Hybrid density functional theory studies of AlN and GaN under uniaxial strain

合集下载

Density Functional

Density Functional

Density Functional (DFT) MethodsDESCRIPTIONGaussian 09 offers a wide variety of Density Functional Theory (DFT) [Hohenberg64, Kohn65, Parr89, Salahub89] models (seealso [Salahub89, Labanowski91, Andzelm92, Becke92, Gill92, Perdew92 , Scuseria92,Becke92a, Perdew92a, Perdew93a, Sosa93a, Stephens94, St ephens94a, Ricca95] for discussions of DFT methods and applications). Energies [Pople92], analytic gradients, and true analyticfrequencies [Johnson93a,Johnson94, Stratmann97] are available for all DFT models.The self-consistent reaction field (SCRF) can be used with DFT energies, optimizations, and frequency calculations to model systems in solution. Pure DFT calculations will often want to take advantage of density fitting. See the discussion in Basis Sets for details.The next subsection presents a very brief overview of the DFT approach. Following this, the specific functionals available in Gaussian 09 are given. The final subsection surveys considerations related to accuracy in DFT calculations.The same optimum memory sizes given by freqmem are recommended for DFT frequency calculations.Polarizability derivatives (Raman intensities) and hyperpolarizabilities are not computed by default during DFT frequency calculations.Use Freq=Raman to request them. Polar calculations do compute them. Note: The double hybrid functionals are discussed with the MP2 keyword since they have similar computational cost.BACKGROUNDIn Hartree-Fock theory, the energy has the form:E HF = V + <hP> + 1/2<PJ(P)> - 1/2<PK(P)>where the terms have the following meanings:V The nuclear repulsion energy.P The density matrix.<hP> The one-electron (kinetic plus potential) energy.1/2<PJ(P)> The classical coulomb repulsion of the electrons.-1/2<PK(P)> The exchange energy resulting from the quantum(fermion) nature of electrons.In the Kohn-Sham formulation of density functional theory [Kohn65], the exact exchange (HF) for a single determinant is replaced by a more general expression, the exchange-correlation functional, which can include terms accounting for both the exchange and the electron correlation energies, the latter not being present in Hartree-Fock theory: E KS = V + <hP> + 1/2<PJ(P)> + E X[P] + E C[P]where E X[P] is the exchange functional, and E C[P] is the correlation functional.Within the Kohn-Sham formulation, Hartree-Fock theory can be regarded as a special case of density functional theory, with E X[P] given by the exchange integral -1/2<PK(P)> and E C=0. The functionals normally used in density functional theory are integrals of some function of the density and possibly the density gradient:E X[P] = ∫f(ρα(r),ρβ(r),∇ρα(r),∇ρβ(r))drwhere the methods differ in which function f is used for E X and which (if any) f is used for E C. In addition to pure DFT methods, Gaussian supports hybrid methods in which the exchange functional is a linear combination of the Hartree-Fock exchange and a functional integral of the above form.Proposed functionals lead to integrals which cannot be evaluated in closed form and are solved by numerical quadrature.KEYWORDS FOR DFT METHODSNames for the various pure DFT models are given by combining the names for the exchange and correlation functionals. In some cases, standard synonyms used in the field are also available as keywords. Exchange Functionals. The following exchange functionals are available in Gaussian 09. Unless otherwise indicated, these exchange functionals must be combined with a correlation functional in order to produce a usable method.∙S: The Slate r exchange, ρ4/3 with theoretical coefficient of 2/3, also referred to as Local Spin Densityexchange [Hohenberg64, Kohn65, Slater74]. Keyword if usedalone: HFS.∙XA: The XAlpha exchange, ρ4/3 with the empirical coefficient of0.7, usually employed as a standalone exchange functional, withouta correlation functional [Hohenberg64, Kohn65, Slater74].Keyword if used alone: XAlpha.∙B: Becke’s 1988 functional, which includes the Slater exchange along with corrections involving the gradient of thedensity [Becke88b]. Keyword if used alone: HFB.∙PW91: The exchange componen t of Perdew and Wang’s 1991 functional [Perdew91, Perdew92, Perdew93a, Perdew96, Burke98] .∙mPW: The Perdew-Wang 1991 exchange functional as modified by Adamo and Barone [Adamo98].∙G96: The 1996 exchange functional of Gill [Gill96, Adamo98a]. ∙PBE: The 1996 functional of Perdew, Burke andErnzerhof [Perdew96a, Perdew97].∙O: Handy’s OPTX modification of Becke’s exchange functional [Handy01, Hoe01].∙TPSS: The exchange functional of Tao, Perdew, Staroverov, and Scuseria [Tao03].∙BRx: The 1989 exchange functional of Becke [Becke89a].∙PKZB: The exchange part of the Perdew, Kurth, Zupan and Blaha functional [Perdew99].∙wPBEh: The exchange part of screened Coulomb potential-based final of Heyd, Scuseria and Ernzerhof (also knownas HSE) [Heyd03].∙PBEh: 1998 revision of PBE [Ernzerhof98].Correlation Functionals. The following correlation functionals are available, listed by their corresponding keyword component, all of which must be combined with the keyword for the desired exchange functional:∙VWN: Vosko, Wilk, and Nusair 1980 correlation functional(III) fitting the RPA solution to the uniform electron gas, often referred to as Local Spin Density (LSD) correlation [Vosko80] (functional III in this article).∙VWN5: Functional V from reference [Vosko80] which fits the Ceperly-Alder solution to the uniform electron gas (this is thefunctional recommended in [Vosko80]).∙LYP: The correlation functional of Lee, Yang, and Parr, which includes both local and non-local terms [Lee88, Miehlich89].∙PL (Perdew Local): The local (non-gradient corrected) functional of Perdew (1981) [Perdew81].∙P86 (Perdew 86): The gradient corrections of Perdew, along with his 1981 local correlation functional [Perdew86].∙PW91(Perdew/Wang 91): Perdew and Wang’s 1991gradient-corrected correlationfunctional [Perdew91, Perdew92, Perdew93a, Perdew96, Burke98] .∙B95(Becke 95): Becke’s τ-dependent gradient-corrected correlation functional (defined as part of his one parameter hybridfunctional [Becke96]).∙PBE: The 1996 gradient-corrected correlation functional of Perdew, Burke and Ernzerhof [Perdew96a, Perdew97].∙TPSS: The τ-dependent gradient-corrected functional of Tao, Perdew, Staroverov, and Scuseria [Tao03].∙KCIS: The Krieger-Chen-Iafrate-Savin correlationfunctional [Rey98, Krieger99, Krieger01, Toulouse02].∙BRC: Becke-Roussel correlation functional [Becke89a].∙PKZB: The correlation part of the Perdew, Kurth, Zupan and Blaha functional [Perdew99].Specifying Actual Functionals. Combine an exchange functional component keyword with the one for desired correlation functional. For example, the combination of the Becke exchange functional (B) andthe LYP correlation functional is requested by the BLYP keyword. Similarly, SVWN requests the Slater exchange functional (S) andthe VWN correlation functional, and is known in the literature by its synonym LSDA (Local Spin Density Approximation). LSDA is a synonym for SVWN. Some other software packages with DFT facilities use the equivalent of SVWN5when “LSDA” is requested. Check the documentation carefully for all packages when making comparisons.Correlation Functional Variations. The following correlation functionals combine local and non-local terms from different correlation functionals:∙VP86: VWN5 local and P86 non-local correlation functional.∙V5LYP: VWN5 local and LYP non-local correlation functional. Standalone Functionals. The following functionals are self-contained and are not combined with any other functional keyword components:∙VSXC: van Voorhis and Scuseria’s τ-dependent gradient-corrected correlation functional [VanVoorhis98].∙HCTH/*: Handy’s family of functi onals includinggradient-correctedcorrelation [Hamprecht98, Boese00, Boese01]. HCTH refers toHCTH/407, HCTH93 to HCTH/93, HCTH147 to HCTH/147,and HCTH407 to HCTH/407. Note that the related HCTH/120functional is not implemented.∙tHCTH: The τ-dependent member of the HCTH family [Boese02].See also tHCTHhyb below.∙M06L: The pure functional of Truhlar and Zhao [Zhao06a]. See also M06 below.∙B97D: Grimme’s functional including dispersion [Grimme06].Hybrid Functionals. A number of hybrid functionals, which include a mixture of Hartree-Fock exchange with DFT exchange-correlation, are available via keywords:Becke Three Parameter Hybrid Functionals. These functionals have the form devised by Becke in 1993 [Becke93a]:A*E X Slater+(1-A)*E X HF+B*ΔE X Becke+E C VWN+C*ΔE C non-localwhere A, B, and C are the constants determined by Becke viafitting to the G1 molecule set.There are several variations of this hybrid functional. B3LYP uses the non-local correlation provided by the LYP expression, andVWN functional III for local correlation (not functional V). Notethat since LYP includes both local and non-local terms, thecorrelation functional used is actually:C*E C LYP+(1-C)*E C VWNIn other words, VWN is used to provide the excess localcorrelation required, since LYP contains a local term essentiallyequivalent to VWN.B3P86 specifies the same functional with the non-local correlation provided by Perdew 86, and B3PW91 specifies this functional with the non-local correlation provided by Perdew/Wang 91.∙Becke One Parameter Hybrid Functionals. The B1B95 keyword is used to specify Becke’s one-parame∙ter hybrid functional as defined in the original paper [Becke96].The program also provides other, similar one parameter hybridfunctionals [Becke96], as implemented by Adamo andBarone [Adamo97]. In one variation, B1LYP, the LYP correlation functional is used (as described for B3LYP above). Anotherversion, mPW1PW91, uses Perdew-Wang exchange as modified by Adamo and Barone combined with PW91correlation [Adamo98];the mPW1LYP,mPW1PBE and mPW3PBE variations areavailable.∙Becke’s 1998 revisions to B97 [Becke97, Schmider98]. The keyword is B98, and it implements equation 2c inreference [Schmider98].∙Handy, Tozer and coworkers modification toB97: B971 [Hamprecht98].∙Wilson, Bradley and Tozer’s modification toB97: B972 [Wilson01a].∙The 1996 pure functional of Perdew, Burke andErnzerhof [Perdew96a, Perdew97], as made into a hybrid byAdamo [Adamo99a]. The keyword is PBE1PBE. This functional uses 25% exchange and 75% correlation weighting, and is known in the literature as PBE0.∙HSEh1PBE: The recommended version of the fullHeyd-Scuseria-Ernzerhof functional, referred to as HSE06 in the literature [Heyd04, Heyd04a, Heyd05, Heyd06, Krukau06]. Two earlier forms are also available:o HSE2PBE: the first form of this functional, referred to as HSE03 in the literature.o HSE1PBE: The version of the functional prior tomodification to support third derivatives.∙PBEh1PBE: Hybrid using the 1998 revised form of PBE pure functional (exchange and correlation) [Ernzerhof98].∙O3LYP: A three-parameter functional similar to B3LYP: A*E X LSD+(1-A)*E X HF+B*ΔE X OPTX+C*ΔE C LYP+(1-C)E C VWNwhere A, B and C are as defined by Cohen and Handy inreference [Cohen01].∙TPSSh: Hybrid functional using the TPSS functionals [Tao03].∙BMK: Boese and Martin’s τ-dependent hybridfunctional [Boese04].∙M06: The hybrid functional of Truhlar and Zhao [Zhao08].The M06HF [Zhao08] and M062X [Zhao06b] variations are alsoavailable.∙X3LYP: Functional of Xu and Goddard [Xu04].∙Half-and-half Functionals, which implement the following functionals. Note that these are not the same as the “half-and-half”functionals proposed by Becke [Becke93]. These functionals areincluded for backward-compatibility only.o BHandH: 0.5*E X HF + 0.5*E X LSDA + E C LYPo BHandHLYP: 0.5*E X HF + 0.5*E X LSDA+ 0.5*ΔE X Becke88 +E C LYPLong range corrected functionals. The non-Coulomb part of exchange functionals typically dies off too rapidly and becomes very inaccurate at large distances, making them unsuitable for modeling processes such as electron excitations to high orbitals. Various schemes have been devised to handle such cases. Gaussian 09 offers the following functionals which include long range corrections:∙LC-wPBE: Long range-corrected version ofwPBE [Tawada04, Vydrov06, Vydrov06a, Vydrov07].∙CAM-B3LYP: Handy and coworkers’ long range corrected version of B3LYP using the Coulomb-attenuatingmethod [Yanai04].∙wB97XD: The latest functional from Head-Gordon and coworkers, which includes empirical dispersion [Chai08a].The wB97 and wB97X [Chai08] variations are also available.These functionals also include long range corrections.In addition, the prefix LC- may be added to any pure functional to apply the long correction of Hirao and coworkers [Iikura01]: e.g., LC-BLYP. User-Defined Models. Gaussian 09 can use any model of the general form:P2E X HF + P1(P4E X Slater + P3ΔE x non-local) + P6E C local + P5ΔE C non-localThe only available local exchange method is Slater (S), which should be used when only local exchange is desired. Any combinable non-local exchange functional and combinable correlation functional may be used (as listed previously).The values of the six parameters are specified with various non-standard options to the program:∙IOp(3/76=mmmmmnnnnn) sets P1 to mmmmm/10000 and P2 to nnnnn/10000. P1 is usually set to either 1.0 or 0.0, depending on whether an exchange functional is desired or not, and anyscaling is accomplished using P3 and P4.∙IOp(3/77=mmmmmnnnnn) sets P3 to mmmmm/10000 and P4 to nnnnn/10000.∙IOp(3/78=mmmmmnnnnn) sets P5 to mmmmm/10000 and P6 to nnnnn/10000.For example, IOp(3/76=1000005000) sets P1 to 1.0 and P2 to 0.5. Note that all values must be expressed using five digits, adding any necessary leading zeros.Here is a route section specifying the functional corresponding tothe B3LYP keyword:#P BLYP IOp(3/76=1000002000) IOp(3/77=0720008000)IOp(3/78=0810010000)The output file displays the values that are in use:IExCor= 402 DFT=T Ex=B+HF Corr=LYP ExCW=0 ScaHFX=0.200000ScaDFX= 0.800000 0.720000 1.000000 0.810000where the value of ScaHFX is P2, and the sequence of values given for ScaDFX are P4, P3, P6 and P5.ACCURACY CONSIDERATIONSA DFT calculation adds an additional step to each major phase of a Hartree-Fock calculation. This step is a numerical integration of the functional (or various derivatives of the functional). Thus in addition to the sources of numerical error in Hartree-Fock calculations (integral accuracy, SCF convergence, CPHF convergence), the accuracy of DFT calculations also depends on the number of points used in the numerical integration.The “fine” integration grid (corresponding to Integral=FineGrid) is the default in Gaussian 09. This grid greatly enhances calculation accuracy at minimal additional cost. We do not recommend using any smaller grid in production DFT calculations. Note also that it is important to usethe same grid for all calculations where you intend to compare energies (e.g., computing energy differences, heats of formation, and so on).Larger grids are available when needed (e.g. tight geometry optimizations of certain kinds of systems). An alternate grid may be selected by including Integral(Grid=N) in the route section (see the discussion of the Integral keyword for details).AVAILABILITYEnergies, analytic gradients, and analyticfrequencies; ADMP calculations.Third order properties such as hyperpolarizabilities and Raman intensities are not available for functionals for which third derivatives are not implemented: the exchangefunctionals Gill96, P (Perdew86), BRx,PKZB, TPSS, wPBEh and PBE h; the correlation functionals PKZB and TPSS; the hybridfunctionals HSE1PBE and HSE2PBE.RELATED KEYWORDSIOp, Int=Grid, Stable, TD, DenFitEXAMPLESThe energy is reported in DFT calculations in a form similar to that of Hartree-Fock calculations. Here is the energy output froma B3LYP calculation:SCF Done: E(RB+HF-LYP) = -75.3197099428 A.U. after5 cyclesThe item in parentheses following the E denotes the method used to obtain the energy. The output from a BLYP calculation is labeled similarly:SCF Done: E(RB-LYP) = -75.2867073414 A.U. after 5 cyclesQUICK REFERENCE OF AVAILABLE FUNCTIONALS COMBINATION FORMS STAND ALONE FUNCTIONALSEXCHANGEONLY PURE HYBRID EXCHANGE CORRELATIONS VWN HFS VSXC B3LYPXA VWN5XAlpha HCTH B3P86B LYP HFB HCTH93B3PW91PW91PL HCTH147B1B95mPW P86HCTH407mPW1PW91G96PW91tHCTH mPW1LYP PBE B95M06L mPW1PBE O PBE B97D mPW3PBE TPSS TPSS B98 BRx KCIS B971 PKZB BRC B972 wPBEh PKZB PBE1PBE PBEh VP86B1LYPV5LYP O3LYPBHandHLONG RANGE BHandHLYPCORRECTIONBMK LC-M06M06HFM062XtHCTHhybHSEh1PBEHSE2PBEHSEhPBEPBEh1PBEwB97XDwB97wB97XTPSShX3LYP LC-wPBECAM-B3LYP。

间苯三酚法合成TATB产品中副产物的鉴定及性能表征

间苯三酚法合成TATB产品中副产物的鉴定及性能表征

第44卷第"期2 0 2 1年2月火炸药学报Chinese Journal of Explosives &Propellants45D O I:10. 14077/j. issn. 1007-7812.201910019间苯三酚法合成TATB产品中副产物的鉴定及性能表征黄+,刘康,张松,李斌栋,侯静(南京理工大学化工学院,江苏南京210094)摘要:为研究间苯三酚法合成无氯T A TB副产物对T A TB性能的影响,采用柱层析法将T A T B中含有的微量副产物进行了有效分离,结合红外光谱、质谱及核磁对分离得到的副产物进行定性分析;通过差示扫描量热法、热失重法研究TATB及副产物的热分解性能;基于密度泛函数理论计算了T A TB及副产物的部分爆轰性能参数。

结果表明,T A T B中含有的副产物为1-氨基-3,5-二乙氧基-2,4,6-三硝基苯(AETB)和1,3-二氨基-5-乙氧基-2,4,6-三硝基苯(E D A T B)副产物的热分解性能与T A T B间存在一定差异,T A TB及副产物均只有一个热失重过程,但副产物失重过程的起始温度及速率远低于TATB;在相同升温速率下,AETB和EDATB的放热分解峰温分别比T A TB低109.2t和121.4f T A T B仅在较高温度下存在一个放热分解的过程,副产物EDATB和AETB在较低温度下均存在明显的吸热熔化现象,温度继续上升到一定值后逐渐发生放热分解,副产物的热安定性远低于T A T B;由密度泛函理论计算获得副产物的爆热值与T A T B十分接近,但是密度、爆速及爆压值均低于TATB。

关键词:物理化学;T A T B;间苯三酚法;热性能;爆轰性能中图分类号:T|55;O64文献标志码:A 文章编号#007-7812(2021)01-0045-05Identification and Performance Characterization of By-products inTATB Synthesized by Phloroglucinol MethodHUANG Yao,LIU Kang,ZHANG Song,LI Bin-dong,HOU Jing(School of Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)A b s tra c t:To study the effect of by-prodccts on the properties of chlorine-free TATB synthesized by phlocolumn chromatography was used to effectively separate the trace by-prodccts contained in TATB. The by-prodccts were quali­tatively analyzed by FTIR, NMR and MS. Thermal dccomposition properties of TATB and by-prodccts were studied by differen­tial scanning calorimetry and thermogravimetry;Based on the density fucctional theory,some detonation performacce parame­ters of TATB and by-prodccts were calculated. The results show that the by-prodccts in TATB are 1-am 6-trinitrobenzene (AETB) and 1,3-diamino-5-ethoxy- 2,4,6-trinitrobenzene (EDATB). There are some differences betweenthe thermal decomposition properties of by-prodccts and TATB. Both TATB and by-prodccts have only one thermogravimetricprocess, but the initial temperature and rate of the by-prodcct mass loss process are much lower than that of TATB. A t thesame heating rate,the exothermic decomposition peak temperatures of AETB and EDATB are 109. 2f and 121 • 4 f lowerthan those of TATB,respectively. TATB only has one exothermic decomposition process at higher temperatures. EDATB andAETB have obvious endothermic melting phenomena at lower temperatures , and the exothermic decomposition gradually occurswhen the temperature continues to rise to a certain value,and the thermal stability of the by-prodccts is much lower than thatof TATB. The detonation heat values of the by-prodccts calculated by density functional theory (DFT) are very close to that ofTATB , but the values of density , detonation v elocity and detonation pressure are all lower than thos K eyw ords:physical chemistry;TATB;phloroglccinol method;thermal property;detonation performacce收稿日期201910-28; 修回日期2019-12-09基金项目:国学基金(N o.21875109)作者简介:黄瑶(1992-),女,硕士研究生,从事含能材料性能方面的研究。

有机/杂多酸-钆配合物的合成及电化学性质研究

有机/杂多酸-钆配合物的合成及电化学性质研究

有机/杂多酸-钆配合物的合成及电化学性质研究王小玉;李晨阳;尹佳成;蔡东明;丁海林;刘裕堃;王娟【摘要】以2,6-吡啶二羧酸和硅钨酸为配体合成了一种新型的稀土金属配合物,并对其进行了红外光谱、紫外光谱、荧光光谱、热重、电化学等表征。

结果表明,该配合物在196 nm 和253 nm 处具有较强的紫外吸收峰;在624 nm 处有一个很强的荧光发射峰;热稳定性较好;在-0.25~0.2 V(vs .SCE)的电势范围内有一对氧化还原峰,具有良好的电化学活性。

%A novel rare earth metal complex was synthesized using 2,6-pyridinedicarboxylic acid and silico-tungstic acid as ligands,and the prepared complex was characterized by FTIR,UV,fluorescence,thermal gravi-metric and electrochemicalanalysis.Results showed that the complex had strong UV absorption peaks at 196 nm and 253 nm,strong fluorescence emission peak at 624 nm;the complex had good thermal stability and a pair of redox peak in potential range of -0.25~0.2 V(vs.SCE)which showed its good electrochemical activity.【期刊名称】《化学与生物工程》【年(卷),期】2015(000)011【总页数】3页(P28-30)【关键词】多金属氧酸盐;有机/杂多酸-钆配合物;合成;电化学性质【作者】王小玉;李晨阳;尹佳成;蔡东明;丁海林;刘裕堃;王娟【作者单位】江西省科学院应用化学研究所,江西南昌 330029;湖北大学化学化工学院,湖北武汉 430062;湖北大学化学化工学院,湖北武汉 430062;湖北大学化学化工学院,湖北武汉 430062;湖北大学化学化工学院,湖北武汉 430062;湖北大学化学化工学院,湖北武汉 430062;湖北大学化学化工学院,湖北武汉430062【正文语种】中文【中图分类】TQ0020世纪以来,对于稀土金属的研究越来越广泛,特别是在配位化学领域[1-3]。

cp2k检查格式 -回复

cp2k检查格式 -回复

cp2k检查格式-回复CP2K is a computational chemistry software package that is widely used in the field of computational chemistry and materials science. It provides a wide range of functionalities for studying molecular systems and condensed matter. In this article, we will explore the different aspects of CP2K, its usage, and how it can be beneficial in scientific research.1. Introduction to CP2KCP2K stands for "Car-Parrinello-2.0 Toolkit" and is an open-source software package specifically designed for molecular simulations. It is based on density functional theory (DFT) and utilizes pseudopotentials to describe the electronic structure of atoms and molecules. CP2K is capable of performing various simulations, including molecular dynamics, ab initio molecular dynamics, and metadynamics.2. Features and FunctionalitiesCP2K offers a wide range of features and functionalities that make it a powerful tool for computational chemistry research. Some of the notable capabilities of CP2K are as follows:- Efficient implementation of hybrid DFT methods such as the popular B3LYP functional, which allows for accurate calculations of electronic properties.- Inclusion of various dispersion correction methods like D3 and TS to accurately account for van der Waals interactions in molecular systems.- Ability to perform simulations at different levels of theory including Hartree-Fock, semi-empirical methods, and many more. - Support for periodic boundary conditions, which makes CP2K suitable for studying extended systems and surfaces.- Effective treatment of solvation effects through the inclusion of implicit solvent models like COSMO and explicit solvent models like the SPC/E water model.- Implementation of advanced sampling techniques like replica exchange molecular dynamics (REMD) and metadynamics, which allow for exploration of complex energy landscapes.3. Usage and ApplicationsCP2K is widely used by researchers in the field of computational chemistry and materials science. Some of the common applications of CP2K include:- Prediction of molecular structures, energies, and spectroscopic properties of organic and inorganic molecules.- Study of reaction mechanisms and kinetics in complex chemical systems.- Investigation of the electronic properties and energy transfer processes in materials.- Simulation of surface reactions and catalysis.- Exploration of the thermodynamics and stability of materials under different conditions.- Prediction of properties of biomolecules, such as proteins and DNA.4. Benefits and LimitationsCP2K offers several benefits for computational chemistry research. It provides an efficient and reliable framework for performing accurate molecular simulations. The open-source nature of CP2K allows researchers to customize and modify the code to suit their specific needs. Additionally, the extensive documentation and user-friendly interface make it accessible to both experts and beginners in the field.However, like any other software package, CP2K also has certainlimitations. One limitation is the high computational cost associated with some of its advanced simulation methods, which can make it time-consuming for large systems. The steep learning curve associated with the software may also pose a challenge for new users. However, these limitations can be mitigated through proper understanding, optimization, and efficient use of computational resources.5. ConclusionIn conclusion, CP2K is a powerful computational chemistry software package that provides a wide range of functionalities for researchers in the field of computational chemistry and materials science. With its extensive capabilities, it allows for accurate and efficient simulations of molecular systems and condensed matter. Despite some limitations, CP2K continues to be a valuable tool for studying the properties and behaviors of atoms, molecules, and materials. Its open-source nature and active community support make it an excellent choice for those involved in scientific research.。

Density Functional Theory(DFT) Caculation

Density Functional Theory(DFT) Caculation
O-H diatance H-O-H bond angle
109.1°
0.962 Å 104.2°
CCSD(T)/aVTZ
CCSD(T)/aVTZ
7
2016/3/5
Although most DFT functionals predict that the OO structure is more stable than or at least comparable to the Ion structure, the most reliable CCSD(T)/CBS results show that the Ion structure is much more stable by 11.72 kcal/mol than the OO structure The MPW1K and BH&HLYP results for the larger basis sets are closer to the CCSD(T)/CBS results
water monomer cation experimental value B3LYP/6-311++G**
scale factors
ν3 3259
ν1 3213 In the water monomer cation, the strength of O-H bonds is weakened due to the ionization as compared with the neutral water monomer.
10
2016/3/5
The barrier height for the interconversion between the OO and Ion structures of the water dimer cation

Conceptual Density Functional Theory

Conceptual Density Functional Theory
Chem. Rev. 2003, 103, 1793−1873
1793
Conceptual Density Functional Theory
P. Geerlings,*,† F. De Proft,† and W. Langenaeker‡
Eenheid Algemene Chemie, Faculteit Wetenschappen, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium, and Department of Molecular Design and Chemoinformatics, Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium Received April 2, 2002
* Corresponding author (telephone +32.2.629.33.14; fax +32.2.629. 33.17; E-mail pgeerlin@vub.ac.be). † Vrije Universiteit Brussel. ‡ Janssen Pharmaceutica NV.
Contents
I. Introduction: Conceptual vs Fundamental and Computational Aspects of DFT II. Fundamental and Computational Aspects of DFT A. The Basics of DFT: The Hohenberg−Kohn Theorems B. DFT as a Tool for Calculating Atomic and Molecular Properties: The Kohn−Sham Equations C. Electronic Chemical Potential and Electronegativity: Bridging Computational and Conceptual DFT III. DFT-Based Concepts and Principles A. General Scheme: Nalewajski’s Charge Sensitivity Analysis B. Concepts and Their Calculation 1. Electronegativity and the Electronic Chemical Potential 2. Global Hardness and Softness 3. The Electronic Fukui Function, Local Softness, and Softness Kerndness Kernel 5. The Molecular Shape FunctionsSimilarity 6. The Nuclear Fukui Function and Its Derivatives 7. Spin-Polarized Generalizations 8. Solvent Effects 9. Time Evolution of Reactivity Indices C. Principles 1. Sanderson’s Electronegativity Equalization Principle 2. Pearson’s Hard and Soft Acids and Bases Principle 3. The Maximum Hardness Principle IV. Applications A. Atoms and Functional Groups B. Molecular Properties 1. Dipole Moment, Hardness, Softness, and Related Properties 2. Conformation 3. Aromaticity C. Reactivity 1. Introduction 2. Comparison of Intramolecular Reactivity Sequences 1793 1795 1795 1796 1797 1798 1798 1800 1800 1802 1807 1813 1814 1816 1819 1820 1821 1822 1822 1825 1829 1833 1833 1838 1838 1840 1840 1842 1842 1844 V. VI. VII. VIII. IX.

密度泛函理论Density Functional Theory讲座

密度泛函理论Density Functional Theory讲座
Tim Heaton-Burgess
Outline
• Analyzing functionals in DFT through the Perspectives of Fractional Charges and Fractional Spins.
• Band Gaps, Derivative Discontinuity and LUMO
Delocalization Error
Error Increases for systems with fractional number of electrons: Zhang and Yang, JCP 1998
H
+ 2
at the dissociation limit
too low energy for delocalized electrons
Fractional Charges
A large class of problems • Wrong dissociation limit for molecules and ions • Over-binding of charge transfer complex • too low reaction barriers • Overestimation of polarizabilities and hyperpolarizabilities • Overestimation of molecular conductance in molecular electronics • Incorrect long-range behavior of the exchange-correlation potential • Charge-transfer excited states • Band gaps too small • Diels-Alder reactions, highly branched alkanes, dimerization of aluminum complexes

Density-Functional-Theory(DFT)-CaculationPPT课件

Density-Functional-Theory(DFT)-CaculationPPT课件

9
2016/3/5
The Ion structure shows longer O-H distance and shorter O-O distance than the OO structure. The Ion structure has a larger rotational constant A than the OO structure.
13
2016/3/5
conclusion
At the CCSD(T)/CBS level of theory, the Ion structure is much more stable than the OO structure
most DFT calculations with various functionals favor the OO structure the DFT results with MPW1K and BH&HLYP functionals are very close to
CBS(complete basis set)-完全基组 6-311++G** aug-cc-pVDZ(aVDZ) aug-cc-pVTZ(aVTZ) aug-cc-pVQZ(aVQZ)
最小基组 劈裂价键基组 极化基组 弥散基组
高角动量基组
相关一致基组
5
2016/3/5
结果与讨论
the OO structure is much more stable than the Ion structure both structures are compatible the Ion structure is much more stable than the OO structure

ABX3型钙钛矿化合物的带隙调控及磁、光性质的第一性原理研究

ABX3型钙钛矿化合物的带隙调控及磁、光性质的第一性原理研究

博 士 学 位 论 文D O C T O R A L D I S SE R T A T I O N ABX 3型钙钛矿化合物的带隙调控及磁、光性质的第一性原理研究分类号: O 469密 级: 公开 学校代码:10697 学 号:201510099学科名称:凝聚态物理作 者:黄海铭 指导老师:姜振益 教授西北大学学位评定委员会二〇一八年六月First Principles Study of Band Gap Regulation, Magnetic and Optical Properties of ABX3 Perovskite CompoundsA dissertation submitted toNorthwest Universityin partial fulfillment of the requirementsfor the degree of Doctor of Philosophyin PhysicsByHuang Hai-MingSupervisor: Jiang Zhen-Yi ProfessorJune 2018摘要摘要随着社会的高速发展, 人类对能源的需求也日益增长, 传统化石能源的有限性和大量消耗所引起的环境污染及气候变暖等问题, 引发了人们对可持续能源的迫切需求。

2009年,基于甲胺碘铅MAPbI3(MA=CH3NH3+)制备出的钙钛矿太阳能电池引起了研究人员对ABX3型钙钛矿材料的研究热情。

然而,甲胺碘铅中铅元素的毒性和其光响应范围不够宽是制约这类太阳能电池进一步发展的两个关键因素。

为了实现以上两个关键问题的解决。

本文采用基于密度泛函理论的第一性原理计算方法,在研究MAPbI3结构的基础上,通过替位掺杂来寻找无铅型钙钛矿太阳能电池材料,并同时实现对MAPbI3带隙的调控。

本文研究所获得的创造性成果主要有:第一,拉伸应变和压缩应变能够调控MAPbI3的带隙。

对MAPbI3施加拉伸应变,能够增大MAPbI3的带隙,而施加压缩应变后,MAPbI3的带隙将减小。

密度泛函理论

密度泛函理论
1 电荷密度拟合措施

库仑势即可按下式展开
2 电荷密度多极展开措施 (1)
将(1)式和
1 r r'
旳Laplace展开式代入,化简得
总库仑势为
七、近代密度泛函旳显体现式
1 局域密度近似LDA
将密度泛函理论旳K-S措施用于实际计算,必须懂得 或
与 旳泛函关系。这是密度泛函理论旳关键问题,对于一般体
1978年Peukert首先得到含时K-S方程,1984年Runge和Gross 基于含时薛定谔方程,严格导出含时密度泛函理论(TD-DFT)
含时K-S方程
近来单旳近似是绝热局域密度近似(ALDA或TDLDA)
含时密度泛函,都要要求懂得不处于基态时旳互换-有关问题,所以 诸多人致力于致力于这方面旳研究,其中TD-DFT响应理论比较广泛 ,其对低激发态具有很好旳计算构造,误差在0.1-1.0eV。但对高激 发态误差比较大。所以还需进一步旳工作。
无相互作用动能
则 即得Kohn-Sham方程
式中
有效势 称为互换有关势
五、某些化学概念旳明拟定义
1 电负性 1934年Mulliken根据下列推理定义电负性 设有B和D两原子,原子旳第一电离势为I 第一电子亲和能为A
这只是根据某些试验成果归纳出来旳,没有严格定量旳理论论证。
1978年Parr等从密度泛函理论出发定义电负性 (1)
根据K-S措施,设自旋轨道函数基组 {i , , } 满足条件
其中
SDFT.
相对论性密度泛函理论
在重元素原子核紧邻区域电子运动速度不高,相对论效应很明显 。化学变化是与价电子相联络旳,价电子旳运动速度并不高,因 此相对论量子力学旳奠基人Dirac以为在考虑原子和分子旳构造以及 一般化学反应时相对论效应并不主要,这一观点被普遍接受长达四 十年。在20世纪70年代前后,人们发觉这一认识具有片面性,相对 论效应对重元素化合物旳性质具有明显影响。

铀酰离子在羟基化_石英_101_表面的吸附_辜家芳

铀酰离子在羟基化_石英_101_表面的吸附_辜家芳

[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin.2014,30(10),1810-1820OctoberReceived:May 13,2014;Revised:August 21,2014;Published on Web:August 22,2014.∗Corresponding author.Email:qc2008@;Tel:+86-591-22866162.The project was supported by the National Natural Science Foundation of China (10676007)and Scientific Research Foundation of Fujian Provincial Education Department,China (JB14222).国家自然科学基金(10676007)和福建省教育厅科研基金(JB14222)资助项目©Editorial office of Acta Physico-Chimica Sinicadoi:10.3866/PKU.WHXB201408221铀酰离子在羟基化α-石英(101)表面的吸附辜家芳1陈文凯2,*(1福州大学至诚学院化学工程系,福州350002;2福州大学化学系,福州350116)摘要:采用周期性密度泛函理论研究羟基化α-石英(101)面的铀酰离子吸附行为.通过对铀酰离子的水合作用考虑水溶剂对结构的短程溶剂化效应,并通过类导体屏蔽模型(COSMO)考虑水溶剂对结构的远程溶剂化效应.吸附能计算结果和电子结构数据均表明水合铀酰离子吸附构型比氢氧化铀酰吸附构型稳定,并且在液相中两种类型的稳定吸附位均为dia-O s1O s2位.两种形式在电子结构上有很大的差异,主要是由于铀与表面作用后成键强弱程度不同,使5f 轨道宽化和略微红移存在差异.在铀酰离子吸附的基础上利用卤素离子改变铀酰离子配位环境可调整体系的带隙.关键词:α-石英(101)面;铀酰;密度泛函理论;溶剂效应中图分类号:O641Adsorption of the Uranyl Ion on the Hydroxylated α-Quartz (101)SurfaceGU Jia-Fang 1CHEN Wen-Kai 2,*(1Department of Chemical Engineering,Zhicheng College,Fuzhou University,Fuzhou 350002,P .R.China ;2Department of Chemistry,Fuzhou University,Fuzhou 350116,P .R.China )Abstract:Uranyl ion adsorption on the hydroxylated α-quartz (101)surface was investigated by first-principles density functional theory calculations.We explicitly considered the first hydration shell of the uranyl ion for short-range solvent effects and used the conductor-like screening model (COSMO)for long-range solvent effects.Both the adsorption energies and electronic structures of the adsorption system indicated that the bidentate hydrated uranyl species were more stable than bidentate hydroxylated species,and bidentate adsorption of the uranyl ion on the bridge site of dia-O s1O s2was the most stable adsorption model in the aqueous state.The large differences in the electronic structures of the two forms were mainly because of the different degree of bonding between uranium and the surface after adsorption,which makes the 5f orbital narrow and causes a red e of halogen ions in the uranyl coordination environment can adjust the band gap of the uranyl adsorption system.Key Words:α-Quartz (101)surface;Uranyl;Density functional theory;Solvent effect1引言商业核电站给人类带来了很多便利的同时也留下核废料的污染隐患.铀酰是核废料中较为稳定的一种离子,研究铀酰离子在多种矿物质表面的吸附行为有助于对核污染点铀的扩散进行评估.同时也有实验表明铀酰卤化合物可以用于光催化氧化大量的有机和无机化学物质.1将铀酰离子负载在稳定的矿物质基底上不仅可以避免回收铀带来的困难,也能很好地发挥铀酰离子的光催化活性.2-4与铀酰水溶液相比,吸附铀酰离子的石英纳米颗粒有更1810辜家芳等:铀酰离子在羟基化α-石英(101)表面的吸附No.10长的激发态寿命.2,3在光照下,吸附铀酰离子的MCM-41分子筛是一种可以将短链烷烃进行降解的高效多相光催化剂.4有大量的实验对地下水中铀酰离子在一些矿物质表面的吸附行为进行研究,5-19理论上也报道了一些关于铀酰离子在固体表面的吸附研究.20-30批量实验从宏观上通过测量吸附后的溶液里铀减少的数量来研究不同的环境条件对铀吸附的影响.5-8但是这些研究没有对所吸附物的种类和结构给予解析.X射线吸收光谱实验(XAS),其中包括X-射线近边结构吸收光谱(XANES)和扩展X 射线精细结构吸收光谱(EXAFS)的运用有助于直接探测吸附构型的结构和吸附金属的氧化价态的研究.7,9-11然而,当表面吸附的化合物不是单一物质,而是由多种吸附构型混合时,通过光谱实验得到的只能是各种吸附结构的平均结构参数.理论上主要是通过第一性原理密度泛函理论研究铀酰离子在高岭土、20-23α-Al2O3、24,25水合金红石结构的TiO2、26,27水合镍金属28和氢氧化铝等表面的吸附.Glezakou和deJong24计算得到U与α-Al2O3表面直接配位形成的铀酰内层双齿配位结构是最稳定的吸附构型.同时通过铀酰离子吸附,由中性的α-Al2O3表面去掉两个H质子的缺陷表面重新从吸附的水合铀酰离子结构获得H原子,而使得铀酰的两个水分子配体转化为氢氧根配体.铀酰离子倾向于吸附在去质子化的高岭土Al(O)表面,而高岭土的Si(O)表面的铀酰吸附作用比较弱.21,22铀酰离子与水合TiO2(110)表面的O t―H作用形成的吸附构型是最稳定的.26,27铀酰离子在水合Ni(111)表面存在两种吸附模式:一种是通过铀酰的配位水分子与水合的Ni(111)表面形成的外层氢键作用;另一种是铀酰的氧与表面的金属Ni 形成强的Ni―O键.28SiO2又称硅石,在自然界中分布很广,如石英、石英砂等.石英是一种理想的吸附剂,它在许多地质环境中是岩石的主要成分.EXAFS实验数据显示,在pH为3.1和6.2条件下,吸附铀酰离子的无定形二氧化硅表面可以测到垂直铀酰轴的平面存在U―O键.12在弱酸性条件下,铀酰离子可以直接与去质子化的硅醇基成键.12,29,30石英表面的分子动力学模拟了含氢氧根离子和碳酸根离子配体的铀酰在羟基化的α-石英(010)表面的吸附行为.29另外分子动力学也模拟了不同低指数的石英表面吸附UO2(OH)20的研究.铀酰除以离子的形式在地下水中迁移,在自然界也很可能沉淀和吸附在矿物表面而使迁移受限制.研究铀酰离子与表面的吸附作用对于解决环境中核污染物扩散问题具有重要的意义.α-石英是天然界最常见的低温石英,其晶体结构为正六面体.水溶液中α-石英(101)表面易发生羟基化,31,32因此本文以羟基化α-石英(101)表面为底物研究铀酰离子与表面的吸附机制,希望能为核污染处理工作提供具有重要意义的理论指导.本课题组33-35之前采用量子化学方法,研究水溶液中铀酰配合物的物理和化学性质,主要包括考虑溶剂化效应分子的几何结构、电子结构、分子光谱和电子光谱.在了解铀酰簇模型的有关性质基础上,我们拟采用密度泛函理论周期平板模型进一步研究铀酰离子结构在羟基化α-石英(101)表面的吸附构型.本论文对铀酰离子考虑水合分子的短程溶剂化作用,同时采用类导体屏蔽模型(COSMO)36考虑水溶剂对结构的长程溶剂化作用.研究了铀酰离子在羟基化α-石英(101)表面的双齿吸附的几何结构、电子结构以及相应的吸附能,并对获得的稳定吸附结构进行卤素配位修饰,研究该负载表面的电子结构特点.2计算方法和表面模型本文应用MS5.5的Dmol3模块程序37,38进行周期性密度泛函计算.计算应用了广义梯度近似(GGA)和PW91泛函相结合的交换相关势,39,40Si、O、H和卤素原子采用全电子双数值基加极化函数(DNP)基组,对铀原子采用内层60个电子冻芯处理,外层32个电子为价电子的有效核赝势(ECP60MWB)基组.DNP基组相当于高斯的6-311G(d)基组,同时还增加了基组重叠误差(BSSE)效应的考虑.41,42液相下的计算采用类导体屏蔽模型(COSMO)考虑溶剂化效应,水的电介常数为78.54.通过对比研究了气相和液相中铀酰离子在羟基化的α-石英(101)表面的吸附结构,探讨了溶剂化效应对该吸附体系的影响.过渡态搜索采用线性同步转变(LST)与二次同步转变(QST)方法,并选用Fine精度计算.结构优化和过渡态以位移、能量和力的收敛为依据,收敛值分别为2.0×10-2Ha∙nm-1、1.0×10-5Ha和5.0×10-2nm.α-石英具有六角对称,其相应的空间点群为P3221.理论研究以α-石英为基底研究水分子吸附机理.31,43-47实验中在α-石英表面的氧易被水羟基化,并只观察到相邻的单一硅醇基(Si―OH),31,32说明羟基化的α-石英(101)表面通常只存在单一硅醇基(Si―OH).关于羟基化石英表面的理论研究也有相关报1811Acta Phys.-Chim.Sin.2014V ol.30道.Goumans等43采用厚度为18的原子层研究羟基化的石英(001)表面.Bandura等31研究发现优化低表面覆盖度下的羟基化的α-石英(101)表面上取3-5个Si3O6层的结构得到的结构参数相差不大.同样我们在选取羟基化α-石英(101)表面时进行了测算,发现取3个和5个Si3O6层的结构得到的结构参数相差不大.因此本文采用Si36O80H16模型(图1),即取3个Si3O6层厚度的2×2超晶包周期平板模型的结构,并对表层Si原子进行羟基化处理,对底层表面O原子用H封闭.真空层厚度取1.2nm,并放开上面两单元Si12O24层,固定底层原子,对底层表面用H封闭主要是用来维持吸附剂的电中性.UO22+铀酰离子本身带两个正电荷,它倾向形成5配位的结构,48,49研究带正电的铀酰离子团UO22+的吸附工作受到体系总电荷不为零的影响.理论研究发现采用去质子化的硅醇基表面21,22或者吸附不带电荷的分子25可以避免体系带电对计算结果的影响.参考其它理论工作者的铀酰离子吸附模型形式,20-30拟采用铀酰离子与去质子化的表面吸附形成双齿吸附和铀酰氢氧配合物与完整表面形成的双齿吸附的形式进行吸附研究,并对铀酰离子周围增加水分子配位以满足铀酰配合物5配位稳定结构的需要.如图1所示,羟基化表面存在Os1和O s2两种类型的羟基氧(Os),双齿吸附位主要有对角关系的桥位dia-Os1O s2、互相平行的para-O s1O s1和para-O s2O s2桥位以及相邻的距离大小不等的short-Os1O s2和long-O s1O s2桥位.在确定最佳吸附模型上的铀酰离子进行卤素离子修饰,离子的负电荷则通过对底层去质子化来使体系总电荷等于零.3结果与讨论3.1几何结构3.1.1非水合和水合铀酰离子在羟基化α-石英(101)表面的吸附构型为研究溶剂化效应对铀酰离子表面吸附的影响,在真空环境下进行气相结构计算,并用COSMO 模型模拟水环境下的计算,对比研究气相和液相下的吸附结构.比较非水合和水合铀酰离子吸附的目的在于考察水分子的短程溶剂化作用对吸附的影响.气相和液相下非水合和水合铀酰离子吸附构型的结构参数列于表1和表2,其对应吸附结构图见图2.通过对比各计算参数发现铀酰离子双齿吸附在该羟基化表面,并且得到两个U=Oax键的键长相差不到0.005nm(不到U=Oax键键长的3%).铀酰的U=O ax键分裂成两个极为接近的值,与铀酰氧和表面的硅醇之间的氢键作用和溶剂化效应有关.图2中,吸附在para-Os1O s1位上的非水合铀酰离子的U=O ax键长偏长,并且得到弯曲程度大的O=U=O轴,其键角大小为105.2°和104.3°,但该位置上的水合铀酰离子仍然保持5配位双齿吸附结构,O=U=O 轴仅出现稍微弯曲.非水合铀酰离子吸附构型中O=U=O键角大小范围大都出现在160°-172°.通过水合作用得到的吸附结构的键长相对伸长,O=U=O键角大,并且吸附表面上的O s―U―O s键角和O s―O s距离也相对较小.dia-O s1O s2位的O s―O s吸附前距离是0.3476nm(图1).而表面经过水合铀酰离子吸附后,该距离在溶液中缩短了0.0404nm(图2).而在液相下dia-Os1O s2位在吸附非水合铀酰离子后,图1羟基化的α-石英(101)的俯视(a)和侧视(b)结构图Fig.1Structures of top(a)and side(b)views for hydroxylated(101)surface ofα-quartz(a)distance unit in nm1812辜家芳等:铀酰离子在羟基化α-石英(101)表面的吸附No.10O s ―O s 距离缩短了0.07-0.13nm.图2中,当铀酰离子不受水分子直接配位的影响时,能够与表面形成较短较强的U ―O s 键.综上分析,作用在非水合铀酰离子吸附构型上的由类导体屏蔽模型提供的远程溶剂化效应不能代替水分子参与直接配位的短程溶剂化效应.考虑水合作用后的水合铀酰离子吸附构型受到长程溶剂化效应作用后结构变化较小.溶剂化效应缩短了吸附表面上的Si ―O 键,增长了含铀的共价键.理论计算结果得到的水合铀酰吸附构型中U 与水分子形成的U ―O water 键与U ―O s 键的键长不同,正好与实验上在多数吸附铀酰离子的表面上测到的两个U ―O 键的数值一致.12,50表3列出了水合铀酰离子吸附构型与非水合铀酰离子吸附构型以及三个水分子的能量差,用于预测水合铀酰离子吸附构型脱水反应能量大小.由表3可见,脱去水合铀酰的水需要很大的能量,进一步说明了液相下,铀酰离子吸附的短程溶剂化效应不可忽略.铀酰离子在矿物质表面吸附受溶液pH 值、铀酰离子浓度等多方面因素的影响.22,51在中性环境下,表面最可能存在水合铀酰离子吸附构型,而实验上得到U ―Si 距离为0.277和0.308nm,12,50只出现在含铀浓度大于1mg ∙g -1情况下的吸附,其它含量的铀酰离子吸附并不存在短的U ―Si 距离.水合铀酰离子吸附构型中U ―Si 的距离范围为0.3189-0.3841nm.而有文献29,30报道包含羟基的铀酰离子理论吸附得到的U ―Si 的平均距离都超过0.4nm.气相和液相中吸附在para-O s1O s1上的水合铀酰离子吸附构型的U ―Si 距离分别为0.3189和0.3389nm,比较接近铀酰离子吸附的石英表面EXAFS 实验数据得到的0.277和0.308nm.12,50吸附在para-O s1O s1上的非水合铀酰离子的U ―Si 距离与EXAFS 实验数据更接近.含氧配体容易与铀酰离子形成配合物,表1气相和液相(aq)下非水合铀酰离子在羟基化的α-石英(101)表面不同桥位上的吸附构型参数Table 1Structure parameters for adsorptions of bare uranyl ion on different bridge sites of hydroxylated α-quartz (101)surface in gas and aqueous (aq)phasesR :bond length;A :bond angle.O ax :the oxygen atom from uranyl ion;O s :the surface oxygen atom from hydroxylated α-quartz (101)surface.Depronated adsorption sites are used to circumvent a charged unitcell.表2气相和液相下水合铀酰离子在羟基化的α-石英(101)表面不同桥位上的吸附构型参数Table 2Structure parameters for adsorptions of hydrated uranyl ion on different bridge sites of hydroxylated α-quartz1813Acta Phys.-Chim.Sin.2014V ol.30当水合铀酰离子与羟基化的α-石英(101)表面形成U ―O s 键时,铀与表层的Si 原子之间的距离必然拉长,因此理论上很难形成强的U ―Si 键,除非铀酰离子的O =U =O 键在无水状态下发生弯曲使得U ―Si 键易形成(如图2中para-O s1O s1上非水合铀酰离子吸附构型).3.1.2氢氧化铀酰在羟基化α-石英(101)表面的吸附构型图3和表4为优化得到的氢氧化铀酰在羟基化α-石英(101)表面的吸附构型和结构参数.大部分吸附结构保持了5配位结构,并且铀与表面之间的U ―Si 和U ―O s 键明显减弱.吸附结构中U ―OH 键长为0.2135-0.2283nm,U ―O s 和U ―O water 键键长相近.这一构型同样也符合实验上测得的两种U ―O 值.吸附在para-O s1O s1(H,H)(为便于与铀酰和水合铀酰离子吸附构型区分,氢氧化铀酰吸附位后加(H,H),表示吸附位上桥氧的质子)和para-O s2O s2(H,H)的氢氧化铀酰并没有形成最稳定的双齿结构,而倾向与表面硅醇形成氢键作用.长程溶剂化作用同样使U ―O water 发生稍微缩短,并伸长包含铀的各共价键,图2液相下水合和非水合铀酰离子在羟基化的α-石英(101)表面不同桥位上优化后的吸附构型Fig.2Optimized adsorption structures of bare and hydrated uranyl ion on hydroxylated (101)surfaceof α-quartz in aqueous phaseMost elements of the full surface are cut off and shown with only two bridge sites of SiO 4instead.distance unit in nm表3气相和液相下水合铀酰离子吸附构型脱水反应形成非水合铀酰离子吸附构型反应能量Table 3Energies for dehydrating adsorption structuresof hydrated uranyl ion to bare formsathe total energy for dehydrating three water in structure;b the averageenergy for dehydrating one water in structure1814辜家芳等:铀酰离子在羟基化α-石英(101)表面的吸附No.10因此液相中含铀体系的计算也不能忽略长程溶剂化作用.3.2α-石英(101)表面质子转移的可能性水合铀酰离子和氢氧化铀酰在α-石英(101)表面的吸附构型属于同分异构,两结构有可能通过质子转移互相转化.通过Complete LST/QST 过渡态搜索氢氧化铀酰吸附构型和水合铀酰离子吸附构型之间的过渡态,并将结果显示在图4中.研究发现氢氧化铀酰的氢氧离子配位从相邻的表面Si ―OH 上获得质子形成水合铀酰吸附构型是一个能垒低的放热反应.随着反应的进行,表面的SiO ―H 键被拉长,铀酰的U =O 键缩短.通过质子转移,铀酰与表面的作用增强.在para-O s1O s1上的质子转移是一个能垒仅为71.76kJ ∙mol -1的吸热过程.因此氢氧化铀酰在α-石英(101)表面的吸附构型很可能转化为水合铀酰离子在表面的吸附构型.羟基化α-石英(101)表面上硅醇间的H 键比较弱,表面去质子很可能在铀酰吸附的过程发生.3.3铀酰吸附能计算吸附能定义为反应前后体系总能量的变化,其符号和大小可以表示发生反应的可能性和程度.吸附能为正值说明该吸附构型的形成属于吸热反应,不易形成,反之吸附能为负值说明吸附构型的形成属于放热反应,较易形成.一般吸附能绝对值大于-40kJ ∙mol -1为化学吸附,小于-40kJ ∙mol -1则为物理吸附.反应式如下:S ur (OH)2+UO 2(OH)2(H 2O)3→S ur (O)2-UO 2(H 2O)3+2H 2O (1)S ur (OH)2+UO 2(OH)2(H 2O)3→S ur (OH)2-UO 2(OH)2(H 2O)+2H 2O (2)其中S ur 表示α-石英表面.反应(1)是吸附物质的氢氧铀酰配合物的氢氧离子配体得到表面的质子,并在图3液相下氢氧化铀酰在羟基化α-石英(101)表面的吸附构型Fig.3Optimized adsorption structures of hydroxylateduranyl on hydroxylated (101)surface ofα-quartz in aqueous phaseMost elements of the full surface are cut off and show with only two bridge sites of SiO 4instead.distance unit in nm表4优化得到的氢氧化铀酰在羟基化α-石英(101)表面吸附构型的结构参数1815Acta Phys.-Chim.Sin.2014V ol.30表面形成水合铀酰离子吸附构型.反应(2)是氢氧铀酰配合物失去两个水分子后与α-石英(101)表面直接作用形成氢氧化铀酰吸附构型.表5中吸附能的大小表明水合铀酰离子吸附构型比氢氧化铀酰吸附构型稳定,并且在液相中两种类型的稳定吸附位均为dia-O s1O s2位.如表5所示,气液两相中,稳定吸附位dia-O s1O s2位上的吸附能大小相差不大,说明溶剂化效应对该稳定吸附位的吸附能大小影响较小且均为化学吸附.其它吸附位的吸附能受溶剂化作用影响明显较大,水溶液的出现会使得大多数的吸附构型由化学吸附转为吸附能小于-40kJ ∙mol -1物理吸附.氢氧化铀酰在short-O s1O s2(H,H)和para-O s2O s2(H,H)位的吸附能出现正值和数值较小的负值,说明这两种吸附发生的可能性很小,更倾向于解离,也进一步表明α-石英(101)表面质子转移的可能性很大,氢氧化铀酰的氢氧离子配位倾向于从相图4液相下羟基化α-石英(101)表面质子转移路径的能量曲线Fig.4Energy profiles for proton transferring mechanism at hydroxylated (101)surface of α-quartz in aqueous phaseAll energies are given in kJ ∙mol -1and the distances are innm.表5气相和液相下水合铀酰离子和氢氧化铀酰吸附能(E a )Table 5Adsorption energies (E a )for hydrated andhydroxylated uranyl surface species1816辜家芳等:铀酰离子在羟基化α-石英(101)表面的吸附No.10邻的表面Si―OH上获得质子形成水合铀酰离子吸附构型.3.4电子结构性质Mulliken电荷布居和态密度分析对理解和掌握铀酰吸附机理具有重要的作用.表6给出铀酰吸附前后构型的Mulliken电荷布居.吸附后,铀的正电荷数目和表面氧(Os1和O s2)的负电荷数目都增加了.这说明发生吸附时铀失电子,与铀成键的其它原子得到电子而羟基化α-石英(101)表面主要通过质子转移得到较多的电子.图5中,铀酰吸附质的带隙很小,而作为绝缘体的石英表面带隙很大.峰位从-10到2eV主要对应于羟基化石英表面的2p轨道.铀酰吸附后,铀5f轨道出现在2到5eV位置.此时体系的能带带隙发生不同的变化.羟基化石英表面得到电子,吸收峰向低能级位置移动.在dia-Os1O s2和short-O s1O s2上的水合铀酰离子吸附构型带隙最小,为1.5eV左右.而氢氧化铀酰吸附构型的带隙普遍比较大.而带隙的大小主要与铀的5f轨道出现的位置有关.当铀失去电表6液相下羟基化α-石英(101)表面,氢氧化铀酰簇和表面双齿吸附构型的Mulliken电荷布居(单位为e)分析Table6Mulliken charge population(unit in e)of the hydroxylatedα-quartz(101)surface,uranyl dihydroxide cluster,图5部分吸附构型液相的分态密度(PDOS)图Fig.5Partial density of state(PDOS)for some adsorptionmodels in aqueous phaseData of band gap(in eV)are displayed.1817Acta Phys.-Chim.Sin.2014V ol.30子,将有更多的5f 空轨道出现在2到5eV 能级位置,进而使得体系的带隙减小.图5中,与吸附前相比dia-O s1O s2和short-O s1O s2吸附位上的铀酰的f 轨道峰出现略微红移和宽化,底物p 轨道峰有明显红移说明U 与底物有明显的成键作用,该位置的吸附作用比较强.而dia-O s1O s2(H,H)和short-O s1O s2(H,H)吸附位上的f 轨道峰变化不明显,说明该位置上的吸附作用比较弱,铀与表面的成键比较弱.态密度分析与前面的吸附能分析结论一致,从电子结构带隙的变化进一步解释了吸附能大小的原由.带隙变化对多相催化剂的性能提高有重要的意义,实验上已证实了表面进行铀酰吸附的体系具有强的光催化性能.2-4铀酰在羟基化石英表面稳定吸附后,从电子结构上看,羟基化石英表面的占据轨道和铀的空f 轨道之间的能级差减小了,即带隙减小,可以有效地提高铀酰的光催化性质.而铀酰的光谱可以通过配位键来调节,34因此铀酰羟基化石英表面同样也可以通过改变铀配位键种类来调控带隙,进而影响铀酰离子的光催化性质.3.5液相中dia-O s1O s2吸附的铀酰卤素配位修饰上述研究发现dia-O s1O s2位是铀酰离子吸附的最稳定化学吸附位.因此取该吸附位进一步研究铀酰离子吸附后的羟基化石英表面体系带隙受配位的影响情况.有孤对电子的卤素离子作为铀酰配体会使得铀酰光谱性质发生不同的变化,通过卤素配位修饰同样可能会对铀酰离子吸附后的石英表面体系的电子结构产生影响.表7中,铀与卤素成键键长分别为U ―F 键约为0.22nm,U ―Cl 键约为0.29nm,U ―Br 键约为0.30nm.S ur (O)2-UO 2Cl 3中有两个U ―Cl 键长为0.3127和0.3172nm,说明结构中的U ―Cl 受配位竞争影响,键能减小.图6为卤素修饰后的dia-O s1O s2铀酰的DOS 图.显然当铀酰的配位发生变化,体系的带隙同样发生不同程度的变化,Cl -和Br -数目增多使体系带隙有减小趋势.而F -数目增多却使得带隙变宽.由此可见铀酰离子吸附体系的带隙可以通过配位键的类型来调节,实验上可以采用此方法来提高铀酰离子的光催化性质.4结论通过周期性密度泛函理论研究了铀酰离子在羟基化α-石英(101)表面的吸附行为.研究发现,液相下铀酰吸附受溶剂化效应的影响很大,结构和吸附能均受到溶剂短程作用和长程作用不同程度的影响.吸附能计算结果和电子结构数据均表明水合表7液相中dia-O s1O s2上吸附模型S ur (O)2-UO 2X n (H 2O)3-n (X=F,Cl,Br;n =1-3)的U ―X 键长Table 7U ―X bond lengths of adsorption models S ur (O)2-UO 2X n (H 2O)3-n (X=F,Cl,Br;n =1-3)on dia-O s1O s2site in aqueousphaseS ur :hydroxylated (101)α-quartzsurface图6液相中dia-O s1O s2上吸附模型S ur (O)2-UO 2X n (H 2O)3-n (X=F,Cl,Br;n =1-3)的DOSsFig.6Density of states (DOSs)for adsorption models S ur (O)2-UO 2X n (H 2O)3-n (X=F,Cl,Br;n =1-3)on dia-O s1O s2inaqueous phaseData of band gap (in eV)are displayed.1818辜家芳等:铀酰离子在羟基化α-石英(101)表面的吸附No.10铀酰离子吸附构型比氢氧化铀酰吸附构型稳定,并且在液相中两种类型的稳定吸附位均为dia-Os1O s2位.当水合铀酰离子与羟基化的α-石英(101)表面形成U―Os键后,理论上很难再形成强的U―Si键,除非铀酰的O=U=O键在无水状态下发生弯曲使得U―Si键易形成(如图2中para-O s1O s1上非水合铀酰离子吸附构型).通过卤素配位修饰同样对铀酰离子吸附后的石英表面体系的电子结构产生很大的影响.铀的5f轨道对带隙的调整有重要的作用,铀酰离子吸附体系的带隙可以通过配位键的类型来调节,实验上可以采用此方法来提高铀酰离子的光催化性质.References(1)Sandhu,S.S.;Kohli,K.B.;Brar,A.S.Inorg.Chem.1984,23,3609.doi:10.1021/ic00190a036(2)Nieweg,J.A.;Lemma,K.;Trewyn,B.G.;Lin,V.S.Y.;Bakac,A.Inorg.Chem.2005,44,5641.doi:10.1021/ic050130e(3)Wheeler,J.;Thomas,J.K.J.Phys.Chem.1984,88,750.(4)Krishna,V.;Kamble,V.S.;Gupta,N.M.;Selvam,P.J.Phys.Chem.C2008,112,15832.doi:10.1021/jp802779e(5)Stewart,B.D.;Mayes,M.A.;Fendorf,S.Environ.Sci.Technol.2010,44,928.doi:10.1021/es902194x(6)Tang,Y.;Reeder,R.J.Environ.Sci.Technol.2009,43,4446.doi:10.1021/es802369m(7)Tang,Y.;McDonald,J.;Reeder,R.J.Environ.Sci.Technol.2009,43,4452.doi:10.1021/es802370d(8)Zhang,H.X.;Xie,Y.X.;Tao,Z.Y.Colloids.Surf.A2005,252,1.doi:10.1016/j.colsurfa.2004.10.005(9)Singer,D.M.;Maher,K.;Brown,G.E.,Jr.Geochim.Cosmochim.Acta2009,73,5989.doi:10.1016/j.gca.2009.07.002(10)Greathouse,J.A.;Cygan,R.T.Environ.Sci.Technol.2006,40,3865.doi:10.1021/es052522q(11)Froideval,A.;Del Nero,M.;Gaillard,C.;Barillon,R.;Rossini,I.;Hazemann,J.L.Geochim.Cosmochim.Ac.2006,70,5270.doi:10.1016/j.gca.2006.08.027(12)Sylwester,E.R.;Hudson,E.A.;Allen,P.G.Geochim.Cosmochim.Ac.2000,64,2431.doi:10.1016/S0016-7037(00)00376-8(13)Lefèvre,G.;Noinville,S.;Fédoroff,M.J.Colloid.Interf.Sci.2006,296,608.doi:10.1016/j.jcis.2005.09.016(14)Chanda,M.;Rempel,G.L.React.Polym.1989,11,71.doi:10.1016/0923-1137(89)90084-5(15)Comarmond,M.J.;Payne,T.E.;Harrison,J.J.;Thiruvoth,S.;Wong,H.K.;Aughterson,R.D.;Lumpkin,G.R.;Müller,K.;Foerstendorf,H.Environ.Sci.Technol.2011,45,5536.doi:10.1021/es201046x (16)Drisko,G.L.;Chee Kimling,M.;Scales,N.;Ide,A.;Sizgek,E.;Caruso,R.A.;Luca,ngmuir2010,26,17581.doi:10.1021/ la103177h(17)Vandenborre,J.;Drot,R.;Simoni,E.Inorg.Chem.2007,46,1291.doi:10.1021/ic061783d(18)Dossot,M.;Cremel,S.;Vandenborre,J.;Grausem,J.;Humbert,B.;Drot,R.;Simoni,ngmuir2005,22,140.(19)Ordoñez-Regil,E.;Drot,R.;Simoni,E.;Ehrhardt,J.J.Langmuir2002,18,7977.doi:10.1021/la025674x(20)Kremleva,A.;Krüger,S.;Rösch,N.Geochim.Cosmochim.Ac.2011,75,706.doi:10.1016/j.gca.2010.10.019(21)Martorell,B.;Kremleva,A.;Krüger,S.;Rösch,N.J.Phys.Chem.C2010,114,13287.doi:10.1021/jp101300w(22)Kremleva,A.;Krüger,S.;Rösch,ngmuir2008,24,9515.doi:10.1021/la801278j(23)Payne,T.E.;Davis,J.A.;Lumpkin,G.R.;Chisari,R.;Waite,T.D.Appl.Clay.Sci.2004,26,151.doi:10.1016/j.clay.2003.08.013(24)Glezakou,V.A.;deJong,W.A.J.Phys.Chem.A2011,115,1257.(25)Moskaleva,L.V.;Nasluzov,V.A.;Rösch,ngmuir2006,22,2141.doi:10.1021/la052973o(26)Perron,H.;Roques,J.R.m.;Domain,C.;Drot,R.;Simoni,E.;Catalette,H.Inorg.Chem.2008,47,10991.doi:10.1021/ic801246k(27)Perron,H.;Domain,C.;Roques,J.;Drot,R.;Simoni,E.;Catalette,H.Inorg.Chem.2006,45,6568.doi:10.1021/ic0603914(28)Levesque,M.;Roques,J.;Domain,C.;Perron,H.;Veilly,E.;Simoni,E.;Catalette,H.Surf.Sci.2008,602,3331.doi:10.1016/j.susc.2008.09.006(29)Greathouse,J.A.;O'Brien,R.J.;Bemis,G.;Pabalan,R.T.J.Phys.Chem.B2002,106,1646.(30)Boily,J.F.;Rosso,K.M.Phys.Chem.Chem.Phys.2011,13,7845.doi:10.1039/c0cp01406k(31)Bandura,A.V.;Kubicki,J.D.;Sofo,J.O.J.Phys.Chem.C2011,115,5756.doi:10.1021/jp1106636(32)Abbasi,A.;Nadimi,E.;Plänitz,P.;Radehaus,C.Surf.Sci.2009,603,2502.doi:10.1016/j.susc.2009.06.004(33)Gu,J.F.;Lu,C.H.;Chen,W.K.;Xu,Y.;Zheng,J.D.ActaPhys.-Chim.Sin.2009,25,655.[辜家芳,陆春海,陈文凯,许莹,郑金德.物理化学学报,2009,25,655.]doi:10.3866/PKU.WHXB20090419(34)Gu,J.F.;Man,M.L.;Lu,C.H.;Chen,W.K.Chin.J.Inorg.Chem.2012,7,1324.[辜家芳,满梅玲,陆春海,陈文凯.无机化学学报,2012,7,1324.](35)Gu,J.F.;Lu,C.H.;Chen,W.K.;Chen,Y.;Xu,K.;Huang,X.;Zheng,Y.F.Acta Phys.-Chim.Sin.2012,28,792.[辜家芳,陆春海,陈文凯,陈勇,许可,黄昕,章永凡.物理化学学报,2012,28,792.]doi:10.3866/PKU.WHXB201201171 (36)Bargar,J.R.;Reitmeyer,R.;Lenhart,J.J.;Davis,J.A.1819。

density functional theory

density functional theory

density functional theory密度泛函理论(Density Functional Theory, DFT)的基本原理。

DFT是一个求解多电子体系的重要方法,在计算材料学和计算化学中有着广泛的应用。

1 DFT计算简介DFT理论,是一种从头算(ab initio)理论,意思是只是纯粹从量子力学的基本原理出发来对多电子体系进行运算,而不包含任何经验常数。

但是为了与其他的量子化学从头算方法区分,人们通常把基于密度泛函理论的计算叫做第一性原理(first-principles)计算。

正如“密度泛函”这个词所揭示的,与传统的量子理论将波函数作为体系的基本物理量不同,DFT是一个通过计算电子数密度研究多电子体系的方法。

具体到操作中,我们首先通过两个基本定理,把求解多电子总体波函数的问题简化为求解空间电子数密度的问题,再通过一些近似,把难以解决的包含电子-电子相互作用的问题简化成无相互作用的问题,再将所有误差单独放进一项中,之后再对这个误差进行分析,最后求出电子数密度,进而得出系统的种种性质。

2 基本概念这一节旨在对一些理解DFT所必须的量子力学概念进行回顾:•波函数:在量子力学中,求解薛定谔方程波函数完备地描述了这个系统的状态,可以类比为经典力学中求得的牛顿方程的解。

•算符:对变量施加的数学运算(比如乘上一个数,对它求导等等)。

量子力学中,可观测量(比如位置、动量)由一类特殊的算符,即厄米算符表示。

•基态:一个系统最稳定的状态,或者说能量最低的状态。

3 从量子力学到凝聚态物理理论化学实际上就是物理。

但是,必须强调的是,这种解释只是原则上的。

我们已经讨论过了解下棋规则与擅长下棋之间的差别。

也就是说,我们可能知道有关的规则,但是下得不很好。

我们知道,精确地预言某个化学反应中会出现什么情况是十分困难的;然而,理论化学的最深刻部分必定会归结到量子力学。

——理查德·费曼,费曼物理学讲义,1962这一节中,我们从凝聚态物理和材料学的实际需求出发,探讨量子力学的基本原理如何应用于多原子体系的计算,进而指出引出密度泛函理论的讨论对象——电荷数密度的必要性。

化学专业英语摘要翻译6篇

化学专业英语摘要翻译6篇

Asymmetric C(sp)-C(sp2) bond formation to give enantiomerically enriched1,3-butadienyl-2-carbinols occurred through a homoallenylboration reaction between a 2,3-dienylboronic ester and aldehydes under the catalysis of a chiral phosphoric acid (CPA). A diverse range of enantiomerically enriched butadiene-substituted secondary alcohols with aryl,heterocyclic, and aliphatic substituents were synthesized in very high yield with high enantioselectivity. Preliminary density functional theory (DFT) calculations suggest that the reaction proceeds via a cyclic six-membered chairlike transition state with essential hydrogen-bond activation in the allenereagent.The catalytic reaction was amenable to the gram-scale synthesis of a chiral alkylbutadienyl adduct, which was converted into an interesting optically pure compound bearing a benzo-fused spirocycliccyclopentenone framework.在手性磷酸(CPA)催化剂条件下,2,3-硼酸酯和醛通过反应生成了富对映体的1,3-丁二烯-2-甲醇,这里面含有不对称的碳(sp杂化)碳(sp2杂化)键。

Be基超硬材料的第一性原理研究

Be基超硬材料的第一性原理研究

Be基超硬材料的第一性原理研究中文摘要超硬材料在工业上有很多应用,比如切割抛光工具,表面涂层等等。

这些年来,虽然对于超硬材料方面有很多实验和理论上的研究,但是金刚石仍然是所有材料中硬度最大的。

Be具有很大的价电子密度,与其他轻元素之间形成的化合物应该可以表现出超硬,但是由于Be有毒,且在合成化合物的过程中可能会用到高压设备,在研究中一直被忽略。

第一性原理在材料计算这个领域己经取得了很大的进展,目前大型高速电子计算机的应用,使得此理论研究的优越性越来越突出,CASTEP是Materials Studio 的模块之一,它利用密度泛函理论平面波鹰势的第一性原理方法来研究材料的性质。

本文主要利用CASTEP模块对BeZC, BeZB, Be3N2, BeCN:这四种结构进行计算研究,分析了它们的电子性质和机械性质,并选出其中机械性能最好的BeCN:来做压力下的物性分析,主要得到的结果有:一、在四种化合物中,除了存在金属键的BeZB,其它三种结构都为离子键和共价键共存的价键形式。

因为弹性性质和硬度与电子结构有很大的关系,所以共价键最强的BeCN:体积模量(304 GPa)和硬度(50 GPa)最大。

二、对BeCN:这种结构作了压力下的物性分析发现,外加压强会使整个结构体积下降、总能量升高、电子出现强的非局域性和发生更多的价键重叠和轨道杂化现象。

利用弹性模量推导热力学量得到:在未加载外压的情况下,德拜温度值为1408 K,在加载外压的情况下,德拜温度大小随压强的增加而增大。

关键词:超硬材料、Be、第一性原理计算、电子性质、机械性质、德拜温度ABSTRACTSuperhard materials are used in many applications, from cutting and polishing tools to wear-resistant coatings. Diamond remains the hardest known material, despite years of synthetic and theoretical efforts to improve upon it. Beryllium in combination with other light elements could have exciting properties, because of its high valence electron density. However, for it is toxic and may require specialized high-pressure equipment, beryllium has been neglected.First-principles obtained higher achievement in the material calculation field.Now the using of large and high-speed electronic computers makes the advantage ofthe theory research more and more outstanding. CASTEP is a state of the quantum mechanics based program designed specifically for solid state material science. It employs the Density Functional Theory (DFT) plane-wave pseudo potential method which allows you to perform fist-principles quantum mechanices calculations that explores the properties of crystals and surfaces in materials.This dissertation mainly uses the module CASTEP from the software Material Studio to calculate the electronic and mechanical properties of BeZC} BeZB,Be3N2} BeCN2, then select BeCN2, the hardest one, to do some research under pressure, the main results obtained:First, among the four compounds, in addition to BeZB which has the existence of the metal bond, the other three structures have both ionic bond and covalent bond. Because elastic properties and hardness has a great relationship with electronic structure, BeCN2 with the stronger covalent bond has higher bulk modulus (304GPa)and hardness (SOGPa).Second, in the analysis of BeCN2 under pressure, pressure reduces the volume of the whole structure, increases the total energy. Under the conditions of load pressure, there occurs more non-locality, covalent bond overlap and the phenomenon of hybrid orbital on electron. Further, thermodynamic quantity is derived by elastic properties. The Debye temperature without load pressure is in value of about 1408K, and it increases with increasing load pressure.Keywords: Superhard material, Be, First-principles, electronic properties, mechanical properties, Debye temperature目录中文摘要.........................................................................................................................工ABSTRACT...................................................................................................................工工第一章前言. (1)1.1超硬材料概况 (1)︸、︶1超硬材料的发展沿革2超硬材料的工业应用1.2第一性原理在新型超硬材料中的应用 (5)1.3 Be与Be基轻元素化合物 (7)1.3.1 Be (7)1.3.2 Be基轻元素化合物 (7)1.4本文的主要内容 (8)第二章计算方法 (10)2.1密度泛函理论 (10)2.1.1 Thomas-Fermi模型和Hohenberg-kohn定理 (10)2.1.2 Kohn-Sham方程 (11)2.1.3交换关联泛函 (13)2.2 CASTEP模块 (15)2.2.1模块简介 (15)2.2.2模块功能 (16)2.2.3模块的计算过程 (16)2.3本章小结 (17)第三章Be与轻元素之间化合物的第一性原理研究 (18)3.1结构和计算参量 (18)3 .2结构与讨论 (20)3.2.1晶格常数 (20)3.2.2能态结构 (20)3.2.3电子态密度 (22)3.2.4弹性性质 (25)3.2.5硬度 (28)3.3本章小结 (30)第四章高压下BeCN2的物性变化 (31)4.1计算方法和参量 (31)4.2高压下BeCN2结构的变化 (31)4.3高压下BeCN2电子性质的变化 (33)4.4高压下BeCN2弹性性质的变化 (36)4.5高压下BeCN2热力学性质的变化 (37)4.5.1德拜模型 (37)4.5.2机械性质与热力学性质的关联 (38)4.6本章小结 (40)第五章总结 (42)参考文献 (43)攻读硕士学位期间发表的论文 (47)致谢 (48)第一章前言1.1超硬材料概况1.1.1超硬材料的发展沿革超硬材料在现代科学和工程技术领域一直发挥着巨大作用。

密度泛函理论DFT

密度泛函理论DFT

前两个问题由Kohn和Sham(沈吕九)解决:
� ρ (r ) =
N

i
� ψ i (r )
2
N
T [ ρ ] → Ts [ ρ ] =

i
� � � 2 ∫ ψ ( r ) ( −∇ )ψ i ( r ) dr
* i
第三个问题,采用局域密度近似( LDA)得到。 1.4 Kohn-Sham方程 对能量泛函对密度函数求变分:
可以得到: 哈特利-福克方程
2 ⎡ 2 ϕi ' � �⎤ � ⎢ −∇ + V ( r ) + ∑ ∫ � � dri ' ⎥ ϕi ( r ) ri − ri ' ⎥ i '≠ i ⎢ ⎣ ⎦ 交换相互作用项 � * � ⎡ ϕi ' ( ri ' ) ϕi ( ri ' ) � ⎤ � � −⎢ ∑ ∫ dri ' ⎥ ϕi ' ( r ) = Eiϕi ( r ) � � ri − ri ' ⎢ ⎥ ⎣ i '( ≠ i ) , ⎦
= φ ( q1 , q2 ,⋯, qN )
� ϕ1 ( q1 ) � 1 ϕ 1 ( q2 ) ⋮ N! � ϕ1 ( q N )
φ=
qi已包含位置ri和自旋 � � ϕ 2 ( q1 ) ⋯ ϕ N ( q1 ) � � ϕ 2 ( q2 ) ⋯ ϕ N ( q2 ) ⋮ ⋱ ⋮ � � ϕ 2 ( q N ) ⋯ ϕ N ( qN )
� � 由粒子数不变的条件推出 ∫ δρ ( r ) dr = 0
� � � ρ ( r )⎤ ρ ( r )⎤ ρ ( r ' ) � δ Exc ⎡ � δT ⎡ ⎣ ⎦ ⎣ ⎦=µ v(r ) + + ∫ � � dr '+ � � δρ ( r ) r −r ' δρ ( r ) 有化学势的意义

density functional theory 书

density functional theory 书

density functional theory 书密度泛函理论(Density Functional Theory,DFT)是一种计算材料的电子结构和性质的理论工具,被广泛应用于固体物理、表面科学、纳米科学等领域。

在材料科学研究中,DFT已经成为一种强大的工具,可以帮助科学家预测材料的性质,设计新材料,甚至优化材料的性能。

本文将介绍DFT的基本原理和应用,并探讨其在材料科学领域的重要性。

DFT的基本原理是基于密度泛函的近似,通过求解电子的波函数和总能量来描述材料的电子结构。

在DFT中,材料中的电子被视为一个电子密度的泛函,而不是单个电子。

通过最小化总能量函数,可以获得材料的基态结构和性质,如电子能带结构、态密度、原子间相互作用等。

这种基于电子密度的方法,提供了一种简单而有效的描述材料的方式,相对于传统的量子力学方法,DFT更适用于大型和复杂系统的计算。

在材料科学领域,DFT的应用非常广泛。

例如,科学家可以使用DFT来研究新型材料的电子结构和性质,如半导体、金属、氧化物等。

通过计算材料的电子能带结构和态密度,可以预测材料的导电性、光学性质、磁性等。

此外,DFT还可以帮助科学家优化材料的晶格结构、表面形貌和界面性质,从而设计出具有特定功能的材料,如光催化剂、电池材料、传感器等。

除了材料的电子结构和性质,DFT还可以用于模拟材料的动力学过程,如分子动力学模拟、反应动力学等。

通过结合DFT和分子动力学方法,科学家可以研究材料的热力学和动力学性质,如材料的热膨胀系数、热导率、弹性模量等。

这些信息对于材料的设计和工程应用非常重要,可以帮助科学家理解材料的性能和行为。

总的来说,DFT在材料科学领域扮演着至关重要的角色,为科学家提供了一种强大的工具来研究材料的结构和性质。

随着计算机技术的不断发展和DFT方法的不断改进,我们相信DFT将继续在材料科学领域发挥重要作用,为人类社会的发展和进步做出更大的贡献。

dft计算有机反应机理

dft计算有机反应机理

dft计算有机反应机理全文共四篇示例,供读者参考第一篇示例:在有机反应机理的研究中,DFT计算的应用主要有以下几个方面:DFT计算可以帮助我们确定反应途径。

有机反应通常涉及多个中间体和过渡态,而这些中间体和过渡态的结构对反应的速率和选择性有着重要的影响。

通过DFT计算,我们可以计算这些中间体和过渡态的结构和能量,从而确定反应的整个过程。

这对于预测反应的速率和选择性非常重要。

DFT计算可以帮助我们优化反应条件。

有机合成中常常会涉及到多个底物和反应条件,而不同的反应条件可能会导致不同的反应途径。

通过DFT计算,我们可以计算不同反应条件下的活化能和反应能,从而优化反应条件,提高反应的效率。

DFT计算还可以帮助我们设计新的催化剂。

有机反应通常需要使用催化剂来促进反应的进行,而催化剂的设计对于反应的效率和选择性至关重要。

通过DFT计算,我们可以预测催化剂的活性和选择性,从而设计新的高效催化剂,促进有机反应的发展。

DFT计算还可以帮助我们研究反应的选择性。

有机反应中的选择性往往是一个重要的问题,如何控制底物的选择性是有机合成的一个核心挑战。

通过DFT计算,我们可以计算不同反应途径的能量和选择性,从而深入研究反应的选择性规律,指导我们设计具有特定选择性的有机反应。

DFT计算在有机反应机理研究中发挥着越来越重要的作用。

通过DFT计算,我们可以揭示有机反应的机理,优化反应条件,设计新的催化剂,研究反应的选择性,加速新化合物的发现。

随着计算化学技术的不断发展,DFT计算将为有机合成化学的研究带来更多的突破与创新。

第二篇示例:随着有机化学领域的不断发展,人们对有机反应机理的研究变得越来越重要。

有机反应机理的研究可以帮助我们更好地理解有机化合物之间的相互作用以及反应过程中的变化。

密度泛函理论(Density Functional Theory,DFT)是一种常用的计算方法,可以用来研究有机反应的机理。

DFT 是一种基于量子力学的计算手段,它可以用来计算分子结构、能量、振动频率等参数。

密度泛函理论

密度泛函理论

r r r 2 r 2 P r1, r2 1 r1 1 r2
Second Semester
Academic Year 2009 - 2010
maurizio casarin
Chimica Computazionale
QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.
is a very complex object including more information than we need!
Second Semester Academic Year 2009 - 2010 maurizio casarin
Chimica Computazionale
QuickTime?and a TIFF (LZW) decompressor are needed to see this picture.
Wavefunctions
Electron Density
Hartree-Fock
DFT
MP2-CI
TD-DFT
The HF equations have to be solved iteratively because VHF depends upon solutions (the orbitals). In practice, one adopts the LCAO scheme, where the orbitals are expressed in terms of N basis functions, thus obtaining matricial equations depending upon N4 bielectron integrals.

自由基和正碳离子结构方面的异同

自由基和正碳离子结构方面的异同

自由基和正碳离子结构方面的异同刘俊;龙军;贺振富【摘要】自由基机理和正碳离子机理是烃类分子发生裂化时的主要机理.通过量子化学密度泛函(DFT)的计算方法,研究了按这2种裂化机理进行的反应所得中间产物自由基和正碳离子的结构与特性,从而解释它们均易发生β断裂的原因,并对两者的反应条件进行了比较.%Free radical mechanism and the carbenium ion mechanism are the two main mechanisms of hydrocarbon molecules cracking. The structures of the reaction intermediates, free radical and carbenium ion, obtained according to the two cracking mechanisms were studied by density functional theory(DFT). The reasons that the β-scission reaction can easily occur in these two kinds of reaction mechanisms were researched.【期刊名称】《石油学报(石油加工)》【年(卷),期】2011(027)002【总页数】7页(P168-174)【关键词】自由基;正碳离子;β断裂;键离解能(BDE);密度泛函(DFT)【作者】刘俊;龙军;贺振富【作者单位】中国石化石油化工科学研究院,北京,100083;中国石化石油化工科学研究院,北京,100083;中国石化石油化工科学研究院,北京,100083【正文语种】中文【中图分类】O639;TE624.9Thermal cracking and catalytic cracking are two very important processes of oil refining industry. FCC(Fluid catalytic cracking)has a decisive role in the oil refining industry.Thermal cracking is one of the important oil processing technologies,visbreaking and delayed coking all belong to the thermal cracking.FCC is always the center of the oil processing technology.With the FCC technology the heavy oil can be turned to gasoline and diesel oil,which have high value,so FCC plays an irreplaceable role in the fuel production.With the development of economy, the need of fuel will increase,and FCC process will be more and more[1-7]important.The thermal cracking occurs in accordance with the free radicalreaction mechanism,while the catalytic cracking occurs in accordance with the carbenium ion reaction mechanism. The reasons thatβ-scission reaction can easily occur in these two kinds ofreaction mechanisms need to bemore researched.Through the calculation and analysis of free radical and carbenium ion,it is hoped to find the similarities and differences between the structures of them,and to indepth understand thestructures of these two intermediates.1 ExperimentThe Dmol3 simulation method ofMaterials Studio was used to study the molecular structure of hydrocarbons,which is a unique density functionaltheory(DFT)quantum mechanical process.It is the only business process to simulate the gas, solution and solid surface.As then-alkanes can change into free radicals or carbenium ions anywhere,in order to portray accurately,thefollowing naming was used to describe the structure of free radicals or carbenium ions[8].According to the systematic naming of organic compounds,the following nomenclature was used to name free radicals.(1)Select the longest carbon chain,which contains the lacked electron C atom,as the main chain and name the free radicals according to the number of C atoms of main chain.(2) The number of C atoms in main chain begins from the end near the lacked electron C atom.The number of lacked electron C atom was written before the free radical’s name.(3) The contained branched-chain in free radicalneedsto beindicated by theorderof substituents in Arabic numbersbefore the free radical’s name. The examples of nomenclature of free radicals are listed in Table 1. The nomenclature of carbenium ions is similar to the free radicals.Table 1 The nomenclature of free radicals?2 Results and discussions2.1 The C—C bond length distribution and bond energy distribution of free radicalsThe Dmol3 program of the Materials Studio can give the optimized geometry of different free radicals and their bond lengthson the lowestenergy configuration. The geometry structures offree radicals havealso been compared with the original n-alkanes,as shown in Table 2,in which the values indicate the C—C bond length and their unit is nm, and R—CH3and R—CH2·indicate then-alkane and its relative freeradical,respectively.Recently,Zavitsas[9]found that the order of C—C bond lengths of ethane,ethene and ethyne was inverse to the order of their bond dissociation energies(BDE).Between the C—C bond length and BDE of ethane,ethene and ethyne there was a good linear relationship,which can be extended to many other hydrocarbons.It can be found from Table 2 that before and after the generation of free radicals,the C—C bond length inα-position of free radicals becomes shorter, indicating that the C—C bond dissociation energy becomes higher.The C—C bond length inβ-position of free radicals becomes longer,indicating that the C—C bond dissociation energy becomes lower,and the C—C bond inβ-position is the longest C—C bond of the free radicals,which means that the free radicals are easily broken intheβposition.For example,whenn-hexane becomes 1-hexyl free radical,from Table 2,it is shown that the C—C bond length inα-position of1-hexyl free radical changes from 0.150681 to 0.146779 nm,and the C—C bond length inβ-position of 1-hexyl free radical changes from 0.151398 to 0.152914 nm.So under the same reaction conditions,the reaction activity of C—C bond inβ-position is higher.Table 2 The C—C bond length distributions of alkanes and free radicals?Whenn-hexane becomes 2-hexyl free radical, from Table 2,it is shown that the C—C bond length in twoα-positions of 2-hexyl free radical changesfrom 0.151398 and 0.150681 nm to 0.146206 and 0.146028nm,respectively,and the reaction activity of C—C bond inβ-position is higher than that of C—C bond in any other position.Fig.1 shows the C—C bond length variation of alkanes and free radicals.From left to right,the order of C—C bond increases in turn.Fig.1 The C—C bond length variation of alkanes and free radicals(1)n-Hexane;(2)1-Hexyl free radical; (3)2-Hexyl free radical;(4)3-Hexyl free radical2.2 The C—C bond length distribution and bond energy distribution of carbenium ionsThe Dmol3 program of the Materials Studio can give the optimized geometry of different carbenium ions and their bond length on the lowest energy configuration. The geometry structures of carbenium ions have also been compared with the originaln-alkanes,as shown in Table 3,in which the values indicate the C—C bond length and the unit is nm.It can be found from Table 3 that before and after the generation of carbenium ions,the C—C bond length inα-position of carbenium ions becomes shorter,indicating that the C—C bond dissociation energy becomes higher.The C—C bond length in β-position of carbenium ions becomes longer, indicating that the C—C bond dissociation energy becomes lower,and the C—C bond inβ-position of carbenium ionsis the longest C—C bond of carbenium ions,which means that the carbeniumions are easily broken in theβ-position.For example,whenn-heptane becomes 1-heptyl carbenium ion,from Table 3 it is shown that theC—C bond length in α-position of 1-heptyl carbenium ion changes from 0.150681 to 0.138412 nm,and the C—C bond length in β-position of 1-heptyl carbenium ion changes from 0.151393 to 0.165505 nm,and the C—C bond in β-position of 1-heptyl carbenium ion is the longest C—C bond.So under the same reaction conditions, the reaction activity of C—C bond inβ-position of carbenium ion is higher than that of C—C bond in any other position.Table 3 The C—C bond length distribution of alkanes and carbenium ions? Fig.2 shows the C—C bond length variation of alkanes and carbenium ions.2.3 Thestructure changes offree radicals and carbenium ionsThe lacked electron C atoms of free radicals and carbenium ions areallsp2hybrid and the three hybrid orbitals form three covalent bonds with the surrounding atoms.The three hybrid orbitals are plane triangle structure,and there is anotherp orbital, which have not been hybridized, perpendicular to thesp2hybrid orbital plane.The difference between the two structures is that thep orbital of free radical contains an electronic and the porbital of carbenium ion is unoccupied orbital[3].Fig.2 The C—C bond length variation of alkanes and carbenium ions(1)n-Heptane;(2)1-Heptyl carbenium ion; (3)2-Heptyl carbenium ion;(4)3-Heptyl carbenium ion; (5)4-Heptyl carbenium ionThe half-filled orbital of free radical and the unoccupied orbitalof carbenium ion are both electron-deficient structure and have strongelectron withdrawing ability. So the generation offree radicals and carbenium ions will have a very large impact on the original structure. 2.3.1 The structure of free radical and its impact on the bond energy Afterthe generation offree radicals,the electron-deficient structure of free radical will have a very large impact on the surrounding C—C and C—H bonds.As an example,the geometry of 1-hexyl free radical coming fromn-hexane is shown in Fig.3.It can be seen from Fig.3 that three bonds of the lacked electron C atoms of free radical are of plane triangle structure.So itissp2hybrid and there is anotherporbital,which has not been hybridized and contains only one electron.Fig.3 The geometry of 1-hexyl free radicalThe single electron in free radical,owing to its high energy,should occupy the HOMO orbit of the molecular.Fig.4 is the HOMO orbital diagram of 1-hexyl free radical.It can be seen from Fig.4 that in the lacked electron C atom of free radical there exists aporbital,which has not been hybridized, and is perpendicular to thesp2hybrid orbital plane.Fig.4 The HOMO orbital diagram of 1-hexyl free radicalTheporbital with a single electron has a very strong electron withdrawing ability and will attract the electron pair fromβ-position toα-position.In addition,asporbital is a half-filled orbital,it has hyperconjugation effect on the next C—H bonds. The results of these two effects are that the C—C bond ofα-position becomes shorter,indicating that the C—C bond dissociation energy is higher,and the C—C bond ofβ-positionbecomeslonger, indicating the C—C bond dissociation energy is lower.So the reaction activity of C—C bond in β-position is higher than that in any other position.When n-hexane becomes 2-hexyl free radical and 3-hexyl free radical,the impact of free radical on the whole molecular structure is similar to that above mentioned.The half-filled orbital has a very strong effect on the surrounding C—C and C—H bonds,which is one reason of theβ-scission for free radical.2.3.2 The structure of carbenium ion and its impact on the bond energy After the generation of carbenium ions,the electron-deficient structure of carbenium ions will have a very large impact on the surrounding C—C bonds and C—H bonds.As an example,the geometry of1-heptyl carbenium ion coming fromn-heptane is shown in Fig.5.Fig.5 The geometry of 1-heptyl carbenium ionIt can be seen from Fig.5 that three bonds of the lacked electron C atom of carbenium ion are of plane triangle structure,so they aresp2hybrid. There is another unoccupiedporbital,which have not been hybridized[4].The unoccupiedporbital of carbenium ion is the easiest one to get electron,so it should occupy the HOMO orbital of the molecular.Fig.6 is the HOMO orbital diagram of 1-heptyl carbenium ion. It can be seen from Fig.6 that in the lacked electron C atom of carbenium ion there exists an unoccupied porbital,which is perpendicular to thesp2hybrid orbital plane. Fig.6 The HOMO orbital diagram of 1-heptyl carbenium ionTheporbital,which has not been hybridized, is an unoccupied orbital and has a positive charge. So it has a very strong electron withdrawing ability and will attract the electron pair fromβ-position to α-position.In addition,asporbital is an unoccupied orbital,it has hyperconjugation effect on the next C—H bonds.The results of these two effects are that the C—C bond inα-position becomes shorter, indicating that the C—C bond dissociation energy is higher,and the C—C bond inβ-position becomes longer,indicating that the C—C bond dissociation energy is lower.So the reaction activity of C—C bond inβ-position is higher than that in any other position.Whenn-heptane becomes 2-heptyl carbenium ion and 3-heptyl carbenium ion,the impactof carbenium ion on the whole molecular structure is similar to that of above mentioned.The unoccupied orbital has a very strong effect on the surrounding C—C and C—H bonds,which is one reason for the β-scission of carbenium ion.2.3.3 The comparison of free radical with carbenium ionBecause the non-hybridized porbital of free radical is a half-filled orbital and the non-hybridized porbital of carbenium ion is unoccupied orbital, the electron-deficient properties of carbenium ion is higher than that of free radical. The impact of carbenium ion on the structure is more obvious. As an example,the structure data ofn-hexane, 1-hexyland 2-hexyl free radicals,1-hexyland 2-hexyl carbenium ions are shown in Table 4.Table 4 The structure data of free radicals and carbenium ions?Fig.7 shows the each C—C bond length in free radicals and carbenium ionsfromn-hexane.It can be clearly seen from Fig.7 that the C—C bond length of carbenium ion changes more obviously than that of free radical,and the reaction activity of C—C bond inβ-position of carbenium ion is higher than that of free radical[10-11].3 Conclusions(1)After the generation of free radicals and carbenium ions,their electron-deficientstructure will have a very large impact on the surrounding C—C bonds and C—H bonds in the molecule.The result is that the C—C bond ofα-position becomes shorter and the C—C bond ofβ-position becomes longer.So the reaction activity of C—C bond in β-position becomes higher,which is one ofthe reasons that thei rβ-scission occurs easily.Fig.7 C—C bond lengths in free radicals and carbenium ions fromn-hexane(1)n-Hexane;(2)1-Hexyl free radical;(3)2-Hexyl free radical; (4)1-Hexyl carbenium ion;(5)2-Hexyl carbenium ion(2)The electron-deficient properties of carbenium ion are stronger than that of free radical.So the C—C bond length change of carbenium ion is more obviously than that of free radical,and the reaction activity of C—C bond inβ-position of carbenium ion is higher than that of free radical.参考文献[1]章亚东,王自健.有机活性中间体稳定性原理及其应用研究[J].郑州工业大学学报,1996,9(3):35-43. (ZHANG Yadong,WANG Zijian.Study on the stability principle of the organic activity intermediates and its application[J].Journal ofZhengzhou University of Technology,1996,17(3):35-43.)[2]何奕工,舒兴田,龙军.正碳离子和相关的反应机理[J].石油学报(石油加工),2007,23(4):1-7.(HE Yigong,SHU Xingtian,LONG Jun.Carbenium ions and relative reaction mechanism[J].Acta Petrolei Sinica (Petroleum Processing Section),2007,23(4):1-7.)[3]BRAIT A,KOOPMANS A,WEINSTABL H,et al. Hexadecane conversion in the evaluation of commercial fluid catalytic cracking catalysts[J].Ind Eng Chem Res, 1998,37(3):873-881.[4]BASSIR M,WOJCIECHOWSKI B W.The protolysis ofhexanes overa USHY zeolite[J].Journalof Catalysis,1996,158(1):279-287.[5]KOGELBAUER A,L ERCHER J A.Cracking of light alkanes over HNaK erionites[J].Journal of Catalysis, 1990,125(1):197-206.[6]ABBOT J,WOJCIECHOWSKIB W.The mechanism of catalytic cracking ofn-alkenes on ZSM-5 zeolite[J].The Canadian Journal of Chemical Engineering,1985,63: 462-469.[7]CORMAA,PLANELL ES J,THOMASF.The influence ofbranching isomerization on the product distribution obtained during cracking ofn-heptane on acidic zeolites[J].J Catal,1985,94:445-454.[8]赵留周,周涵,施至诚.C+6正碳离子异构化的分子模拟[J].石油学报(石油加工),2002,18(4):90-94. (ZHAO Liuzhou,ZHOU Han,SHIZhicheng. Molecular simulation studies on the isomerization of C+6 carbenium ions[J].Acta Petrolei Sinica(Petroleum Processing Section),2002,18(4):90-94.)[9]ZAVITSAS A A.The relation between bond lengths and dissociation energies of carbon-carbon bonds[J].J Phys Chem A,2003,107:897-898. [10]许友好,龚剑洪,叶宗君,等.大庆蜡油在酸性催化剂上反应机理的研究.石油学报(石油加工),2006,22 (4):34-38. (XU Youhao,GONG Jianhong,YE Zongjun,etal.Study on the reaction mechanism for Daqing VGO over acid catalyst[J].Acta Petrolei Sinica(Petroleum Processing Section),2006,22(4): 34-38.)[11]侯典国,汪燮卿,谢朝钢,等.催化热裂解工艺机理及影响因素[J].乙烯工业,2002,14(4):1-5.(HOU Dianguo,WANG Xieqing,XIE Chaogang,etal. Reaction mechanism and influential factors of catalytic pyrolysis process[J].Ethylene Industry,2002,14(4): 1-5.)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Home Search Collections Journals About Contact us My IOPscienceHybrid density functional theory studies of AlN and GaN under uniaxial strainThis article has been downloaded from IOPscience. Please scroll down to see the full text article.2013 J. Phys.: Condens. Matter 25 045801(/0953-8984/25/4/045801)View the table of contents for this issue, or go to the journal homepage for moreDownload details:IP Address: 202.206.252.55The article was downloaded on 23/08/2013 at 01:57Please note that terms and conditions apply.IOP P UBLISHING J OURNAL OF P HYSICS:C ONDENSED M ATTER J.Phys.:Condens.Matter25(2013)045801(11pp)doi:10.1088/0953-8984/25/4/045801Hybrid density functional theory studies of AlN and GaN under uniaxial strainLixia Qin1,Yifeng Duan1,Hongliang Shi2,Liwei Shi1and Gang Tang11Department of Physics,China University of Mining and Technology,Xuzhou221116,People’s Republic of China2Institute of High Performance Computing,A*STAR,138632,SingaporeE-mail:yifeng@,shih@.sg and gangtang@Received29August2012,infinal form1November2012Published17December2012Online at /JPhysCM/25/045801AbstractThe structural stability,spontaneous polarization,piezoelectric response,and electronicstructure of AlN and GaN under uniaxial strain along the[0001]direction are systematicallyinvestigated using HSE06range-separated hybrid functionals.Our results exhibit interestingbehavior.(i)AlN and GaN share the same structural transition from wurtzite to a graphite-likephase at very large compressive strains,similarly to other wurtzite semiconductors.Ourcalculations further reveal that this well-known phase transition is driven by thetransverse-acoustic soft phonon mode associated with elastic instabilities.(ii)The appliedtensile strain can either drastically suppress or strongly enhance the polarization andpiezoelectricity,based on the value of the strain.Furthermore,large enhancements ofpolarization and piezoelectricity close to the phase-transition regions at large compressivestrains are predicted,similar to those previously predicted in ferroelectricfields.Ourcalculations indicate that such colossal enhancements are strongly correlated to phasetransitions when large atomic displacements are generated by external strains.(iii)Under thesame strain,AlN and GaN have significantly different electronic properties:both wurtzite andgraphite-like AlN always display direct band structures,while the the bandgap of wurtziteGaN is always direct and that of graphite-like GaN always indirect.Furthermore,the bandgapof graphite-like AlN is greatly enhanced by large compressive strain,but that of wurtzite GaNis not sensitive to compressive strain.Our results are drastically different from those forequibiaxial strain(Duan et al2012Appl.Phys.Lett.100022104).(Somefigures may appear in colour only in the online journal)1.IntroductionAluminum nitride(AlN)and gallium nitride(GaN),which usually crystallize in the wurtzite structure at ambient conditions,have been extensively investigated owing to their abundant physics and practical applications[1–3].The structural properties of wurtzite semiconductors are sensitive to external pressure.Recently,intensive theoretical studies have found that there is an intermediate graphite-like phase between wurtzite and rocksalt at high pressures and the three structures arefivefold,fourfold and sixfold coordinated, respectively[4–8].This is consistent with the well-known fact that external pressure favors more close packed structures, thereby resulting in the increasing coordination number attributed to the bond-length evolution.Since the graphite-like structure is metastable and is difficult to stabilize by applying external pressure,few relevant experimental results have been reported so far.As a valid alternative,accurate first-principles simulations can complement these studies and provide detailed descriptions of the structural and bonding behavior under extreme conditions.The internal lattice parameter u and lattice ratio c/a are good measures for representing the deviation from ideal wurtzite structure but are not sufficient to describe a phase transition to a different symmetry.It is well known that dynamic and elastic instabilities are often responsible for phase transitions. However,due to the discontinuities in the volume,energy and other relevant properties at critical pressures,there are alwaysother driving forces forfirst-order phase transitions[9,10].It is noteworthy that the wurtzite and graphite-like phases,with the space groups P63mc and P63/mmc,respectively,both show hexagonal symmetry.Therefore,study of the effectsof pressure on the dynamic and elastic properties will bemore helpful in understanding the underlying mechanismsfor these phase transitions.Since the graphite-like phaseshows distinct physical properties from the wurtzite androcksalt phases,such pressure-induced structural variationsare attractive technologically,such as in the development ofhigh-quality optoelectronic devices.In this paper,our initialwork is to reveal the structural transformations as well asthe underlying mechanisms for AlN and GaN subjected touniaxial strain.Wurtzite structure possesses the highest symmetrycompatible with the coexistence of spontaneous polarizationand piezoelectric response[11],which are both quite sensitiveto changes of the structural parameters.In the presenceof external pressure,the electric polarization is dividedinto spontaneous and piezoelectric parts.The ground-statepolarization and piezoelectricity of binary III–V nitrideshave been systematically investigated[12–15].Our recentresults show that hydrostatic pressures greatly enhancethe polarization and piezoelectricity of AlN,with themaxima appearing simultaneously at the phase transitionfrom wurtzite to graphite-like[16].The spontaneouspolarization and piezoelectricfields modify the band edges,thereby significantly influencing the optical properties ofthe heterostructures or supercells[12].Therefore,it isvery important tofind a feasible way to control thepolarization and piezoelectricity in electronic and opticaldevices.For piezoelectric devices,ZnO has been predictedas a key enabling material due to its strong spontaneousand piezoelectric polarizations[17].Furthermore,AlNdisplays much better piezoelectric performance than ZnO atambient conditions[18],therefore gaining extensive attentionfor potential applications.As a result,it will be veryuseful tofind a way to further enhance the piezoelectricresponse for technological applications.At present,suchinvestigations are mainly focused on ferroelectric materials,which have a wide range of applications in medical imaging,detectors,actuators,telecommunication,and ultrasonicdevices[19–21].It has been revealed that polarizationrotation near the phase-transition regions results in giantelectromechanical effects for ferroelectric perovskites[22].Our recent calculations point out that the maximumpiezoelectric value of AlN under hydrostatic pressures,appearing at the phase transition to graphite-like,is increasedby a factor of∼97from the equilibrium value and ismuch larger than those of most common ferroelectricperovskites[16].However,the polarization always remainsalong the c axis and no polarization rotation is observed.Therefore,the driving mechanisms are drastically differentfrom those of ferroelectric materials and more work is neededto further explain such phenomena.Such investigations arehelpful in broadening the opportunities for piezoelectricapplications of wurtzite semiconductors and in betterunderstanding the driving mechanisms of giant piezoelectric responses for ferroelectric materials.In this paper,one area we are interested in is how uniaxial strain affects the piezoelectric response of AlN and GaN,especially near the phase transition.AlN and GaN have large direct bandgaps[18];thereby environmentally benign Al(Ga)-based semiconductors al-ways have relatively large bandgaps.Such materials have been widely used in optoelectronic devices such as blue–green light emitting diodes and laser diodes as well as high-power, high-temperature,and high-frequency electronic devices[23]. It is well known that the structural and electronic properties of semiconductors can be altered by either applying external pressure or inducing internal strain,or by both,to obtain the desired physical and electrical properties[5,24].Since the interatomic distances and relative positions of atoms have a strong influence on the band structure,it is possible to adjust the bandgap(E g)by uniaxial strain along the[0001] direction.The effects of external strain on the structural and electronic properties of GaN and Zn X(X=O,S,Se and Te) have been systematically investigated using standard density functional theory(DFT)[15,25–27].In those works,uniaxial strain along the[0001]direction and equibiaxial strain in the (0001)plane were believed to have an equivalent influence on the band structures.Recently,our results have shown that although AlN and GaN under in-plane strain share the same structural transition from wurtzite to a graphite-like phase,their electronic properties are significantly different. Furthermore,it is more difficult for AlN than for GaN to obtain the graphite-like semi-metallic phase[28].Such effects of strain on the properties of common semiconductors are not only intriguing in physics,but also attractive technologically, since strain-induced E g tuning can be used for photovoltaic applications.In this paper,another area we are interested in is to systematically reveal how uniaxial strain affects the band structures of AlN and GaN,especially near the phase transitions.Since the covalent bonding in semiconductors is highly directional,strain effects depend on the loading direction. In this paper,we study the uniaxial-strain effects on the structural transitions,polarizations,piezoelectric responses and electronic structures of AlN and GaN using total energy as well as linear response calculations.Our work differs from the previous studies in three main aspects.(1)Previous investigations have just obtained the structural transition from wurtzite to the graphite-like phase from the evolution of lattice constants with strain.However,the underlying mechanism still remains unknown.In our work,one key aim is to reveal the driving forces of such phase transitions based on dynamic and elastic properties.(2)We focus on the effects of uniaxial strain on the polarization and piezoelectric response,especially near the phase-transition regions,in order to point out a feasible way to enhance the electromechanical response.However,such systematic studies have seldom been made in previous work.(3)To overcome the bottleneck of severe underestimation of E g in standard DFT,Heyd–Scuseria–Ernzerhof(HSE06)hybrid functionals[29,30]are adopted in this work,which have been proved to be highly reliable[28,31,32].However,the previous studies have mainly been performed using standardttice constants(a,c/a and u),E g and elastic constants(c ij)for ground-state wurtzite AlN and GaN.a,E g and c ij are in˚A,eV and GPa,respectively.The experimental values are from[18]and other theoretical data are from[42].Figure1.The calculated E g for equilibrium AlN and GaN as a function of the exchange mixing ratio AEXX.The open symbols refer to the calculated results and the solid ones refer to the ground-state experimental data.DFT,which is unable to accurately describe the variation of E g with strain.The structure of this paper is organized as follows.In the next section we describe the computational methods used in this work.In section3,we report the main results of this work.Finally,a brief summary is given in section4.putational methodsThe total energy and band structure calculations are performed using the projector augmented-wave method[33] as implemented in the V ASP code[34].The electronic wavefunctions are described using a plane wave basis set with an energy cutoff of650eV.A Monkhorst–Pack k-point mesh of6×6×6is used throughout the calculations to obtain well-converged results.The standard exchange mixing,which contains25%Hartree–Fock and 75%Perdew–Burke–Ernzerhof-GGA(PBE-GGA)[35],is employed in the HSE06hybrid functional.To check the setting of the mixing ratio AEXX(denoted in the V ASP code),figure1shows the calculated E g as a function of AEXX for equilibrium AlN and GaN;the ground-state experimental E g values are listed for comparison.Good agreement is achieved at AEXX=0.25,especially for AlN,supporting the standard exchange mixing adopted in our work.The incorporation of an appropriate portion of the nonlocal exact exchange into the local or semilocal exchange(HSE06calculations)can yield reasonable bandgaps compared to standard DFT(which willbe systematically discussed in the following).Hartree–Fockcannot describe the van der Waals forces since it only accountsfor exchange.We have also checked the influence of van derWaals forces on the results for the wurtzite and graphite-likephases,similarly to previous work[36],and found that themain results do not change after such forces have beenincorporated into the HSE06calculations.Therefore,ourresults demonstrate that the long-range van der Waals forcesoriginating from nonlocal electron–electron correlation do nothave a significant influence on the properties of the GaN andAlN systems.The phonon-dispersion calculations are performed withthe direct method implemented in the PHONOPY pack-age[37,38].This method uses the Hellmann–Feynman forcescalculated for an optimized supercell through V ASP[34].In theory,the larger the supercell,the more accurate thedispersion curves that are obtained.However,since largesupercell HSE06calculations are currently not computation-ally feasible,we adopt the2×2×3supercell for allphonon calculations and an accuracy of0.05THz for thehighest optical zone-center phonon frequency is achieved.The piezoelectric constants e iνand elastic constants cµν(hereRoman indices go from1to3,and Greek ones from1to6)are calculated using the density functional perturbationtheory(DFPT)[39]of the linear response of strain typeperturbations[40].The electric polarization(P)is calculatedusing the well-known Berry-phase approach[41].Tofind thestrain-free lattice constants,the lattice vectors and atomiccoordinates are fully relaxed until the Hellmann–Feynman force acting on each atom is reduced to less than0.02eV˚A−1.In the presence of uniaxial strain( ),relaxation is performedwith the lattice constant cfixed until the following conditionsare satisfied within a small tolerance:σ11=σ22<0.02GPa andσij=0for i=j,whereσ11andσ22are the stresses inthe(0001)plane.The tensorσ33is the externally applieduniaxial stress along the[0001]direction and is adjusted bychanging step by step.We have examined the accuracyof our calculations by comparing the ground-state resultswith experimental and other theoretical data[18,42].Assummarized in table1,good agreement between theoreticaland experimental methods is achieved.3.Results and discussionIn the presence of out-of-plane stress,a new lattice parameterc corresponds to a specified uniaxial strain given by =Figure2.(a)Out-of-plane stressσ33,and(b)elastic constants c13and c33as a function of .33=(c−c0)/c0and a commensurate equibiaxial in-plane stress-free strain given by 11= 22=(a−a0)/a0,where a0 and c0are the strain-free lattice constants.The top panels in figure2summarize the calculated dependence ofσ33,which displays the same trends for AlN and GaN.The tensileσ33 allfirst increase and then decrease with ,with a maximum of∼45GPa(34GPa)appearing at =0.16(0.14)for AlN(GaN).This indicates that the calculated ideal tensile strengths along the polar c axis are∼45GPa for AlN and ∼34GPa for GaN,which are the maximum stresses required to break the perfect crystals.The structural instabilities at large are emphasized by the dependence of the elastic constants c13and c33,which become negative when >0.16 for AlN and >0.14for GaN,as shown in the bottom panels offigure2.On the other hand,for compressive ,the σ33magnitudes drastically increase when−0.08< <0for AlN and−0.12< <0for GaN,which is well known and anticipated,consistent with previous theoreticalfindings[16]. The most unexpectedfinding is that the magnitude ofσ33first decreases and then increases with further increase of ,with the minimum appearing at =−0.14(−0.18)for AlN(GaN).The abnormal behavior ofσ33when−0.14< <−0.08for AlN and−0.18< <−0.12for GaN is attributed to the evolution of the elastic constant c33,which always decreases with compressive and becomes negative in these ranges,as shown infigure2(b).In the abnormal ranges,although the elastic stability criteria c44>0and c11>|c12|are true,(c11+c12)c33>2c213is false,indicating that the wurtzite structures become elastically unstable.More interestingly,after the discontinuous changes from negative to positive at =−0.14(−0.18)for AlN(GaN),the c13 and c33increase linearly with further increase of compressive .The new elastic trends lead to great enhancement of the σ33magnitudes and the reappearance of elastic stabilities for high-pressure structures in these ranges.As a conclusion, phase transitions are usually predicted at the critical .Since dynamic instabilities are often responsible for structural transformation,five phonon-dispersion curves at different values are plotted infigure3for AlN and GaN.The previous related works were mainly performed using standard DFT,where the DFT-PBE(LDA)always overestimates (underestimates)the optimized volume of the unit cell atfixed .This leads to very weak(strong)nearest-neighbor force constants and a significant underestimation(overestimation) of phonon frequencies,especially for the optical modes[43]. The HSE06adopted in this work has been proven to be more accurate than the DFT-PBE and LDA for the phonon frequency and dispersion[43].The reciprocal lattice point (0,0,0.06)near the zone center is denoted hereafter as Y,owing to its interesting behavior,as shown in panel(b). There are twelve phonon branches for the wurtzite unit cell: one longitudinal-acoustic(LA),two transverse-acoustic(TA), three longitudinal-optical(LO),and six transverse-optical (TO)ones,as shown in panel(d).Since the Al(Ga)atom is heavier than the N atom,the internal vibrations of Al(Ga) atoms are mainly correlated to the low-frequency modes.On the other hand,due to the difference between Al and Ga atoms,the modes of AlN shift to higher frequencies than those of GaN at different .The six TO modes are separated from the other branches by the well-known phonon bandgap for the wurtzite phase,which is most noticeable in the equilibrium structure,as shown infigure3(d).At ambient conditions, the gap of GaN is larger than that of AlN.Our calculated results further reveal that the tensile always reduces the gaps for AlN and GaN,whereas the gaps arefirst reduced when −0.14< <0for AlN and−0.18< <0for GaN andFigure3.Phonon-dispersion curves for AlN and GaN.AlN:(a) =−0.18,(b) =−0.14,(c) =−0.11,(d) =0.0and(e) =0.17; GaN:(a) =−0.20,(b) =−0.18,(c) =−0.17,(d) =0.0and(e) =0.16.Figure4.Atomic displacements along the[110]direction,perpendicular to the Al–N(Ga–N)plane,at the critical TA(Y)mode softening strains:(a) =−0.14for AlN and(b) =−0.18for GaN.then enlarged unexpectedly as the compressive increases further.This abnormal phonon behavior is consistent with the novel elastic trends and emphasizes the occurrence of phase transition at the critical .It is shown that the phonon modes become unstable when >0.16for AlN and >0.14for GaN(seefigure3(e)). In other words,the wurtzite phase is stabilized by tensile when <0.16(0.14)for AlN(GaN),consistent with the results from the elastic properties.Our investigations further reveal that the wurtzite structure remains stable for a broad compressive range until the TA frequencies at Y become imaginary near =−0.14for AlN and =−0.18for GaN, as shown infigure3(b).This is drastically different from the results for the elastic properties,where elastic instabilities are observed when−0.14< <−0.08for AlN and−0.18< <−0.12for GaN;phonon instabilities are still not obtained at =−0.11(−0.17)for AlN(GaN)(seefigure3(c)).The most interestingfinding is that when <−0.14for AlN and <−0.18for GaN,the modes become stable once again,as shown infigure3(a).The anomalous behavior of the phonon modes confirms the occurrence of a phase transition at the critical .Schematic representations of the eigenvectors for the TA(Y)soft phonon modes at the critical are shown infigure4.The eigenvectors of the Al(Ga)cation and the N anion are parallel and along the[110]direction.Since the particular atomic displacements are responsible for the soft modes,which result in the structural instabilities,the atomic movements along this particular direction are closely correlated with the new-found phase transitions.To reveal the predicted structure,we systematically study the evolution of the in-plane strain 11,lattice ratio c/a,internal lattice parameter u,and Born effective charge Z∗33with respect to ,as shown infigure5.When >−0.14for AlN and >−0.18for GaN,the calculated 11,u,and Z∗33display a nonlinear response with respect to ;a linear trend is observed for c/a.When <−0.14(−0.18)for AlN(GaN),c/a<1.20and u=0.50. This implies the structural transition from wurtzite to a graphite-like phase,similar to those previously predicted for other forms of pressures[15,16,26–28].Therefore,the newFigure5.(a)In-plane strain 11,(b)lattice ratio c/a,(c)internal lattice parameter u(in units of the lattice c),and(d)Born effective chargeZ∗33as a function of .The transition from wurtzite to a graphite-like phase occurs at ∼=−0.14(−0.18)for AlN(GaN)(dashed line)andthe charge satisfies Z∗33(Al(Ga))=−Z∗33(N).Figure6.(a)The equilibrium wurtzite unit cell and(b)the graphite-like phase unit cell under large compressive uniaxial strain.The c axis is along the[0001]direction in each case.Adapted with permission from[27].Copyright2010American Institute of Physics.structure predicted by elastic and phonon instabilities at large compressive is the graphite-like phase,whose structure is shown infigure6,together with the wurtzite structure for comparison.Furthermore,the predicted transition values are in good agreement with those from the evolution of c/a and u.As a result,the TA soft phonon modes associated with the elastic instabilities are the driving forces for such well-known phase transitions.In the graphite-like phase, each cation(anion)has bonds with two adjacent anions (cations)with the same bonding length along the c axis,inaddition to bonds with three anions(cations)in the basal plane.The electric polarization(P)originates from two contributions:the lack of centrosymmetry and the deviation from the ideal wurtzite structure for which c/a=√8/3and u=0.375.The former is characterized by u,which describes the shortest bonding length between two adjacent atoms alongthe c axis;the latter has a strong influence on Z∗33.The u andFigure7.(a)Electric polarization P(C m−2)and(b)piezoelectric coefficient e33(C m−2)as a function of .The open symbols refer to the wurtzite phase and the solid ones refer to the graphite-like phase.Z∗33,whose dependence is shown infigures5(c)and(d),are responsible for rge u corresponds to high symmetry along the polar direction,which suppresses P,whereas largeZ∗33enhances P.As increases from compressive to tensile,u and Z∗33bothfirst decrease and then increase for wurtziteAlN and GaN.On the other hand,the graphite-like phase shows a higher symmetry than the wurtzite phase,with the coordination number increasing from four tofive.It is well known that the wurtzite phase displays the highest symmetry compatible with the coexistence of spontaneous P and piezoelectric response.The graphite-like structure does not possess polar and piezoelectric properties.In other words, the foregoing structural transformation is a polar–nonpolar phase transition,which is similar to that from the ferroelectric to the paraelectric phase in a ferroelectricfield[19–21].Figure7(a)shows P as a function of .For equilibrium wurtzite AlN and GaN,the spontaneous P values are 0.098C m−2and0.027C m−2,respectively,which are consistent with the other corresponding theoretical values of0.081and0.027C m−2[13,3].For the ideal wurtzite structure,the spontaneous P is nonvanishing due to the nonsuperposition of positive and negative electric charge centers along the polar c axis.When <−0.14(−0.18)for AlN(GaN),P=0,emphasizing the structural transition from the wurtzite to the graphite-like phase.Our calculated results further reveal that P displays the same trend as u and Z∗33 for the wurtzite phase,whose valuesfirst decrease and thenincrease with .This implies that Z∗33plays the dominant rolein the behavior of P.The minimum P values appear at ∼= 0.06for AlN and ∼=0.02for GaN,whereas the maximum values appear at the phase transition.Figure7(b)shows the piezoelectric coefficient e33 as a function of .For equilibrium wurtzite AlN and GaN,the e33values are1.65C m−2and0.76C m−2,respectively,in good agreement with the other correspondingresults of 1.46and0.73C m−2[3,13].When <−0.14(−0.18)for AlN(GaN),e33=0,emphasizing the predicted phase transition.However,as increases,the e33value of the wurtzite phasefirst strongly decreases untilit reaches zero at ∼=0.06(0.02)for AlN(GaN),andthen its absolute value gradually increases.The maximumvalue of∼122C m−2(91C m−2)appears at the phase transition,which is increased by a factor of∼74(118)from the ground-state value for AlN(GaN),and is muchlarger than those of most common ferroelectric perovskites.Therefore,two important conclusions are obtained.(1)Theexternally applied tensile can either suppress or enhancethe piezoelectric response,based on the value of .(2)The compressive greatly enhances the piezoelectricity,especially near the phase-transition region.The strongest piezoelectric responses near the phase-transition region were originally predicted in ferroelectricmaterials[19,21,22],which as well as wurtzite semi-conductors possess spontaneous P and piezoelectricity.Thedriving mechanism has been revealed to be polarizationrotation[19,22].However,since the P of the wurtzitephase only remains along the c axis(the[0001]direction),it is impossible to observe polarization rotation,i.e.,onlythe magnitude of P changes with .This is because thereis only one polar direction for the wurtzite phase.It iswell known that the e33describes the derivative of P withrespect to .The maximum e33,appearing at the phasetransition,corresponds to the maximum slope of the P versus curve,as shown infigure7(a).On the other hand,the zero slope,related to the minimum P,leads to e33=0 at ∼=0.06(0.02)for AlN(GaN).At large tensile ,the e33becomes negative,which just reflects the change in the sign of the slope;what we care about most is its absoluteFigure8.Band structures for AlN and GaN.AlN:(a) =−0.18,(b) =−0.08,(c) =0.00and(d) =0.17;GaN:(a) =−0.20,(b) =−0.12,(c) =0.00and(d) =0.16.The crystal structures are graphite-like in(a),and wurtzite in(b),(c)and(d).The Fermi level is set to zero in eachfigure.value.Very similar trends are predicted for the strain-inducedcolossal enhancement in piezoelectricity when approachingthe phase-transition region;therefore,our investigationsuggests that polarization rotation is not a necessary conditionfor such great enhancement in piezoelectricity;instead,it isthe change in the P magnitude with that leads to such anamazing phenomenon.The predicted novel piezoelectric response can alsobe summarized from the elastic behavior.As shown infigure2(b),the c33of the wurtzite phasefirst increases untilit reaches the maximum at ∼=0.06(0.02)for AlN(GaN),and then it monotonically decreases with further increase of .This suggests that these wurtzite materialsfirst become hardand then soft along the polar c axis in these ranges.Basedon the conclusion for ferroelectric materials,the softer thecrystal lattice,the larger the electromechanical response[44],it is easy tofind that as increases,the piezoelectricresponse isfirst suppressed and then strongly enhanced forthe wurtzite phase,with the weakest behavior appearing at ∼=0.06(0.02)for AlN(GaN).The predicted trends are in good agreement with the directly calculated results,asshown infigure7(b),thereby indicating that this conclusionis applicable to wurtzite semiconductors.Such investigationsare technologically very helpful,in view of the conversionbetween electric energy and mechanical energy,in enhancingthe performance of piezoelectric devices.The electronic properties can also be modified by theuniaxial .Four band structures at different values areplotted infigure8for AlN and GaN.The reciprocal latticepoint(0,1/2,1/3)is denoted hereafter as X,due to itsinteresting behavior in the conduction bands,as shown in panel(c).For wurtzite AlN and GaN(seefigures8(b)–(d)),the E g is always direct,with the valence-band maximum(VBM)and conduction-band minimum(CBM)at .This isdrastically different from wurtzite AlN under equibiaxial ,where the E g is either direct or indirect based on the valueof [28].As a conclusion,uniaxial and equibiaxial showdifferent influences on the band structure for AlN;this isattributed to the different elastic responses to uniaxial andbiaxial .However,in other theoretical work[26,45],uniformuniaxial along the[0001]direction was believed to beequivalent to equibiaxial in the(0001)plane.Our resultsfurther reveal that the band structures of graphite-like AlNand GaN are significantly different(seefigure8(a)).The E gof AlN is direct,with the VBM and CBM at ,whereas thatof GaN is indirect,with the VBM at H and the CBM at .This is also different from graphite-like AlN under equibiaxial ,where an indirect E g is observed at large tensile [28]. Therefore,one key difference between AlN and GaN underuniaxial is that both wurtzite and graphite-like AlN alwaysdisplay direct band structures,while the E g of wurtzite GaN isalways direct and that of graphite-like GaN is always indirect.To better reveal the underlying mechanisms for theabnormal band structures,figure9shows the minima of theconduction states and the maxima ofthe valence states atdifferent points,where the CBM or VBM most probablyappear,as a function of .As shown infigure9(a),the CBMof AlN(GaN),whose states are mainly attributed to the N sand Al(Ga)s orbitals,is always located at .This suggests adominant role of N s and Al(Ga)s orbital hybridization in the state.This is consistent with previously reported work[46], where the electronic structure of ground-state GaN was。

相关文档
最新文档