平面向量的数量积复习课
高三一轮复习课件平面向量的数量积
b解的.
题模计技和算巧方两:向个角a向的. 量利关的用系夹向c角量.
的 利
性 用
质 向
和 量
几 的何Biblioteka 加意 法义 和简 减
化 法
计 进
算 行
b. 简化
注 计
意 算
向
量
ca.. 利利用用数向量量积的公性式质求和解几 何 意 义 简 化 计 算
b. 注意向量的模和方向角的关系
定义:平面向量的数量积是两个向量的模的乘积与两个向量夹角的余 弦值的乘积 几何意义:表示两个向量的夹角大小和方向
性质:数量积满足交换律、结合律和分配律
应用:在物理、工程等领域有广泛应用,如力矩、功等
结合律:a·(b+c) = a·b + a·c 交换律:a·b = b·a 分配律:a·(b+c) = a·b + a·c
平行四边形定 理:两个向量 的数量积等于 这两个向量的
模的乘积
余弦定理:两 个向量的数量 积等于这两个 向量的模的乘 积再乘以这两 个向量的夹角
的余弦值
向量数量积的 性质:向量数 量积的绝对值 等于这两个向 量的模的乘积 再乘以这两个 向量的夹角的
余弦值
向量数量积的 定理:两个向 量的数量积等 于这两个向量 的模的乘积再 乘以这两个向 量的夹角的余
记开方等
理解错误,如 混淆向量的数 量积和向量积
的性质
应用错误,如 无法正确应用 向量的数量积 解决实际问题
计算两个向量的数量积,并判断其 正负性
判断两个向量的数量积是否为零, 并解释原因
计算两个向量的数量积,并判断其 方向
判断两个向量的数量积是否为零, 并解释原因
2024版平面向量的数量积复习课公开课优质课件
7
向量的线性运算
向量的加法
满足平行四边形法则或三角形法 则,结果向量起点连接第一个向 量的起点,终点连接最后一个向
量的终点。
2024/1/28
向量的减法
减去一个向量相当于加上这个向量 的反向量,满足三角形法则。
向量的数乘
实数与向量的积是一个向量,它的 长度等于这个实数与原来向量长度 的乘积,方向由实数的正负决定。
2024/1/28
23
功的计算
2024/1/28
功的定义 功是力与物体在力的方向上移动的距离的乘积,即 $W=vec{F} cdot vec{s}$,其中$vec{F}$是力向量, $vec{s}$是位移向量。
正功与负功 当力与位移方向相同时,功为正;当力与位移方向相反时, 功为负。这可以通过数量积的正负来判断。
动量守恒定律
在没有外力作用的情况下,系统 内部各物体之间的相互作用力不 会改变系统的总动量,即系统的 总动量守恒。这可以通过计算系 统内部各物体动量的数量积来验 证。
碰撞问题
在碰撞问题中,可以通过动量守 恒定律来确定碰撞前后各物体的 速度变化。同时,结合能量守恒 定律和恢复系数等条件,可以进 一步求解碰撞过程中的其他物理 量。
在平面几何中,经常需要计算两 点之间的距离,例如在计算三角 形的边长、圆的半径等问题中都
会用到该公式。
2024/1/28
19
定比分点公式
公式表述
设点$P$分有向线段$overrightarrow{AB}$的比为$lambda$,则定比分点$P$的坐标为 $left(frac{x_1 + lambda x_2}{1 + lambda}, frac{y_1 + lambda y_2}{1 + lambda}right)$。
平面向量的数量积(高三一轮复习)
5.(易错题)已知向量a=(5,5),b=(λ,1),若a+b与a-b的夹角是锐角,则实
数λ的取值范围为 (-7,1)∪(1,7)
.
解析 由题意得(a+b)·(a-b)>0,即a2-b2>0,52+52>λ2+12,所以-7<λ<7.
若a+b=k(a-b),则
5+λ=k5-λ, 5+1=k5-1,
解得 k=32, λ=1,
数学 N 必备知识 自主学习 关键能力 互动探究
— 15 —
(2)(2022·天津红桥二模)已知△ABC为等边三角形,AB=2,设点P,Q满足
→ AP
=
λA→B,A→Q=(1-λ)A→C,λ∈R,若B→Q·C→P=-32,则λ=( C )
1 A.4
B.1±2 2
1 C.2
D.-3±22 2
数学 N 必备知识 自主学习 关键能力 互动探究
3+1 2
C.
52-1,
5+1 2
D. 52+1,52
数学 N 必备知识 自主学习 关键能力 互动探究
— 26 —
解析 (1)由(a-b)·a=1得a2-a·b=1,因为a=(1,1),所以a2=1+1=2,故a·b
=1,a-b= a2-2a·b+b2= 2-2+4=2. (2) a =1, b =2,a·b=0,以a为y轴,b 为x轴,O为坐标原点,建立直角坐标
数学 N 必备知识 自主学习 关键能力 互动探究
— 9—
基|础|自|测
1.思考辨析(正确的打“√”,错误的打“×”) (1)两个向量的夹角的范围是0,π2.( × ) (2)若a·b>0,则a和b的夹角为锐角.( × ) (3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向 量.( √ ) (4)(a·b)·c=a·(b·c).( × )
最新高三复习课第五章 5.3平面向量数量积(公开课)精品课件
∴|O→A+O→B+O→D|= x-12+y+ 32.
问题转化为圆(x-3)2+y2=1 上的点与点 P(1,- 3)间距离的最大值.
∵圆心 C(3,0)与点 P(1,- 3)之间的距离为 3-12+0+ 32= 7,
特别地,a·a= |a|2或|a|= a·a. (4)cos θ=|aa|·|bb|.
(5)|a·b|≤ |a||b| .
第三页,共17页。
答案(dá
4.平面向量数量(shùliàng)积满足的运算律
(1)a·b= b·a;
(2)(λa)·b= λ(a·b)= a·(λb) (λ为实数);
(3)(a+b)·c= a·c+b·c .
的运算.
3.求向量模的最值(范围)的方法:①代数法②几何法(数形结合法)
4.两个向量的夹角为锐角,则有a·b>0,反之不成立;两个向量夹角为钝角,
则有a·b<0,反之不成立.
第十七页,共17页。
点拨(diǎn bo):定义法求数量积,注意向量的夹角与三角形内角相等还是互补
第六页,共17页。
(2)已知正方形 ABCD 的边长为 1,点 E 是 AB 边上的动点,则D→E·C→B的 值为________;D→E·D→C的最大值为________.
D
C
A
EB
点拨:利用几何(jǐ hé)意义求数量积,准确找准投影
点拨:求向量模的 常用方法: (1)利用公式 |a|2=a2,将模的 运算(yùn suàn)转 化为向量的数量 积的运算(yùn suàn)(2)坐标 化
又A→O=12(A→B+A→C),所以A→O2=14(A→B+A→C)2=14(A→B2+2A→B·A→C+A→C2),
高三复习课平面向量的数量积课件
忽视向量夹角
总结词
在计算平面向量的数量积时,学生常常会忽视向量夹角的影响。
详细描述
向量夹角是计算数量积的重要因素之一,夹角余弦值直接影响着数量积的结果。 如果学生忽视了夹角,就会导致计算结果不准确。因此,在计算数量积时,学生 需要特别注意夹角的取值范围和符号。
忽视向量模长的影响
总结词
在计算平面向量的数量积时,学生常常会忽视向量模长的影响。
公式
数量积的公式为 $|vec{a} cdot vec{b}| = |vec{a}| times |vec{b}| times |cos theta|$,其中 $theta$ 是向量 $vec{a}$ 和 $vec{b}$ 之间的夹角。
几何意义
几何意义
平面向量的数量积表示向量 $vec{a}$ 和 $vec{b}$ 在垂直方向上 的投影的模长之积。
02
平面向量的数量积运算
线性运算
线性运算包括加法、 数乘和向量的线性组 合等基本运算。
线性运算的性质包括 向量共线定理、向量 模的性质等。
向量加法满足交换律 和结合律,数乘满足 分配律。
数量积的坐标表示
数量积的坐标表示是通过向量的坐标来计算两个向量的数量积。
设向量$overset{longrightarrow}{a} = (x_{1},y_{1})$,$overset{longrightarrow}{b} = (x_{2},y_{2})$,则$overset{longrightarrow}{a} cdot overset{longrightarrow}{b} = x_{1}x_{2} + y_{1}y_{2}$。
高三复习课平面向量的数量积课 件
contents
目录
平面向量的数量积(一轮复习)
=________;特殊地|,a|a|·ba|=|a|2 或|a|= a·a.
C D (4)cos θ=________.
(5)|a·b|≤|a|·|b|.
B
A 3.向量数量积的运算律
(1)交换律:a·b=b·a.
(2)分配律:(a+b)·c=________.
(3)数乘结合律:(λa)·b=λ(a·b)=a·(λb).
2、(2016 年浙江高考)已知向量 a、b, |a| =1,|b| =2,若对任意单位向量
1
题型五:平面向量的范围问题 e,均有 |a·e|+|b·e| 6 ,则 a·b 的最大值是
.【答案】 2
3、(2016 年上海高考)在平面直角坐标系中,已知 A(1,0),B(0,-1),P 是
曲线 y 1 x2 上一个动点,则 BP BA 的取值范围是
01
平面向课量堂总向结量:的模
02
、转化为坐标
向量的夹角 cos 0 3 a b
ab
转化思想、数形结合
1 、( 2013 年 高 考 四 川 卷 ) 在 ABC 中 , 角 A, B, C 的 对 边 分 别 为 a,b,c , 且
2 cos2
A B cos B sin( A B)sin B cos( A C) 2
(2)已知单位向量 e1,e2 的夹角为 α,且 cos α=13.若向量
a=3e1-2e2,则题|a|=型__二___:___平. 面向量的[答模案] 3
变式练习 (1) [2014·全国卷] 若向量 a, b 满足:| a | 1, (a b) a ,
(2a b) b ,则 | b | ( )
单击此处添加标题
单击此处添加标题
平面向量数量积复习课
PQ PT PT PM
Q
M
考题展示
D
AC BD 2 AO BD 2 AM BD b a
2 2
O A
M
C
B
2:在四边形ABCD中,AB BC , AD DC , 若 AB a, AD b, 则 AC BD A.a 2 b 2 B.b 2 a 2
DE DC 的最大值为______。
A
E B
DE CB CB 1
DE DC的最大值为 DC 1
D
2
2
C
(改编 ) 点 N 是边长为 2 的正方形 ABCD 内 或边界上一动点,M 是边 BC 的中点,则 AN AM 的最大值是( D A.2 B.4 C.5 D.6
D N M C
cbcbdedcdcde的最大值为的正方形abcd内或边界上一动点m是边bc的中点则ama2b4c5d612江苏9如图在矩形abcdabbcbc的中点点abaf则aebf如图在abcadab则acaddfdeadab两个端点则为另一条直径的使得上一点直径的半径为已知圆
二轮专题复习
平面向量的数量积
高考考纲
0
-16
2.已知 a 2, b 1, a与b的夹角为60 , c a 2b,
0
则c
30 2 3 , c与a的夹角为
0
。
3.已知a (1,2), b (2, ),
2 (2)当 2时, a在b上的投影是 2 。
(1)当 1 时, a b;
4 ( . 12浙江15题)在ABC中,M是BC的中点, AM 3, BC 10,则AB AC 。 -16
平面向量的数量积 1.理解平面向量数量积的含义及其物理意义。 2.了解平面向量的数量积与向量投影的关系。 3. 掌握数量积的坐标表达式,会进行平面向量 数量积的运算。 4.能运用数量积表示两个向量的夹角。
第03讲 平面向量的数量积 (精讲)(含答案解析)
第03讲平面向量的数量积(精讲)-2023年高考数学一轮复习讲练测(新教材新高考)第03讲平面向量的数量积(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析角度2:平面向量数量积的几何意义高频考点二:平面向量数量积的运算角度1:用定义求数量积角度2:向量模运算角度3:向量的夹角角度4:已知模求数量积角度5:已知模求参数高频考点三:平面向量的综合应用高频考点四:极化恒等式第四部分:高考真题感悟第一部分:知识点精准记忆1、平面向量数量积有关概念1.1向量的夹角已知两个非零向量a 和b ,如图所示,作OA a = ,OB b =,则AOB θ∠=(0θπ≤≤)叫做向量a 与b的夹角,记作,a b <> .(2)范围:夹角θ的范围是[0,]π.当0θ=时,两向量a ,b共线且同向;当2πθ=时,两向量a ,b 相互垂直,记作a b ⊥ ;当θπ=时,两向量a ,b共线但反向.1.2数量积的定义:已知两个非零向量a 与b ,我们把数量||||cos a b θ 叫做a 与b的数量积(或内积),记作a b ⋅ ,即||||cos a b a b θ⋅= ,其中θ是a 与b的夹角,记作:,a b θ=<> .规定:零向量与任一向量的数量积为零.记作:00a ⋅=.1.3向量的投影①定义:在平面内任取一点O ,作OM a ON b ==,.过点M 作直线ON 的垂线,垂足为1M ,则1OM 就是向量a 在向量b 上的投影向量.②投影向量计算公式:当θ为锐角(如图(1))时,1OM 与e 方向相同,1||||cos OM a λθ== ,所以11||||cos OM OM e a e θ== ;当θ为直角(如图(2))时,0λ=,所以10||cos 2OM a e π==;当θ为钝角(如图(3))时,1OM 与e方向相反,所以11||||cos ||cos()||cos OM a MOM a a λπθθ=-=-∠=--= ,即1||cos OM a e θ= .当0θ=时,||a λ=,所以1||||cos0OM a e a e == ;当πθ=时,||a λ=-,所以1||||cosπOM a e a e =-= 综上可知,对于任意的[0π]θ∈,,都有1||cos OM a e θ= .2、平面向量数量积的性质及其坐标表示已知向量1122(,),(,)a x y b x y == ,θ为向量a 和b的夹角:2.1数量积1212=||||cos x x y y a b a b θ⋅=+2.2模:2211||a a x y =⋅=+a 2.3夹角:121222221122cos ||||x x y y a ba b x y x y θ+⋅==++ 2.4非零向量a b ⊥的充要条件:121200a b x x y y ⋅=⇔+= 2.5三角不等式:||||||a b a b ⋅≤ (当且仅当a b∥时等号成立)⇔222212121122x x y y x y x y +≤+⋅+3、平面向量数量积的运算①a b b a⋅=⋅r r r r ②()()a b a b a b λλλ⋅=⋅=⋅ ③()c+⋅=⋅+⋅ a b c a c b 4、极化恒等式①平行四边形形式:若在平行四边形ABCD 中,则221()4AB AD AC DB ⋅=- ②三角形形式:在ABC ∆中,M 为BC 的中点,所以222214AB AC AM MB AM BC⋅=-=- 5、常用结论①22()()a b a b a b+-=- ②222()2a b a a b b+=+⋅+ ③222()2a b a a b b-=-⋅+ 第二部分:课前自我评估测试一、判断题(2022·全国·高一专题练习)1.判断(正确的填“正确”,错误的填“错误”)(1)两个向量的数量积仍然是向量.()(2)若0a b ⋅= ,则0a =或0b = .()(3)a ,b 共线⇔a ·b =|a ||b |.()(4)若a ·b =b ·c ,则一定有a =c.()(5)两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量.()(2021·全国·高二课前预习)2.已知两个向量,NM MP的夹角为60°,则∠NMP =60°.()二、单选题(2022·河南安阳·高一阶段练习)3.已知向量()2,1a t =- ,()1,1b t =- ,若a b ⊥,则t =()A .1B .13-C .1-D .2(2022·全国·模拟预测(文))4.在边长为2的正三角形ABC 中,则AB BC ⋅= ()A .2-B .1-C .1D .2(2022·广东·深圳市龙岗区德琳学校高一期中)5.在ABC 中,若0AB AC ⋅<,则ABC -定是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析例题1.(2022·河北武强中学高一期中)已知向量a ,b满足1a = ,1a b ⋅=- ,则()2a a b ⋅-=()A .0B .2C .3D .4【答案】C22(2)222113a a b a a b a a b ⋅-=-⋅=-⋅=⨯+=.故选:C.例题2.(2022·山西太原·高一期中)给出以下结论,其中正确结论的个数是()①0a b a b ⇒⋅=∥ ②a b b a⋅=⋅r r r r ③()()a b c a b c ⋅⋅=⋅⋅ ④a b a b⋅≤⋅A .1B .2C .3D .4【答案】B由数量积的定义知||||cos a b a b θ⋅=,对于①,若a b∥,则||||a b a b ⋅= 或||||a b a b -⋅= ,0a b ⋅= 不一定成立,①错误对于②,a b b a ⋅=⋅r r r r成立,②正确对于③,()a b c ⋅⋅r r r 与a共线,()a b c ⋅⋅r r r 与c 共线,两向量不一定相等,③错误对于④,||||cos a b a b a b θ⋅=≤⋅,④正确故选:B例题3.(2022·江苏·涟水县第一中学高一阶段练习)在锐角ABC 中,关于向量夹角的说法,正确的是()A .AB 与BC的夹角是锐角B .AC 与BA的夹角是锐角C .AC 与BC的夹角是锐角D .AC 与BC的夹角是钝角【答案】C 如下图所示:对于A 选项,AB 与BC的夹角为ABC π-∠,为钝角,A 错;对于B 选项,AC 与BA的夹角为BAC π-∠,为钝角,B 错;对于CD 选项,AC 与BC的夹角等于ACB ∠,为锐角,C 对D 错;故选:C.例题4.(2022·宁夏·平罗中学模拟预测(理))已知向量,a b 的夹角为23π,且||3,a b ==,则b 在a方向上的投影为___________.【答案】1-由题意得2b = ,则b 在a 方向上的投影为2||cos ,2cos13π=⨯=- b a b .故答案为:1-.角度2:平面向量数量积的几何意义例题1.(2022·江西抚州·高一期中)已知向量()()1121a b ==- ,,,,则a 在b 方向上的投影数量为()A .15B .15-CD.5【答案】D因为()()1121a b ==-,,,,所以cos a b a b a b ⋅〈⋅〉==⋅ ,因此a 在b方向上的投影数量为cos ()105a ab 〈⋅〉=-=-,故选:D例题2.(2022·全国·高三专题练习(理))在圆O 中弦AB 的长度为8,则AO AB ⋅=()A .8B .16C .24D .32【答案】Dcos 8432AO AB AB AO OAB ⋅=⋅∠=⨯=.故选:D例题3.(2022·甘肃·高台县第一中学高一阶段练习)已知8,4a b == ,a 与b 的夹角为120°,则向量b 在a方向上的投影为()A .4B .-4C .2D .-2【答案】D由向量8,4a b == ,且a 与b 的夹角为120°,所以向量b 在a 方向上的投影为cos 4cos1202b θ=⨯=-,故选:D.例题4.(2022·吉林一中高一期中)在ABC中,AB =4BC =,30B =︒,P 为边上AC 的动点,则BC BP ⋅的取值范围是()A .[]6,16B .[]12,16C .[]4,12D .[]6,12【答案】A如图,作AE BC ⊥于E ,作PF BC ⊥于F ,由已知得AE =32BE ==,cos 4BC BP BC BP PBC BF ⋅=∠= ,当P 在线段AC 上运动时地,F 在线段EC 上运动,342BF ≤≤,所以6416BF ≤≤ ,故选:A .例题5.(2022·江西景德镇·三模(理))窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP ×uu u r uu u r 的取值范围是()A .[]22-,B .⎡⎣-C .⎡-⎣D .[]4,4-【答案】Dcos ,AB OP AB OP AB OP ×=<>uu u r uu u r uu u r uu u r uu u r uu u r ,即AB 与OP 在向量AB方向上的投影的积.由图2知,O 点在直线AB 上的射影是AB 中点,由于2AB =,圆弧直径是2,半径为1,所以OP 向量AB方向上的投影的最大值是2,最小值是-2,因此AB OP ×uu u r uu u r 的最大值是224⨯=,最小值是2(2)4⨯-=-,因此其取值范围为[4,4]-,故选:D .题型归类练(2022·黑龙江·佳木斯一中高一期中)6.已知△ABC 的外接圆圆心为O ,且AO AB AC +=,AO AC = ,则向量BA 在向量BC上的投影向量为()A .14BCB .12BC C .14BC - D .12BC -(2022·内蒙古呼和浩特·二模(理))7.非零向量a ,b ,c 满足()b a c ⊥- ,a 与b 的夹角为6π,3a = ,则c 在b 上的正射影的数量为()A .12-B .2-C .12D .2(2022·北京市第十九中学高一期中)8.如图,已知四边形ABCD 为直角梯形,AB BC ⊥,//AB DC ,AB =1,AD =3,23πBAD ∠=,设点P 为直角梯形ABCD 内一点(不包含边界),则AB AP ⋅的取值范围是()A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .30,2⎛⎫ ⎪⎝⎭D .30,2⎡⎤⎢⎥⎣⎦(2022·全国·高三专题练习)9.在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r ,1AD AB == ,与BC方向相同的单位向量为e ,则向量AB 在BC上的投影向量为()A .12eB .12e- C D .(2022·河南河南·三模(理))10.在△ABC 中,“0AB BC ⋅<”是“△ABC 为钝角三角形”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·四川·宜宾市叙州区第一中学校高一期中)11.在圆O 中弦4AB =,则AO AB ⋅=__________.(2022·四川·树德中学高一阶段练习)12.如图,直径4AB =的半圆,D 为圆心,点C 在半圆弧上,3ADC π∠=,线段AC 上有动点P ,则DP BA ⋅的取值范围为_________.高频考点二:平面向量数量积的运算角度1:用定义求数量积例题1.(2022·全国·华中师大一附中模拟预测)正六边形ABCDEF 的边长为2,则CE FD ⋅u u r u u u r=()A .-6B .-C .D .6【答案】A在CDE 中,2CD DE ==,120CDE ∠=︒,所以CE =所以有CE DF == CE 与FD 所成的角为120°,所以(2162CE FD ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A .例题2.(2022·广东·东莞市东方明珠学校高一期中)已知正方形ABCD 的边长为2,E 为BC 的中点,则()AB BE BC +⋅=()A .2-B .0C .12D .2【答案】D()AB BE BC +⋅= AB BC BE BC ⋅+⋅0122=+⨯=.故选:D例题3.(2022·北京·中关村中学高一期中)已知12a = ,4b = ,且a ,b的夹角为π3,则⋅=a b ()A .1B .1±C .2D .2±【答案】Aπ||||cos 3a b a b ⋅=⋅⋅114122=⨯⨯=.故选:A例题4.(2022·安徽·高二阶段练习)已知平面向量)1a =-,单位向量b满足20b a b +⋅= ,则向量a 与b夹角为___________.【答案】23π)1a =- ,2a =,由20b a b +⋅= 可知112cos ,0a b +⨯⨯= ,解得1cos ,2a b =- ,所以2,3a b π= .故答案为:23π例题5.(2022·上海奉贤区致远高级中学高一期中)在ABC 中,60,6,5B AB BC ∠=== ,则AB BC ⋅=_______【答案】15-因为60,6,5B AB BC ∠=== ,所以()1cos 1806065152AB BC AB BC ⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭.故答案为:15-.角度2:向量模运算例题1.(2022·山东潍坊·高一期中)已知i ,j是平面内的两个向量,i j ⊥ ,且2,2,34j a i j b i i j ===+=-+,则a b -=r r ()A .B .C .D .【答案】D 【详解】由42a b i j -=-r r r r,则2222(42)1616480a b i j i i j j -=-=-⋅+=r r r r r r r r ,所以a b -=r r 故选:D例题2.(2022·四川绵阳·高一期中)已知向量a 与b 的夹角为2π3,且||2a = ,1b ||=,则|2|a b +=()A .2B .C .4D .12【答案】A∵2π13|s |co b a b a ⋅==- ||则222|2|444a b a a b b +=+⋅+= ,即|2|2a b += 故选:A .例题3.(2022·河南安阳·高一阶段练习)已知向量a 与b的夹角为60︒,且||2,|2|a a b =-= ||b =()AB .1C .2D .4【答案】C解:向量a ,b夹角为60︒,且||2,|2|a a b =-= ∴222(2)44a b a a b b -=-⋅+ 22242||cos604||12b b ︒=-⨯⨯⨯+= ,即2||||20b b --=,解得||2b =或||1b =- (舍),∴||2b =,故选:C例题4.(2022·河南新乡·高一期中)已知向量a =,b ,且a 与b的夹角为6π,则2a b -= ()A .7B C .6D【答案】B2a ==,cos 362a b a b π∴⋅=⋅== ,222244161237a b a a b b ∴-=-⋅+=-+= ,2a b ∴-= 故选:B.例题5.(2022·河南·模拟预测(理))已知平面向量a ,b的夹角为π3,且3a = ,8b = ,则a b -=______.【答案】7因为平面向量a ,b的夹角为π3,且3a = ,8b = ,所以由7a b -====,故答案为:7例题6.(2022·河南·模拟预测(文))已知向量(a = ,4b = ,且向量a 与b 的夹角为34π,则a b -= ______.因为(a = ,所以a =又4b = ,3,4a b π〈〉=,所以34cos124a b π⋅==- 所以2222()218241658a b a b a a b b -=-=-⋅+=++=所以a b -角度3:向量的夹角例题1.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b满足1a = ,2b = ,()235a a b ⋅+= ,则a 与b的夹角为()A .6πB .3πC .23πD .56π【答案】B解:因为1a = ,2b = ,()235a a b ⋅+= ,所以2235a a b +⋅=,即2235a a b +⋅= ,所以1a b ⋅= ,设a 与b的夹角为θ,则1cos 2a b a b θ⋅==⋅ ,因为[]0,θπ∈,所以3πθ=;故选:B例题2.(2022·山东济南·三模)已知单位向量a 、b 、c ,满足a b c +=,则向量a 和b的夹角为()A .2π3B .π2C .π3D .6π【答案】A∵a b c +=,∴()()a b a b c c +⋅+=⋅ ,∴2222a b a b c ++⋅= ,∴12a b ⋅=-r r ,∴1cos ,2a b a b a b ⋅==-⋅,∵[],0,π∈ a b ,∴2π,3a b = .故选:A .例题3.(2022·河北邯郸·二模)若向量a ,b 满足||2a =,b = 3a b ⋅=,则向量b 与b a -夹角的余弦值为().A.2BC.16D.20【答案】D因为b = 3a b ⋅=,所以22()39b b a b b a ⋅-=-⋅=-=,因为b a -==== ,所以向量b 与b a -夹角的余弦值为()20b b a b b a ⋅-==⋅- ,故选:D例题4.(2022·河南·扶沟县第二高中高一阶段练习)已知向量a = ,b 是单位向量,若|2|a b -= a 与b的夹角为_____.【答案】π3##60o由a = 、b为单位向量,|2|a b -= 得:2|23|1-= a b ,即224413a a b b -⋅+= ,由2a = ,=1b 所以cos ,1a b a b a b ⋅=⋅= ,1cos ,2a b = ,所以,a b =π3故答案为:π3例题5.(2022·山东烟台·高一期中)若||a =r ,||2b =,且|2|a b += a 与b的夹角大小为______.【答案】150︒##5π6因为|2|a b + 22447a a b b +⋅+= ,即34447a b +⋅+⨯= ,解得3a b ⋅=- ,所以cos ,2a b a b a b ⋅〈〉===-,而0,πa b ≤〈〉≤ ,所以5π,6a b 〈〉= .故答案为:150︒.例题6.(2022·安徽·巢湖市第一中学模拟预测(文))已知向量()1,2a =-r,()1,b λ= ,则“12λ<”是“a 与b 的夹角为锐角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B当a 与b 的夹角为锐角时,0a b ⋅> 且a 与b不共线,即12020λλ->⎧⎨+≠⎩,∴12λ<且2λ≠-,∴“12λ<”是“a 与b 的夹角为锐角”的必要不充分条件.故选:B.例题7.(2022·辽宁·东北育才学校高一期中)已知向量()1,2a = ,()2,b λ= ,且a 与b的夹角为锐角,则实数λ的取值范围是______.【答案】1λ>-且4λ≠因向量()1,2a = ,()2,b λ= ,且a 与b 的夹角为锐角,于是得0a b ⋅> ,且a 与b 不共线,因此,220λ+>且40λ-≠,解得1λ>-且4λ≠,所以实数λ的取值范围是1λ>-且4λ≠.故答案为:1λ>-且4λ≠例题8.(2022·黑龙江·勃利县高级中学高一期中)已知向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角.则λ的取值范围是______.【答案】12λ>-且2λ≠解:因为向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角,所以0a b ⋅<且两个向量不共线,即240240λλ--<⎧⎨-≠⎩,解得12λ>-且2λ≠.故答案为:12λ>-且2λ≠.例题9.(2022·河北·高一期中)已知向量(),2a λ=- ,()3,4b =- ,若a ,b 的夹角为钝角,则λ的取值范围为______【答案】833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭解:由题意得380a b λ⋅=--< ,且46λ≠,解得83λ>-且32λ≠,即833,,322λ⎛⎫⎛⎫∈-⋃+∞ ⎪ ⎪⎝⎭⎝⎭;故答案为:833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭角度4:已知模求数量积例题1.(2022·吉林长春·模拟预测(文))已知向量a ,b满足2a b == ,a b -=r r ,则⋅=a b ()A .2-B .-C .D .6【答案】A||a b -==4241 2,2a b a b ∴-⋅+=⋅=- 故选:A例题2.(2022·全国·模拟预测(文))已知向量a 、b 满足2a b b ==-=,则a b ⋅= ()A .6B .-C .D .-2【答案】D2244122||21222b a b a b a b a b +--=⇒-=+-⋅=⇒⋅==- .故选:D.例题3.(2022·北京十五中高一期中)若向量,a b满足122a b a b ==-= ,,,则a b ⋅=_____.【答案】12##0.5因为122a b a b ==-= ,,,所以22224a ba ab b-=-⋅+= ,即1244a b -⋅+=,所以12a b ⋅= .故答案为:12.例题4.(2022·安徽马鞍山·三模(文))设向量a ,b满足1a = ,2b = ,a b -= 则a b ⋅=___________.【答案】0解:因为向量a ,b满足1a = ,2b = ,a b -= 所以()22222221225a b a ba ab b a b -=-=-⋅+=+-⋅=,所以0a b ⋅=,故答案为:0.例题5.(2022·贵州贵阳·二模(理))已知向量0a b c ++=,||||||1a b c === ,则a b b c c a ⋅+⋅+⋅=________.【答案】32-##-1.5∵向量0a b c ++=,||||||1a b c === ,∴()()()22222320a b ca b a b b c c a a b b c c c a =⋅+⋅+⋅⋅+++++=+⋅=+⋅+,∴32a b b c c a ⋅+⋅+⋅=- .故答案为:32-.角度5:已知模求参数例题1.(2022·全国·高三专题练习)已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =()A .BC .-2D .2【答案】D 【详解】由||||a b a b +=-可得22()()a b a b +=-2222220a a b b a a b b a b ∴+⋅+=-⋅+∴⋅= 20a b m mn ∴⋅=-+=,因为0m ≠,所以2n =.故选:D例题2.(2022·广东·高一阶段练习)已知单位向量,a b满足12a b ⋅= ,则()a tb t R +∈ 的最小值为()A .2B .34C .12D .14【答案】A 【详解】,a b为单位向量,1a b ∴==,2222221a tb a ta b t b t t ∴+=+⋅+=++,则当12t =-时,()2min314t t ++=,mina tb∴+=.故选:A.例题3.(2022·湖北鄂州·高二期末)已知向量(),2a m = ,()1,1b =r,若a b a += 则实数m =()A .2B .2-C .12D .12-【答案】A因为()1,1b =r,则b = a b a b +=+,等式a b a b +=+ 两边平方可得222222a a b b a a b b +⋅+=+⋅+ ,则a b a b ⋅=⋅ ,故a 与b同向,所以,2m =.故选:A.例题4.(2022·安徽·高二阶段练习(文))已知向量a ,b满足4a =,(b =- ,且0a kb +=,则k 的值为______.【答案】2∵0a kb += ,∴0a kb += ,∴a kb =-,∴a kb k b == ,∵(b =-,∴2b ==.又∵4a =,∴2a k b==.故答案为:2.题型归类练(2022·北京·潞河中学三模)13.已知菱形ABCD 的边长为,60a ABC ∠= ,则DB CD ⋅=()A .232a-B .234a-C .234aD .232a(2022·河南·方城第一高级中学模拟预测(理))14.已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠ ,则a 与b的夹角为()A .6πB .π3C .π2D .2π3(2022·全国·高一单元测试)15.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos 10C =,若92CB CA ⋅= ,则c 的最小值为()A .2B .4CD .17(2022·四川省内江市第六中学高一期中(理))16.如图,ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若AC =3,AB =4,则AP CD ⋅的值为()A .125B .512C .1312D .1213(2022·湖南·长沙市明德中学二模)17.已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-= ,则向量b 与向量a b - 夹角的余弦值为()A .2B .0C .2D .2(2022·广东·模拟预测)18.已知单位向量a ,b 满足()2a a b ⊥- ,则向量a ,b 的夹角为()A .120︒B .60︒C .45︒D .30︒(2022·安徽师范大学附属中学模拟预测(文))19.设,a b 为非零向量,且22a b a b +=- ,则a ,b的夹角为___________.(2022·广东广州·三模)20.已知,a b为单位向量,若2a b -= 2a b += __________.(2022·山东济宁·三模)21.在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP = ________.高频考点三:平面向量的综合应用例题1.(2022·湖南·高二阶段练习)“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =()A .625B .625-C .825D .825-【答案】C由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++ ,因为EFGH 是平行四边形,所以AG CE =-,所以1124AG AB BC AG =+- ,所以4255AG AB BC =+ ,因为AG x AB y AD =+ ,所以42,55x y ==,则4285525xy =⨯=.故选:C.例题2.(2022·河南·唐河县第一高级中学高一阶段练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中OM ON ⋅的值为()A .24B .6C .D .【答案】A在图③中,以O 为坐标原点建立如图所示的平面直角坐标系,4OM =,(2cos ,2sin )(2,33OM ππ== ,83MP = ,即8(,0)3MP = ,23PN = ,由分形知//PN OM ,所以1(,)33PN = ,所以(5,)3ON OM MP PN =++= ,所以2524OM ON ⋅=⨯+= .故选:A .例题4.(2022·江苏·常州市第二中学高一阶段练习)如图,已知平行四边形ABCD 的对角线相交于点O ,过点O 的直线与,AB AD 所在直线分别交于点M ,N ,满足,,(0,0)AB mAM AN nAD m n ==>> ,若13mn =,则mn 的值为()A .23B .34C .45D .56【答案】B 【详解】因平行四边形ABCD 的对角线相交于点O ,则1122AO AB AD =+,而,,(0,0)AB mAM AN nAD m n ==>>,于是得122m AO AM AN n=+,又点M ,O ,N 共线,因此,1122m n +=,即12mn n +=,又13mn =,解得12,23m n ==,所以34m n =.故选:B例题5.(2022·江苏·常州市第二中学高一阶段练习)在梯形ABCD 中,,2,1,120,,AB CD AB BC CD BCD P Q ===∠=∥ 分别为线段BC ,CD 上的动点.(1)求BC AB ⋅ ;(2)若14BP BC =,求AP ;(3)若1,6BP BC DQ DC μμ== ,求AP BQ ⋅u u u r u u u r 的最小值;【答案】(1)2-76(1)因为,2,120AB CD AB BC BCD ==∠= ∥,所以60ABC ∠= ,所以,180120BC AB ABC =-∠=,所以cos 22cos1202BC AB BC AB BC AB =⨯⨯=⨯⨯=⋅-⋅ .(2)由(1)知,2BC AB -⋅=,因为14BP BC = ,所以14AP AB BP AB BC =+=+ ,所以()222222111111322221146264AP AB AB AB BC BC BC ⎛⎫=+=+⋅+=+⨯-+⨯= ⎪⎝⎭ ,所以AP = .(3)因为BP BC μ= ,16DQ DC μ=,则()()()616AP BQ AB BP BC CQ AB BC BC CD μμμ⎛⎫-⋅=+⋅+=+⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2611666AB BC AB CD BC CB CDμμμμ--=⋅+⋅++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 261161125221221566236μμμμμμ--⎛⎫=--⨯⨯+⨯+⨯⨯⨯-=+- ⎪⎝⎭,因为011016μμ<≤⎧⎪⎨<≤⎪⎩,解得116μ≤≤,设()125536f μμμ=+-,116μ≤≤,根据对勾函数的单调性可知,()f μ在1,16⎡⎤⎢⎥⎣⎦单调递增,所以当1μ=时,()f μ取得最大值:()125715366f =+-=.22.已知P 是ABC 的外心,且3420PA PB PC +-=uu r uu uu u r r r,则cos C =()A .-4B .-14C.4或-4D .14或-14(2022·河南洛阳·高二阶段练习(文))23.在△ABC 中,点D 满足AD =1162AB AC +,直线AD 与BC 交于点E ,则CE CB的值为()A .12B .13C .14D .15(2022·山东淄博·高一期中)24.如图,1,3,90,2AB AC A CD DB ==∠=︒= ,则AD AB ⋅=_________(2022·湖南·模拟预测)25.在三角形ABC 中,点D 在边BC 上,若2BD D C =,AD AB AC λμ=+ (),λμ∈R ,则λμ-=______.(2022·浙江·高一阶段练习)26.平面内的三个向量(1,1),(2,2),(,3)a b c k =-==.(1)若(2)//()a b c a +-,求实数k 的值;(2)若()()c a c b -⊥-,求实数k 的值.(2022·重庆市二0三中学校高一阶段练习)27.已知平面向量()()1,2,2,a b m =-=.(1)若a b ⊥,求2a b + ;与a夹角的余弦值.28.已知平行四边形ABCD 中,2DE EC = ,0AF DF +=,AE 和BF 交于点P.(1)试用AB,AD 表示向量AP .(2)若BPE 的面积为1S ,APF 的面积为2S ,求12S S 的值.(3)若AB AD AB AD +=- ,0AC BD ⋅= ,求APF ∠的余弦值.(2022·四川省内江市第六中学高一期中(文))29.如图,设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知2AD =,c =1且12sin cos sin sin sin 4c A B a A b B b C =-+.(1)求b 边的长;(2)求△ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且△AEF 的面积为△ABC 面积的一半,求AG EF ⋅的最小值.高频考点四:极化恒等式例题1.(2021·全国·高一课时练习)阅读一下一段文字:2222a b a a b b →→→→→→⎛⎫+=+⋅+ ⎪⎝⎭,2222a b a a b b →→→→→→⎛⎫-=-⋅+ ⎪⎝⎭,两式相减得:22221()44a b a b a b a b a b a b →→→→→→→→→→→→⎡⎤⎛⎫⎛⎫⎛⎫+--=⋅⇒⋅=+--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦,我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若6AD =,4BC =,求→→⋅的值;(2)若4AB AC →→⋅=,1FB FC →→⋅=-,求EB EC →→⋅的值.【答案】(1)32;(2)78.【自主解答】解:(1)因为2,AB AC AD AB AC CB →→→→→→+=-=,所以2222113643244AB AC AB AC AB AC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦.(2)设3AD m =,2(0,0)BC n m n =>>,因为4AB AC →→⋅=,由(1)知222214494AD CB m n →→=⇒-=-①因为2,3FB FC AD FB FC CB →→→→→→+=-=,所以根据2222111494FB FC FB FC FB FC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,又因为1FB FC →→⋅=-,所以2222111194AD CB m n →→-=-⇒-=-②由①②解得258m =,2138n =.所以2222141494EB EC EB EC EB EC AD CB→→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦22201374888m n =-=-=.例题2.(2022·河北唐山·高三期末)ABC 中,D 为BC 的中点,4BC =,3AD =,则AB AC ⋅=______.【答案】5【自主解答】解:因为D 为BC 的中点,4BC =,所以DB DC =-,2DB DC ==,AB AD DB AC AD DC =+=+ ,所AB AC ⋅=()()AD DB AD DC =+⋅+ ()()22945AD DC AD DC AD DC =-⋅+=-=-= 故答案为:5法二:由极化恒等式2211916544AB AC AD BC ⋅=-=-⨯= 例题3.(2022届高三开年摸底联考新高考)已知直线l :10x y +-=与圆C :22()(1)1x a y a -++-=交于A ,B 两点,O 为坐标原点,则OA OB ⋅的最小值为:()A.12-B.D.12【自主解答】如图:圆C 22()(1)1x a y a -++-=的圆心(,1)C a a -,在直线l :10x y +-=上,由极化恒等式,2214OA OB OC BA ⋅=- ,而24BA = ,所以222114OA OB OC BA OC ⋅=-=- ,C是直线l :10x y +-=上的动点,所以||OC的最小值,就是点O 到直线l 的距离d 2min 1()12OA OB d ⋅=-=- .题型归类练30.设向量,a b 满足a b += a b -=r r a b ⋅=A .1B .2C .3D .531.如图,在ABC 中,90,2,2ABC AB BC ∠=== ,M 点是线段AC 上一动点.若以M 为圆心、半径为1的圆与线段AC 交于,P Q 两点,则BP BQ ⋅的最小值为()A .1B .2C .3D .432.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-33.如图放置的边长为1的正方形ABCD 的顶点A,D 分别在x 轴、y 轴正半轴(含原点)滑动,则OB OC ⋅的最大值为__________.第四部分:高考真题感悟(2021·浙江·高考真题)34.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件(2021·全国·高考真题)35.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.(2021·全国·高考真题(文))36.若向量,a b满足3,5,1a a b a b =-=⋅= ,则b = _________.(2021·全国·高考真题(理))37.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.(2021·天津·高考真题)38.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.(2021·北京·高考真题)39.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅=________;=a b ⋅ ________.参考答案:1.错误错误错误错误正确【分析】根据数量积的相关概念逐一判断即可【详解】对于(1):两个向量的数量积是数量,故错误;对于(2):若0a b ⋅= ,除了0a = 或0b = 之外,还有可能a b ⊥,故错误;对于(3):a ,b 共线a ·b =±|a ||b|,故错误;对于(4):数量积是一个整体,这里面b 不能直接约去,故a 与c无固定关系,故错误;对于(5):两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量,符合向量的运算规律,故正确.2.错误【解析】略3.C【分析】由题可得0a b ⋅=,即可求出.【详解】因为()2,1a t =- ,()1,1b t =- ,a b ⊥,所以()210a b t t ⋅=--=,解得1t =-.故选:C.4.A【分析】根据数量积的定义计算可得;【详解】解:()1cos 2222AB BC AB BC B π⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭故选:A 5.C【分析】根据向量的数量积的运算公式,求得cos 0A <,得到A 为钝角,即可求解.【详解】由向量的数量积的运算公式,可得cos 0AB AC AB AC A ⋅=⋅< ,即cos 0A <,因为(0,)A π∈,所以A 为钝角,所以ABC -定是钝角三角形.故选:C.6.B【分析】由题意作出符合题意的图形,判断出OBAC 为菱形,直接得到向量BA在向量BC 上的投影向量.【详解】如图示:因为△ABC 的外接圆圆心为O ,AO AB AC+=,AO AC = ,所以AO AC CO ==,所以△AOC 为等边三角形,所以OBAC 为菱形,所以OA BC ⊥.所以向量BA 在向量BC 上的投影向量为12BC .故选:B 7.D【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答.【详解】非零向量a ,b ,c 满足()b a c ⊥- ,则()·0b a c a b c b -=⋅-⋅= ,即c b a b ⋅=⋅ ,又a 与b的夹角为6π,3a = ,所以c 在b 上的正射影的数量||cos ,||cos 62||||c ba b c c b a b b π⋅⋅〈〉====.故选:D 8.A【分析】依题意过点D 作DE AB ⊥交BA 的延长线于点E ,即可求出AE ,设AP 与AB的夹角为θ,结合图形即可得到AP 在AB方向上的投影的取值范围,再根据数量积的几何意义计算可得;【详解】解:依题意过点D 作DE AB ⊥交BA 的延长线于点E ,则3cos 602AE AD =︒=,设AP 与AB的夹角为θ,因为点P 为直角梯形ABCD 内一点(不包含边界),所以AP 在AB方向上的投影cos AP θ ,且3cos 12AP θ-<<,所以3cos cos ,12AB AP AB AP AP θθ⎛⎫⋅=⋅=∈- ⎪⎝⎭故选:A 9.B【分析】易知ABD △是等边三角形,再根据BC 方向相同的单位向量为e ,由2cos 3AB e π⋅⋅求解.【详解】在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r,所以D 为BC 的中点,且|AD |=|BD |,又1AD AB ==,所以ABD △是等边三角形,因为BC方向相同的单位向量为e ,所以向量AB 在BC 上的投影向量为21cos 32AB e e π⋅⋅=-,故选:B 10.D【分析】利用充分、必要性的定义,结合向量数量积的定义及钝角三角形的性质判断题设条件间的推出关系,即可知答案.【详解】由||||cos 0AB BC BA BC BA BC B =-=⋅-⋅<,即cos 0B >,又0B π<<,所以02B π<<,不能推出△ABC 为钝角三角形,充分性不成立;△ABC 为钝角三角形时,若2B ππ<<,则||||cos 0AB BC BA BC BA BC B =-=⋅-⋅>,不能推出0AB BC ⋅<,必要性不成立.所以“0AB BC ⋅<”是“△ABC 为钝角三角形”的既不充分也不必要条件.故选:D 11.8【分析】利用向量的数量积、投影的定义即可求解.【详解】过点O 作OC AB ⊥于点C ,则点C 为AB 的中点,12AC AB =,所以2211cos ,4822AO AB AO AB AO AB AB AC AB ⋅=⋅===⨯= ,故答案为:8.12.[]4,8【分析】由数量积的定义求解【详解】过点P 作AB 的垂线,交AB 于点H 可得||||DP BA DH BA ⋅=⋅当P 在C 点时,DP BA ⋅ 取最小值4,当P 在A 点时,DP BA ⋅取最大值8故答案为:[4,8]13.A【分析】将,DB CD 分别用,BA BC表示,再根据数量积的运算律即可得出答案.【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=- .故选:A.14.C【分析】由题干条件平方得到()0a b λ⋅= ,从而得到0a b ⋅= ,得到a 与b 的夹角.【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+ ,因为向量a ,b为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅= .因为0λ≠,所以0a b ⋅= ,即a 与b 的夹角为π2.故选:C 15.C【分析】首先由数量积的定义求出ab ,再由余弦定理及基本不等式求出c 的最小值;【详解】解:∵92CB CA ⋅= ,∴9cos 2a b C ⋅⋅=,∴15ab =,由余弦定理得22232cos 222110c a b ab C ab ab =+-⋅≥-⨯=,当且仅当a b =时取等号,∵0c >,∴c ≥c ,故选:C .16.C【分析】根据,,C P D 三点共线求出14m =,然后把,AB AC 当基底表示出,AP CD ,从而求出AP CD ⋅的值【详解】 2AD DB =,32AB AD∴= ∴1324AP m AC AB m AC AD=+=+ ,,C P D 三点共线,31144m m ∴+=⇒=1142AP AC AB ∴=+,又23CD AD AC AB AC=-=- 112()()423AP CD AC AB AB AC ∴=+- 22111343AB AC AB AC =--22111πcos 3433AB AC AB AC =--1111169433432=⨯-⨯-⨯⨯⨯1312=故选:C 17.A【分析】根据0a b ⋅= ,设(1,0)a = ,(0,)b t = ,根据()()0a b a b +⋅-= 求出21t =,再根据平面向量的夹角公式计算可得解.【详解】因为0a b ⋅=,所以可设(1,0)a = ,(0,)b t = ,则(1,)a b t += ,(1,)a b t -=- ,因为()()0a b a b +⋅-= ,所以210t -=,即21t =.则()cos ,||||b a b b a b b a b ⋅-<->=⋅-2=2=-,故选:A.18.B【分析】利用向量垂直,向量数量积的定义及运算法则可得1cos ,2a b = ,即得.【详解】因为1a b ==r r ,()2a a b ⊥-,所以()22222cos ,12cos ,0a a b a a b a a b a b a b ⋅-=-⋅=-⋅⋅=-=,所以1cos ,2a b = ,又,0,180a b ⎡⎤∈⎣⎦ ,所以向量a ,b的夹角为60°.故选:B .19.2π##90 【分析】由|22a b a b +=- |两边平方化简分析即可【详解】由22a b a b +=- ,平方得到22224444a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅=,所以a ,b 夹角为2π故答案为:2π.20【分析】先由225a b -= 求得0a b ⋅=,再求得22a b +r r 即可求解.【详解】由2a b -= 222244545a b a a b b a b -=-⋅+=-⋅= ,则0a b ⋅=,又2222445a b a a b b +=+⋅+= ,则2a b +21【分析】根据题意得34AP m AC AD =+ ,求出14m =,所以1142AP AC AB =+ ,即AP = .【详解】因为23AD AB = ,所以32AB AD = ,又12AP mAC AB =+ ,即1324AP m AC AB m AC AD =+=+,因为点P 在线段CD 上,所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形,所以222211111cos 60421644AP AC AB AC AC AB AB⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故AP = ..22.B【分析】将234PC PA PB =+uu u r uu r uu r 两边平方得可得4916+24cos 2C =+,从而解出1cos 4C =±,然后由条件可得3455PC AC BC =+uu u r uuu r uu u r ,判断出C 与外心P 在AB 的异侧,从而得出答案.【详解】因为P 是ABC 的外心,所以||||||PA PB PC ==uu r uu r uu u r,由题知234PC PA PB =+uu u r uu r uu r,两边平方得222491624PC PA PB PA PB =++⋅uu u r uu r uu r uu r uu r 即222491624cos 2PC PA PB PA PB C +⋅=+uu u r uu r uu r uu r uu r,即4916+24cos 2C =+,所以221cos 22cos 124C C -==-,则1cos 4C =±,又由23433PC PA PB PC CA =+=++uu u r uu r uu r uu u r uu r44PC CB +uu u r uu r ,得3455PC AC BC =+uu u r uuu r uu u r ,因为34155+>,则C 与外心P 在AB 的异侧,即C 在劣弧上,所以C 为钝角,即1cos 4C =-.故选:B 23.C【分析】根据向量的减法运算及共线向量计算,可得出1144CE AB AC →→→=-即可求解.【详解】设62AE AD AB AC λλλ→→→→==+,则16262CE AE AC AD AC AB AC AC AB AC λλλλλ→→→→→→→→→→⎛⎫=-=-=+-=+-⎪⎝⎭,CB AB AC→→→=-,且CE →,CB →共线,则CE kCB = ,162AB AC λλ→→⎛⎫+-= ⎪⎝⎭()k AB AC →→-所以612k k λλ⎧=⎪⎪⎨⎪-=-⎪⎩所以162λλ=-,解得32λ=,此时1144CE AB AC →→→=-,所以14CE CB →→=,故14CE CB =.故选:C 24.23【分析】先用,AC AB 表示向量AD,再利用向量数量积运算求解.【详解】解:因为1,3,90,2AB AC A CD DB ==∠=︒=,所以()22=+=++==- AD AC CD AC AC CD DB AB AD ,即1233AD AC AB =+ ,所以21212233333⎛⎫⋅=+⋅=⋅+= ⎪⎝⎭AD AB AC AB AB AC AB AB ,故答案为:2325.13-【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD D C =,得()2233BD BC AC AB ==- ,所以()212333A A C AB D AB BD AB A A BC -+===++ ,因为(),AD AB AC λμλμ=+∈R uuu r uu u r uuu r ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-26.(1)15k =(2)0k =或1k =【分析】(1)先求出()()3,512a+2b =,c a =k +,-,再利用向量平行的坐标表示列方程即可求解;(2)先求出(1,2),(2,1)c a k c b k -=+-=- ,再利用向量垂直的坐标表示列方程即可求解;(1)因为(1,1),(2,2),(,3)a b c k =-==,所以()()3,512a+2b =,c a =k +,- .因为(2)//()a b c a +-,所以()32510k ⨯-⨯+=,解得:15k =.(2)因为(1,1),(2,2),(,3)a b c k =-== ,所以(1,2),(2,1)c a k c b k -=+-=-.因为()()c a c b -⊥-,则(1)(2)20k k +⋅-+=,解得:0k =或1k =.27.(1)5;(2)35【分析】(1)利用垂直的坐标表示求出m ,再利用向量线性运算的坐标表示及模的坐标表示计算作答.。
平面向量的数量积复习课(改)
练习一
1.若 | a | 2, | b | 1, a // b,求 a b
2. 已知 a (3,4), b (5,12),求 a 与 b 的夹角.
(2)( 解 :由 a(// 3,4 1)解 :a b), b (5,12),得
Biblioteka 平面向量数量积2006年5月17日
授课班级:高一( 10 ) 班 主讲:李科峰
若 a , b为 两 个 非 零 向 量 ,它 们 的 夹角为 , 则 a b | a | | b | cos 并 且 规 定: 0 a 0.
一、平面向量数量积的概念
平 面向 量的 坐标 形式 是 : 若 a ( x 1 , y1 ) b ( x 2 , y 2 ),则 : a b x 1 x 2 y1 y 2
x 1 x 2 y1 y 2
2 2 x1 y1 2 x2 y 2 2
(2) a b a b 0 x 1 x 2 y1 y 2 0
| a || b |
a // b( bb | 0 )| b x 1 y 2 x 2 y1 0 (5) |a aa || b|, 写成坐标式就是 : 2 2 2 2 , |(x x y y | x y x y 1 2a 与 1b同向时 2 1 , a 1b |2 a || b 2 | 3) 当 这就是著名的柯西不等 式
注意 : (1) a ,与 b 的夹角是 a 与 b 具有公共起点时 两向量 之间的角 (2)0 (3)a b中的 ""不能省略, 也不能用 "" 代替.
5.3平面向量的数量积及其应用课件高三数学一轮复习
角度1 夹角与垂直
例 2 (1)已知向量 a,b 满足|a|=5,|b|=6,a·b=-6,则 cos 〈a,a+b〉=
( D)
A.-3315
B.-1395
C.1375
D.1395
解析 ∵|a+b|2=(a+b)2=a2+2a·b+b2=25-12+36=49,∴|a+b|=7,
∴cos〈a,a+b〉=a·|(a||aa++bb)| =|aa2||+a+a·bb|=255×-76=1395.
1.思考辨析(在的夹角的范围是0,π2.( × )
(2)向量在另一个向量方向上的投影为数量,而不是向量.( √ )
(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向
量.( √ )
(4)若 a·b=a·c(a≠0),则 b=c.( × )
解析 (1)两个向量夹角的范围是[0,π]. (4)由a·b=a·c(a≠0)得|a||b|·cos〈a,b〉=|a||c|·cos〈a,c〉,所以向量b和c不 一定相等.
1.两个向量a,b的夹角为锐角⇔a·b>0且a,b不共线;两个向量a,b的夹角为钝 角⇔a·b<0且a,b不共线. 2.平面向量数量积运算的常用公式 (1)(a+b)·(a-b)=a2-b2; (2)(a+b)2=a2+2a·b+b2. (3)(a-b)2=a2-2a·b+b2. 3.数量积运算律要准确理解、应用,例如,a·b=a·c(a≠0),不能得出b=c,两 边不能约去同一个向量.
所以A→P·A→B=(x,y)·(2,0) =2x∈(-2,6).
(2)已知A→B⊥A→C,|A→B|=1t,|A→C|=t,若点 P 是△ABC 所在平面内的一点,且
A→P=|AA→ →BB |+4|A→A→CC| ,则P→B ·P→C的最大值为____1_3___.
平面向量的数量积复习课公开课优质课件
1.平面向量的数量积 (1)定义:
(2)几何意义:
2设. 两平非面零向向量量数量a=积(的x2,性y质2),及b其=坐(x1标,表y1示),a与b的夹角为θ
(1) 数量积: (2)模:
((43))夹a 角b:的充要条件: 3. 平面向量数量积的运算律
(1)交换律:
(2)数乘结合律:
(3)分配律:
三、导学释疑
b
(4,-2),a
b与a垂直,则
( )
A.-1
B.1
.C.-2 D. 2
五、课时小结
1.平面向量的数量积
2.平面向量数量积的性质 本节课主要学习的知识点有 及其坐标表示
3. 平面向量数量积的运算律
向量数量积的运算
利用知识点可以解决的问题有 向量夹角及垂直问题
与向量模有关的问题
六、课后作业
课本P108、A组1,2,3
A.
6
B.
4
C.
3
5
D. 12
【思路点拨】利用已知条件中的垂直关系求出
a
b
,
再利用
cos
a
b
a
b
求解.
【点评】(1)两向量的夹角公式
cos
a
b
a
b
所以要找准
a
b及
a与
b
x1x2 y1 y2 x12 y12 x22 y22
(2)
两向量a
b的充要条件:a
b =0
x1
x2
y1 y2
,则
A. (2,4) B. (3,6) C.(4,8) D. (5,10)
2.目标展示
(1).掌握平面向量数量积的定义及其几何意义;掌 握平面向量数量积的重要性质及运算律.
2025年高考数学一轮复习 第七章 -第三节 平面向量的数量积【课件】
2.平行四边形模式:
如图,在平行四边形中, ⋅ =
1
(
4
2
2
− ).
1
2 .
4
自测诊断
1.已知向量 = 2,1 , = 1,2 ,则 ⋅ =( B )
A.2
B.4
C.−2
D.−4
[解析] 因为 = , , = , ,所以 ⋅ = × + × = .故选B.
知识拓展
一、数量积的有关结论
1. ±
2
= 2 ± 2 ⋅ + 2 .
2. + ⋅ − = 2 − 2 .
3.2 + 2 = 0 ⇔ = 且 = .
二、极化恒等式
1.极化恒等式的三角形模式:
2
如图,在△ 中,为的中点,则有 ⋅ = −
= π 时,与______;如
同向
反向
π
⊥
果与的夹角是 ,那么我们说与垂直,记作______.
2
(3)向量的数量积:已知两个非零向量与,它们的夹角为 ,我们把数量
cos
cos 叫作向量与的数量积(或内积),记作 ⋅ ,即 ⋅ =___________.规
A. 2
C.2 3
B.2
D.4
[解析] 因为 = , = , ⋅ = ,
所以 − =
−
=
+ − ⋅ = + − = .故选B.
4.已知 = 6, = 3,向量在方向上的投影向量是4,则 ⋅ 为( A )
A.12
2.在△ 中, = 5, = 2,∠ = 60∘ ,则 ⋅ 的值为(
最新17.平面向量的数量积复习课
的投影 为 7 2 2
三、问题探究
问题1、如 ,在 图平A 行 B 中 四 ,已 CD A 边 知 B 4 ,A 形 D 3 , D A 6B ,0
求 :1 .AB DC2.ABCD 3.ABDA
5ab a b
4、数量积的运算律: ⑴交换律: abba
⑵对数乘的结合律: (a)b(ab)a(b)
⑶分配律: (ab)cacbc
注意:
数量积不满足结合律 即:(ab)ca(bc) 数量积不满足消去律 即:abac推不b出 c
ab0也推b不 0或 出 a0
二、基础训练题:
1 .若平 b 与 面 a 向 向 (1 , 2 量 )的 量夹 1 8 , 角 0|b且 | 是 35 ,
虑向量的模,又
3.A与 BA的 D 夹6角 0 ,是 AB与DA的夹角12是0
要根据两个向量 方向确定其夹角。
AD B AD Bc A 1 o2 s 4 0 3 1 6
2
问题 2设 a、 b是两个非零 (a向 +3b)量 与 (7a, -5b)若 垂直
(a-4b)与 (7a-2b)垂直, a与 b的 求 夹 角 .
bc(1 , 3)(x,y)x3y. 设c与a, b的夹角分别 ,为 ,则
由已知得
co sac3 xy,co sbcx3y.
|a||b| 22
|b||c| 22
x2 y2 2 解得
3xyx 3y
x 3 1
2
或
y 3 1
பைடு நூலகம்
2
x 3 1 2
y 1 3 2
故 c 的坐 (3 1 标 , 3 1 )或 是 (3 1 ,1 3 ).
必修4高三数学第2章 平面向量向量的数量积复习课件.
求 (1) a ·b;(2) a ·( a + b ) ;(3) (2a-b )·( a +3 b ).
(1) 12 ; (2) 28; (3) -16.
10
3.已知向量 a 与 b的夹角为θ,| a |=2,| b |=3, 分 别在下列条件求 a ·b : (1)θ=1350; (2) a // b ; (3) a ⊥b .
真 假
| a·b |=|a||b|·|cosθ|≤| a|| b|, 这里θ是a与b的夹角,只
有θ=0或θ=π时,才有| a ·b |=| a |·| b |; 9
⑩对任意向量 a,b,c 都有(a·b) c=a (b·c);假 ⑩举反例如下: 已知| a |=1,| b |=1,| c |= 2 , a 与 b夹角是600,b与 c 夹角是450,则: (a ·b )·c=(| a || b| cos600)·c= c, a·( b ·c)=(| b || c |cos450)·a =a 而 c ≠ a,故 ( a · b )· c≠ a · ( b · c ). 对于⑩若 a 与 c 共线,记 a=λc. 则
特别地,a ·a=| a |2或 | a |= a a
2
a
| a | x2 y2 . AB= (x1 x2 )2 (y1 y2 )2
④ cos a b
cos
x1x2 y1y2
.
|a||b|Байду номын сангаас
x12 +y12
x
2 2
+y22
⑤|a ·b|≤| a | | b |
a 的长度| a |与 b 在 a 方向上投影| b| cosθ的乘积;
或等于b 的长度| b |与 a 在 b方向上投影| a | cosθ的
一轮复习平面向量的数量积培训课件
a b a b cosq .
规定:零向量与任一向量的数量积为 0 .
注:
(1) 两个向量的数量积是一个数量,这个
数量的大小与两个向量的长度及其夹角
有关.
(2)前面所说的力所做,的就功是力
此 点
F 与其作用下物体产位生移的 s 的数 很
重
量积F s .
要
(3)两个向量a 与b 的数量积
r
r
2
) r
r
2、 | a | 12, | b | 9, a • b 54 2 ,
r
r
则 向 量 a与 向 量 b的 夹 角 q ( 45 o)
例2:如图:边长2的 为正三角 AB形C中
设BCa, CAb
C
求a•b的值。
解:如 a 与 图 b 的A可 夹 q1 知 角 2 o B0 :
q a • b a b co 2 s 2 c1 o o 2 s 1 0
过 点 B作BB1垂 直 于O 直A,线 垂 足B为 1,则
OB 1 b coqs.
我 们b把coqs叫 做 向 b在 量a方 向 上 的 . 投 影
B
A1
B
b
b
q
O
a B1 A
q
O
a
A
OA 1 |a|coqs
B
B
b
q
B1
Oa A
b
q
O(B1) a
A
注意:当 q 为锐角时,投影是正值: 当 q 为钝角时,投影是负值;当 q = 90° 时, 投影是 0 . 当q = 0º时,投影为 b ; 当q = 180°时,投影为 b .
若ab0, 且a 0 , 是否一定 b有 0.
平面向量的数量积(复习课)
1用k表示数量积a b 2求a b的最小值, 并求此时a与b的夹角 .
2014年9月11日2时14分
但是,在平面向量中(ab)c
a(bc)
显然,这是因为上式左端是与c共线的向量,而右端是与a共线
的向量,而一般a与c不共线。
2、数量积的几何意义:
B
b
a b a b cos
a
A
O
a b b a cos
| b | cos
a b b a
数量积a b等于a的长度a 与b在a的方向上的投影数量 b cos的乘积.
其中: a 0, b 0
是a和b的夹角 , 范围是0
注意:两个向量的数量积是数量,而不是向量.
规定: 0 a 0
注意的几个问题;——两个向量的数量积与两个向量的向量积、 两个实数的积有很大区别。
.两个向量的数量积是一个实数,不是向量,符号由cos的符号
所决定。 .两个向量的数量积称为内积,写成ab;以后还要学到两个向量 的向量积称为外积 ,写成a×b;而ab是两个实数的积,书写 时要严格区分。
5.已知平面四边形 ABCD中, AB a, BC b, CD c, DA d , 且a b b c c d d a, 试判断四边形 ABCD的形状特征 .
6.若a cos , sin , b cos , sin , 且 k a b 3 a k b k 0
3、数量积的物理意义: F
F cos
S
如果一个物体在力 F的作用下产生位移 s, 那么力F所做的功W 可用公式计算:
W F S | F || S | cos
平面向量的数量积复习 通用精品课件
已知|a|=3,|b|=4,a与b的夹角为 ,求: (1)(3a-2b)·(a-2b); (2)|a+b|. [思路点拨]
[课堂笔记] (1)a·b=|a|·|b|·cos =3×4×(- )=-6 . a2=32=9,b2=16. ∴(3a-2b)·(a-2b)=3a2-8a·b+4b2 =3×9-8×(-6 )+64=91+48 . (2)|a+b|2=(a+b)2=a2+2a·b+b2 =9+2×(-6 )+16=25-12 . ∴|a+b|=
1.已知a=(1,-2),b=(5,8),c=(2,3),则a·(b·c)=( )
A.34
B.(34,-68)
C.-68
D.(-34,68)
解析:a·(b·c)=(1,-2)×(5×2+8×3)=(34,-68).
答案:B
2.平面向量a与b的夹角为60°,a=(2,0),|b|=1,则|a+
2b|=
(2)由|a|=|b|知,sin2θ+(cosθ-2sinθ)2=5,┄┄(6分)
所以1-2sin2θ+4sin2θ=5. ┄┄┄┄ (7分)
从而-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,于是
sin(2θ+ )=
.┄┄┄┄┄┄┄(10分)
又由0<θ<π知, <2θ+ < ,所以2θ+ = ,或2θ
[考题印证] (2009·湖南高考)(12分)已知向量a=(sinθ,cosθ-2sin θ) ,b=(1,2). (1)若a∥b,求tanθ的值; (2)若|a|=|b|,0<θ<π,求θ的值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设a (x1 , y1 ), b ( x2 , y2 ), 且a与b夹角为, (0 180 )则 cos
x1 x2 y1 y2
2 2 x12 y12 x2 y2
.
2 2 其中 x12 y12 0, x2 y2 0.
(1) 由题意得:
2 2 a b 2 2 ( a b) | b | (t 2 ) | a | 2 |b| |b|
a b 当t 2 时 |b|
2 2 2 | b | t (2a b)t | a |
A
-2
B
O
M
C
类型二:向量模的计算
例1: 已知向量
求:(1) a b
(2) 3a 4b (3) a b a 2b 2 2 2 b b 2 (1) a b ( a b) a2 2a
304 4 19
总结:求向量长度的方法,即一个向量的长度为它与自身数 量积的算术平方根.即 a a
2
天津理14)已知直角梯形 ABCD 中,
ADC 90
PA 3PB
0
AD 2, BC 1
AD//BC ,P是腰DC上的动点,则 的最小值为____________.
平面向量的数量积 复习课
复习
1.向量的夹角定义:
对于两个非零向量 a 和b,作OA=a, OB=b,则 ∠AOB=θ(0°≤θ≤180°)叫做向量 a与b的夹角.
a
注:当θ=0°时,a与b同向;
b
B
O
A
当θ=180°时,a与b反向; 当θ=90°时,则称向量a与b垂直,记作a⊥b.
复习
的模取最小值时,(1)求t的值 (2)求证 b (a tb)
注:
| a tb |是一个实数,对 | a tb | 变形
后,是一个关于t的二次函数,利用二次函 数最值解决问题
例3、已知向量a 3b与7a 5b垂直, a 4b与7a 2b垂直,求a, b的夹角。
|a tb |有最小值
例2.已知 a, b 是两个非零向量,当 a t R) tb(
a b (2) b (a tb) b (a 2 b ) |b| a b a b 0 b (a tb)
8 8 3 , , 3 3 2
3.设两个向量e1、e2,满足|e1|=2,|e2|=1,e1、e2的夹 角为60°,若向量2te1+7e2与向量e1+te2的夹角为 钝角,求实数t的取值范围.
14 14 1 (-7,)∪(,- ). 2 2 2
b a
a (l b ) l a b a ?c b c
5.平面向量的数量积的坐标表示
设a x1 , y1 , b x2 , y2 则a b x1 x2 y1 y2
1向量 的模
设a x, y , 则 a x 2 y 2 , 或 a
夹角
6
类型三:向量的夹角问题
例2.已知a 1,2 , b 1,1, 且a与a b 的夹角为锐角 , 求实数 的取值范围 .
5 ,0 0 , 3
练: 若 a (2, x), 与b (3,4) 的夹角为钝角,则 实数x的取值范围为 _____________
a 与 b 的夹角为 120 ,且 a 4, b 2
(3) (a b ) (a 2b ) a a b 2b
2 2 a 2 a b cos120 b 12 2 3 2 2 a a b cos120 2 b 12 2 2 2 (2) 3a 4b (3a 4b ) 9a 24a b 16b
类型四:向量的垂直问题
【例 1 】 设平面内两向量 a 与 b 互相垂直,且 |a|=2,|b|=1,又 k 与 t 是两个不同时为零的实数. (1)若 x=a+(t-3)b 与 y=-ka+tb 垂直,求 k 关于 t 的函数关系式 k=f(t); (2)求函数 k=f(t)的最小值.
解: (1) ∵a⊥b, ∴a·b=0.又 x⊥y, ∴x·y=0, 即[a+( t-3)b] ·( -ka+tb)=0, -ka2-k( t-3) a·b+ta·b+t(t-3) b2=0. ∵|a|=2, |b|=1, ∴-4k+t2-3t=0, 即 k= (t2-3t) . (2) 由( 1) 知, k= (t2-3t)= (t- )2- , 即函数 k=f(t) 的最小值为- .
3.数量积的重要性质:
a b
0,则 a ^ b 圩 a b = 0
(3)a ?a
a ×b (4)cos q = a b
2 a
( a 构0, b
0)
复习
(1)a ?b
4.向量的数量积运算律
(2)(l a ) ? b = l (a ? b ) (3)(a + b) ?c
类型三:向量的夹角问题
例1.已知 a b c 0 , 且 | a | 3, | b | 5, | c | 7, 求 a 和 b 的夹角
夹角
3
练习4.已知a、 b是两个非零向量,同时 满足 | a || b | | a b |,求a与a b的夹角
AB 2 , BC 2 , 若AB· AF=
2
BF 的值是 则 AE·
.
练习 30 角的直角三角形中, 0 C 90 , BC 1,求 AB BC BC CA CA AB的值。
0
1 7.平面内有向量OA (1,7),OB (5, 1),点P是函数y= x上的任 2 意一点,求PA PB取最小值时OP的坐标.
( 4 , 2)
8.在△ABC中,O为中线AM 上的一个动点,若AM=2,则 OA (OB OC )的最小值.
2.
3 2
a
A
C
c
b
B
已知向量e1 , e 2不共线, a k e1 e 2 , b e1 k e 2 , 若a与b共线, 则k的值为
1
4
3. 若 a 1, b
2 , 且 a b a, 则a与b的夹角是
2.在ABC 中,若 BC a, CA b, AB c ,且
已知在等边三角形 ABC 中,点 P 为线段 AB 上一点,且 AP AB (0 1) . 1 , (1)若等边三角形边长为 6 ,且 3 | CP | 求 ; (2)若 CP· AB PA· PB ,求实数 λ 的取值范围.
2
x 2 y 2;
2两点 间的距离 公式 设Ax1 , y1 , Bx 2 , y 2 ,
则 AB (x 2 x1 ) 2 (y 2 y1 ) 2
(3). 非零向量垂直的坐标条件
设a (x1 , y1 ), b ( x2 , y2 ), 则 a b x1 x2 y1 y2 0
单位向量
.与向量
a (3,4)平行的单位向量为_________________________; 1.已知a ( 4, 2), 求与a垂直的单位向量.
5 2 5 5 2 5 ( ,)或(, ) 5 5 5 5
2.已知 a b 1, 且a b (1,0),求a, b的坐标.
2.数量积的定义: 已知两个非零向量a和b,它们的夹角是θ, 我们把数量|a||b|cosθ叫做向量a和b的数量 积(或内积),记作a· b.
a ?b | a || b | cos q
规定:零向量与任一向量的数量积为0.
复习
(1) - a b Wa b
(2)若a 构0, b
1.已知向量|a|=,a· b=10,|a+b|=5,求|b|.
.
2.已知向量 a, b 满足 a 13, b 19, a b 24, 求 a b .
3.已知 a ,b 是平面内两个互相垂直的单位向量, c (a c) (b c),则求 若向量 满足, 的最大 c 0 值. 变式题(09高考):设 a, b, c 是单位向量,且a b 0 则 (a c) (b c) 的最小值.
例4:
已知:OA⊥BC,OB⊥AC. 求证:OC⊥AB.
思考:你能画一个几何图形来解释例2吗?
变题:求证:|a+b|2+|a−b|2=2(|a|2+|b|2);并构造 一个几何图形解释这个公式的几何意义.
课堂练习
1 1. 等边三角形ABC的边长为
AB a, BC b, CA c, 那么a b b c c a
例2.已知 a, b 是两个非零向量,当 a t R) tb(
的模取最小值时,(1)求t的值 (2)求证 b (a tb)
解
2 2 2 2 | a tb | (a tb) | a | 2ta b | tb |
则
ABC 的形状为
a b bc ca
பைடு நூலகம்
.
等边三角形
2.变式题:O 为 ABC 所在平面内任意一点,且满足