最小费用最大流问题ppt课件

合集下载

最大流与最小费用流

最大流与最小费用流

§7 最大流问题7.1 最大流问题的数学描述 7.1.1 网络中的流定义 在以V 为节点集,A 为弧集的有向图),(A V G =上定义如下的权函数:(i )R A L →:为孤上的权函数,弧A j i ∈),(对应的权),(j i L 记为ij l ,称为孤),(j i 的容量下界(lower bound );(ii )R A U →:为弧上的权函数,弧A j i ∈),(对应的权),(j i U 记为ij u ,称为孤),(j i 的容量上界,或直接称为容量(capacity );(iii )R V D →:为顶点上的权函数,节点V i ∈对应的权)(i D 记为i d ,称为顶点i 的供需量(supply /demand );此时所构成的网络称为流网络,可以记为),,,,(D U L A V N =。

由于我们只讨论A V ,为有限集合的情况,所以对于弧上的权函数U L ,和顶点上的权函数D ,可以直接用所有孤上对应的权和顶点上的权组成的有限维向量表示,因此D U L ,,有时直接称为权向量,或简称权。

由于给定有向图),(A V G =后,我们总是可以在它的弧集合和顶点集合上定义各种权函数,所以流网络一般也直接简称为网络。

在流网络中,弧),(j i 的容量下界ij l 和容量上界ij u 表示的物理意义分别是:通过该弧发送某种“物质”时,必须发送的最小数量为ij l ,而发送的最大数量为ij u 。

顶点V i ∈对应的供需量i d 则表示该顶点从网络外部获得的“物质”数量(0>i d 时),或从该顶点发送到网络外部的“物质”数量(0<i d 时)。

下面我们给出严格定义。

定义 对于流网络),,,,(D U L A V N =,其上的一个流(flow )f 是指从N 的弧集A 到R 的一个函数,即对每条弧),(j i 赋予一个实数ij f (称为弧),(j i 的流量)。

如果流f 满足∑∑∈∈∈∀=-Ai j j i ji A j i j ij V i d f f ),(:),(:,,(1)A j i u f l ij ij ij ∈∀≤≤),(,, (2)则称f 为可行流(feasible flow )。

运筹学最小费用最大流流问题

运筹学最小费用最大流流问题
第五节 最小费用最大流流问题
在实际的网络系统中,当涉及到有关流的问 题的时候,我们往往不仅仅考虑的是流量,还经 常要考虑费用的问题。比如一个铁路系统的运输 网络流,即要考虑网络流的货运量最大,又要考 虑总费用最小。最小费用最大流问题就是要解决 这一类问题。
最小费用最大流问题提法:
设一个网络G=(V,E,C),对于每一个弧(vi ,vj )∈E ,给 定容量cij外,还给出单位流量的费用dij 0 ,网络记为 G=(V,E,C,d)。网络系统的最小费用最大流问题,
bij bij
我们将 bij bij 叫做这条增广链的费用。
结论:如果可行流 f 在流量为w(f )的所有可行流中 的费用最小,并且 是关于f 的所有增广链中的费
用最小的增广链,那么沿增广链μ调整可行流f,得
到的新可行流f ’ ,也是流量为w(f ’)的所有可行流中 的最小费用流。依次类推,当 f ’ 是最大流时,就是 所要求的最小费用最大流。
对偶算法基本思路:
零流f ={0}是流量为0的最小费用流。一般地,寻求最小 费用流,总可以从零流f ={0}开始。下面的问题是:如果 已知f 是流量为w(f)的最小费用流,那么就要去寻找关于 f 的最小费用增广链,用最大流的方法将f(0)调整到f(1), 使f(1)流量为w(f(0))+θ,且保证f(1)在w(f(0))+θ流量下的
(5, 2)
(4, 2)
v2 (10, 3) v3
v1
(7, 1)
解:((110), 4取) 初始可行流(2,为6)零流f
(cij, dij) (0)v=t{0},构造赋权
有 (vs
向vs图 L(f(0)), 用
,v2 ,v1(,8v,t)1,)如图

运筹学-图与网络模型以及最小费用最大流(高级课堂)

运筹学-图与网络模型以及最小费用最大流(高级课堂)

v4
v5
高等课堂 7
图与网络的基本概念与模型
环, 多重边, 简单图
e1
如果边e的两个端点相重,称该边为 环。如右图中边e1为环。如果两个点 v2
e2
e4 v1e3
v3
之间多于一条,称为多重边,如右图
e5
中的e4和e5,对无环、无多重边的图
e6
e7
e8
称作简单图。
v4
v5
高等课堂 8
图与网络的基本概念与模型
的长度(单位:公里)。
17
v2
5
6
15
6 v4
V1
(甲地)
43
10
4
4
2
v5
v6
解:这是一个求v3无向图的最短路的问题。可以把无向图的每一边
(vi,vj)都用方向相反的两条弧(vi,vj)和(vj,vi)代替,就化为有向图,
即可用Dijkstra算法来求解。也可直接在无向图中用Dijkstra算法来求解。
最短路问题
最短路问题:对一个赋权的有向图D中的指定的两个点Vs和Vt找 到一条从 Vs 到 Vt 的路,使得这条路上所有弧的权数的总和最小, 这条路被称之为从Vs到Vt的最短路。这条路上所有弧的权数的总 和被称为从Vs到Vt的距离。
• 求最短路有两种算法:
狄克斯屈拉(Dijkstra)(双标号)算法 逐次逼近算法
• 图论中图是由点和边构成,可以反映一些对象之间的关系。 • 一般情况下图中点的相对位置如何、点与点之间联线的长短曲
直,对于反映对象之间的关系并不是重要的。
图的定义(P230)
若用点表示研究的对象,用边表示这些对象之间的联系,则图 G可以定义为点和边的集合,记作:

5-5 最小费用最大流问题-xfj

5-5 最小费用最大流问题-xfj

v2
v3
(10, 0) ①流量调整量 总流量v(f 总流量v(f(1))=5
v2
v3
=min{8-0,5-0,7ε1=min{8-0,5-0,7-0}=5 ②最小费用增广链的费用 ∑bij=1+2+1=4 ③新的可行流为f(1),总费 新的可行流为f =4× 用b1=4×5=20
vs →v2 →v1 →vt
2、最小费用流 对于一个费用容量网络,具有相同 对于一个费用容量网络, 流量 v(f) 的可行流中,总费用b(f)最小的 的可行流中,总费用b(f)最小的 可行流称为该费用容量网络关于流量 v(f) 的最小费用流,简称流量为 v(f) 的最小 的最小费用流,简称流量为 费用流。 费用流。
3、增广链的费用 当沿着一条关于可行流 f 进行调整,得到新的可行流 f 进行调整, 称 b( f ) − b( f ) 的增广 ,则 链(流量修正路线)µ,以修正量 流量修正路线) ,以修正量ε=1 增广链µ的费用。 为增广链µ的费用。
v2
v3
即是f 的最小费用增广链。 即是f(1)的最小费用增广链
第3次迭代
-4 4
v1
-2 6
பைடு நூலகம்
-1
(10, 2)
v1
(7, 7) (2, 0)
vs
-1
1
vt
2 (8, 8)
vs
(5, 5)
vt
(4, 3)
v2
3
v3
①零流弧保持原边,非饱和非 零流弧保持原边, 零流弧增添后向弧, 零流弧增添后向弧,饱和弧去 掉原边增添后向弧 ②用列表法求得最短路
增广费用网络图的 增广费用网络图的构造方法 将流量网络中的每一条弧( 将流量网络中的每一条弧(vi,vj)都看 作一对方向相反的弧,并定义弧的权数如 作一对方向相反的弧, 下: vi (cij,fij) c vj

最小费用最大流问题例题讲解

最小费用最大流问题例题讲解

最小费用最大流问题例题讲解
最小费用最大流问题(Minimum Cost Maximum Flow Problem)是一种在特定的多媒体网络中传送给定体积的流量,使总花费最小化的一种算法。

它能满足一些实际生活中的求解,比如电力系统的供求、工厂的物料的分配和两地之间的物品的运输问题,以及更加复杂的产品开发和行业分工中的分布问题等等。

最小费用最大流问题的目标是在满足给定的最大流量要求的前提下,找出具有最小成本的流量方案。

这种问题的解决步骤如下:
1. 在图形中定义网络:用图形表示整个网络,每条边的容量是边上的流量上限。

2. 尝试找出最大流量:在不超过容量限制的前提下,找出输出流量最大的允许方案,也就是最小费用最大流量。

3. 计算最小成本:对所有边的成本进行总结,计算出最小成本。

下面以一个最小费用最大流问题的例题来说明:
假设有一个三角形的网络,它由一个源点S、一个汇点T、一个中间点O以及三条边组成,边的名字分别是SO、OT、OS,它们的容量分别是10、15和5,费用分别是5、3和2。

要求我们在此条件下求解最小费用最大流问题。

解:首先,我们可以求出最大流量:在边SO的容量为10时,我们可以将费用最小的边OT累加,得到最大流量值为10+3=13。

接下来,计算最小费用:根据上述算法,所有边的费用应该都大于等于0,才能累加而得到最大流量。

也就是说,最小费用为
5+3+2=10。

最后,最小费用最大流问题的解为:最大流量13,最小成本10。

最小费用最大流问题.

最小费用最大流问题.
(
vs
(
5,2)
(
(
2,6)
8,1)
V2 10,3)ቤተ መጻሕፍቲ ባይዱV3
4,2)
第一轮:f 0为初始可行流,作相应的费用有向图网络L(f 0),如 图(a)。 在L(f 0)上用DijksTra标号法求出由vs到vt的最短路(最小费用链) 0 m i n 8,5, 5 7 μ0=(vs,v2,v1, ( vt)v ,并对 μ 按 进行流量的调整, 0 , v ) ,( v , v ) ,( v , v ) s 2 0 2 1 0 1 t 0 由于, (1) (1) 所以有 fs2 f12 f1t(1) 5,其余不变,得新的可行流f1的流量 有向图(b)。
vs
vt
2.下表给出某运输问题的产销平衡表与单位运价 表。将此问题转化为最小费用最大流问题,画出网 络图并求数值解。 2 3 产量 1 产地 销地
A B 销量 20 30 4 24 22 5 5 20 6 8 7
最小总费用为240
(20,8) A (0,8) s (30,7) (0,7) (5,8) (24,8)
4
vt
vs
1
6
2
2
v1
(7,5)
(2,0)
(10,0)
vt
(4,0)
v2
V(f
1)
(a) = 5
3
v3 vs
(8,5)
w(f0)
(5,5)
v2
(10,0)
v3
(b) f 1
v1 vs
(8,5)
(7,5)
(2,0)
(10,0)
vt
(4,0) 4
v1
vs

最小费用最大流问题

最小费用最大流问题

近似算法和启发式算法
要点一
近似算法
近似算法是一种用于求解NP-hard问题的有效方法,它可 以在多项式时间内找到一个近似最优解。最小费用最大流 问题的近似算法包括Ford-Fulkerson算法、EdmondsKarp算法等。
要点二
启发式算法
启发式算法是一种基于经验或直观的算法,它可以在合理 的时间内找到一个近似最优解。最小费用最大流问题的启 发式算法包括基于增广路径的算法、基于贪婪的算法等。
研究如何将最小费用最大流问题 应用于计算机科学领域,例如计 算机网络、云计算等。
物理学
研究如何借鉴物理学中的理论和 思想,解决最小费用最大流问题, 例如利用流体动力学中的思想来 研究网络中的流。
谢谢观看
Hale Waihona Puke 06未来研究方向和展望算法优化和改进
动态规划算法
研究如何优化动态规划算法,减少时间复杂度 和空间复杂度,提高求解效率。
近似算法
研究近似算法,在保证求解质量的前提下,提 高求解速度。
并行计算和分布式计算
研究如何利用并行计算和分布式计算技术,加速最小费用最大流问题的求解。
新的问题定义和模型
考虑更复杂的情况
和技术。
有界容量和无界容量
总结词
有界容量和无界容量是指在网络中节点之间 的容量是否有限制。
详细描述
在最小费用最大流问题中,如果节点之间的 容量有限制,即为有界容量问题;如果节点 之间的容量没有限制,即为无界容量问题。 有界容量问题可以通过增广路径算法、预流 推进算法等求解,而无界容量问题则需要采
用其他算法和技术进行求解。
算法概述
最小费用最大流问题是一种网络流问 题,旨在在给定有向图中寻找一条路 径,使得从源节点到汇点之间的总流 量最大,同时满足每个节点的流入量 等于流出量,以及每条边的容量限制。

最小费用最大流

最小费用最大流

最小费用最大流1.最大流问题1.1案例假设现在因为种种原因,我们只能通过地面线路来运输口罩物资,并且每一条线路是有流量限制的。

假设不考虑运输速度,并且源点S (杭州)的口罩物资产量是足够多的,我们需要求解汇点T(武汉)在不计速度的情况下能收到多少物资?对于这个流网络,我们可以轻松的获得汇点T的最大流量。

因为在这个图中,只有两条路径,分别是S → A → B → T和S → C → D → T两条路径来输送流量,前者最大流量是12 ,后者是4,所以最大流量总和是16。

1.2建模图1是连接产品产地Vs和销售地Vt的交通网,每一条弧代表两点间的运输线,弧旁的数字表示这条运输线的最大通过能力。

现在要求制定一个运输方案,使得从Vs运输到Vt的产品数量最多。

图1模型():(,):(,)max .,,,,s ,0,s.t 0,,V V st f c Vf f t f Vμυμυμυυμυυυμμυλμυμυλμλμμμυ∈∈≤∀∈⎧=⎪-=-=⎨⎪≠⎩≥∀∈∑∑其中λ表示总共运输量f μυ表示弧(),μυ中的实际流量(),c μυ表示弧(),μυ中的容量限制S,t 表示物质运输的起点和终点最大流问题的推广现实问题中的网络,不但边有容量,而且点也有容量。

例如运 输网络中表示中转站的点v, 点容量 c(v) 可表示该中转站能容纳的货物的数列。

对点有容量的网络 N ,流函数若满足对一点 v,流入v 的流量之和等于流出v 的流量之和,并且小于等于c(v),2.最小费用最大流问题上面我们介绍了一个网络上最短路以及最大流的算法,但是还没有考虑到网络上流的费用问题,在许多实际问题中,费用的因素很重要。

例如,在运输问题中,人们总是希望在完成运输任务的同时,寻求一个使总的运输费用最小的运输方案。

这就是下面要介绍的最小费用流问题。

在运输网络N = (s,t,V, A,U)中,设(),c μυ是定义在A上的非负函数,它表示通过弧(),μυ单位流的费用。

最大流与最小费用流

最大流与最小费用流

c67 = 7 − P = 7 - 6 = 1
通过第1次修改,得到图3。
图3 返回步骤①,进行第2次修改。
次修改: 第2次修改 次修改 选定①—②—⑤—⑦,在这条路中,由 于 P = c25 = 3 ,所以,将 c12 改为2 , 25 改 c 为0,c57 改为5,c 21 、 52 、 75 改为3。修改后 c c 的图变为图4。
x12 + x13 + x14 = x57 + x67 = f
x12 + x32 x + x 23 13 x14 + x34 x + x 35 25 x36 + x 46 = x 23 + x 25 = x32 + x34 + x35 + x36 = x 46 + x65 = x56 + x57 + x56 = x65 + x67
所以取 P = c13 = 6 。
③在路①—③—⑥—⑦中,修改每一 条弧的容量
c13 = 6-P = 6-6 = 0
c36 = 7 − P = 7 - 6 = 1
c31 = 0 + P = 0 + 6 = 6
c63 = 0 + P = 0 + 6 = 6
c76 = 0 + P = 0 + 6 = 6
f = f 0 ≤ f max
(15)
使其代价最小,即
d=
( i , j )∈V
∑d
ij
xij = min
(16)
式中:d ij 指单位车辆数通过弧 (i, j )的代价。
图11 代价条件
图1 约束条件

第5-6 最小费用最大流问题与中国邮递员问题

第5-6  最小费用最大流问题与中国邮递员问题

本章小结2 基本方法
求图的支撑树(破圈法、避圈法) 求图的最小撑树(破圈法、避圈法) 最短路问题(Dijkstra方法、 Warshall-Floyd方法) 网络最大流问题( Ford-Fulkerson标号法) 最小费用最大流问题 中国邮递员问题(奇偶点图上作业法)
练习—求解最小费用最大流问题
4
4 4 4 4 4
v6
4 4
v1 v2
5
2
v8
3
4 4 3
v7
3
v3
9
v4
v5
5 5
6
v9
4
4
4 4
v6
w23+w34+w67+w78=21
9
v3
9
v4
v5
中国邮递员问题—算例
v1
v2
5 5 6 6 9 2
v8
5
4 4 3
v7
3
v9
4
4
4
w29+w49+w67+w78=17
2 2 5
v6
4
4
v1 v2
最小费用最大流问题—问题
问题:给定网络D=(V,A,C),每 条弧包含两个参数容量cij和单位流量费 用bij。最小费用最大流就是要求一个最 大流f,使流的总输送费用最小。
b f

vi ,v j A
bij f ij
在一个网络D 中,当沿可行流f 的一 条增广链μ,以调整量θ=1改进f,得到 新的可行流f’,有v(f’)=v(f)+1,而总费用 b(f’ )比b(f )增加了: b(f’ )-b(f ) =∑bij(f’ij-fij)+∑bij(f’ij-fij) μ+ μ=∑bij-∑bij μ + μ将∑bij-∑bij叫做这条增广链μ的费用

最小费用最大流问题

最小费用最大流问题

i):f(j,i))=0; ); @sum(edge(i,j)|i#eq#@index(s):f(i,j)) =vf; @sum(edge(j,i)|i#eq#@index(t):f(j,i)) =vf; @for(edge(i,j):@bnd(0,f(i,j),u(i,j))) ; end

min
( i , j )E

cij fij ;
s.t.
jV ( i , j )E

fij
jV ( j ,i )E

v f , i s , f ji v f , i t , 0, i s, t.
0 fij uij ,(i, j ) E.
LINGO 程序求解 model: sets: points/s,v1,v2,v3,v4,t/; edge(points,points) /s,v1 s,v2 v1,v2 v1,v3 v2,v4 v3,v2 v3,t v4,v3 v4,t/:c,u,f; endsets data: c=2 8 5 2 3 1 6 4 7; u=8 7 5 9 9 2 5 6 10; vf=14; enddata min=@sum(edge(i,j):c(i,j)*f(i,j)); @for(points(i)|i#ne#@index(s) #and# i#ne#@index(t): @sum(edge(i,j):f(i,j))-@sum(edge(j,
最小费用最大流问题
例 本例是最大流问题的延伸,由于输油管道的长短不 一,或地质等原因,使每条管道上运输费用也不相 同,因此,除考虑输油管道的最大流外,还需要考 虑输油管道输送最大流的最小费用,下图所示是带 有运输费的网络,其中第 1 个数字是网络的容量, 第 2 个数字是网络的单位运费.

6.-5最小费用最大流问题

6.-5最小费用最大流问题
(10,7)
v1
(7,7) (2,0)
vs
(8,4)
(5,0)
vt
(4,4)
v2
(10,4)
v3
(未标费用)
最大流图fmax=11
(10,4)
v1
第1次迭代
(7,1)
(2,6) (10,4,0)
v1
(7,1,5) (2,6,0)
vs (5,2)
(8,1)
vt
(4,2)
vs (5,2,5)
(8,1,5)
min{15 4, 7 0,11 0} 7
④得到新的可行流,刷新网络图 v2
(3,3,0) (7,8, 7) (4,9, 4)
f 17 f max 20
(15, 2,11)
v4
(11,3, 7)
vs
(9, 6, 6)
(bij , cij , 0)
Vi
原网络
Vj
(bij , cij )
Vi
增广费用网络
Vj
非饱和弧上 (0 xij bij ) ,原有弧以单位 费用作权数,后加弧(虚线弧)以单位 费用的负数作权数:
(bij ,cij , xij ) (bij xij , cij )
( xij ,cij )
第五节 最小费用最大流问题
一、基本概念
1、什么是最小费用最大流问题?
对每一条弧都给出单位流量费用的容量网络 D=(V,A,B)(称为费用容量网络)中, 求取最大流X,使输送流量的总费用
C(X)=∑cijxij为最小的一类优化问题。
其中,bij表示弧(vi,vj)上的容量,xij表 示弧(vi,vj)上的流量,cij表示弧(vi,vj) 上通过单位流量所花费的费用。

最小费用最大流问题

最小费用最大流问题


P

P
B ij

P
B ij

P
B ij

P
B ij
称为可改进路P的“费 用”。
4
假设: ① F是流量为V(F)的所有可行流中费用最小者 ② P是关于F的所有可改进路中费用最小的可改进路 那么沿着P去调整F,得到的可行流F′,就是容量为V(F′) 的所有可行流中最小费用者。 当F′是最大流时,也就是所要求的最小费用最大流了。
(2,6)
Vs (8,1) V2
2
(5,2) (10,3)
(4,2)
(a)
V3
1 数学模型
求一个最大流F,使得流的总运输费用最少
B(F )
V i ,V j A
V1 (10,4)

B ij F ij
Vt (4,2) (a)
(7,1)
(2,6)
Vs (8,1)
(5,2) V2
3
(10,3)
(g) F(3),V(F(3))=10
Vs -1
-2
-3
(h) W(F(3))
V2
12
3
V3
V1
7 0
Vt 4
W ij
3
Vs
B ij B ij
若 Fij C ij 若 Fij C ij 若 Fij 0 若 Fij 0
W
ji
4 8
V2 V1 4 -4 4 -1 6 V3 Vt
(i) F(3),V(F(3))=11
Vs -1
-2 V2
2
-3 3
2 V3
(j) W(F(4)) 没有最短路径了
13

最小费用流问题

最小费用流问题

05
最小费用流问题的扩展问题
多源和多汇问题
多个源点
当网络中有多个源点时,每个源点都有自己的供应量,要求流经整个网络并从指定的汇点流出。最小 费用流问题需要找到一种分配方式,使得从各个源点出发的流量的总和等于各自的供应量,同时总费 用最小。
多个汇点
与多源点类似,当网络中有多个汇点时,每个汇点都有自己的需求量,要求流经整个网络并流入各个 汇点。最小费用流问题需要找到一种分配方式,使得从源点出发的流量能够满足各个汇点的需求,同 时总费用最小。
问题背景和重要性
• 最小费用流问题在实际生活中有着广泛的应用,如物流网 络中的最优路径选择、通信网络中的数据流优化、电力网 络中的电力分配等。解决最小费用流问题可以为企业和组 织节省大量的成本和资源,提高运营效率。
问题的限制和假设
限制
最小费用流问题通常需要考虑图中可能存在的瓶颈和约束条件,如边的容量限 制、流量方向限制等。
动态变化
实际网络中流量的变化可能导致 最小费用流问题需要不断更新求 解,需要设计能够适应动态变化 的算法。
多目标优化
在实际应用中,最小费用流问题 常常需要考虑多个目标,如费用、 时间、可靠性等,需要发展多目 标优化的方法。
感谢观看
THANKS
最小费用流问
• 最小费用流问题概述 • 最小费用流问题的数学模型 • 最小费用流问题的算法 • 最小费用流问题的应用场景 • 最小费用流问题的扩展问题 • 最小费用流问题的挑战和未来研
究方向
目录
01
最小费用流问题概述
问题定义
• 最小费用流问题是在给定一个有向图或无向图中,寻找一条或 多条路径,使得从源点到汇点的总流量最大,且每条边的流量 不超过该边的容量,同时要求总费用最小。

最大流EK与Dinic算法最小费用最大流问题简述

最大流EK与Dinic算法最小费用最大流问题简述

最⼤流EK与Dinic算法最⼩费⽤最⼤流问题简述
最⼤流问题是给⼀个有向⽹络,每条边都有⼀个容量,问从起点到终点最多能输出多少流。

这是⼀个模型,在处理某些问题合适建模,就能利⽤这些现成的算法,使得问题得到解决。

EK算法采⽤BFS找增⼴路,不断⽤流到这个点的最⼤流和现存容量的较⼩值进⾏更新,就这样每次找到⼀条更新整个图,然后添加反向弧,反向弧的容量与正向的和是等于整个容量,这个反向弧并不存在,只是为算法提供了修改的途径,有反悔的机会,添加反向边,更新残余量,直到没有路径可以到达。

Dinic算法,在残量⽹络上操作(残量⽹络是包含反向弧的⽹络),BFS建层次图,DFS找路径,找到阻塞流就算成功,不⼀定是最⼤流,然后更新整个⽹络,重复整个过程,算法效率优于EK算法。

最⼩费⽤最⼤流SPFA算法,利⽤费⽤建⽴⼀个⽹络,然后找费⽤和最少的⼀条路径(不考虑流量),然后在这条路径上找最⼩的容量边作为整条路的容量,计算价钱,然后当这条边的容量⽤了部分或全部之后添加反向弧(参数仍是费⽤,容量⽤完取消正向弧),继续重复上⼀个过程。

运筹学第六章6.5最小费用最大流问题

运筹学第六章6.5最小费用最大流问题
该算法基于Ford-Fulkerson方法和增广路径的概念,通过不断寻找增广路径并更 新流,最终得到最大流。
预处理步骤
初始化
为每个节点和边设置相应的容量和费 用。
残量网络构建
寻找增广路径
在残量网络中寻找增广路径,即从源 点到汇点存在一条路径,该路径上的 所有边都未满载且具有正的残量。
根据边的容量和费用,构建残量网络。
05
算法的复杂度和优化
时间复杂度分析
算法时间复杂度
最小费用最大流问题通常使用Ford-Fulkerson算法或其变种来解决,时间复杂度为O(V^3 * E),其中V是 顶点数,E是边数。
优化策略
为了提高算法效率,可以采用预处理、动态规划、记忆化搜索等策略,减少不必要的计算和重复计算 。
空间复杂度分析
最小费用最大流问题可以应用于多种 实际场景,如物流运输、能源分配、 通信网络等。
背景和重要性
最小费用最大流问题作为网络流问题 的一个重要分支,在计算机科学、运 筹学和工程领域具有广泛的应用价值。
解决最小费用最大流问题有助于优化 资源配置、降低成本和提高效率,对 于实际问题的解决具有重要的意义。
02
此外,随着计算科学和数据科学的快速发展,如 何利用新的技术和方法来求解最小费用最大流问 题也是值得关注的方向。
例如,如何设计更高效的算法来求解大规模的最 小费用最大流问题?如何处理具有特殊性质的最 小费用最大流问题?如何将最小费用最大流问题 的思想和方法应用到其他领域?
因此,未来对于最小费用最大流问题的研究仍具 有广阔的空间和挑战性。
案例一:简单网络流问题
问题描述
给定一个有向图G(V,E),其中V是顶点的集合, E是边的集合。每条边(u,v)有一个非负的容量 c(u,v)和一个非负的费用f(u,v)。求从源点s到 汇点t的最大流,使得流的总费用最小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v4 (5,3) vt
(3,0)
(2,1) v3
v1
Back 14
continued
(二)调整过程 (1)寻找以为终点的增广链----(反向追踪法)
若vt的第一个标号为v3 , 则弧(v3 , vt )是链上的弧。 接下来检查 v3的第一个标号, 为 v2, 则找出(v3 , v2 )是链上的弧。 同理, (v2 , v1 )和(vs , v1 )是链上的弧. 此时所求的增广链(vs , v1 , v2v3 , vt )。
(2)若在弧 (v j , vi )上 , fij 0, 则给 v j标号 (vi , l(v j )) 这 里 l(v j ) min[ l(vi ), f ji ] .此时,点 v j成为标号而未检查的点.
于是 vi 成为标号且已检查过的点.重复上述步骤,一旦 v t
被标上号,表明得到一条从 vs 到 v t 的增广链 ,转入调整过程.
3 、检查 v1
在弧 (v1 , v3 ) 上 , f13 c13 2, 不满足标号条件;
在弧 (v2 , v1 ) 上 , f 21 0, 则 v2的标号为 (v1,l(v2 )). 其中, l(v2 ) min[ l(v1), f21] min[ 4,1] 1 4 、检查 v2
若所有标号都已经检查过,而标号过程进行不下去时,则 算法结束,此时的可行流就是最大流.
10
2 、调整过程 (1)寻找以v t 为终点的增广链----(反向追踪法): 若vt的第一个标号为vk (或 vk ),则弧(vk , vt )(相应地(vt , vk ))是
链上的弧。 接下来检查vk的第一个标号, 若为vi (或 vi ), 则找 出(vi , vk )(相应地(vk , vi ))。 再检查的第一个标号, 依此下去, 直到 vs为止(2。)调此整时量被找 的l(v弧t ),就即构vt的成第了二增个广标链号。。
其余都是未标号点.一般地,取一个标号而未检查的点 vi ,对 一切未标号点 v j :
(1)若在弧 (vi , v j )上 , fij cij , 则给 v j 标号 (vi , l(v j )) ,这 里 l(v j ) min[ l(vi ), cij fij ] .此时,点 v j成为标号而未检查的点.
v2 (4,3) (1,1) (1,1)
v1 (2,2)
v4 (5,3) vt
(3,0)
(2,1) v3
Back 13
continued
5、在 v3 , v4 中任选一个进行检查 . 例如 在弧 (v3 , vt )上 , f3t c3t ,则 vt 的标号为 (v3 ,l(vt )). 其中, l(vt ) min[ l(v3 ), (c3t f3t )] min[1,2 1] 1
2 、给定网络 D (V , A,C)若点集 V 被剖分为两个非空集合
__
__
__
V1, V1 使vs V1, vt V1, 则弧集 (V1,V1 ) 称为分离 vs 和 vt 的
截集.
__
3
、截集 __
(V1,V1 ) 中所有弧的容量之和称为此截集的容量,记
为 c(V1,V1 ), 即
__
一个流称为一个可行流,如果满足以下条件:
(1) 容量限制条件:对 aij (vi , v j ) A 0 fij cij ;
(2) 平衡条件:
对中间点:流出量=流入量,即
i(i s,t)
fij
f ji 0;
(vi ,v j )A (v j ,vi )A
其中, l(v3 ) min[ l(v2 ), f32 ] min[1,1] 1
v2 (v1,1) (4,3) v4 (v2 ,1)
(3,3)
(5,3) vt
(v0,s)
(1,1) (1,1)
(3,0)
(5,1) v1 (vs ,4) (2,2)
(2,1) v3
(3,3) vs
(5,1)
最小费用最大流问题
最大流问题 最小费用最大流问题
1
最大流问题 引例 基本概念
最大流算法 算例
Back 2
continued
引 例 假设某个公路网的每条公路只允许单向行驶,这样 的公路网称为单行公路网.为了保证畅通,交通部门对每条 公路在单位时间内通过的车辆数目要作一个限制.问单位时 间内最多能有多少辆车从甲地出发经过该公路网到达乙地?
v4 (5,3) vt
vs
(0,)
(1,1) (1,1)
(5,1) v1 (vs ,4) (2,2)
(3,0)
vt (v3 ,1)
(2,1)
v3 (v2 ,1)
vs (5,2)
(1,0) (1,0) v1 (2,2)
(3,0)
(2,2) v3
v2 (4,3) (3,3)
vs
(0,)
(1,0) (1,0)
c(V1,V1 )
cij
_
(vi ,v j )(V1 ,V1 )
8
定理 1 可行流f是最大流 不存在关于f的增广链.
定理2 任一个网络 D (V , A,C) 中,从 vs 到 vt 的最大流的流 量等于分离 vs , vt 的最小截集的容量.
Back 9
求最大流的标号法(Ford,Fulkerson) 1 、标号过程 开始:先给 vs 标上 (0,), 此时 vs 是标号而未检查的点,
在弧 (v2 , v4 )上 , f 24 c24 则, v4 的标号为 (v2 , l(v4 )).. 其中, l(v4 ) min[ l(v2 ), (c24 f24 )] min[1,4 3] 1
在弧 (v3 , v2 )上 , f32 0, 则 v3 的标号为 (v2 , l(v3 ).).
在V 中指定了两点 vs , vt ,分别称为发点和收点,其余 的点叫中间点.定义弧集合 A上的一个函数
f : (vi , v j ) { f (vi , v j )},
为网络的一个流,并称 f (vi , v j ) 为弧
简记为
f ij .
(vi , v j ) 上的流量,
4
二、可行流与最大流
对于发点 vs ,记
f sj
f js v( f );
(vs ,v j )A
(v j ,vs )A
对于收点 vt ,记
ftj
f jt v( f ).
(vt ,v j )A
(v j ,vt )A
式中 v( f ) 称为这个可行流的流量,即发点的净输出量(或收点的
(5,2) v1 (vs ,3) (2,2)
v4
(5,3)
(3,0)
vt
(2,2)
v3
Back 16
continued
标号过程无法继续下去,算法结束. 此时的可行流即为所求的最大流.最大流量为
最小截集:
__
(V1,V1 ).
v( f 其中,
V)1为f s标1 号f点s2 集f合3t ,V__1f
{(v2 , v1 ),(v3 , v2 )} f 21 ' f 21 1 0, f32 ' f32 1 0;其余fij 不变.
去掉所有的标号,对新的可行流重新进入标号过程.
v2 (v1,1) (4,3) v4 (v2 ,1)
(3,3)
(5,3)
v2 (4,3) (3,3)
(2)调整量 l(vt ) 1,即vt的第二个标号 。
v2 (v1,1) (4,3) v4 (v2 ,1)
(3,3)
(5,3)
(1,1) (1,1)
v
(5,1)
s
(0,) v1 (vs ,4)
(2,2)
(3,0)
vt (v3 ,1)
(2,1)
v3 (v2 ,1)
(3,3) vs
(5,1)
6
三、增广链 1 、给定一个可行流



f
ij
f ij
cij的弧为饱和弧; cij 的弧为非饱和弧;
f ij f ij
0的弧为零流弧; 0的弧为非零流弧.
2 、若 是网络中联结发点 vs 和收点 vt 的一条链,定义链的
方向是从 vs 到 vt ,则链上的弧被分为两类:一类是弧的方向 与链的方向一致,称为前向弧,前向弧的全体记为 , 另一类 弧与链的方向相反,称为后向弧,后向弧的全体记为 .
c12 10, c24 3, c13 8, c34 5 容量
f12 5, f 24 2, f13 3, f34 1 流量
(v5 , v4 )是饱和弧
f 54
c54
在链 (v1, v2 , v3 , v4 , v5 , v6 )中
前向弧集合
{(v1, v2 ),(v2 , v3 ),(v3 , v4 ),(v5 , v6 )} (10,5)
3 、设f是一个可行流, 是从到的一条链,称为一条增广链,如

((vvii
, ,
v v
j j
) )



0 0
fij fij
cij ,即正向弧集中每一条弧是非饱和弧; cij ,即反向弧集中每一条弧是非零流弧.
7
四、截集
1 、设 S,T V , S T , 把始点在 S ,终点在 T 中的所 有弧构成的集合,记为 (S,T ).
净输入量)
5
最大流问题:
maxv( f ) f
0 fij cij , (vi , v j ) A
相关文档
最新文档