3)如图将圆锥侧面展开,线段BD 为所求的最短长度.由条件,得∠BAB ′=120°,C 为弧BB ′的中点,∴BD =33(cm ).。
2021学年初中数学《投影》同步练习(一)含答案及解析
2021学年初中数学《投影》同步练习(一)含答案及解析姓名:__________ 班级:__________考号:__________一、填空题(共8题)1、小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A在一直线上),量得ED=2米,DB=4米,CD=1.5米,则电线杆AB长为_____米.2、如图,地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上的投影长度随着他离墙的距离变小而 (填“变大”、“变小”或“不变”).3、小明同学的身高为1.4米,某一时刻他在阳光下的影长为1.2米,此时,与他相邻的一棵小树的影长为3.6米,则这棵树的高度为米。
4、某一时刻,身高为165cm的小丽影长是55cm,此时,小玲在同一地点测得旗杆的影长为5m,则该旗杆的高度为m。
5、如图,小丽和小华在院子内捉迷藏游戏,院内有3堵墙,现在小丽站在O点,小华如果不想被小丽看见,则不应该站在的区域是.6、高4米的旗杆在水平地面的影长为10米,此时测得附近一棵小树的影长为22.5米,则这棵树的高度为_______________。
7、在上午的某一时刻身高1.7米的小刚在地面上的投影长为3.4米,小明测得校园中旗杆在地面上的影子长16米,还有2米影子落在墙上,根据这些条件可以知道旗杆的高度为_________________米。
8、如图所示是一球吊地空中,当发光的手电筒由远及近时,•落在竖直木板上的影子会逐渐_________.二、选择题(共10题)1、张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为()A、3.2米B、4.8米C、5.2米D、5.6米2、如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( )A.①②③④ B.④①③② C.④②③① D.④③②①3、如图所示,在房子外的屋檐E处安有一台监视器,房子前有一块落地的广告牌,那么监视器的盲区在( )A.△ACE B.△BFD C.四边形BCED D.△ABD4、某时刻两根木棒在同一平面内的影子如图所示,此时,第三根木棒的影子表示正确的是()5、电影院呈阶梯或下坡形状的主要原因是( )A.为了美观B.盲区不变C.增大盲区D.减小盲区6、下列四幅图形中, 表示两棵小树在同一时刻阳光下的影子的图形可能是( )7、如图,晚上小明在路灯下散步,在小明由A处走到B处这一过程中,他在路上的影子( )A.逐渐变短 B.逐渐变长C.先变短后变长 D.先变长后变短8、下面哪个图能近似反映上午九点北京天安门广场上的旗杆与影子的位置关系( )9、下面四幅图是两个物体不同时刻在太阳光下的影子,按照时间先后顺序正确的是()A.a→b→c→d B.d→b→c→aC.c→d→a→b D.a→c→b→d10、中午12点,身高为165cm的小明的影长为55cm,同学小红此时的影长为60cm,那么小红的身高为( )A.180cm B.175cm C.170cm D.160cm三、计算题(共2题)1、电线杆上有一盏路灯O,电线杆与三个等高的标杆整齐划一地排列在马路的一侧,AB、CD、EF是三个标杆,相邻的两个标杆之间的距离都是2 m,已知AB、CD在灯光下的影长分别为BM = 1. 6 m,DN = 0. 6m.(1)请画出路灯O的位置和标杆EF在路灯灯光下的影子。
习题答案汇总(4-56)
1.作出平面P 与五棱柱截交线的投影。
2.作出平面Q 与斜三棱拄截交线的投影。
3.作出平面P 与斜三棱锥截交线的正面投影和水平投影。
4.补画四棱锥的侧面投影,并作出平面Q 与四棱锥截交线的正面投影和侧面投影。
5.完成截切三棱柱的侧面投影。
6.完成截切四棱锥的正面投影和侧面投影。
平面与立体相交班级 姓名 学号7.完成缺口四棱锥的水平投影和侧面投影。
9.作出缺口四棱柱的侧面投影。
10.完成缺口六棱柱的正面投影。
11.完成缺口四棱锥的水平投影和侧面投影。
平面与立体相交班级 姓名 学号8.完成截切四棱柱的侧面投影。
①②12.作出平面P 与圆柱体截交线的投影。
13.作出截切圆锥体截交线的正面投影。
14.作出截切圆柱体的侧面投影。
16.作出截切圆柱体的水平投影。
17.补全截切半球的水平投影和侧面投影。
平面与立体相交15.作出截切圆锥体的水平投影和侧面投影。
班级 姓名 学号20.完成回转体的水平投影。
18.作出立体的侧面投影。
19.作出立体的水平投影。
平面与立体相交21.完成组合回转体的水平投影。
班级 姓名 学号①②③2.完成立体的正面投影3.完成立体的正面投影和水平投影4.完成立体的正面投影和侧面投影5.完成立体的水平投影6.完成立体的正面投影立体与立体相交班级 姓名 学号1.完成立体的侧面投影7.完成立体的正面投影11.完成立体的侧面投影9.完成立体的正面投影和水平投影10.完成立体的三面投影立体与立体相交班级 姓名 学号8.完成立体的水平投影①②12.完成穿孔三棱锥的水平投影和侧面投影13.完成穿孔圆柱的侧面投影14.完成穿孔六棱柱的水平投影和侧面投影16.完成立体的正面投影和水平投影立体与立体相交班级 姓名 学号15.完成立体的三面投影①②1.完成立体的水平投影2.完成立体的水平投影3.完成立体的水平投影4.完成立体的水平投影5.完成立体的水平投影6.完成立体的水平投影7.完成立体的水平投影8.完成立体的水平投影9.完成立体的水平投影复习题 平面与立体相交班级 姓名 学号对照轴测图补画立体的第三视图2.3.4.6.7.8.班级 姓名 学号2.3.5.6.班级 姓名 学号对照轴测图补画视图中所缺的图线8.9.11.12.班级 姓名 学号对照轴测图补画视图中所缺的图线1.2.3.4.5.6.7.8.9.组合体看图练习 判断图中指定表面是圆柱面还是平面,若平面则判断平面与投影面的相对位置班级 姓名 学号P 面是 ;Q 面是 ;R 面是 。
新北师大版九年级数学上册:第五章 投影与视图同步练习(超详细,经典,含答案)
第五章投影与视图1投影第1课时投影、中心投影01基础题知识点1投影、中心投影的概念1.下列现象不属于投影的是(D)A.皮影B.树影C.手影D.素描画2.下列各种现象属于中心投影现象的是(B)A.上午人走在路上的影子B.晚上人走在路灯下的影子C.中午用来乘凉的树影D.早上升旗时地面上旗杆的影子知识点2影子或光源的确定3.下列四幅图中,灯光与影子的位置合理的是(B)4.(教材P144复习题T1变式)如图是小明与爸爸(线段AB)、爷爷(线段CD)在同一路灯下的情景,其中,粗线分别表示三人的影子.(1)画出图中灯泡所在的位置;(2)在图中画出小明的身高.解:(1)如图所示:O即为灯泡的位置.(2)如图所示:EF即为小明的身高.知识点3中心投影条件下物体与其投影之间的转化5.(教材P145复习题T3变式)如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把球向下移时,圆形阴影的大小变化情况是(A)A.越来越小B.越来越大C.大小不变D.不能确定02中档题6.小红和小花在路灯下的影子一样长,则她们的身高关系是(D)A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定7.如图,位似图形由三角尺与其灯光照射下的中心投影组成,位似比为2∶5,且三角尺的一边长为8 cm,则投影三角形的对应边长为(B)A .8 cmB .20 cmC .3.2 cmD .10 cm8.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,将她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是(C)9.如图,路灯(P 点)距地面8米,身高1.6米的小明从距路灯的底部(O 点)20米的A 点沿AO 所在的直线行走14米到B 点时,身影的长度是变长了还是变短了?变长或变短了多少米?解:∵∠MAC =∠MOP =90°,∠AMC =∠OMP , ∴△MAC ∽△MOP. ∴MA MO =AC OP , 即MA 20+MA =1.68. ∴MA =5米.同理△NBD ∽△NOP ,可求得NB =1.5 米. 则MA -NB =5-1.5=3.5(米). ∴小明的身影变短了,短了3.5米.第2课时 平行投影01 基础题 知识点1 平行投影1.下列各组投影是平行投影的是(A)2.李刚同学拿一个矩形木框在阳光下摆弄,矩形木框在地面上形成的投影不可能是(D)3.学校里旗杆的影子整个白天的变化情况是(B)A .不变B .先变短后变长C .一直在变短D .一直在变长 4.【动手操作】如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6 m 的小明(AB)落在地面上的影长为BC =2.4 m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG ;(2)若小明测得此刻旗杆落在地面的影长EG =16 m ,请求出旗杆DE 的高度.解:(1)影子EG 如图所示. (2)∵DG ∥AC , ∴∠ACB =∠DGE.又∵∠ABC =∠DEG =90°, ∴Rt △ABC ∽△Rt △DEG. ∴AB DE =BC EG ,即1.6DE =2.416. 解得DE =323.∴旗杆DE 的高度为323m.知识点2 正投影5.如图所示,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影是(D)6.当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小相同(填“相同”“不一定相同”或“不相同”). 02 中档题7.下列说法错误的是(B)A .太阳的光线所形成的投影是平行投影B .在一天的不同时刻,同一棵树所形成的影子的长度不可能一样C .在一天中,不论太阳怎样变化,两棵相邻的树的影子都是平行的或在一条直线上D .影子的长短不仅和太阳的位置有关,还和事物本身的长度有关8.【易错】太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是(A)A .与窗户全等的矩形B .平行四边形C .比窗户略小的矩形D .比窗户略大的矩形9.(教材P132习题T1变式)一天下午小红先参加了校运动会女子100 m 比赛,过一段时间又参加了女子400 m 比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是(A)A .乙照片是参加100 m 的B .甲照片是参加100 m 的C .乙照片是参加400 m 的D .无法判断甲、乙两张照片10.(百色中考)如图,长方体的一个底面ABCD 在投影面P 上,M ,N 分别是侧棱BF ,CG 的中点,矩形EFGH 与矩形EMNH 的投影都是矩形ABCD ,设它们的面积分别是S 1,S 2,S ,则S 1,S 2,S 的关系是S 1=S <S 2.(用“=”“>”或“<”连起来)11.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1 m 的竹竿的影长为0.4 m ,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2 m ,一级台阶高为0.3 m ,如图所示.若此时落在地面上的影长为4.4 m ,求树的高度.解:设树高为h m ,由题意,得 4.4+0.2h -0.3=0.41, 则0.4(h -0.3)=4.6, 解得h =11.8.答:树的高度为11.8 m.2 视图第1课时 简单几何体的三视图01 基础题知识点1 圆柱、圆锥、球的三视图1.(桂林中考)如图所示的几何体的主视图是(C)2.下列几何体中,其左视图为三角形的是(D)3.下列立体图形中,俯视图不是圆的是(B)4.如图是一个圆台,它的主视图是(B)5.(泰州中考)下列几何体中,主视图与俯视图不相同的是(B)6.(安徽中考)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是(D)7.(营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成的,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是(A)8.将图中的实物与它的主视图用线连接起来.9.一个圆锥和一个圆柱如图放置,说出下面①②两组视图分别是什么视图.解:①是俯视图;②是主视图.知识点2画简单几何体的三视图10.(教材P137习题T1变式)画出图中所示物体的主视图、左视图和俯视图.解:如图所示:易错点判断圆锥的俯视图时忽视中心点11.如图所示的几何体的俯视图是(D)02中档题12.(安徽中考)如图,一个放置在水平实验台上的锥形瓶,它的俯视图为(B)13.将如图所示的Rt△ABC绕直角边AC所在直线旋转一周,所得几何体的主视图是(A)14.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是(D)15.如图,茶杯的左视图是(C)16.(菏泽中考)如图是两个等直径圆柱构成的“T”形管道,其左视图是(B)17.(益阳中考)如图,空心卷筒纸的高度为12 cm ,外径(直径)为10 cm ,内径为4 cm ,在比例尺为1∶4的三视图中,其主视图的面积是(D)A.21π4 cm 2 B.21π16cm 2 C .30 cm 2 D .7.5 cm 218.(泰州中考)如图所示的几何体,它的左视图与俯视图都正确的是(D)03 综合题19.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你画出这个几何体的三视图.解:如图所示:第2课时直棱柱的三视图01基础题知识点1直棱柱的三视图1.(娄底中考)如图,正三棱柱的主视图为(B)2.(丽水中考)如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是(B)A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.(泰安中考)下面四个几何体:其中,俯视图是四边形的几何体有(B)A.1个B.2个C.3个D.4个4.(德州中考)图甲是某零件的直观图,则它的主视图为(箭头方向为主视方向)(A)5.一个几何体如图所示,则该几何体的三视图正确的是(D)6.请将六棱柱的三视图名称填在相应的横线上.(1)俯视图;(2)主视图;(3)左视图.知识点2直棱柱的三视图的画法7.画出如图所示几何体的三视图.解:如图:易错点判断视图时忽视被遮挡部分的轮廓线8.(潍坊中考)如图所示的几何体的左视图是(C)02中档题9.(陕西中考)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是(B)10.(沈阳和平区期末)从一个边长为3 cm的大立方体中挖去一个边长为1 cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是(C)11.(太原期末)一个圆柱体钢块,从正中间挖去一个长方体得到的零件毛坯的俯视图如图,其主视图是(A)12.(济宁中考)三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为6cm.13.下面几何体的三种视图有无错误?如果有,请改正.解:主视图有错误,左视图无错误,俯视图有错误,正确画法如图所示.14.两个四棱柱的底面均为等腰梯形,它们的俯视图分别如图所示,画出它们的主视图和左视图.(1) (2)解:如图所示:03 综合题 15.如图1是由两个长方体所组成的立体图形,图2中的长方体是图1中的两个长方体的另一种摆放形式,图①②③是从不同的方向看图1所得的平面图形.(1)填空:图①是主视图得到的平面图形,图②是俯视图得到的平面图形,图③是左视图得到的平面图形; (2)请根据各图中所给的信息(单位:cm),计算出图1中上面的小长方体的体积.解:由图可得⎩⎪⎨⎪⎧x =y +2,x +y =12.解得⎩⎪⎨⎪⎧x =7,y =5. 小长方体的体积为5×3×2=30(cm 3).所以图1中上面的小长方体的体积为30 cm 3.第3课时由视图描述几何体01基础题知识点1由三视图还原几何体1.(云南中考)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是(D)A.三棱柱B.三棱锥C.圆柱D.圆锥2.(泰安中考)如图是下列哪个几何体的主视图与俯视图(C)3.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是(C)A.圆柱B.圆锥C.球D.正方体4.(襄阳中考)一个几何体的三视图如图所示,则这个几何体是(C)知识点2由几何体的三视图求其面积或体积5.(临沂中考)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是(C)A.12 cm2B.(12+π)cm2C.6π cm2D.8π cm26.(通辽中考)如图,一个几何体的主视图和左视图都是边长为6的等边三角形,俯视图是直径为6的圆,则此几何体的全面积是(C)A.18π B.24πC.27π D.42π7.如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是24cm3.8.如图是一个几何体的主视图、左视图和俯视图.(1)写出这个几何体的名称;(2)若已知主视图的高为10 cm,俯视图的三边长都为4 cm,求这个几何体的侧面积.解:(1)三棱柱.(2)这个几何体的侧面积为10×4×3=120(cm2).02中档题9.(河北中考)图中三视图对应的几何体是(C)10.(广元中考)如图是由几个相同小正方体组成的立体的俯视图,图上的数字表示该位置上小正方体的个数,这个立体图形的左视图是(B)11.(巴彦淖尔中考)如图是一个几何体的三视图,则这个几何体的表面积是(A)A.60π+48 B.68π+48C.48π+48 D.36π+4812.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为(B)A.60π B.70π C.90π D.160π13.由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中画出一种该几何体的主视图,且使该主视图是轴对称图形.解:如图所示.(答案不唯一)14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.解:该几何体的形状是直四棱柱.由三视图知,棱柱底面菱形的对角线长分别为4 cm ,3 cm.∴菱形的边长为(42)2+(32)2=52(cm).∴棱柱的侧面积为52×8×4=80(cm 2).由三视图判断小立方体的个数【方法指导】 在三视图中,通过主视图、俯视图可以确定组合图形的列数,通过俯视图、左视图可以确定组合图形的行数,通过主视图、左视图可以确定行与列中的最高层数,从而确定小正方体的个数. 类型1 个数确定1.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块的个数是(B)A .7B .8C .9D .102.一个几何体由几个大小相同的小正方体搭成,其左视图和俯视图如图所示,则搭成这个几何体的小正方体的个数是4.类型2 个数不确定3.如图是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,则这个几何体最多由9个小正方体组成,最少由7个小正方体组成.回顾与思考(五)投影与视图01分点突破知识点1中心投影与平行投影1.下列结论正确的有(B)①同一时刻,同一公园内的物体在阳光照射下,影子的方向是相同的;②物体在任何光线照射下影子的方向都是相同的;③物体在路灯照射下,影子的方向与路灯的位置有关;④物体在点光源照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个2.把一个正五棱柱如图摆放,当投射线由正前方射到后方时,它的正投影是(B)3.(贺州中考)小明拿一个等边三角形木框在阳光下玩耍,发现等边三角形木框在地面上形成的投影不可能是(B) 4.如图,两幅图片中竹竿的影子是在太阳光下形成的,还是在灯光下形成的?请你画出两图中小树的影子.解:如图所示.知识点2由几何体判断三视图5.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是(C)6.(赤峰中考)如图是一个空心圆柱体,其俯视图是(D)7.(柳州中考)如图,这是一个机械模具,则它的主视图是(C)知识点3由三视图还原几何体8.(贵阳中考)如图是一个几何体的主视图和俯视图,则这个几何体是(A)A.三棱柱B.正方体C.三棱锥D.长方体9.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是6__cm2.02易错题集训10.一元硬币放在太阳光下,它在平整的地面上的投影不可能是(D)A.线段B.圆C.椭圆D.正方形11.如图所示几何体的左视图是(C)03中考题型演练12.(大连中考)一个几何体的三视图如图所示,则这个几何体是(C)A.圆柱B.圆锥C.三棱柱D.长方体13.(娄底中考)如图的几何体中,主视图是中心对称图形的是(C)14.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是(B)15.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(C)16.图中三视图对应的几何体是(C)17.一个几何体的三视图如图所示,则该几何体的表面积为(D)A.4π B.3πC.2π+4 D.3π+48.。
工程制图练习题第三章
3-18已知等边三角形ABC为一侧平面,又 知其AC的侧面投影a″c″和c′,求其三面投影。
3-18已知等边三角形ABC为一侧平面,又 知其AC的侧面投影a″c″和c′,求其三面投影。
3-19已知三角形CDE为一铅垂面和正面 投影,并知其与W面的倾角γ=60°,求该平面 的另两个投影。
3-19已知三角形CDE为一铅垂面和正面 投影,并知其与W面的倾角γ=60°,求该平面 的另两个投影。
3-48(1)求直线与平面相交的交点,并判断 可见性。
3-48(1)求直线与平面相交的交点,并判断 可见性。
3-48(2)求直线与平面相交的交点,并判断 可见性。
3-48(2)求直线与平面相交的交点,并判断 可见性。
3-48(3)求直线与平面相交的交点,并判断 可见性。
3-48(3)求直线与平面相交的交点,并判断 可见性。
3-15作出下列各平面的第三投影,并回答 它们相对投影面的位置。
3-15作出下列各平面的第三投影,并回答 它们相对投影面的位置。
3-15作出下列各平面的第三投影,并回答 它们相对投影面的位置。
3-16已知等腰直角三角ABC为一正平面, 又知斜边AC的正面投影a’c’和c的水平投影, 求其三面投影。
3-24(2)直线AD属于已知平面,求直线的 另一投影。
3-25试完成三角形ABC的水平投影,AD为 側垂线。
3-35试完成三角形ABC的水平投影,AD为 側垂线。
3-36过A点作一水平线AB与CD相交。
3-36过A点作一水平线AB与CD相交。
3-37判断二直线的相对位置。
3-37判断二直线的相对位置。
3-40判断两直线是否垂直。
(1) (2)
(3)
答:垂直 (4)
画法几何及机械制图习题集第七版
零件图和装配图
零件图:表示单个零件的形状、尺寸和技术要求的图样
装配图:表示机器或部件中各零件的装配关系和结构形式 的图样
零件图的内容:视图、尺寸、技术要求、标题栏等
装配图的内容:视图、尺寸、技术要求、标题栏等
零件图和装配图的关系:零件图是装配图的基础,装配图 是零件图的综合表现
零件图和装配图的作用:指导生产和维修,便于交流和沟 通
适用范围:适用于 机械制图、工程制 图、建筑制图等专 业学生
使用方法:按照习 题集的章节顺序进 行练习,每章结束 后进行总结和反思
习题类型:包括选 择题、填空题、绘 图题等多种题型
习题难度:由易到 难,循序渐进,适 合不同水平的学生 进行练习
画法几何及机械制图习题集第七版 练习题
点、线、面的投影练习题
线的投影:线在平面上 的投影是一条直线,投 影线与线之间的距离称 为投影距离。
面的投影:面在平面上 的投影是一个平面,投 影面与面之间的距离称 为投影距离。
投影变换:将点、线、 面从一种投影变换到另 一种投影,需要经过投 影变换矩阵的变换。
截交线和相贯线
截交线:平面与平面、平面与曲 面、曲面与曲面的交线
标准件和常用件
标准件:具有统 一规格、尺寸和 性能的零件,如 螺栓、螺母、垫 圈等
常用件:在机械 设计中经常使用 的零件,如轴承、 齿轮、轴等
标准件和常用件 的选用原则:根 据设计要求、使 用环境和使用条 件选择合适的标 准件和常用件
标准件和常用件 的标注方法:按 照国家标准和行 业标准进行标注, 如公称直径、公 称长度、公称压 力等
添加标题
添加标题
添加标题
轴承、齿轮、链条等常用件的画 法
标准件和常用件的装配图绘制方 法
点线面投影练习题
点、线、面投影练习题班级_____________姓名______________得分______________一:填空1 投影可分为______________和________________两类。
2.平行投影可分为_______________和________________两类。
3.正投影的基本性质有_____、______ 、______、______。
4.物体的左视图反映了物体高度和___________两个方向的尺寸。
5.点A的坐标为(35,20,15),则该点对W面的距离为_______。
6 .平面与某投影面垂直,则在该投影面的投影为_______。
7 .直线AB的V、W面投影均反映实长,该直线为_______。
8. 点A的坐标为(10,15,20),则该点在H面上方___________。
9 .水平线的H投影反映直线的实长及对_______________投影面的倾角。
10.三投影图的投影特性为长对正、__________、__________。
二选择1. 投射方向垂直于投影面,所得到的平行投影称为_______。
A 正投影B 斜投影C 平行投影D 中心投影2.B点相对于A点的空间位置是()A.左、前、下方B.左、后、下方C.左、前、上方D.左、后、上方3.直线AB的V、H面投影均反映实长,该直线为( )。
A.水平线B.正垂线C.侧平线D.侧垂线4.已知点A(10,10,10),点B(10,10,50),则( )产生重影点。
A.在H面B.在V面C.在W面D.不会5.某平面的H面投影积聚成为一直线,该平面为()。
A.水平面B.正垂面C.铅垂面D.一般位置线6.某直线的V面投影反映实长,该直线为()。
A.水平线B.正平线C.侧平线D.铅垂线7.直线AB仅W面投影反映实长,该直线为( )。
A.水平线B.正平线C.侧平线D.侧垂线8.平面的W面投影为一直线,该平面为( )。
A.侧平面B.侧垂面C.铅垂面D.正垂面9.直线AB的V投影平行于OX轴,下列直线中符合该投影特征的为( )。
2022-2023学年北师大版九年级上册数学1 投影同步练习
2022-2023学年北师大版九年级上册数学1 投影同步练习一、单选题(共15题,共计45分)1、春分时日,小彬上午9:00出去,测量了自己的影长,出去了一段时间之后,回来时,他发现这时的影长和上午出去时的影长一样长,则小彬出去的时间大约是()小时.A.2B.4C.6D.82、如图,左面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A. B. C. D.3、下面哪个图能近似反映上午九点北京天安门广场上的旗杆与影子的位置关系()A. B. C.D.4、小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()A. B. C. D.5、给出下列结论正确的有()①物体在阳光照射下,影子的方向是相同的②物体在任何光线照射下影子的方向都是相同的③物体在路灯照射下,影子的方向与路灯的位置有关④物体在光线照射下,影子的长短仅与物体的长短有关A.1个B.2个C.3个D.4个6、下列说法正确的是()A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化 D.物体在阳光照射下,影子的长度和方向都是固定不变的7、晚上,小华出去散步,在经过一盏路灯时,他发现自己的身影( )A.逐渐变长B.逐渐变短C.先变长后变短D.先变短后变长8、在一个晴朗的天气里,小颖在向正北方向走路时,发现自己的身影向左偏,你知道小颖当时所处的时间是()A.上午B.中午C.下午D.无法确定9、小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.正方形10、小刚走路时发现自己的影子越走越长,这是因为()A.从路灯下走开,离路灯越来越远B.走到路灯下,离路灯越来越近 C.人与路灯的距离与影子长短无关 D.路灯的灯光越来越亮11、圆桌上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影,如图,已知桌面的直径1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米12、在同一时刻的太阳光下,小刚的影子比小红的影子长,那么,在晚上同一路灯下,()A.小刚的影子比小红的长B.小刚的影子比小红的影子短C.小刚跟小红的影子一样长D.不能够确定谁的影子长13、小强的身高和小明的身高一样,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长14、下列现象是物体的投影的是()A.小明看到镜子里的自己B.灯光下猫咪映在墙上的影子C.自行车行驶过后车轮留下的痕迹D.掉在地上的树叶15、在同一时刻,身高1.8米的小强在阳光下的影长为0.9米,一棵大树的影长为4.6米,则树的高度为()A.9.8米B.9.2米C.8.2米D.2.3米二、填空题(共10题,共计30分)16、如图,两幅图分别是两棵小树在同一时刻的影子,由此可判断图________是在灯光下形成的,图________是在太阳光下形成的.17、小新的身高是1.7m,他的影子长为5.1m,同一时刻水塔的影长是42m,则水塔的高度是________ m.18、下面4个图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是________19、一天下午,小红先参加了校运动会女子比赛,然后又参加了女子比赛,摄影师在同一位置拍摄了她参加这两场比赛的照片如图所示,则小红参加比赛的照片是________.(填“图1”或“图2”)20、太阳光是________ 投影.灯光是________ 投影21、我们知道,平行光线所形成的投影称为平行投影,当平行光线与投影面________ ,这种投影称为正投影.22、大双、小双兄弟二人的身高相同,可是在灯光下,哥哥大双的影子比弟弟小双的影子短,这是因为________ .23、小明和小红在太阳光下行走,小明身高1.5m,他的影长2.0m,小红比小明矮30cm,此刻小红的影长为________m.24、太阳光线下形成的投影是________投影.(平行或中心)25、小亮和他弟弟在阳光下散步,小亮的身高为1.75米,他的影子长2米.若此时他的弟弟的影子长为1.6米,则弟弟的身高为________米.三、解答题(共6题,共计25分)26、综合实践活动课,某数学兴趣小组在学校操场上想测量汽车的速度,利用如下方法:如图,小王站在点处A(点A处)和公路(l)之间竖立着一块30m 长且平行于公路的巨型广告牌(DE).广告牌挡住了小王的视线,请在图中画出视点A的盲区,并将盲区内的那段公路记为BC.已知一辆匀速行驶的汽车经过公路BC段的时间是3s,已知小王到广告牌和公路的距离是分别是40m和80m,求该汽车的速度?27、一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)28、如图,高高的路灯挂在学校操场旁边上方,高傲而明亮.王刚同学拿起一根2m长的竹竿去测量路灯的高度,他走到路灯旁的一个地方,点A竖起竹竿(AE表示),这时他量了一下竹竿的影长AC正好是1m,他沿着影子的方向走,向远处走出两个竹竿的长度(即4m)到点B,他又竖起竹竿(BF表示),这时竹竿的影长BD正好是一根竹竿的长度(即2m),请你计算路灯的高度.29、如图,小明与同学合作利用太阳光线测量旗杆的高度,身高1.6m的小明落在地面上的影长为BC=2.4m.(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;(2)若小明测得此刻旗杆落在地面的影长EG=16m,请求出旗杆DE的高度.30、如图,树、红旗、人在同一直线上,已知人的影子为AB,树的影子为CD,确定光源的位置并画出旗杆的影子.参考答案一、单选题(共15题,共计45分)1、C2、D3、C4、B5、B6、C7、D8、A9、A10、A11、B12、D13、D14、B15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)28、30、。
小学生数学挑战几何形体的投影练习题
小学生数学挑战几何形体的投影练习题在数学学科中,几何形体的投影是一个重要的概念和技能。
它不仅能够帮助我们理解和描述各种几何形状在不同角度下的投射效果,还与实际生活中的建筑设计、制图等领域密切相关。
为了提高小学生对几何形体投影的理解和运用能力,我们为大家准备了一系列的练习题。
练习题一:平行方向投影1. 小明画了一个正方体,边长为2厘米。
在一个无线远的平行光源下,正方体的一个面完全投影在地面上,投影的面积是多少平方厘米?解答:正方体的一个面积为2×2=4平方厘米。
由于光源是平行的,因此投影的面积与原来的面积相等,即为4平方厘米。
2. 小红正在研究一个三棱柱,上底为正三角形,边长为3厘米,高为4厘米。
若三棱柱与地面平行,且光源与地面之间的距离为5厘米,则三棱柱在地面上的投影面积是多少平方厘米?解答:三棱柱的上底面积为√3×3×3/4=9√3/4平方厘米。
根据相似三角形的原理,三棱柱在地面上的投影与上底面积相等,即为9√3/4平方厘米。
练习题二:斜方向投影1. 小明拿到了一个长方体,长、宽、高分别为4厘米、3厘米、2厘米。
他将长方体放置在地面上,顶面与地面的夹角为30°,光源与地面之间的距离为6厘米。
请问,长方体在地面上的投影面积是多少平方厘米?解答:长方体在地面上的投影面积等于顶面的投影面积。
顶面的长为4厘米,宽为3厘米,光源到顶面的距离为6厘米。
因此,顶面在地面上的投影面积可以通过等腰梯形的面积公式计算:投影面积 = (长+短)×光源距离/2 = (4+3)×6/2 = 21平方厘米。
2. 小红手中有一个四棱锥,底面为正方形,边长为5厘米,高为7厘米。
若四棱锥顶点朝下放在地面上,光源顶部与地面的夹角为45°,光源与地面的距离为10厘米。
请计算四棱锥在地面上的投影面积。
解答:四棱锥在地面上的投影面积等于底面的投影面积。
底面的边长为5厘米,光源到底面的距离为10厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、已知各点的空间位置,画出其投影图(尺寸由立体图量取,并取整)
2、已知点的一个投影和下列条件,求其余两个投影。
(1) A点与V面的距离为20mm。
(2) B点在A点的左方10mm。
3、已知点A(35、20、20),
B(15、0、25),求作它们的投影图。
4、已知各点的两个投影,求作出第三投影。
5、判断下列各点的相对位置。
6、已知点B在点A的左方10mm,下方15mm,前方10mm;点C在点D的正前方10mm,作出点B和点C的三面投影。
7、已知A点(10,10,15);点B距离投投影面W、V、H分别为20、15、5;点C在点A左方10,前方10,上方5,作出A、B、C的三面投影。
8、已知点A到H、V面的距离相等,求a′、a″。
如果使点B到H、V、W 面的距离相等,点B的三个坐标值有什么关系,作出点B的各投影。
9、判断下列各直线对投影面的相对位置,并画出三面投影。
10、过点A作线段,使其满足下列各条件(讨论:下列各题有几解,只作出一个解)。
11、求线段AB的实长及其与H、V面的倾角α、β
知识点:直角三角形法求直线的倾角及线段实长。
1、分析:
1)根据用直角三角形法求解直线与投影面的倾角及其线段的实长过程可知,在由线段两端点的Z坐标差和线段的水平投影长为两直角边的三角形中,斜边等于线段的实长,斜边与水平投影长的直角边的夹角等于α;
2)在由线段两端点的Y坐标差和正面投影长为直角边的三角形中,能够反映线段与V面的夹角和线段的实长。
3)由投影图中可知,线段的水平投影长、正面投影长,线段两端点的Y坐标差和Z坐标差均可通过作图求得。
2、作图步骤:
1)过a′,b分别作水平线,二直线分别交bb′连线和aa′连线于点1和点2;
2)过点a′作a′b′的垂线,过点b作ab的垂线;并分别在二垂线上截取a′A1=a2(ΔY ab),bb=b′1(ΔZ ab)
3)用线段分别连接b′A1和aB1;结果如图所示。
12、在物体的投影图中标出AB、BC、CD各棱线的三面投影。
13、完成AB的三面投影,并在AB上找一点K,使点K到H、V面的距离相等。
知识点:直线的投影;点到投影面的距离与坐标的对应关系;直线上点的投影。
分析:
1)侧面上:OZ轴是V面的积聚投影,OY w轴是H面的积聚投影;
2)由点K到H面、V面的距离相等,既Z K=Y K,则点K一定在H、V面的角等分平面上,该面的侧面投影为OZ、OY W轴的角等分线;
3)该等分角线与a″b″的交点k″即为AB上到H、V面的等距离点。
答案见下图:
14、求线段CD的实长及其与V面的夹角β。
知识点:直线的投影、实长及其与投影面的夹角。
提示:
1)c′C1=c″1;
2)∠C1b′c′=β;
3)C1d′即为实长。
答案见下图:
15、求ΔABC的实形。
知识点:直线的投影、实长;三角形的实形。
1、分析:
1)由初等几何可知,已知三角形的两边及其夹角、两角及其夹边或三边(实长)均可作出某个三角形。
现根据ΔABC的水平和正面投影可知,AC为水平线,其水平投影反映线段AB的实长,即ac=AC;同理,a′b′=AB。
只要再求出BC 的实长,ΔABC便可作出。
2)利用习题1-11的方法求出BC的实长。
3)以线段ac、a′b′和b′C三边作出ΔABC;ΔABC即为所求。
2、作图步骤:
1)过点b作ox轴的平行线,该线交cc′于点1;
2)过c′作直线垂直于b′c′,在该线上截取c′C
1
=b1;
3)用线段连接b′C
1,b′C
1
即为BC边的实长,即b′C
1
=BC;
4)分别以点a、c为圆心,以a′b′、b′C
1
为半径画圆弧,二圆弧交于点B;用线段连接点a、B和点cB,则ΔaBc≡ΔABC 。
16、已知线段AB与V面的夹角β=30°,求其水平投影。
知识点:已知直线的一个投影长度和其与投影面的一个夹角,利用直角三角形法求得第三个坐标的差,从而求得直线的其它投影。
在用直角三角形法求解线段的实长和倾角的作图中,其中包含β的直角三角形的三边分别为:斜边→线段实长,β角临边的直角边→线段正面投影的长度,β角的对边→线段两端点的Y坐标差。
此时已知线段的正面投影及其β角,则此题易解。
答案见下图:
17、已知线段EF=35mm,其投影e′f′及e″,求EF上的点K的投影,使EK为已知长度L。
18、已知线段CD=45mm,求其正面投影。
知识点:利用直角三角形法求直线的投影。
由于已知线段的实长及其水平投影,故而,在以水平投影为一直角边,以线段实长为斜边的直角三角形中,其另一直角边则为线段正面投影两端点的Z坐标差,
19、在已知线段AB上求一点C,使AC:CB=1:2,求出点C的投影
知识点:点属于直线的性质:点分线段所成的比例固定不变。
注意特殊位置直线的比例三角形法的应用。
20、过点A作一实长为30mm的线段AB,它与H、V面的夹角分别为α=45°,β=30°;此题有几个解?
21、在直线AB上求一点C(c、c′),使点C到H面的距离为15mm。
22、判断下列各直线间的相对位置。
知识点:两直线的位置关系——平行、相交与交错。
1、平行条件:a、同面投影平行(含投影重合——共面);b、比例关系不变;c、方向一致。
2、相交条件:交点唯一——投影交点符合点属于直线的性质。
3、交错条件:非平行和相交。
注:当为共面直线时,两线位置只有平行和相交。
此时判断:只要看另一投影平行——即两线平行(如1中:AB与CD);非平行——即为相交(如2中:EF与GH;4中:AB与EF)。
23、过点A作线段AB,使AB∥CD,AB的实长为30mm。
知识点:利用直角三角形法求直线的投影及其与投影面的夹角。
AB∥CD即ab∥cd,a′b′∥c′d′,a″b″∥cd″,故,过点a作直线al∥ab,过a′作a′l′∥a′b′则:ab∥al,a′b′∥a′l′。
利用直角三角形求线段实长的方法便可得解。
答案见下图:。