中考数学题型复习题型三几何图形综合计算类型二折叠问题练习
2024年中考数学压轴突破【几何中的折叠】题型汇编(解析版)
几何中的折叠问题一、单选题1如图,在菱形ABCD中,AD=5,tan B=2,E是AB上一点,将菱形ABCD沿DE折叠,使B、C的对应点分别是B 、C ,当∠BEB =90°时,则点C 到BC的距离是()A.5+5B.25+2C.6D.35【答案】D【分析】过C作CH⊥AD于H,C 作C F⊥AD于F,HD=5,HC=25,再由折叠证明∠BED=∠B ED=135°,∠EDC=∠EDC =45°,△CHD≌△DFC ,C F= HD=5,【C作CH⊥AD于H,C 作C F⊥AD于F,由已知AD=5,tan B=2,=2,∴CD=5,tan∠CDH=HCHD∴设HD=x,HC=2x,∴在Rt△HDC中HC2+HD2=CD2,2x2+x2=52,解得x=5,∴HD=5,HC=25,由折叠可知∠BED=∠B ED,∠EDC=∠EDC ,CD=C D∵∠BEB =90°,∴∠BED=∠B ED=135°,∵AB∥DC,∴∠EDC=180°-∠BED=45°,∴∠EDC=∠EDC =45°∴∠CDC =90°∵∠CHD =∠C AD =90°,∴∠CDH +C DF =90°,∵∠CDH +∠HCD =90°,∴∠C DF =∠HCD ,∴△CHD ≌△DFC ,∴C F =HD =5,∴点C 到BC 的距离是C F +CH =5+25=35.故选:D .【点睛】本题考查了全等三角形的性质和判定、菱形的性质、图形的折叠以及正切定义的应用,解答关键是根据折叠的条件推出∠BED =∠B ED =135°.2如图,将△ABC 折叠,使AC 边落在AB 边上,展开后得到折痕l 与BC 交于点P ,且点P 到AB 的距离为3cm ,点Q 为AC 上任意一点,则PQ 的最小值为()A.2cmB.2.5cmC.3cmD.3.5cm【答案】C【分析】由折叠可得:PA 为∠BAC 的角平分线,根据垂线段最短即可解答.【详解】解:∵将△ABC 折叠,使AC 边落在AB 边上,∴PA 为∠BAC 的角平分线,∵点Q 为AC 上任意一点,∴PQ 的最小值等于点P 到AB 的距离3cm .故选C .【点睛】本题主要考查了折叠的性质、角平分线的性质定理等知识点,掌握角平分线上的点到两边距离相等是解答本题的关键.3如图,在▱ABCD 中,BC =8,AB =AC =45,点E 为BC 边上一点,BE =6,点F 是AB 边上的动点,将△BEF 沿直线EF 折叠得到△GEF ,点B 的对应点为点G ,连接DE ,有下列4个结论:①tan B =2;②DE =10;③当GE ⊥BC 时,EF =32;④若点G 恰好落在线段DE 上时,则AF BF=13.其中正确的是()A.①②③B.②③④C.①③④D.①②④【答案】D【分析】过点A 作AH ⊥BC 于点H ,利用三线和一以及正切的定义,求出tan B ,即可判断①;过点D 作DK ⊥BC 于点K ,利用勾股定理求出DE ,判断②;过点F 作FM ⊥BC 于点M ,证明△EMF 为等腰直角三角形,设EM =FM =x ,三角函数求出BM 的长,利用BE =BM +EM ,求出x 的值,进而求出EF 的长,判断③;证明△AND ∽△CNE ,推出∠ENC =∠ECN ,根据折叠的性质,推出EF ∥CA ,利用平行线分线段成比例,即可得出结论,判断④.【详解】解:①过点A 作AH ⊥BC 于点H ,∵BC =8,AB =AC =45,∴BH =12BC =4,∴AH =AB 2-BH 2=8,∴tan B =AHBH=2;故①正确;②过点D 作DK ⊥BC 于点K ,则:四边形AHKD 为矩形,∴DK =AH =8,HK =AD =BC =8,∵BE =6,∴CE =2,∵CH =12BC =4,∴CK =4,∴EK =CE +CK =6,∴DE =EK 2+DK 2=10;故②正确;③过点F 作FM ⊥BC 于点M ,∵GE ⊥BC ,∴∠BEG =90°,∵翻折,∴∠BEF =∠GEF =45°,∴∠EFM =∠BEF =45°,∴EM =FM ,设EM =FM =x ,∵tan B =FMBM =2,∴BM =12FM =12x ,∴BE =BM +EM =12x +x =6,∴x =4,∴EM =FM =4,∴EF =2EM =42;故③错误;④当点G 恰好落在线段DE 上时,如图:设AC 与DE 交于点N ,∵▱ABCD ,∴AD ∥BC ,∴△AND ∽△CNE ,∴EN DN =CE AD=28=14,∴EN DE =15,∴EN =15DE =2=CE ,∴∠ENC =∠ECN ,∴∠BEN =∠ENC +∠ECN =2∠ECN ,∵翻折,∴∠BEN =2∠BEF ,∴∠BEF =∠ECN ,∴EF ∥AC ,∴AF BF =CE BE=26=13;故④正确,综上:正确的是①②④;故选D .【点睛】本题考查平行四边形的折叠问题,同时考查了解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质,勾股定理.本题的综合性强,难度较大,是中考常见的压轴题,熟练掌握相关性质,添加合适的辅助线,构造特殊三角形,是解题的关键.4如图,AB 是⊙O 的直径,点C 是⊙O 上一点,将劣弧BC 沿弦BC 折叠交直径AB 于点D ,连接CD ,若∠ABC =α0°<α<45° ,则下列式子正确的是()A.sin α=BCABB.sin α=CD ABC.cos α=AD BDD.cos α=CD BC【答案】B【分析】连AC ,由AB 是⊙O 的直径,可知∠ACB =90°,由折叠,AC和CD所在的圆为等圆,可推得AC =CD ,再利用正弦定义求解即可.【详解】解:连AC ,∵AB 是⊙O 的直径,∴∠ACB =90°,由折叠,AC 和CD所在的圆为等圆,又∵∠CBD =∠ABC ,∴AC和CD所对的圆周角相等,∴AC=CD,∴AC =CD ,在Rt △ACB 中,sin α=AC AB =CDAB,故选:B .【点睛】本题考查圆周角定理和圆心角、弦、弧之间的关系以及正弦、余弦定义,解答关键是通过折叠找到公共的圆周角推出等弦.5如图,在平面直角坐标系中,OA 在x 轴正半轴上,OC 在y 轴正半轴上,以OA ,OC 为边构造矩形OABC ,点B 的坐标为8,6 ,D ,E 分别为OA ,BC 的中点,将△ABE 沿AE 折叠,点B 的对应点F 恰好落在CD 上,则点F 的坐标为()A.3213,3013B.3013,3213C.3013,2013D.2013,3013【答案】A【分析】先求得直线CD 的解析式,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m ,-32m +6 ,在Rt △EMF 中,再利用勾股定理得到关于m 的方程,解方程即可.【详解】解:∵点B 的坐标为8,6 ,四边形OABC 是矩形,D ,E 分别为OA ,BC 的中点,∴C 0,6 ,D 4,0 ,E 4,6 ,由折叠的性质可得:EF =BE =4,设直线CD 的解析式为y =kx +b ,则6=b 4k +b =0 ,解得:k =-32b =6,∴直线CD 的解析式为y =-32x +6,过点F 作FM ⊥CE 于点M ,过点F 作FN ⊥OC 于点N ,设点F m,-32m+6,则MF=CN=6--32m+6=32m,EM=4-m,在Rt△EMF中,EM2+MF2=EF2,∴4-m2+32m2=42,解得:m=3213或m=0(不合题意,舍去),当m=3213时,y=-32×3213+6=3013,∴点F的坐标为3213,30 13,故选:A.【点睛】本题是一次函数与几何综合题,考查了求一次函数解析式,勾股定理,翻折的性质,矩形的性质,中点的性质,熟练掌握知识点并灵活运用是解题的关键.6综合与实践课上,李老师让同学们以矩形纸片的折叠为主题开展数学活动.如图,将矩形纸片ABCD对折,折痕为EF,再把点A折叠在折痕EF上,其对应点为A ,折痕为DP,连接A B,若AB=2,BC =3,则tan∠A BF的值为()A.33B.3 C.32D.12【答案】A【分析】先证明EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,AD=A D=3,可得A E=A D2-DE2=32,AF=2-32=12,再利用正切的定义求解即可.【详解】解:∵矩形纸片ABCD对折,折痕为EF,AB=2,BC=3,∴EF=AB=CD=2,CF=BF=DE=32,∠DEA=90°,∠A FB=90°,由折叠可得:AD=A D=3,∴A E=A D2-DE2=32,∴A F=2-32=12,∴tan ∠A BF =1232=33.故选A【点睛】本题考查的是轴对称的性质,矩形的性质,勾股定理的应用,求解锐角的正切,熟记轴对称的性质是解本题的关键.7如图,矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,将顶点D 折叠至线段AP 上一点D ,折痕为EF ,此时,点C 折叠至点C .下列说法中错误的是()A.cos ∠BAP =45B.当AE =53时,D E ⊥AP C.当AE =18-65时,△AD E 是等腰三角形 D.sin ∠DAP =45【答案】C【分析】根据矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质计算判断即可.【详解】∵矩形ABCD 中,AB =2,BC =3,P 是边BC 中点,∴BP =12BC =32,∠B =90°,∴AP =AB 2+BP 2=22+32 2=52,∴cos ∠BAP =AB AP=252=45,故A 正确;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴sin ∠DAP =sin ∠APB =cos ∠BAP =45,故D 正确;设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,sin ∠DAP =45,∵D E ⊥AP ,∴sin ∠DAP =D E AE=x 3-x =45,解得x =43,∴AE =AD -DE =3-x =53,故B 正确;当D E =AE 时,∴x =3-x ,解得x =32;此时D ,A 重合,三角形不存在,不符合题意;当D E =AD 时,过点D 作D N ⊥AD 于点N ,则AN =NE ;∵矩形ABCD ,∴AD ∥BC ,∴∠DAP =∠APB ,∴cos ∠DAP =cos ∠APB =3252=35,设DE =D E =x ,根据题意,得AE =AD -DE =3-x ,D E =AD =x ,∴AN AD=AN x =35,解得AN =35x ;∴AE =AD -DE =3-x =2AN =65x ,解得x =1511;∴AE =65×1511=1811;当AE =AD 时,过点D 作D H ⊥AD 于点H ,设DE =D E =x ,根据题意,得AE =AD =AD -DE =3-x ,∴D H =AD sin ∠DAP =453-x ,AH =AD cos ∠DAP =353-x ,∴HE =AE -AH =3-x -353-x =253-x ,根据勾股定理,得HE 2+D H 2=D E 2,∴253-x 2+453-x2=x 2解得x =65-12;∴AE =3-x =15-65;综上所述,AE =15-65或AE =1811,故C 错误,故选C .【点睛】本题考查了矩形的性质,直角三角形的性质,三角函数,勾股定理,折叠的性质,熟练掌握三角函数,勾股定理,矩形的性质,折叠的性质是解题的关键.8如图,AB 为半圆O 的直径,点O 为圆心,点C 是弧上的一点,沿CB 为折痕折叠BC交AB 于点M ,连接CM ,若点M 为AB 的黄金分割点(BM >AM ),则sin ∠BCM 的值为()A.5-12B.5+12C.5-14D.12【答案】A【分析】过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,根据折叠的性质可得:∠CMB=∠CM′B,BC⊥MM′,从而可得∠BDM=90°,再根据黄金分割的定义可得BMAB =5-12,然后利用直径所对的圆周角是直角可得∠ACB=90°,从而证明A字模型相似三角形△DBM∽△CBA,进而利用相似三角形的性质可得DMAC=BMAB=5-12,最后根据圆内接四边形对角互补以及平角定义定义可得:∠A=∠AMC,从而可得CA=CM,再在Rt△CDM中,利用锐角三角函数的定义进行计算,即可解答.【详解】解:过点M作MD⊥CB,垂足为D,延长MD交半⊙O于点M′,连接CM ,BM′,由折叠得:∠CMB=∠CM′B,BC⊥MM′,∴∠BDM=90°,∵点M为AB的黄金分割点(BM>AM),∴BMAB =5-12,∵AB为半圆O的直径,∴∠ACB=90°,∴∠ACB=∠MDB,∵∠DBM=∠CBA,∴△DBM∽△CBA,∴DMAC =BMAB=5-12,∵四边形ACM′B是半⊙O的内接四边形,∴∠A+∠CM′B=180°,∵∠AMC+∠CMB=180°,∠CMB=∠CM′B,∴∠A=∠AMC,∴CA=CM,在Rt△CDM中,sin∠BCM=DMCM=DMAC=5-12.故选:A.【点睛】本题考查了相似三角形的判定与性质,黄金分割,解直角三角形,翻折变换(折叠问题),圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.二、填空题9如图,将一张矩形纸片ABCD折叠,折痕为EF,折叠后,EC的对应边EH经过点A,CD的对应边HG交BA的延长线于点P.若PA=PG,AH=BE,CD=3,则BC的长为.【答案】43【分析】本题考查了矩形与折叠问题,全等三角形的判定和性质,勾股定理.连接PF ,设BC =2x ,AH =BE=a ,证明Rt △PAF ≌Rt △PGF HL ,求得FA =FG =FD =x ,由折叠的性质求得BE =12x ,在Rt △ABE中,利用勾股定理列式计算,即可求解.【详解】解:连接PF ,设BC =2x ,AH =BE =a ,由矩形的性质和折叠的性质知FG =FD ,∠G =∠FAP =90°,AB =CD =3,AD =BC ,∵PA =PG ,PF =PF ,∴Rt △PAF ≌Rt △PGF HL ,∴FA =FG =FD =12AD =12BC =x ,由矩形的性质知:AD ∥BC ∴∠AFE =∠FEC ,折叠的性质知:∠FEA =∠FEC ,∴∠FEA =∠AFE ,∴AE =FA =x ,由折叠的性质知EC =EH =AE +AH =x +a ,∴BC =BE +EC =a +x +a =2x ,∴a =12x ,即BE =12x ,在Rt △ABE 中,AB 2+BE 2=AE 2,即32+12x 2=x 2,解得x =23,∴BC =2x =43,故答案为:4310如图,在矩形ABCD 中,AB =3,AD =6,M 为AD 的中点,N 为BC 边上一动点,把矩形沿MN 折叠,点A ,B 的对应点分别为A ,B ,连接AA '并延长交射线CD 于点P ,交MN 于点O ,当N 恰好运动到BC 的三等分点处时,CP 的长为.【答案】1或5【分析】分两种情况:①当CN =2BN 时.过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形;②当BN =2CN 时,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,根据矩形的性质得GM =AM -AG =1.再由折叠的性质可得∠AOM =90°,然后根据相似三角形的判定与性质可得答案.【详解】解:①当CN =2BN 时.如图1,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =2.∵M 为AD 的中点,∴AM =3,∴GM =AM -AG =1.由折叠A 与A 对应,∴∠AOM =90°,∵∠MAO +∠APD =90°,∠MAO +∠AMO =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∵∠NGM =∠ADP =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD -DP =1.②当BN =2CN 时,如图2,过点N 作NG ⊥AD 于点G ,则四边形ABNG 为矩形,∴NG =AB =3,AG =BN =4.∵M 为AD 的中点,∴AM =3,∴GM =AG -AM =1.由折叠A 与A 对应,∴∠AOM =90°∠MAO +∠AMO =90°,∠MAO +∠APD =90°,∴∠AMO =∠APD ,即∠GMN =∠APD .又∠ADP =∠NGM =90°,∴△ADP ∽△NGM ,∴NG AD=GM DP =12,解得DP =2,∴CP =CD +DP =5.综上,CP 的长为1或5.故答案为:1或5.【点睛】此题考查的是翻折变换-折叠问题、矩形的性质,正确作出辅助线是解决此题的关键.11如图,DE 平分等边△ABC 的面积,折叠△BDE 得到△FDE ,AC 分别与DF ,EF 相交于G ,H 两点.若DG =m ,EH =n ,用含m ,n 的式子表示GH 的长是.【答案】m 2+n 2【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60°,从而可得S △FHG =S △ADG +S △CHE ,再根据相似三角形的判定可证△ADG ∽△FHG ,△CHE ∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG =DG GH2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,然后将两个等式相加即可得.【详解】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,∵折叠△BDE 得到△FDE ,∴△BDE ≌△FDE ,∴S △BDE =S △FDE ,∠F =∠B =60°=∠A =∠C ,∵DE 平分等边△ABC 的面积,∴S 梯形ACED =S △BDE =S △FDE ,∴S △FHG =S △ADG +S △CHE ,又∵∠AGD =∠FGH ,∠CHE =∠FHG ,∴△ADG ∽△FHG ,△CHE ∽△FHG ,∴S △ADG S △FHG =DG GH 2=m 2GH 2,S △CHE S △FHG =EH GH 2=n 2GH 2,∴S △ADG S △FHG +S △CHE S △FHG =m 2+n 2GH 2=S △ADG +S △CHE S △FHG =1,∴GH 2=m 2+n 2,解得GH =m 2+n 2或GH =-m 2+n 2(不符合题意,舍去),故答案为:m 2+n 2.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.12在矩形ABCD 中,点E 为AD 边上一点(不与端点重合),连接BE ,将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,连接并延长EF ,BF 分别交BC ,CD 于G ,H 两点.若BA =6,BC =8,FH =CH ,则AE 的长为.【答案】92【分析】连接GH ,证明Rt △FHG ≅Rt △CHG (HL ),可得FG =CG ,设FG =CG =x ,在Rt △BFG 中,有62+x 2=(8-x )2,可解得CG =FG =74,知BG =254,由矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,得∠AEB =∠FEB ,可得∠FEB =∠EBG ,EG =BG =254,故EF =EG -FG =92,从而得到AE =92.【详解】连接GH ,如图:∵四边形ABCD 是矩形,∴∠A =∠C =90°,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴BF =AB =6,AE =EF ,∠BFE =∠A =90°,∴∠GFH =90°=∠C ,∵GH =GH ,FH =CH ,∴Rt △FHG ≅Rt △CHG (HL ),∴FG =CG ,设FG =CG =x ,则BG =BC -CG =8-x在Rt △BFG 中,BF 2+FG 2=BG 2∴62+x 2=(8-x )2,解得:x =74,∴CG =FG =74,∴BG =8-x =25x,∵将矩形ABCD 沿BE 折叠,折叠后点A 与点F 重合,∴∠AEB =∠FEB ,∵AD ⎳BC ,∴∠AEB =∠EBG ,∴∠FEB =∠EBG ,∴EG =BG =254,∴AE =92,故答案为:92.【点睛】本题考查矩形中的翻折变换,涉及三角形全等的判定与性质,勾股定理及应用,掌握相关知识是解题的关键.13如图,在矩形ABCD 中,AD =23,CD =6,E 是AB 的中点,F 是线段BC 上的一点,连接EF ,把△BEF 沿EF 折叠,使点B 落在点G 处,连接DG ,BG 的延长线交线段CD 于点H .给出下列判断:①∠BAC =30°;②△EBF ∽△BCH ;③当∠EGD =90°时,DG 的长度是23 ④线段DG 长度的最小值是21-3;⑤当点G 落在矩形ABCD 的对角线上,BG 的长度是3或33;其中正确的是.(写出所有正确判断的序号)【答案】①②③【分析】利用正切函数的定义即可判断①正确;利用同角的余角相等推出∠HBC =∠BEF ,可判断②正确;推出点D 、G 、F 三点共线,证明Rt △EAD ≌Rt △EGD HL ,可判断③正确;当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,由于F 是线段BC 上的一点,不存在D 、G 、E 三点共线,可判断④不正确;证明△BGE 是等边三角形,可判断⑤.【详解】解:连接AC ,∵矩形ABCD 中,AD =23,CD =6,∴tan ∠ACD =AD CD=236=33,∴∠ACD =30°,∴∠BAC =30°,故①正确;由折叠的性质知EF 是BG 的垂直平分线,∴∠HBC +∠BFE =90°=∠BEF +∠BFE ,∴∠HBC =∠BEF ,∴△EBF ∽△BCH ,故②正确;由折叠的性质知∠EGF =∠ABC =90°,∵∠EGD =90°,∴点D 、G 、F 三点共线,连接DE ,在Rt △EAD 和Rt △EGD 中,AE =BE =EG ,DE =DE ,∴Rt △EAD ≌Rt △EGD HL ,∴DG =AD =23,故③正确;∵AE =BE =EG ,∴点A 、G 、B 都在以E 为圆心,3为半径的圆上,DE =23 2+32=21,∴当点D 、G 、E 三点共线,线段DG 长度的最小值是21-3,但F 是线段BC 上的一点,∴D 、G 、E 三点不可能共线,故④不正确;当点G 落在矩形ABCD 的对角线AC 上时,由折叠的性质知BE =EG ,∵E 是AB 的中点,由①知∠BAC =30°,∴BE =EG =EA ,∠BAC =∠EGA =30°,∴∠BEG =∠BAC +∠EGA =60°,∴△BGE 是等边三角形,∴BG 的长度是3;由于F 是线段BC 上的一点,则点G 不会落在矩形ABCD 的对角线BD 上,故⑤不正确;综上,①②③说法正确,故答案为:①②③.【点睛】本题考查了矩形与折叠问题,正切函数,相似三角形的判定,勾股定理等知识,解答本题的关键是明确题意,找出所求问题需要的条件.14如图,将矩形ABCD沿BE折叠,点A与点A 重合,连接EA 并延长分别交BD、BC于点G、F,且BG=BF.(1)若∠AEB=55°,则∠GBF=;(2)若AB=3,BC=4,则ED=.【答案】40°/40度5-10/-10+5【分析】(1)先证明∠DEF=180°-2×55°=70°,∠BFG=∠DEF=70°,利用BG=BF,可得答案;(2)如图,过F作FQ⊥AD于Q,可得CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,则∠DEG=∠DGE,设DE=DG=x,而BD=32+42=5,则BG=BF=5-x,CF=4-5-x=1,再求解EF=12+32=10,由折叠可得:A E=AE=4 =x-1,EQ=x-x-1-x,AF=10-4+x,利用cos∠BFA=cos∠FEQ,再建立方程求解即可.【详解】解:(1)∵∠AEB=55°,结合折叠可得:∠AEB=∠A EB=55°,∴∠DEF=180°-2×55°=70°,∵矩形ABCD,∴AD∥BC,∴∠BFG=∠DEF=70°,∵BG=BF,∴∠BGF=∠BFG=70°;∴∠GBF=180°-2×70°=40°;故答案为:40°.(2)如图,过F作FQ⊥AD于Q,∴四边形FCDQ是矩形,则CF=DQ,FQ=CD=3,同理可得:∠BGF=∠BFG,∠DEG=∠BFG,而∠DGE=∠BGF,∴∠DEG=∠DGE,∴设DE=DG=x,∵矩形ABCD,AB=3,BC=4,∴BD=32+42=5,∴BG=BF=5-x,∴CF=4-5-x=x-1,∴EQ=x-x-1=1,∴EF=12+32=10,由折叠可得:A E=AE=4-x,∴AF =10-4+x,∵∠QEF=∠BFA ,∴cos∠BFA =cos∠FEQ,∴EQEF=A FBF,∴110=10-4+x5-x,解得:x=5-10,经检验符合题意;∴DE=5-10.故答案为:5-10.【点睛】本题考查的是轴对称的性质,矩形的性质与判定,勾股定理的应用,锐角三角函数的应用,等腰三角形的判定与性质,熟练的利用以上知识解题是关键.三、解答题15综合与实践课上,老师让同学们以“正方形的折叠”为主题开展实践活动.(1)操作判断操作一:如图(1),正方形纸片ABCD,点E是BC边上(点E不与点B,C重合)任意一点,沿AE折叠△ABE到△AFE,如图(2)所示;操作二:将图(2)沿过点F的直线折叠,使点E的对称点G落在AE上,得到折痕MN,点C的对称点记为H,如图(3)所示;操作三:将纸片展平,连接BM,如图(4)所示.根据以上操作,回答下列问题:①B,M,N三点(填“在”或“不在”)一条直线上;②AE和BN的位置关系是,数量关系是;③如图(5),连接AN,改变点E在BC上的位置,(填“存在”或“不存在”)点E,使AN平分∠DAE.(2)迁移探究苏钰同学将正方形纸片换成矩形纸片ABCD,AB=4,BC=6,按照(1)中的方式操作,得到图(6)或图(7).请完成下列探究:①当点N在CD上时,如图(6),BE和CN有何数量关系?并说明理由;②当DN的长为1时,请直接写出BE的长.【答案】(1)①在,②AE⊥BN,相等;③不存在;(2)①BECN =23,理由见解析;②BE=2或165.【分析】(1)①E的对称点为E ,BF⊥EE ,MF⊥EE ,即可判断;②由①AE⊥BN,由同角的余角相等得∠BAE=∠CBN,由AAS可判定△ABE≌△BCN,由全等三角形的性质即可得证;③由AAS可判定△DAN≌△MAN,由全等三角形的性质得AM=AD,等量代换得AB=AM,与AB>AM矛盾,即可得证;(2)①由(1)中的②可判定△ABE∽△BCN,由三角形相似的性质即可求解;②当N在CD上时,△ABE∽△BCN,由三角形相似的性质即可求解;当N在AD上时,同理可判定△ABE∽△NAB,由三角形相似的性质即可求解.【详解】(1)解:①E的对称点为E ,∴BF⊥EE ,MF⊥EE ,∴B、F、M共线,故答案为:在;②由①知:B、F、M共线,N在FM上,∴AE⊥BN,∴∠AMB=90°,∴∠ABM+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=∠BCN=90°,AB=BC,∴∠CBN+∠ABM=90°,∴∠BAE=∠CBN,在△ABE和△BCN中,∠BAE=∠CBN ∠ABC=∠BCN AB=BC,∴△ABE≌△BCN(AAS),∴AE=BN,故答案为:相等;③不存在,理由如下:假如存在,∵AN平分∠DAE,∴∠DAN=∠MAN,∵四边形ABCD是正方形,AM⊥BN,∴∠D=∠AMN=90°,在△DAN和△MAN中,∠D=∠AMN∠DAN=∠MAN AN=ANN∴△DAN≌△MAN(AAS),∴AM=AD,∵AD=AB,∴AB=AM,∵AB是Rt△ABM的斜边,∴AB>AM,∴AB =AM 与AB >AM 矛盾,故假设不成立,所以答案为:不存在;(2)解:①BE CN=23,理由如下:由(1)中的②得:∠BAE =∠CBN ,∠ABE =∠C =90°,∴△ABE ∽△BCN ,∴BE CN =AB BC=23;②当N 在CD 上时,CN =CD -DN =3,由①知:△ABE ∽△BCN ,∴BE CN =AB BC =23,∴BE =23CN =2,当N 在AD 上时,AN =AD -DN =5,∵∠BAE =∠CBN =∠ANB ,∠ABE =∠BAN =90°,∴△ABE ∽△NAB ,∴BE AB =AB AN ,∴BE 4=45,∴BE =165,综上所述:BE =2或165.【点睛】本题考查了折叠的性质,矩形的性质,正方形的性质,全等三角形的判定及性质,三角形相似的判定及性质,掌握相关的判定方法及性质,“十字架”典型问题的解法是解题的关键.16在矩形ABCD 中,AD =2AB =8,点P 是边CD 上的一个动点,将△BPC 沿直线BP 折叠得到△BPC .(1)如图1,当点P 与点D 重合时,BC ′与AD 交于点E ,求BE 的长度;(2)当点P 为CD 的三等分点时,直线BC ′与直线AD 相交于点E ,求DE 的长度;(3)如图2,取AB 中点F ,连接DF ,若点C ′恰好落在DF 边上时,试判断四边形BFDP 的形状,并说明理由.【答案】(1)BE 的长度为5;(2)DE 的长度为113或83;(3)四边形BFDP 是平行四边形(理由见解析)【分析】本题利用了折叠的知识(折叠后的两个图形全等)以及矩形的性质(矩形的对边相等,对角相等),以及平行四边形的判定有关知识.(1)利用矩形性质和折叠的性质可推出BE=DE,设BE=x,则DE=x,AE=8-x,利用勾股定理建立方程求解即可得出答案;(2)设DE=m,则AE=m+8,设BE交CD于G,可证得△AEB∽△CBG,得出CGAB =BCAE,即CG4=8m+8,求得CG=32m+8,分两种情况:当PC=13CD=43时,当PC=23CD=83时,分别添加辅助线构造相似三角形,利用相似三角形性质建立方程求解即可得出答案;(3)由中点定义可得AF=BF,过点C 作C M∥AD交AB于点M,过点F作FN⊥BC 于点N,由矩形性质和翻折的性质可得∠C BP=∠CBP=12∠C BC,可证得△FC M∽△FDA,得出FMAF=C MAD,再证得△BFN∽△BC M,进而推出FM=FN,利用角平分线的判定定理可得∠BC F=∠MC F=12∠BC M推出∠BC F=∠C BP,再由平行线的判定定理可得DF∥BP,运用平行四边形的判定定理即可证得四边形BFDP是平行四边形.【点睛】点睛片段【详解】(1)解:∵AD=2AB=8,∴AB=4,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠ADB=∠DBC,由折叠得:∠DBC=∠DBC ,∴∠ADB=∠DBC ,即∠EDB=∠EBD,∴BE=DE,设BE=x,则DE=x,AE=8-x,在Rt△ABE中,AE2+AB2=BE2,∴(8-x)2+42=x2,解得:x=5,∴BE的长度为5;(2)设DE=m,则AE=m+8,设BE交CD于G,∵四边形ABCD是矩形,∴BC=AD=8,CD=AB=4,AD∥BC,∠A=∠BCG=90°,∴∠AEB=∠CBG,∴△AEB∽△CBG,∴CG AB =BCAE,即CG4=8m+8,∴CG=32m+8,当PC=13CD=43时,BP=BC2+PC2=82+432=4373,连接CC ,过点C 作C H⊥CD于点H,如图,∵将△BPC沿直线BP折叠得到△BPC ,∴CC ⊥BP,△BPC ≌△BPC,∴S四边形BCPC =2S△BPC,∴1BP⋅CC =2×1BC⋅PC,即12×4373CC =2×12×8×43,∴CC =163737,∵∠C CH +∠BPC =90°,∠PBC +∠BPC =90°,∴∠C CH =∠PBC ,∵∠CHC =∠BCP =90°,∴△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 43=CH 8=1637374373,∴C H =1637,CH =9637,∵∠C HG =∠EDG =90°,∴C H ∥AE ,∴∠GC ′H =∠AEB ,∴△C GH ∽△EBA ,∴GH AB =C H AE ,即GH 4=1637m +8,∴GH =6437(m +8),∵CH +GH =CG ,∴9637+6437(m +8)=32m +8,解得:m =113,经检验,m =113是该方程的解,∴DE =113;当PC =23CD =83时,BP =BC 2+PC 2=82+83 2=8103,连接CC ,过点C 作C H ⊥CD 交CD 的延长线于点H ,作C G ⊥AD 于点G ,如图,同理可得:CC =8105,同理△CC H ∽△BPC ,∴C H PC =CH BC =CC BP ,即CH 83=CH 8=81058103,∴C H =85,CH =245,∴DH =CH -CD =245-4=45,∵∠HDG =∠H =∠C GD =90°,∴四边形DGC H 是矩形,∴C G =DH =45,DG =C H =85,∵∠C GE =∠A =90°,∠C EG =∠BEA ,∴△C EG ∽△BEA ,∴EG AE =C G AB =454=15,∴AE =5EG ,∵AE +EG =AG =AD -DG =8-85=325,∴5EG +EG =325,∴EG =1615,∴DE =DG +EG =85+1615=83,综上所述,DE 的长度为113或83;(3)四边形BFDP 是平行四边形,理由如下:∵点F 是AB 的中点,∴AF =BF ,过点C 作C M ∥AD 交AB 于点M ,过点F 作FN ⊥BC 于点N ,如图,则∠FC M =∠ADF ,∵四边形ABCD 是矩形,∴AD ∥BC ,AB ∥CD ,∴C M ∥BC ,∴∠BC M =∠C BC ,由翻折得:∠C BP =∠CBP =12∠C BC ,BC =BC =8,∵C M ∥AD ,∴△FC M ∽△FDA ,∴FM AF =C M AD ,∴FM BF =C MBC ,∵∠BNF =∠BMC =90°,∠FBN =∠C BM ,∴△BFN ∼△BC M∴FN BF =C MBC ,∴FM BF =FN BF ,∴FM =FN ,又∵FM ⊥C M ,FN ⊥C B ,∴∠BC F =∠MC F =12∠BC M ,∴∠BC F =∠C BP ,∴DF ∥BP ,∴四边形BFDP 是平行四边形.17矩形ABCD 中,AB =6,AD =8,点E 为对角线AC 上一点,过点E 作EF ⊥AD 于点F ,EG ⊥AC 交边BC 于点G ,将△AEF 沿AC 折叠得△AEH ,连接HG .(1)如图1,若点H 落在边BC 上,求证:AH =CH ;(2)如图2,若A ,H ,G 三点在同一条直线上,求HG 的长;(3)若△EHG 是以EG 为腰的等腰三角形,求EF 的长.【答案】(1)见解析(2)HG =94(3)EF =103或4【分析】(1)根据矩形的性质和翻折的性质证明∠ACH =∠HAC ,即可解决问题;(2)结合(1)的方法AG =CG ,解Rt △AEG ,Rt △HEG 分别求得EG ,HG ;(3)当△EHG 是以EG 为腰的等腰三角形时,分两种情况:①当EG =EH ,②当EG =HG ,结合(2)的方法,利用全等三角形的判定与性质和相似三角形的判定与性质即可解决问题.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC .∴∠DAE =∠ACH .∵△AHE 由△AFE 折叠得到,∴∠HAC =∠DAE ,∴∠HAC =∠ACH ,∴AH =CH ;(2)∵矩形ABCD 中,AB =6,AD =8.∴AC =10.当A ,H ,G 三点在同一条直线上时,∠EHG =90°.同(1)可得AG =CG .又∵EG ⊥AC ,∴AE =12AC =5.∵∠AEH +∠HEG =90°,∠AEH +∠HAE =90°,∴∠HEG =∠HAC =∠CAD .∵在Rt △AEG 中,tan ∠EAG =EG AE =34,∴EG =34AE =154.∵在Rt △HEG 中,sin ∠HEG =HG EG =35,∴HG =35EG =94.(3)①若EH =EG ,如图3①设EF =EH =EG =x ,∵EF ⊥AD ,∴EF ∥CD ,∴△AEF ∽△ACD ,∴AE AC =AF AD =EF CD ∴AE 10=AF 8=x 6∴AE =53x ,AF =43x ,∴AH =AF =43x ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,EH =EH ,∴△AHE ≌△CGE AAS ,∴AH =CE ,∴43x =10-53x ,∴x =103∴EF =103.②若HG =GE ,如图3②.(图3②)过点G 作GM ⊥HE ,设EF =a ,∵EC =10-53a ,∵∠AHE =∠CEG =90°,∠HAE =∠GCE ,∴△AHE ∽△CGE ,∴EG =34EC =3410-53a =152-54a ,∵∠GME =∠EHA ,∠MGE =90°-∠MEG =∠HAE ,∴△MGE ∽△HEA ,∴ME AH =EG AE ,∵AH AE =AD AC =45,∴AH =45AE ,∴ME =45EG =45152-54a =6-a ,∴HE =2ME =12-2a =EF ,∴12-2a =a ,∴a =4,∴EF =4,综上,EF =103或4.【点睛】本题考查了矩形的性质,解直角三角形,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的性质,翻折的性质,解决本题的关键是综合运用以上知识.18综合与实践【问题情境】数学活动课上,老师准备了若干张正方形纸片ABCD,组织同学们进行折纸探究活动.【初步尝试】把正方形对折,折痕为EF,然后展开,沿过点A与点E所在的直线折叠,点B落在点B 处,连接 B C,如图1,请直接写出∠AEB 与∠ECB 的数量关系.【能力提升】把正方形对折,折痕为EF,然后展开,沿过点A与BE上的点G所在的直线折叠,使点B落在EF上的点P处,连接PD,如图2,猜想∠APD的度数,并说明理由.【拓展延伸】在图2的条件下,作点A关于直线CP的对称点A ,连接PA ,BA ,AC,如图3,求∠PA B的度数.【答案】初步尝试:∠AEB =∠ECB ;能力提升:猜想:∠APD=60°,理由见解析;拓展延伸:∠PA B=15°【分析】初步尝试:连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,根据等边对等角的性质和三角形内角和定理,得出∠BB C=90°,推出AE∥CB ,即可得出答案;能力提升:根据正方形的性质和折叠的性质,易证△AFP≌△DFP SAS,从而证明△APD是等边三角形,即可得到答案;拓展延伸:连接A C、AA ,由(2)得△APD是等边三角形,进而得出∠PDC=30°,再结合等边对等角的性质和三角形内角和定理,求得∠PAC=15°,∠ACP=30°,由对称性质得:AC=A C,∠ACP=∠A CP=30°,证明△AA B≌△CA B SSS,得到∠CA B=30°,再由∠CA P=∠CAP=15°,即可求出∠PA B的度数.【详解】解:初步尝试:∠AEB =∠ECB ,理由如下:如图,连接BB ,由折叠的性质可知,BE=CE,BE=BE ,∠AEB=∠AEB ,BB ⊥AE,∴BE=CE=BE ,∴∠EBB =∠EB B,∠ECB =∠EB C,∵∠EBB +∠EB B+∠EB C+∠ECB =2∠EB B+∠EB C=180°,∴∠BB C=90°,即BB ⊥CB ,∴AE∥CB ,∴∠AEB=∠ECB ,∴∠AEB =∠ECB ;解:能力提升:猜想:∠APD=60°,理由如下:理由:∵四边形ABCD是正方形,∴AB=AD,∠ADC=90°,由折叠性质可得:AF =DF ,EF ⊥AD ,AB =AP ,在△AFP 和△DFP 中,AF =DF∠AFP =∠DFP =90°FP =FP,∴△AFP ≌△DFP SAS ,∴AP =PD ,∴AP =AD =PD ,∴△APD 是等边三角形,∴∠APD =60°;解:拓展延伸:如图,连接A C 、AA ,由(2)得△APD 是等边三角形,∴∠PAD =∠PDA =∠APD =60°,AP =DP =AD ,∵∠ADC =90°,∴∠PDC =30°,又∵PD =AD =DC ,∴∠DPC =∠DCP =12×180°-30° =75°,∠DAC =∠DCA =45°,∴∠PAC =∠PAD -∠DAC =60°-45°=15°,∠ACP =∠DCP -∠DCA =75°-45°=30°,由对称性质得:AC =A C ,∠ACP =∠A CP =30°,∴∠ACA =60°,∴△ACA 是等边三角形,在△AA B 与△CA B 中,A A =A CA B =A B AB =BC,∴△AA B ≌△CA B SSS ,∴∠AA B =∠CA B =12∠AA C =30°,又∵∠CA P =∠CAP =15°,∴∠PA B =∠CA B -∠CA P =15°.【点睛】本题考查了折叠的性质,等腰三角形的判定和性质,三角形内角和定理,正方形的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,作辅助线构造全等三角形是解题关键.19综合与实践数学活动课上,数学老师以“矩形纸片的折叠”为课题开展数学活动:将矩形纸片ABCD 对折,使得点A ,D 重合,点B ,C 重合,折痕为EF ,展开后沿过点B 的直线再次折叠纸片,点A 的对应点为点N ,折痕为BM . (1)如图(1)若AB =BC ,则当点N 落在EF 上时,BF 和BN 的数量关系是,∠NBF 的度数为.思考探究:(2)在AB=BC的条件下进一步进行探究,将△BMN沿BN所在的直线折叠,点M的对应点为点M .当点M 落在CD上时,如图(2),设BN,BM 分别交EF于点J,K.若DM =4,请求出三角形BJK的面积.开放拓展:(3)如图(3),在矩形纸片ABCD中,AB=2,AD=4,将纸片沿过点B的直线折叠,折痕为BM,点A的对应点为点N,展开后再将四边形ABNM沿BN所在的直线折叠,点A的对应点为点P,点M的对应点为点M ,连接CP,DP,若PC=PD,请直接写出AM的长.(温馨提示:12+3=2-3,12+1=2-1)【答案】(1)BF=12BN,60°(2)2+2(3)4-23【分析】(1)根据折叠的性质得:AB=BN,BF=CF=12BC,根据直角三角形的性质可得∠BNF=30°,由直角三角形的两锐角互余可得结论;(2)由折叠得:BM=BM ,证明Rt△ABM≌Rt△CBM (HL),可知AM=CM ,∠ABM=∠CBM ,得△BFJ是等腰直角三角形,再证明四边形ABCD是正方形,分别计算BF=FJ=12BC=2+2,JK=2,由三角形面积公式可得结论;(3)如图(3),过点P作PG⊥BC于G,PH⊥CD于H,根据等腰三角形的三线合一可得DH=CH=12CD=12AB=1,由折叠的性质和矩形的性质可得PG=CH=1,BN=BP=AB=2,∠NBP=∠ABN,设PL=x,则M L=2x,M P=3x,根据NL=233=NM +M L,列方程可解答.【详解】(1)解:由折叠得:AB=BN,BF=CF,∠BFN=90°,∵AB=BC,∴BF=12BN,∴∠BNF=30°,∴∠NBF=90°-30°=60°,故答案为:BF=12BN,60°;(2)由折叠得:BM=BM ,∵四边形ABCD是矩形,∴∠A=∠C=90°,∵AB=BC,∴Rt△ABM≌Rt△CBM (HL),∴AM=CM ,∠ABM=∠CBM ,∴∠ABM=∠MBN=∠NBM =∠CBM ,∴∠FBJ=45°,∴△BFJ是等腰直角三角形,∵四边形ABCD是矩形,AB=BC,∴矩形ABCD是正方形,∴AD=CD,∠D=90°,∴DM=DM =4,∴MM =42,∵AM=MN=M N=CM ,∴CM =22,∴BC =CD =4+22,∴BF =FC =2+2,∵FK ∥CM ,∴BK =KM ,∴FK =12CM =2,∵△BFJ 是等腰直角三角形,∴BF =FJ =12BC =2+2,∴JK =2+2-2=2,∴S △BJK =12⋅JK ⋅BF =12×2×(2+2)=2+2;(3)如图,过点P 作PG ⊥BC 于G ,PH ⊥CD 于H ,∵PC =PD ,∴DH =CH =12CD =12AB =1,∵∠PGC =∠PHC =∠BCH =90°,∵四边形PGCH 是矩形,∴PG =CH =1,由折叠得:BN =BP =AB =2,∠NBP =∠ABN ,Rt △BPG 中,∠PBG =30°,∴∠ABN =∠NBP =90°-30°2=30°,延长NM ,BP 交于L ,Rt △BNL 中,BN =2,∠NBL =30°,∴NL =2×33=233,Rt △M PL 中,∠M LP =90°-30°=60°,∴∠PM L =30°,设PL =x ,则M L =2x ,M P =3x ,∵NL =233=NM +M L ,∴3x +2x =233,∴x =433-2,∴AM =3x =3×433-2 =4-23.【点睛】本题是四边形的综合题,考查了折叠的性质,含30°角的直角三角形的性质,矩形的性质和判定,正方形的判定和性质,三角函数等知识,掌握折叠的性质和正确作辅助线是解题的关键,题目具有一定的综合性,比较新颖.20综合与实践综合与实践课上,老师带领同学们以“矩形和平行四边形的折叠”为主题开展数学活动.(1)操作判断如图1,先用对折的方式确定矩形ABCD 的边AB 的中点E ,再沿DE 折叠,点A 落在点F 处,把纸片展平,延长DF ,与BC 交点为G .。
河南数学中考题型汇总 几何探究题题型练习含答案
河南数学中考题型汇总几何探究题题型练习含答案类型 1 实践操作类探究题角度1 折叠类1.[2022河南]综合与实践综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.(1)操作判断操作一:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;操作二:在AD上选一点P,沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM,BM.根据以上操作,当点M在EF上时,写出图(1)中一个30°的角:.(2)迁移探究小华将矩形纸片换成正方形纸片,继续探究,过程如下.将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q,连接BQ.①如图(2),当点M在EF上时,∠MBQ= °,∠CBQ= °;②改变点P在AD上的位置(点P不与点A,D重合),如图(3),判断∠MBQ与∠CBQ的数量关系,并说明理由.(3)拓展应用在(2)的探究中,已知正方形纸片ABCD的边长为8 cm,当FQ=1 cm时,直接写出AP 的长.图(1)图(2)图(3)2.[2022河南省实验模拟]问题情境数学活动课上,同学们开展了以折叠为主题的探究活动,如图(1),已知矩形纸片ABCD(AD>AB),其中宽AB=8.动手实践(1)如图(1),威威同学将矩形纸片ABCD折叠,点A落在BC边上的点M处,折痕为BN,连接MN,然后将纸片展平,得到四边形ABMN,则折痕BN的长为;探究发现(2)如图(2),胜胜同学将图(1)中的四边形ABMN剪下,取AN边的中点E,将△ABE 沿BE折叠得到△A'BE,延长BA'交MN于点F.点Q为BM边的中点,点P是MN边上一动点,将△MQP沿PQ折叠,当点M的对应点M'落在线段BF上时,求此时tan∠PQM的值;反思提升(3)明明同学改变图(2)中点Q的位置,即点Q为BM边上一动点,点P仍是MN边上一动点,按照(2)中方式折叠△MQP,使点M'落在线段BF上,明明同学不断改变点Q 的位置,发现在某一位置∠QPM与(2)中的∠PQM相等,请直接写出此时BQ的长.图(1)图(2)备用图3.综合与实践——探究平行四边形折叠中的数学问题问题情境已知▱ABCD中,ÐA为锐角,AB<AD,点E,F分别是AB,CD边的中点,点G,H分别是AD,BC边上的点,分别沿EG和FH折叠▱ABCD,点A,C的对应点分别为点A',C'.操作分析(1)如图(1),点A'与点B重合,点C'与点D重合.①四边形BHDG 平行四边形(填“是”或“不是”).②当▱ABCD满足某个条件时,四边形BHDG能成为矩形.这个条件可以是.(2)点A',C'均落在▱ABCD内部(含边界),连接A'H,C'G,若AG=CH,则四边形A'HC'G是平行四边形吗?若是,请就图(2)进行证明;若不是,请说明理由.拓展探究(3)在(2)的条件下,若ÐA=60°,AD=2AB=8,且A'G与▱ABCD的一边平行,则此时四边形A'HC'G的面积为.图(1)图(2)备用图4.综合与实践数学活动课上,张老师找来若干张等宽的矩形纸条,让学生们进行折纸探究. (1)希望小组将如图(1)所示的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB边上的点D'处,折痕为AE.填空:图(1)中四边形ADED'的形状是.(2)智慧小组准备了一张如图(2)所示的长、宽之比为3∶2的矩形纸片ABCD,用希望小组的方法折叠纸片,得到四边形ADED',接着沿过点B的直线折叠纸片,使点C落在ED'上的点M处,折痕为BF.求∠MBC的度数.(3)勤奋小组拿着一张如图(3)所示长为4,宽为2的矩形纸片ABCD,利用希望小组的方法折叠纸片,得到四边形ADED',在CE上取一点F(不与点C,E重合),沿BF 折叠△BCF,点C的对应点为N,射线FN交直线AB于点H.①HF与HB的数量关系为.②当射线FN经过△AED'的直角边的中点时,直接写出FC的长.图(1)图(2)图(3)5.综合与实践问题情境数学活动课上,老师让同学们以“矩形纸片的折叠”为主题,开展数学活动,如图(1),在矩形ABCD中,AB=8,BC=4.观察发现(1)如图(2),智慧小组连接对角线BD,将矩形纸片ABCD沿直线BD折叠,使点A落在点P的位置,PB交CD于点Q,连接AP.直接写出图中所有的等腰三角形:.(不再添加字母)探究证明(2)求实小组在智慧小组的启发下,又对矩形纸片ABCD进行了如下操作,并对其中所产生的问题进行了探究:如图(3),沿过点A的直线折叠,使点B的对应点F 落在CD上,折痕交BC于点E,过点F作FG∥BC交AE于点G,连接BG.①小组成员发现四边形BEFG是特殊四边形.请你判断四边形BEFG的形状,并说明理由.②小组成员通过计算求得四边形BEFG的面积.请你直接写出这个面积:.探索拓广(3)参照上面的探究方式,对图(1)进行一次折叠操作,使点B的对应点B'落在BD 的三等分点上,设折痕与AB交于点N.请直接写出BN的长.图(1)图(2)图(3)角度2 旋转类6.综合与实践——图形变换中的数学问题问题情境数学活动课上,老师出示了一个问题:如图(1),已知正方形ABCD、矩形BCEF,点E,F分别在边CD,AB上,且BF=k(3<k<5),BC=5.将矩形BCEF绕点B顺时针旋转得到矩形BGHK,点G,H,K分别是点C,E,F的对应点,如图(2).图(1)图(2)图(3)图(4)同学们通过小组合作,提出下列数学问题,请你解答.(1)在图(2)中,连接BE,BH,EH,CG,得到图(3),可以发现在旋转过程中存在一个三角形始终与△BCG相似,这个三角形是,它与△BCG的相似比为(用含k的式子表示).(2)如图(4),矩形BGHK的顶点K恰好落在正方形ABCD的对角线AC上,KH交DC 的延长线于点T.求证:BK=KT.(3)在旋转过程中,连接CH,CK.若k=23,则当CH=CK时,直接写出CK的长.备用图(1)备用图(2)角度3 平移类7.综合与实践问题背景如图(1),在矩形ABCD中,AB=10,BC=8,点E为边BC上一点,沿直线DE将矩形折叠,使点C落在AB边上的点C'处.问题解决(1)填空:AC'的长为.(2)如图(2),展开后,将△DC'E沿线段AB向右平移,使点C'的对应点与点B重合,得到△D'BE',D'E'与BC交于点F,D'B与DE交于点G.求EF的长.拓展探究(3)如图(3),在△DC'E沿射线AB向右平移的过程中,设点C'的对应点为C″,则当△D'C″E'在线段BC上截得的线段PQ(D'E',折线D'C″E'分别与BC交于点P,Q)的长度为2时,直接写出平移的距离.图(1)图(2)图(3)角度4 尺规作图类8.[2022南阳宛城区一调]下面是某数学兴趣小组探究用不同方法作线段AB的垂直平分线的讨论片段,请仔细阅读,并完成相应的任务.任务:(1)小明的作图依据是.(2)小军作图得到的直线CP是线段AB的垂直平分线吗?请判断并说明理由.(3)如图(3),已知△ABC中,CA=CB,∠ACB=30°,点D,E分别是射线CA,CB上的动点,且CD=CE,连接BD,AE,交点为P.当AB=6,∠PAB=45°时,请直接写出线段CD 的长.图(3)9.[2022开封二模]中华文明源远流长,图(1)是汉代数学家赵爽在注解《周髀算经》时给出的图形,人们称它为“赵爽弦图”.2002年北京国际数学家大会依据赵爽弦图制作了会标,该图由4个全等的直角三角形围成一个大正方形和中间一个小正方形,巧妙地证明了勾股定理.问题发现如图(1),若直角三角形的直角边BC=3,斜边AB=5,则中间小正方形的边长CD= ,连接BD,△ABD的面积为.知识迁移如图(2),P是正方形ABCD内一点,连接PA,PB,PC,当∠BPC=90°,BP=10时,△PAB的面积为.拓展延伸如图(3),已知∠MBN=90°,以点B为圆心,适当长为半径画弧,分别交射线BM,BN 于点A,C.(1)已知D为线段AB上一动点,连接CD,过点B作BE⊥CD,垂足为点E,在线段CE 上取一点F,使EF=BE,过点F作GF⊥CD交BC于点G,试判断BE,DE,GF这三条线段之间的数量关系,并说明理由.(2)在(1)的条件下,若D为射线BM上一动点,F为射线EC上一点,当AB=10,CF=2时,直接写出线段DE的长.图(1)图(2)图(3)备用图类型 2 阅读理解类探究题10.[2022许昌二模]问题情境数学课上,王老师出示了这样一个问题:如图(1),在矩形ABCD中,AD=2AB,点E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.探究展示小明发现,AM垂直平分DE,并展示了如下的证明方法:证明:∵BE=AB,∴AE=2AB.又∵AD=2AB,∴AD=AE.∵四边形ABCD是矩形,∴AD∥BC,∴.(平行线分线段成比例)∵BE=AB,∴EM=1,∴EM=DM,DM即AM是△ADE的边DE上的中线.又∵AD=AE,∴.(等腰三角形的“三线合一”)∴AM垂直平分DE.反思交流(1)请将上述证明过程补充完整;(2)小颖受到小明的启发,继续进行探究,如图(2),连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明;图(1)图(2)拓展应用(3)如图(3),连接CE,以CE为一边在CE的右上方作正方形CEFG,分别以点B,C 为圆心,m为半径作弧,两弧交于点M,连接MF.若MF=AB=1,请直接写出m的值.图(3)11.[2022商丘二模]如下是小明复习全等三角形时遇到的一个问题及由此引发的思考,请帮助小明完成以下学习任务.如图(1),OC平分∠AOB,点P在OC上,点M,N分别是OA,OB上的点,且OM=ON.求证:PM=PN.小明的思考:要证明PM=PN,只需证明△MOP≌△NOP即可.证明:如图(1),∵OC平分∠AOB,∴∠AOC=∠BOC.又∵OP=OP,OM=ON,∴△MOP≌△NOP,∴PM=PN.请仔细阅读并完成以下任务.(1)小明得出△MOP≌△NOP的依据是(填序号).①SSS ②SAS ③AAS ④ASA⑤HL(2)如图(2),在四边形ABCD中,AB=AD+BC,∠DAB的平分线和∠ABC的平分线交于CD边上的点P.求证:PC=PD.,当△PBC有一个内角是45°时,△PAD(3)在(2)的条件下,若AB=10,tan∠PAB=12的面积是.图(1)图(2)备用图(1)备用图(2)类型 3 类比、拓展探究题12.[2021湖北仙桃]已知△ABC和△DEC都为等腰三角形,AB=AC,DE=DC,∠BAC=∠EDC=n°.(1)当n=60时:①如图(1),当点D在AC上时,请直接写出BE与AD的数量关系:;②如图(2),当点D不在AC上时,判断线段BE与AD的数量关系,并说明理由.(2)当n=90时:①如图(3),探究线段BE 与AD 的数量关系,并说明理由; ②当BE ∥AC ,AB=3√2,AD=1时,请直接写出DC 的长.图(1) 图(2) 图(3)答案:1.(1)∠ABP ,∠PBM ,∠MBC 或∠BME (注:任意写出一个即可) (2)①15 15②∠MBQ=∠CBQ. 理由如下:∵四边形ABCD 是正方形,∴AB=BC ,∠A=∠C=90°. 由轴对称性质,得BM=AB ,∠BMP=∠A=90°,∴∠BMQ=90°=∠C ,BM=BC.又∵BQ 是公共边,∴Rt △MBQ ≌Rt △CBQ ,∴∠MBQ=∠CBQ.(3)4011 cm 或2413cm. 解法提示:由翻折的性质知AP=PM ,DF=CF=4. 由(2)可知,△MBQ ≌△CBQ ,∴MQ=CQ. 分两种情况讨论.①当点Q 在EF 下方时,如图(1),则MQ=CQ=4-1=3,DQ=4+1=5,PQ=AP+3,PD=8-AP. 由勾股定理,得PD 2+DQ 2=PQ 2,∴(8-AP )2+52=(AP+3)2,∴AP=4011.图(1)②当点Q 在EF 上方时,如图(2),则MQ=CQ=4+1=5,DQ=4-1=3,PQ=AP+5,PD=8-AP. 由勾股定理,得PD 2+DQ 2=PQ 2,∴(8-AP )2+32=(AP+5)2,∴AP=2413.图(2)综上所述,AP 的长为4011 cm 或2413cm. 2.(1)8√2(2)如图(1),连接MM'交PQ 于点O ,连接EF.图(1)由折叠的性质知,点O 为MM'的中点. 又∵点Q 为BM 边的中点,∴QO ∥BM',即QP ∥BF ,∴∠PQM=∠FBM.∵点E 是AN 边的中点,且将△ABE 沿BE 折叠得到△A'BE , ∴EN=EA',∠EA'F=∠N=90°. 又∵EF=EF ,∴Rt △NEF ≌Rt △A'EF. 设NF=x ,则A'F=x ,MF=8-x ,∴BF=BA'+A'F=BA+A'F=8+x.在Rt △BMF 中,由勾股定理,得BM 2+FM 2=BF 2, 即82+(8-x )2=(8+x )2,解得x=2,∴FM=6,∴tan ∠FBM=FM BM =68=34,∴tan ∠PQM=34. (3)BQ 的长为398. 解法提示:如图(2),连接MM'交PQ 于点G.图(2)由折叠的性质知,PQ 垂直平分MM',∴∠QPM+∠PMM'=90°.∵∠PMQ=90°,∴∠PMM'+∠M'MB=90°, ∴∠QPM=∠M'MB.由(2)知,(2)中∠PQM=∠M'BM. 又∵∠QPM 与(2)中的∠PQM 相等,∴∠M'BM=∠M'MB.过点M'作M'H ⊥BM 于点H ,则BH=MH=4,M'H BH =34, ∴M'H=3.设MQ=M'Q=a ,则HQ=4-a.在Rt △M'HQ 中,根据勾股定理,得M'H 2+HQ 2=M'Q 2, 即32+(4-a )2=a 2,解得a=258, ∴BQ=8-258=398. 3.(1)①是解法提示:∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠ABC=∠ADC ,AD ∥BC. 如图(1),由折叠可知,∠A=∠1,∠C=∠2,图(1)∴∠1=∠2,∴∠ABC-∠1=∠ADC-∠2,即∠3=∠4. ∵AD ∥BC ,∴∠4+∠5=180°,∴∠3+∠5=180°, ∴BG ∥DH ,∴四边形BHDG 是平行四边形. ②∠A=45°(答案不唯一,正确即可) 解法提示:∵四边形BHDG 是矩形,∴∠BGD=90°,∴∠AGB=90°, 又由折叠可知,AG=A'G ,∴∠A=45°. (2)四边形A'HC'G 是平行四边形. 证明:如图(2),连接GH.图(2)∵四边形ABCD 是平行四边形, ∴∠A=∠C ,AB=CD ,AD ∥BC. ∵点E ,F 分别是AB ,CD 的中点,∴AE=12AB ,CF=12CD ,∴AE=CF. ∵AG=CH ,∴△AEG ≌△CFH , ∴∠1=∠3.由折叠可知,∠1=∠2,∠3=∠4,AG=A'G ,CH=C'H ,∴∠1=∠2=∠3=∠4,A'G=C'H. ∵AD ∥BC ,∴∠AGH=∠CHG ,∴∠5=∠6, ∴A'G ∥C'H ,∴四边形A'HC'G 是平行四边形. (3)2√3或4√3解法提示:当A'G ∥BC 时,如图(3),点A'落在AD 上,EG ⊥AD ,则A'G=AG=12AE=1,∴S 四边形A'HC'G =A'G ·AB sin 60°=1×4×√32=2√3.图(3)当A'G ∥AB 时,如图(4),则∠AGA'=120°,∴∠AGE=∠A'GE=60°,图(4)从而易得△AEG ,△A'EG ,△CHF ,△C'HF 均是等边三角形,EA'∥BC ,C'F ∥AD ,∴S 四边形A'HC'G =S ▱ABCD -4S △AEG -2S 四边形A'EBH=8×4×√32-4×√34×22-2×12×(2+6)×2×√32=4√3. 综上可知,四边形A'HC'G 的面积为2√3或4√3. 4.(1)正方形(2)由题意可知,AB∶AD=3∶2,∴设AD=2a ,AB=3a , ∴BM=BC=AD'=2a ,∴BD'=a ,∴sin ∠BMD'=a 2a =12,∴∠BMD'=30°.又ED'∥AD ∥BC ,∴∠MBC=∠BMD'=30°. (3)①HF=HB②FC 的长为3-√5或23. 解法提示:①∵DC ∥AB ,∴∠CFB=∠ABF. 由折叠可知∠CFB=∠NFB ,∴∠ABF=∠NFB ,∴HF=HB.②设FC=NF=x ,分两种情况讨论.a.当射线FN 经过AD'的中点时,点H 即为AD'的中点,如图(1),则HF=HB=3,∴HN=3-x.在Rt △HBN 中,由勾股定理,得HN 2+BN 2=HB 2,∴(3-x )2+22=32,解得x=3-√5(不合题意的值已舍去),∴FC=3-√5.图(1)b.当射线FN 经过ED'的中点P 时,如图(2), 易证△HD'P ≌△FEP ,∴HD'=EF=2-x ,∴HF=HB=2-x+2=4-x , ∴HN=4-x-x=4-2x.在Rt △HBN 中,由勾股定理,得BN 2+HN 2=HB 2,∴22+(4-2x )2=(4-x )2,解得x=23(不合题意的值已舍去),∴FC=23.图(2)综上可知,当射线FN 经过△AED'的直角边的中点时,FC 的长为3-√5或23. 5.(1)△ADP ,△ABP ,△BDQ (2)①四边形BEFG 是菱形. 理由如下:由折叠知∠BEG=∠FEG.∵FG ∥BC ,∴∠EGF=∠BEG , ∴∠EGF=∠FEG ,∴FG=FE. 又∵FE=BE ,∴FG=BE ,∴四边形BEFG 是平行四边形. 又∵FE=BE ,∴四边形BEFG 是菱形.②224-128√3解法提示:由折叠的性质知AF=AB=8.在Rt △ADF 中,由勾股定理得DF=√AF 2-AD 2=√82-42=4√3,∴CF=8-4√3. 设BE=y ,则EF=y ,CE=4-y.在Rt △CEF 中,由勾股定理得EF 2=CF 2+CE 2, 即y 2=(8-4√3)2+(4-y )2,解得y=16-8√3,∴S 四边形BEFG =BE ·CF=(16-8√3)×(8-4√3)=128-64√3-64√3+96=224-128√3.(3)BN 的长为103或53. 解法提示:分两种情况讨论.①当点B'落在离点D 较近的三等分点上时,如图(1),过点B'作B'H ⊥AB 于点H ,易知B'H=83,BH=163,B'N=BN ,∴HN=163-BN. 根据勾股定理,得B'H 2+HN 2=B'N 2,即(83)2+(163-BN )2=BN 2,∴BN=103.图(1) 图(2)②当点B'落在离点B 较近的三等分点上时,如图(2),同理可求得BN=53. 综上可知,BN 的长为103或53. 6.(1)△BEH√k 2+255(2)证明:如图(1),过点K 分别作KN ⊥BC 于点N ,KM ⊥CD 于点M , 则KN=KM ,∠MKN=90°=∠BKH ,∴∠TKM=∠BKN.又∠TMK=∠BNK=90°,∴△TMK ≌△BNK ,∴BK=KT.图(1)(3)CK 的长为√7或√67.解法提示:分如图(2)、图(3)所示的两种情况讨论,连接CG ,过点K 作KP ⊥BC ,垂足为点P.图(2)图(3)∵CK=CH ,∴∠CKH=∠CHK ,∴∠CKB=∠CHG. 又KB=HG ,∴△CKB ≌△CHG ,∴CG=CB=BG ,∴△CBG 是等边三角形, ∴∠CBG=60°. 图(2)中∠KBC=30°,∴KP=12KB=√3,BP=√32KB=3, ∴CP=2,∴CK=√(√3)2+22=√7. 图(3)中∠KBP=30°,∴KP=12KB=√3,BP=√32KB=3, ∴CP=8,∴CK=√(√3)2+82=√67. 综上可知,CK 的长为√7或√67. 7.(1)6(2)由(1)得AC'=6,∴BC'=AB -AC'=10-6=4.在Rt △BEC'中,设BE=x ,则EC'=EC=8-x ,根据勾股定理,得(8-x )2=x 2+42, 解得x=3,即BE=3,∴EC'=EC=5.连接EE',由平移可知,EE'=C'B=4,EE'∥AB ∥CD ,DE ∥D'E',∴△FEE'∽△FCD'∽△ECD , ∴EF∶EE'=EC∶DC=5∶10=1∶2, 又EE'=4,∴EF=2.(3)平移的距离为85或385. 解法提示:设平移的距离为x. 分两种情况讨论.①当点C″在BC 左侧时,如图(1),则BC″=4-x ,D'C=10-x ,∴CP=D'C ·tan ∠CD'P=D'C ·tan ∠CDE=510(10-x )=12(10-x ),BQ=BC″·tan ∠QC″B=BC″·tan ∠ADC'=68(4-x )=34(4-x ). 又CP+PQ+BQ=8,PQ=2,∴12(10-x )+2+34(4-x )=8,解得x=85.图(1) 图(2)②当点C″在BC 右侧时,如图(2),则BC″=x -4,D'C=10-x ,∴CP=D'C ·tan ∠CD'P=12(10-x ),BQ=BC″·tan ∠QC″B=BC″·tan ∠AC'D=43(x-4). 又CP+PQ+BQ=8,PQ=2,∴12(10-x )+2+43(x-4)=8,解得x=385.综上可知,平移的距离为85或385. 8.(1)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合 (2)是. 理由如下:由作图可知,CA=CB ,CD=CE. 又∵∠ACE=∠BCD ,∴△ACE ≌△BCD , ∴∠CAE=∠CBD. ∵CA=CB ,∴∠CAB=∠CBA , ∴∠PAB=∠PBA ,∴AP=BP ,∴直线CP 是线段AB 的垂直平分线. (3)线段CD 的长为√3+1或3√3+3. 解法提示:∵CD=CE ,∠C=∠C ,CA=CB ,∴△CAE ≌△CBD ,∴∠CAE=∠CBD. ∵CA=CB ,∠ACB=30°, ∴∠CAB=∠CBA=75°,∴∠PBA=∠PAB=45°,∴∠APB=90°, ∴PA=PB=√22AB=√3. 分两种情况讨论.①当点P 在AB 上方时,如图(1),图(1)则∠DAP=∠EBP=30°,∠APD=90°,∴DB=DC ,DP=√33AP=1,∴CD=DB=√3+1. ②当点P 在AB 下方时,如图(2), 则∠DAP=∠EBP=60°,∠APD=90°,∴∠ADP=30°,∴BD=BC,DP=√3AP=3,AD=2AP=2√3,∴BC=BD=√3+3,∴CD=CA+AD=CB+AD=√3+3+2√3=3√3+3.综上可知,线段CD的长为√3+1或3√3+3.图(2) 9.问题发现192知识迁移 5拓展延伸(1)BE=DE+GF.理由:如图(1),过点G作GH⊥BE于点H.图(1)∵BE⊥CD,GF⊥CD,∴∠HEF=∠EFG=∠EHG=90°,∴四边形EFGH为矩形,∴EH=GF,EF=GH.∵EF=BE,∴GH=BE.∵∠MBN=90°,∠BHG=90°,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.又∵∠BED=∠GHB=90°,BE=GH,∴△BDE≌△GBH(ASA),∴DE=BH,∴BE=BH+EH=DE+GF.(2)92或323. 解法提示:分两种情况讨论.①当点F 在线段EC 上时,如图(2).图(2)由(1)可得BE=DE+GF. 设BE=EF=m ,则EC=m+2.在Rt △BEC 中,根据勾股定理,得BE 2+CE 2=BC 2, 即m 2+(m+2)2=102,解得m=6(负值已舍),∴BE=EF=6.易证△CFG ∽△CEB ,∴CF CE =GF BE ,即22+6=GF 6, ∴GF=32,∴DE=BE -GF=6-32=92. ②当点F 在线段EC 的延长线上时,如图(3).图(3)同(1)中方法可得BE=DE-GF. 设BE=EF=n ,则EC=n-2.在Rt △BEC 中,根据勾股定理,得BE 2+CE 2=BC 2, 即n 2+(n-2)2=102,解得n=8(负值已舍),∴BE=EF=8.易证△CFG ∽△CEB ,∴CF CE =GF BE ,即28−2=GF 8, ∴GF=83,∴DE=BE+GF=8+83=323.10.(1)EM DM =EBAB AM ⊥DE(2)证明:如图(1),过点G 作GH ⊥BC 于点H.图(1)∵四边形ABCD 是矩形,点E 在AB 的延长线上, ∴∠CBE=∠GHC=90°,∴∠BCE+∠BEC=90°. ∵四边形CEFG 为正方形, ∴CG=CE ,∠GCE=90°,∴∠BCE+∠BCG=90°,∴∠BEC=∠BCG , ∴△GHC ≌△CBE ,∴HC=BE. ∵AD=BC=2AB ,BE=AB ,∴BC=2BE=2HC , ∴HC=BH ,∴GH 垂直平分BC , 即点G 在线段BC 的垂直平分线上. (3)√5或√17.解法提示:同(2)中思路可证得点F 在线段BC 的垂直平分线上.如图(2),过点F 作FN ⊥BC 于点N ,连接CF ,则CF=√2CE=√2×√22+12=√10,CN=1,∴NF=√(√10)2-12=3.图(2)由作图过程可知,点M 在线段BC 的垂直平分线上,故分两种情况讨论.①当点M 在点F 左侧时,如图(3),连接MC ,图(3)则NM=3-1=2,∴m=CM=√22+12=√5.②当点M在点F右侧时,如图(4),连接MC,图(4)则NM=3+1=4,∴m=CM=√42+12=√17.综上可知,m的值为√5或√17.11.(1)②(2)如图(1),在AB上取点E,使得AE=AD,连接PE.图(1)∵AP平分∠DAE,∴∠DAP=∠EAP.又∵AP=AP,AD=AE,∴△DAP≌△EAP,∴PD=PE.∵AD+BC=AB=AE+BE,AD=AE,∴BC=BE.∵BP平分∠CBE,∴∠CBP=∠EBP.又∵BP=BP,∴△EBP≌△CBP,∴PE=PC,∴PC=PD.(3)8或403解法提示:如图(1),由(2)可得△DAP ≌△EAP ,△EBP ≌△CBP ,∴∠DPA=∠EPA ,∠CPB=∠EPB ,∠D=∠AEP ,∠C=∠BEP. 又∵∠DPA+∠EPA+∠CPB+∠EPB=180°,∠AEP+∠BEP=180°,∴∠APB=∠EPA+∠EPB=90°,∠D+∠C=180°, ∴AD ∥BC.在Rt △PAB 中,tan ∠PAB=12,∠APB=90°, 故可设BP=x ,AP=2x ,∴AB=√x 2+(2x)2=√5x=10, 解得x=2√5,∴AP=4√5,sin ∠PAB=1√5. 易知∠PBC>45°,故分两种情况讨论.①当∠C=45°时,如图(2),图(2)过点P 作PM ⊥AD ,交AD 的延长线于点M ,则∠MDP=∠C=45°,∴MP=MD. 又∵tan ∠MAP=tan ∠PAB=12,∴AM=2MP , ∴AD=MD=MP=AP ·sin ∠MAP=4, ∴S △PAD =12×4×4=8. ②当∠BPC=45°时,如图(3),图(3)过点D 作DN ⊥AP 于点N ,则∠DPN=180°-45°-90°=45°,∴NP=ND.∵tan ∠DAP=tan ∠PAB=12,∴AN=2ND. 又∵AP=AN+NP ,∴4√5=2ND+ND ,∴ND=4√53,∴S △PAD =12×4√5×4√53=403. 综上可知,△PAD 的面积为8或403.12.(1)①BE=AD②BE=AD. 理由如下:当点D 不在AC 上时,∵∠ACB=∠ACD+∠DCB=60°,∠DCE=∠BCE+∠DCB=60°,∴∠ACD=∠BCE. 在△ACD 和△BCE中,{AC =BC,∠ACD =∠BCE,DC =EC,∴△ACD ≌△BCE ,∴AD=BE. (2)①BE=√2AD. 理由如下:当n=90时,在等腰直角三角形DEC 中,DC EC =sin 45°=√22, 在等腰直角三角形ABC 中,AC BC =sin 45°=√22.∵∠ACB=∠ACE+∠ECB=45°,∠DCE=∠ACE+∠DCA=45°,∴∠ECB=∠DCA. 在△DCA 和△ECB中,{DCEC=AC BC=√22,∠DCA =∠ECB,∴△DCA ∽△ECB ,∴AD BE =√22,∴BE=√2AD. ②5或√13.解法提示:当点D 在△ABC 外部时,设EC 与AB 交于点F ,如图(1)所示.图(1)∵AB=3√2,AD=1,由上可知:AC=AB=3√2,BE=√2AD=√2. 又∵BE ∥AC ,∴∠EBF=∠CAF=90°.而∠EFB=∠CFA ,∴△EFB ∽△CFA ,∴EF CF =BF AF =BE AC =√23√2=13,∴AF=3BF ,而AB=BF+AF=3√2,∴BF=14×3√2=3√24. 在Rt △EBF 中,EF=√EB 2+BF 2=(√2)2+(3√24)2=5√24. 又∵CF=3EF=3×5√24=15√24, ∴EC=EF+CF=5√24+15√24=5√2. 在等腰直角三角形DEC 中,DC=EC ·sin 45°=5√2×√22=5.当点D 在△ABC 内部时,设AB 延长线与CE 延长线交于点F ,如图(2),图(2)∵AB=3√2,AD=1,由上可知:AC=AB=3√2,BC=√2AB=6,BE=√2AD=√2. 又∵BE ∥AC ,∴△EFB ∽△CFA ,∴FB FA =BE AC =13, ∴BF=12AB=3√22,AF=AB+BF=3√2+3√22=9√22. 在Rt △ACF 中,CF=√AC 2+AF 2=3√262.CE=23CF=23×3√262=√26. 在等腰直角三角形DEC 中,DC=√22CE=√13. 综上所述,满足条件的CD 的值为5或√13.。
2023年中考数学二轮专题复习《折叠问题》培优练习(含答案)
中考数学二轮专题复习《折叠问题》培优练习一、选择题1.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于 ( )A.50°B.60°C.75°D.85°2.如图,将长方形ABCD纸片沿对角线BD折叠,使点C落在点C/处,BC/交人D于点E,若∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°角(虚线也视为角的边)共有( )A.3个B.4个C.5个D.6个3.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为( )A.28B.26C.25D.224.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△C EF的面积为( )A.12B.98C.2D.4 5.如图,在矩形ABCD 中,AB =8.将矩形的一角折叠,使点B 落在边AD 上的B ´点处,若AB /=4,则折痕EF 的长度为( )A.8B.4 5C.5 5D.106.将矩形ABCD 按如图所示的方式折叠,BE ,EG ,FG 为折痕,若顶点A ,C ,D 都落在点O 处,且点B ,O ,G 在同一条直线上,同时点E ,O ,F 在另一条直线上,则AD :AB 的值为( )A.65B. 2C.32 D. 37.如图矩形ABCD 中,AB =3,BC =33,点P 是BC 边上的动点,现将△PCD 沿直线PD 折叠,使点C 落在点C 1处,则点B 到点C 1的最短距离为( )A.5B.4C.3D.28.将一张宽为4cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是( )A.833cm 2B.8cm 2C.1633cm 2 D.16cm 2二、填空题9.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),连结AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A'处,折痕所在的直线交y轴的正半轴于点C,则直线BC所对应的函数表达式为.10.将正方形纸片ABCD按如图所示对折,使边AD与BC重合,折痕为EF,连接AE,将AE折叠到AB上,折痕为AH,则BH:BC的值是.11.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG =32S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)12.如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=35a.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为.13.一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD的长为.14.如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y 轴上,连接OB,将纸片OABC沿AC折叠,使点B落在D的位置上.若AC=5,OC=2BC,则点D的坐标 .三、解答题15.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE折叠至△AFE,延长EF交BC于点G,连结AG.(1)求证:△ABG≌△AFG;(2)求BG的长.16.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.17.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.18.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.19.矩形AOBC中,OB=8,OA=4.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=kx(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF、AB,求证:EF∥AB;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.20.将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE∶DM∶EM=3∶4∶5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否与点M的位置有关?若有关,请把△CMG的周长用含DM的长x的代数式表示;若无关,请说明理由.21.如图,抛物线L:y=﹣x2+bx+c经过点A(1,0)和点B(5,0),已知直线l的解析1式为y=kx﹣5.的解析式、对称轴和顶点坐标.(1)求抛物线L1(2)若直线l将线段AB分成1:3两部分,求k的值;(3)当k=2时,直线与抛物线交于M、N两点,点P是抛物线位于直线上方的一点,当△PMN面积最大时,求P点坐标,并求面积的最大值.在x轴上方的部分沿x轴折叠到x轴下方,将这部分图象与原抛物线(4)将抛物线L1剩余的部分组成的新图象记为L2①直接写出y随x的增大而增大时x的取值范围;有四个交点时k的取值范围.②直接写出直线l与图象L2答案1.C2.D3.A.4.C.5.C.6.B.7.C.8.B9.答案为:y=﹣12x+32.10.答案为:52﹣12.11.答案为:①③④.12.答案为:53或53.13.答案为:3或24 7.14.答案为:(﹣0.6,0.8)15.证明:(1)∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB.由折叠可知,AD=AF,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF.∴∠B=∠AFG=90°.又∵AG=AG,∴Rt△ABG≌Rt△AFG(H.L.).(2)解:∵△ABG≌△AFG,∴BG=FG.设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴EG=x+3,在Rt△CEG中,由勾股定理,得32+(6﹣x)2=(x+3)2,解得x=2,∴BG=2.16.证明:(1)∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥AC,∴∠FAC=∠ECA,在△AOF和△COE中,∴△AOF≌△COE,∴OF=OE,∵OA=OC,AC⊥EF,∴四边形AECF为菱形;(2)①设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;②在Rt△ABC中,AC=45,∴OA=12AC=25,在Rt△AOE中,AE=5,OE=5,∴EF=2OE=25.17.解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD=4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.18.解:操作一:(1)14 (2)35º操作二:∵AC=9cm,BC=12cm,∴AB=15(cm),根据折叠性质可得AC=AE=9cm,∴BE=AB﹣AE=6cm,设CD=x,则BD=12﹣x,DE=x,在Rt△BDE中,由题意可得方程x2+62=(12﹣x)2,解得x=4.5,∴CD=4.5cm.19.解:(1)∵四边形OACB是矩形,OB=8,OA=4,∴C(8,4),∵AE=EC,∴E(4,4),∵点E在y=kx上,∴E(4,4).(2)连接AB,设点F(8,a),∴k=8a,∴E(2a,4),∴CF=4﹣a,EC=8﹣2a,在Rt△ECF中,tan∠EFC===2,在Rt△ACB中,tan∠ABC==2,∴tan∠EFC=tan∠ABC,∴∠EFC=∠ABC,∴EF∥AB.(3)如图,设将△CEF沿EF折叠后,点C恰好落在OB上的G点处,∴∠EGF=∠C=90°,EC=EG,CF=GF,∴∠MGE+∠FGB=90°,过点E作EM⊥OB,∴∠MGE+∠MEG=90°,∴∠MEG=∠FGB,∴Rt△MEG∽Rt△BGF,∵点E(,4),F(8,),∴EC=AC﹣AE=8﹣,CF=BC﹣BF=4﹣,∴EG=EC=8﹣,GF=CF=4﹣,∵EM =4,∴=,∴GB =2,在Rt △GBF 中,GF 2=GB 2+BF 2,即:(4﹣)2=(2)2+()2,∴k =12,∴反比例函数表达式为y =12x . 20.证明:(1)DE 为x ,则DM =1,EM =EA =2﹣x ,在Rt △DEM 中,∠D =90°,∴DE 2+DM 2=EM 2x 2+12=(2﹣x)2x =34,∴EM =54. (2)设正方形的边长为2,由(1)知,DE =34,DM =1,EM =54∴DE :DM :EM =3:4:5;(3)△CMG 的周长与点M 的位置无关.证明:设DM =x ,DE =y ,则CM =2a ﹣x ,EM =2a ﹣y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG ,∴△CMG 的周长为CM +CG +MG =. 在Rt △DEM 中,DM 2+DE 2=EM 2即x 2+y 2=(2a ﹣y)2整理得4a 2﹣x 2=4ay ,∴CM+MG+CG==4a.所以△CMG的周长为4a,与点M的位置无关.21.解:(1)∵抛物线L1:y=﹣x2+bx+c经过点A(1,0)和点B(5,0)∴y=﹣(x﹣1)(x﹣5)=﹣(x﹣3)2+4,∴抛物线L1的解析式为y=﹣x2+6x﹣5对称轴:直线x=3顶点坐标(3,4);(2)∵直线l将线段AB分成1:3两部分,则l经过点(2,0)或(4,0),∴0=2k﹣5或0=4 k﹣5∴k=52或k=54.(3)如图1,设P(x,﹣x2+6x﹣5)是抛物线位于直线上方的一点,解方程组,解得或不妨设M(0,﹣5)、N(4,3)∴0<x<4过P做PH⊥x轴交直线l于点H,则H(x,2x﹣5),PH=﹣x2+6x﹣5﹣(2x﹣5)=﹣x2+4x,S△PMN =12PH•x N=(﹣x2+4x)×4=﹣2(x﹣2)2+8∵0<x<4∴当x=2时,SPMN最大,最大值为8,此时P(2,3) (4)如图2,A(1,0),B(5,0).由翻折,得D(3,﹣4), ①当x ≤1或3≤x ≤5时y 随x 的增大而增大②当y=kx ﹣5过D 点时,3k ﹣5=﹣4,解得k=13, 当y=kx ﹣5过B 点时,5k ﹣5=0,解得k=1,直线与抛物线的交点在BD 之间时有四个交点,即13<k <1, 当13<k <1时,直线l 与图象L 2有四个交点.。
中考数学二轮专题复习图形变换——折叠问题【含答案】
二轮复习:图形变换(一)—折叠图形变换历来是中考必考点之一。
考试大纲要求:会运用图形变换的相关知识进行简单的作图与计算,并能解决相关动态需求数学问题,并能进行图案设计。
图形变换一般包括,折叠、平移、旋转、对称、位似和图形的探究。
在图形变换的考题中,最多题型是折叠、旋转。
在解决折叠问题时,应注意折叠前后相对应的边相等、角相等。
下面着重从三个方面进行讲述:三角形折折叠、特殊平行四边形折叠和在平面直角坐标系内的图形折叠三大类进行。
(一)三角形的折叠:题型1、一般三角形的折叠:1、如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β2、(2019•江西)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=°.3、如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为___.题型2、等腰或等边三角形的折叠:4、如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为_____.5、如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CF CE=_______.(利用相似三角形周长的比等于相似比△AED 相似△DBF)题型3、直角三角形的折叠:6、如图,在Rt △ABC 中,∠ACB=90°,BC=6,CD 是斜边AB 上的中线,将△BCD 沿直线CD 翻折至△ECD 的位置,连接AE .若DE ∥AC ,计算AE 的长度等于.7、如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是(二)特殊平行四边形的折叠:题型1、矩形折叠:1、(求角).如图,将矩形沿对角线折叠,点落在处,交于点,已知,则的度为A. B. C. D.2、(求三角函数值)如图,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,如果AB:AD=2:3,那么tan∠EFC值是.3、(求边长)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则CF的长为4、(求折痕长)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为5、(求边的比)如下图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为。
中考数学折叠专项训练试题(含答案)
中考数学折叠专项训练试题(含答案)中考数学折叠专项训练试题附参考答案一.选择题(共9小题)1.(2013?贵港)如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE 上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④S△BEF=3S△DEF.其中,将正确结论的序号全部选对的是()A.①②③B.①②④C.②③④D.①②③④考点:翻折变换(折叠问题);等边三角形的判定;矩形的性质.专题:压轴题.分析:由折叠的性质、矩形的性质与角平分线的性质,可证得CF=FM=DF;易求得∠BFE=∠BFN,则可得BF⊥EN;易证得△BEN是等腰三角形,但无法判定是等边三角形;易求得BM=2EM=2DE,即可得EB=3EM,根据等高三角形的面积比等于对应底的比,即可求得答案.解答:解:∵四边形ABCD是矩形,∴∠D=∠BCD=90°,DF=MF,由折叠的性质可得:∠EMF=∠D=90°,即FM⊥BE,CF⊥BC,∵BF平分∠EBC,∴CF=MF,∴DF=CF;故①正确;∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF,∴∠BFM=∠BFC,∵∠MFE=∠DFE=∠CFN,∴∠BFE=∠BFN,∵∠BFE+∠BFN=180°,∴∠BFE=90°,即BF⊥EN,故②正确;∵在△DEF和△CNF中,,∴△DEF≌△CNF(ASA),∴EF=FN,∴BE=BN,但无法求得△BEN各角的度数,∴△BEN不一定是等边三角形;故③错误;∵∠BFM=∠BFC,BM⊥FM,BC⊥CF,∴BM=BC=AD=2DE=2EM,∴BE=3EM,∴S△BEF=3S△EMF=3S△DEF;故④正确.故选B.点评:此题考查了折叠的性质、矩形的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.2.如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,若EB为∠AEG的平分线,EF和BC的延长线交于点H.下列结论中:①∠BEF=90°;②DE=CH;③BE=EF;④△BEG和△HEG的面积相等;⑤若,则.以上命题,正确的有()A.2个B.3个C.4个D.5个考点:翻折变换(折叠问题).专题:压轴题.分析:①根据平角的定义,折叠的性质和角平分线的性质即可作出判断;②根据折叠的性质和等腰三角形的性质可知DE≠CH;③无法证明BE=EF;④根据角平分线的性质,等腰三角形的性质和三角形中线的性质可得△BEG和△HEG的面积相等;⑤过E点作EK⊥BC,垂足为K.在RT△EKG中利用勾股定理可即可作出判断.解答:解:①由折叠的性质可知∠DEF=∠GEF,∵EB为∠AEG的平分线,∴∠AEB=∠GEB,∵∠AED=180°,∴∠BEF=90°,故正确;②可证△EDF∽△HCF,DF>CF,故DE≠CH,故错误;③只可证△EDF∽△BAE,无法证明BE=EF,故错误;④可证△GEB,△GEH是等腰三角形,则G是BH边的中线,∴△BEG和△HEG的面积相等,故正确;⑤过E 点作EK ⊥BC ,垂足为K .设BK=x ,AB=y ,则有y 2+(2y ﹣2x )2=(2y ﹣x )2,解得x 1=y (不合题意舍去),x 2=y .则,故正确.故正确的有3个.故选B .点评:本题考查了翻折变换,解答过程中涉及了矩形的性质、勾股定理,属于综合性题目,解答本题的关键是根据翻折变换的性质得出对应角、对应边分别相等,然后分别判断每个结论,难度较大,注意细心判断.3.(2012?遵义)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,延长BG 交CD 于F 点,若CF=1,FD=2,则BC 的长为()A .3B .2C .2D .2考点:翻折变换(折叠问题).专题:压轴题.分析:首先过点E 作EM ⊥BC 于M ,交BF 于N ,易证得△ENG ≌△BNM (AAS ),MN 是△BCF 的中位线,根据全等三角形的性质,即可求得GN=MN ,由折叠的性质,可得BG=3,继而求得BF 的值,又由勾股定理,即可求得BC 的长.解答:解:过点E 作EM ⊥BC 于M ,交BF 于N ,∵四边形ABCD 是矩形,∴∠A=∠ABC=90°,AD=BC ,∵∠EMB=90°,∴四边形ABME 是矩形,∴AE=BM ,由折叠的性质得:AE=GE ,∠EGN=∠A=90°,∴EG=BM ,∵∠ENG=∠BNM ,∴△ENG ≌△BNM (AAS ),∴NG=NM ,∴CM=DE ,∵E 是AD 的中点,∴AE=ED=BM=CM ,∵EM ∥CD ,∴BN :NF=BM :CM ,∴BN=NF,∴NM=CF=,∴NG=,∵BG=AB=CD=CF+DF=3,∴BN=BG﹣NG=3﹣=,∴BF=2BN=5,∴BC===2.故选B.点评:此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质.此题难度适中,注意辅助线的作法,注意数形结合思想的应用.4.如图,两个正方形ABCD和AEFG共顶点A,连BE,DG,CF,AE,BG,K,M分别为DG和CF的中点,KA的延长线交BE于H,MN⊥BE于N.则下列结论:①BG=DE 且BG⊥DE;②△ADG和△ABE的面积相等;③BN=EN,④四边形AKMN为平行四边形.其中正确的是()A.③④B.①②③C.①②④D.①②③④考点:正方形的性质;全等三角形的判定;平行四边形的判定.专题:证明题.分析:充分利用三角形的全等,正方形的性质,平行四边形的性质依次判断所给选项的正误即可.解答:解:由两个正方形的性质易证△AED≌△AGB,∴BG=DE,∠ADE=∠ABG,∴可得BG与DE相交的角为90°,∴BG⊥DE.①正确;如图,延长AK,使AK=KQ,连接DQ、QG,∴四边形ADQG是平行四边形;作CW⊥BE于点W,FJ⊥BE于点J,∴四边形CWJF是直角梯形;∵AB=DA,AE=DQ,∠BAE=∠ADQ,∴△ABE≌△DAQ,∴∠ABE=∠DAQ,∴∠ABE+∠BAH=∠DAQ+∠BAH=90°.∴△ABH是直角三角形.易证:△CWB≌△BHA,△EJF≌△AHE;∴WB=AH,AH=EJ,∴WB=EJ,又WN=NJ,∴WN﹣WB=NJ﹣EJ,∴BN=NE,③正确;∵MN是梯形WGFC的中位线,WB=BE=BH+HE,∴MN=(CW+FJ)=WC=(BH+HE)=BE;易证:△ABE≌△DAQ(SAS),∴AK=AQ=BE,∴MN∥AK且MN=AK;四边形AKMN为平行四边形,④正确.S△ABE=S△ADQ=S△ADG=S?ADQG,②正确.所以,①②③④都正确;故选D.点评:当出现两个正方形时,一般应出现全等三角形.图形较复杂,选项较多时,应用排除法求解.5.(2012?资阳)如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A.B.C.D.考点:翻折变换(折叠问题).专题:压轴题.分析:首先连接CD,交MN于E,由将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,即可得MN⊥CD,且CE=DE,又由MN∥AB,易得△CMN∽△CAB,根据相似三角形的面积比等于相似比的平方,相似三角形对应高的比等于相似比,即可得,又由MC=6,NC=,即可求得四边形MABN的面积.解答:解:连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D 处,∴MN⊥CD,且CE=DE,∴CD=2CE,∵MN∥AB,∴CD⊥AB,∴△CMN∽△CAB,∴,∵在△CMN中,∠C=90°,MC=6,NC=,∴S△CMN=CM?CN=×6×2=6,∴S△CAB=4S△CMN=4×6=24,∴S四边形MABN=S△CAB﹣S△CMN=24﹣6=18.故选C.点评:此题考查了折叠的性质、相似三角形的判定与性质以及直角三角形的性质.此题难度适中,解此题的关键是注意折叠中的对应关系,注意数形结合思想的应用.6.如图,D是△ABC的AC边上一点,AB=AC,BD=BC,将△BCD沿BD折叠,顶点C 恰好落在AB边的C′处,则∠A′的大小是()A.40°B.36°C.32°D.30°考点:翻折变换(折叠问题).分析:连接C'D,根据AB=AC,BD=BC,可得∠ABC=∠ACB=∠BDC,然后根据折叠的性质可得∠BCD=∠BC'D,继而得出∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,根据四边形的内角和求出各角的度数,最后可求得∠A的大小.解答:解:连接C'D,∵AB=AC,BD=BC,∴∠ABC=∠ACB=∠BDC,∵△BCD沿BD折叠,顶点C恰好落在AB边的C′处,∴∠BCD=∠BC'D,∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,∵四边形BCDC'的内角和为360°,∴∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D==72°,∴∠A=180°﹣∠ABC﹣∠ACB=36°.故选B.点评:本题考查了折叠的性质,解答本题的关键是掌握翻折前后的对应角相等,注意本题的突破口在于得出∠ABC=∠BCD=∠BDC=∠BDC'=∠BC'D,根据四边形的内角和为360°求出每个角的度数.7.(2012?舟山)如图,已知△ABC中,∠CAB=∠B=30°,AB=2,点D在BC边上,把△ABC沿AD翻折使AB与AC重合,得△AB′D,则△ABC与△AB′D重叠部分的面积为()A.B.C.3﹣D.考点:翻折变换(折叠问题).专题:压轴题.分析:首先过点D作DE⊥AB′于点E,过点C作CF⊥AB,由△ABC中,∠CAB=∠B=30°,AB=2,利用等腰三角形的性质,即可求得AC的长,又由折叠的性质,易得∠CDB′=90°,∠B′=30°,B′C=AB′﹣AC=2﹣2,继而求得CD与B′D的长,然后求得高DE的长,继而求得答案.解答:解:过点D作DE⊥AB′于点E,过点C作CF⊥AB,∵△ABC中,∠CAB=∠B=30°,AB=2,∴AC=BC,∴AF=AB=,∴AC===2,由折叠的性质得:AB′=AB=2,∠B′=∠B=30°,∵∠B′CD=∠CAB+∠B=60°,∴∠CDB′=90°,∵B′C=AB′﹣AC=2﹣2,∴CD=B′C=﹣1,B′D=B′C?cos∠B′=(2﹣2)×=3﹣,∴DE===,∴S阴影=AC?DE=×2×=.故选A.点评:此题考查了折叠的性质,等腰三角形的性质、直角三角形的性质以及特殊角的三角函数问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用,注意掌握折叠前后图形的对应关系.8.(2013?定海区模拟)如图,已知△ABC中,∠CAB=∠B=30°,AB=,点D在BC 边上,把△ABC沿AD翻折,使AB与AC重合,得△AED,则BD的长度为()A.B.C.D.考点:翻折变换(折叠问题).分析:作CF⊥AB于点F,利用三线合一定理即可求得BF的长,然后证明△CDE是直角三角形,BD=x,则CD=DE=2﹣x,利用三角函数即可得到关于x的方程,解方程即可求解.解答:解:作CF⊥AB于点F.∵∠CAB=∠B∴AC=BC,∴BF=AB=,在直角△BCF中,BC==2,在△CDE中,∠E=∠B=30°,∠ECD=∠CAB+∠B=60°,DE=BD,∴∠CDE=90°,设BD=x,则CD=DE=2﹣x,在直角△CDE中,tanE===tan30°=,解得:x=3﹣.故选B.点评:本题考查了图形的折叠,以及三线合一定理、三角函数,正确理解折叠的性质,找出图形中相等的线段、相等的角是关键.9.(2013?绥化)如图,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,将△ADB 沿直线BD翻折后,点A落在点E处,如果AD⊥ED,那么△ABE的面积是()A.1B.C.D.考点:翻折变换(折叠问题).专题:压轴题.分析:先根据勾股定理计算出AB=2,根据含30度的直角三角形三边的关系得到∠BAC=30°,在根据折叠的性质得BE=BA=2,∠BED=∠BAD=30°,DA=DE,由于AD⊥ED得BC∥DE,所以∠CBF=∠BED=30°,在Rt△BCF中可计算出CF=,BF=2CF=,则EF=2﹣,在Rt△DEF中计算出FD=1﹣,ED=﹣1,然后利用S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE计算即可.解答:解:∵∠C=90°,AC=,BC=1,∴AB==2,∴∠BAC=30°,∵△ADB沿直线BD翻折后,点A落在点E处,∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,∵AD⊥ED,∴BC∥DE,∴∠CBF=∠BED=30°,在Rt△BCF中,CF==,BF=2CF=,∴EF=2﹣,在Rt△DEF中,FD=EF=1﹣,ED=FD=﹣1,∴S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE=2×BC?AD+AD?ED=2××1×(﹣1)+×(﹣1)(﹣1)=1.故选A.点评:本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了勾股定理和含30度的直角三角形三边的关系.。
初三复习 数学几何中折叠问题 4大类 分类 含答案
初中数学中的折叠问题折叠问题(对称问题)是近几年来中考出现频率较高的一类题型,学生往往由于对折叠的实质理解不够透彻,导致对这类中档问题失分严重。
本文试图通过对在初中数学中经常涉及到的几种折叠的典型问题的剖析,从中抽象出基本图形的基本规律,找到解决这类问题的常规方法。
其实对于折叠问题,我们要明白:1、折叠问题(翻折变换)实质上就是轴对称变换.2、折叠是一种对称变换,它属于轴对称.对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、对于折叠较为复杂的问题可以实际操作图形的折叠,在画图时,画出折叠前后的图形,这样便于找到图形之间的数量关系和位置关系.4、在矩形(纸片)折叠问题中,重合部分一般会是一个以折痕为底边的等腰三角形5、利用折叠所得到的直角和相等的边或角,设要求的线段长为x,然后根据轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求解.一、矩形中的折叠1.将一张长方形纸片按如图的方式折叠,其中BC,BD为折痕,折叠后BG和BH在同一条直线上,∠CBD= 度.BC、BD是折痕,所以有∠ABC = ∠GBC,∠EBD = ∠HBD则∠CBD = 90°折叠前后的对应角相等2.如图所示,一张矩形纸片沿BC折叠,顶点A落在点A′处,再过点A′折叠使折痕DE∥BC,若AB=4,AC=3,则△ADE的面积是.沿BC折叠,顶点落在点A’处,根据对称的性质得到BC垂直平分AA’,即AF = 12AA’,又DE∥BC,得到△ABC ∽△ADE,再根据相似三角形的面积比等于相似比的平方即可求出三角形ADE的面积= 24对称轴垂直平分对应点的连线3.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,得折痕DG ,求AG 的长.由勾股定理可得BD = 5,由对称的性质得△ADG ≌ △A ’DG ,由A ’D = AD = 3,AG ’ = AG ,则A ’B = 5 – 3 = 2,在Rt △A ’BG 中根据勾股定理,列方程可以求出AG 的值根据对称的性质得到相等的对应边和对应角,再在直角三角形中根据勾股定理列方程求解即可4.把矩形纸片ABCD 沿BE 折叠,使得BA 边与BC 重合,然后再沿着BF 折叠,使得折痕BE 也与BC 边重合,展开后如图所示,则∠DFB 等于( )根据对称的性质得到∠ABE=∠CBE ,∠EBF=∠CBF ,据此即可求出∠FBC 的度数,又知道∠C=90°,根据三角形外角的定义即可求出∠DFB = 112.5°注意折叠前后角的对应关系5.如图,沿矩形ABCD 的对角线BD 折叠,点C 落在点E 的位置,已知BC=8cm ,AB=6cm ,求折叠后重合部分的面积. ∵点C 与点E 关于直线BD 对称,∴∠1 = ∠2 ∵AD ∥BC ,∴∠1 = ∠3∴∠2 = ∠3 ∴FB = FD设FD = x ,则FB = x ,FA = 8 – x在Rt △BAF 中,BA 2 + AF 2 = BF 2∴62 + (8 - x)2 = x 2 解得x = 254所以,阴影部分的面积S △FBD = 12 FD ×AB = 12 ×254 ×6 = 754cm2重合部分是以折痕为底边的等腰三角形6.将一张矩形纸条ABCD 按如图所示折叠,若折叠角∠FEC=64°,则∠1= 度;△EFG 的形状 三角形.∵四边形CDFE 与四边形C ’D ’FE 关于直线EF 对称∴∠2 = ∠3 = 64°∴∠4 = 180° - 2 × 64° = 52° ∵AD ∥BC321F E D C B A54132G D‘FC‘DAGA'CA B D∴∠1 = ∠4 = 52°∠2 = ∠5又∵∠2 = ∠3∴∠3 = ∠5∴GE = GF∴△EFG是等腰三角形对折前后图形的位置变化,但形状、大小不变,注意一般情况下要画出对折前后的图形,便于寻找对折前后图形之间的关系,注意以折痕为底边的等腰△GEF7.如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).(1)求图②中∠BCB′的大小;(2)图⑥中的△GCC′是正三角形吗?请说明理由.(1)由对称的性质可知:B’C=BC,然后在Rt△B′FC中,求得cos∠B’CF= 12,利用特殊角的三角函数值的知识即可求得∠BCB’= 60°;(2)首先根据题意得:GC平分∠BCB’,即可求得∠GCC’= 60°,然后由对称的性质知:GH是线段CC’的对称轴,可得GC’= GC,即可得△GCC’是正三角形.理清在每一个折叠过程中的变与不变8.如图,正方形纸片ABCD的边长为8,将其沿EF折叠,则图中①②③④四个三角形的周长之和为四边形BCFE与四边形B′C′FE关于直线EF对称,则①②③④这四个三角形的周长之和等于正方形ABCD的周长折叠前后对应边相等9.如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处,求四边形BCFE的面积设AE = x,则BE = GE = 4 - x,在Rt△AEG中,根据勾股定理有:AE2 + AG2 = GE2即:x2 + 4 = (4 - x)2解得x = 1.5,BE = EG = 4 – 1.5 = 2.5∵∠1 + ∠2 = 90°,∠2 + ∠3 = 90°∴∠1 = ∠3又∵∠A = ∠D = 90°∴△AEG ∽△DGP∴AEDG=EGGP,则1.52=2.5GP,解得GP =103PH = GH – GP = 4 - 103=23∵∠3 = ∠4,tan∠3 = tan∠1 = 3 4∴tan∠4 = 34,FHPH=34,FH =34×PH =34×23=12∴CF = FH = 1 2∴S梯形BCFE = 12(12+52)×4 = 6注意折叠过程中的变与不变,图形的形状和大小不变,对应边与对应角相等10.如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上不与A、D 重合.MN为折痕,折叠后B’C’与DN交于P.(1)连接BB’,那么BB’与MN的长度相等吗?为什么?(2)设BM=y,AB’=x,求y与x的函数关系式;(3)猜想当B点落在什么位置上时,折叠起来的梯形MNC’B’面积最小?并验证你的猜想.(1)BB’ = MN过点N作NH∥BC交AB于点H),证△ABB’≌△HNM(2)MB’ = MB = y,AM = 1 – y,AB’ = x在Rt△ABB’中BB’ = AB2 + AB'2= 1 + x2因为点B与点B’关于MN对称,所以BQ = B’Q,则BQ = 12 1 + x2由△BMQ∽△BB’A得BM×BA = BQ×BB’PC'NB CA DMB'QPHC'NB CA DMB'∴y = 12 1 + x2× 1 + x2=12(1 + x2)(3) 梯形MNC′B′的面积与梯形MNCB的面积相等由(1)可知,HM = AB’ = x,BH = BM – HM = y – x,则CN = y - x∴梯形MNCB的面积为:12(y – x + y) ×1 = 12(2y - x)= 12(2×12(1 + x2) – x)= 12(x -12)2 +38当x = 12时,即B点落在AD的中点时,梯形MNC’B’的面积有最小值,且最小值是38二、纸片中的折叠11.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于()∵∠α= ∠1,∠2 = ∠1∴∠α= ∠2∴2∠α+∠ABE=180°,即2∠α+30°=180°,解得∠α=75°.题考查的是平行线的性质,同位角相等,及对称的性质,折叠的角与其对应角相等,和平角为180度的性质,注意△EAB是以折痕AB为底的等腰三角形12.如图,将一宽为2cm的纸条,沿BC,使∠CAB=45°,则后重合部分的面积为作CD⊥AB,∵CE∥AB,∴∠1=∠2,根据翻折不变性,∠1=∠BCA,故∠2=∠BCA.∴AB=AC.又∵∠CAB=45°,∴在Rt△ADC中,AC = 2 2 ,AB = 2 2S△ABC=12AB×CD = 2 2a2130°BEFACD在折叠问题中,一般要注意折叠前后图形之间的联系,将图形补充完整,对于矩形(纸片)折叠,折叠后会形成“平行线+角平分线”的基本结构,即重叠部分是一个以折痕为底边的等腰三角形ABC13.将宽2cm 的长方形纸条成如图所示的形状,那么折痕PQ 的长是如图,作QH ⊥PA ,垂足为H ,则QH=2cm , 由平行线的性质,得∠DPA=∠PAQ=60° 由折叠的性质,得∠DPA =∠PAQ , ∴∠APQ=60°,又∵∠PAQ=∠APQ=60°, ∴△APQ 为等边三角形, 在Rt △PQH 中,sin ∠HPQ = HQPQ∴32 = 2PQ ,则PQ = 433注意掌握折叠前后图形的对应关系.在矩形(纸片)折叠问题中,会出现“平行线+角平分线”的基本结构图形,即有以折痕为底边的等腰三角形APQ14.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )图c 图b图aCDGFEC GDFEFBCAEBB∵AD ∥BC ,∴∠DEF=∠EFB=20°,在图b 中,GE = GF ,∠GFC=180°-2∠EFG=140°, 在图c 中∠CFE=∠GFC-∠EFG=120°,本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.由题意知∠DEF=∠EFB=20°图b ∠GFC=140°,图c 中的∠CFE=∠GFC-∠EFG15.将一张长为70 cm 的长方形纸片ABCD ,沿对称轴EF 折叠成如图的形状,若折叠后,AB 与CD 间的距离为60cm ,则原纸片的宽AB 是( )设AB=xcm .右图中,AF = CE = 35,EF = x根据轴对称图形的性质,得AE=CF=35-x (cm ). 则有2(35-x )+x=60, x=10.16.一根30cm 、宽3cm 的长方形纸条,将其按照图示的过程折叠(阴影部分表示纸条的反面),为了美观,希望折叠完成后纸条两端超出点P 的长度相等,则最初折叠时,求MA 的长将折叠这条展开如图,根据折叠的性质可知,两个梯形的上底等于纸条宽,即3cm , 下底等于纸条宽的2倍,即6cm , 两个三角形都为等腰直角三角形, 斜边为纸条宽的2倍,即6cm ,故超出点P 的长度为(30-15)÷2=7.5, AM=7.5+6=13.5GEFD AE FD B C A B C 60cm三、三角形中的折叠17.如图,把Rt △ABC (∠C=90°),使A ,B 两点重合,得到折痕ED ,再沿BE 折叠,C 点恰好与D 点重合,则CE :AE=18.在△ABC 中,已知AB=2a ,∠A=30°,CD 是AB 边的中线,若将△ABC 沿CD 对折起来,折叠后两个小△ACD 与△BCD 重叠部分的面积恰好等于折叠前△ABC 的面积的14 .(1)当中线CD 等于a 时,重叠部分的面积等于 ;(2)有如下结论(不在“CD 等于a ”的限制条件下):①AC 边的长可以等于a ;②折叠前的△ABC 的面积可以等于32a 2;③折叠后,以A 、B 为端点的线段AB 与中线CD 平行且相等.其中, 结论正确(把你认为正确结论的代号都填上,若认为都不正确填“无”). (1)∵CD = 12 AB∴∠ACB = 90°∵AB = 2a ,BC = a ,∴AC = 3a ∴S △ABC = 12 ×AC ×BC = 32a 2∴重叠部分的面积为:14×32a 2 = 38a 2(2)若AC = a ,如右图∵AD = a ,∴∠2 = 180°- 30°2 = 75°∠BDC = 180°- 75°= 105° ∴∠B'DC = 105°∴∠3 = 105°- 75°= 30° ∴∠1 = ∠3 ∴AC ∥B'D∴四边形AB'DC 是平行四边形∴重叠部分△CDE 的面积等于△ABC的面积的14若折叠前△ABC 的面积等于32a 2 过点C 作CH ⊥AB 于点H ,则 12 ×AB ×CH = 32a 2 B'CDAB231EB'CDBACH =32a 又tan ∠1 =CH AH∴AH = 32a∴BH = 12a则tan ∠B =CHBH,得∠B = 60° ∴△CBD 是等边三角形 ∴∠2 = ∠4∴∠3 = ∠4,AD ∥CB 2又CB 2 = BC = BD = a ,∴CB 2 = AD ∴四边形ADCB 2是平行四边形则重叠部分△CDE 的面积是△ABC 面积的14(3)如右图,由对称的性质得,∠3 = ∠4,DA = DB 3 ∴∠1 = ∠2又∵∠3 + ∠4 = ∠1 +∠2 ∴∠4 = ∠1 ∴AB 3∥CD注意“角平分线+等腰三角形”的基本构图,折叠前后图形之间的对比,找出相等的对应角和对应边19.在△ABC 中,已知∠A=80°,∠C=30°,现把△CDE 沿DE 进行不同的折叠得△C ′DE ,对折叠后产生的夹角进行探究:(1)如图(1)把△CDE 沿DE 折叠在四边形ADEB 内,则求∠1+∠2的和; (2)如图(2)把△CDE 沿DE 折叠覆盖∠A ,则求∠1+∠2的和;(3)如图(3)把△CDE 沿DE 斜向上折叠,探求∠1、∠2、∠C 的关系.(1)根据折叠前后的图象全等可知,∠1=180°-2∠CDE ,∠2=180°-2∠CED ,再根据三角形内角和定理比可求出答案;(2)连接DG ,将∠ADG+∠AGD 作为一个整体,根据三角形内角和定理来求;3241EHB 2DABC3412B 3DA BC在第一次折叠中可得到∠EAD = ∠FAD在第二次折叠中可得到EF是AD的垂直平分线,则AD⊥EF∴∠AEF = ∠AFE∴△AEF是等腰三角形(1)由折叠可知∠AEB = ∠FEB,∠DEG = ∠BEG而∠BEG = 45°+ ∠α因为∠AEB + ∠BEG + ∠DEG = 180°所以 45°+ 2(45°+∠α)= 180°∠α = 22.5°由于角平分线所在的直线是角的对称轴,所以在三角形中的折叠通常都与角平分线有关。
中考复习专题折叠压轴题(无答案)
中考专题:折叠问题折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。
折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。
图形折叠问题中题型的变化比较多,主要有以下几点:1.图形的翻折部分在折叠前和折叠后的形状、大小不变,是全等形;2.图形的翻折部分在折叠前和折叠后的位置关于折痕成轴对称;3.将长方形纸片折叠,三角形是否为等腰三角形;4.解决折叠问题时,要抓住图形之间最本质的位置关系,从而进一步发现其中的数量关系;5.充分挖掘图形的几何性质,将其中的基本的数量关系,用方程的形式表达出来,并迅速求解,这是解题时常用的方法之一。
折叠问题数学思想:(1)思考问题的逆向(反方向),(2)从一般问题的特例人手,寻找问题解决的思路;(3)把一个复杂问题转化为解决过的基本问题的转化与化归思想;(4)归纳与分类的思想(把折纸中发现的诸多关系归纳出来,并进行分类);(5)从变化中寻找不变性的思想.用“操作”、“观察”、“猜想”、“分析”的手段去感悟几何图形的性质是学习几何的方法。
折叠问题主要有以下题型:题型1:动手问题此类题目考查学生动手操作能力,它包括裁剪、折叠、拼图,它既考查学生的动手能力,又考查学生的想象能力,往往与面积、对称性质联系在一起.题型2:证明问题动手操作的证明问题,既体现此类题型的动手能力,又能利用几何图形的性质进行全等、相似等证明.题型3:探索性问题此类题目常涉及到画图、测量、猜想证明、归纳等问题,它与初中代数、几何均有联系.此类题目对于考查学生注重知识形成的过程,领会研究问题的方法有一定的作用,也符合新课改的教育理论。
典型例题一.折叠后求度数例1.将一张长方形纸片按如图所示的方式折叠,BC、BD为折痕,则∠CBD的度数为()A.600B.750C.900D.950练习1.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB =65°,则∠AED′等于()A.50°B.55°C.60°D.65°2.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,则∠1=_______°,∠2=_______°A3. 用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE ,其中∠BAC =度。
2020年中考数学动态问题-折叠中有关计算题型(含答案)
专题04 动点折叠类问题中有关计算题型一、基础知识点综述动点型问题是指题设中的图形中存在一个或多个动点,它们在线段、射线、直线、抛物线、双曲线、弧线等上运动的一类非常具有开放性的题目. 而从其中延伸出的折叠问题,更能体现其解题核心——动中求静,灵活运用相关数学知识进行解答,有时需要借助或构造一些数学模型来解答.实行新课标以来,各省(市)的中考数学试卷都会有此类题目,这些题目往往出现在选择、填空题的压轴部分,题型繁多,题意新颖,具有创新力. 其主要考查的是学生的分析问题及解决问题的能力.要求学生具备:运动观点;方程思想;数形结合思想;分类讨论思想;转化思想等等.通过研究历年中考真题并结合2019年各省(市)的中考真题,特总结出此专题. 期望能给各位老师及同学以学习教学一些启发,一些指引,培养出学生的解题素养.下面我们从几个例题中展开论述,逐层拨开它的神秘面纱.二、精品例题解析题型一:图形折叠中的计算例1.(2019·青岛)如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若AD=4 cm,则CF 的长为cm .例2. 如图,矩形ABCD中,AB=36BC=12,E为AD的中点,F为AB上一点,将△AEF沿EF折叠后,点A恰好落在CF上的点G处,则折痕EF的长是例3.(2019·连云港)如图,在矩形ABCD中,AD=22AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC=62MP;④BP=22AB;⑤点F是△CMP外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个例4.(2019·潍坊)如图,在矩形ABCD中,AD=2,将∠A向内折叠,点A落在BC上,记为A’,折痕为DE. 若将∠B沿EA’向内折叠,点B恰好落在DE上,记为B’,则AB=例5.(2019·天津)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上. 若DE=5,则GE的长为例6.(2019·南充)如图,正方形MNCB 在宽为2的矩形纸片一端,对折正方形MNCB 得到折痕AE ,再翻折纸片,使AB 与AD 重合.以下结论错误的是( ) A.52102+=AH B.215-=BC CD C.EH CD BC ⋅=2 D.515sin +=∠AHD例7.(2019·金华)如图,将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线减去一个角,展开铺平后得到图⑤,其中FM ,GN 是折痕,若正方形EFGH 与五边形MCNGF 面积相等,则FMGF 的值是( )A. 522B. 21-C. 12D. 22例8.(2019·重庆)如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC 沿BD 翻折,得到△BDC',DC ’与AB 交于点A ’,连结AC',若AD =AC ’=2,BD =3,则点D 到BC 的距离为( )A .233B .7213C .7D .13例9.(2019·重庆)如图,在△ABC 中,∠ABC=45°,AB=3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE=1. 连接DE ,将△ADE 沿直线AE 翻折至△ABC 所在的平面内,得△AEF ,连接DF ,过点D 作DG ⊥DE 交BE 于点G. 则四边形DFEG 的周长为() A. 8 B. 42 C. 224+ D. 322+题型二:图形折叠中证明、计算题例10.(2019·滨州) 如图,矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FG ∥CD 交BE 于点G ,连接CG.(1)求证:四边形CEFG 是菱形;(2)若AB=6,AD=10,求四边形CEFG 的面积.二、精品例题解析题型一:图形折叠中的计算例1.(2019·青岛)如图,在正方形纸片 ABCD 中, E 是 CD 的中点,将正方形纸片折叠,点 B 落在线段AE 上的点 G 处,折痕为 AF .若 AD =4 cm ,则 CF 的长为 cm .【答案】625-【分析】要求CF 的长,观察图形,发现CF 在Rt △CEF 中,想到用勾股定理求解,然而EF 的长度是未知的,求解难度较大;再观察图形,发现CF=BC -BF ,只要求出BF 长度即可,而BF=GF ,进而想到利用面积法来求解,设CF=x ,BF=GF=4-x ,列方程求解x 即可.【解析】解:∵四边形ABCD 是正方形,∴AD=CD=BC=4,∠C=∠D=90°,设CF=x ,由折叠知:BF=GF=4-x ,∵E 是CD 中点,∴DE=2,在Rt △ADE 中,由勾股定理得:AE=5ADE ABF AEF CEF ABCD S S S S S =+++△△△△正方形 即:()()111116424425422222x x x =⨯⨯+⨯⨯-+⨯-+⨯⨯ 解得:x=65-,故答案为:65-. 例2. 如图,矩形ABCD 中,AB=36BC=12,E 为AD 的中点,F 为AB 上一点,将△AEF 沿EF折叠后,点A 恰好落在CF 上的点G 处,则折痕EF 的长是【分析】EF 在Rt △AEF 中,求出AF 的长即可利用勾股定理求解折痕EF 的长度;连接CE ,可证△CEG ≌△CED ,得EF ⊥CE ,设AF=x ,利用CF 2=BF 2+BC 2,CF 2=EF 2+CE 2,列出方程求解AF 的长. 【答案】215.【解析】解:∵E 是AD 的中点,∴AE=ED ,由折叠知:AE=EG ,∴EG=DE,连接CE ,在Rt △CDE 和Rt △CDG 中,CE=CE ,EG=AE=DE∴Rt △CDE ≌Rt △CDG∴∠GEC=∠DEC ,∴∠FEC=90°,设AF=x ,则BF=36x ,BC=AD=12,在Rt △EFC 和Rt △BFC 中,由勾股定理得:222222AE AF DE CD BF BC +++=+即:(()22222266363612x x +++=-+,解得:x=26, ∴()22626215+=故:答案为215.例3.(2019·连云港)如图,在矩形ABCD中,AD=22AB.将矩形ABCD对折,得到折痕MN;沿着CM折叠,点D的对应点为E,ME与BC的交点为F;再沿着MP折叠,使得AM与EM重合,折痕为MP,此时点B的对应点为G.下列结论:①△CMP是直角三角形;②点C、E、G不在同一条直线上;③PC=6MP;④BP=2AB;⑤点F是△CMP外接圆的圆心,其中正确的个数为()A.2个B.3个C.4个D.5个【答案】B.【解析】解:由折叠性质知:∠DMC=∠EMC,∠AMP=∠EMP,∵∠AMD=180°,∴∠PME+∠CME=12×180°=90°,∴△CMP是直角三角形;故①正确;由折叠知:∠D=∠MEC=90°,∠MEG=∠A=90°,∴∠GEC=180°,即点C、E、G在同一条直线上,故②错误;∵AD=2,设AB=x,则AD=2,由折叠知:DM=12AD2x,由勾股定理得:CM3x,∵∠PMC =90°,MN ⊥PC ,∴△CMN ∽△CPM ,∴CM 2=CN •CP ,∴CP 22x =,∴PN =CP ﹣CN =2x ,由勾股定理得:PM x ,∴PC PM=即PC MP ,故③错误;PB x ,AB PB=∴PB =2AB ,故④正确, 由折叠知:CD =CE ,EG =AB ,AB =CD ,∴CE =EG ,∵∠CEM =∠G =90°,∴FE ∥PG ,∴CF =PF ,∵∠PMC =90°,∴CF =PF =MF ,∴点F 是△CMP 外接圆的圆心,故⑤正确;故答案为:B .例4.(2019·潍坊)如图,在矩形ABCD 中,AD=2,将∠A 向内折叠,点A 落在BC 上,记为A ’,折痕为DE. 若将∠B 沿EA ’向内折叠,点B 恰好落在DE 上,记为B ’,则AB=【答案】232 33+.【解析】解:由折叠知:∠AED=∠DEA’=∠BEA’,而∠AED+∠DEA’+∠BEA’=180°,∴∠AED=∠DEA’=∠BEA’=60°,∴∠EDA=∠EDA’=∠CDA’=30°,∵AD=2,∴A’E=AE=323 33AD=,∴BE=32'33A E=,即AB=AE+BE=2323+.例5.(2019·天津)如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE,折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上. 若DE=5,则GE的长为【答案】49 13.【解析】解:∵四边形ABCD 是正方形,∴∠D=∠DAB=90°,AD=AB ,由折叠性质知:AE ⊥BF ,∴∠DAE+∠BAE=∠ABF+∠BAE=90°,即∠DAE=∠ABF ,∴△ADE ≌△BAF ,∴AF=DE=5,由勾股定理得:AE=BF=13,∴AG=2×51213⨯=12013, ∴GE=AE -AG=4913. 故答案为:4913. 例6.(2019·南充)如图,正方形MNCB 在宽为2的矩形纸片一端,对折正方形MNCB 得到折痕AE ,再翻折纸片,使AB 与AD 重合.以下结论错误的是( ) A.52102+=AH B.215-=BC CD C.EH CD BC ⋅=2 D.515sin +=∠AHD【答案】D.【解析】解:由折叠知:四边形BADH 为菱形,∴EH=BE+BH在Rt △ABE 中,由勾股定理得:225BE AE +=∴5,5,在Rt △AEH 中,由勾股定理,得:AH 2=()2222512=1025EH AE +=+++, 故A 正确;CD=AD -AC=5-1,BC=2,∴51CD BC -=,故B 正确; BC 2=4,CD ×EH=(5-1)×(5+1)=4, 故C 正确;∵∠AHD=∠AHE ,∴515sin sin +≠=∠=∠AH AE AHE AHD 故D 错误,即答案为D.例7.(2019·金华)如图,将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线减去一个角,展开铺平后得到图⑤,其中FM ,GN 是折痕,若正方形EFGH 与五边形MCNGF 面积相等,则FMGF 的值是( )A. 52-B. 21C. 12D. 22【答案】A.【解析】解:设正方形ABCD 的边长为a ,连接HF ,GE 交于点O ,则GE ⊥HF ,∠GFH=45°,∴2, 由题意知:正方形EFGH 、与其它四个五边形的面积均相等,∴正方形EFGE 面积为:25a , 即GF=55a , ∴FO=2251022GF a a =⨯= FM=OM -FO=102a a - ∴105221025a a FM GF a --==, 故答案为A.例8.(2019·重庆)如图,在△ABC 中,D 是AC 边上的中点,连结BD ,把△BDC 沿BD 翻折,得到△BDC',DC ’与AB 交于点A ’,连结AC',若AD =AC ’=2,BD =3,则点D 到BC 的距离为( )A .233 B .7213 C .7 D .13【答案】B.【解析】解:如图,连接CC ’,交BD 于M ,过D 作DH ⊥BC ’于H ,∵AD=AC ’=2,AD=CD=2,由翻折知:CD=DC ’=2,∠DBC=∠BDC ’,∴△ADC ’为等边三角形,DH 即为所求,∴∠ACC ’=∠DC ’C=30°,∴DM=1,C ’M= 3 ∵BD=3, ∴BM=BD -DM=2,在Rt △BMC ’中,由勾股定理得:BC ’= 22'7C M BM +=,∵'11''22BC D S BD MC BC DF =⋅=⋅△ ∴DH=3217, 故答案为:B.例9.(2019·重庆)如图,在△ABC 中,∠ABC=45°,AB=3,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AE=1. 连接DE ,将△ADE 沿直线AE 翻折至△ABC 所在的平面内,得△AEF ,连接DF ,过点D 作DG ⊥DE 交BE 于点G. 则四边形DFEG 的周长为() A. 8 B. 42 C. 224+ D. 322+【答案】B.【解析】解:∵∠ABC =45°,AD ⊥BC 于点D ,∴∠BAD =90°﹣∠ABC =45°,∴△ABD 是等腰直角三角形,∴AD =BD ,∴∠GBD+∠C =90°,∵∠EAD+∠C =90°,∴∠GBD =∠EAD ,∵∠ADB =∠EDG =90°,∴∠ADB ﹣∠ADG =∠EDG ﹣∠ADG ,即∠BDG =∠ADE ,∴△BDG ≌△ADE ,∴BG =AE =1,DG =DE ,∵∠EDG =90°,∴△EDG 为等腰直角三角形,∴∠AED =∠AEB+∠DEG =90°+45°=135°,∵△AED 沿直线AE 翻折得△AEF ,∴△AED ≌△AEF ,∴∠AED =∠AEF =135°,ED =EF ,∴∠DEF =360°﹣∠AED ﹣∠AEF =90°,∴△DEF 为等腰直角三角形,∴EF =DE =DG ,在Rt △AEB 中,由勾股定理得:BE =,∴GE =BE ﹣BG =﹣1,在Rt △DGE 中,DG =DE=2GE =2﹣2,∴EF =DE =2﹣2, 在Rt △DEF 中,DF =DE =﹣1,∴四边形DFEG 的周长为:GD+EF+GE+DF =2(2)+2(1)=+2,题型二:图形折叠中证明、计算题例10.(2019·滨州)如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.【分析】(1)由翻折性质并借助全等三角形的性质和菱形的判定方法证明结论成立;(2)由勾股定理,可以求得AF的长,并求得EF和DF的值,从而可以得到四边形CEFG的面积.【答案】见解析.【解析】(1)证明:由题意可得:△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,专题04 动点折叠类问题中有关计算题型∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2,设EF=x,则CE=x,DE=6﹣x,在Rt△FDE中,由勾股定理得:22+(6﹣x)2=x2,解得,x=10 3,即CE=10 3,∴四边形CEFG的面积是:CE•DF=103×2=203.。
中考数学真题分类汇编——几何综合题(含答案)
中考数学真题分类汇编——几何综合题(含答案)类型1 类比探究的几何综合题类型2 与图形变换有关的几何综合题类型3 与动点有关的几何综合题类型4 与实际操作有关的几何综合题类型5 其他类型的几何综合题类型1 类比探究的几何综合题(2018苏州)(2018烟台)(2018东营)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=33,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC=∠ACB=75°, BO:OD=1:3,求DC的长.(2018长春)(第24题图1) (第24题图2) (第24题图3)(2018陕西)(2018齐齐哈尔)(2018河南)(2018仙桃)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A 逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.(2018襄阳)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;的值为;②推断:AGBE(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=22,则BC= .(2018淮安)(2018咸宁)(2018黄石)在△ABC 中,E 、F 分别为线段AB 、AC 上的点(不与A 、B 、C 重合). (1)如图1,若EF ∥BC ,求证:AEF ABC S AE AFS AB AC∆∆= (2)如图2,若EF 不与BC 平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF 上一点G 恰为△ABC 的重心,34AE AB =,求AEFABC S S ∆∆的值.BBB(2018山西)(2018盐城)【发现】如图①,已知等边ABC ,将直角三角形的60角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F .(1)若6AB=,4AE=,2BD=,则CF=_______;(2)求证:EBD DCF∆∆.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与AB、AC的两个交点E、F都存在,连接EF,如图②所示.问点D是否存在某一位置,使ED平分BEF∠且FD平分CFE∠?若存在,求出BDBC的值;若不存在,请说明理由.【探索】如图③,在等腰ABC∆中,AB AC=,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中MON B∠=∠),使两条边分别交边AB、AC于点E、F(点E、F均不与ABC∆的顶点重合),连接EF.设Bα∠=,则AEF∆与ABC∆的周长之比为________(用含α的表达式表示).(2018绍兴)(2018达州)(2018菏泽)(2018扬州)问题呈现如图1,在边长为1的正方形网格中,连接格点D、N和E、C,DN与EC相交于点P,求tan CPN∠的值.方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中CPN∠不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题.比如连接格点M、N,可得∠就变换到中Rt DMN∆.∠=∠,连接DM,那么CPNMN EC,则DNM CPN//问题解决(1)直接写出图1中tan CPN ∠的值为_________;(2)如图2,在边长为1的正方形网格中,AN 与CM 相交于点P ,求cos CPN ∠的值; 思维拓展(3)如图3,AB BC ⊥,4AB BC =,点M 在AB 上,且AM BC =,延长CB 到N ,使2BN BC =,连接AN 交CM 的延长线于点P ,用上述方法构造网格求CPN ∠的度数.(2018常德)已知正方形ABCD 中AC 与BD 交于O 点,点M 在线段BD 上,作直线AM 交直线DC 于E ,过D 作DH AE ⊥于H ,设直线DH 交AC 于N .(1)如图14,当M 在线段BO 上时,求证:MO NO =;(2)如图15,当M 在线段OD 上,连接NE ,当//EN BD 时,求证:BM AB =; (3)在图16,当M 在线段OD 上,连接NE ,当NE EC ⊥时,求证:2AN NC AC =⋅.(2018滨州)(2018湖州)(2018自贡)如图,已知AOB 60∠=,在AOB ∠的平分线OM 上有一点C ,将一个120°角的顶点与点C 重合,它的两条边分别与直线OA OB 、相交于点D E 、 .⑴当DCE ∠绕点C 旋转到CD 与OA 垂直时(如图1),请猜想OE OD +与OC 的数量关系,并说明理由;⑵当DCE ∠绕点C 旋转到CD 与OA 不垂直时,到达图2的位置,⑴中的结论是否成立?并说明理由; ⑶当DCE ∠绕点C 旋转到CD 与OA 的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD OE 、与OC 之间又有怎样的数量关系?请写出你的猜想,不需证明.(2018嘉兴、舟山)O BOO B图3.(2018淄博)(1)操作发现:如图①,小明画了一个等腰三角形ABC ,其中AB AC =,在ABC ∆的外侧分别以,AB AC 为腰作了两个等腰直角三角形ABD ACE ,,分别取,BD CE ,BC 的中点,,M N G ,连接,GM GN .小明发现了:线段GM 与GN 的数量关系是 ;位置关系是 . (2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC 换为一般的锐角三角形,其中AB AC >,其它条件不变,小明发现的上述结论还成立吗?请说明理由. (3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向ABC ∆的内侧分别作等腰直角三角形,ABD ACE ,其它条件不变,试判断GMN ∆的形状,并给与证明.类型2 与图形变换有关的几何综合题(2018宜昌)在矩形ABCD 中,12AB =,P 是边AB 上一点,把PBC 沿直线PC 折叠,顶点B 的对应点是点G ,过点B 作BE CG ⊥,垂足为E 且在AD 上,BE 交PC 于点F . (1)如图1,若点E 是AD 的中点,求证:AEB DEC ∆∆≌; (2) 如图2,①求证: BP BF =;②当AD 25=,且AE DE <时,求cos PCB ∠的值; ③当BP 9=时,求BE EF 的值.图1 图2 图2备用图 23.(1)证明:在矩形ABCD 中,90,A D AB DC ∠=∠==, 如图1,又AE DE =,图1∆≅∆,ABE DCE(2)如图2,图2①在矩形ABCD中,90∠=,ABC∆沿PC折叠得到GPC∆BPC∠=∠∴∠=∠=,BPC GPC PGC PBC90⊥BE CG∴,BE PG//∴∠=∠GPF PFBBPF BFP∴∠=∠∴=BP BFAD=时,②当25∠=BEC90∴∠+∠=,90AEB CED90AEB ABE ∠+∠=,CED ABE ∴∠=∠ 又90A D ∠=∠=,ABE DEC ∴∆∆∽AB DEAE CD∴=∴设AE x =,则25DE x =-,122512xx -∴=, 解得19x =,216x =AE DE <9,16AE DE ∴==, 20,15CE BE ∴==,由折叠得BP PG =,BP BF PG ∴==,//BE PG , ECF GCP ∴∆∆∽EF CEPG CG∴=设BP BF PG y ===,152025y y -∴=253y ∴=则253BP = 在Rt PBC ∆中,PC =,cos 10BC PCB PC ∠=== ③若9BP =,解法一:连接GF ,(如图3)90GEF BAE ∠=∠=, //,BF PG BF PG =∴四边形BPGF 是平行四边形BP BF =,∴平行四边形BPGF 是菱形//BP GF ∴, GFE ABE ∴∠=∠, GEF EAB ∴∆∆∽EF ABGF BE∴=129108BE EF AB GF ∴==⨯= 解法二:如图2,90FEC PBC ∠=∠=,EFC PFB BPF ∠=∠=∠, EFC BPC ∴∆∆∽EF CEBP CB∴=又90BEC A ∠=∠=, 由//AD BC 得AEB EBC ∠=∠,AEB EBC ∴∆∆∽AB CEBE CB∴=AE EFBE BP∴=129108BE EF AE BP ∴==⨯=解法三:(如图4)过点F 作FH BC ⊥,垂足为HBPF PFEGS BF BFS EF PG BE∆==+四边形图41212BFC BEC S BF EF BC EFBE S BC ∆∆⋅===⨯ 912EFBE ∴=129108BE EF ∴=⨯=(2018邵阳)(2018永州)(2018无锡)(2018包头)(2018赤峰)(2018昆明)(2018岳阳)(2018宿迁)(2018绵阳)(2018南充)(2018徐州)类型3 与动点有关的几何综合题(2018吉林)(2018黑龙江龙东)(2018黑龙江龙东)(2018广东)已知Rt△OAB,∠OAB=90o,∠ABO=30o,斜边OB=4,将Rt△OAB绕点O顺时针旋转60o,如图25-1图,连接BC.(1)填空:∠OBC=_______o;(2)如图25-1图,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图25-2图,点M、N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止.已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒.设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?(结果可保留根号)(2018衡阳)(2018黔东南)如图1,已知矩形AOCB,6cm s的AB cm=,动点P从点A出发,以3/=,16BC cm速度向点O运动,直到点O为止;动点Q同时从点C出发,以2/cm s的速度向点B运动,与点P同时结束运动.(1)点P 到达终点O 的运动时间是________s ,此时点Q 的运动距离是________cm ; (2)当运动时间为2s 时,P 、Q 两点的距离为________cm ; (3)请你计算出发多久时,点P 和点Q 之间的距离是10cm ;(4)如图2,以点O 为坐标原点,OC 所在直线为x 轴,OA 所在直线为y 轴,1cm 长为单位长度建立平面直角坐标系,连结AC ,与PQ 相交于点D ,若双曲线ky x=过点D ,问k 的值是否会变化?若会变化,说明理由;若不会变化,请求出k 的值.(2018青岛)已知:如图,四边形ABCD ,//,AB DC CB AB ⊥,16,6,8AB cm BC cm CD cm ===,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2/cm s .点P 和点Q 同时出发,以QA QP 、为边作平行四边形AQPE ,设运动的时间为()t s ,05t <<.根据题意解答下列问题: (1)用含t 的代数式表示AP ;(2)设四边形CPQB 的面积为()2S cm ,求S 与t 的函数关系式; (3)当QP BD ⊥时,求t 的值;(4)在运动过程中,是否存在某一时刻t ,使点E 在ABD ∠的平分线上?若存在,求出t 的值;若不存在,请说明理由.(2018广州)如图12,在四边形ABCD 中,∠B=60°,∠D=30°,AB=BC. (1)求∠A+∠C 的度数(2)连接BD,探究AD,BD,CD 三者之间的数量关系,并说明理由。
中考数学 第二部分 题型研究 题型三 几何图形综合题针对演练(2021学年)
重庆市2017年中考数学第二部分题型研究题型三几何图形综合题针对演练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆市2017年中考数学第二部分题型研究题型三几何图形综合题针对演练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆市2017年中考数学第二部分题型研究题型三几何图形综合题针对演练的全部内容。
题型三几何图形综合题类型一几何计算(静态)针对演练1. 如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,若BG=4错误!,则△CEF的面积是( )A。
2 B。
2错误! C. 3错误!D. 4错误!第1题图第2题图第3题图2。
如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为()A. \f(5,2) B。
错误! C. 错误!D。
错误!3. 如图,在正方形ABCD中,E为AD的中点,DF⊥CE于M,交AC于点N,交AB于点F,连接EN、BM.有如下结论:①△ADF≌△DCE;②MN=FN;③CN=2AN;④S△ADN∶S四=2∶5;⑤∠ADF=∠BMF。
其中正确结论的个数为边形CNFB() A。
2个B。
3个C. 4个D。
5个4.如图,在正方形ABCD中,点E、F分别在AB、AD边上,且BE=AF,连接CE、BF,它们相交于点G,点H为线段BE的中点,连接GH.若∠EHG=错误!∠DCE,则∠ABF等于________度.第4题图第5题图第6题图5。
如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG、PC。
2021年中考数学复习专题图形折叠问题及答案2
2021年中考数学一轮复习专题图形折叠问题综合复习一选择题:1.如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G点,假设∠AEB=55°,那么∠DAF=( )A.40° B.35° C.20° D.15°2.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,假设∠EFB=65°,那么∠AED′等于〔〕A.50° B.55° C.60° D.65°3.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,假设AE=2,DE=6,∠EFB=60°,那么矩形ABCD 的面积是〔〕A.12 B.24 C.12 D.164.如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,那么DE长为〔〕A.3 B.4 C.5 D.65.将矩形纸片ABCD按如下图的方式折叠,得到菱形AECF.假设AB=3,那么BC的长为〔〕A.1 B.2 C. D.6.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,那么重叠局部△AFC的面积为〔〕A.12 B.10 C.8 D.67.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.假设AE=5,BF=3,那么CD的长是〔〕C.9 D. 108.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP〔P为AB中点〕所在的直线上,得到经过点D的折痕DE.那么∠DEC的大小为〔〕A.78° B.75° C.60° D.45°9.如图,将边长为12cm的正方形ABCD折叠,使得点A落在CD边上的点E处,折痕为MN.假设CE的长为7cm,那么MN的长为〔〕A. 10 B. 13 C. 15 D. 1210.如图,将矩形纸片ABCD的四个角向内翻折,恰好拼成一个无缝隙无重叠的四边形EFGH,假设EH=12厘米,EF=16厘米,那么边AD的长是 ( )A.12厘米 B.16厘米 C.20厘米 D.28厘米11.如图,在矩形 OABC 中,OA=8,OC=4,沿对角线 OB 折叠后,点 A 与点 D 重合,OD 与 BC交于点 E,那么点 D 的坐标是〔〕A.〔4,8〕B.〔5,8〕C.〔,〕 D.〔,〕12.将矩形纸片ABCD按如下图的方式折叠,AE、EF为折痕,∠BAE=30°,,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.那么BC的长为〔〕A. B. 2 C. 3 D.13.如图,矩形纸片ABCD中,AD=3cm,点E在BC上,将纸片沿AE折叠,使点B落在AC上的点F处,且∠AEF=∠CEF,那么AB的长是( )A.1 cm B.cm C.2 cm D. cm14.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为〔〕A.3或4 B.4或3C.3或4 D.3或415.如图,在矩形ABCD中,点E、F分别在边AB,BC上,且AE=AB.将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q.对于以下结论:①EF=2BE,②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的选项是( )A.①② B.②③C.①③ D.①④16.如图,点M、N分别在矩形ABCD边AD、BC上,将矩形ABCD沿MN翻折后点C恰好与点A重合,假设此时=,那么△AMD′的面积与△AMN的面积的比为( )A.1:3 B.1:4 C.1:6 D.1: 917.图,矩形ABCD中,点E是AD的中点,将△ABE折叠后得到△GBE,延长B G交CD于点F,假设CF=1,FD=2,那么BC的长为( )18.如图,矩形ABCD边AD沿拆痕AE折叠,使点D落在BC上的F处,AB=6,△ABF的面积是24,那么FC等于〔〕. A.2 B.3 C.4 D.519.如图,在菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在点A′、D′处,且A′D′经过点B,EF为折痕,当D′F⊥CD时,的值为〔〕A.B.C.D.20.如图,在矩形纸片ABCD中,AB=3,AD=5.折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC 边上移动时,折痕的端点P,Q也随之移动。
河南省中考数学专题复习专题三几何图形的折叠与动点问题训练
专题三几何图形的折叠与动点问题类型一与特殊图形有关(2018·河南)如图.∠MAN=90°.点C在边AM上.AC=4.点B为边AN上一动点.连接BC.△A′BC与△ABC关于BC所在直线对称.点D.E分别为AC.BC的中点.连接DE并延长交A′B所在直线于点F.连接A′E.当△A′EF为直角三角形时.AB的长为________.【分析】当△A′EF为直角三角形时.存在两种情况:①∠A′EF=90°.②∠A′FE=90°进行讨论.【自主解答】当△A′EF为直角三角形时.存在两种情况:①当∠A′EF=90°时.如解图①.∵△A′BC与△ABC关于BC所在直线对称.∴A′C=AC=4.∠ACB=∠A′CB.∵点D.E分别为AC.BC的中点.∴D、E是△ABC的中位线.∴DE∥AB.∴∠CDE=∠MAN=90°.∴∠CDE=∠A′EF.∴AC∥A′E.∴∠ACB=∠A′EC.∴∠A′CB=∠A′EC.∴A′C=A′E=4.在Rt△A′CB中.∵E是斜边BC的中点.∴BC=2A′E=8.由勾股定理.得AB2=BC2-AC2.∴AB=82-42=43;②当∠A′FE=90°时.如解图②.∵∠ADF=∠A=∠DFB=90°.∴∠ABF=90°.∵△A′BC与△ABC关于BC所在直线对称.∴∠ABC=∠CBA′=45°.∴△ABC是等腰直角三角形.∴AB=AC=4;综上所述.AB的长为43或4.图①图②1.如图.四边形ABCD是菱形.AB=2.∠ABC=30°.点E是射线DA上一动点.把△CDE沿CE折叠.其中点D 的对应点为D′.连接D′B. 若使△D′BC为等边三角形.则DE=________________.2.如图.在Rt△ABC中.∠ACB=90°.AB=5.AC=4.E、F分别为AB、AC上的点.沿直线EF将∠B折叠.使点B恰好落在AC上的D处.当△ADE恰好为直角三角形时.BE的长为______.3.(2017·河南)如图.在Rt△ABC中.∠A=90°.AB=AC.BC=2+1.点M.N分别是边BC.AB上的动点.沿MN所在的直线折叠∠B.使点B的对应点B′始终落在边AC上.若△MB′C为直角三角形.则BM的长为__________.4.(2018·新乡一模)菱形ABCD的边长是4.∠DAB=60°.点M、N分别在边AD、AB上.且MN⊥AC.垂足为P.把△AMN沿MN折叠得到△A′MN.若△A′DC恰为等腰三角形.则AP的长为____________.5.(2017·三门峡一模)如图.在Rt△ABC中.∠ACB=90°.AB=5.AC=3.点D是BC上一动点.连接AD.将△ACD沿AD折叠.点C落在点C′.连接C′D交AB于点E.连接BC′.当△BC′D是直角三角形时.DE的长为______.6.(2018·盘锦)如图.已知Rt△ABC中.∠B=90°.∠A=60°.AC=23+4.点M、N分别在线段AC、AB 上.将△ANM沿直线MN折叠.使点A的对应点D恰好落在线段BC上.当△DCM为直角三角形时.折痕MN的长为__________.7.(2018·乌鲁木齐)如图.在Rt△ABC中.∠C=90°.BC=2 3.AC=2.点D是BC的中点.点E是边AB上一动点.沿DE所在直线把△BDE翻折到△B′DE的位置.B′D交AB于点F.若△AB′F为直角三角形.则AE的长为________.8.(2017·洛阳一模)在菱形ABCD 中.AB =5.AC =8.点P 是对角线AC 上的一个动点.过点P 作EF 垂直AC 交AD 于点E.交AB 于点F.将△AEF 折叠.使点A 落在点A′处.当△A′CD 为等腰三角形时.AP 的长为______.9.(2018·濮阳一模)如图.在Rt△ABC 中.∠C=90°.AC =3.BC =4.点D.E 为AC.BC 上两个动点.若将∠C 沿DE 折叠.点C 的对应点C′恰好落在AB 上.且△ADC′恰好为直角三角形.则此时CD 的长为__________.类型二 点的位置不确定(2016·河南)如图.已知AD∥BC .AB⊥BC .AB =3.点E 为射线BC 上一个动点.连接AE.将△ABE 沿AE折叠.点B 落在点B′处.过点B′作AD 的垂线.分别交AD.BC 于点M.N.当点B′为线段MN 的三等分点时.BE 的长为________.【分析】 根据勾股定理.可得EB′.根据相似三角形的性质.可得EN 的长.根据勾股定理.可得答案.【自主解答】 由翻折的性质.得AB =AB′.BE =B′E.①当MB′=2.B′N=1时.设EN =x.得B′E=x 2+1.由△B′EN~△AB′M .EN B′M =B′E AB′.即x 2=x 2+13.x 2=45.BE =B′E=45+1=355; ②当MB′=1.B′N=2时.设EN =x.得B′E=x 2+22.△B′EN∽△AB′M .EN B′M =B′E AB′.即x 1=x 2+43.解得x 2=12.BE =B′E=12+4=322.故答案为:322或355.1.如图.正方形ABCD 的边长为9.将正方形折叠.使D 点落在BC 边上的点E 处.折痕为GH.若点E 是BC 的三等分点.则线段CH 的长是_______.2.(2018·林州一模)在矩形ABCD中.AB=4.BC=9.点E是AD边上一动点.将边AB沿BE折叠.点A的对应点为A′.若点A′到矩形较长两对边的距离之比为1∶3.则AE的长为__________.3.(2015·河南)如图.矩形ABCD中.AD=5.AB=7.点E为DC上一个动点.把△ADE沿AE折叠.当点D的对应点D′落在∠ABC的平分线上时.DE的长为______.4.(2017·商丘模拟)如图.在矩形ABCD中.AD=5.AB=8.点E为射线DC上一个动点.把△ADE沿直线AE 折叠.当点D的对应点F刚好落在线段AB的垂直平分线上时.则DE的长为__________.5.如图.在矩形ABCD中.BC=6.CD=8.点P是AB上(不含端点A.B)任意一点.把△PBC沿PC折叠.当点B 的对应点B′落在矩形ABCD对角线上时.BP=________.6.(2018·河南模拟)如图.△ABC中.AB= 5.AC=5.tan A=2.D是BC中点.点P是AC上一个动点.将△BPD 沿PD折叠.折叠后的三角形与△PBC的重合部分面积恰好等于△BPD面积的一半.则AP的长为____________.7.在矩形ABCD中.AB=6.BC=12.点E在边BC上.且BE=2CE.将矩形沿过点E的直线折叠.点C.D的对应点分别为C′.D′.折痕与边AD交于点 F.当点 B.C′.D′恰好在同一直线上时.AF的长为__________________.类型三根据图形折叠探究最值问题如图.在矩形纸片ABCD中.AB=2.AD=3.点E是AB的中点.点F是AD边上的一个动点.将△AEF沿EF所在直线翻折.得到△A′EF.则A′C的长的最小值是________.【分析】以点E为圆心.AE长度为半径作圆.连接CE.当点A′在线段CE上时.A′C的长取最小值.根据折叠的性质可知A′E=1.在Rt△BCE中利用勾股定理可求出CE的长度.用CE-A′E即可求出结论.例3题解图【自主解答】以点E为圆心.AE长度为半径作圆.连接CE.当点A′在线段CE上时.A′C的长取最小值.如解图所示.根据折叠可知:A′E=AE=12AB=1.在Rt△BCE中.BE=12AB=1.BC=3.∠B=90°.∴CE=BE2+BC2=10.∴A′C的最小值=CE-A′E=10-1.故答案为10-1.1.(2019·原创)如图.在边长为10的等边三角形△ABC中.D是AB边上的动点.E是AC边的中点.将△ADE 沿DE翻折得到△A′DE.连接BA′.则BA′的最小值是__________.2.在矩形ABCD中.AD=12.E是AB边上的点.AE=5.点P在AD边上.将△AEP沿EP折叠.使得点A落在点A′的位置.如图.当A′与点D的距离最短时.△A′PD的面积为________.3.如图.在边长为4的正方形ABCD中.E为AB边的中点.F是BC边上的动点.将△EBF沿EF所在直线折叠得到△EB′F.连接B′D.则当B′D取得最小值时.tan∠BEF的值为__________.4.(2017·河南模拟)如图.在Rt△ABC中.∠ACB=90°.AC=4.BC=6.点D是边BC的中点.点E是边AB上的任意一点(点E不与点B重合).沿DE翻折△DBE使点B落在点F处.连接AF.则线段AF的长取最小值时.BF 的长为_________.参考答案类型一针对训练1.3+1或23-2 【解析】(1)当点E在边AD上时.过点E作EF⊥CD于F.如解图①.设CF=x.第1题解图①∵∠ABC=30°.∴∠BCD=150°.∵△BCD′是等边三角形.∴∠DCD′=90°.由折叠可知.∠ECD=∠D′CE=45°.∵EF=CF=x.在直角三角形DEF中.∠D=30°.∴DE=2x.∴DF=3x.∴CD=CF+DF=x+3x=2.解得x=3x-1.∴DE=2x=23-2.(2)当E在DA的延长线上时.如解图②.第1题解图②过点B作BF⊥DA于点F.根据折叠可知.∠ED′C=∠D=30°.又∵三角形BD′C是等边三角形.∴D′E垂直平分BC.∵AD∥BC.∴D′E⊥AD.∵∠ABC=30°∴∠BAF=30°.又∵AB=2.∴AF= 3.令D′E与BC的交点为G.则易知EF =BG =12BC =1.∴AE=3-1.∴DE=3+1.综上所述.DE 的长度为3+1或23-2. 2.158或157【解析】在Rt△ABC 中.∵∠C=90°.AB =5.AC =4.∴BC=3.沿直线EF 将∠B 折叠.使点B 恰好落在BC 上的D 处.当△ADE 恰好为直角三角形时.根据折叠的性质:BE =DE.设BE =x.则DE =x.AE =5-x.①当∠ADE=90°时.则DE∥BC .∴DE CB =AE AB .∴x 3=5-x 5.解得x =158;②当∠AED=90°时.则△AED∽△ACB .∴DE BC=AE AC .∴x 3=5-x 4.解得x =157.故所求BE 的长度为:158或157. 3.122+12或1 【解析】①如解图①.当∠B′MC=90°.B′与A 重合.M 是BC 的中点.∴BM=12BC =122+12;②如解图②.当∠MB′C=90°.∵∠A=90°.AB =AC.∴∠C=45°.∴△CMB′是等腰直角三角形.∴CM=2MB′.∵沿MN 所在的直线折叠∠B.使点B 的对应点为B′.∴BM=B′M .∴CM=2BM.∵BC=2+1.∴CM +BM =2BM +BM =2+1.∴BM=1.综上所述.若△MB′C 为直角三角形.则BM 的长为122+12或1.图①图②第3题解图 4.433或23-2 【解析】①如解图①.当A′D=A′C 时.∠A′DC=∠A′CD=30°.∴∠AA′D=60°.又∵∠CAD=30°.∴∠ADA′=90°.在Rt△ADA′中.AA′=AD cos 30°=432=833.由折叠可得AP =12AA′=433;图①图②第4题解图②如解图②.当CD =CA′=4时.连接BD 交AC 于O.则Rt△COD 中.CO =CD×cos 30°=4×32=2 3.∴AC =4 3.∴AA′=AC -A′C=43-4.由折叠可得AP =12AA′=23-2;故答案为433或23-2. 5 .32或34【解析】如解图①所示.点E 与点C′重合时.在Rt△ABC 中.BC =AB 2-AC 2=4.由翻折的性质可知;AE =AC =3、DC =DE.则EB =2.设DC =ED =x.则BD =4-x.在Rt△DBE 中.DE 2+BE 2=DB 2.即x 2+22=(4-x)2.解得x =32.∴DE=32.图①图②第5题解图如解图②所示:∠EDB=90°时.由翻折的性质可知:AC =AC′.∠C=∠AC′D=90°.∵∠C=∠AC′D =∠CDC′=90°.∴四边形ACDC′为矩形.又∵AC=AC′.∴四边形ACDC′为正方形.∴CD=AC =3.∴DB=BC -DC =4-3=1.∵DE∥AC .∴△BDE∽△BCA.∴DE AC =DB CB =14.即ED 3=14.解得DE =34.点D 在CB 上运动.∠DBC′<90°.故∠DBC′不可能为直角.故答案为:32或34. 6.23+43或 6 【解析】分两种情况:①如解图①.当∠CDM=90°.△CDM 是直角三角形.∵在Rt△ABC 中.∠B=90°.∠A=60°.AC =23+4.∴∠C=30°.AB =12AC =3+2.由折叠可得.∠MDN=∠A=60°.∴∠BDN=30°.∴BN=12DN =12AN.∴BN=13AB =3+23.∴AN=2BN =233+43.∵∠DNB=60°.∴∠ANM =∠DNM=60°.∴∠ANM=60°.∴AN=MN =23+43.②如解图②.当∠CMD=90°时.△CDM 是直角三角形.由题可得∠CDM=60°.∠A=∠MDN=60°.∴∠BDN=60°.∠BND=30°.∴BD=12DN =12AN.BN =3BD.又∵AB=3+2.∴AN=2.BN = 3.过N 作NH⊥AM 于H.则∠ANH=30°.∴AH=12AN =1.HN = 3.由折叠可得∠AMN=∠DMN=45°.∴△MNH 是等腰直角三角形.∴HM=HN = 3.∴MN= 6.故答案为23+43或 6.图①图②第6题解图7.3或145 【解析】∴∠C=90°.BC =2 3.AC =2.∴tan B=AC BC =223=33.∴∠B=30°.∴AB=2AC =4.∵点D 是BC 的中点.沿DE 所在直线把△BDE 翻折到△B′D′E 的位置.B′D 交AB 于点F.∴DB=DC = 3.EB′=EB.∠DB′E=∠B=30°.设AE =x.则BE =4-x.EB′=4-x.当∠AFB′=90°时.在Rt△BDF 中.cos B =BF BD .∴BF=3cos 30°=32.∴EF=32-(4-x)=x -52.在Rt△B′EF 中.∵∠EB′F=30°.∴EB′=2EF. 则4-x =2(x -52).解得x =3.此时AE 为3;第7题解图当∠FB′A=90°时.作EH⊥AB′于H.连接AD.如解图.∵DC=DB′.AD =AD.∴Rt△ADB′≌Rt△ADC .∴AB′=AC =2.∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°.∴∠EB′H=60°.在Rt△EHB′中.B′H=12B ′E =12(4-x).EH =3B′H=32(4-x).在Rt△AEH 中.∵EH 2+AH 2=AE 2.∴34(4-x)2+[12(4-x)+2]2=x 2.解得x =145.此时AE 为145.综上所述.AE 的长为3或145. 8.32或3916【解析】∵四边形ABCD 是菱形.∴AB=BC =CD =AD =5.∠DAC=∠BAC.∵EF⊥AA′.∴∠EPA=∠FPA′=90°.∴∠EAP+∠AEP=90°.∠FAP+∠AFP=90°.∴∠AEP=∠AFP .∴AE=AF.∵△A′EF 是由△AEF 翻折.∴AE=EA′.AF =FA′.∴AE=EA′=A′F=FA.∴四边形AEA′F 是菱形.∴AP=PA′.①当CD=CA′时.∵AA′=AC -CA′=3.∴AP =12AA′=32.②当A′C =A′D 时.∵∠A′CD =∠A′DC =∠DAC .∴△A′CD∽△DAC.∴A′C AD =DC AC .∴A′C=258.∴AA′=8-258=398.∴AP=12AA′=3916.故答案为32或3916. 9.127或43【解析】①如解图①.当∠ADC′=90°时.∠ADC′=∠C .第9题解图①∴DC′∥CB .∴△ADC′∽△ACB.又∵AC=3.BC =4.∴AD DC′=34.设CD =C′D=x.则AD =3-x.∴3-x x =34.解得x =127.经检验:x =127是所列方程的解.∴CD=127;②如解图②.当∠DC′A=90°时.∠DCB=90°.第9题解图②由折叠可得.∠C =∠DC′E =90°.∴C′B 与CE 重合.由∠C =∠AC′D =90°.∠A =∠A .可得△ADC′∽△ABC .在Rt △ABC 中.AB =5.∴AD C′D =AB CB =54.设CD =C′D=x.则AD =3-x.∴3-x x =54.解得x =43.∴CD=43.综上所述.CD 的长为127或43. 类型二针对训练1.4或52 【解析】设CH =x.则DH =EH =9-x.当BE∶EC=2∶1时.BC =9.∴CE=13BC =3.在Rt△ECH 中.EH 2=EC 2+CH 2.即(9-x)2=32+x 2.解得x =4.即CH =4.当BE∶EC=1∶2时.CE =23BC =6.在Rt△ECH 中.EH 2=EC 2+CH 2.即(9-x)2=62+x 2.解得:x =52.即CH =52.故CH 的长为4或52. 2.477或4155【解析】如解图.过点A′作A′M⊥AD 于M 交BC 于N.则四边形ABNM 是矩形.∴AB=MN =4.∵若点A′到矩形较长两对边的距离之比为1∶3.∴A′M=1.A′N=3或A′M=3.A′N=1.①当A′M=1.A′N =3时.在Rt△BA′N 中.BN =42-32=7.∴AM =BN =7.由△A′EM~△BA′N .∴EM A′N =A′M BN .∴EM 3=17.∴EM=377.∴AE=477;②当A′M=3.A′N=1时.同理可得AE =4155.,第2题解图)第3题解图3.52或53【解析】如解图.连接BD′.过D′作MN⊥AB .交AB 于点M.CD 于点N.作D′P⊥BC 交BC 于点P.∵点D 的对应点D′落在∠ABC 的平分线上.∴MD′=PD′.设MD′=x.则PD′=BM =x.∴AM=AB -BM =7-x.又由折叠图形可得AD =AD′=5.∴x 2+(7-x)2=25.解得x =3或4.即MD′=3或4.在Rt△END′中.设ED′=a.①当MD′=3时.AM =7-3=4.D′N=5-3=2.EN =4-a.∴a 2=22+(4-a)2.解得a =52.即DE =52;②当MD′=4时.AM =7-4=3.D′N=5-4=1.EN =3-a.∴a 2=12+(3-a)2.解得a =53.即DE =53.综上所述.DE 的长为52或53. 4.52或10 【解析】分两种情况:①如解图①.当点F 在矩形内部时.∵点F 在AB 的垂直平分线MN 上.∴AN =4.∵AF=AD =5.由勾股定理得FN =3.∴FM=2.设DE 为x.则EM =4-x.FE =x.在△EMF 中.由勾股定理.得x 2=(4-x)2+22.∴x=52.即DE 的长为52;图①图②第4题解图②如解图②.当点F 在矩形外部时.同①的方法可得FN =3.∴FM=8.设DE 为y.则EM =y -4.FE =y.在△EMF 中.由勾股定理.得y 2=(y -4)2+82.∴y=10.即DE 的长为10.综上所述.点F 刚好落在线段AB 的垂直平分线上时.DE 的长为52或10. 5.3或92【解析】①点A 落在矩形对角线BD 上.如解图①.∵在矩形ABCD 中.AB =8.BC =6∴∠ABC=90°.AC =BD.∴AC=BD =62+82=10.根据折叠的性质.得PC⊥BB′.∴∠PBD=∠BCP .∴△BCP∽△ABD .∴BP AD =BC AB.即BP 6=68.解得BP =92;②点A 落在矩形对角线AC 上.如解图②.根据折叠的性质.得BP =B′P .∠B=∠PB′C =90°.∴∠AB′A=90°.∴△APB′∽△ACB .∴B′P BC =AP AC .即BP 6=8-BP 10.解得BP =3.故答案为:3或92.图①图②第5题解图6.2或5- 5 【解析】分两种情况:①当点B′在AC 的下方时.如解图①.∵D 是BC 中点.∴S △BPD =S △PDC .∵S △PDF =12S △BPD .∴S △PDF =12S △PDC .∴F 是PC 的中点.∴DF 是△BPC 的中位线.∴DF∥BP .∴∠BPD=∠PDF .由折叠得:∠BPD=∠B′PD .∴∠B′PD=∠PDF .∴PB′=B′D .即PB =BD.过B 作BE⊥AC 于E.在Rt△ABE中.tan A =BE AE=2.∵AB= 5.∴AE=1.BE =2.∴EC=5-1=4.由勾股定理.得BC =BE 2+EC 2=22+42=2 5.∵D 为BC 的中点.∴BD= 5.∴PB=BD = 5.在Rt△BPE 中.PE =1.∴AP=AE +PE =1+1=2;图①图②第6题解图②当点B′在AC 的上方时.如解图②.连接B′C .同理得:F 是DC 的中点.F 是PB′的中点.∴DF=FC.PF =FB′.∴四边形DPCB′是平行四边形.∴PC=B′D=BD= 5.∴AP=5- 5.综上所述.AP的长为2或5-5.7.8+23或8-2 3 【解析】由折叠的性质得.∠EC′D′=∠C=90°.C′E=CE.∵点B、C′、D′在同一直线上.∴∠BC′E=90°.∵BC=12.BE=2CE.∴BE=8.C′E=CE=4.在Rt△BC′E中.BE C′E=2.∴∠C′BE=30°.①当点C′在BC的上方时.如解图①.过E作EG⊥AD于G.延长EC′交AD于H.则四边形ABEG是矩形.∴EG=AB=6.AG=BE=8.∵∠C′BE=30°.∠BC′E=90°.∴∠BEC′=60°.由折叠的性质得.∠C′EF=∠CEF=60°.∵AD∥BC.∴∠HFE=∠CEF=60°.∴△EFH是等边三角形.∴在Rt△EFG 中.EG=6.∴GF=23.∴AF=8+23;②当点C′在BC的下方时.如解图②.过F作FG⊥AD于G.D′F交BE于H.同①可得.四边形ABGF是矩形.△EFH是等边三角形.∴AF=BG.FG=AB=6.∠FEH=60°.在Rt△EFG 中.GE=23.∵BE=8.∴BG=8-2 3.∴AF=8-2 3.图①图②第7题解图类型三针对训练1.53-5 【解析】如解图.连接BE.第1题解图∵AB=BC=AC=10.∴∠C=60°.∵AB=BC.E是AC的中点.∴BE⊥AC.∴BE=BC2-EC2=102-52=53.∵AC=10.E是AC边的中点.∴AE=5.由翻折的性质可知A′E=AE=5.∵BA′+A′E≥BE.∴当点B、A′、E在一条直线上时.BA′有最小值.最小值=BE-A′E=53-5.2.403【解析】连接DE.DE=52+122=13.∵将△AEP沿FP折叠.使得点A落在点A′的位置.∴EA′=EA=5.∵A′D≥DE-EA′第2题解图(当且仅当A′点在DE 上时.取等号).∴当A′与点D 的距离最短时.A′点在DE 上.∴DA′=13-5=8.设PA′=x.则PA =x.PD =12-x.在Rt△DPA′中.x 2+82=(12-x)2.解得x =103.∴△A′PD 的面积=12×8×103=403. 3.1+52【解析】在Rt△ADE 中.DE =22+42=2 5.当B′在ED 上时.B′D 最小.在ED 上截取EB′=EB =2.连接B′F .FD.则B′D=ED -EB′=25-2.设BF =x.则B′F=x.CF =4-x.在Rt△B′FD 和Rt△FCD 中.利用勾股定理.可得DB′2+B′F 2=DF 2=CF 2+DC 2.即(25-2)2+x 2=(4-x)2+42.解得x =5+1.∴Rt△BEF 中.tan∠BEF=BF BE =1+52.第3题解图4.1255【解析】由题意得:DF =DB.第4题解图∴点F 在以D 为圆心.BD 为半径的圆上.作⊙D; 连接AD 交⊙D 于点F.此时AF 值最小.∵点D 是边BC 的中点.∴CD=BD =3;而AC =4.由勾股定理得:AD 2=AC 2+CD 2.∴AD=5.而FD =3.∴FA=5-3=2.即线段AF长的最小值是2.连接BF.过F 作FH⊥BC 于H.∵∠ACB=90°.∴FH∥AC .∴△DFH∽△DAC .∴DF AD =DH CD =HF AC.即35=DH 3=HF 4.∴HF=125.DH =95.∴BH=245.∴BF=BH 2+HF 2=1255.。
初三几何专题练习折叠问题
初三几何专题练习折叠问题折叠问题实际上是轴对称问题的应用,解题关键是抓住对称的性质1)关于同一条直线对称的图形全等; 2)对称轴是轴对称点连线的垂直平分线。
1、矩形ABCD 中,AB =6cm ,BC =5cm ,若将矩形折叠,使B 、D 重合,则折痕EF 长为?2一面积为1的正方形纸片ABCD ,M 、N 分别为AD 、BC 边的中点,将点C 折致MN 上,落在P 点位置,折痕为BQ ,连结PQ 。
1)求MP 的长;2)求证:以PQ 为边长的正方形面积=313、矩形ABCD 中,AB =1,点M 在对角线AC 上,AM =41AC ,直线L 过M 点且与AC 垂直与边AD 交于点E 。
1)、若AD =3,求证:点B 在直线L 上。
A D CBMN P2)、若L 与BC 交于H ,且把矩形的面积分成72的两部分,求AD 长。
若L 与AD 、AB 交于点E 、G (包括G 与C 重合),设AD长为x (33≤x ≤3)找出x 的取值范围。
4、把矩形纸片放入直角坐标系中,使OA 、OC 与X 轴、Y 轴正半轴重合,连AC 将△ABC 沿AC 翻折,点B 落在该坐标系内,设落点为D ,CD 交X 轴于E ,若CE =5,OE 、OC 长是方程x 2+(m -1)x +12=0的两根,且OC >OE ;1)求点D 坐标;2)若点F 是AC 中点,判断(8,-20)是否在过D 、F 两点的直线上。
5、ABCD 为一矩形纸,E 是AB 上一点,且BE ∶AE =5∶3,EC =15,把△BCE 沿折痕EC 向上翻折,若点B 恰好落在AD 边上,设为F 点; 求:1)AB 与BC 长;2)若☉O 内切于以F 、E 、B 、C 为顶点的四边形,求⊙O 的面积。
6、矩形纸片OABC 放入直角坐标系XOY 中,使OA 、OC 分别与X 轴、Y 轴正半轴上,连结AC 、且AC=45。
Tan ∠1) 求A 、C 两点坐标 2) 求AC 所在直线的解析式3) 将纸片OABC 折叠,使点A 与点C 重合(折痕为EF),求折叠后纸片重叠部分面积。
中考数学选填压轴题题型归类(学生版)
选填压轴题题型归类1.目录一、热点题型归纳【题型一】二次函数中的多结论问题【题型二】几何问题中的多结论问题【题型三】几何动点与函数图像问题【题型四】几何中的折叠问题【题型五】几何中的阴影面积问题【题型六】几中的旋转问题【题型七】动态几何的最值问题二、最新模考题组练1热点题型归纳一、子集与真子集的定义与表示题型一:二次函数中的多结论问题【典例分析】1二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,已知图象经过点(-1,0),其对称轴为直线x=1.下列结论,其中正确的有()①abc<0;②b2-4ac<0;③8a+c<0;④9a+3b+2c<0;⑤点C(x1,y1)、D(x2,y2)是抛物线上的两点,若x1<x2,则y1<y2;⑥若抛物线经过点(-3,n),则关于x的一元二次方程ax2+bx+c-n=0(a≠0)的两根分别为-3,5.A.2个B.3个C.4个D.5个【提分秘籍】一般解题思路:①特殊值法:当x分别等于1、2、3、-1、-2、-3时,函数值分别为a+b+c、4a+2b+c、9a+3b+c......②对称轴:灵活应用对称轴-b2a和判别式b2-4ac;③通过①和②中的特殊值进行相加减构造新的结论。
【变式演练】1二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其对称轴为直线x=-12,且与x轴的一个交点坐标为(-2,0).下列结论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+c-1=0有两个相等的实数根.其中正确结论的序号是()A.①③B.②④C.③④D.②③2如图,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(-1,0),抛物线的对称轴为直线x=1,下列结论:①abc<0;②3a+c=0;③当y>0时,x的取值范围是-1≤x<3;④点(-2,y1),(2,y2)都在抛物线上,则有y1 <0<y2.其中结论正确的个数是()A.1个B.2个C.3个D.4个3已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(1,0),有下列结论:①2a+b<0;②当x>1时,y随x的增大而增大;③关于x的方程ax2+bx+(b+c)=0有两个不相等的实数根.其中,正确结论的个数是()A.0B.1C.2D.34已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b-2a<0,③a-b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是()A.①③B.②⑤C.③④D.④⑤题型二:几何问题中的多结论问题【典例分析】1如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE= BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S中正确的有()四边形DEOFA.4个B.3个C.2个D.1个【提分秘籍】建议多熟悉数学模型,能更快速的知道结论的正确性,例如:四边形中的十字架模型、中点四边形模型、对角互补模型等;【变式演练】1如图,△ABC为等边三角形,以AB为边向形外作△ABD,使∠ADB=120°,再以点C为旋转中心把△CBD旋转到△CAE,则下列结论:①D、A、E三点共线;②DC平分∠BDA;③∠E=∠BAC;④DC=DB+DA.其中正确的有()A.4个B.3个C.2个D.1个2如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EH=FG,②EH=HG,③四边形EFGH是菱形,④EG⊥FH.其中正确的个数是()A.1个B.2个C.3个D.4个3如图,正方形ABCD的边长为1,点E是边BC上一动点(不与点B,C重合),过点E作EF⊥AE交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①AE=EF;②CF=2BE;③∠DAF=∠CEF;④△CEF面积的最大值为16.其中正确的结论有()A.1个B.2个C.3个D.4个4如图,在矩形ABCD中,AC,BD相交于点O,过点B作BF⊥AC于点M,交CD于点F,过点D作DE∥BF 交AC于点N.交AB于点E,连接FN,EM.有下列结论:①图中共有三个平行四边形;②当BD=2BC时,四边形DEBF是菱形;③BD⊥ME;④AD2=BD•CM.其中,正确结论的序号是()A.①②③B.①②④C.①③④D.②③④题型三:几何动点与函数图像问题【典例分析】1如图,在矩形ABCD中,AB=4,BC=6,点P从点A出发,以每秒2个单位长度的速度沿A-B-C匀速运动,同时点Q从点C出发,以每秒1个单位长度的速度向点D匀速运动.当点Q运动到点D时,P,Q两点同时停止运动.设运动时间为t秒,△APQ的面积为S,则S随t变化的函数关系图象大致是()A. B.C. D.【变式演练】1如图,在等腰直角△ABC中,∠ACB=90°,AC=CB=8cm,点O为斜边AB的中点,连接OC,点E,F分别从A,C两点同时出发,以1cm/s的速度沿A→C,C→B运动,到点C,B时停止运动.设运动时间为t(s),△OEF 的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为()A. B.C. D.2如图(1),在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图(2)所示,则边BC的长是()A.20B.23C.24D.63如图,四边形ABCD是正方形,AB=2,点P为射线BC上一点,连接DP,将DP绕点P顺时针旋转90°得到线段EP,过B作EP平行线交DC延长线于F.设BP长为x,四边形BFEP的面积为y,下列图象能正确反映出y 与x函数关系的是()A. B.C. D.4如图,在矩形ABCD中,AB=2cm,BC=43cm,E是AD的中点,连接BE,CE.点P从点B出发,以3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BE-EC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A. B.C. D.题型四:几何中的折叠问题【典例分析】1如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D ′、C ′位置,ED ′的延长线与BC 相交于点G ,若∠1=140°,∠GFC ′=.2正方形ABCD 中,AB =2,E 为AB 的中点,将△ADE 沿DE 折叠得到△FDE ,FH ⊥BC ,垂足为H ,则FH =.【提分秘籍】一般解题思路:求角度:需要利用三角形内角和、外角的性质、平行线的性质等进行运算,必要时列方程(组)解答;求边长:首选构造直角三角形,通过勾股定理求值;其次利用全等相似或三角函数进行求解。
中考数学每日一练:翻折变换(折叠问题)练习题及答案_2020年综合题版
(1) 如图1,若点A′恰好落在边AB上,且AN= AC,求AM的长; (2) 如图2,若点A′恰好落在边BC上,且A′N∥AC. ①试判断四边形AMA′N的形状并说明理由;
②求AM、MN的长;
(3) 如图3,设线段NM、BC的延长线交于点P,当
且
时,求CP的长.
考点: 菱形的判定;翻折变换(折叠问题);
(1) 用含a的代数式表示点C的坐标. (2) 如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.
(3) 设
的面积为S1,
的面积为S2,若
,求a的值.
考点: 待定系数法求二次函数解析式;翻折变换(折叠问题);相似三角形的判年 中 考 数 学 : 图 形 的 变 换 _轴 对 称 变 换 _翻 折 变 换 ( 折 叠 问 题 ) 练 习 题 答 案
(1) 连结AF,若AF∥CE.证明:点E为AB的中点;
(2) 证明:GF=GD;
(3) 若AD=5,设EB=x,GD=y,求y与x的函数关系式.
考点: 正方形的性质;翻折变换(折叠问题);
答案
~~第3题~~ (2020绍兴.中考模拟) 如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连 接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.
第二步:再沿AC所在的直线折叠,△ACE与△ACF重合,得到图3
第三步:在图3的基础上继续折叠,使点C与点F重合,如图4,展开铺平,连接EF,FG,GM,ME,如图5,图中的 虚线为折痕.
问题解决:
(1) 在图5中,∠BEC的度数是, 的值是;
(2) 在图5中,请判断四边形EMGF的形状,并说明理由;
备考2023年中考数学二轮复习-图形的变换_轴对称变换_翻折变换(折叠问题)-综合题专训及答案
备考2023年中考数学二轮复习-图形的变换_轴对称变换_翻折变换(折叠问题)-综合题专训及答案翻折变换(折叠问题)综合题专训1、(2016连云港.中考真卷) 我们知道:光反射时,反射光线、入射光线和法线在同一平面内,反射光线、入射光线分别在法线两侧,反射角等于入射角.如右图,AO为入射光线,入射点为O,ON为法线(过入射点O且垂直于镜面的直线),OB为反射光线,此时反射角∠BON等于入射角∠AON.问题思考:(1)如图1,一束光线从点A处入射到平面镜上,反射后恰好过点B,请在图中确定平面镜上的入射点P,保留作图痕迹,并简要说明理由;(2)如图2,两平面镜OM、ON相交于点O,且OM⊥ON,一束光线从点A出发,经过平面镜反射后,恰好经过点B.小昕说,光线可以只经过平面镜OM反射后过点B,也可以只经过平面镜ON反射后过点B.除了小昕的两种做法外,你还有其它做法吗?如果有,请在图中画出光线的行进路线,保留作图痕迹,并简要说明理由;问题拓展:(3)如图3,两平面镜OM、ON相交于点O,且∠MON=30°,一束光线从点S出发,且平行于平面镜OM,第一次在点A处反射,经过若干次反射后又回到了点S,如果SA和AO的长均为1m,求这束光线经过的路程;(4)如图4,两平面镜OM、ON相交于点O,且∠MON=15°,一束光线从点P出发,经过若干次反射后,最后反射出去时,光线平行于平面镜OM.设光线出发时与射线PM的夹角为θ(0°<θ<180°),请直接写出满足条件的所有θ的度数(注:OM、ON足够长)2、(2017磴口.中考模拟) 如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C 落在点E处,BE与AD交于点F.(1)求证:△ABF≌△EDF;(2)若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.3、(2017吉林.中考模拟) 如图,在矩形ABCD中,E是边AB的中点,连接DE,△ADE 沿DE折叠后得到△FDE,点F在矩形ABCD的内部,延长DF交于BC于点G.(1)求证:FG=BG;(2)若AB=6,BC=4,求DG的长.4、(2019吴兴.中考模拟) 定义:长宽比为:为正整数的矩形称为矩形下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:过点G作CD∥AB,使点D、点C分别落在边AF,BE上.则四边形ABCD 为矩形.(1)证明:四边形ABCD为矩形;(2)点M是边AB上一动点.如图b,O是对角线AC的中点,若点N在边BC上,,连接求的值;连结AC,CM,当△AMC为等腰三角形时,将△CBM沿着CM翻折,点B的对称点为B’,连结AB’求的值.5、(2018龙湾.中考模拟) 如图,以AB为直径作⊙O,点C为⊙O上一点,劣弧CB 沿BC翻折,交AB于点D,过A作⊙O的切线交DC的延长线于点E.(1)求证:AC=CD;(2)已知tanE= ,AC=2,求⊙O的半径.6、(2016江西.中考真卷) 解方程组与证明(1)解方程组:.(2)如图,Rt△ABC中,∠ACB=90°,将Rt△ABC向下翻折,使点A与点C重合,折痕为DE.求证:DE∥BC.7、(2016郓城.中考模拟) 如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.8、(2018荆州.中考真卷) 如图,对折矩形纸片ABCD,使AB与DC重合,得到折痕MN,将纸片展平;再一次折叠,使点D落到MN上的点F处,折痕AP交MN于E;延长PF交AB于G.(1)求证:△AFG≌△AFP;(2)△APG为等边三角形.9、(2018柳州.中考模拟) 如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.(1)求∠2、∠3的度数;(2)求长方形纸片ABCD的面积S.10、(2019仁寿.中考模拟) (本小题满分9分)如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP 沿AP翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC 于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC,分别交PM,PB于点E,F.若,求的值.11、(2016贵阳.中考模拟) 如图,矩形ABCD中,AB=6,BC=8,点E是射线CB上的一个动点,把△DCE沿DE折叠,点C的对应点为C′.(1)若点C′刚好落在对角线BD上时,BC′=;(2)若点C′刚好落在线段AB的垂直平分线上时,求CE的长;(3)若点C′刚好落在线段AD的垂直平分线上时,求CE的长.12、(2011遵义.中考真卷) 把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.(1)求证:△BHE≌△DGF;(2)若AB=6cm,BC=8cm,求线段FG的长.13、(2020拱墅.中考模拟) 如图1,折叠矩形纸片ABCD,具体操作:①点E为AD边上一点(不与点A,D重合),把△ABE沿BE所在的直线折叠,A点的对称点为F点;②过点E对折∠DEF,折痕EG所在的直线交DC于点G,D点的对称点为H 点.(1)求证:△ABE∽△DEG.(2)若AB=3,BC=5①点E在移动的过程中,求DG的最大值②如图2,若点C恰在直线EF上,连接DH,求线段DH的长.14、(2020.中考真卷) 如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c的顶点是A(1,3),将OA绕点O顺时针旋转90°后得到OB,点B 恰好在抛物线上,OB与抛物线的对称轴交于点C.(1)求抛物线的解析式;(2) P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与△OAB的边分别交于M,N两点,将△AMN以直线MN为对称轴翻折,得到△A′MN,设点P的纵坐标为m.①当△A′MN在△OAB内部时,求m的取值范围;②是否存在点P,使S△A′MN = S△OA′B,若存在,求出满足条件m的值;若不存在,请说明理由.15、(2020湖州.中考真卷) 已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B 沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知:如图1,若∠C=60°,D是AB的中点,求证:AP=AC;(2)变式求异:如图2,若∠C=90°,m=,AD=7,过点D作DH⊥AC 于点H,求DH和AP的长;(3)化归探究:如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.翻折变换(折叠问题)综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
中考数学题型复习 题型三 几何图形综合计算 类型二 折叠问题数学课件
12/11/2021
类型二 折叠问题
第一页,共六页。
典例精讲
例2 如图,正方形ABCD的边长为4,点E是BC上的一点,连接
(liánjiē)AE,AF平分∠DAE交DC于点F,连接BD分别交AE,AF于点G,
H,将△ADH沿直线AD翻折,点H落在点H′处,连接GH′,H′F,
FG,若DF=FC,则△H′GF的面积是________.
4
12/11/2021
第二页,共六页。
【解析】如解图,∵DF=FC,DC=4,∴DF=FC=2,∵四边形
ABCD是正方形,∴∠ADC=∠BAD=90°,在Rt△ADF中,AD=
4,∴AF= 4222 2 5,同理可得:BD=4 5 ,∵AB∥DF,
7
7
∴S△H′GF=S梯形H′GQP-S△H′PF-S△GQF=
1 ( 4 1 6 ) ( 4 1 6 ) 1 4 ( 4 2 ) 1 2 1 6 4 . 2 3737233 277
12/11/2021
第五页,共六页。
内容(nèiróng)总结
题型三 几何图形(jǐhé tú xíng)综合计算。例2 如图,正方形ABCD的边长为4,点E是BC上的一点,连接AE,AF平分∠DAE交DC于点F,连接BD分别交AE,
AF于点G,H,将△ADH沿直线AD翻折,点H落在点H′处,连接GH′,H′F,FG,若DF=FC,则△H′GF的面积是________.。∴FQ=DQ-DF=
,
No
Image
12/11/2021
第六页,共六页。
EC=1,∵AD∥BC,∴△AGD∽△EGB,
∴ DG AD 4 ,∴ D G 4 ,∵GQ∥BC,∴△DGQ∽△DBC, BG EB 3 D B 7
中考数学复习专题:折叠问题
2012年全国中考数学试题分类解析汇编(159套63专题)专题31:折叠问题一、选择题1. (2012广东梅州3分)如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=75°,则∠1+∠2=【】A.150°B.210°C.105°D.75°【答案】A。
【考点】翻折变换(折叠问题),三角形内角和定理。
【分析】∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°。
∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°。
故选A。
2. (2012江苏南京2分)如图,菱形纸片ABCD中,∠A=600,将纸片折叠,点A、D分别落在A’、D’处,且A’D’经过B,EF为折痕,当D’F⊥CD时,CFFD的值为【】A. 312B.36C.2316D.318【答案】A。
【考点】翻折变换(折叠问题),菱形的性质,平行的性质,折叠的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】延长DC 与A ′D ′,交于点M ,∵在菱形纸片ABCD 中,∠A=60°,∴∠DCB=∠A=60°,AB ∥CD 。
∴∠D=180°-∠A=120°。
根据折叠的性质,可得∠A ′D ′F=∠D=120°,∴∠FD ′M=180°-∠A ′D ′F=60°。
∵D ′F ⊥CD ,∴∠D ′FM=90°,∠M=90°-∠FD ′M=30°。
∵∠BCM=180°-∠BCD=120°,∴∠CBM=180°-∠BCM-∠M=30°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
类型二 折叠问题针对演练1. 如图,已知正方形ABCD 中,点E 是边BC 上一点(不与B ,C 重合),连接AE ,AC ,将△AEC 沿直线AE 翻折,点C 的对应点为点F ,连接FE 并延长FE 交边CD 于点G ,若DG =3CG ,则CE BE=________.第1题图 第2题图 2. 如图,正方形ABCD 的边长为10,对角线AC 、BD 相交于点O ,以AB 为斜边在正方形内部作Rt △ABE ,∠AEB =90°,连接OE .点P 为边AB 上的一点,将△AEP 沿着EP 翻折到△GEP ,若PG ⊥BE 于点F ,OE =2,则S △EPB =________.3. (2017重庆西大附中月考)在正方形ABCD 中,点E 是AD 的中点,连接BE ,BF 平分∠EBC 交CD 于点F ,交AC 于点G ,将△CGF 沿直线GF 折叠至△C ′GF ,BD 与△C ′GF 相交于点M ,N ,连接CN ,若AB =6,则四边形CNC ′G 的面积是________.第3题图 第4题图4. (2017重庆沙坪坝区一模)如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,且AC =2,BD =6,将△AOD 沿AD 翻折得到△AED ,延长EA 交BD 于点F ,交BC 于点G ,连接OG ,则△FOG的面积是________.5. (2018原创)如图,已知正方形纸片ABCD ,E 为CB 延长线上一点,F 为边CD 上一点,将纸片沿EF 翻折,点C 恰好落在AD 边上的H 处,连接BD ,CH ,CG .CH 交BD 于点N ,EF 、CG 、BD 恰好交于一点M .若DH =2,BG =3,则线段MN 的长度为________.第5题图 第6题图 6. (2017重庆南开一模)如图,在△ABE 中,∠AEB =90°,AB =29,以AB 为边在△ABE 的同侧作正方形ABCD ,点O 是正方形对角线的交点,连接OE ,OE =322,点P 为AB 上一动点,将△APE 沿直线PE 翻折得到△A ′PE ,当A ′P ⊥BE 于点F 时,BF 的长度是________.7. 如图,在矩形ABCD 中,AB =5,AD =6,∠BAD 的平分线AE 交BC 于点E ,点F 为DC 上一点(DF <FC ),连接AF 、FE 、AF ⊥FE .把△ADF 沿AF 对折,得到△AGF ,连接EG ,则EG 的长为________.第7题图 第8题图 8. (2018原创)正方形ABCD 的边长为3,E 为对角线BD 上一点,连接AE ,作EF ⊥AE 交BC 于点F ,且BF =1,把△ADE 沿AE 对折得到△AEG ,AG 交EF 于H 点,则△EHG 的面积为________.9. (2016重庆A 卷)正方形ABCD 中,对角线AC ,BD 相交于点O ,DE 平分∠ADO 交AC 于点E ,把△ADE 沿AD 翻折,得到△ADE ′,点F 是DE 的中点,连接AF ,BF ,E ′F .若AE =2,则四边形ABFE ′的面积是________.第9题图 第10题图 10. (2016重庆B 卷)如解图,在正方形ABCD 中,AB =6,点E 在边CD 上,DE =13DC ,连接AE ,将△ADE 沿AE 翻折,点D 落在点F 处,点O 是对角线BD 的中点,连接OF 并延长OF 交CD 于点G ,连接BF ,BG ,则△BFG 的周长是________.答案1. 6 【解析】如解图,过点A 作AH ⊥FG 于点H ,连接AG ,则∠AHE =∠B =90°,由折叠可得,∠AEF =∠AEC ,又∵∠BEF =∠HEC ,∴∠AEB =∠AEH ,在△ABE 和△AHE 中,⎩⎪⎨⎪⎧∠B =∠AHE ∠AEB=∠AEH,AE =AE∴△ABE ≌△AHE (AAS ),∴BE =HE ,AB =AH =AD ,在Rt △ADG 和Rt △AHG 中,⎩⎪⎨⎪⎧AD =AH AG =AG ,∴Rt △ADG ≌Rt △AHG (HL ),∴DG =HG ,设BE =HE =x ,BC =CD =4,则CE =4-x ,DG =HG =3,CG=1,∴在Rt △CEG 中,CG 2+CE 2=EG 2,即12+(4-x )2=(x +3)2,解得x =47,∴BE =47,CE =4-47=247,∴CE BE=6.第1题解图2. 32-31020【解析】如解图,在BE 上截取BM =AE ,连接OM ,设AC 与BE 交于点K ,∵四边形ABCD 是正方形,∴AC ⊥BD ,AO =OB ,∴∠AEB =∠AOB =90°,∴∠EAK +∠AKE =90°,∠BKO +∠OBM =90°,∵∠BKO =∠AKE ,∴∠EAO =∠MBO ,在△OAE 和△OBM 中, ⎩⎪⎨⎪⎧OA =OB ∠OAE=∠OBM AE =MB,∴△OAE ≌△OBM (SAS ),∴OE =OM ,∠AOE =∠BOM ,∴∠EOM =∠AOB =90°,∴EM =2OE =2,设AE =BM =a ,在Rt △ABE 中,∵AB 2=AE 2+BE 2,∴10=a 2+(a +2)2,∵a >0,∴a =1,∴AE =1,BE =3,∵△PEG 是由△PEA 翻折得到的,∴PA =PG ,∠APE =∠GPE ,∵PG ⊥EB ,AE ⊥EB ,∴AE ∥PG ,∴∠AEP =∠GPE =∠APE ,∴AP =AE =1,PB =10-1,过E作EH ⊥AB 于点H ,∴EH =1×310=31010,∴S △EPB =12PB ·HE =12(10-1)×31010=32-31020.第2题解图3. 245-48 【解析】如解图,以点B 为原点,建立平面直角坐标系,则A (0,6),E (3,6),D (6,6),C (6,0),延长AD 交BF 的延长线于点H ,则BE =EH ,点H (35+3,6),用待定系数法可求得直线BE 为y =2x ,直线BH 为y =5-12x ,则CF =3(5-1),直线AC 为y =-x +6,与BH 直线交点坐标G 为(35-3,9-35),直线FC ′为y =-12x +35,直线BD 为y =x ,它们的交点N 为(25,25),直线FC ′与直线BE 的交点C ′(655,1255),∴四边形CNC ′G 的面积为2S △GCF -S △CFN =3(5-1)×(9-35)-12×3(5-1)×(6-25)=245-48.第3题解图4. 940【解析】如解图作AH ⊥CD 于点H ,GN ⊥AC 于点N ,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =1,OB =OD =3,∴CD =12+32=10,∴12·AC ·BD =CD ·AH ,∴AH =3105,∴DH=AD 2-AH 2=4105,∵∠CAG +2∠DAC =180°,∠ADC +2∠DAC =180°,∴∠CAG =∠ADC ,∵∠ACG =∠ACD =∠CAD ,∴∠AGC =∠ACG ,∴AG =AC =2,∵∠ANG =∠AHD ,∴△AGN ∽△DAH ,∴GN AH =AG AD =AN DH ,∴GN =65,AN =85,∵OF ∥GN ,∴OF GN =AO AN ,∴OF =34,∴S △OFG =12·OF ·ON =12×34×35=940.第4题解图5. 522【解析】如解图作CP ⊥HG 于点P ,∵四边形ABCD 是正方形,∴CD =BC ,AD ∥BC ,∠CDA =90°,∴∠DHC =∠HCE ,∵由翻折性质可知,∠ECH =∠EHC ,∴∠DHC =∠CHE ,∵CD ⊥HD ,CP ⊥HE ,∴△CHD ≌△CHP ,∴CP =CD =BC ,∴△CGP ≌△CGB ,∴DH =HP =2,PG =GB =3,∴HG =2+3=5,设正方形边长为a ,在Rt △AHG 中,∵HG 2=AH 2+AG 2,∴52=(a -2)2+(a -3)2,∴a =6或-1(舍去),∴CD =BC =6,BD =62,∵BG ∥CD ,∴BM DM =BG CD =36=12,∴BM =22,∵DH ∥CB ,∴DN BN =DH BC =13,∴DN =322,∴MN =BD -DN -BM =522.第5题解图6. 5-102929【解析】如解图,延长AE ,过点O 作OG ⊥OE ,与AE 的延长线交于点G ,连接DG ,∵∠AEB =∠AOB =90°,∠AME =∠BMO ,∴△AME ∽△BMO ,∴ME MA =MO MB,∠OBM =∠EAM ,∵∠OME =∠BMA ,∴△OME ∽△BMA ,∴∠OEM =∠BAM =45°,∴∠OEG =∠BEG -∠MEO =45°,∴OE =OG ,∵∠AOE =90°-∠DOE =∠DOG ,OA =OD ,∴△AOE ≌△DOG ,∴AE =DG ,∠OAE =∠ODG ,∴∠ODG +∠ADO +∠DAG =∠OAE +∠ADO +∠DAG =90°,∴∠AGD =90°,∵EG =2OE =3,AD =29,设AE =DG =x ,由勾股定理得,x 2+(x +3)2=(29)2,解得x =2,∴AG =3+2=5,∵∠OBA =∠OAD ,∠OBE =∠OAE ,∴∠ABE =∠DAG .∵∠AEB =∠AGD =90°,AB =DA ,∴△ABE ≌△DAG ,∴BE =AG =5,过点E 作EH ⊥AB 于点H ,如解图,由折叠知∠APE =∠A ′PE ,∴EF =EH ,由三角形面积公式知,AE ·BE =AB ·EH ,∴EF =EH =102929,∴BF =BE -EF =5-102929.第6题解图7. 2 【解析】如解图,过点G 作GH ⊥EF 于点H ,∵AF ⊥FE ,∴∠AFD +∠EFC =90°,又∵∠DAF +∠AFD =90°,∴∠DAF =∠EFC ,∵∠D =∠C =90°,∴△ADF ∽△FCE ,∴AD FC =DF CE,∵AE 平分∠BAD ,∴BE =AB =5,∴EC =1.设DF =x ,则65-x =x 1,解得x 1=2,x 2=3(舍去),∴DF =2,FC =3,∴FE =10,∵∠AFG +∠EFG =90°,∠AFD +∠EFC =90°,且∠AFD =∠AFG ,∴∠GFE =∠EFC ,则△GFH ∽△EFC ,∴GH EC =GF EF =FH FC,∵GF =DF =2,EF =10,CE =1,∴GH =210=105,∴HF =3GH =3105,∴EH =EF -HF =10-3105=2105,∴GE =(105)2+(2105)2= 2.第7题解图8. 14【解析】如解图,过点E 作AB 的平行线分别交AD 、BC 边于点K 、N ,则AK =BN =EN ,易证明△AKE ≌△ENF ,则AE =EF ,连接AF ,则△AEF 为等腰直角三角形,∵AF =32+12=10,∴AE =EF =5,连接CE ,由对称性知,AE =CE =EF =5,在等腰△EFC 中,FN =NC =1,∴EN =5-1=2,∴KE =1,∴S △AEG =S △AED =3×12=32,延长AE 交DC 于点P ,∵BD BE =DC EN =32,第8题解图∴ED BE =12,∴DP AB =DE BE =12=DP AD ,∵△AEH ∽△ADP ,AE =5,∴EH =12AE =52,∴S △AEH =5×522=54,∴S △EHG =S △AEG -S △AEH =32-54=14. 9. 6+322【解析】如解图,连接EE ′交AD 于点P ,连接BE ,由翻折的性质得EE ′⊥AD ,∵AE =2,DE 平分∠ADO ,∴AD ∶DO =AE ∶OE =2∶1,∴OE =1,OA =2+1,AP =PE =PE ′=1,∴AD =2+2,∴S △ABE =12·AB ·AP =12×(2+2),S △AEE ′=12×2×2=1,S △EE ′F =12S △DEE ′=S △DPE =12×(1+2),S △BEF =12S △BDE =S △DOE =12×(2+1),∴S 四边形ABFE ′=S △ABE +S △AEE ′+S △EE ′F +S △BEF =12×(2+2)+1+12×(1+2)+12×(1+2)=1+22+1+1+2=6+322.第9题解图10. 1255+12105【解析】如解图延长EF 与BC 相交于点H ,连接OH ,过点F 作FM ⊥BC 于点M ,过点F 作FN ⊥OH 于点N ,过点G 作GK ⊥OH 于点K ,连接AH ,由折叠可知,EF =DE =13DC =13×6=2,AF =AD =AB =6,∠ADE =∠AFE =∠AFH =∠ABH =90°,易证明△ABH ≌△AFH ,∴BH =FH ,设BH =FH =x ,则HC =6-x ,在Rt △CEH 中,有CE 2+CH 2=EH 2,∴42+(6-x )2=(x +2)2,解得x =3,∴BH =HF =CH =3,则OH 是△BCD 的中位线,OH =12CD =3,∵易证△HMF ∽△HCE ,∴FM CE =HM HC =HF HE ,即FM 4=HM 3=35,∴FM =125,HM =95,∴NF =HM =95,KG =HC =3,NH =FM =125,则ON =OH -NH =3-125=35,∴OF =ON 2+NF 2=3510,由△ONF ∽△OKG ,得ON OK =OF OG =NF KG ,即35OK =3105OG =953,∴OG =10,OK =1,则FG =OG -OF =2105,CG =HK =OH -OK =2,∵BG =BC 2+CG 2=62+22=210,BF =BM 2+FM 2=(3+95)2+(125)2=1255,∴△BFG 的周长为:BF +BG +FG =1255+210+2105=1255+12105.第10题解图。