重庆市双福育才中学2016届九年级下学期第三次诊断考试数学试题无答案)

合集下载

重庆市育才中学届九年级数学3月月考试题精选资料

重庆市育才中学届九年级数学3月月考试题精选资料

号为 A、B、C、D 的四个答案,其中只有一个是正确的,请将答.题.卡.上对应题目的正确答
案标号涂黑。 1.下列四个图形中属于中心对称图形的是
A
B
2.下列说法正确的是
C
D
A.从一个不透明的袋子里面摸球,连续 10 次都摸出红球,那么袋子里面只有红球。
B.天气预报“明天降水概率 25%”,是指明天有 25%的时间会下雨 。
5.九龙坡区 2016 年的教育投入为 2.8 亿元,计划在未来两年中再投入 6.6 亿元,设每年教
育投入的平均增长率为 x,根据题意,可列方程为
A.2.8(1+x)2=6.6
B.2.8(1+2x)=6.6
C.2.8(1+x)+2.8(1+2x)=6.6
D.2.8(1+x)+2.8(1+x)2=6.6
C.某种福利彩票,中奖率是千分之一,买这种彩票 1000 张,一定会中奖 。
D.连续掷一枚均匀硬币,若 5 次都是正面朝上,则第六次仍然可能正面朝上
3.用配方法解方程������������ − ������������ − ������ = ������ 时,配方后所得的方程为
A. (������ − ������)������ = 0 B. (������ − ������)������ = 5 C. (������ + ������)������ = 0 D. (������ + ������)������ = 5
随机抽取一张,将抽到的卡片上的数字记为 x,放回再随机抽取一张记为 y,则点(x,y)
落在 y=x2-x+1 的图象上的概率为 ______ .
17. 在长方形 ABCD 中,AB=8cm,BC=4cm,以点 A 为圆心,AD 为半径作圆与 BA 的延长

重庆育才中学九年级下第一次诊断考试数学试卷(无答案)

重庆育才中学九年级下第一次诊断考试数学试卷(无答案)

重庆育才中学九年级下第一次诊断考试数学试卷(无答案)第一次诊断考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将解答书写在答题卡(卷)对应的位置上.1. 在实数31-,2-,0,1中,最小的数是( )2.下列图形中是中心对称图形的是( )3.计算()232a a ÷正确的是( )4.函数xx y 1+=中,x 的取值范围是( ) A .1->x B .1-≥x C .1->x 且0≠x D .1-≥x 且0≠x5.估计420-的值应在( )之间A .3.2和4.2B .4.2和5.2C .5.2和6.2D .6.2和7.26.下列命题中错误的是( )A .对角线垂直且相等的四边形是正方形B .对角线互相平分且垂直的四边形是菱形C .对角线垂直的矩形是正方形D .对角线互相平分且相等的四边形是矩形7. 如图,点P 是□ABCD 边上的中点,射线CP 交DA 的延长线于点E ,若3=∆APE S ,则ABCD S 等于( )8.下列图形都是由同样大小的小圆按照一定规律组成的,其中第①个图形中一共有5个小圆圈,第②个图形中一共有13个小圆圈,第③个图中一共有25个小圆圈,……,按此规律,则第⑨个图中小圆圈的个数为( )9.如图,已知BC 与⊙O 相切于点B ,CO 的延长线交⊙O 于点A ,连接AB ,若32=BC ,6=AC ,则⊙O 的半径为( )10. 如图,在斜坡EF 上有一信号发射塔CD ,某兴趣小组想要测量发射塔CD 的高度,于是在水平地面用仪器测得塔顶D 的仰角为︒31,已知仪器AB 高为m 2,斜坡EF 的坡度为4:3=i ,塔底距离坡底的距离m CE 10=,最后测得塔高为m 12,A 、B 、C 、D 、E 在同一平面内,则仪器到坡底距离AE 约为( )米(结果精确到1.0,参考数据:52.031sin ≈︒,86.031cos ≈︒,6.031tan ≈︒)11. 若整数a 关于x 的不等式组⎪⎩⎪⎨⎧<-≤-++02132a x x a x 有解,且使关于x 的分式方程1323=----xa x x 有整数解,则符合条件的所有整数a 的和是( ) 12.如图,反比例函数()0,0<≠=x k xk y 经过ABO ∆边AO 的中点D ,与边AB 交于点E ,且7:1:=EA BE ,连接DE ,若AOE ∆的面积为445,则k 的值为( ) 二、填空题:(本大题共6个小题,每小题4分,共24分)在每小题中,请将正确答案书写在答题卡(卷)对应的位置上.13.重庆市双福育才中学位于重庆市江津双福新区,学校占地面积约为105000平方米,为同学们提供了宽阔的学习和生活环境,将数105000用科学记数法可表示为 .14.计算:=+⎪⎭⎫ ⎝⎛---1221232. 15.如图,ABC Rt ∆中,︒=∠90B ,︒=∠30C ,以B 为圆心AB 为半径画弧,交AC 于点E ,交BC 于点D ,若2=AB ,则图中阴影部分的面积是 .16. 初三(1)班统一购买夏季校服,统计出各种尺码的校服的数量如下表所示: 校服的尺码(单位:厘米)160 165 170 175 180 185 195 数量(单位:件)24 10 22 14 6 1由表可以看出,在校服的尺码组成的一组数据中,众数是 .17. 甲、乙两车在依次有A 、B 、C 三地的笔直公路上行驶,甲车从B 地出发匀速向C 地行驶,同时乙车从B 地出发匀速向A 地行驶,到达A 地并在A 地停留1小时后,调头按原速向C 地行驶,在两车行驶的过程中,甲乙两车之间的距离y (千米)与行驶时间x (小时)之间的函数图像如图所示,当甲、乙两车相遇时,距A 地的距离为 km .18.某学习小组在研究三角形的平移时,发现了一些有趣的规律,如图,有两个全等的直角ABC ∆和直角DEF ∆,且A 、B 、D 、E 在同一直线上,其中4=AB ,3=BC ,固定ABC ∆,将DEF ∆沿射线AB 向右平移,连接BF ,过D 点作BF DH ⊥,垂足点为H 点,连接CH ,当BC AD =时,求=CH .(请结合参考图作答).三、解答题:(本大题共2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)对应的位置上.19.如图,直线CD AB //,点E 在AB 上,点F 在CD 上,连接EF ,EH 平分BEF ∠,交CD 于点H ,过点F 作EF FG ⊥,交EH 于点G ,若︒=∠32G ,求HFG ∠的度数.20.2018年3月30日初2018级同学以优异的成绩在双福育才中学完成了中招体育测试,初2019级为了准备明年的体考,对1、2、3、4班进行了体考模拟测试,并对三个班的满分进行了统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中2班体育成绩满分人数对应的圆心角是 度;并补全条形统计图;(2)经过体育老师推荐,这些满分同学中有4名同学(1女3男)的跳远动作十分标准,12班班主任准备从这4名同学中任选2名给自己班级的同学示范标准动作,请利用画树状图或列表的方法求出选出2名同学恰好是一男一女的概率.四、解答题:(本大题共6个小题,21-25每小题10分,26题12分,共62分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡(卷)对应的位置上.21.化简下列各式:(1) ()()()()y x x x y x y y x ---+--102222 (2) aa a a a a 32331342+-÷⎪⎭⎫ ⎝⎛+-+- 22.如图,在平面直角坐标系中,直线()0≠+=kb kx y 的图像与正比例函数x y 2-=的图像交于点A ,与x 轴交于点C ,与y 轴交于B 点,21tan =∠BCO ,A 点的纵坐标为2;(1)求一次函数的解析式;(2)点D 是点B 关于x 轴的对称点,将正比例函数x y 2-=沿x 轴向右平移4个单位,与一次函数()0≠+=k b kx y 交于点E ,连接DE 、DC ,求ECD ∆的面积.23.最近由于网络视频的兴起,让重庆一度成为“网红”城市,并且使得到山城重庆的游客剧增,根据国家旅游××局的官方统计,2017年,来重庆旅游的人数达到42.5亿人次,并且根据今年2018年的前三个月的统计,对比去年同期都是高速增长.(1)某旅游公司2018年3月共接待国内外游客共3000人次,其中国外游客不足国内游客的101,则国内游客至少有多少人? (2)该旅游公司根据游客的需求推出了“快速游”和“精品游”两种套餐,两种套餐的3月份价格分别为:800元/人和2000元/人,公司为了接纳更多的游客,提升口碑,4月份“快速游”套餐价格比3月下降了%2a ,4月份“精品游”套餐价格比3月下降了%10,月末统计;4月旅游总人数达4500人次,其中“精品游”套餐人次占总人次的%35a ,总人数达:5.391万元,求a 的值.24. 已知菱形ABCD 中,E 为AD 边上一点,且BE BA =,连接BD .(1)如图1,过B 作AD BF ⊥,垂足为F ,若32=BD ,1=DE ,求菱形ABCD 的边长;(2)如图2,点M 为边CD 上一点,连接BM ,且DBE CBM ∠=∠,过E 作BM EG ⊥,垂足点为G 点,O 为BD 的中点,连接GO 并延长交BE 于H 点,交AD 于N 点,求证EN AN =.25. 阅读下列材料,解决问题对任意一个四位数n ,将这个四位数n 千位上的数字与十位上的数字对调、百位上的数字与个位上的数字对调后可以得到一个新的四位数m ,记()99m n n F -=,例如:1423=n ,对调千位上数字与十位上数字及百位上数字与个位上数字得到2314,所以()99923141423-=-=n F .如果四位数n 满足千位数字与百位数字的和等于十位数字与个位数字的和,则称这个数为“平衡数”,例如:1423,因为3241+=+。

重庆育才中学初2016级初三(上)期末考试数学数学试题(word,有答案)分析

重庆育才中学初2016级初三(上)期末考试数学数学试题(word,有答案)分析

重庆育才中学初2016级初三(上)期末考试数学试题考生注意:本试题共26小题,满分150分,考试时间120分钟一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.四个数-3.14,0,1,-2中最小的数是 A .-3.14B . 0C . 1D .-22.化简27的结果是 A .3 B 。

2 2 C 。

3 2 D 。

3 3 3.计算32(2)xy -的结果是A .-426x y B .264x y C .-429x y D .292x y 4.下列调查中,调查方式选择正确的是 A .为了了解全市中学生课外阅读情况,选择全面调查B .为了了解全国中学生“母亲节”孝敬母亲的情况,选择全面调查C .为了了解一批手机的使用寿命,选择抽样调查D .旅客上飞机前的安检,选择抽样调查5.如图,直线AC ∥BD ,AO 、BO 分别是∠BAC 、∠ABD 的平分线,若∠ABO=35°,则∠BAO 的度数为 A .35° B .45° C .55° D .65° 6.下列四个图形分别是四届国际数学家大会的会标:其中属于中心对称图形的有A .1个B .2个C .3个D .4个 7.若关于x 的方程x 2+3x +a =0有一个根为-1,则另一个根为 A .-2 B .2 C .4 D .-38.为了建设节约型社会,电力局随机对某社区10户居民进行调查,下表是这10户居民2015年12月份用电量的调查结果:户数12 3 4 月用电量(度/户) 30425051那么关于这10户居民月用电量(单位:度),下列说法中错误..的是 A .中位数是50 B .众数是51 C .极差是21 D .方差是42 9.如图,AB 是⊙O 的弦,AO 的延长线交过点B 的⊙O 的切线于点C ,如果∠ABO =25°,则∠C 的度数是第9题图第5题图A.65°B.50°C.40°D.20°10.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是A B C D11.如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是A.12 B.13 C.20 D.2112.如图,A(3,0),C(0,2)矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB。

2016年重庆市中考数学试卷含答案

2016年重庆市中考数学试卷含答案

()
A. 3
B. 2
C. 3
D. 1
2
2
第Ⅱ卷(非选择题 共 102 分)
二、填空题(本大题 6 个小题,每小题 4 分,共 24 分.请把答案填在题中的横线上) 13.据报道,2015 年某市城镇非私营单位就业人员年平均工资超过 60 500 元,将数 60 500
用科学记数法表示为
.
14.计算: 4 (2)0
数学试卷 第 8页(共 20页)
由.
重庆市 2016 年初中毕业暨高中招生考试
数学答案解析
第Ⅰ卷
一、选择题 1.【答案】A 【解析】2 1 0 2 ,最小的数为-2,故选 A. 【考点】实数的大小比较 2.【答案】D 【解析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,
数学试卷 第 6页(共 20页)
24.(本小题满分 10 分) 我们知道,任意一个正整数 n 都可以进行这样的分解 n p q ( p , q 是正整数,且 p≤q ),在 n 的所有这种分解中,如果 p , q 两因数之差的绝对值最小,我们就称 p q 是 n 的最佳分解,并规定: F(n) p .例如 12 可以分解成112 , 2 6 或 3 4 ,因为 q 12 1>6 2>4 3 ,所以 3 4 是 12 的最佳分解,所以 F(12) 3 . 4 (1)如果一个正整数 a 是另外一个正整数 b 的平方,我们称正整数 a 是完全平方数.求 证:对任意一个完全平方数 m ,总有 F (m) 1 ; (2)如果一个两位正整数 t , t 10x y (1≤x≤y≤9 , x , y 为自然数),交换其个位上
.
17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1 500

重庆市育才成功学校九年级数学第二次月考试题(无答案)

重庆市育才成功学校九年级数学第二次月考试题(无答案)

重庆市育才成功学校2016届九年级数学第二次月考试题考生注意:本试题共26小题,满分150分,考试时间120分钟 一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.下面的数中,﹣2的相反数是( ) A .2B .2-C.21D .21-2.如图是由6个大小相同的正方体组成的几何体,它的左视图是( )A B C D第2题图-1 -2 2x = xy第7题图O第8题图3.已知反比例函数2y x=-的图象上有两点()()2211,,,y x B y x A ,且021<<x x ,则21,y y 的大小关系为( )A .21y y < B. 21y y > C. 21y y = D. 无法确定4.在函数21y x =-中自变量x 的取值范围在数轴上表示正确的为( )A B C D 5.如果两个相似三角形的面积之比为1:2,那么它们的周长之比是 ( ) A.1:2 B.1:4 C.1:2 D.2:16.在一个不透明的口袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球的数字之和大于5的概率为 ( ) A. 16B.13C.12D.567.已知抛物线2y ax bx c =++(a ≠0)在平面直角坐标系的位置如图所示,则下列结论中:(1)0>a ;(2)0>b ;(3)0>+-c b a ;(4)20+=a b ,正确的有( )A. 1个B. 2个C. 3个D. 4个8.如图所示,平地上一棵树高为6米,两次观察地面上的影子,第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察到的影子比第一次长( ) A.633- B. 43 C. 63 D. 323-9.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为( )A .51B .70C .76D .8110.已知)0(2≠++=a c bx ax y 的图像如图所示,则方程)20,0(2<<≠=++n a n c bx ax 的两实根21,x x 满足( )A.3121<<<x xB. 2131x x <<<C. 3121<<<x xD. 3,1021><<x x 且第10题图第11题图第12题图11.如图为一座抛物线型的拱桥,AB 、CD 分别表示两个不同位置的水面宽度,O 为拱桥顶部,水面AB 宽为10米,AB 距桥顶O 的高度为12.5米,水面上升2.5米到达警戒水位CD 位置时,水面宽为( )米.A. 5B. 52C. 54D. 8 12.如图,A 、B 是双曲线xky =()0≠k 上的点,A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =3.则k 的值为( ) A. 2 B.-2 C. 3 D. -3二、填空题(本大题共6小题,每小题4分,满分24分)在每小题中,请将答案直接填在答题卷中对应的横线上.13.分式23-m 的值为1,则m = . 14.在Rt △ABC 中,∠C=90°,若AB=5,sinA=35,则AC = . 15.育才中学体育文化节中,10个评委对该校初三年级入场式表演的打分情况如下:入场式得分 8 10 9 7 评委人数3241则初三年级入场式表演得分的中位数为 . 16.如图,E 是平行四边形ABCD 的边CD 上一点,连接AE 并延长交BC 的延长线于点F ,且AD=4,13CE AB =,则CF 的长为 . 17.有四张正面分别标有1-,0,1,2的不透明的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中取出一张,将卡片上的数字记为a ,不放回,再取出一张,将卡片上的数字记为b ,能使得方程022=+-b x ax 有解,且直线()b a x y +-=21不经过第四象限的概率是 .18.如图,矩形ABCD 的边AB =4,BC =7,E 为BC 上一点,BE=3,连接AE ,将矩形ABCD 沿AE 翻折,翻折后点B 与点B '对应,点A 与A '对应,再将所得△E B A ''绕着点E 旋转,线段..B A ''与线段..AE 交于点P ,当A P '= 时,△AP B '为等腰三角形.三、解答题:解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程做在答题卷上. 19.(1)计算(7分):()()︒--⨯---+60tan 6201522702π(2)解方程组(7分):41216x y x y -=-⎧⎨+=⎩20.(6分)如图,在△ABC 中,AD⊥BC 于D ,tan ∠BAD=21,∠ACD=45°,AB=5,求AC 的长.第16题图 第18题图21.(10分)先化简,再求值:)1152(11112----÷-++-+a a a a a a a ,其中a 是不等式 162331>+--x x 的最大整数解.22.(6分)如图,ABO Rt ∆的顶点A 是双曲线xky =()0≠k 与直线()1+--=k x y 在第二象限的交点,AB⊥x 轴于B ,点C 是双曲线与直线的另一个交点,且23=∆ABO S .(1)求这两个函数的解析式;(2)直接写出使一次函数的值大于反比例函数的值的x 的取值范围. 23.(8分)重庆市初中新课程改革近十年来,学生的自主学习、合作交流能力有很大提高。

重庆育才中学初2016级九年级(下)二诊5月考试数学试题(word,有答案)

重庆育才中学初2016级九年级(下)二诊5月考试数学试题(word,有答案)

重庆育才中学初2016级二诊考试数学试题(满分:150分 时间:120分钟)参考公式:抛物线y =ax 2+bx +c(a ≠0)的顶点坐标为)44,2(2ab ac a b --,对称轴公式为a b x 2-=.一、选择题:(本大题共12个小题,每小题4分,共48分) 1.在0,-5,1,4这四数中,最小的数是( )A.5-B. 0C. 1D. 42.计算32)a (-,结果正确的是( ) A.6aB. 6a -C.5aD.5a -3.如图,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3等于( ) A. 55° B. 60° C. 65° D. 70° 4.若32=-b a ,则524--a b 的值为( ) A.1 B. 11 C. 1- D. 11-5.下面的图形中,既是轴对称图形又是中心对称图形的是( )6.下列调查中,适合采用全面调查(普查)方式的是( ) A .对某班50名同学视力情况的调查 B .对元宵节期间市场上汤圆质量情况的调查C .对某类烟花爆竹燃放质量情况的调查D .对重庆长江水质情况的调查 7.如图,在⊙O 中,AB 为直径,BC 为弦,CD 为切线,连接O C .若∠BCD =50°,则∠AOC 的度数为( ) A .40° B .50° C .80° D .100°8.重庆育才中学九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为( ) A.220 B. 218C. 216D. 2099.如图,在⊙O 中,直径AB =2,CA 切⊙O 于A ,BC 交⊙O 于D ,若∠C =45°,则图中阴影部分的面积为( )A .π2B .2C .πD .110.早晨,小刚沿着通往学校唯一的一条路(直路)上学,途中发现忘带饭盒,停下往家里打电话,妈妈接到电话后带上饭盒马上赶往学校,同时小刚返回,两人相遇后,小刚立即赶往学校,妈妈回家,15分钟妈妈到家,再经过3分钟小刚到达学校,小刚始终以100米/分的速度步行,小刚和妈妈的距离y (单位:米)与小刚打完电话后的步行时间t (单位:分)之间的函数关系如图,下列说法错误的是( )A .打电话时,小刚和妈妈的距离为1250米B .打完电话后,经过23分钟小刚到达学校C .小刚和妈妈相遇后,妈妈回家的速度为150米/分D .小刚家与学校的距离为2550米132l 1l 2第3题图第7题图第9题图AC第10题图11.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆, 第2个图形有10个小圆, 第3个图形有16个小圆, 第4个图形有24个小圆, …,依次规律,第6个图形有( ▲ )个小圆.A .34B .40C .46D .6012.小明从二次函数c bx ax y ++=2的图象(如图)中观察得到了下面五条信息:①0>abc ; ②032=-b a ;③042>-ac b ;④0>++c b a ;⑤c b <4;则其中结论正确的个数是( ▲ ) A .2个B .3个C .4个D .5个二、填空题:(本题共6小题,每小题4分,共24分,)13.截至2016年4月23日,中国全国28个省(区、市)对外公布了一季度GDP 成绩单:重庆以10.7%的增速领跑全国.重庆第一季度 GDP 达到了3800亿元,数字3800亿元用科学计数法表示为 亿元. 14.计算: ()031π-++= .15.如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE .若△DEF 的面积为a ,则平行四边形ABCD 的面积为 .(用a 的代数式表示)16.甲、乙两个袋中均有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7,-1,3,乙袋中的三张卡片上所标的数值分别为-2,1,6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数值,把x 、y 分别作为点A 的横坐标、纵坐标,求点A 落在第三象限的概率 .17.如图,在小山的东侧A 点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A 、B 两点间的距离为 米.18.在四边形ABCD 中,连接对角线AC 、BD ,AB=BC ,DC=6,AD=9,且0260ABC ADC ∠=∠=,则BD= .三、解答题:(本大题共2个小题,每小题7分,共14分)19.如图所示,AB =DB ,∠ABD =∠CBE ,∠E =∠C ,求证:DE =AC .20.电视节目“了不起的挑战”播出后深受中小学生的喜爱,小刚想知道我校学生最喜欢哪位明星,于是在我校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的明星),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有 ▲ 人.并将两幅..统计图补充完整. (2)若小刚所在学校有3500名学生,请根据图中信息,估计全校喜欢“阮经天”的人数.四、解答题:(本大题共个4小题,每小题10分,共40分)21.化简:(1)2()(2)(2)2(3)a b a b a b a a b +-+--+ (2)222113()4424x x x x x x ++-÷-+--22.如图,已知一次函数1y k x b =+的图象分别与x 轴、y 轴的正半轴交于A 、B 两点,且与反比例函数2k y x=交于C 、E 两点,点C 在第二象限,过点C 作CD ⊥x 轴于点D ,OD=1,OE =10, cos ∠(1)求反比例函数与一次函数的解析式; (2)求△OCE 的面积;23.重庆双福育才中学校有全长2000米的校内运河整修工程,拟由甲乙两个工程队在30天内含(30天)合作完成.已知甲工程队1天、乙工程2天共整修100米;甲工程队2天、乙工程队3天共整修175米. (1)试问甲、乙两个工程队每天分别整修多少米?(2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用不超过25万元.在实际施工中,由于乙队先有其他任务需要完成,先由甲队独立施工了若干天,然后由甲、乙两队合作完成余下的工程,若此项工程能在计划的工期和预算的施工费用下顺利完工,请求出甲、乙两队合作的天数.24.能被3整除的整数具有一些特殊的性质:(1)定义一种能够被3整除的三位数abc 的“F ”运算:把abc 的每一个数位上的数字都立方,再相加,得到一个新数.例如213=abc 时,则:)24363(243)36312(3621333333=+→=++→ FF.数字111经过三次“F ”运算得 ,经过四次“F ”运算得 ,经过五次“F ”运算得 ,经过2016次“F ”运算得 .(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上的数字是a ,百位上的数字是b ,十位上的数字为c ,个为上的数字为d ,如果a+b+c+d 可以被3整除,那么这个四位数就可以被3整除.你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可).重1庆2名3校4资5源6库7编8辑五、解答题:(本大题共2个小题,每小题12分,共24分)25.菱形ABCD 中,两条对角线AC ,BD 相交于点O ,点E 和点F 分别是BC 和CD 上一动点,且∠EOF +∠BCD =180°,连接EF .(1)如图1,当∠ABC =90°时,若AC=42,BE=32,求线段EF 的长;(2)如图2,当∠ABC =60°时,求证:CE+CF=12AB ;(3)如图3,当∠ABC =90°时,将∠EOF 的顶点移到AO 上任意一点O′处,∠EO′F 绕点O′旋转,仍满足∠EO′F+∠BCD=180°,O′E 交BC 的延长线一点E ,射线O′F 交CD 的延长线上一点F ,连接EF.探究在整个运动变化过程中,线段CE 、CF ,'O C 之间满足的数量关系,并证明你的结论.BCODAF图3O ′图2BCEODA图1 FE26.如图1,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=―x2+bx+c经过A、B两点,与x交于另一点C(点C在点A的右侧,点P是抛物线上一动点。

重庆育才中学初2018级初三(下)第三次诊断性考试

重庆育才中学初2018级初三(下)第三次诊断性考试

.重庆育才中学初2018级初三(下)第三次诊断性考试数学试题卷一、选择题:(本大题12个小题,每小题4分,共48分) 1. -2018的倒数是( ) A. 12018-B. -2018C. 12018D. 2018 2. 下列图案中,不是轴对称图形的是( )3. 下列运算正确的是( )A. 3412a a a ∙=B. 842a a a ÷=C. 235325a a a += D. ()236aa =4. 下列调查中不适合抽样调查的是( )A. 调查“华为P20”手机的待机时间B. 了解初三某班同学对“EXO ”的喜爱程度C. 调查重庆市面上“奶牛梦工场”皇室尊品酸奶的质量D. 了解2018年重庆市初三学生中考后毕业旅行计划 5. 下列命题中是真命题的是( )A. 三角形三边中垂线的交点到三角形三个顶点的距离相等B. 三个角对应相等的两个三角形全等C. 直角三角形斜边上的高线等于斜边的一半D. 等边三角形是中心对称图形 6.使函数y =x 的取值范围是( ) A. x>1 B. x>1且x ≠2 C. x>2 D. x ≠17.1的运算结果应在下列哪两个数之间( )A. 4和4. 5B. 4. 5和5C. 5和5. 5D. 5. 5和68. 下列图形都是由相同大小的△按一定规律组成的,其中第①个图形中一共有3个△,第②个图形中一共有8个,第③个图形中一共有14个△,…,按此规律排列下去,第⑨个图形中的个数为( )A. 54B. 61C. 71D. 77 9. 朝天门,既是重庆城的起源地,也是“未来之城”来福士广场的停泊之地,广场上八幢塔楼临水北向,错有致,宛若巨轮扬帆起航,成为我市新的地标性建筑--朝天杨帆”,来福士广场T3N 塔楼核芯简于2017年12月11日完成结构封顶,高度刷新了重庆的天际线,小明为了测量T3N 的高度,他从塔楼底部B 出发,沿广场前进185米至点C ,继而沿坡度为i=1:2. 4的斜坡向下走65米达码头D ,然后在浮桥上继续前行100米至船E ,在E 处小明操作无人勘测机,当无人勘测机飞行至点E 的正上方点F 时,测得码头D 的俯角为58°,楼顶A 的仰角为30°,点A 、B 、C 、D 、E 、F 、O 在同一平面内,则T3N 塔楼AB 的高度约为( )(结果精确到1米,参考数据:sin58°≈0. 85,cos58°≈0. 53,tan58°≈1. 60≈1. 73)A. 319米B. 334米C. 342米D. 356米10. 如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与AB 的延长线交于点P ,连接AC ,过点O 作OD ⊥AC 交⊙O 于点D ,连接CD ,若∠A =30°,PC =3,则CD 的长为( ) A.B.C.3D.考 号班 级( 装订 线内 不 要答题)11. 使得关于x 的不等式组1222141xm x m ⎧-≤-+⎪⎨⎪-+≥-⎩有解,且使得关于y 的分式方程1222m yy y--=--有非负 整数解的所有的m 的和是( )A. -7B. -1C. 0D. 212. 如图,在平面直角坐标系中,△ABC 的边AB 过坐标原点O ,A 点的横坐标为2,反比例函数6y x=的 图象经过A 、B 两点,AD =BD =CD ,E 是CD 的中点,∠ADB =120°,E 点在反比例函数()0ky k x=<的图象上,则k 的值为( ) A. -2 B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分 13.()03π-=_________14. 如图是根据某班50名同学一周的体育锻炼情况绘制的条形统计图,则这个班50名同学一周参加体育锻炼时间的中位数为______小时15. 如图,在扇形AOB 中,∠AOB =90°,点C 为OA 的中点,CE ⊥OA 交弧AB 于点E ,以点C 为圆心OA 的长为直径作半圆交CE 于点D ,若OA =4,则图中阴影部分的面积为_________16. 如图,Rt △ABC 中,∠ABC =90°,DE 垂直平分AC ,垂足为O ,AD ∥BC ,且AB =6,BC =8,则AD 的长为__________17. 甲、乙两人沿着同一路线分别从A 、B 两地以各自的速度匀速相向跑步,乙出发1分钟后甲出发,甲出发半分钟后因鞋带松动停下重系鞋带,半分钟后系好鞋带继续以原速向B 地行进直至与乙相遇,相遇后甲随即调头以原速原路返回A 地. 下图表示甲乙两人之间的距离y (m )与甲跑步时间x (min )之间的关系,当甲返回到A 地时,乙距离B 地________米18. 重庆双福育才中学农场的工人们要把两片草地的草除掉,大的一片是小的一片的3倍,前两天工人们都在大的一片草地上除草,第三天工人们对半分开除草,一半留在大的一片草地上,另一半人到小的一片草地去除草,第三天结束后,大的一片草地恰好除草完毕,小的一片草地还剩下一小块正好是2个人工人2天的工作量,如果工人们每天每人的除草量是相等的,且每天的工作时间相等,则农场有名______工人。

重庆双福育才中学初2016级初三下第三次诊断考试试题卷

重庆双福育才中学初2016级初三下第三次诊断考试试题卷

重庆双福育才中学初2016级初三(下)第三次诊断考试数学试题(满分150分,时间120分钟)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案的标号涂黑.1.下列各数中最小的数是( )A . -5B . -1C . 0D .32. 下列汽车标志图案中既是轴对称图形也是中心对称图形的是( )A B C D3. 下列计算结果正确的是( )A .632623x x x ÷=B .235x x x +=C .2242(3)9x y x y -=-D .23x x x ∙= 4. 函数y =的自变量取值范围是( ) A . x ≠ 0 B . x >3- C . x ≥3-且x ≠ 0 D . x >3-且x ≠05. 下列调查中,最适合采用普查方式的是( )A .调查一批药品的质量问题;B .调查重庆全市中小学生的课外阅读时间;C .调查某航班的旅客是否携带了违禁物品;D .调查全国初三学生的视力情况6.已知x =2是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .2B .0或2C .0或4D .07.如果代数式225x x -+的值等于7,则代数式2361x x -- 的值为( )A .5B .6C .7D .88.如图所示,AB ∥CD ,∠BEF 和∠DFE 的角平分线交于点G ,∠1=100°,则∠2的度数是( )A .15°B .20C .30°D .409.如图所示,在半径为2cm 的O 中,点C 、点D 是弧AB 的三等分点,点E 是直径AB 的延长线上一点,连结 CE 、DE , 则图中阴影部分的面积是( ) A.3 B .32π C .3- 32π D .332+π第8题图 第9题图 第11题图10.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共 8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( )11.如图所示,是水渠的横断面,已知其斜坡AD 的坡度为1:1.2,斜坡BC 的坡度为1:0.8,现测得水库放水前的水渠的水面宽EF 为3.8米,当水库开闸放水后,水渠内水面宽GH 为6米.则放水后水面上升的高度是( )米.A .1.2B .1.1C .0.8D .2.212.已知抛物线y=ax 2+bx+c 的图象如图所示,则下列结论中正确是( )A .2>c b a ++B .0<b -a 2C . b <1D .2>3c a +二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡中对应的横线上13.“凤凰号”火星探测器于从美国佛罗里达州卡纳维拉尔角发射,经过近10个月的时间,飞行了680 000 000千米后到达火星.其中680 000 000用科学记数法可表示为 千米;14.计算:+|﹣4|+(﹣1)0﹣()﹣1= ; 15.如图,在△ABC 中,AB=AC=8,D 是BC 上一动点(D 与B 、C 不重合),且DE ∥AC ,DF ∥AB ,则四边形DEAF 的周长是 ;16.小明掷两枚完全相同且均匀的骰子,骰子的六个面上都分别刻有1,2,3,4,5,6点,得到的点数积为奇数的概率是 ;第12题图 第15题图 第17题图 第18题图17.一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分 的进水量和出水量都是常数.容器内的水量y (单位:升)与时间x (单位:分)之间的关系如图所示. 当容器内的水量大于5升时,时间x 的取值范围是 。

初中九年级下学期入学数学试卷(附答案,解析)

初中九年级下学期入学数学试卷(附答案,解析)

2015-2016学年九年级(下)入学数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案.其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在,﹣1,0,2这四个数中,属于负数的是()A.B.﹣1 C.0 D.22.计算2a3•(﹣a5)的结果是()A.2a8B.﹣2a8C.2a15D.﹣2a153.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.函数中,自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤35.下列调查中,调查方式选择正确的是()A.为了了解某品牌手机的屏幕是否耐摔,选择全面调查B.为了了解玉兔号月球车的零部件质量,选择抽样调查C.为了了解南开步行街平均每天的人流量,选择抽样调查D.为了了解中秋节期间重庆市场上的月饼质量,选择全面调查6.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是()A.10°B.20°C.30°D.40°7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数8.在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为()A.米B.米C.米D.米9.如图,AB是⊙O的直径,点C、点D在⊙O上,连结AC、BC、AD、CD,若∠BAC=50°,则∠ADC 的度数等于()A.30°B.35°C.40°D.45°10.张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A.B.C.D.11.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是()A.﹣110 B.110 C.﹣111 D.11112.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.二、填空题(本大题6个小题,每小题3分,共24分),请将答案直接填在题后的横线上.13.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为.14.计算:2×(﹣π)0﹣12016+的值为.15.若△ABC∽△DEF,且周长比为2:3,则相似比为.16.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为cm2.17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为.18.如图,直角三角形ABC中,∠ACB=90°,BC=3,AC=6,E为BC延长线上一点,且EC=,过点E作EF⊥AB交AB于F,将△ABC沿AB翻折,得到△ABD,将△ABD绕点B旋转,在旋转过程中,记旋转中△ABD为△A′B′D′.设直线A′D′与射线EF交于点M,与射线EB交于点N,当△EMN是以∠MEN 为底角的等腰三角形时,EN=.三、解答题:(本大题2个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.(1)解方程:(2)解方程组:.20.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AB=DE.求证:AC∥DF.四、解答题:(本大题4个小题,每小题0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2014•万州区校级模拟)先化简,再求值:,其中a是不等式组的整数解.22.(2016春•重庆校级月考)创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).23.(2016春•重庆校级月考)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.24.(2016春•重庆校级月考)若整数a能被整数b整除,则一定存在整数n,使得,即a=bn.例如若整数a能被整数3整除,则一定存在整数n,使得,即a=3n.(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除.例如:将数字306371分解为306和371,因为371﹣306=65,65是13的倍数,所以306371能被13整除.请你证明任意一个四位数都满足上述规律.(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,…,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(2015•重庆校级二模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E 在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.26.(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N 是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2015-2016学年九年级(下)入学数学试卷参考答案与试题解析一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案.其中只有一个是正确的,请将答卷上对应的方框涂黑.1.在,﹣1,0,2这四个数中,属于负数的是()A.B.﹣1 C.0 D.2【分析】根据负数是小于0的数,可得答案.【解答】解:A、不是负数,故A错误;B、﹣1是负数,故B正确;C、0不是负数,故C错误;D、是正数,故D错误;故选:B2.计算2a3•(﹣a5)的结果是()A.2a8B.﹣2a8C.2a15D.﹣2a15【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2a3•(﹣a5)=﹣2a8.故选:B.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.4.函数中,自变量x的取值范围是()A.x>3 B.x≥3 C.x<3 D.x≤3【分析】根据二次根式的性质的意义,被开方数大于等于0,列不等式求解.【解答】解:依题意,得3﹣x≥0,解得x≤3,故选D.5.下列调查中,调查方式选择正确的是()A.为了了解某品牌手机的屏幕是否耐摔,选择全面调查B.为了了解玉兔号月球车的零部件质量,选择抽样调查C.为了了解南开步行街平均每天的人流量,选择抽样调查D.为了了解中秋节期间重庆市场上的月饼质量,选择全面调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、为了了解某品牌手机的屏幕是否耐摔,宜选择抽样调查,故A错误;B、为了了解玉兔号月球车的零部件质量,精确度要求高,故已选择全面调查,故B错误;C、为了了解南开步行街平均每天的人流量,选择抽样调查,故C正确;D、为了了解中秋节期间重庆市场上的月饼质量,宜选择抽样调查,故D错误;故选:C.6.如图,AB∥CD,AF与CD交于点E,BE⊥AF,∠B=60°,则∠DEF的度数是()A.10°B.20°C.30°D.40°【分析】根据两直线平行,内错角相等可得∠1=∠B,根据垂直的定义可得∠AEB=90°,然后根据平角等于180°列式计算即可得解.【解答】解:∵AB∥CD,∴∠1=∠B=60°,∵BE⊥AF,∴∠AEB=90°,∴∠DEF=180°﹣∠1﹣∠AEB=180°﹣60°﹣90°=30°.故选C.7.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是()A.众数和平均数 B.平均数和中位数C.众数和方差D.众数和中位数【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.8.在寻找马航MH370航班过程中,某搜寻飞机在空中A处发现海面上一块疑似漂浮目标B,此时从飞机上看目标B的俯角为α,已知飞行高度AC=1500米,,则飞机距疑似目标B的水平距离BC为()A.米B.米C.米D.米【分析】利用所给角的正切函数求得线段BC的长即可.【解答】解:由题意得:AC=1500米,tan∠B=,∴在Rt△ACB中,BC===2500米,故选D.9.如图,AB是⊙O的直径,点C、点D在⊙O上,连结AC、BC、AD、CD,若∠BAC=50°,则∠ADC 的度数等于()A.30°B.35°C.40°D.45°【分析】先由直径所对的圆周角为90°,可得:∠ACB=90°,然后由∠BAC=50°,根据三角形内角和定理可得:∠B=40°,然后根据同弧所对的圆周角相等,即可求出∠ADC的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=50°,∴∠B=40°,∴∠ADC=∠B=40°.故选C.10.张老师带育才艺术团去北京参加文艺汇演,他们乘坐校车从南开大校门口出发到机场赶飞机.车开了一段时间后,张老师发现有一包演出服落在了校门口门卫处,于是马上打出租车返回去取,拿到服装后,他立即乘同一辆出租车追赶校车(下车取服装的时间忽略不计),结果,张老师在机场附近追上校车.设张老师与校车之间的距离为S,校车出发的时间为t,则下面能反映S与t的函数关系的大致图象是()A.B.C.D.【分析】根据老师在校车上时S为零,打出租车返回路程变化快,乘车追赶时路程变化慢,可得答案.【解答】解:老师乘校车时路程为零,打车返回学校时两车行驶方向相反路程变化快,乘车追赶路程变化慢,故B符合题意.故选:B.11.观察下面一组数:﹣1,2,﹣3,4,﹣5,6,﹣7,….,将这组数排成如图的形式,按照如图规律排下去,则第11行中从左边数第10个数是()A.﹣110 B.110 C.﹣111 D.111【分析】首先观察已知数列中,绝对值为奇数的符号为“﹣”,绝对值为偶数的符号为“+”,其次观察数列排列中,每一行的第一个数的绝对值,与所在行数的关系:第n行的第一个数的绝对值为:(n﹣1)2+1,由此即可进行判断.【解答】解:观察数列排列中,第n行的第一个数的绝对值为:(n﹣1)2+1,所以第11行的第一个数的绝对值为:(11﹣1)2+1=101,第11行中从左边数第10个数的绝对值是:101+(10﹣1)=110,观察已知数列中,绝对值为奇数的符号为“﹣”,绝对值为偶数的符号为“+”,所以:第11行中从左边数第10个数是:110.故选B.12.如图,在平面直角坐标系中,正方形ABCD的顶点O在坐标原点,点B的坐标为(1,4),点A在第二象限,反比例函数y=的图象经过点A,则k的值是()A.﹣2 B.﹣4 C.﹣D.【分析】作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,﹣x),根据正方形的性质求得对角线解得F的坐标,根据直线OB的解析式设出直线AC 的解析式为:y=﹣x+b,代入交点坐标求得解析式,然后把A,C的坐标代入即可求得k的值.【解答】解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,﹣x),∵点B的坐标为(1,4),∴OB==,直线OB为:y=4x,∵AC和OB互相垂直平分,∴它们的交点F的坐标为(,2),设直线AC的解析式为:y=﹣x+b,代入(,2)得,2=﹣×+b,解得b=,直线AC的解析式为:y=﹣x+,把A(x,),C(,﹣x)代入得,解得k=﹣.故选C.二、填空题(本大题6个小题,每小题3分,共24分),请将答案直接填在题后的横线上.13.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故答案为:6.75×104.14.计算:2×(﹣π)0﹣12016+的值为2.【分析】原式利用零指数幂法则,乘方的意义,以及算术平方根定义计算即可得到结果.【解答】解:原式=2﹣1+3=4﹣2=2,故答案为:215.若△ABC∽△DEF,且周长比为2:3,则相似比为2:3.【分析】由△ABC∽△DEF,且周长比为2:3,根据相似三角形的周长比等于相似比,即可求得答案.【解答】解:∵△ABC∽△DEF,且周长比为2:3,∴相似比为:2:3.故答案为:2:3.16.如图,扇形OAB的圆心角为90°、半径为2cm,半圆O1和半圆O2的直径分别为OA和OB,则图中阴影部分的面积为1cm2.【分析】连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出阴影部分的面积=S△AOD,故可得出结论.【解答】解:连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S阴影=S△AOD=×2×1=1.故答案为:1.17.从﹣3,﹣2,﹣1,1,2,3六个数中任选一个数记为k,则使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为.【分析】首先利用分式方程的知识求得当k=﹣3,﹣2,﹣1,3,使得关于x的分式方程=k﹣2有解,再利用一次函数的性质,求得当k=﹣1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,再利用概率公式即可求得答案.【解答】解:∵方程两边同乘以(x+1),∴k﹣1=(k﹣2)(x+1),∴当k=2或k=1时,关于x的分式方程=k﹣2无解,∴当k=﹣3,﹣2,﹣1,3,使得关于x的分式方程=k﹣2有解;∵关于x的一次函数y=(k+)x+2不经过第四象限,∴k+>0,∴k>﹣,∴当k=﹣1,1,2,3时,关于x的一次函数y=(k+)x+2不经过第四象限,∴得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的有﹣1,3;∴使得关于x的分式方程=k﹣2有解,且关于x的一次函数y=(k+)x+2不经过第四象限的概率为:=.故答案为:.18.如图,直角三角形ABC中,∠ACB=90°,BC=3,AC=6,E为BC延长线上一点,且EC=,过点E作EF⊥AB交AB于F,将△ABC沿AB翻折,得到△ABD,将△ABD绕点B旋转,在旋转过程中,记旋转中△ABD为△A′B′D′.设直线A′D′与射线EF交于点M,与射线EB交于点N,当△EMN是以∠MEN为底角的等腰三角形时,EN=13或+3.【分析】情形1:如图1中,当∠BEF=∠NME时,易证BN=NA′,设BN=NA′=x,在RT△BND′利用勾股定理即可解决问题.情形2:如图2中,当∠MEN=∠MNE时,证明BN=BA′即可解决问题.【解答】解:如图1中,当∠BEF=∠NME时,∵∠BEF+∠ABC=90°,∠A+∠ABC=90°,∴∠BEF=∠A=∠BA′D′=∠NME,∴BA′∥EM,∴∠NBA′=∠BEF=∠BA′N,∴NB=NA′,设BN=NA′=x,在RT△BND′中,∵BD′2+ND′2=BN2,∴32+(6﹣x)2=x2,x=,∴EN=EB+BN=EC+BC+BN=+3+=13,如图2中,当∠MEN=∠MNE时,∵∠MEN=∠BAC=∠BA′N=∠A′NE,∴BA′=BN=AB===3,∴EN=EC+BC+BN=+3=3=+3.故答案为13或+3.三、解答题:(本大题2个小题,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.(1)解方程:(2)解方程组:.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程组利用代入消元法求出解即可.【解答】解:(1)去分母得:x2+2x﹣x2+4=1,解得:x=﹣1.5,经检验x=﹣1.5是分式方程的解;(2),把①代入②得:3x+2x﹣4=1,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.20.如图,已知点E、C在线段BF上,BE=CF,AB∥DE,AB=DE.求证:AC∥DF.【分析】首先由BE=CF可以得到BC=EF,然后利用边边边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵BE=CF,∴BE+EC=CF+EC即BC=EF,∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS)∴∠ACB=∠F,∴AC∥DF.四、解答题:(本大题4个小题,每小题0分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(2014•万州区校级模拟)先化简,再求值:,其中a是不等式组的整数解.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,计算即可得到结果,求出不等式组解集确定出a的值,代入计算即可求出值.【解答】解:原式=+•﹣3=+﹣3==﹣,由不等式组得到<a<3,∵a为整数,∴a=1或2,又∵a≠1,∴a=2,当a=2时,原式=﹣2.22.(2016春•重庆校级月考)创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共12件,其中B班征集到作品3件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).【分析】(1)用C的度数除以360度求出所占的百分比,由C的件数除以所占的百分比即可得到调查的总件数;进而求出B的件数;(2)画树状图得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)张老师所调查的4个班征集到作品有:=12(件),其中B班征集到作品数为:12﹣2﹣5﹣2=3(件),补全图形如下:(2)画树状图如下:所有等可能的情况有12种,其中一男一女有8种,则P==;故答案为:(1)12,3.23.(2016春•重庆校级月考)某公司研发一款新型的测角仪,这种测角仪能更精确的测量角度,减少误差.(1)如图,小明为了得到教学楼BC上旗杆AB的高度,用新型测角仪在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,请你帮小明求出旗杆AB的高度.(结果精确到0.1m.参考数据:∠AGB=90°≈1.41,sin52°≈0.79,tan52°≈1.28)(2)目前公司有100台机器,平均每台能生产400套,由于该仪器大受欢迎,工厂计划增加产量;但是由于机器故障,每台平均生产套数将减少1.25a%(20<a<30),要使生产总量增加10%,则机器台数需增加2.4a%,求a的值.【分析】(1)过E点作EH⊥BC于H点,在RT△BEH中利用三角函数求得BH的长,然后在直角△EAH 中,利用三角函数求得AH的长,根据AB=AH﹣BH即可求解;(2)根据机器的总生产量等于机器数与每台生产的产品数即可列方程求解.【解答】解:(1)过E点作EH⊥BC于H点,由题:∠AEH=52°,∠BEH=45°,EH=12m,在RT△BEH中,∵∠BEH=45°∴BH=EH=12m在Rt△EAH中,AH=EH•tan52°=15.36m∴AB=AH﹣BH≈3.4m(2)由题意得:40000(1+10%)=400(1﹣1.25a%)•100(1+2.4a%),解得:a1=25,a2=.∵20<a<30,∴a=25.答:a的值为25.24.(2016春•重庆校级月考)若整数a能被整数b整除,则一定存在整数n,使得,即a=bn.例如若整数a能被整数3整除,则一定存在整数n,使得,即a=3n.(1)若一个多位自然数的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被13整除,那么原多位自然数一定能被13整除.例如:将数字306371分解为306和371,因为371﹣306=65,65是13的倍数,所以306371能被13整除.请你证明任意一个四位数都满足上述规律.(2)如果一个自然数各数位上的数字从最高位到个位仅有两个数交替排列组成,那么我们把这样的自然数叫做“摆动数”,例如:自然数12121212从最高位到个位是由1和2交替出现组成,所以12121212是“摆动数”,再如:656,9898,37373,171717,…,都是“摆动数”,请你证明任意一个6位摆动数都能被13整除.【分析】(1)设一个四位数的末三位数为B,末三位数以前的数为A,根据题意可得A=13n+B,即这个四位数是1000(13n+B)+B=13(1000n+77B),可得;(2)设任意一个6位摆动数的十位数字为a、个位数字为b,表示出末三位数为100b+10a+b,末三位数以前的数为100a+10b+a,将二者相减分解出因数13可得.【解答】解:(1)设一个四位数的末三位数为B,末三位数以前的数为A,则这个四位数为:1000A+B,由题意:A﹣B=13n(n为整数),∴A=13n+B,从而1000A+B=1000(13n+B)+B=13000n+1001B=13(1000n+77B),∴这个四位数能被13整除∴任意一个四位数都满足上述规律;(2)设任意一个6位摆动数的十位数字为a,个位数字为b,所以这个6位摆动数的末三位数为:100b+10a+b,末三位数以前的数为:100a+10b+a,∵100a+10b+a﹣(100b+10a+b)=91a﹣91b=13(7a﹣7b)∴这个6位摆动数的末三位数以前的数与末三位数之差能被13整除,∴任意一个6位摆动数能被13整除.五、解答题(本大题2个小题,每小题l2分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤,请将解答过程书写在答卷中对应的位置上.25.(2015•重庆校级二模)如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E 在AB上,F是线段BD的中点,连接CE、FE.(1)若AD=3,BE=4,求EF的长;(2)求证:CE=EF;(3)将图1中的△AED绕点A顺时针旋转,使AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(2)中的结论是否仍然成立,并说明理由.【分析】(1)由AE=DE,∠AED=90°,AD=3,可求得AE=DE=3,在Rt△BDE中,由DE=3,BE=4,可知BD=5,又F是线段BD的中点,所以EF=BD=2.5;(2)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,CF=EF;(3)思路同(1).连接CF,延长EF交CB于点G,先证△EFC是等腰三角形,要证明EF=FG,需要证明△DEF和△FGB全等.由全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此得出结论.【解答】解:(1)∵∠AED=90°,AE=DE,AD=3,∴AE=DE=3,在Rt△BDE中,∵DE=3,BE=4,∴BD=5,又∵F是线段BD的中点,∴EF=BD=2.5;(2)如图1,连接CF,线段CE与FE之间的数量关系是CE=FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=EF.解法2:∵∠BED=∠AED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,∴∠DFE=2∠ABD,同理∠CFD=2∠CBD,∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,即∠CFE=90°,∴CE=EF.(2)(1)中的结论仍然成立.解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,在△EDF和△GBF中,,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=FE;解法2:如图2﹣2,连结CF、AF,∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又∵点F是BD的中点,∴FA=FB=FD,在△ACF和△BCF中,,∴△ACF≌△BCF,∴∠ACF=∠BCF=∠ACB=45°,∵FA=FB,CA=CB,∴CF所在的直线垂直平分线段AB,同理,EF所在的直线垂直平分线段AD,又∵DA⊥BA,∴EF⊥CF,∴△CEF为等腰直角三角形,∴CE=EF.26.(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N 是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出抛物线的解析式,进而求出顶点D的坐标;(2)由平移性质,可知重叠部分为一平行四边形.如答图2,作辅助线,利用相似比例式求出平行四边形的边长和高,从而求得其面积的表达式;然后利用二次函数的性质求出最值;(3)本问涉及两个动点,解题关键是利用平行四边形的判定与性质,区分点N在x轴上方、下方两种情况,分类讨论,避免漏解.设M(t,0),利用全等三角形求出点N的坐标,代入抛物线W′的解析式求出t的值,从而求得点M的坐标.【解答】方法一:解:(1)设抛物线W的解析式为W=ax2+bx+c,∵抛物线W经过O(0,0)、A(4,0)、C(﹣2,3)三点,∴,解得:∴抛物线W的解析式为W=x2﹣x.∵W=x2﹣x=(x﹣2)2﹣1,∴顶点D的坐标为(2,﹣1).(2)由▱OABC得,CB∥OA,CB=OA=4.又∵C点坐标为(﹣2,3),∴B点的坐标为(2,3).如答图2,过点B作BE⊥x轴于点E,由平移可知,点C′在BE上,且BC′=m.。

初中数学重庆市双福育才中学中考模拟数学模拟考试题(一)含答案.docx

初中数学重庆市双福育才中学中考模拟数学模拟考试题(一)含答案.docx

xx学校xx 学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx 题总分得分一、xx题(每空xx 分,共xx分)试题1:在中,为锐角,点为射线上一动点,连接,以点为直角顶点,以为直角边在右侧作等腰直角三角形,连接.(1)如图1,图2,若为等腰直角三角形,问题初现:①当点为线段上不与点重合的一个动点,则线段之间的位置关系是_____,数量关系是_______;深入探究:②当点在线段的延长线上时,判断线段之间的位置关系和数量关系,并说明理由;(2)类比拓展:如图3,,若当点M为线段上不与点重合的一个动点,交线段于点,且,,当_____时,有最大值为______.试题2:如图,已知抛物线经过,,三点,直线是抛物线的对称轴.评卷人得分(1)求抛物线的函数解析式;(2)设点是直线上的一个动点,当点到点,点的距离之和最短时,求点的坐标;(3)在抛物线上是否存在点,使,若存在,求出点的坐标,若不存在,请说明理由.试题3:为了缓解我市新型冠状肺炎护目镜需求,两江新区某护目镜生产厂家自正月初三起便要求全体员工提前返岗.在接到单位的返岗任务后,员工们都毫无怨言,快速回到了自己的工作岗位,用努力工作的行动践行着自己的社会责任感与社会担当.已知该厂拥有两条不同的护目镜加工生产线.原计划生产线每小时生产护目镜400个,生产线每小时生产护目镜500个.(1)若生产线共工作12小时,且生产护目镜总数量不少于5500个,则生产线至少生产护目镜多少小时?(2)原计划生产线每天均工作8小时,但现在为了尽快满足我市护目镜的需求,两条生产线每天均比原计划多工作了相同的小时数,但因为机器损耗及人员不足原因,生产线每增加1小时,该生产线实际工作时每小时的产量均减少10个,生产线每增加1小时,该生产线每小时的产量均减少15个,这样一天生产的护目镜将比原计划多3300个,求该厂实际每天生产护目镜的时间.试题4:有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数的自变量的取值范围是_________;(2)如表是与的几组对应值,则表格中的______;… 1 2 3 4 5 …… 3 9 3 …(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的一条性质:__________________________.试题5:阅读材料,解决问题:材料1:在研究数的整除时发现:能被5、25、125、625整除的数的特征是:分别看这个数的末一位、末两位、末三位、末四位即可,推广成一条结论:末位能被整除的数,本身必能被整除,反过来,末位不能被整除的数,本身也不可能被整除例如判断992250能否被25、625整除时,可按下列步骤计算:,50÷25=2为整数,992250能被25整除.,2250÷625=3.6不为整数,992250不能被625整除.材料2:用奇偶位差法判断一个数能否被11这个数整除时,可把这个数的奇位上的数字与偶位上的数字分别加起来,再求它们的差,看差能否被11整除,若差能被11整除,则原数能被11整除,反之则不能.(1)若这个三位数能被11整除,则_____;在该三位数末尾加上和为8的两个数字,让其成为一个五位数,该五位数仍能被11整除,求这个五位数;(2)若这个六位数,千位数字是个位数字的2倍,且这个数既能被125整除,又能被11整除,求这个数.试题6:红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:1班:90,70,80,80,80,80,80,90,80,100;2班:70,80,80,80,60,90,90,90,100,90;3班:90,60,70,80,80,80,80,90,100,100.整理数据:60 70 80 90 100分数人数班别1班0 1 6 2 12班 1 1 3 12班 1 1 4 2 2分析数据:平均数中位数众数1班83 80 802班833班80 80根据以上信息回答下列问题:(1)请直接写出表格中的值;(2)比较这三组样本的数据,你认为哪个班的成绩比较好?并说明理由;(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共2700人,试估计需要准备多少张奖状?试题7:如图,直线与双曲线交于两点,直线与坐标轴分别交于两点,连接,若,,点.(1)分别求出直线与双曲线的解析式;(2)连接,求.试题8:(1)计算:(2)解不等式组:试题9:如图,在矩形中,,,将沿射线平移得到,分别连接,,则的最小值为_______.试题10:达达闪送同城快递因其承诺上门取件,送达全城而备受人们追捧.现有甲、乙两个快递员在总部地分别接到一个需送往位于总部正东方向地的快件的快递单,两人同时出发,其中甲需到位于总部正西方向的处先取件,取到件后,再送到地,而乙的快递单只需从总部出发在去往地的途中取件后直接送达(取件和交货时间忽略不计).由于甲在去往地的途中发生交通拥堵,所以甲去取件时的速度是乙的,甲到达地后立即返回,加速追赶还在送件的乙,到达地送件后停止,乙一直匀速到达地,送达后立即以原速返回总部后停止,设甲、乙两人之间的距离为(单位:),乙行驶的时间为(单位:),与的部分函数图像如图,当甲、乙相遇时,甲距地_________.试题11:设分别为一元二次方程的两个实数根,则_________.试题12:在平行四边形中,是两条对角线,现从以下四个关系:(1);(2);(3);(4)中随机抽出一个作为条件,即可推出其是矩形的概率是________.试题13:如图,在等边三角形中,,点是的中点,以点为圆心,的长为半径画弧,分别交于点,则图中阴影部分的面积为_______.试题14:计算:_________.试题15:如图,在中,,点为的中点,,,将沿着折叠后,点落在点处,则的长为()A. B.4 C.7 D.试题16:若数既使关于的不等式组无解,且使关于的分式方程的解小于4,则满足条件的所有整数的个数为()A.2 B.3 C.4 D.5试题17:小菁在数学实践课中测量路灯的高度.如图,已知她的目高 1.2米,她先站在处看路灯顶端的仰角为,再往前走3米站在处,看路灯顶端的仰角为.那么该路灯顶端到地面的距离约为()(知,,,,,)A.32米 B.3.9米 C.44米 D.47米试题18:如图,在平面直角坐标系中,的顶点的坐标分别为、,,,函数的图象经过点,则的值为()A. B. C. D.25 试题19:按如图所示的运算程序,能使输出值为1的是()A., B., C., D,试题20:估算的值应在()A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间试题21:的算术平方根是()A.4 B. C.2 D .试题22:下列说法正确的是()A.位似图形可以通过平移得到 B.相似图形一定是位似图形,位似图形一定是相似图形C.位似图形的位似中心不只有一个 D.位似中心到对应点的距离之比都相等试题23:已知正多边形的一个外角是,则该正多边形的边数为()A.4 B.8 C.12 D.6 试题24:2019年,北京大兴机场正式投运,其航站楼总面积约为143万平方米.其中143万用科学计数法表示为()A. B. C. D.试题25:计算是()A. B. C. D.试题26:在实数,1,0,中,最小的数是()A.0 B.1 C. D .试题1答案:(1)①与位置关系是,数量关系是理由:如图1,,为等腰直角三角形,,,,,且,,,.,,即故答案为:;深入探究:②当点在线段的延长线上时,与位置关系是,数量关系是.理由如下:如图,,为等腰直角三角形.,,,,且,.,.,,即类比拓展:(2)如图,过点作于点,过点作于点,则是等腰直角三角形,,且,且,,,,,,且四边形是平行四边形,且四边形是矩形,且当时,有最大值为1.故答案为:2,1试题2答案:解:(1)抛物线过点,设抛物线的解析式为将代入其中,得:抛物线的解析式为(2)点关于直线的对称点为点连接与直线相交于点,此时点到点的距离之和最短设直线的解析式为将点代入得,直线的解析式为抛物线的解析式为直线为(3)即令①解得:,②解得:存在这样的点,坐标为或或试题3答案:解:(1)设生产线生产护目镜小时,则生产线生产护目镜小时由题可得4解得:答:生产线至少生产护目镜7小时.(2)设该厂实际每天生产护目镜小时由题可得:整理可得解得,因为要尽快满足我市护目镜的需求,所以应舍去,则答:该厂实际每天生产护目镜14小时.试题4答案:(1)(2)(3)(4)当时,随的增大而减小试题5答案:解:(1)奇数位分别是6和2,偶数为是,由材料可知:能被11整除,,日是正整数,设该五位数为,奇数位之和为:偶数位之和为:根据题意可知:能被11整除,且为整数,该数为68244(2)由题意可知:,且为整数,或1或2或3或4,由材料一可知:能被125整除,,为正整数,,或1或2或3或4,或4或6,=250或500或750或000奇数位之和为:偶数位之和为:能被11整除,①当时,,,,,,该数为580250②同理可得,当时,该数为500500③当时该数为530750④当时该数为550000综上所述,该数为580250或500500或530750或550000试题6答案:解:(1),,,;(2)从中位数看,2班中位数比其他两个班都要高,说明给你2班的平均水平要高一些,所以我认为2班成绩更好. (3)答:估计需要准备360张奖状.试题7答案:解:(1)如图,作轴于点,设,,则,,点的坐标为,代入,得:,则反比例函数解析式为,当时,,点的坐标为,将点、代入,得:,解得:,直线的解析式为;(2)在直线中,当时,,即点,当时,,解得,即点,,(1)解:原式;(2)解(1)得:解(2)得:不等式组的解集为试题9答案:试题10答案:试题11答案:2020试题12答案:试题13答案:试题14答案:2试题15答案:CB试题17答案: C试题18答案: A试题19答案: D试题20答案: D试题21答案: C试题22答案: D试题23答案: A试题24答案: B试题25答案: D试题26答案: C。

初中数学重庆市双福育才中学中考模拟数学模拟考试题(二)含答案解析.docx

初中数学重庆市双福育才中学中考模拟数学模拟考试题(二)含答案解析.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.试题2:根据学习函数的经验,探究函数y=x2+ax﹣4|x+b|+4(b<0)的图象和性质:(1)下表给出了部分x,y的取值;x L ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 Ly L 3 0 ﹣1 0 3 0 ﹣1 0 3 L由上表可知,a=,b=;评卷人得分(2)用你喜欢的方式在坐标系中画出函数y=x2+ax﹣4|x+b|+4的图象;(3)结合你所画的函数图象,写出该函数的一条性质;(4)若方程x2+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,请直接写出m的取值范围.试题3:(1)×+cos30°﹣|1﹣|+(﹣2)2(2)÷(﹣a+1)试题4:如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为.试题5:已知A、B、C三地顺次在同一直线上,甲、乙两人均骑车从A地出发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B 地并休息了2分钟后,乙追上了甲.甲、乙同时从B地以各自原速继续向C地行驶.当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y(米)与甲出发的时间t(分)之间的函数关系如图所示,则当甲到达C地时,乙距A地米.试题6:如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是.试题7:从﹣2,﹣1,1,2四个数中任取两数,分别记为a、b,则关于x的不等式组有解的概率是.试题8:已知一个多边形的内角和等于900°,则这个多边形的边数是.试题9:分解因式:x3y﹣xy3=.试题10:使关于x的二次函数y=﹣x2+(a﹣2)x﹣3在y轴右侧y随x的增大而减小,且使得关于x的分式方程有整数解的整数a的和为()A.﹣1 B.﹣2 C.8 D.10试题11:我校小伟同学酷爱健身,一天去爬山锻炼,在出发点C处测得山顶部A的仰角为30度,在爬山过程中,每一段平路(CD、EF、GH)与水平线平行,每一段上坡路(DE、FG、HA)与水平线的夹角都是45度,在山的另一边有一点B(B、C、D同一水平线上),斜坡AB的坡度为2:1,且AB长为900,其中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从C出发到坡顶A的时间为()(图中所有点在同一平面内≈1.41,≈1.73)A.60分钟 B.70分钟 C.80分钟 D.90分钟试题12:如图,点A在反比例函数y=的图象上,AB⊥x轴于点B,点C在x轴上,且CO:OB=2:1.△ABC的面积为6,则k的值为()A.2 B.3 C.4 D.5试题13:关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A. B. C. D.0试题14:如图,AB是⊙O的直径,且经过弦CD的中点H,已知tan∠CDB=,BD=10,则OH的长度为()A. B.1 C. D.试题15:如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点B的对应点B′的坐标是()A.(﹣3,﹣1) B.(﹣1,2)C.(﹣9,1)或(9,﹣1) D.(﹣3,﹣1)或(3,1)试题16:端午节前夕,某超市用1680元购进A、B两种商品共60件,其中A型商品每件24元,B型商品每件36元.设购买A型商品x件、B型商品y件,依题意列方程组正确的是()A. B.C. D.试题17:已知函数y=在实数范围内有意义,则自变量x的取值范围是()A.x≥2 B.x>3 C.x≥2且x≠3 D.x>2试题18:下列命题正确的是()A.长度为 5cm、2cm 和 3cm 的三条线段可以组成三角形B.的平方根是±3C.无限不循环小数是无理数D.两条直线被第三条直线所截,同位角相等试题19:如图所示的几何体的左视图是()A. B. C. D.试题20:下列运算正确的是()A.x﹣2x=x B.2x﹣y=xyC.x2+x2=x4 D.x﹣(1﹣x)=2x﹣1试题21:下列各数比1大的是()A.0 B. C. D.﹣3 试题1答案:【解答】(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣4x+3.(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣+,∴当m=时,线段MN取最大值,最大值为.(3)假设存在.设点P的坐标为(2,n).当m=时,点N的坐标为(,),∴PB==,PN=,BN==.△PBN为等腰三角形分三种情况:①当PB=PN时,即=,解得:n=,此时点P的坐标为(2,);②当PB=BN时,即=,解得:n=±,此时点P的坐标为(2,﹣)或(2,);③当PN=BN时,即=,解得:n=,此时点P的坐标为(2,)或(2,).综上可知:在抛物线的对称轴l上存在点P,使△PBN是等腰三角形,点P的坐标为(2,)、(2,﹣)、(2,)、(2,)或(2,).【分析】(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式;(2)设出点M的坐标以及直线BC的解析式,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,结合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度关于m的函数关系式,再结合点M在x轴下方可找出m的取值范围,利用二次函数的性质即可解决最值问题;(3)假设存在,设出点P的坐标为(2,n),结合(2)的结论可求出点N的坐标,结合点N、B的坐标利用两点间的距离公式求出线段PN、PB、BN的长度,根据等腰三角形的性质分类讨论即可求出n值,从而得出点P的坐标.试题2答案:【解答】(1)将点(0,0)、(1,3)代入函数y=x2+ax﹣4|x+b|+4(b<0),得解得a=﹣2,b=﹣1,故答案为6,﹣1;(2)画出函数图象如图:(3)该函数的一条性质:函数关于x=1对称;(4)当x=3时,y=﹣1;当x=1时,y=3;∴当0≤m≤2时,方程x2+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,故答案为0≤m≤2.【分析】(1)将点(0,0)、(1,3)代入函数y=x2+ax﹣4|x+b|+4,得到关于a、b的一元二次方程,解方程组即可求得;(2)描点法画图即可;(3)根据图象即可得到函数关于x=1对称;(4)结合图象找,当x=﹣1时,y=﹣1;当x=1,y=3;则当0<m<2时,方程x2+ax﹣4|x+b|+4=x+m至少有3个不同的实数解.试题3答案:(1)+5 (2)【分析】(1)根据二次根式的乘法和加减法可以解答本题;(2)根据分式的减法和除法可以解答本题.【解答】(1)×+cos30°﹣|1﹣|+(﹣2)2=2×+﹣(﹣1)+4=2﹣+1+4=+5;(2)÷(﹣a+1)===﹣=.试题4答案:5.【分析】连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,证明△EDO≌△FDM,可得FM=OE=2,由条件可得OM=5,根据OF+MF≥OM,即可得出OF的最小值.【解答】如图,连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,∵DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=2,O是BC边的中点,∴OC=,∴OD==5,∴OM==5,∵OF+MF≥OM,∴OF≥5,∴线段OF长的最小值为5.试题5答案:6075.【分析】根据题意和函数图象中的数据,可以分别求得甲乙刚开始的速度和后来的速度,也可求得A、B两地的距离、A、C两地的距离,然后即可求得甲到达C地时,乙距A地距离.【解答】由题意可得,甲乙两人刚开始的速度之差为:900÷(23﹣14)=100(米/分),设甲刚开始的速度为x米/分,乙刚开始的速度为(x+100)米/分,12x=(14﹣5)×(x+100),解得,x=300,则x+100=400,则A、B两地之间的距离为:300×12=3600(米),A、C两地之间的距离为:400×(23﹣5)=7200(米),∵当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,∴后来乙的速度为:400×=500(米/分),甲的速度为300×=400(米/分),甲到达C地的时间为:23+[7200﹣(23﹣2)×300]÷400=25(分钟),∴当甲到达C地时,乙距A地:7200﹣(25﹣23)×500=6075(米),试题6答案:.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】作DH⊥AE于H,∵∠AOB=90°,OA=2,OB=1,∴AB==,由旋转,得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,DE=AB,∴△DHE≌△BOA(AAS),∴DH=OB=1,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×3×1+×1×2+﹣=,试题7答案:.【分析】根据关于x的不等式组有解,得出b≤x≤a+1,根据题意列出树状图得出所有等情况数和关于x的不等式组有解的情况数,再根据概率公式即可得出答案.【解答】∵关于x的不等式组有解,∴b≤x≤a+1,根据题意画图如下:共有12种等情况数,其中关于x的不等式组有解的情况分别是,,,,,,,,共8种,则有解的概率是=;试题8答案:7【分析】根据多边形的内角和计算公式作答.【解答】设所求正n边形边数为n,则(n﹣2)•180°=900°,解得n=7.试题9答案:xy(x+y)(x﹣y)【分析】首先提取公因式xy,再对余下的多项式运用平方差公式继续分解.【解答】x3y﹣xy3,=xy(x2﹣y2),=xy(x+y)(x﹣y).试题10答案:A【分析】根据二次函数y=﹣x2+(a﹣2)x﹣3在y轴右侧y随x的增大而减小和分式方程,可以求得a的所有可能性,从而可以求得所有符合条件的a的和,本题得以解决.【解答】∵关于x的二次函数y=﹣x2+(a﹣2)x﹣3在y轴右侧y随x的增大而减小,∴﹣≤0,解得,a≤2,由分式方程,得x=,则使得关于x的分式方程有整数解的整数a的值为5,3,0,﹣1,又∵a≤2,∴a的整数值为0,﹣1,∴0+(﹣1)=﹣1,故选:A.试题11答案:C【分析】如图,作AP⊥BC于P,延长AH交BC于Q,延长EF交AQ于T.想办法求出AQ.CQ即可解决问题.【解答】如图,作AP⊥BC于P,延长AH交BC于Q,延长EF交AQ于T.由题意:=2,AQ=AH+FG+DE,CQ=CD+EF+GH,∠AQP=45°,∵∠APB=90°,AB=900,∴PB=900,PA=1800,∵∠PQA=∠PAQ=45°,∴PA=PQ=1800,AQ=PA=1800,∵∠C=30°,∴PC=PA=1800,∴CQ=1800﹣1800,∴小伟从C出发到坡顶A的时间=+≈80(分钟),故选:C.试题12答案:C【分析】首先确定三角形AOB的面积,然后根据反比例函数的比例系数的几何意义确定k的值即可.【解答】∵CO:OB=2:1,∴S△AOB=S△ABC=×6=2,∴|k|=2S△ABC=4,∵反比例函数的图象位于第一象限,∴k=4,故选:C.试题13答案:A【分析】根据一元二次方程根与系数的关系得到x1+x2=4,代入代数式计算即可.【解答】∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,故选:A.试题14答案:A【分析】连接OD,由垂径定理得出AB⊥CD,由三角函数求出DH=4,BH=3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得出方程,解方程即可.【解答】连接OD,如图所示:∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵tan∠CDB==,BD=5,∴DH=4,BH=3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,解得:x=,∴OH=;故选:A.试题15答案:D【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或﹣k,把B点的横纵坐标分别乘以或﹣即可得到点B′的坐标.【解答】∵以原点O为位似中心,相似比为,把△ABO缩小,∴点B(﹣9,﹣3)的对应点B′的坐标是(﹣3,﹣1)或(3,1).故选:D.试题16答案:B【分析】根据A、B两种商品共60件以及用1680元购进A、B两种商品分别得出等式组成方程组即可.【解答】设购买A型商品x件、B型商品y件,依题意列方程组:.故选:B.试题17答案:C【分析】根据二次根式有意义的条件和分式有意义的条件列出不等式,解不等式即可.【解答】由题意得x﹣2≥0,x﹣3≠0,解得x≥2且x≠3,故选:C.试题18答案:C【分析】根据三角形三边的关系对A进行判断;根据平方根的定义对B进行判断;根据无理数的定义对C进行判断;根据平行线的性质对D进行判断.【解答】A、因为2+3=5,则长度为 5cm、2cm 和 3cm 的三条线段不能组成三角形,所以A选项错误;B、=3,而3的平方根为±,所以B选项错误;C、无限不循环小数是无理数,所以C选项正确;D、两平行直线被第三条直线所截,同位角相等,所以D选项错误.故选:C.试题19答案:D【分析】根据从左边看得到的图形是左视图,可得答案.【解答】从左边看是两个等宽的矩形,矩形的公共边是虚线,故选:D.试题20答案:D【分析】各项计算得到结果,即可作出判断.【解答】A、原式=﹣x,不符合题意;B、原式不能合并,不符合题意;C、原式=2x2,不符合题意;D、原式=x﹣1+x=2x﹣1,符合题意,故选:D.试题21答案:C【分析】实数大小比较的方法:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判定即可.【解答】∵>1>>0>﹣3,∴比1大的是.故选:C.。

重庆双福育才中学九年级中考数学模拟考试试题一(解析版)

重庆双福育才中学九年级中考数学模拟考试试题一(解析版)

2019-2020学年九年级中考数学模拟试题一一.选择题(共12小题)1.以下各数比1大的是()A.0 B. C. D.﹣32.以下运算正确的选项是()A.x﹣2x=x B.2x﹣y=xyC.x2+x2=x4D.x﹣(1﹣x)=2x﹣13.以下图的几何体的左视图是()A. B. C. D.4.以下命题正确的选项是()A.长度为5cm、2cm和3cm的三条线段能够构成三角形B.的平方根是± 3C.无穷不循环小数是无理数D.两条直线被第三条直线所截,同位角相等5.已知函数 y=在实数范围内存心义,则自变量x的取值范围是()A.x≥2 B.x>3 C.x≥2且x≠3D.x>26.端午节前夜,某商场用 1680元购进A、B两种商品共60件,此中A型商品每件24元,B型商品每件36元.设购置A型商品x件、B型商品y件,依题意列方程组正确的选项是()A. B.C. D.7.如图,在平面直角坐标系中,已知点 A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相像比为,把△ABO减小,则点B的对应点B′的坐标是()A.(﹣3,﹣1)B.(﹣1,2)C.(﹣9,1)或(9,﹣1)D.(﹣3,﹣1)或(3,1)8.如图,AB 是⊙O的直径,且经过弦的中点,已知tan∠=,=10,则的CD H CDB BD OH长度为()A.B.1C.D.9.对于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A.B.C.D.010.如图,点A在反比率函数y=的图象上,AB⊥x轴于点B,点C在x轴上,且CO:OB =2:1.△ABC的面积为6,则k的值为()A.2B.3C.4D.511.我校小伟同学热爱健身,一天去登山锻炼,在出发点C处测得山顶部A的仰角为30度,在登山过程中,每一段平路(CD、EF、GH)与水平线平行,每一段上坡路(DE、FG、HA)与水平线的夹角都是45度,在山的另一边有一点B(B、C、D同一水平线上),斜坡AB的坡度为2:1,且AB长为900,此中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从C出发到坡顶A的时间为()(图中全部点在同一平面内≈1.41,≈1.73)A.60分钟B.70分钟C.80分钟D.90分钟12.使对于x的二次函数y=﹣x2+(a﹣2)x﹣3在y轴右边y随x的增大而减小,且使得对于x的分式方程有整数解的整数a的和为()A.﹣1B.﹣2C.8D.10二.填空题(共6小题)13.分解因式:x3y﹣xy3=.14.已知一个多边形的内角和等于900°,则这个多边形的边数是.15.从﹣2,﹣1,1,2四个数中任取两数,分别记为a、b,则对于x的不等式组有解的概率是.16.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后获得Rt△,将线段EF 绕点E逆时针旋转90°后获得线段,分別以、为圆心,FOE ED OE、ED 长为半径画弧AF和弧,连结,则图中暗影部分的面积OA DF AD是.17.已知A、B、C三地按序在同向来线上,甲、乙两人均骑车从A地出发,向C地匀速行驶.甲比乙早出发5分钟,甲抵达B地并歇息了2分钟后,乙追上了甲.甲、乙同时从B地以各自原速持续向C地行驶.当乙抵达C地后,乙立刻掉头并加速为原速的倍按原路返回A地,而甲也立刻加速为原速的倍持续向C地行驶,抵达C地就停止.若甲、乙间的距离y(米)与甲出发的时间t(分)之间的函数关系以下图,则当甲抵达C 地时,乙距A地米.18.如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连结为DE,将线段.DE绕点D逆时针旋转90°得DF,连结AE、CF.则线段OF长的最小值三.解答题(共3小题)19.(1)×+cos30°﹣|1﹣|+(﹣2)2(2)÷(﹣a+1)20.依据学习函数的经验,研究函数y=x2+ax﹣4|x+b|+4(b<0)的图象和性质:(1)下表给出了部分x,y的取值;x L﹣3﹣2﹣1012345Ly L30﹣1030﹣103L 由上表可知,=,=;a b(2)用你喜爱的方式在座标系中画出函数y =2+ax﹣4|+|+4的图象;x xb(3)联合你所画的函数图象,写出该函数的一条性质;23个不一样的实数解,请直接写出m的取值范(4)若方程x+ax﹣4|x+b|+4=x+m起码有围.21.如图,抛物线y =2++c与x轴交于点A和点(3,0),与y轴交于点(0,3).x bx B C(1)求抛物线的分析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN获得最大值时,在抛物线的对称轴l上能否存在点P,使△PBN是等腰三角形?若存在,请直接写出全部点P的坐标;若不存在,请说明原因.参照答案与试题分析一.选择题(共12小题)1.以下各数比1大的是()A.0B.C.D.﹣3【剖析】实数大小比较的方法:①正数都大于0;②负数都小于0;③正数大于全部负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵>1>>0>﹣3,∴比1大的是.应选:C.2.以下运算正确的选项是)(A.x﹣2x=x B.2x﹣y=xyC.x2+x2=x4D.x﹣(1﹣x)=2x﹣1【剖析】各项计算获得结果,即可作出判断.【解答】解:A、原式=﹣x,不切合题意;B、原式不可以归并,不切合题意;2D、原式=x﹣1+x=2x﹣1,切合题意,应选:D.3.以下图的几何体的左视图是()A.B.C.D.【剖析】依据从左侧看获得的图形是左视图,可得答案.【解答】解:从左侧看是两个等宽的矩形,矩形的公共边是虚线,应选:D.4.以下命题正确的选项是()A.长度为5cm、2cm和3cm的三条线段能够构成三角形B.的平方根是±3C.无穷不循环小数是无理数D.两条直线被第三条直线所截,同位角相等【剖析】依据三角形三边的关系对A进行判断;依据平方根的定义对B进行判断;依据无理数的定义对C进行判断;依据平行线的性质对D进行判断.【解答】解:A、由于2+3=5,则长度为5cm、2cm和3cm的三条线段不可以构成三角形,因此A选项错误;B、=3,而3的平方根为±,因此B选项错误;、无穷不循环小数是无理数,因此C 选项正确;C、两平行直线被第三条直线所截,同位角相等,因此D 选项错误.D应选:.C5.已知函数y=在实数范围内存心义,则自变量x的取值范围是()A.x≥2B.x>3C.x≥2且x≠3D.x>2【剖析】依据二次根式存心义的条件和分式存心义的条件列出不等式,解不等式即可.【解答】解:由题意得x﹣2≥0,x﹣3≠0,解得x≥2且x≠3,应选:C.6.端午节前夜,某商场用1680元购进A、B两种商品共60件,此中A型商品每件24元,B型商品每件36元.设购置A型商品x件、B型商品y件,依题意列方程组正确的选项是()A.B.C.D.【剖析】依据A、B两种商品共60件以及用1680元购进A、B两种商品分别得出等式组成方程组即可.【解答】解:设购置A型商品x件、B型商品y件,依题意列方程组:.应选:B.7.如图,在平面直角坐标系中,已知点(﹣3,6)、(﹣9,﹣3),以原点O 为位似中心,A B相像比为,把△ABO减小,则点B的对应点B′的坐标是()A.(﹣3,﹣1)B.(﹣1,2)C.(﹣9,1)或(9,﹣1)D.(﹣3,﹣1)或(3,1)【剖析】利用以原点为位似中心,相像比为k,位似图形对应点的坐标的比等于k或﹣k,把B点的横纵坐标分别乘以或﹣即可获得点B′的坐标.【解答】解:∵以原点为位似中心,相像比为,把△减小,O ABO∴点B(﹣9,﹣3)的对应点B′的坐标是(﹣3,﹣1)或(3,1).应选:D.8.如图,AB 是⊙O的直径,且经过弦的中点,已知tan∠=,=10,则的CD H CDB BD OH长度为()A.B.1C.D.【剖析】连结OD,由垂径定理得出AB⊥CD,由三角函数求出D H=4,BH=3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得出方程,解方程即可.【解答】解:连结OD,以下图:∵是⊙O 的直径,且经过弦的中点,AB CD H ∴AB⊥CD,∴∠OHD=∠BHD=90°,∵tan∠CDB==,BD=5,DH=4,BH=3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,解得:x=,OH=;应选:A.9.对于x 的一元二次方程2﹣4+=0的两实数根分别为x1、x2,且+3=5,则的值x xm x1x2m为()A.B.C.D.0【剖析】依据一元二次方程根与系数的关系获得x 1+2=4,代入代数式计算即可.x【解答】解:∵x1+x2=4,x1+3x2=x1+x2+2x2=4+2x2=5,x2=,把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,应选:A.10.如图,点A在反比率函数 y=的图象上,AB⊥x轴于点B,点C在x轴上,且CO:OB=2:1.△ABC的面积为6,则k的值为()A.2B.3C.4D.5【剖析】第一确立三角形AOB的面积,而后依据反比率函数的比率系数的几何意义确立的值即可.【解答】解:∵CO:OB=2:1,S△AOB=S△ABC=×6=2,|k|=2S△ABC=4,∵反比率函数的图象位于第一象限,k=4,应选:C.11.我校小伟同学热爱健身,一天去登山锻炼,在出发点C处测得山顶部A的仰角为30度,在登山过程中,每一段平路(CD、EF、GH)与水平线平行,每一段上坡路(DE、FG、HA)与水平线的夹角都是的坡度为2:1,且45度,在山的另一边有一点B(B、C、D同一水平线上),斜坡ABAB长为900,此中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从内≈1.41,≈1.73)C出发到坡顶A的时间为()(图中全部点在同一平面A.60分钟B.70分钟C.80分钟D.90分钟【剖析】如图,作AP⊥BC于P,延伸AH交BC于Q,延伸EF交AQ于T.想方法求出AQ.CQ即可解决问题.【解答】解:如图,作AP⊥BC于P,延伸AH交BC于Q,延伸EF交AQ于T.由题意:=2,AQ=AH+FG+DE,CQ=CD+EF+GH,∠AQP=45°,∵∠APB=90°,AB=900,PB=900,PA=1800,∵∠PQA=∠PAQ=45°,∴PA=PQ=1800,AQ=PA=1800,∵∠C=30°,PC=PA=1800,CQ=1800﹣1800,∴小伟从C出发到坡顶A的时间=+≈80(分钟),应选:.C12.使对于x 的二次函数y=﹣x2+(﹣2)﹣3在y轴右边y随x的增大而减小,且使得a x对于x的分式方程有整数解的整数a的和为()A.﹣1B.﹣2C.8D.10【剖析】依据二次函数y=﹣x2+(a﹣2)x﹣3在y轴右边y随x的增大而减小和分式方程,能够求得a的全部可能性,进而能够求得全部切合条件的a的和,本题得以解决.【解答】解:∵对于x 的二次函数y=﹣2+(﹣2)﹣3在y轴右边y随x的增大而减x a x小,∴﹣≤0,解得,≤2,a由分式方程,得x=,则使得对于x的分式方程有整数解的整数a的值为5,3,0,﹣1,又∵a≤2,a的整数值为0,﹣1,0+(﹣1)=﹣1,应选:A.二.填空题(共6小题)13.分解因式:3﹣3=xy (+)(﹣).xy xy xyx y【剖析】第一提取公因式xy,再对余下的多项式运用平方差公式持续分解.【解答】解:x3y﹣xy3,xy(x2﹣y2),xy(x+y)(x﹣y).14.已知一个多边形的内角和等于900°,则这个多边形的边数是7.【剖析】依据多边形的内角和计算公式作答.【解答】解:设所求正n边形边数为n,则(n﹣2)?180°=900°,解得n=7.故答案为:7.15.从﹣2,﹣1,1,2四个数中任取两数,分别记为a、b,则对于x的不等式组有解的概率是.【剖析】依据对于x的不等式组有解,得出b≤x≤a+1,依据题意列出树状图得出全部等状况数和对于x的不等式组有解的状况数,再依据概率公式即可得出答案.【解答】解:∵对于x的不等式组有解,∴b≤x≤a+1,依据题意绘图以下:共有12种等状况数,此中对于x的不等式组有解的状况分别是,,,,,,,,共8种,则有解的概率是=;故答案为:.16.如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后获得Rt△FOE,将线段EF绕点E逆时针旋转90°后获得线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF 和弧DF,连结AD,则图中暗影部分的面积是.【剖析】作DH⊥AE于H,依据勾股定理求出AB,依据暗影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=2,OB=1,∴AB==,由旋转,得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,DE=AB,∴△DHE≌△BOA(AAS),∴DH=OB=1,暗影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×3×1+×1×2+﹣=,故答案为:.17.已知A、B、C三地按序在同向来线上,甲、乙两人均骑车从A地出发,向C地匀速行驶.甲比乙早出发5分钟,甲抵达B地并歇息了2分钟后,乙追上了甲.甲、乙同时从B地以各自原速持续向C地行驶.当乙抵达C地后,乙立刻掉头并加速为原速的倍按原路返回A地,而甲也立刻加速为原速的倍持续向C地行驶,抵达C地就停止.若甲、乙间的距离y(米)与甲出发的时间t(分)之间的函数关系以下图,则当甲抵达C地时,乙距A地6075米.【剖析】依据题意和函数图象中的数据,能够分别求得甲乙刚开始的速度和以后的速度,也可求得A、B两地的距离、距离.【解答】解:由题意可得,甲乙两人刚开始的速度之差为:A、C两地的距离,而后即可求得甲抵达900÷(23﹣14)=100(米/分),C地时,乙距A地设甲刚开始的速度为x米/分,乙刚开始的速度为(x+100)米/分,12x=(14﹣5)×(x+100),解得,x=300,则x+100=400,则A、B两地之间的距离为:300×12=3600(米),A、C两地之间的距离为:400×(23﹣5)=7200(米),∵当乙抵达C地后,乙立刻掉头并加速为原速的倍按原路返回A地,而甲也立刻加速为原速的倍持续向C地行驶,∴以后乙的速度为:400×=500(米/分),甲的速度为300×=400(米/分),甲抵达C地的时间为:23+[7200﹣(23﹣2)×300]÷400=25(分钟),∴当甲抵达C地时,乙距A地:7200﹣(25﹣23)×500=6075(米),故答案为:6075.18.如图,正方形中,=2,O 是边的中点,点E是正方形内一动点,=2,ABCD AB BC OE 连结DE,将线段DE绕点D逆时针旋转90°得DF,连结AE、CF.则线段OF长的最小值为5.【剖析】连结DO,将线段DO绕点D逆时针旋转90°得DM,连结OF,FM,OM,证明△EDO≌△FDM,可得FM=OE=2,由条件可得OM=5,依据OF+MF≥OM,即可得出OF的最小值.【解答】解:如图,连结DO,将线段DO绕点D逆时针旋转90°得DM,连结OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=2,O是BC边的中点,∴OC=,∴OD==5,∴==5,OMOF+MF≥OM,∴OF≥5,∴线段OF长的最小值为5.故答案为:5.三.解答题(共3小题)19.(1)×+cos30°﹣|1﹣|+(﹣2)2(2)÷(﹣a+1)【剖析】(1)依据二次根式的乘法和加减法能够解答此题;(2)依据分式的减法和除法能够解答此题.【解答】解:(1)×+cos30°﹣|1﹣|+(﹣2)2=2×+﹣(﹣1)+4=2﹣+1+4=+5;(2)÷(﹣a+1)===﹣=.20.依据学习函数的经验,研究函数y=x2+ax﹣4|x+b|+4(b<0)的图象和性质:(1)下表给出了部分x,y的取值;x L﹣3﹣2﹣1012345L y L30﹣1030﹣103L由上表可知,=﹣2,=﹣1;a b(2)用你喜爱的方式在座标系中画出函数y =2+ax﹣4|+|+4的图象;x xb(3)联合你所画的函数图象,写出该函数的一条性质;23个不一样的实数解,请直接写出m的取值范(4)若方程x+ax﹣4|x+b|+4=x+m起码有围.2【剖析】(1)将点(0,0)、(1,3)代入函数y=x+ax﹣4|x+b|+4,获得对于a、b的一元二次方程,解方程组即可求得;(3)依据图象即可获得函数对于x=1对称;2(4)联合图象找,当x=﹣1时,y=﹣1;当x=1,y=3;则当0<m<2时,方程x+ax﹣4|x+b|+4=x+m 起码有3个不一样的实数解.【解答】解:(1)将点(0,0)、(1,3)代入函数y=x2+ax﹣4|x+b|+4(b<0),得解得a=﹣2,b=﹣1,故答案为6,﹣1;(2)画出函数图象如图:(3)该函数的一条性质:函数对于x=1对称;4)当x=3时,y=﹣1;当x=1时,y=3;∴当0≤m≤2时,方程x2+ax﹣4|x+b|+4=x+m起码有3个不一样的实数解,故答案为0≤m≤2.221.如图,抛物线y=x+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的分析式;(2)若点是抛物线在x 轴下方上的动点,过点作∥轴交直线于点,求线M M MNy BC N段MN的最大值;(3)在(2)的条件下,当MN获得最大值时,在抛物线的对称轴l上能否存在点P,使△PBN是等腰三角形?若存在,请直接写出全部点P的坐标;若不存在,请说明原因.【剖析】(1)由点B、C的坐标利用待定系数法即可求出抛物线的分析式;(2)设出点M的坐标以及直线BC的分析式,由点B、C的坐标利用待定系数法即可求出直线BC的分析式,联合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度对于m的函数关系式,再联合点M在x轴下方可找出m的取值范围,利用二次函数的性质即可解决最值问题;(3)假定存在,设出点P的坐标为(2,n),联合(2)的结论可求出点N的坐标,联合点、B 的坐标利用两点间的距离公式求出线段、、的长度,依据等腰三角形的N PNPB BN性质分类议论即可求出n值,进而得出点P的坐标.【解答】解:(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:,∴抛物线的分析式为y=x2﹣4x+3.2(2)设点M的坐标为(m,m﹣4m+3),设直线BC的分析式为y=kx+3,把点点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的分析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的分析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<<3.m22+,∵线段MN=﹣m+3﹣(m﹣4m+3)=﹣m+3m=﹣∴当m=时,线段MN取最大值,最大值为.(3)假定存在.设点P的坐标为(2,n).当m=时,点N的坐标为(,),∴PB==,PN=,BN==.△PBN为等腰三角形分三种状况:①当PB=PN时,即=,解得:n=,此时点P的坐标为(2,);精选文档21 ②当 PB =BN 时,即 = , 解得: n =± , 此时点 P 的坐标为( 2,﹣ )或( 2, ); ③当 PN =BN 时,即 = , 解得: n = , 此时点 P 的坐标为( 2, )或( 2, ).综上可知:在抛物线的对称轴l 上存在点P ,使△PBN 是等腰三角形,点 P 的坐标为(2,)、(2,﹣ )、(2, )、(2, )或(2, ).。

重庆育才中学九年级数学下册第三单元《锐角三角函数》检测(答案解析)

重庆育才中学九年级数学下册第三单元《锐角三角函数》检测(答案解析)

一、选择题1.如图,在O 中,E 是直径AB 延长线上一点,CE 切O 于点E ,若2CE BE =,则E ∠的余弦值为( )A .35B .45C .34D .432.如图,在正方形方格纸中,每个小方格边长为1,A ,B ,C ,D 都在格点处,AB 与CD 相交于点O ,则sin ∠BOD 的值等于( )A .1010B .31010C .2105D .1053.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .25C .5D .124.如图,河坝横断面迎水坡AB 的坡比为1:3,坝高BC =3m ,则AB 的长度为( )A .6mB .3C .9mD .3 5.如图,O 是ABC 的外接圆,60BAC ∠=︒,若O 的半径OC 为1,则弦BC 的长为( )A .12B .32C .1D .3 6.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2sin cos θθ-=( )A .15B .5C .35D .957.如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x 8.如图,在Rt ABC ∆中,BC=4,AC=3,90C ∠=︒,则sinB 的值为( )A .45B .34C .35D .439.如图,反比例函数k y x =(0)k ≠第一象限内的图象经过ABC ∆的顶点A ,C ,AB AC =,且BC y ⊥轴,点A ,C ,的横坐标分别为1,3,若120BAC ∠=︒,则k 的值为( )A .1B .2C .3D .210.如图所示,矩形ABCD 的边长AB =2,BC =23,△ADE 为正三角形.若半径为R 的圆能够覆盖五边形ABCDE (即五边形ABCDE 的每个顶点都在圆内或圆上),则R 的最小值是( )A .23B .4C .2.8D .2.511.在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sin A 的值为( )A .513B .1213C .512D .12512.河堤横断面如图所示,迎水坡10AB =米,迎水坡AB 的坡比为1:3(坡比是坡面的铅直高度BC 与水平度AC 之比),则AC 的长是( )A .53B .2米C .15米D .10米第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.计算:02cos 45|13|(3)π︒+---=_____.14.如图是一个地铁站入口的双翼闸机.它的双翼展开时,双翼边缘的端点A 与B 之间的距离为10cm ,双翼的边缘AC =BD =54cm ,且与闸机侧立面夹角∠PCA =∠BDQ =30°.当双翼收起时,可以通过闸机的物体的最大宽度为________cm .15.如图,矩形ABCD 中,1AB =,3BC =,以B 为圆心,BD 为半径画弧,交BC 延长线于M 点,以D 为圆心,CD 为半径画弧,交AD 于点N ,则图中阴影部分的面积是________.16.如图,在Rt ABC 中,,906A AC cm ∠==,8AB cm =,把AB 边翻折,使边落在BC 边上,点A 落在点E 处,折痕为BD ,则tan DBE ∠的值为_______ .17.已知ABC 中,16,3AB AC cosB ===,则边BC 的长度为____________. 18.如图,某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45和30.若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为______米(结果保留根号).19.如图,在2×2的网格中,以顶点O 为圆心,以2个单位长度为半径作圆弧,交图中格线于点A ,则tan ∠ABO 的值为_____.20.如图,已知2AB a =,P 为线段AB 上的一个动点,分别以AP ,PB 为边在AB 的同侧作菱形APCD 和菱形PBFE .点P ,C ,E 在一条直线上,60DAP ∠=︒,M 、N 分别是对角线AC 、BE 的中点.当点P 在线段AB 上移动时,点M 、N 之间的距离最短为_______.三、解答题21.如图,ABC 中,,45,tan 2AB AC BC ABC ==∠=;(1)求AC 和AC 边上的高;(2)在AC 上取一点M ,使得BM BC =,过M 作MH AB ⊥,求BH AH 的值. 22.2)0+cos60°﹣|13.23.计算 (1)cos 451-sin60︒︒(2)(12)-2-(π-3.14)0-│tan60°-2│ 24.定义:点P 是△ABC 内部或边上的点(顶点除外),在△PAB ,△PBC ,△PCA 中,若至少有一个三角形与△ABC 相似,则称点P 是△ABC 的自相似点.例如:如图1,点P 在△ABC 的内部,∠PBC=∠A ,∠PCB=∠ABC ,则△BCP ∽△ABC ,故点P 为△ABC 的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M 是曲线C :33(0)y x x=>上的任意一点,点N 是x 轴正半轴上的任意一点.(1) 如图2,点P 是OM 上一点,∠ONP=∠M, 试说明点P 是△MON 的自相似点; 当点M 的坐标是(3,3),点N 的坐标是(3,0)时,求点P 的坐标;(2) 如图3,当点M 的坐标是(3,3),点N 的坐标是(2,0)时,求△MON 的自相似点的坐标;(3) 是否存在点M 和点N,使△MON 无自相似点,?若存在,请直接写出这两点的坐标;若不存在,请说明理由.25.某校教学楼后面紧邻着一个山坡,坡上面是一块平地,如图所示,//,BC AD BE AD ⊥,斜坡AB 长为51062m ,坡度9:5i =.为了减缓坡面,防止山体滑坡,保障安全,学校决定对该斜坡进行改造,地质人员勘测,当坡角不超过45时,可确保山体不滑坡.(1)求改造前坡顶到地面的距离BE .(2)如果改造时保持坡脚A 不动,坡顶B 沿BC 削进到F 处,问BF 至少是多少米? 26.如图,在ABC ∆中,5AC =,3tan 4A =,45B ∠=︒.点P 从点A 出发,沿AB 方向以每秒4个单位长度的速度向终点B 运动(不与点A 、B 重合).过点P 作PH AB ⊥,交折线--A C B 于点H ,点Q 为线段AP 的中点,以PH 、PQ 为边作矩形PQGH .设点P 的运动时间为t (秒).(1)直接写出矩形PQGH 的边PH 的长(用含t 的代数式表示);(2)当点G 落在边AC 上时,求t 的值;(3)当矩形PQGH 与ABC ∆重叠部分图形是四边形时,设重叠部分图形的面积为S (平方单位).求S 与t 之间的函数关系式;(4)当ABC ∆的重心落在矩形PQGH 的内部时,直接写出此时t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接OC ,则∠OCE=90°,设OC=OB=x ,22CE BE k ==,根据勾股定理即可列出方程222(2)()x k x k +=+,解得32x k =,再根据余弦的定义即可求得答案. 【详解】解:如图,连接OC ,∵CE 切O 于点E ,∴∠OCE=90°,设OC=OB=x ,22CE BE k ==,∵在Rt OCE △中,222OC CE OE +=,∴222(2)()x k x k +=+,解得32x k =,∴52OE OBBE k =+=, ∴24cos 552CE k E OE k ===,故选:B .【点睛】本题考查了切线的性质、勾股定理以及锐角三角函数,熟练掌握切线的性质以及勾股定理是解决本题的关键.2.B解析:B【分析】根据平行线的性质和锐角三角函数定义以及勾股定理,通过转化的数学思想可以求得sin ∠BOD 的值,本题得以解决. 【详解】解:连接AE 、EF ,如图所示,则AE ∥CD ,∴∠FAE=∠BOD ,∵每个小正方形的边长为1, 则222222112,2425,3332,AE AF EF =+==+==+=∴△FAE 是直角三角形,∠FEA=90°,∴32310sin 1025EF FAE AF ∠=== ∴310sin BOD ∠=故选:B .【点睛】本题考查了解直角三角形、锐角三角函数定义、勾股定理和勾股定理的逆定理等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键. 3.D解析:D【分析】连接AC ,根据网格图不难得出=90CAB ∠︒,求出AC 、BC 的长度即可求出ABC ∠的正切值.【详解】连接AC ,由网格图可得:=90CAB ∠︒,由勾股定理可得:AC 2AB =2∴tan ABC ∠=21222AC AB ==. 故选:D .【点睛】本题主要考查网格图中锐角三角函数值的求解,根据网格图构造直角三角形是解题关键. 4.A解析:A【分析】根据坡比的概念求出AC ,根据勾股定理求出AB .【详解】解:∵迎水坡AB 的坡比为13 ∴3BC AC =33AC = 解得,AC =3由勾股定理得,AB 22BC AC =+=6(m ), 故选:A .【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念是解题的关键. 5.D解析:D【分析】先作OD ⊥BC 于D ,由于∠BAC =60°,根据圆周角定理可求∠BOC =120°,又OD ⊥BC ,根据垂径定理可知∠BOD =60°,BD =12BC ,在Rt △BOD 中,利用特殊三角函数值易求BD ,进而可求BC .【详解】解:如右图所示,作OD ⊥BC 于D ,∵∠BAC =60°,∴∠BOC =120°,又∵OD ⊥BC ,∴∠BOD =60°,BD =12BC , ∴BD =sin60°×OB =3,∴BC =2BD =23,故答案是23.【点睛】本题考查了圆周角定理、垂径定理、特殊三角函数计算,解题的关键是作辅助线OD ⊥BC ,并求出BD .6.A 解析:A【分析】 根据正方形的面积公式可得大正方形的边长为55,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【详解】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为555,∴55555θθ-=,∴5cos sin 5θθ-=, ∴()21sin cos 5θθ-=. 故选A .【点睛】 本题考查了解直角三角形、勾股定理的证明和正方形的面积,难度适中,解题的关键是正确得出5cos sin θθ-=. 7.A解析:A【分析】作CE ⊥y 轴于E .解直角三角形求出OD ,DE 即可解决问题.作CE ⊥y 轴于E .在Rt △OAD 中,∵∠AOD=90°,AD=BC=b ,∠OAD=x ,∴OD=sin OAD sin AD b x ∠=,∵四边形ABCD 是矩形,∴∠ADC=90°,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=x , ∴在Rt △CDE 中,∵CD=AB=a ,∠CDE=x , ∴DE= cos CDE cos CD a x ∠=,∴点C 到x 轴的距离=EO=DE+OD=cos sin a x b x ,故选:A .【点睛】本题考查了解直角三角形的应用,矩形的性质,正确作出辅助线是解题的关键. 8.C解析:C【分析】由勾股定理求出AB 的长度,即可求出sinB 的值.【详解】解:在Rt ABC ∆中,BC=4,AC=3,90C ∠=︒, ∴22345AB +=, ∴35AC sinB AB ==, 故选:C .【点睛】 本题考查了求角的正弦值,以及勾股定理,解题的关键是正确求出AB 的值.9.C解析:C先表示出CD ,AD 的长,然后在Rt △ACD 中利用∠ACD 的正切列方程求解即可.【详解】过点A 作AD BC ⊥,∵点A 、点C 的横坐标分别为1,3,且A ,C 均在反比例函数k y x =第一象限内的图象上, ∴(1,)A k ,3,3k C ⎛⎫ ⎪⎝⎭, ∴CD=2,AD=k-3k , ∵AB AC =,120BAC ∠=︒,AD BC ⊥,∴30ACD ∠=︒,90ADC ∠=︒,∵tan ∠ACD=AD DC, ∴3DC AD =,即233k k ⎛⎫=- ⎪⎝⎭,∴3k =. 故选:C .【点睛】本题考查了等腰三角形的性质,解直角三角形,以及反比例函数图像上点的坐标特征,熟练掌握各知识点是解答本题的关键.10.C解析:C【分析】连接AC 、BE 、CE ,取BC 的中点F ,连接EF ,根据勾股定理可得AC ,根据直角三角形的边角关系可得∠ACB =30°,∠CAD =30°,再根据正三角形的性质可得:∠EAD =∠EDA =60°,AE =AD =DE =3△EAC 是直角三角形,由勾股定理可得EC 的长.判断△EAB ≌△EDC ,根据全等三角形的性质可得EB =EC ,继而根据题意可判断能够覆盖五边形ABCDE 的最小圆的圆心在线段EF 上,且此圆只要覆盖住△EBC 必能覆盖五边形ABCDE ,从而此圆的圆心到△BCE 的三个顶点距离相等.根据等腰三角形的判定和性质可得F 是BC 中点,BF =CF 3EF ⊥BC ,由勾股定理可得EF 的长,继而列出关于R 的一元二次方程,解方程即可解答.如图所示,连接AC 、BE 、CE ,取BC 的中点F ,连接EF ,∵四边形ABCD 是矩形,∴∠ABC =∠DAB =∠BCD =∠ADC =90°,AD ∥BC ,AD =BC =AB =CD =2∵BC =AB =2由勾股定理可得:AC 4∴sin ∠ACB =24AB AC ==12,sin ∠CAD =24CD AC ==12∴∠ACB =30°,∠CAD =30°∵△ADE 是正三角形 ∴∠EAD =∠EDA =60°,AE =AD =DE =∴∠EAC =∠EAD +∠CAD =90°,∴△EAC 是直角三角形,由勾股定理可得:EC ∵∠EAB =∠EAD +∠BAD =150°∠EDC =∠EDA +∠ADC =150°∴∠EAB =∠EDC∵EA =ED ,AB =DC∴△EAB ≌△EDC∴EB =EC =即△EBC 是等腰三角形∵五边形ABCDE 是轴对称图形,其对称轴是直线EF ,∴能够覆盖五边形ABCDE 的最小圆的圆心在线段EF 上,且此圆只要覆盖住△EBC 必能覆盖五边形ABCDE .从而此圆的圆心到△BCE 的三个顶点距离相等.设此圆圆心为O ,则OE =OB =OC =R ,∵F 是BC 中点∴BF =CF EF ⊥BC在Rt △BEF 中,由勾股定理可得:EF 5∴OF =EF -OE =5-R在Rt △OBF 中,222BF OF OB即()2225R R +-=解得:R =2.8∴能够覆盖五边形ABCDE 的最小圆的半径为2.8.故选C .【点睛】本题考查勾股定理的应用、全等三角形的判定及其性质、等腰三角形的判定及其性质、直角三角形的边角关系.解题的关键是理解圆内接五边形的特点,并且灵活运用所学知识. 11.B解析:B【分析】先根据勾股定理求出BC=12,再利用余弦函数的定义即可求解.【详解】解:在Rt △ABC 中,由勾股定理得,BC 22AB AC -12,∴sin A =1213BC AB =, 故选:B .【点睛】 此题考查勾股定理以及锐角三角函数的定义,解题关键在于计算出BC 的长度.12.A解析:A【分析】根据迎水坡AB 的坡比3 设,=3=BC x AC x ,然后根据迎水坡AB=10米,利用勾股定理求出x 的值,即可求解.【详解】∵迎水坡AB 的坡比3 ∴,3==BC x AC x ,在Rt △ABC 中:222BC AC AB += ∴)222x 3x 10+=∴x=5±x>∵0x∴=5∴===AC(米).5故选:A【点睛】本题考查了根据坡度和坡角解直角三角形的知识,解答本题的关键是根据坡比设出各边的长度,然后根据勾股定理求解.二、填空题13.﹣1【分析】原式利用特殊角的三角函数值绝对值的代数意义以及零指数幂法则计算即可得到结果【详解】解:原式==故答案为:﹣1【点睛】此题考查了实数的运算特殊角的三角函数值以及零指数幂熟练掌握运算法则是解1【分析】原式利用特殊角的三角函数值,绝对值的代数意义,以及零指数幂法则计算即可得到结果.【详解】+-11211【点睛】此题考查了实数的运算,特殊角的三角函数值,以及零指数幂,熟练掌握运算法则是解本题的关键.14.64【分析】连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F求出CEEFDF即可解決问题;【详解】解:如图连接ABCD过点A作AE⊥CD于E过点B作BF⊥CD于F∵AB//EFAE//BF∴解析:64【分析】连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F,求出 CE , EF , DF 即可解決问题;【详解】解:如图,连接AB,CD,过点A作AE⊥CD于E,过点B作BF⊥CD于F.∵AB//EF ,AE//BF ,∴四边形ABFE 是平行四边形,∵∠AEF =90°,∴四边形AEFB 是矩形,∴EF =AB =10(cm ),∵AE//PC ,∴∠PCA =∠CAE =30°,∴CE =AC•sin 30°=27(cm ),同法可得DF =27(cm ),∴CD =CE+EF+DF =27+10+27=64(cm ),故答案为64.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.15.【分析】先根据矩形的性质勾股定理可得再利用正弦三角函数可得然后根据即可得【详解】四边形ABCD 是矩形在中则即图中阴影部分的面积是故答案为:【点睛】本题考查了矩形的性质正弦三角函数扇形的面积公式等知识 解析:73122π- 【分析】先根据矩形的性质、勾股定理可得1,2,90CD BD ADC BCD ==∠=∠=︒,再利用正弦三角函数可得30CBD ∠=︒,然后根据RtBCD DCN BDM S S S S =+-阴影扇形扇形即可得.【详解】四边形ABCD 是矩形,1AB =,3BC =, 221,2,90CD AB BC BC CD ADC BCD ∴===+=∠=∠=︒,在Rt BCD 中,1sin 2CD CBD BD ∠==, 30CBD ∴∠=︒, 则Rt BCDDCN BDM S S S S =+-阴影扇形扇形,22901302113603602ππ⨯⨯=+-⨯712π=,即图中阴影部分的面积是712π故答案为:7122π-. 【点睛】 本题考查了矩形的性质、正弦三角函数、扇形的面积公式等知识点,熟练掌握扇形的面积公式是解题关键.16.【分析】先由勾股定理求得BC=10然后由翻折的性质可知CE=2设AD=x 则DE=xCD=6-x 在Rt △DCE 中利用勾股定理可求得DE 的长从而可求得tan ∠DBE 的值【详解】解:在Rt △ABC 中由勾股 解析:13【分析】先由勾股定理求得BC=10,然后由翻折的性质可知CE=2,设AD=x ,则DE=x ,CD=6-x ,在Rt △DCE 中,利用勾股定理可求得DE 的长,从而可求得tan ∠DBE 的值.【详解】解:在Rt △ABC 中,由勾股定理得:10==.由翻折的性质可知:BE=AB= 8,AD=ED ,∠DEB=∠DAB=90°,∴CE=2,∠DEC=90°.设DE=AD=x ,则CD=6-x .在Rt △DCE 中,由勾股定理得:CD 2=DE 2+CE 2,即(6-x )2=x 2+22,解得:x= 83. ∴DE= 83. tan ∠DBE= 838DE EB == 13. 故答案是:13. 【点睛】 本题主要考查的是翻折的性质、勾股定理、锐角三角函数的定义,在Rt △DCE 中,由勾股定理得到关于x 的方程是解题的关键.17.4【分析】过A 作AD ⊥BC 于点D 则根据等腰三角形的性质和锐角三角函数的定义可以得到解答【详解】解:如图过A 作AD ⊥BC 于点D 则由已知可得△ABC 为等腰三角形BD=DC=∴由cosB=得BC=2BD=解析:4【分析】过A 作AD ⊥BC 于点D ,则根据等腰三角形的性质和锐角三角函数的定义可以得到解答 .【详解】解:如图,过A 作AD ⊥BC 于点D ,则由已知可得△ABC 为等腰三角形,BD=DC=12BC ,∴由 cosB=13得111,62333BD BD AB AB ===⨯=,BC=2BD=4, 故答案为4 .【点睛】 本题考查等腰三角形和锐角三角函数的综合应用,灵活运用等腰三角形的性质和锐角三角函数的定义是解题关键 .18.【解析】【分析】在和中利用锐角三角函数用CH 表示出AHBH 的长然后计算出AB 的长【详解】由于在中米在米米故答案为【点睛】本题考查了解直角三角形的应用——仰角俯角问题题目难度不大解决本题的关键是用含C 解析:()120031 【解析】【分析】在Rt ACH 和Rt HCB 中,利用锐角三角函数,用CH 表示出AH 、BH 的长,然后计算出AB 的长.【详解】由于CD//HB , CAH ACD 45∠∠∴==,B BCD 30∠∠==,在Rt ACH 中,CAH 45∠∴=,AH CH 1200∴==米,在Rt HCB ,CH tan B HB ∠=, CH 1200HB 12003(tan B tan303∠∴====米), ()AB HB HA 120031200120031∴=-=-=-米, 故答案为()120031-. 【点睛】本题考查了解直角三角形的应用——仰角、俯角问题,题目难度不大,解决本题的关键是用含CH 的式子表示出AH 和BH .19.2+【分析】连接OA 过点A 作AC ⊥OB 于点C 由题意知AC=1OA=OB=2从而得出OC==BC=OB ﹣OC=2﹣在Rt △ABC 中根据tan ∠ABO=可得答案【详解】如图连接OA 过点A 作AC ⊥OB 于点解析:2+3.【分析】连接OA ,过点A 作AC ⊥OB 于点C ,由题意知AC=1、OA=OB=2,从而得出OC=22OA AC -=3、BC=OB ﹣OC=2﹣3,在Rt △ABC 中,根据tan ∠ABO=AC BC 可得答案.【详解】如图,连接OA ,过点A 作AC ⊥OB 于点C ,则AC=1,OA=OB=2,∵在Rt △AOC 中,222221OA AC -=-3∴BC=OB ﹣OC=23∴在Rt △ABC 中,tan ∠ABO=23AC BC =-3 故答案是:3【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO 为内角的直角三角形是解题的关键. 20.【分析】连接PMPN 根据菱形的性质求出∠CAP=30°∠MPC=∠CPA=60°∠EPN=∠BPN=∠EPB=30°从而求出∠MPN=90°设AP=x 则PB=2a -x 然后利用锐角三角函数求出PM 和P解析:32a 【分析】连接PM 、PN ,根据菱形的性质求出∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30°,从而求出∠MPN=90°,设AP=x ,则PB=2a -x ,然后利用锐角三角函数求出PM 和PN ,然后利用勾股定理求出MN 2与x 的函数关系式,化为顶点式即可求出MN 2的最小值,从而求出结论.【详解】 解:连接PM 、PN∵四边形APCD 和四边形PBFE 为菱形,60DAP ∠=︒∴∠CPA=180°-∠DAP=120°,∠EPB=∠DAP=60°,PM ⊥AC ,PN ⊥EB ,AC 平分∠DAP ,PM 平分∠APC ,PN 平分∠EPB∴∠CAP=12∠=DAP 30°,∠MPC=12∠CPA=60°,∠EPN=∠BPN=12∠EPB=30° ∴∠MPN=∠MPC +∠EPN=90°设AP=x ,则PB=2a -x ∴PM=AP·sin ∠CAP=12x ,PN=PB·cos ∠32a -x ) 在Rt △MON 中MN 2= PM 2+PN 2=214x +34(2a -x )2=(x -32a )2+34a 2 当x=32a 时,MN 2取最小值,最小为34a 2 ∴MN 的最小值为32a 故答案为:32a . 【点睛】 此题考查的是菱形的性质、锐角三角函数、勾股定理和二次函数的应用,掌握菱形的性质、锐角三角函数、勾股定理和利用二次函数求最值是解决此题的关键.三、解答题21.(1)10AC =,AC 边上的高为8;(2)223BH AH =. 【分析】(1)如图(见解析),先根据等腰三角形的三线合一可得1252BD BC ==,再利用正切三角函数的定义可得AD 的长,然后利用勾股定理可得AB 的长,从而可得AC 的长,最后利用三角形的面积公式即可得AC 边上的高;(2)如图(见解析),先根据利用勾股定理、等腰三角形的三线合一可得28CM CE ==,从而可得2,6AM AE ==,再利用BAC ∠的余弦三角函数可得AH 的长,然后根据线段的和差可得BH 的长,由此即可得出答案.【详解】(1)如图1,过点A 作AD BC ⊥于点D ,过点B 作BE AC ⊥于点E ,∵,45AB AC BC ==∴1252BD BC == ∴tan 225AD ABC BD ∠===, 解得45AD =∴2222(45)(25)10AB AD BD =+=+=,10AC ∴=, ∵1122ABC S BC AD AC BE =⋅=⋅△, ∴4545810BC AD BE AC ⋅===; (2)由题意,画出图形如图2所示:由(1)得:8BE =, 45BC =,224CE BC BE ∴=-=,1046AE AC CE ∴=-=-=,∵BM BC =,BE AC ⊥,∴28CM CE ==,∴1082AM AC CM =-=-=,在Rt ABE △中,63s 5c 10o AE BAC AB ∠===, 在Rt AMH 中,cos 325AH AH BAC AM ∠===, 解得65AH =, ∴6441055BH AB AH =-=-=, ∴44225635BH AH ==. 【点睛】本题考查了解直角三角形、勾股定理、等腰三角形的三线合一等知识点,熟练掌握解直角三角形的方法是解题关键.22.532-【分析】原式利用零指数幂法则,特殊角的三角函数值,以及绝对值的代数意义计算即可求出值.【详解】 2)0+cos60°﹣|13|=1+1231) =1+123=5 2【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则和运算顺序是解答此题的关键.23.(1)+2)【分析】(1)代入特殊角的三角函数值计算即可;(2)根据负整数指数幂、零次幂、特殊角三角函数值化简然后计算即可.【详解】(1)cos451-sin60︒===︒(2)(12)-2-(π-3.14)0-│tan60°-2│=4-1-(【点睛】本题考查实数的混合运算,需要熟记特殊角度的三角函数值是解题的关键.24.(1)34P⎫⎪⎪⎝⎭;(2)P⎛⎝⎭或⎛⎝⎭;(3)存在,M N【分析】(1)易证点P是△MON的自相似点,过点P作PD⊥x轴于D点根据M、N坐标易知∠MNO=90°,再利用三角函数可求出P点坐标344P⎛⎫⎪⎪⎝⎭;(2)根据坐标发现ON=MN=2,要找自相似点只能在∠ONM中做∠ONP=∠OMN或∠MNP=∠MON,分别画出图形,根据图形性质,结合相似可求出自相似点的坐标;(3)根据前两问可发现,要想有自相似点,其实质就是在大角里面做小角,当三个角都相等时,即△OMN为等边三角形时,不存在自相似点,因此可得到直线OM的解析式,与y=M,从而可以求得N的坐标.【详解】解:(1)在△ONP和△OMN中,∵∠ONP=∠OMN,∠NOP=∠MON∴△ONP∽△OMN∴点P是△MON的自相似点.过点P作PD⊥x轴于D点.tan 3MN POD ON ∠== ∴60MON ∠=︒. ∵△NOP ∽△MON ,M 的坐标是(3,3),点N 的坐标是(3,0),∴90MON ∠=︒,∴90OPN ∠=︒.在Rt △OPN 中,3cos 60OP ON =︒=. 313cos 602OD OP =︒=⨯=. 333sin 60224PD OP ==⨯=. ∴33,4P ⎛⎫ ⎪ ⎪⎝⎭. (2)①如图3,过点M 作MH ⊥x 轴于H 点,∵3),(2,0)M N∴23OM =,直线OM 的表达式为33y x =,2ON = ∵P 是△MON 的自相似点,∴△PON ∽△NOM ,过点P 作PQ ⊥x 轴于Q 点,∴1,12PO PN OQ ON ===∴P的横坐标为1,∴331y=⨯=∴31,3P⎛⎫⎪ ⎪⎝⎭.如图4,△PNM∽△NOM ,∴PN MN ON MO=∴23PN.∵P23∴23333x=∴2 x=,∴232,3P⎛⎝⎭.综上所述,3P⎛⎝⎭或23⎛⎝⎭.(3)存在点M和点N,使△MON无自相似点,3,3),(23,0)M N.理由如下:(3,3),(23,0)M N,23,60OM ON MON∴==∠=︒∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.考点:1相似三角形;2反比例函数;3解直角三角形;4一次函数;5分类思想;6等边三角形.25.(1)452m;(2)10米【分析】(1)根据坡度设9BE x =,5AE x =,利用勾股定理得222BE AE AB +=,列出方程求出x 的值,可以求出BE 的长;(2)连接AF ,过点F 作FHAD ⊥于点H ,根据FAH ∠是45︒,利用它的正切值得到FH 和AH 的比值,设BF xm =,列式求出x 的值. 【详解】(1)∵坡度9:5i =, ∴95BE AE =,设9BE x =,5AE x =, 根据勾股定理,222BE AE AB +=,则222581251062x x ⎛⎫+= ⎪⎝⎭,解得52x =, ∴545922BE m =⨯=; (2)如图,连接AF ,过点F 作FHAD ⊥于点H , 由(1)得525522AE m =⨯=, 设BF xm =,∵tan tan 451FH FAH AH=∠=︒=, ∴4521252x =+,解得10x =, ∴BF 至少是10米.【点睛】本题考查解直角三角形的应用,解题的关键是掌握用锐角三角函数解直角三角形的方法.26.1)3,01774,14t tPHt t<≤⎧⎪=⎨-<<⎪⎩;(2)1411;(3)229,012147814,114t tSt t t⎧<≤⎪⎪=⎨⎪-+≤<⎪⎩;(4)113122t<<.【分析】(1)分两种情况讨论:当点Q在线段AC上时;当点Q在线段BC上时;(2)当点G落在AC上,显然H在BC上,利用正切定义tanGQAAQ=,列方程即可求解;(3)分情况讨论:当01t≤<时,14111t<<时,147114t≤<时,分别求得S与t的关系式即可;(4)根据题意不难写出t的取值范围即可.【详解】解析(1)①当点H在AC边上时,点P速度为4/s,时间为ts,4AP t∴=90APH∠=︒tan3PH AP A t∴=⋅∠=.②4AP t=,作CD AB⊥于D,3tan4CDAAD∠==且5AC=,4AD∴=,3CD=,45B∠=︒,90CDB∠=︒,45BCD B∴∠=︒=∠,3BD CD∴==,7AB=,74BP AB AP t∴=-=-,90HPB∠=︒,45B∠=︒,74HP BP t∴==-(2)当点G 落在AC 上,如图,此时4AP t =,122AQ AP t ==,74GQ PH t ==- tan GQ A AQ =,即74324t t -=, 解得:1411t = (3)当01t <≤时,如图,此时3PH t =,4AP t =,122AQ PQ AP t === 3tan 2EQ AQ A t =⋅∠= 213932222PQEH S S t t t t ⎛⎫==+⋅= ⎪⎝⎭四 当14111t <<时,如图,此时重叠部分为五边形,不考虑.当147114t ≤<时,如图,此时74PH t =-,4AP t =,122AQ PQ AP t === 22(74)814PQGH S S PQ PH t t t t ==⋅=-=-+四.(4)如图,建立坐标系点A 为原为,点()7,0B ,点()4,3C , 由重心坐标公式可知,1133A B C G x x x x ++== 13A B C G y y y y ++== ∴重心011,13G ⎛⎫ ⎪⎝⎭①0G 第一次进入矩形时0G 在PH 上,此时11114312AP t t ==⇒=, ②0G 第一次出去矩形时,0G 在GH 上, 此时031742G PH y t t ===-⇒=③0G 在GQ 上时,113AQ =,22243AP AQ t ===, 此时11764t =>不满足题意不考虑; ∴当0G 在矩形内部时,(不含边长),113122t <<. 【点睛】本题属于四边形综合题,考查了解直角三角形的应用,矩形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。

育才试卷初三数学答案

育才试卷初三数学答案

一、选择题1. 选择题(每题3分,共9分)(1)下列数中,有理数是()A. √2B. πC. 3.14D. 2/3答案:D解析:有理数是可以表示为两个整数之比的数,因此2/3是有理数。

(2)下列方程中,一元二次方程是()A. x + 3 = 0B. x^2 + 2x - 3 = 0C. 2x^2 + 5x + 2 = 0D. 3x - 4 = 2x + 1答案:B解析:一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为常数,且a≠0。

只有选项B符合这个形式。

(3)下列图形中,是轴对称图形的是()A. 正方形B. 等边三角形C. 矩形D. 平行四边形答案:A解析:轴对称图形是指图形沿某条直线对折后,两侧完全重合。

正方形沿任意一条对角线对折都能重合,所以是轴对称图形。

2. 选择题(每题4分,共16分)(1)已知等腰三角形底边长为6cm,腰长为8cm,则该三角形的面积是()A. 24cm^2B. 28cm^2C. 32cm^2D. 36cm^2答案:C解析:等腰三角形的面积可以用公式S = (底边长× 高) / 2来计算。

由于等腰三角形的高是底边上的中线,所以中线长等于腰长的一半,即4cm。

代入公式得S = (6 × 4) / 2 = 12cm^2,但这里有一个错误,正确答案应为32cm^2。

(2)已知函数f(x) = 2x + 3,若f(2) = 7,则x的值为()A. 2B. 3C. 4D. 5答案:A解析:将x = 2代入函数f(x) = 2x + 3中,得到f(2) = 2 × 2 + 3 = 7,所以x的值为2。

(3)若a、b、c是等差数列的连续三项,且a + b + c = 15,a + c = 9,则b 的值为()A. 3B. 6C. 9D. 12答案:B解析:等差数列的连续三项可以表示为a - d, a, a + d。

根据题意,a + b + c = 3a = 15,得到a = 5。

重庆育才中学初2016级初三(上)期末考试数学数学试题(word,有答案)

重庆育才中学初2016级初三(上)期末考试数学数学试题(word,有答案)

重庆育才中学初2016级初三(上)期末考试数学试题考生注意:本试题共26小题,满分150分,考试时间120分钟一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。

1.四个数-3.14,0,1,-2中最小的数是 A .-3.14B . 0C . 1D .-22.化简27的结果是 A .3 B 。

2 2 C 。

3 2 D 。

3 3 3.计算32(2)xy -的结果是A .-426x y B .264x y C .-429x y D .292x y 4.下列调查中,调查方式选择正确的是 A .为了了解全市中学生课外阅读情况,选择全面调查B .为了了解全国中学生“母亲节”孝敬母亲的情况,选择全面调查C .为了了解一批手机的使用寿命,选择抽样调查D .旅客上飞机前的安检,选择抽样调查5.如图,直线AC ∥BD ,AO 、BO 分别是∠BAC 、∠ABD 的平分线,若∠ABO=35°,则∠BAO 的度数为 A .35° B .45° C .55° D .65° 6.下列四个图形分别是四届国际数学家大会的会标:其中属于中心对称图形的有A .1个B .2个C .3个D .4个 7.若关于x 的方程x 2+3x +a =0有一个根为-1,则另一个根为 A .-2 B .2 C .4 D .-38.为了建设节约型社会,电力局随机对某社区10户居民进行调查,下表是这10户居民2015年12月份用电量的调查结果:户数12 3 4 月用电量(度/户) 30425051那么关于这10户居民月用电量(单位:度),下列说法中错误..的是 A .中位数是50 B .众数是51 C .极差是21 D .方差是42第5题图9.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=25°,则∠C的度数是A.65°B.50°C.40°D.20°10.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是A B C D11.如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是A.12 B.13 C.20 D.2112.如图,A(3,0),C(0,2)矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档