2017年春季学期新版新人教版七年级数学下学期6.2、立方根教案24

合集下载

春七年级数学下册 6.2 立方根教案2 (新版)新人教版-(新版)新人教版初中七年级下册数学教案

春七年级数学下册 6.2 立方根教案2 (新版)新人教版-(新版)新人教版初中七年级下册数学教案

第六章 实数6.2立方根(2)【教学目标】知识与技能1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、会用计算器求立方根,一些大数立方根的规律。

过程与方法通过用计算器求立方根,得出一些大数立方根的规律,体验数学之美。

情感、态度与价值观培养学生树立严谨的数学学习态度,科学的数学学习方法。

【教学重难点】重点:立方根的概念和求法,计算器求立方根。

难点:一些大数立方根的规律【导学过程】【情景导入】1. 平方根与立方根有什么不同?2.(1) 64的平方根是________立方根是________.(2) 的立方根是________. (3) -37是_______的立方根. (4) 若 ,则 x=_______, 若 , 则 x=________. (5) 若 , 则x 的取值X 围是__________。

【新知探究】327()92=-x ()93=-x xx -=2探究一、1、阅读课本P50-51页,总结规律:求负数的立方根,可以先求出这个负数的的立方根,再取其,即一般地,。

思考:立方根是它本身的数是,平方根是它本身的数是2、一些计算机设有键,用它可以求出一个立方根(或其近似值)。

有些计算器需要用第二功能键求一个数的立方根。

(介绍用计算器求立方根的方法,详见课本P51页第一自然段)探究二、例题【知识梳理】本节课你学到了什么?有什么收获和体会?还有什么困惑?1、求负数的立方根,可以先求出这个负数的的立方根,再取其,即2、一些计算机设有键,用它可以求出一个立方根(或其近似值)。

有些计算器需要第二功能键求一个数的立方根。

【随堂练习】2、计算: 327102---3、计算:()23122⎛⎫-- ⎪⎝⎭.。

新人教版七下数学 6.2 立方根(教案)

新人教版七下数学  6.2 立方根(教案)

6.2 立方根【知识与技能】1.了解立方根的概念,初步学会用根号表示一个数的立方根.2.了解立方与开立方互为逆运算,会用立方运算或计算器求某数的立方根.3.能用类比平方根的方法学习立方根及开立方运算.【过程与方法】用类比的方法探寻出立方根的运算及表示方法,并能总结出平方根与立方根的异同.【情感态度】发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并能作出正确的处理.【教学重点】立方根的概念及求法.【教学难点】立方根与平方根的区别.一、情境导入,初步认识问题 填写,并探求交流立方值与平方值的不同.鼓励学生踊跃发言表述各自总结的结论.【教学说明】求立方运算时,当底数互为相反数,其立方值也互为相反数,这与平方运算不同,平方运算的底数为相反数时,平方值相等.故一个正数的平方根有两个值,但一个正数的立方根只有一个值.引出立方根定义:若x 3=a,则x 为a 的立方根,记为3a .根据上述定义,请学生口述下列问题的结果,并推广到一般规律.【教学总结】由教师汇总得出下列结论:1.正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.33a a -=-.二、思考探究,获取新知例1 求下列各数的立方根.分析:依据立方根的定义,先写出这四个数分别是由哪个数的立方得到的,从而求出立方根.【教学说明】被开方数是带分数时,先将其化成假分数.例2 求下列各式的值.分析:先要分清符号的实际意义,如3512表示求-512的立方根,而-3512表示求512的立方根的相反数.解:(1)-8;(2)29;(3)-0.2;(4)6. 【教学说明】以上两例中可总结得到:(1)任何数的立方根只有一个,而且被开方数的符号与立方根的符号相同;(2)被开方数是算式,可先算出结果.例3 求下列各式中的x.分析:可根据立方根的定义求得x 的大小.(2)(3)(4)中分别把(x+2),(x-1),(2x+3)看作一个整体.三、运用新知,深化理解1.计算下列各题2.某金属冶炼厂将27个大小相同的立方体钢铁在炉火中熔化后浇铸成一个长方体钢铁,此长方体的长,宽,高分别为160cm,80cm和40cm,求原来立方体钢铁的边长.3.有一边长为6cm的正方体的容器中盛满水,将这些水倒入另一正方体容器时,还需再加水127cm3才满,求另一正方体容器的棱长.4.若3x+16的立方根是4,求2x+4的平方根.【教学说明】通过上述几道题目的练习,可进一步巩固对本节知识的理解和领悟.四、师生互动,课堂小结按下列问题顺序让学生表达,并补充完善.1.立方和开立方的意义.2.正数、0、负数的立方根的特征.3.立方根与平方根的异同.1.布置作业:从教材“习题6.2”中选取.2.完成练习册中本课时的练习.本课时教学要突出体现“创设情境——提出问题——建立模型——解决问题”的思路,提倡学生自主学习,利用平方根的知识类比学习立方根的知识.。

人教版数学七年级下册6.2《立方根》教学设计

人教版数学七年级下册6.2《立方根》教学设计

人教版数学七年级下册6.2《立方根》教学设计一. 教材分析人教版数学七年级下册6.2《立方根》是初中数学中重要的一部分,主要让学生了解立方根的概念,掌握求立方根的方法,并能够应用立方根解决实际问题。

本节内容在学生的数学知识体系中起到了承上启下的作用,为后续学习四次根式等知识打下基础。

二. 学情分析学生在学习本节内容前,已经学习了有理数、实数等知识,对数的概念有一定的了解。

但学生对立方根的概念和求法还比较陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生可能对负数的立方根存在疑惑,需要通过具体例子进行解释和引导。

三. 教学目标1.了解立方根的概念,掌握求立方根的方法。

2.能够应用立方根解决实际问题。

3.培养学生的数学思维能力和解决问题的能力。

四. 教学重难点1.立方根的概念和求法。

2.负数的立方根的理解。

3.应用立方根解决实际问题。

五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等,通过引导、讲解、实践、讨论等方式,帮助学生理解和掌握立方根的知识。

六. 教学准备1.PPT课件。

2.练习题和实际问题。

3.教学工具,如黑板、粉笔等。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,如“一个正方体的体积是27立方米,求这个正方体的棱长。

”引导学生思考和讨论,引出立方根的概念。

2.呈现(15分钟)讲解立方根的定义,通过PPT展示立方根的图像,让学生直观地理解立方根的概念。

同时,讲解如何求一个数的立方根,以及负数的立方根。

3.操练(15分钟)让学生进行一些立方根的练习题,巩固所学知识。

练习题包括求一个数的立方根,以及判断一个数的立方根的正负等。

4.巩固(10分钟)通过一些实际问题,让学生应用立方根的知识解决问题,巩固所学内容。

如“一个立方体的体积是-8立方米,求这个立方体的棱长。

”5.拓展(10分钟)讲解立方根在实际生活中的应用,如计算物质的体积、求解方程等。

引导学生思考和讨论,培养学生的数学思维能力。

(新人教版)数学七年级下册:6.2《立方根》教案(3份)

(新人教版)数学七年级下册:6.2《立方根》教案(3份)

《立方根》教案一、教学目标:1、知识技能:(1)了解立方根和开立方的概念,掌握立方根的性质.(2)会用根号表示一个数的立方根.(3)能用开立方运算求数的立方根,体会立方与开立方运算的互逆性.2、能力目标:培养学生的理解能力和运算能力.3、情感目标:体会立方根与平方根的区别与联系.二、教学重点难点:1、教学重点:本节重点是立方根的意义、性质.2、教学难点:本节难点是立方根的求法,立方根与平方根的联系及区别.三、教法分析:定义推导上:采用引导探索法.定义应用上:采用递进练习法.用类比及引导探索由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,得出立方根的定义,将定义的应用融入到探究活动中.四、学习方法:观察、猜测、交流、讨论、分析、推理、归纳、总结.五、教学过程:(一)知识回顾:口答:(1)平方根的概念?如何用符号表示数a(≥0)的平方根?(2)正数有几个平方根?它们之间的关系是什么?负数有没有平方根?0平方根是什么?(二)合作学习:给出一个3×3×3魔方,并提问这是由几个大小相同的单位立方体组成的魔方?(三)想一想:1、要做一个体积为27立方厘米的立方体模型,它的棱要多少长?你是怎么知道的?2、什么数的立方等于-27?归纳:1.立方根的概念:一般地,如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根).即X3=a,把X叫做a的立方根.如53=125则把5叫做125的立方根.(-5)3=-125则把-5叫做-125的立方根.数a”表示,读作“三次根号a”.2.开立方:求一个数的立方根的运算,叫做开立方.开立方与立方也是互为逆运算,因此求一个数的立方根可以通过立方运算来求.(四)例题讲解例1、求下列各数的立方根:(1)-8 (2) 8(3) (4)0.216 (5)0 引导学生根据平方根的性质得出立方根的性质:1、正数有一个正的立方根.2、负数有一个负的立方根.3、0的立方根还是0.让学生说出平方根,算术平方根以及立方根是本身的数分别是多少?.练一练:抢答1.判断下列说法是否正确,并说明理由.(1)827的立方根是±23(2)25的平方根是5 (3)-64没有立方根 (4)-4的平方根是±2 (5)0的平方根和立方根都是0(6)互为相反数的两个数的立方根也互为相反数.例2、求下例各式的值:(教师讲解,可以提问学生)(五)当堂检测计算:(六)归纳小结:学生概括:1、通过本节课的学习你获得了那些知识?2、你能总结出平方根和立方根的异同点吗?教师概括:相同点: (1)0的平方根、立方根都有一个是0(2)平方根、立方根都是开方的结果.不同点: (1)定义不同.(2)个数不同.(3)表示方法不同.(4)被开方数的取值范围不同.(七)布置作业827-+《立方根》教案教学目标:1、了解立方根的概念,初步学会用根号表示一个数的立方根.2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、让学生体会一个数的立方根的唯一性.4、分清一个数的立方根与平方根的区别.教学重点:立方根的概念和求法。

七年级数学下册6.2立方根教案(新版)新人教版

七年级数学下册6.2立方根教案(新版)新人教版

立方根教学目标:1.了解立方根的概念,会用根号表示一个数的立方根.2.能用立方运算求某些数的立方根,了解开立方与立方互为逆运算。

3.了解立方根的性质,区分立方根与平方根的不同。

4.体会类比,化归思想教学重点:立方根的概念.,求某些数的立方根。

教学难点:了解立方根的性质,区分立方根与平方根的不同。

教学过程:2、学习准备1、上节课我们学习了平方根的定义,若x2=a,则x叫a的平方根。

若x3=a,则x叫a的什么呢?完成下面填空。

33 = ( ) ( )3 = 27(-3)3= ( ) ( )3 = -27()3= ( ) ( )3 =()3 =( ) ( )3 =03 =( ) ( )3 = 02、左边算式已知底数、指数求幂,右边算式已知幂、指数求底数一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也叫做a的三次方根。

即如果X3=a,那么叫做的立方根。

请按照第7页的举例你再举两个例子说明:叫做开立方,立方与互为逆运算4、观察上面两组算式,归纳一个数的立方根的性质是:正数有一个立方根,零有一个立方根,;负数立方根。

交流:(1)的立方根是什么?(2)0.001的立方根是什么?(3)0的立方根是什么?(4)-729的立方根是什么?5、立方根的表示方法一个正数a有一个立方根,.正数a的立方根,记作“”负数a的立方根,记作“”吗?如果X3=a,那么X=,其中符号“”读作三次根号,a叫做被开方数这里的a表示什么样的数? a是任意数二、合作探究1、阅读课本第7页例题4,按例题格式求其立方根。

(1) 64 (2)(3)-216 (4)(-4)3(5)0.729 (6) 0.642、阅读课本第8页利用计算器求立方根的方法,利用计算器求下列各式的值。

(1)(2)(3)(4)3、利用计算器求下列各数的算术平方根通过观察立方根,归纳被开方数与立方根之间小数点的变化规律4、某化工厂使用一种球形储气罐储藏气体.现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐半径的多少倍?三、学习体会:本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?四、自我测试1、下列说法中正确的是()A.-4没有立方根 B.1的立方根是±1 C.的立方根是 D.-5的立方根是2、下列说法中,正确的是()A一个有理数的平方根有两个它们互为相反 B一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1 3、求下列各式的值4、求下列各式中的x.(1)125x3=8 (2)(-2+x)3=-216 (3)=-2 (4)27(x+1)3+64=0中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

人教版数学七年级下册6.2《立方根》教案

人教版数学七年级下册6.2《立方根》教案

人教版数学七年级下册6.2《立方根》教案一. 教材分析《立方根》是人教版数学七年级下册第六章第二节的内容,本节课主要让学生掌握立方根的概念,理解立方根的性质,学会求一个数的立方根。

通过本节课的学习,培养学生观察、思考、归纳的能力,为后续学习四次根式打下基础。

二. 学情分析学生在六年级时已经学习了平方根的概念和性质,对求一个数的平方根已经有一定掌握。

但是,立方根与平方根虽然在概念和性质上有相似之处,也有很大区别。

因此,在教学过程中,要引导学生正确理解立方根的概念,把握立方根与平方根的联系与区别。

三. 教学目标1.知识与技能:理解立方根的概念,掌握立方根的性质,学会求一个数的立方根。

2.过程与方法:通过观察、思考、归纳,培养学生探索数学问题的能力。

3.情感态度与价值观:培养学生对数学的兴趣,激发学生学习数学的积极性。

四. 教学重难点1.重点:立方根的概念和性质,求一个数的立方根。

2.难点:立方根与平方根的联系与区别。

五. 教学方法1.情境教学法:通过生活实例引入立方根的概念,激发学生的学习兴趣。

2.启发式教学法:引导学生观察、思考、归纳立方根的性质,培养学生探索数学问题的能力。

3.小组合作学习:分组讨论,培养学生的团队协作能力。

六. 教学准备1.课件:制作与教学内容相关的课件,以便于展示和讲解。

2.黑板:准备黑板,用于板书重要知识点和示例。

3.练习题:准备一定数量的练习题,用于巩固所学知识。

七. 教学过程1. 导入(5分钟)通过生活实例引入立方根的概念。

例如,一个正方体的体积是27立方厘米,求这个正方体的棱长。

引导学生思考正方体的棱长与体积的关系,从而引出立方根的概念。

2. 呈现(10分钟)讲解立方根的性质,与平方根进行对比,让学生理解立方根与平方根的联系与区别。

通过PPT展示立方根的性质,让学生观察、思考、归纳。

3. 操练(10分钟)让学生独立完成一些求立方根的练习题,巩固所学知识。

教师在旁边巡回指导,解答学生的疑问。

最新人教版七年级数学下册6.2《立方根》教学设计

最新人教版七年级数学下册6.2《立方根》教学设计
2.本章前两节的内容“平方根”“立方根”在内容安排上有很多类似的地方,因此 在教学中利用类比的方法,让学生通过类比旧知识学习新知识,教学中突出立方根与平 方根的对比,分析它们之间的联系和区别,这样新旧知识联系起来,既有利于复习巩固 平方根,又有利于立方根的理解和掌握。通过独立思考,小组讨论,合作交流,学生在 “自主探索,合作交流”中充分发挥了他们的主观能动性,感受了立方运算与开立方运 算之间的互逆关系,并学会了从立方根与立方是互逆运算中寻找解题途径。
零的平方根是什么?负数有没有平方根?
(二)活动二:创设情境,导入新课
七年级学生的学习特点是:好奇心强,有较ห้องสมุดไป่ตู้的学习激情和热情,学习时注意力能够高 度集中但持续时间有限。 为了激发学生的学习兴趣,吸引学生的学习注意力,我通过一 道数学实际问题引人本节课的新知识。
问题:数学实际问题.
(三)活动三:尝试指导,讲授新课
二、通过这节课大家获得哪些知识? 1.立方根的定义、性质及表示方法 2.求一个数的立方根 3.立方根和平方根的区别
5/7
最新人教版七年级数学下册 6.2《立方根》教学设计
设计意图:通过小结为学生创造交流空间,调动学生学习的积极性,既引导学生从知识掌握的 角度来理解本节知识,又从能力、情感、态度等方面关注学生对课堂的整体感受
例如:3 8 =2 3 - 8 =-2
3、你会区别下列式子吗?
a
a
3a
……………………………………
……………………………………
……………………………………
(四)活动四:应用概念,探索性质
例 求下列各数的立方根:
(1)8
(2)-8
(3)0
解:(1)因为 23=8,所以 8 的立方根是 2;即: 3 8 =2

人教版七年级数学下册6.2立方根(教案)

人教版七年级数学下册6.2立方根(教案)
其次,在讲解难点内容时,我应尽量用生活中的实例来解释,让学生感受到数学知识在实际中的应用,从而提高他们的学习兴趣。例如,通过计算不同形状的体积,让学生体会到立方根在几何学中的重要作用。
再者,我发现学生在小组讨论环节表现得非常积极,这说明他们渴望与他人交流和分享自己的想法。因此,在今后的教学中,我应更多地设置这样的环节,鼓励学生积极参与,提高他们的合作能力和口头表达能力。
2.发展学生的逻辑推理能力:在探讨立方根的性质和运算过程中,引导学生运用逻辑推理,掌握正确的数学证明方法。
3.提升学生的数学建模素养:培养学生运用立方根知识解决实际问题的能力,将现实问题转化为数学模型,并求解。
4.增强学生的数学运算能力:让学生熟练掌握立方根的计算方法,提高运算速度和准确性。
5.培养学生的数学应用意识:通过立方根在实际生活中的应用,使学生体会数学的价值,激发学习兴趣。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“立方根在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.教学难点
-立方根性质的理解:学生对立方根性质的理解可能存在困难,如立方根的唯一性、正负数的立方根等。
-立方根的运算技巧:特别是分数和负数的立方根计算,学生可能会感到困惑。
-立方根的估算:如何快速准确地估算一个数的立方根,对于学生来说是一个挑战。
举例:解释为什么一个数的立方根具有唯一性;展示如何计算分数∛(1/8)(等于1/2的立方根)和负数∛(-27)(等于-3);在估算∛1000时,如何利用已知的知识(如10的立方是1000)来快速判断其立方根大约是10。

人教版数学七年级下册6.2立方根优秀教学案例

人教版数学七年级下册6.2立方根优秀教学案例
(五)作业小结
在作业小结环节,我会布置一些与立方根相关的练习题,让学生在课后进行巩固和提高。同时,我会提醒学生及时总结和反思自己的学习情况,找出自己的不足之处,为今后的学习做好准备。在下一节课开始时,我会及时批改作业,并对学生的学习情况进行反馈,帮助他们纠正错误,提高解题能力。
五、案例亮点
1.启发式教学:本案例中,我运用启发式教学法,通过提问和引导,激发学生的思维,培养他们的抽象思维和逻辑推理能力。例如,在讲解立方根的概念时,我提出问题:“什么是立方根?”“如何快速找出一个数的立方根?”等问题,引导学生进行思考和探索。
在学生小学生进行思考和讨论。例如,我会让学生探讨如何快速找出一个数的立方根,以及立方根在实际生活中的应用。学生可以结合自己的经验和知识,与小组成员进行交流和讨论。通过小组讨论,学生可以互相学习,共同提高。
(四)总结归纳
在总结归纳环节,我会让学生回顾本节课所学的立方根的知识,让他们自己总结和归纳立方根的性质和计算方法。我会引导学生通过整理和概括,形成系统化的知识结构。同时,我会强调立方根在数学和其他学科中的应用,让学生认识到学习立方根的重要性。
为了达到这个目标,我会在课堂上运用生动的例子和动画演示,帮助学生直观地理解立方根的概念。通过大量的练习题,让学生在实践中掌握立方根的计算方法。此外,我还会在课堂上引导学生思考立方根在实际生活中的应用,激发他们的学习兴趣。
(二)过程与方法
在本节课中,我将采用启发式教学法和小组合作学习法,引导学生主动探索、发现和总结立方根的性质和计算方法。
2.小组合作学习:我组织学生进行小组合作学习,让他们在小组活动中共同探索立方根的性质和计算方法。通过小组合作,学生可以互相学习、互相启发,从而提高他们的合作能力和解决问题的能力。

(新人教版)数学七年级下册:6.2《立方根》教案

(新人教版)数学七年级下册:6.2《立方根》教案

《立方根》教案课程目标一、知识与技能目标1.了解立方根的概念,能够用根号表示一个数的立方根.2.能用类比平方根的方法学习立方根,及开立方运算,并区分立方根与平方根的不同.二、过程与方法目标用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同.三、情感态度与价值观目标发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理.教材解读由正方体的边长与体积的关系引出立方运算,转入立方根运算.于是发现立方根运算与立方运算互为逆运算,很容易联想到平方运算与平方根运算之间的关系,于是立方根的表示,运算等问题就留给同学去发现.学情分析在学习完平方根运算后继而学习立方根运算,通过列举一些有代表意义的数求立方运算可发现立方根比平方根更容易掌握.教学过程一、创设情境,导入新课问题1.问题2.两个不同形状的水晶一样的透明饰物,一个是圆球形的,一个是正方形,经过测算,其体积都是125cm3.同学们,你们知道这两个饰物除了形状不同以外还有什么不同吗?那就是球的半径与正方体的边长,你能求出这个半径和边长吗?要求出这两个量,我们就来学习开方中的另一种运算:开立方运算.二、师生互动,课堂探究(一)导入知识,解释疑难对于问题1我们如果设棱长为x米,则不难得出x3=0.125,也就是要求一个数,使它的立方为0.125,我们知道0.53=0.125,所以正方体木块的棱长为0.5米;由此我们给出立方根的概念:一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root).即如果x3=a,则x叫做a的立方根,记为,读作三次根号a.注意:表示一个数的立方根时不需要正负号;符号中的指数3不能省略.在学习平方根的运算时,首先是找出一些数的平方,然后才根据其逆运算过程确定某数的平方根,同样,我们先来算一算一些数的立方.23=______;(−2)3=______;0.53=_____;(−0.5)3=______;()3=_____;−()3=_____;03=______.(1)经计算发现正数,0,负数的立方根与平方根有何不同之处?23=8;(−2)3=−8;0.53=0.125;(−0.5)3=−0.125;()3=;−()3=−;03=0.我们发现,求立方运算时,当底数互为相反数时,其立方也是一对互为相反数,这与平方运算不同,平方运算的底数为相反数,但其平方相等,故一个正数的平方根有两个值,但一个正数的立方根却只有一个.(2)开平方与平方运算互为逆运算,同样开立方与立方运算也互逆,故请根据上述等式,写出这些互为相反数的立方根.8的立方根为2,−8的立方根为−2,记为=2,=−20.125的立方根为0.5,−0.125的立方根为−0.5,记为=0.5,=−0.5的立方根为,−的立方根为−,记为=,=−0的立方根为0,记为=0上述过程都是求一个数的立方根的运算,我们把求一个数的立方根的运算,叫做开立方(extr a ction of cube root),开立方与立方运算互为逆运算.前面问题2中正方体的边长为=5,而球的体积为r3=125时,r≈3.1.归纳:正数的立方根为正数,负数的立方根为负数,0的立方根是0,可记为=a(a 为任意数),或者若a3=M,则有=a,其中M为被开方数,3为根指数,且根指数3不能省略,只有当根指数为2时,才能省略不写.并且有规律:=−(二)例题求解例1:求下列各式的值:①;②;③;④()3解:①=−=−2;②==0.4;③=−=−;④()3=a.例2:求下列各数的立方根.①−27;②;③−0.216;④−5.解:①∵(−3)3=−27,∴=−3;②∵()3=,=;③∵(−0.6)3=−0.216,=−=−0.6;④对−5这个数,作如下尝试:13=1,23=8,1.53=3.375,1.73=4.193.发现4.193最接近5,故不能口算出其值,得借助计算器求值,且通过计算器检验知是一个无限不循环小数,用计算器计算知=−≈−1.71是一个近似数.(三)探究活动①若正方体的棱长为1,则其体积为1;若正方体的棱长为2,则其体积为8;若正方体的棱长为4,则其体积为64;若其棱长为8,则其体积为512……当棱长为2n时,其体积为多少?②某正方体的体积为1时,其棱长为1;体积为2时,棱长为;体积为3时,棱长为……;若体积扩大到原来的n倍,则棱长扩大多少倍?解:①正方体棱长为1,则体积为1,棱长为2,体积为8,比较两者棱长扩大了2倍,体积扩大了8倍,棱长又扩大了1倍,其体积相应增大7倍,为原来的8倍,故当棱长为2n时,体积为8n3.②当体积扩大到原来的n倍时,棱长扩大到原来的倍.(四)归纳总结,知识回顾这节课学习了立方根的概念,立方根的表示方法以及如何求一个数的立方根.用计算器求任意数的立方根时,只能先求出该数的绝对值的立方根,再根据任意数的正负性决定其值,注意区分平方根与立方根.。

七年级数学下册第六章实数6.2立方根教案新版新人教版

七年级数学下册第六章实数6.2立方根教案新版新人教版
(2)正数的平方根有几个?
(3)平方和开平方运算有何关系?
(4)算术平方根和平方根有何区别和联系?
教师适时指导
根据立方根的意义填空.你能发现正数、0和负数的立方根各有什么特点吗?
因为23=8,所以8的立方根是();
因(0.4)3=0.64,所以0.064的立方根是();
因为03=0,所以0的立方根是();
6.2 立方根
课 题






知识与技能:
了解立方根的概念和表示方法,并会求一个数的立方根;
过程与方法:
从具体的计算出发归纳出立方根的概念,然后讨论立方与开立方的关系,研究立方根的特征。
情感态度与价值观:
通过探索立方根的特征,培养学生独立思考和小组交流的能力;通过立方根与平方根的比较使学生学会类比学习的数学思想;通过探讨一个数的立方根与它的相反数的立方根的关系,可以将求负数的立方根转化为求正数的立方根的问题,培养学生的转化思想。
教学重点
立方根的概念和求法
教学难点
立方根的求法。
教学方法
探究、观察、类比
教学手段
多媒体课件
课型
新授
教学环节
教学内容
教师活动
学生活动
创设问题情境
复习引入、类
比学习
初步探究
巩固新知
练习巩固
类比化归
深入探究性质
强化巩固
深入探究
课堂小结
布置作业
问题:要做一个体积为27cm3的正方体模型(如图),它的棱长要取多少?
例1(2)____________________________.
(3)_____________________________.

人教版七年级数学下册:6.2立方根教学设计

人教版七年级数学下册:6.2立方根教学设计
a.利用网络资源,查找立方根的相关知识,如历史背景、数学故事等,拓展学生的知识面。
b.学生在家长的帮助下,录制一段讲解立方根计算方法的视频,分享到班级群,促进同学间的交流和学习。
5.复习作业:
a.学生复习本节课所学内容,整理立方根的定义、性质、计算方法等方面的知识,为下节课的学习做好准备。
b.家长协助学生检查作业,关注学生在立方根学习中的困难和问题,并及时与教师沟通,共同帮助学生提高。
(二)过程与方法
1.通过引导学生自主探究、合作交流,让学生经历从具体实例中抽象出立方根概念的过程,培养学生发现问题和提出问题的能力。
2.通过对立方根性质的探究,让学生掌握数学归纳和推理的方法,提高学生的逻辑思维能力。
3.通过实际问题的解决,培养学生运用数学知识解决实际问题的能力,增强学生的应用意识。
3.演示立方根的计算方法:首先,可以通过试除法找到立方根的近似值;其次,可以通过数学软件或计算器求解精确值。
4.结合实例,讲解立方根在实际问题中的应用,如体积、密度等计算问题。
(三)学生小组讨论
1.将学生分成小组,每组讨论以下问题:
a.举例说明立方根在生活中的应用。
b.讨论立方根的计算方法,并总结计算技巧。
作业布置要注重层次性和针对性,以满足不同学生的学习需求。同时,教师应关注学生的作业完成情况,及时给予反馈和指导,以提高学生的学习效果。
3.学生对立方根性质的理解和运用,注意培养学生的逻辑思维能力和归纳推理能力。
4.学生在实际问题中运用立方根的能力,关注学生应用意识的培养,提高学生解决实际问题的能力。
5.针对不同学生的认知水平和学习风格,因材施教,激发学生的学习兴趣,提高课堂参与度。
在教学过程中,教师应关注学生的个体差异,充分调动学生的主观能动性,让学生在探究、合作、交流中掌握立方根的知识,从而提高学生的数学素养。同时,注重培养学生的自主学习能力,使学生在面对新的数学知识时,能够主动探究、积极思考,为学生的可持续发展奠定基础。

七年级数学下册 6.2 立方根教案 (新版)新人教版-(新版)新人教版初中七年级下册数学教案

七年级数学下册 6.2 立方根教案 (新版)新人教版-(新版)新人教版初中七年级下册数学教案
=; =.
总结:正数的立方是;负数的立方是;0的立方是
【新知预习】1、立方根的定义:
。ห้องสมุดไป่ตู้作:。
2、求下列各数的立方根
(1)64 (2) (3)9 (4) (5)
三、质疑探究
1、下列各数有立方根吗?如果有,请写出来;如果没有,请说明理由
,0.001,9,-3,-64, ,0
总结:任何数都有立方根,一个数的立方根不改变它的 。
即:正数的立方根是,负数的立方根是,0的立方根是。
2、求下列各式的值
, , ,
3、求下列各式的值
(1) (2) (3)
四、精讲点拨
讨论:1.
2.
你能用符号总结一下刚才的结论吗?
五、当堂检测
A、1.立方根等于本身的数是 ( )
A.±1 B.1,0C.±1,0 D.以上都不对
2.若一个数的算术平方根等于这个数的立方根,则这个数是( )
A.±1 B.±1,0C.0 D.0,1
3.下列说法正确的是( )
A.1的立方根与平方根都是1 B.
C. 的平方根是 D.
B、4.求下列各式的值
(1) (2) (3) (4) (5)
5.若 ,若
6.8的立方根与25的平方根之差是
C、1、若
2.已知 ,求
六、作业布置




教学反思
自主探究 合作交流 适时引导 集体反馈
教具
课堂设计
一、目标展示
1.了解立方根的概念,会用根号表示一个数的立方根;
2.会求一个数的立方根;
3. 培养学生数学学习兴趣
二、预习检测
【旧知回顾】1.7的平方根是,5的算术平方根是, 的平方根是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2 立方根
教学目标:
知识与技能
1、了解立方根的概念,初步学会用根号表示一个数的立方根.
2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.
3、让学生体会一个数的立方根的惟一性.
4、分清一个数的立方根与平方根的区别。

过程与方法
用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同。

情感、态度与价值观 发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并作出正确的处理。

教学重点:立方根的概念和求法。

教学难点:立方根与平方根的区别。

教学过程
一 、情境导入:
1、你记得吗?
13= 23= 33= 43= 53=
63= 73= 83= 93= 103=
【设计意图】让学生熟记1-10的立方,为学生熟练地运用立方根的定义求立方根做好准备。

【师生活动】教师提出问题,学生回答,然后学生用1-2分钟时间记一记。

2、问题:要制作一种容积为27 3m 的正方体形状的包装箱,这种包装箱的边长应该是多少?
【设计意图】提出“一个已知一个数的立方,求这个数”的问题,为教学立方根以及立方和开立方互为逆运算创设实际情景。

二 、新知探究
活动1、填写下表
活动2、揭示概念
如果一个数的立方等于a ,这个数叫做a 的立方根(也叫做三次方根),读作:“三次根号a ”,其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。

即如果3
x a =,
那么x 叫做a 的立方根,记作
例如因为33=27,所以27的立方根是3;即3273=。

因为(-3)3=-27,所以-27的立方根是-3;即3273-=-
求一个数的立方根的运算叫开立方,开立方与立方互为逆运算。

活动3、根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点?
① ∵3
28=,∴8的立方根是 ;即=38
② ∵()30.50.125=,∴0.125的立方根是 ;即=3125.0
③∵()300=,∴0的立方根是 ;即=30
④ ∵()328-=-,∴-8的立方根是 ;即=-38 ⑤∵328327⎛⎫-=- ⎪⎝⎭
,∴278-的立方根是 ;即=-3278 一个正数有一个正的立方根;0有一个立方根,是它本身;一个负数有一个负的立方根 任何数都有唯一的立方根。

活动4、讨论:你能归纳出平方根和立方根的异同点吗?
三 新知应用
例1 求下列各数的立方根
① 27 ②-27 ③271 ④ -27
1 ⑤0 在本题中你还可以发现什么?(由本题可发现互为相反数的数的立方根也互为相反数。


例2、求下列各式的值:
(1)364; (2)327-; (3)327
102 (4)310001-; (5)64±; (6)64
例3、计算下列各式的值。

38-= 38-=
327- 327-=
3
64-= 364-= 在上述计算中,你发现了什么规律?
例4、求下列各式的值:
①3125- ② 31000 ③31000
1- ④3001.0-+01.0 四 、巩固练习
1、课本51页练习1题. P51习题6.2第1、
2、3题
2、求下列各数的立方根:
(1)—8 (2) 64
27 (3) ±125 (4) 81×9 3、求下列各式的值。

(1)—327102 (2)—364
27— (3)3064.0- (4)31210125⨯- (5)—31125
98- 4、解下列方程 ①3512x = ②3641250x -=
备选题
(1)当x ≥0
x 为一切实数
时,
(2
)的立方根是 -2
,方根是
±2 ,的立方根是 -2
(3
)-8的一个平方根的和等于 1或-5
(4
)一个自然数的算术平方根是a ,那么与这个自然数相邻的下一个自然数的平方根是
,立方根是
(5)解方程 ()31216x -=-
(64
=
,且(20y =,求3x y z +-的值 板书设计
课后
反思。

相关文档
最新文档