第六章膜分离技术
膜分离技术
膜分离技术简介膜分离技术是一种通过膜进行物质分离和纯化的技术。
它广泛应用于制备纯化工业和生物制药中,其原理是利用特定的膜,通过选择性透过、排除或吸附的方式将混合物中的目标物质与其他组分分离开来。
膜分离技术具有高效、节能、环保等优点,因此在各个领域得到了广泛应用,并成为一个重要的物质分离技术。
原理膜分离技术的基本原理是利用膜的选择性透过性来实现分离。
根据分离机制的不同,膜分离技术可以分为几种不同的类型,包括微滤、超滤、纳滤、反渗透和气体分离等。
每种类型的膜分离技术都有其特定的分离机制和应用范围。
•微滤:微滤膜具有较大的孔径,一般用于分离固体颗粒和大分子物质,如悬浮固体和细菌等。
•超滤:超滤膜的孔径较小,可以分离分子量较大的物质,如蛋白质和胶体等。
•纳滤:纳滤膜的孔径更小,可以分离分子量更小的物质,如盐和有机物等。
•反渗透:反渗透膜是一种半透膜,其孔径非常小,可以有效地分离溶质和溶剂。
这种技术常被用于海水淡化和废水处理等领域。
•气体分离:气体分离膜是一种特殊的膜,可以分离不同气体的混合物。
这种技术在天然气加工和二氧化碳捕获等领域有广泛应用。
应用膜分离技术在许多领域都有广泛的应用。
以下是其中几个应用领域的简要介绍:生物制药在生物制药中,膜分离技术被广泛用于分离和纯化蛋白质、细胞因子和其他生物分子。
通过使用超滤和纳滤等技术,可以将目标蛋白质从细胞培养液中分离出来,并去除其他杂质。
这种技术不仅能够提高产品纯度,还可以减少后续步骤的处理量,提高生产效率。
医药膜分离技术在医药领域有着广泛的应用。
例如,在血液透析和血液净化中,通过使用半透膜将废物和多余的物质从血液中分离出来,达到治疗和净化的目的。
此外,膜分离技术还可以用于药物传递系统中,通过控制药物在膜上的透过性实现持续释放和控制释放。
环境工程膜分离技术在环境工程中的应用也非常广泛。
例如,在水处理中,可以使用反渗透膜将盐和有机物等溶质从海水或废水中分离出来,实现水的淡化和净化。
膜分离技术
膜的定义一种最通用的广义定义是“膜”为两相之间的一个不连续区间。
因而膜可为气相、液相和固相,或是他们的组合。
简单的说,膜是分隔开两种流体的一个薄的阻挡层。
描述膜传递速率的膜性能是膜的渗透性。
以常见的超滤过程为例,分离机理主要为筛分:膜表面有微孔,流体流经膜一侧的表面时,部分较小的分子随部分溶剂穿过膜到达另一侧,形成透析液,而大分子则被截留在原来的一侧,形成截留液,从而达到了将大分子溶质与小分子溶质及溶剂分离开的目的。
形象地说,膜就像一张筛网,可以拦下大的、透过小的。
但这张筛网与众不同的是它的孔径很小,进行的是大小分子的分离。
我们只要选择合适孔径的膜,就可以进行所需的分子级分离。
2、膜分离技术的定义把上述的膜制成适合工业使用的构型,与驱动设备(压力泵、或电场、或加热器、或真空泵)、阀门、仪表和管道联成设备。
在一定的工艺条件下操作,就可以来分离水溶液或混和气体。
透过膜的组分被称为透过流分。
这种分离技术被称为膜分离技术。
3、膜的种类分离膜包括:反渗透膜(0. 0001~0. 001μm),纳滤膜(0. 001 ~ 0. 01μm)超滤膜(0. 01 ~ 0. 1μm)微滤膜(0. 1~10μm)、电渗析膜、渗透气化膜、液体膜、气体分离膜、电极膜等。
他们对应不同的分离机理,不同的设备,有不同的应用对象。
膜本身可以由聚合物,或无机材料,或液体制成,其结构可以是均质或非均质的,多孔或无孔的,固体的或液体的,荷电的或中性的。
膜的厚度可以薄至100μm ,厚至几毫米。
不同的膜具有不同的微观结构和功能,需要用不同的方法制备。
制膜方法一直是膜领域的核心研究课题,也是各公司严格保密的核心技术。
4、按微观结构分对称膜、不对称膜、复合膜、多层复合膜等。
5、按宏观结构分平板膜、卷式膜、管式膜、毛细管膜、中空纤维等。
无论在实验室或工业规模的生产中,膜都被制成一定形式的组件作为膜分离装置的分离单元。
在工业上应用并实现商品化的膜组件主要有平板型、圆管型、螺旋卷型和中空纤维型,相应的膜的几何形状分为平板式、管式、毛细管式和中空纤维式。
第六章膜分离过程高等教育
7
图3 对称膜
图4 非对称膜
高级课件
8
二、膜分离过程的类型
膜分离过程的实质是物质透过或被截留 于膜的过程,近似于筛分过程,依据滤 膜孔径大小而达到物质分离的目的,故 而可以按分离粒子大小进行分类。
高级课件
9
膜分离过程的类型
1.透析:用具有一定孔径大小的、高分子溶质不能
透过的亲水膜将溶质溶液与纯水分隔,在浓差的作 用下,小分子溶质透向水侧,水透向溶液一侧。 ▪ 透析膜:孔径5-10nm,实验室中常用透析袋 ▪ 应用:脱盐,血液透析
高级课件
15
一种动态过程,由泵提供推动力,在膜表 面产生两个分力:一个是垂直于膜面的法向分 力,使水分子透过膜面,另一个是于膜面平行 的切向力,把膜面截流物冲掉。
超滤原理的示意图
高级课件
16
A
B
常规过滤(A)和超滤(B)的示意图
高级课件
17
4.反渗透(Reverse osmosis,RO):
渗透和渗透压:
(1)对称膜:结构与方向无关的膜,孔经可一致,结构可不规则; (2)非对称膜:分离层很薄,较致密,为活性膜,孔径的大小和表皮的
性质决定分离特性,厚度决定传递速度,朝向待分离浓缩液;多孔 的支持层只起支撑作用,使膜具有必要的机械强度。
(3)复合膜:选择性膜层(活性膜层)沉积于具有微孔的底膜(支撑层)表 面上,表层与底层是不同的材料,膜的性能不仅取决于有选择性的 表面薄层而且受微孔支撑层的影响。
特点:以浓差为推动力,膜透 过通量很小,不适于大规模生物 分离过程,多在实验室中应用。
高级课件
10
蛋白质透析
高级课件
11
透析袋透析简单装置。
A:透析夹,B:透析,C:透析示意图
膜分离过程第六章UF.
3.MF在饮料工业中的应用 以澄清和生物稳定(除菌)为目的
传统方法: 深度吸附介质过滤(硅藻土和纤维素) 巴氏灭菌 巴氏灭菌—亦称“低温消毒法”,在62
度下加热30分钟,以杀死物质中的微生物, 一般用于消毒牛奶、啤酒和酿酒原汁等。 法国巴斯德首创,故得名。 MF分离对象:
啤酒 白酒 冷饮 瓶装水 果汁 矿 泉水
•6.8 UF膜的性能参数 水通量 在0.1-0.2MPa 压力25度纯水测定.
截留分子量
用标准物质测定 常用标准物质: 球蛋白 牛血清蛋白 细胞色素C 聚乙二醇 6.9 UF膜的结构
6.10 UF的应用 UF技术在工业生产、医药、环境保护和生 活等各个领域得到了广泛的应用,对象繁 多,目的各有不同。但UF应用可以归结为 三个方面:净化 浓缩 分离 6.10.1 净化 1.作为RO的预处理 ①海水淡化 海水中悬浮物、微粒、胶体物质、细菌、 海藻等杂物用常规的预处理方法难以完全 除去,采用超滤工艺可将细菌和海藻几乎 全部除掉: 海水→灭菌→ 絮凝→ 双介质过滤→ 活性 炭过滤→ 精密过滤→ 超滤
6.11 微滤 Micro filtration 6.11.1 概述
RO NF 与MF都属于压力推动力模型,其中 数MF应用最为广泛。
΢ ÂË ·´ Éø ͸ ³¬ ÂË µç Éø Îö Æø Ìå ·Ö Àë Ѫ Òº ͸ Îö Æä Ëû
微滤最大的应用是将液体(或气体)中大于
0.1μm的微粒分离出来。(被截留) 微滤膜的性能特点:
②果酒、啤酒中沉淀物的去除 类似白酒的处理(略)
在酒类的处理中,可以选择的膜材料有: 聚砜(PS) 聚丙烯氢(PAN) 截留分子量范围:10000-100000
③茶汁净化制备速溶茶 选用50000-100000截留分子量的超滤膜, 去除固体杂质→反渗透浓缩成浓缩茶汁→ 喷雾干燥成茶粉
《膜分离技术》PPT课件
27
脂肪族聚酰胺
脂肪族聚酰胺是线形高分子材料,由亚甲 基链段和极性基团(酰胺基)有规律交替 链接而成。
O
CH2 C NH
p型脂肪族聚酰胺
p-1
n
O
O
NH CH2 NH C CH2 C mp型脂肪族聚酰胺。
m
p-2
2021/6/10
n
28
芳香族聚酰胺
分子骨架上含有芳环的聚酰胺称为芳 香族聚酰胺。目前工业化的有两大类:
HCH2OHO
H OH
HCH2OHO
H
O
OH OH
H H
H OH
OH H
H
H H
O
O
CH2OH
H
O
OH
H H
H OH
H OH
OH H
H H
H OOH
CH2OH
n_2
2
2021/6/10
22
从结构上看,每个葡萄糖单元上有三个羟基。在催化 剂(如硫酸、高氯酸或氧化锌)存在下,能与冰醋酸、醋 酸酐进行酯化反应,得到二醋酸纤维素或三醋酸纤维素。
聚酰胺(俗称尼龙)是指分子主链上含有酰胺基 团(-NHCO-)的高分子化合物。英文为polyamide, 缩写为PA。
早期使用的聚酰胺是脂肪族聚酰胺,如尼龙-4、 尼龙—66等制成的中空纤维膜。
以后发展了芳香族聚酰胺,用它们制成的分离膜, pH适用范围为3~11。长期使用稳定性好。
2021/6/10
用赛璐玢和消化纤维素膜观察了电解质和非电解质的反 渗透现象
obain..etc
1930
Teorell, Meyer,
Sievers
进行了膜电势的研究,是电渗析和膜电极的基础
第六章膜分离过程
截留分子量: 微滤 0.02~10μm 透析 3000 Dalton~ 几万Dalton 超滤 50 nm~100 nm或5000~50万 Dalton 纳滤 200~1000 Dalton或1 nm 反渗透 200 Dalton
11
概述
膜分离法与物质大小(直径)的关系
RO NF UF MF
膜分离技术兼具分离、浓缩和纯化的功能,又有
使用简单、易于控制及高效、节能的特点
选择适当的膜分离技术,可替代过滤、沉淀、萃
取、吸附等多种传统的分离与过滤方法。
膜分离技术得到各国重视:国际学术界一致认为
“谁掌握了膜技术,谁就掌握了化工的未来”。
膜分离技术在短短的时间迅速发展起来,近30年
也可用作微滤膜和超滤膜。 它的最高使用温度和pH范围有限,一般使用温度
低于45~50℃,pH3~8。
17
醋酸纤维特点:
①透过速度大 ②截留盐的能力强 ③易于制备 ④来源丰富 ⑤不耐温(30℃) ⑥pH 范围窄,清洗困难 ⑦与氯作用,寿命降低 ⑧微生物侵袭 ⑨适合作反渗透膜
45
蛋白质、无机盐 缓冲液
无机盐
膜对溶质的截留能力以截留率R(rejection) 来表示,其定义为
R=1- Cp/Cb
式中Cp和Cb分别表示在某一瞬间,透过液 (Permeate)和截留液的浓度。
如R=1,则Cp=0,表示溶质全部被截留;
如R=0,则Cp= Cb,表示溶质能自由透过膜。
29
截 断 曲 线
得到的截留率与分子量之间的关系称为截断曲线。 质量好的膜应有陡直的截断曲线,可使不同分子量的溶质 分离完全;反之,斜坦的截断曲线会导致分离不完全。
第六章膜分离技术
• 化学清洗过程: 用化学药剂,对膜组件进行浸泡,并应用物理清洗的
方法循环清洗,达到清除膜上污染物的目的。主要利用化 学药剂的溶解、氧化、渗透等作用来达到清洗的目的。
程中的常见问题,能根据不同的分离体系进行膜 选择,能对膜进行常规处理及维护。
第一节 膜及其应用
膜的ቤተ መጻሕፍቲ ባይዱ义 在一种流体相间有一薄层凝聚相物质,把流
体相分隔开两部分,这一薄层物质称为膜。 膜分离技术
用半透膜作为选择障碍层,利用膜的选择性 (孔径大小),以膜的两侧存在的能量差作为推 动力,允许某些组分透过而保留混合物中其它组 分,从而达到分离目的的技术。
2.能耗低、可低温操作 无相态变化,特别适用于稀料液及热敏性料液浓缩。
3.不需添加化学试剂 物理分离过程,不用化学试剂和添加剂,产品不受污染。
4.设备可封闭运行、可间歇或连续运行、易操作维护、易放 大、占地小、易实现自控、配套设备少
6.考虑选用膜技术的导则
不宜采用膜技术的分离过程
具有相似分子量的化合物的分离 高渗透压料液的高倍浓缩
1.反渗透基本原理
• 半透膜:一种只能透过容剂而不能透过溶质的膜。 • 渗透:把溶剂和溶液分别置于膜两侧,纯溶剂透
过半透膜自发向溶液(或从低浓度到高浓度)一 侧流动。 • 渗透压:渗透过程进行到溶液的液面便产生一压 头H,以抵消溶剂向溶液方向流动的趋势。 • 反渗透:在溶液的液面上,再施加一个大于的压 力P时,溶剂将于原来的渗透方向相反,开始从溶 液相溶剂一侧流动。
组件的进出料示意图多通道组件组件外壳渗透液原料液渗透液渗透液垫圈管式膜结构图保留体积小操作费用低的压力降液流稳定比较成熟投资费用大大的固含量会堵塞迕料液通道拆卸比清洁管道更费时间螺旋卷设备投资低操作费用也低单位体积中所含过滤面积大换新膜容易料液需经预处理压力降大易污染难清洗液流丌易控制易清洗单根管子容易调换对液流易控制无机组件可在高温下用有机溶剂迕行操作并可用化学试剂来消毒高的设备投资和操作费用保留体积大单位体积中所含有过滤面积较小压力降大中空纤保留体积小单位体积中所含过滤面积大可以逆流操作压力较低设备投资低料液需要预处理单根纤维管损坏时需调换整个组件丌够成三膜在生物制药中的应用1
第六章膜分离
3、膜的结构
根据膜的断面结构及制备过程可分为对称膜、不对成膜和复合膜。 对称膜:亦称各向同性膜(isotropic membrane) ,其化学结构、
物理结构在各个方向上是一致的,在所有方向上的孔隙率 都相似。膜的各部分具有相同的特性,其孔结构 、不随深 度而变化的膜。 不对称膜:指膜的化学结构或物理结构随膜的部位而异,即 各 向异性的膜。 复合膜:属于表层与支撑层不为同一材质的不对称膜,也是目前发 展最快、研究最多的膜。是以微孔膜或超滤膜作支称层, 在其表面覆盖以厚度仅为0.1~0.25μm的致密的均质膜作 壁障层构成的分离膜。复合膜的材料包括任何可能的材料 结合,如在金属氧化物上覆以陶瓷膜或是在聚砜微孔膜上 覆以芳 香聚酰胺薄膜,其平板膜或卷式膜都要用非织造物 增强以支撑微孔膜的耐压。 极薄的的表面活性层(选择渗透)+下部的多孔支撑层(传质)
纳滤膜传质机理和模型
纳滤多为荷电膜,分离行为不仅受化学势控制,同时也受电势梯 度的影响,传质机理比较复杂。
它具有几个基本特征:
(1)具有纳米级孔径,分离对象主要为粒径1nm左右的物 质,特别适于分子量为数百至2000的物质分离;
(2)操作压力低,一般低于1MPa,远小于反渗透所需操 作压力(几个到几十个MPa);
膜分离过程
的形式
料液中的某些溶质或 离子在浓度差、电位差 的推动下,透过膜进入 接受液中,从而被分离--渗析和电渗析;
由于组分分子的大小和 性质有别,它们透过膜的 速率有差别,透过部分和 留下部分的组成不同,实 现组分分离---超滤、微滤 、反渗透,各组分在通 过膜的同时发生气化,且各组分的透过速 率不同。
程,而这在原理上并没有本质的区别。即均为在一定的 压力作用下,当含有高分子溶质和低分子溶质的混合溶 液流过膜表面时,溶剂和小于膜孔的低分子溶质透过膜, 成为渗透液被收集。大于膜孔的高分子溶质(如有机胶 体)则被膜截留而作为浓缩液被回收。 2)纳滤有所不同,除了截留筛分之外,由于纳滤膜的表面 分离层由聚电介质构成,对离子有静电相互作用,因此 对无机盐有一定的截留率。
环境工程原理-环境工程原理课后思考题解答6膜分离
环境工程原理-环境工程原理课后思考题解答6膜分离第六章膜分离技术1、什么是膜分离过程,有哪些膜分离过程,各有什么特点,各分离过程分离离子的范围?答:若在流体内部或两流体间有一薄层凝聚相物质把流体分隔为两部分,则这一薄层物质称为膜,膜可以是固态、液态或气态。
膜分离是利用膜材料具有选择性渗透作用而使气体或液体混合物得到分离的一种方法。
膜分离技术具有以下优点:(1)能获得高纯度组分;(2)操作过程的能耗较低;(3)分离操作通常在常温或低温下操作,对热敏物料的分离尤其适宜。
2、说明膜分离过程的推动力及分离原理。
答:物质能选择性地透过膜的推动力有两种:一种是由外界提供能量,使物质能由低位向高位移动;另一种是因膜的存在造成被分离系统具有化学位差的作用下由高位向低位移动。
3、不同的膜分离过程适用于哪些场合?答:依据膜孔径的不同,分离的粒子颗粒直径也有差异。
4、膜组件有哪些形式,各有什么特点?答:(1)板框式膜组件板框式膜组件优点:组装方便,膜的清洗更换比较容易,料液流通截面较大,不易堵塞,可视生产需要组装膜组件。
缺点:密封边界长,板框和密封件的加工精度高;每块板上料液的流程短,通过板面的透过液量较少,(2)卷式膜组件与板框式膜组件相比,卷式膜组件优点是:膜组件比较紧凑;单位体积内的膜面积大;制作相对简单。
其缺点是:清洗不方便,膜损坏时,不易更换;卷式膜组件所用的膜必须是可焊接或可粘贴的膜。
(3)管式膜组件优点:结构简单;安装、操作方便;流体流动状态好,不易被堵塞。
缺点:单位体积膜组件的膜面积少,一般仅为30~330m2/m3,除特殊场合外,一般不被使用。
(4)中空纤维膜组件优点:设备紧凑,组件单位体积内的有效膜面积高达16000~3000m2/m3缺点:中空纤维内径小阻力大,易堵塞,所以料液走纤维管间,透过液走纤维管内。
透过液侧流体能量损失大,压降可达数个大气压,膜污染难除去。
5、简要说明反渗透的原理,反渗透的操作压力与膜的类型有关吗?答:当纯水与盐水用一张能透过水的半透膜隔开时,纯水能透过膜向盐水一侧渗透,直到盐水一侧水位升高到一定高度为止,渗透过程达到动态平衡,这种现象称之为渗透现象。
膜分离技术
膜分离技术膜分离技术是材料科学和过程工程科学等诸多学科交叉结合、相互渗透而产生的新领域,是当代新型高效的共性技术,特别适合于现代工业对节能、低品位原材料再利用和消除环境污染的需要,成为实现经济可持续发展战略的重要组成部分。
膜分离技术推广应用的覆盖面在一定程度上反映一个国家过程工业,能源利用和环境保护的水平。
膜分离技术以选择性透过膜为分离介质。
在常温下以膜两侧压力差或电位差为动力,对溶质和溶剂进行分离、浓缩、纯化。
膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。
现已应用的有反渗透、纳滤、超过滤、微孔过滤、透析电渗析、气体膜分离、渗透蒸发、控制释放、液膜、膜蒸馏膜反应器等技术。
膜分离技术作为新的分离净化和浓缩方法,与传统分离操作(如蒸发、萃取、沉淀、混凝和离子交换等)相比较,其过程大多为无相变化,可以在常温下操作,具有能耗低、效率高、工艺简单、投资小和污染轻等优点。
1.微滤(MF)Microfiltration,其特点:对称细孔高分子膜,孔径0.03~10 nm,滤除≥50 nm的颗粒,以压力差为分离驱动力,透过物质:水、溶剂和溶解物,被截留物质:悬浮物、细菌和微粒子。
2.超滤(UF)Ultrafiltration,其特点:非对称结构的多孔膜,孔径l~20 nm,滤除5~100 nm的颗粒,以压力差为分离驱动力,透过物质:溶剂、离子和小分子,被截留物质:蛋白质、各类酶、细菌和乳胶。
3.纳滤(NF)Nanofiltration,其特点:1 nm的微孔结构,滤除相对分子质量在200~2000,以压力差为分离驱动力,透过物质:水、溶剂、相对分子质量<200,被截留物质:溶质、二价盐、糖和染料 (相对分子质量200~1000)。
4.反渗透(RO)Reverse Osmosis,其特点:带皮层的不对称膜、复合膜(<l nm),用于水溶液中溶解性盐的脱除,以压力差为分离驱动力,透过物质:水、溶剂,被截留物质:无机盐、糖类、氨基酸和BOD。
第六章膜分离过程详解演示文稿
离子 大分子
颗粒
• 反渗透 0.0001—0.001 μm • 纳滤 0.001 μm以上 • 超滤 0.001---0.02 μm • 微孔过滤 0.02---10 μm • 过滤
第10页,共59页。
原理和适用范围
方法 传质推动力 分离原理
应用举例
微滤 压差(0.05~0.5 MPa) 筛分
除菌,回收菌,分离病毒
的膜分离法,可用于小分子电解质(例如氨基酸、有机酸)
的分离和溶液的脱盐。电渗析操作所用ห้องสมุดไป่ตู้膜材料为离子
交换膜,即在膜表面和孔内共价键合有离子交换基 团,如磺酸基等酸性阳离子交换基和季铵基等碱性 阴离子交换基。键合阳离子交换基的膜称为阳离子交 换膜,键合阴离子交换基的膜称为阴离子交换膜。在电 场的作用下,前者选择性透过阳离子,后者选择性透 过阴离子。
应用领域: 化工、电子、轻工、纺织、冶金、食品、石油化工等领域。所占百分比:微 滤35.71%, 反渗透13.04%, 超滤19.10%, 电渗析13.03%; 气体分离9.32%; 血 液渗析17.70%; 其他1.71%。
第9页,共59页。
压力过滤的分离范围
• 0.0004---0.02μm ---10 μm ----1000 μm
第39页,共59页。
(a) 螺旋卷式膜组件
膜组件结构示意图
第40页,共59页。
b、中空纤维(Hollow Fiber)膜组件 中空纤维膜组件的最大特点是单位装填膜面积比所有
第27页,共59页。
6.2 膜材料及其特性
6.2.1 膜材料
对膜材料要求:
1. 起过滤作用的有效膜厚度小,超滤和微滤膜的开孔率高,过 滤阻力小;
2. 膜材料惰性,不吸附溶质,从而使膜不易污染,膜孔不易堵 塞;
第六章 气体膜分离
多孔膜的透过扩散机理
用多孔膜分离混合气体,是借助于各种气体流 过膜中细孔时产生的速度差来进行的。 图6-3. 气体分离膜孔径一般小于5~30nm,由于多孔介 质孔径及内孔表面性质的差异,使得气体分 子与多孔介质之间的相互作用程度有些不同, 表现出不同的传递特征。
多孔膜的透过扩散机理
气体在膜内的传递机理
气体分离膜材料
此外,富氧膜大部分可作为CO2分离膜使用, 若在膜材料中引入亲CO2的基团,如醚键、苯环 等,可大大提高CO2的透过性。同样,若在膜材料 中引入亲SO2的亚砜基团(如二甲亚砜、环丁砜 等),则能够大大提高SO2分离膜的渗透性能和分 离性能。具有亲水基团的芳香族聚酰亚胺和磺化聚 苯醚等对H2O有较好的分离作用。
2.气体膜分离机理 3.气体膜材料与组件 4.气体膜分离的应用
气体膜分离历程
理论阶段 1831年:氢气和混合气的渗透实验(提出膜分离的可能性) 1866年:天然橡胶膜(气体扩散行为) 1920年:研究气体通过膜的非稳定传递行为 应用阶段 1940s:铀235的浓缩(第一个大规模应用) 1950年:富氧空气浓缩 1954年:气体浓缩膜材料的改进 普及阶段 1979年:Prism气体分离膜装置的成功
1 1 1 T 1 DM ( ) DKP 48.5d P ( ) 2 DAB DKP Mi
Knudsen扩散
气体的渗透速度q:
4 2RT p1 p2 q r 3 M LRT
1/ 2
气体透过膜孔的速度与其相对分子质量的平方根 成反比。
扩散系数D和溶解度系数S与物质的扩散活化能 ED和渗透活化能Ep有关,而ED 和Ep又直接与分子大 小和膜的性能有关。分子越小, E p 也越小,就越易 扩散。这就是膜具有选择性分离作用的理论依据。 高分子膜在其Tg(玻璃态转化温度)以上时,存在 链段运动(当分子链中某一个单键发生内旋转时,它的运
第6章 膜分离法
溶剂、 离子、 小分子
水、溶 剂
胶体及各 类大分子
悬浮物、 溶解物、
胶体
电渗析 ED
浓电解质
溶剂
阳
阴
极
极
阴膜 阳 原料液
离子交换 膜
电位差
离子在电 场中的传 递
离子
非解离和 大分子颗
粒
混合气
渗余气
气体
均质膜
压力差 气体的溶 易渗透 难渗透
阴以—缺把一浸定渗电气 传膜((式因护 该七在易四醋3此 对传(微(在富疏四七大7表(与分构分b2))膜压—点溶侧涂在透渗体统接1中反都性、膜挥、酸参于质滤3外氮水、、规征3传离单离微气载 螺) ) )上 力 透 是 剂 流 法 多 汽 析 在的 触 : 渗 十能 膜 两 发 超 纤 数反 机 和 加 空 聚 电 膜 模 膜 统 膜 元 因滤体气旋能离定膜离差过膜和动—空化采均 分器透分 对分侧组滤维直 渗理超直气合渗分应透的在才数P、J膜分渗汽吹卷耗子期MGV解为物玷溶,—亚分用质 离,在方 分离压分及素接 透:滤流可物析离用过分绝可反—蒸超分扫式少渗对A离 透 化(SD出推中污液这将层离带膜 单包高便 离技力通微、决 过溶使电用:器技时性离大使映—滤G离馏渗膜,透膜Pa负动组后(种上过电中 元括压。 效术差过滤三定 程解用场于聚工术,能操多用膜一透与s透组不膜进离力分消或现。程荷的 操液下果的的膜的醋分 ,的作食四艺的多的作数。对-体过纳S扩汽件发不行原e子:除两象示的传 作操、发作时应酸离 通膜用品氟参发采参相情气A-化速滤液散p化生需反与原,微困种称意离递 如作操展用发用纤设 常都下保乙数展用数比况体膜a率料接机相 再 冲r组a可滤难不为图子靠蒸,作趋下生维备用是,鲜烯计趋卷是,下各进,料触理液t变生和分io交,同渗交溶 馏对能势,相素的 截多溶、、算势式透膜并组(浸m器。M液n,,清B3换不浓透换解 、膜耗利变、大 留孔液惰聚膜过分不分入)F、的/只可洗()水能度膜萃产都用,聚小 率膜中性丙组速离能透(-含m、扩 液o摩能连。s2中处的,取生有气相芬。 表。带气稀件率具直过有超散 -尔m·用续气h的理溶在、压决体变香示电氛、和。有接的聚滤o作分)于使接或s阴含液电吸实定混所酰其粒保聚中以应选合(i用率Us水用触k离有)场收作性合需胺分子护乙空下用择)物F,。。g中器)。子悬分作等用的物的类离可等烯纤优于性/涂、(溶 溶其已渗 蒸m渗等。浮别用,,影中热、性被方、维点分;液渗 浓纳传2离质 剂透 气透物置下也造响各量聚能膜面聚膜:离·中滤递h透 缩解)或的于膜可成。组来合。吸;偏组工,(;气过N的液液液半能以透分自苯引氟件程取F程离)体透允通水在原并、乙。,出、由子微非非。膜许过率膜料咪传烯而后反三复均复;孔的阴膜下中液唑递是膜渗对对步合质合两、来降渗的(通需上透膜组称称侧阳实,透降酮过要即(膜膜膜成R膜膜,离现因速温)膜将附O:)纯子,此率。。一着、聚溶通即抗的定一气酰由而汽剂过为压差面层体1(于产压5浓分将,膜实异积薄分亚(M透可蒸性而的薄温生差离)度压1P过用馏也实膜的(胺~度的G差差a膜于、是现装溶、S)差蒸而溶膜反分填)液聚自液萃渗离到,酰发去取透的某然胺通扩地除、膜过种后酰解溶向离膜性程开过散使扩阱-溶子吸能。放溶扩、解膜散液 。 收 的 或剂聚散-的(等一封蒸醚或,个闭发脲从实重的并等高 压 发易 或 发低现要壳发气蒸 的 组浓这指体生溶 易 组体度些标中交汽 挥 分解 挥 分溶膜。,联液过构,向程成即不 或 组 非 小 溶高的一可易 难 分 挥 分 剂气浓设定使度备形表溶 挥 发 子体溶统式皮解 发 的 和液称的层)为结固
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、膜的分类 • 按膜的孔径分
– 微滤、超滤、纳滤、反渗透 • 按膜的结构
– 对称性膜、不对称性膜、复合膜 • 按膜材质分
– 无机膜、有机膜
对膜的基本要求
• 耐压 • 耐温 • 耐酸碱性 • 化学相容性 • 生物相容性 • 低成本
二、膜组件
• 膜组件:由膜、 固定膜的支撑体、 间隔物及收纳这 些部件的容器构 成的一个单元。
第六章 膜分离技术
第六章 膜分离技术
• 第一节 膜及其应用 • 第二节 膜分离过程 • 第三节 膜分离过程中的问题及处理 • 第四节 膜分离技术实施 • 第五节 液膜分离技术
学习目标
• 了解膜的分类及结构特性,各种膜组件的性能以 及膜在生物技术行业中的应用;
• 了解膜分离过程的类型; • 理解膜分离过程机理及膜在使用中常见问题分析; • 能够正确使用膜进行分离操作,能分析膜分离过
优点: 组装方便,膜的清洗更换容易,料液流通截 面较大,不易堵塞,同一设备可视生产需要组装不 同数量的膜。 缺点: 需密封的边界线长
平板式构造
截留液
透 过 液
料液
平板式膜组件
膜 支撑板
隔板
板式膜实验室设备图(millipore公司):
板式反渗透(纳滤)膜装置(生产型)
板式膜超滤工业设备图:
螺旋卷 式
设备投资低,操作费用也低, 单位体积中所含过滤面积大, 换新膜容易
易清洗,单根管子容易调换, 管 对液流易控制,无机组件可在
式 高温下用有机溶剂进行操作并 可用化学试剂来消毒
中空纤 维式
保留体积小,单位体积中所含 过滤面积大,可以逆流操作, 压力较低,设备投资低
缺点
投资费用大,大的固含量会堵塞 进料液通道,拆卸比清洁管道更 费时间
2.按操作方式不同进行分类
(1)开路循环 循环泵关闭,全部溶液用给料泵F送回 料液槽,只有透过液排出到系统之外。
(2)闭路循环 浓缩液(未透过的部分)不返回到料 液槽,而是利用循环泵R送回到膜组件中,形成料液 在膜组件中的闭路循环。闭路循环中,循环液中目 标产物浓度的增加比开路循环操作快,故透过通量 小于开路循环 。
(3)连续操作 连续操作是在闭路循环的基础上,将浓 缩液不断排到系统之外。每一级中均有一个循环泵 将液体进行循环,料液由给料泵送入系统中,循环 液浓度不同于料液浓度。各级都有一定量的保留液
①主流体系区间(Ⅰ)
②边界层区间(Ⅰ)
③表面区间(Ⅰ)
④表皮层区间
⑤多孔支撑区间
⑥表面区间(Ⅱ)
⑦边界层区间(Ⅱ)
图6-6 物质经过非对称膜的传递示意
⑧主流体区间()
二、膜分离过程的类型
• 1.按推动力的不同进行分类 (1)以静压差为推动力的膜分离过程 如反渗透(RO
或HF)、超过滤(UF)、纳滤(NF)、微孔过滤(MF)、 气体分离(GS)、膜蒸馏(MD)及渗透气化(PV) 等。 (2)以浓度差为推动力的膜分离过程 如透析(D)、 气体分离(GS)及液膜分离等。 (3)以电位差为推动力的膜分离过程 如电渗析 (ED)等。
程中的常见问题,能根据不同的分离体系进行膜 选择,能对膜进行常规处理及维护。
第一节 膜及其应用
膜的定义 在一种流体相间有一薄层凝聚相物质,把流
体相分隔开两部分,这一薄层物质称为膜。 膜分离技术
用半透膜作为选择障碍层,利用膜的选择性 (孔径大小),以膜的两侧存在的能量差作为推 动力,允许某些组分透过而保留混合物中其它组 分,从而达到分离目的的技术。
• 按膜组件分类 – 板式膜(含锯 齿式) – 管式膜 – 卷式膜 – 中空纤维式膜
1) 平板式膜组件
这类膜器件的结构与常用的板框压滤机类似,由膜、支承板、隔板交替重叠 组成。 滤膜复合在刚性多孔支撑板上,料液从膜面流过时,透过液从支撑板的下部 孔道中汇集排出。 为减小浓差极化,滤板的表面为凸凹形,以形成湍动。浓缩液从另一孔道流 出收集。
2) 卷式膜组件
2) 卷式膜组件
卷式纳滤膜浓缩设备 (生产型)
卷式膜反渗透工业设备图:
3) 管式膜组件
管式膜组件由管式膜制成,管内与管外分别走料 液与透过液, 管式膜的排列形式有列管、排管或盘管等。
优点:结构简单,适应性强,清洗方便,耐高压, 适宜于处理高黏度及固体含量较高的料液。 缺点: 管式膜组件的缺点是单位体积膜组件的膜 面积少,保留体积大,压力降大,除特殊场合外, 一般不被使用。
浓缩液
5.膜反应器
渗 透 液
进料液
微滤 孔径>0.1μm, 截留分子量 30-50 万 以上 超滤 0.1~0.01μm 截留分
子量 1000~50 万 Da
纳滤 截留分子量 150~1000Da
反渗透 氯化钠截留率≥99%
悬浮固体、细菌 蛋白质、色素、多糖等 大分子有机物、热原 抗生素、低聚糖及二 价以上离子等
管式膜组件
内压式:膜涂在管内,料液由管内走; 外压式:膜涂在管外,料液由管外间隙走。 内压管式:
料液
外压管式:
料液
多孔管 膜
组件的进出料示意图
原料液
渗透液
垫圈 渗余液
渗透液
组件外壳
多通道组件
渗透液
管式
管式膜结构图
管式膜工业设备图:
各种膜组件的优缺点比较
组件
优点
板框式
保留体积小,操作费用低的压 力降,液流稳定,比较成熟
单糖、一价离子 水等小分子溶剂
第二节 膜分离过程
膜分离的示意图
膜
膜及其分离机理
截留较大的组分,而透过较小基 团的组分。
膜分离过程的传质形式
• 在膜分离过程中,膜相际有3种基本传质形式,即 被动传递、促进传递和主动传递。
化学势梯度
化学势梯度
化学反应
2.膜分离过程机理
• 以典型的非对称膜为例,分几个区间来描绘。
2) 卷式膜组件
将膜、支撑材料、膜间隔材料依次叠好,围 绕一中心管卷紧即成一个膜组。料液在膜表 面通过间隔材料沿轴向流动,透过液沿螺旋 形流向中心管。
优点: 目前卷式膜组件应用比较广泛、与板框式相比,卷 式组件的设备比较紧凑、单位体积内的膜面积大,湍流 状况好,适用于反渗透;
缺点:清洗不方便,尤其是易堵塞,因而限制了其发展。
料液需经预处理,压力降大,易 污染,难清洗,液流不易控制
高的设备投资和操作费用,保留 体积大,单位体积中所含有过滤 面积较小,压力降大
料液需要预处理,单根纤维管损 坏时,需调换整个组件,不够成 熟
三、膜在生物制药中的应用
1.细胞分离和发酵液澄清
2.除菌和纯化产品
3.酶、蛋白质大分子物质浓缩和精制
4.低分子量发酵产物的分离和浓缩