2000年全国初中数学竞赛试题解答
全国初中数学竞赛试题集锦(附解答)
全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cbc a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)18 4、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限(A)一、二(B)二、三(C)三、四(D)一、四 5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个 二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
7、已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于___________。
8、已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm 。
9、已知方程()015132832222=+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a =___________。
10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。
历届(第1-23届)希望杯数学竞赛初一七年级真题及答案
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题......................003-0052.希望杯第一届(1990年)初中一年级第二试试题......................010-0123.希望杯第二届(1991年)初中一年级第一试试题...... 0错误!未定义书签。
-0204.希望杯第二届(1991年)初中一年级第二试试题...... 0错误!未定义书签。
-0265.希望杯第三届(1992年)初中一年级第一试试题...... 0错误!未定义书签。
-0326.希望杯第三届(1992年)初中一年级第二试试题...... 0错误!未定义书签。
-0407.希望杯第四届(1993年)初中一年级第一试试题...... 0错误!未定义书签。
-0508.希望杯第四届(1993年)初中一年级第二试试题...... 0错误!未定义书签。
-0589.希望杯第五届(1994年)初中一年级第一试试题...... 0错误!未定义书签。
-06610.希望杯第五届(1994年)初中一年级第二试试题..... 0错误!未定义书签。
-07311.希望杯第六届(1995年)初中一年级第一试试题..... 0错误!未定义书签。
-080 12希望杯第六届(1995年)初中一年级第二试试题..... 0错误!未定义书签。
-08713.希望杯第七届(1996年)初中一年级第一试试题..... 0错误!未定义书签。
-09814.希望杯第七届(1996年)初中一年级第二试试题....... 错误!未定义书签。
-10515.希望杯第八届(1997年)初中一年级第一试试题....... 错误!未定义书签。
-11316.希望杯第八届(1997年)初中一年级第二试试题....... 错误!未定义书签。
-12017.希望杯第九届(1998年)初中一年级第一试试题....... 错误!未定义书签。
2000年湖北初中数学竞赛选拔赛试题1
2000年湖北省初中数学竞赛选拔赛试题 (1)2002年湖北省数学竞赛试题 (3)湖北省首届创新杯数学邀请赛初中一年级第一试试题 (6)湖北省首届创新杯数学邀请塞初中一年级第二试试题 (8)湖北省首届创新杯数学邀请赛初中二年级第一试试题 (10)湖北省首届创新杯数学邀请赛初中二年级第二试试题 (13)第二届“创新杯”数学邀请赛(初赛)初一试题 (15)第二届“创新杯”数学邀请赛(初赛)初二试题 (18)第二届“创新杯”数学邀请赛(复赛)初二试题 (20)2004年全国初中数学竞赛预选赛试题(湖北赛区) (22)2000年湖北省初中数学竞赛选拔赛试题(总分120分 时间:120分钟)一、选择题(本题共6道小题,每小题4分,满分24分.每小题均给出了代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的,请将正确答案的代号填在题后的括号里,)1.已知实数a ,b ,c 在数轴上的对应位置如图所示:则|c-1|+|a-c|+|a-b|的值为( ).(A)b-1 (B)2a-b-l (C)l+2a-b-2c (D)1-2c+b2.某商品降价20%后欲恢复原价,则提价的百分数为( ).(A)18% (B)20% (C)25% (D)30%3,若x-x 1=1,则33x1-x 的值为( ). (A)3 (B)4 (C)5 (D)6 4.如图,在Rt △ ABC 中,∠C =90°,∠CAB =30°,AD 平分∠CAB ,则CD AC -CD AB 的值为( ). (A)3 (B)33 (C)3-3 (D)6-23 5.方程x 2+3x-7-3x x 32 =9的所有实数根之积为( ). (A)60 (B)-60 (C)10 (D)-106.在等腰△ ABC(AB =AC ≠BC)所在的平面上有一点P ,使得△ PAB 、△ PBC 、△ PAC 都是等腰三角形,则满足此条件的点有( ).(A)1个 (B)3个 (C)6个 (D)7个二、填空题(本题共8道小题,每小题5分,满分40分)7.设x =121-2+ ,y =1-212+ 则x 2-xy+y 2= · 8.若关于x 的方程:-12-x a 2x =+的解为正数,则a 的取值范围是 9.如图,由11个边长为43的正三角形按下列方式排列:它们各自有一条边依次在同一条直线上,而且沿着这条直线,每个三角形底边的中点恰为下一个三角形的顶点,则由这11个三角形所盖住的平面区域的面积是 .10.设直线kx+(k+1)y =l(k 是自然数)与两坐标轴所围成的图形的面积为S k (k =l ,2,3,…,2000),则S 1+S 2+S 3+…+S 2000=11.在直角坐标系中,有四个点A(-8,3)、B(-4,5)、C(0,n)、D(m ,0),当四边形ABCD的周长最短时,nm 的值为 . 12.钟表在12点钟时三针重合,经过x 分后,秒针第一次将分针和时针所夹的锐角平分,则x 的值为 .13.在l ,2,3,…,1 999这1 999个自然数中,数码0的个数共有个.14,如图,ABCD-A'B'C'D'为长方体,AA ’=50cm ,AB =40 cm ,AD =30 cm ,把上、下底面都等分成3× 4个小正方形,其边长均为10cm ,得到点E 、F 、C 、H 和E'、F'、G'、H'.假设一只蚂蚁每秒爬行2cm ,则它从下底面正点沿表面爬行至上底面G ’点至少要花时间 秒.三、解答题(本题共4道小题,每小题14分,满分56分.)15.已知M 、N 为∠ABC 的边BC 上的两点,且满足BM =MN =NC .一条平行于AC 的直线分别交AB 、AM 和AN 的延长线于点D 、E 和F .求证:EF=3DE16.已知关于x 的方程4x 2-8nx-3n =2和x 2-(n+3)x-2n 2+2=0,问是否存在这样的值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,求出这样的值;若不存在,请说明理由.17.如图,已知等边△ ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M .设直线AC 与BM 相交于点K ,直线CB 与AM 相交于点N .证明:线段AK 和BN 的乘积与M 点的选择无关,18,某工程车从仓库装上水泥电线杆运送到离仓库恰为1 000米处的公路边栽立,要求沿公路的一边向前每隔100米栽立电线杆一根.已知工程车每次至多只能运送电线杆4根,要求完成运送18根的任务,并返回仓库.若工程车行驶每千米耗油m 升(在这里耗油量的多少只考虑与行驶的路程有关,其它因素不计),每升汽油n 元,求完成此项任务最低的耗油费用.2000年湖北省初中数学竞赛选拔赛试题参考答案一、1.D 2.C 3.B 4.B 5.A 6.C三、1 5.提示:过M 、N 分别作AC 的平行线交AB 于G 、H 两点,16.当n=0时,第一个方程的两个实数根的差的平方等于第二个方程的一整数根.17.提示:证明线段AK 和BN 的乘积与点M 的选择无关,可转化为证明AK·BN=常量(即AB 2).18.提示:运送次数越少,所行驶的路程越短,所需油费越少,因此,1 8根电线杆运送5次行驶路程较短.这5次有两种运送方法:(1)四次各4根,一次2根;(2)三次各4根,二次各3根.先送2根所行驶路程最短,最短总行程为:(1 0 0 0+1 0 0)×2+(1 1 00+4 00)×2+(1 5 00+4 00)×2+(1 9 00+400)×2+(2 3 00+4 00)×2=1 9 0 0 0(米).所用最少油费为1 9 000·m·n÷1 000=1 9 mn 元.2002年湖北省数学竞赛试题(2002年1月3日上午9:00----11:00)一、选择题:(本题共6小题,每小题5分,共30分)1、已知是正数,且a a 2-=1,则224aa -等于( ) (A )5 (B )3 (C )1 (D )-32、如果某商品进价降低5%而售价不变,利润可由目前的a%增加到(a+15%),则a 的值为( )(A )185 (B )175 (C )155 (D )1453、在直角坐标系中,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )个(A )1个 (B )2个 (C )3个 (D )4个4、为了调查学生的身体状况,对某校毕业生进行了体检,在前50名学生中有49名是合格的,以后每8名中有7名是合格的,且该校毕业生体检合格率在90%以上,则该校毕业生的人数最多有( )(A )180 (B )200 (C )210 (D )2255、如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言,MTN 弧的度数( )(A )从30°到60°变动 (B )从60°到90°变动(C )保持30°不变 (D )保持60°不变6、用四条线段a=14,b=13,c=9,d=7作为四条边构成一个梯形,则在所构成的梯形中,中位线的长的最好大值是( )(A )13.5 (B )11.5 (C )11 (D )10.5二、填空题:(本题共6小题,每小题5分,共30分)7、 已知2,322-=+=+y xy xy x ,则=--2232y xy x8、 如图,在△ABC 中AB=5,AC=13,边BC 上的中线AD=6,则BC 的长是9、 与铁路平行的一条公路上有一行人与骑车人同时向南行进,行人的速度是每小时3。
初中数学竞赛试题及答案大全
全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY信利杯”全国初中数学竞赛试题 (17)2004年“TRULY信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )(A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)184、已知0≠abc ,并且p ba c a cbc b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
《圆的基本性质》奥数复习题
《圆的基本性质》复习题姓名 学号一、填空题1.如果圆中一条弦长与半径相等,那么此弦所对的圆周角的度数为 .2.在Rt ΔABC 中,AB =6,BC =8,则这个三角形的外接圆直径是3.在等边三角形ABC 外有一点D ,满足AD=AC ,则∠BDC= 。
4.在四边形ABCD 中,AB=BC=AC=AD ,AH ⊥CD 于H ,CP ⊥BC 交AH 于P ,若AP=l ,则BD=5.如图,点A 、B 、Q 、D 、C 在圆上,BQ 与QD 分别是42°和38°, 则∠P+∠Q= . 6.(1998年全国初中数学竞赛试题)已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为 cm 。
7.如图,扇形MON 中,∠MON=90°,过线段MN 的中点A 作AB ∥ON ,交MN 于B ,∠BON= 8.(2008年蚌埠二中自主招生考试数学素质测试题)已知⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、3,则BAC ∠的度数是 。
9.(2006年“TRULY 信利杯”全国初中数学竞赛初赛试题)半径为2的⊙O 中,弦AB 与弦CD 垂直相交于点P ,连结OP ,若OP =1,则AB ²+CD ²的值为 。
10.如图,在△ABC 中,∠A= 70°,⊙O 截△ABC 的三边所截得的弦长都相等,则∠BOC= .11.如图,△ABC 内接于直径为d 的圆.设BC=a ,AC=b ,那么△ABC 的高 CD= .12.(北京市竞赛题)如图所示,正方形ABCD 的中心为O ,面积为1989 cm ²,P 为正方形内一点,且∠OPB=45°,PA :PB=5:14,则PB 的长为 。
13.如图,在直径为20cm 的半圆0上P 、Q 两点,PC ⊥ AB 于C,QD ⊥AB 于D,QE ⊥ PO 于 E,AC=4cm ,则DE= cm.14.已知P 是正方形ABCD 内的一点,O 为正方形的中心,AP⊥BP ,OP=,PA=6,则正方形ABCD 的边长为 。
历年初中数学竞赛真题库含答案
1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35. 答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12;(C ) 16; (D )18.答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( )4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n .答( )5. 若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是(A)1-;(B)5-;(C)0;(D)1.答( )7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3.答( )8. 在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤21; 答( )(C )c > 2; (D )c = 2.答( )二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 . 2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+ac b 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试x + y , x - y , x y , yx 四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y ).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定.3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7.答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4.答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xk y 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是 (A)21S S > (B)21S S =(C)21S S < (D)不确定 答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3.答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD ,︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , FA=AB .则AE :EB 等于(A)1:2 (B)1:3(C)2:5 (D)3:10答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11.答( )二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则x x x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是(A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错.3.设x 是实数,11++-=x x y .下列四个结论:Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值;Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B )53124x x x x x >>>>;(C )52413x x x x x >>>>; (D )24135x x x x x >>>>.5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角,则)cos(OCB OBC ∠+∠的值是 (A)22- (B)22 (C)23 (D)21-. 答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n ,p ,那么m :n :p 等于 (A)c b a 1:1:1; (B)c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin .答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+答( )二.填空题1. 当x 变化时,分式15632212++++x x x x 的最小值是___________. 2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________. 第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。
2000年全国初中数学竞赛试题及解析
2000年全国初中数学竞赛试题及解析一、选择题(只有一个结论正确)1、设的平均数为M,的平均数为N,N,的平均数为P,若,则M与P的大小关系是()。
(A)M=P;(B)M>P;(C)M<P;(D)不确定。
答:(B)。
∵M=,N=,P=,M-P=,∵,∴>,即M-P>0,即M>P。
2、某人骑车沿直线旅行,先前进了千米,休息了一段时间,又原路返回千米(),再前进千米,则此人离起点的距离S与时间t的关系示意图是()。
答:(C)。
因为图(A)中没有反映休息所消耗的时间;图(B)虽表明折返后S的变化,但没有表示消耗的时间;图(D)中没有反映沿原始返回的一段路程,唯图(C)正确地表述了题意。
3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么()。
(A)甲比乙大5岁;(B)甲比乙大10岁;(C)乙比甲大10岁;(D)乙比甲大5岁。
答:(A)。
由题意知3×(甲-乙)=25-10,∴甲-乙=5。
4、一个一次函数图象与直线平行,与轴、轴的交点分别为A、B,并且过点(-1,-25),则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有()。
(A)4个;(B)5个;(C)6个;(D)7个。
答:(B)。
在直线AB上,横、纵坐标都是整数的点的坐标是=-1+4N,=-25+5N,(N是整数).在线段AB上这样的点应满足-1+4N>0,且-25+5N≤0,∴≤N≤5,即N=1,2,3,4,5。
5、设分别是△ABC的三边的长,且,则它的内角∠A、∠B的关系是()。
(A)∠B>2∠A;(B)∠B=2∠A;(C)∠B<2∠A;(D)不确定。
答:(B)。
由得,延长CB至D,使BD=AB,于是CD=,在△ABC与△DAC中,∠C为公共角,且BC:AC=AC:DC,∴△ABC∽△DAC,∠BAC=∠D,∵∠BAD=∠D,∴∠ABC=∠D +∠BAD=2∠D=2∠BAC。
6、已知△ABC的三边长分别为,面积为S,△A1B1C1的三边长分别为,面积为S1,且,则S与S1的大小关系一定是()。
全国初中数学竞赛试题及答案
中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分。
)1(甲).如果实数a ,b ,c 22||()||a a b c a b c -++-++可以化简为( ).(A )2c a - (B )22a b - (C )a - (D)a 1(乙).如果22a =-11123a+++的值为( ).(A)2- (B 2 (C )2 (D )222(甲).如果正比例函数y = ax (a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ). (A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)2(乙). 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ). (A )10 (B )9 (C )7 (D )53(甲).如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12 (D)143(乙).如图,四边形ABCD 中,AC ,BD 是对角线, △ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5, 则CD 的长为( ). (A)23 (B)4 (C )52 (D)4。
54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).OAB CED(A )1 (B )2 (C )3 (D )44(乙).如果关于x 的方程 20x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D) 85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ). (A )0p (B )1p (C )2p (D )3p 5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99二、填空题(共5小题,每小题6分,共30分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x "到“结果是否>487?"为一次操作。
2000-2003年“五羊杯”全国初中数学竞赛试题及详解【圣才出品】
2 . (16 1.63 2.87 1250.115 0.0163963) 0.11 ( )。 A. 20 B. 26 C. 200
所以,A 的末尾的零的个数是 205 个。 故正确的答案选 B。
6 .中国首位航天员杨利伟乘神舟 5 号飞船,在约 400 公里高空绕地球 14 圈,飞行约 21 小时,成功返回,圆了中华民族千年飞天梦.假定地球是球体,半径约 6400 公里,不
计升空和降落,杨利伟飞行距离和速度分别是( )。
A. 60 万公里和 9.7 公里/秒 B. 61 万公里和 8.3 公里/秒 C. 60 万公里和 7.9 公里/秒 D. 61 万公里和 7.8 公里/秒 【来源】 2003年第 15 届“五羊杯”全国初中数学竞赛初中一年级
31 4
31 7
31 8
15 31
1 2
1 4
1 7
1 8
1 2
1 4
1 7
1 8
15 31
故正确的答案选 B。
4 .已知 3A 2B : 7A 5B 13: 31,那么 13A 12B : 17A 15B ( )。
A. 5 : 4 B. 4 : 5 C. 9 : 7
2 / 57
圣才电子书
【答案】C
【解析】因为飞船在约 400 公里高空绕地球飞行,且地球半径为 6400 公里,所以,
飞船绕行的总半径为
6400 400 6800 (公里)。 又已知杨利伟绕地球飞行 14 圈,因此,杨利伟飞行距离为 2 680014 597856
全国初中数学联赛试题(含参考答案)
全国初中数学联合竞赛试题参考答案第一试一、选择题(本题满分42分,每小题7分) 1、设17-=a ,则=--+12612323a a a ( A )A 、24B 、 25C 、1074+D 、1274+ 2、在ABC ∆中,最大角A ∠是最小角C ∠的两倍,且7=AB ,8=AC ,则=BC ( C ) A 、27 B 、10 C 、105 D 、37 3、用[]x 表示不大于x 的最大整数,则方程[]0322=--x x 的解的个数为( C ) A 、1 B 、2 C 、3 D 、 44、设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为 ( B )A 、143 B 、73 C 、21 D 、74 5、如图,在矩形ABCD 中,3=AB ,2=BC ,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则=∠CBE sin ( D )A 、36 B 、32C 、31D 、10106、设n 是大于1909的正整数,使得nn --20091909为完全平方数的n 的个数是 ( B )A 、3B 、 4C 、 5D 、6 二、填空题(本题满分28分,每小题7分)1、已知t 是实数,若a ,b 是关于x 的一元二次方程0122=-+-t x x 的两个非负实根,则()()1122--b a的最小值是____________.答案:3-2、设D 是ABC ∆的边AB 上的一点,作BC DE //交AC 于点E ,作AC DF //交BC 于点F ,已知ADE ∆、DBF ∆的面积分别为m 和n ,则四边形DECF 的面积为______.答案:mn 23、如果实数a ,b 满足条件122=+b a ,2212|21|a b a b a -=+++-,则____=+b a . 答案:1-4、已知a ,b 是正整数,且满足⎪⎪⎭⎫ ⎝⎛+b a 15152是整数,则这样的有序数对(a ,b )共有_对。
历年初中数学竞赛试题精选(含解答)
初中数学竞赛专项训练(1)1、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。
A. 111B. 1000C. 1001D. 1111 解:依题意设六位数为abcabc ,则abcabc =a ×105+b ×104+c ×103+a ×102+b ×10+c =a ×102(103+1)+b ×10(103+1)+c (103+1)=(a ×103+b ×10+c )(103+1)=1001(a ×103+b ×10+c ),而a ×103+b ×10+c 是整数,所以能被1001整除。
故选C方法二:代入法2、若2001119811198011⋯⋯++=S ,则S 的整数部分是____________________解:因1981、1982……2001均大于1980,所以9022198019801221==⨯>S ,又1980、1981……2000均小于2001,所以22219022*********221==⨯<S ,从而知S 的整数部分为90。
3、设有编号为1、2、3……100的100盏电灯,各有接线开关控制着,开始时,它们都是关闭状态,现有100个学生,第1个学生进来时,凡号码是1的倍数的开关拉了一下,接着第二个学生进来,由号码是2的倍数的开关拉一下,第n 个(n ≤100)学生进来,凡号码是n 的倍数的开关拉一下,如此下去,最后一个学生进来,把编号能被100整除的电灯上的开关拉了一下,这样做过之后,请问哪些灯还亮着。
解:首先,电灯编号有几个正约数,它的开关就会被拉几次,由于一开始电灯是关的,所以只有那些被拉过奇数次的灯才是亮的,因为只有平方数才有奇数个约数,所以那些编号为1、22、32、42、52、62、72、82、92、102共10盏灯是亮的。
初中数学竞赛试题及答案大全
全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY?信利杯”全国初中数学竞赛试题 (17)2004年“TRULY?信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )(A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)184、已知0≠abc ,并且p ba c a cbc b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
2000年全国初中数学联赛试题及答案(修正版)
2000年全国初中数学联合竞赛试卷第一试1、计算56145614--+的值是【 】(A )1 (B )5 (C )25 (D )52、若x y x y x y y x 156523-=-=,则222232654yxy x y xy x +-+-的值是【 】 (A )92 (B )94 (C )5 (D )63、设a ,b 是不相等的任意正数,又x =b 2+1a , y =a 2+1b ,则x ,y 这两个数一定【 】(A )都不大于2 (B )都不小于2 (C )至少有1个大于2 (D )至少有1个小于24、正整数n 小于100,并满足等式n n n n =⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡632,其中[x ]表示不超过x 的最大整数,这样的正整数n 有【 】(A )2个 (B )3个 (C )12个 (D )16个5、已知一个梯形的四条边的长分别为1、2、3、4,则此梯形的面积等于【 】 (A )4 (B )6 (C )82 (D )10326、已知ABCD 是一个半径为R 的圆的内接四边形,AB =12,CD =6,分别延长AB 和DC ,它们相交于P 且BP =8,∠APD =60°,则R 等于【 】(A )10 (B )221 (C )122 (D )147、 a ,b 是正数,并且抛物线y =x 2+ax +2b 和y =x 2+2bx +a 都与x 轴有公共点,则a 2+b 2的最小值是________。
8、某果品店组合销售水果,甲种搭配:2千克A 水果,4千克B 水果;乙种搭配:3千克A 水果,8千克B 水果,1千克C 水果;丙种搭配:2千克A 水果,6千克B 水果,1千克C 水果。
A 水果价格每千克2元,B 水果价格每千克1.2元,C 水果价格每千克10元。
某天该店销售三种搭配共得441.2元,其中A 水果的销售额为116元,则C 水果的销售额为________元9、实数x ,y 满足x ≥y ≥1和2x 2-xy -5x +y +4=0,则x +y =________10、设正三角形ABC 的边长为2,M 是AB 边上的中点,P 是边BC 上的任意一点,P A +PM 的最大值和最小值分别记为s 和t ,则s 2-t 2=________H G A B C D E F 第二试一、 设p 是实数,二次函数y =x 2-2px -p 的图象与x 轴有两个不同的交点A (x 1,0), B (x 2,0)(1)求证:2px 1+x 22+3p >0;(2)若A ,B 间的距离不超过│2p -3│,求p 的最大值。
全国初中数学竞赛试题及答案
全国初中数学竞赛试题及答案This manuscript was revised on November 28, 2020中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式22||()||a a b c a b c -++-++可以化简为( ).(A )2c a - (B )22a b - (C )a - (D )a 1(乙).如果22a =-+11123a+++的值为( ).(A )2- (B 2(C )2 (D )22(甲).如果正比例函数y = ax (a ≠ 0)与反比例函数y =x b(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ).(A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)2(乙). 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ).(A )10 (B )9 (C )7 (D )53(甲).如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12(D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5,则CD 的长为( ). (A )23 (B )4 (C )52 (D )OAB CED4(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ). (A )1 (B )2 (C )3 (D )44(乙).如果关于x 的方程 20x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ). (A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题6分,共30分) 6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 . 6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 7(乙).如图所示,点A 在半径为20的圆O 上,以OA为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,xyO ECABD若12OC =,则线段CE 、BD 的长度差是 。
七年级数学竞赛题:最大值与最小值
七年级数学竞赛题:最大值与最小值在实际生活与生产中,人们总想节省时间或费用,而取得最好的效果或最高效益,反映在数学问题上,就是求某个量,或者几个量的和、差、积、商的最大值和最小值,这类问题被称之为最值问题.在现阶段,解这类问题的相关知识与基本方法有:。
1.通过枚举选取;2.利用完全平方式性质;3.运用不等式(组)逼近求解;4.借用几何中的不等量性质、定理等.解答这类问题应当包括两个方面,一方面要说明不可能比某个值更大(或更小),另一方面要举例说明可以达到这个值,前者需要详细说明,后者需要构造一个合适的例子.例1 若c为正整数,且a+b=c,b+c=d,d+a=b,则(a+b)·(b+c)(c+d)(d+a)的最小值是________.(北京市竞赛题) 解题思路条件中关于c的信息最多,应突出c的作用,把a、b、d及待求式用c的代数式表示.例2 多项式5x2一4xy+4y2+12x+25的最小值为( ).(“五羊杯”竞赛题) (A)4 (B)5 (C)16 (D)25解题思路由多项式的特点联想到完全平方式,关键是正确地拆项与恰当地组合,以便得到完全平方式并利用其性质求最小值.例3 如图,设A、B、C、D是四个居民小区,现要在四边形ABCD内部建一个购物中心,试问应把购物中心建在何处,才能使四个居民小区到购物中心的距离总和最小?(全国“数学知识应用”夏令营试题) 解题思路先确定购物中心所建位置,然后从反面说明此点能满足要求..例4某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表家电名称 空调器 彩电 冰箱工时21 31 41 产值(千元)432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少(以千元为单位)? -(第十二届江苏省竞赛题)解题思路 恰当引元,将问题中图表、文字所表示的等量关系、不等量关系翻译成方程、不等式,通过消元、运用不等式逼近求出某个字母的取值范围,进而求出最高产值.例5 某工程车从仓库装上水泥电线杆运送到离仓库恰为1000米的公路边栽立,要求沿公路的一边向前每隔100米栽立电线杆一根.已知工程车每次至多只能运送电线杆4根,要求完成运送18根的任务,并返回仓库.若工程车行驶每千米耗油m升(在这里耗油量的多少 只考虑与行驶的路程有关,其他因素不计),每升汽油”元,求完成此项任务最低的耗油费用.(2000年湖北省竞赛试题)解题思路 要使耗油费最低,应当使运送次数尽可能少,最少需运送5次,而5次又有不同运送方法,求出每种运送方法行驶路程,比较得出最低的耗油费用.A 级1.如果1998a ⨯=b4(其中a 、b 为非零自数然),那么a 的最小值是________. (“五羊杯”竞赛题)2.在满足x +2y≤3,z≥0,y≥0的条件下,2x +y 能达到的最大值是________.(第十一届“希望杯”邀请赛试题) 3.当x =______且y =______时,代数式一x2一2y 2一2x+8y 一5有最大值,这个最大值是______.4.如图,计划开渠把河中的水经过B地引到A地,在 图中作出开渠的最短线路,这种设计方案的依据是______5.在式子4321+++++++x x x x 中,用不同的x值代入,得到对应的值,在这些对应的值中,最 小的值是( ). . (A)l (B)2 (C)3 (D)46.若a 、b 、c 、d 是整数,b 是正整数,且满足b +c=d,c+d=a,a+b=c,那么a+b+c+d的最大值是( ).(全国初中数学联赛试题)(A)一l (B)一5 (C)0 (D)17.已知x—y =a,z一y =10,则代数式x2+y 2+z2-xy-yz-zx的最小值是( ).(江苏省竞赛题)(A)75 (B)80 (C)100 (D)1058.已知x、y、z均为非负数,且满足x+y+z=30,3x+y-z=50,又设设M =5x +4y +2z ,则M 的最小值与最大值分别为( ).(A)110,120 (B)120,130 (C)130,140 (D)140,150 9.求满足下述条件的最小正整数n,对于这个n,有惟一的正数k 满足137158〈+〈k n n (第五届美国数学邀请赛试题)10.某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L 、M 两种型号的童装共50套,已知做一套L 型号的童装需用甲种布料0.5米,乙种布料l 米,可获利45元;做一套M 型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利30元.试问:该厂在生产这些童装中,当L 型号的童装为多少套时,能使该厂年获得利润最大?最大利润为多少?(江苏省无锡市中考题)11.六盒火柴按“规则方式”打包,所谓“规则方式”是指每相邻两盒必须是以完全重合的面相对接,最后得到的包装形状要是一个长方体,已知火柴盒的长、宽、高尺寸分别是:a=46mm,b =36mm,c =16mm ,请你给出一种能使表面积最小的打包方式,并画出其示意图.· (“数学知识应用”夏令营试题)B 级1.设平方数y 2是11个相继整数的平方和,则y 的最小值是______.(全国初中联赛试题)2.设m 、n 是自然数,并且19n 2一98n -m=0,则m+n的最小值是______.(全国理科实验班招生试题)3.设正整数a、b、c、d 满足条件85===d c c b b a ,则a+b+c+d的最小值是______.(上海市竞赛题)该人把五件物品中的若干件装入背包,当背包中所装的物品是______时,背包中物品的价值最大,最大价值是______.(第十一届“希望杯”邀请赛试题)5.某人从金坛市出发去扬州、常州、苏州、杭州各一次,最后返回金坛.已知各市之间的路费如表所示,请为他设计一条路费最省的路线__________________金坛 常州 扬州 苏州 杭州 金坛 0 30 40 50 60 常州 30 0 15 25 30 扬州 40 15 0 15 25 苏州 50 25 15 0 15 杭州 60302515(注表中单位为元,.甲一乙一丙一丁一戊一甲与甲一戊一丁一丙一乙一甲是同一条路线)(“华罗庚金杯”赛试题)6,甲乙两个粮库分别存粮600吨、1400吨,A 、B 两市分别用粮需从甲、乙两粮库调运,由甲库到A 、B 两市的运费分别是6元/吨、5元/吨;由乙库到A 、B 两市的运费分别是9元/吨、6元/吨.则总运费最少需______元.(北京市“迎春杯”竞赛题)7.23个不同的正整数的和是4845,问:这23个数的最大公约数可能达到的最大值是多少?写出你的结论,并说明理由.(第九届“希望杯”邀请赛试题)8.A 、B 、C 三个工厂位置如图,它们都生产同一 种产品,已知A 厂年产量是B 厂年产量的32,B 厂年产量 是C 年产量的53.现要选一地址建一个公用仓库,把三个 工厂的产品都运放在该仓库中,并且总运输费用要最省, 问仓库应选在何处?并说明你的理由.(北京市“迎春杯”竞赛题)9.在边防沙漠地带。
历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 043-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 050-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 057-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 063-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 070-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 077-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 086-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 91-10515.希望杯第八届(1997年)初中一年级第一试试题............................................. 99-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 106-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 114-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 123-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 130-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 143-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 150-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 154-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 158-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 164-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 168-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 175-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 179-20029.希望杯第十五届(2004年)初中一年级第一试试题 (183)30.希望杯第十五届(2004年)初中一年级第二试试题 (184)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (184)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+12468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。
2000-2017年(大同杯原新知杯)历年上海市初中数学竞赛试卷和参考答案
上海市大同杯(原新知杯、宇振杯)初中数学竞赛试题和参考答案目录2017年上海市初中数学竞赛(大同中学杯)试题 3 2017年上海市初中数学竞赛(大同中学杯)试题参考答案 6 2016年上海市初中数学竞赛(大同中学杯)试题11 2016年上海市初中数学竞赛(大同中学杯)试题参考答案14 2015年上海市初中数学竞赛(大同中学杯)试题18 2015年上海市初中数学竞赛(大同中学杯)试题详解22 2014年上海市初中数学竞赛(大同中学杯)试题29 2014年上海市初中数学竞赛(大同中学杯)试题参考答案31 2013年上海市初中数学竞赛(新知杯)试题35 2013年上海市初中数学竞赛(新知杯)试题参考答案38 2012年上海市初中数学竞赛(新知杯)试题43 2012年上海市初中数学竞赛(新知杯)试题详解46 2011年上海市初中数学竞赛(新知杯)试卷50 2011年上海市初中数学竞赛(新知杯)试卷详解53 2010年上海市初中数学竞赛(新知杯)试卷59 2010年上海市初中数学竞赛(新知杯)试卷详解61 2009年上海市初中数学竞赛(新知杯)试卷68 2009年上海市初中数学竞赛(新知杯)试卷参考答案71 2008年上海市初中数学竞赛(新知杯)试卷752008年上海市初中数学竞赛(新知杯)试卷参考答案79 2007年上海市初中数学竞赛(新知杯)试卷81 2007年上海市初中数学竞赛(新知杯)试卷答案详解83 2006年上海市初中数学竞赛(新知杯)试卷87 2006年上海市初中数学竞赛(新知杯)试卷答案详解90 2005年上海市初中数学竞赛(宇振杯)试卷94 2005年上海市初中数学竞赛(宇振杯)试卷参考答案97 2004年上海市初中数学竞赛(宇振杯)试卷99 2004年上海市初中数学竞赛(宇振杯)试卷参考答案101 2003年上海市初中数学竞赛(宇振杯)试卷104 2003年上海市初中数学竞赛(宇振杯)试卷参考答案106 2002年上海市初中数学竞赛(宇振杯)试卷107 2002年上海市初中数学竞赛(宇振杯)试卷参考答案108 2000年上海市初中数学竞赛(弘晟杯)试题110 2000年上海市初中数学竞赛(弘晟杯)试题参考答案1112017年上海市初中数学竞赛(大同中学杯)试卷一、 填空题(每题10分,共80分)1. 已知抛物线c bx ax y ++=2过点(0,0),(22.5,2020.5),(62.5,1812.5),则抛物线与x 轴的另一交点的横坐标为 (精确到0.001)。
全国初中数学竞赛(联赛)分类题型详解-几何
历年(95-10)年全国数学竞赛(联赛)分类题型详解 - 几何(1)选择题(30道题)1. 如果边长顺次为25、39、52与60的四边形内接于一圆,那么此圆的周长为[ ]A.62πB.63π C.64πD.65π1995年全国初中数学联赛试题答案: D详解:四个选择支表明,圆的周长存在且唯一,从而直径也存在且唯一.又由AB2+AD2 =252+602 =52×(52+122)=52×132=(32+42)×132 =392+522 =BC2+CD2故可取BD=65为直径,得周长为65π,选D.2. 设AB是⊙O的一条弦,CD是⊙O的直径,且与弦AB相交,记M=|S△CAB-S△DAB|,N=2S△OAB,则[ ]A.M>N B.M=N C.M<N D.M、N的大小关系不确定1995年全国初中数学联赛试题答案: B详解1: 不失一般性,设CE≥ED,在CE上取CF=ED,则有OF=OE,且S△ACE-S△ADE=S△AEF=2S△AOE.同理,S△BCE-S△BDE=2S△BOE.相加,得S△ABC-S△DAB=2S△OAB,即M=N.选B.详解2: 若过C、D、O分别作AB的垂线(图3),CE⊥AB、DF⊥AB、OL⊥AB,垂足分别为E、F、L.连CF、DE,可得梯形CEDF.又由垂径分弦定理,知L是EF的中点.根据课本上做过的一道作业:梯形对角线中点的连线平行底边,并且等于两底差的一半,有|CE-DF|=2OL.即M=N.选B.3.如图,A是半径为1的圆O外的一点,OA=2,AB是圆O的切线,B是切点,弦BC∥OA,连结AC,则阴影部分的面积等于[ ]1996年全国初中数学联赛试题答案: B4.如果一个三角形的面积和周长都被一直线所平分,那么该直线必通过这个三角形的[ ]A.内心B.外心C.重心D.垂心1996年全国初中数学联赛试题答案: A5.如果20个点将某圆周20等分,那么顶点只能在这20个点中选取的正多边形的个数有[ ]A.4个B.8个 C.12个 D.24个1996年全国初中数学联赛试题答案: C6. 在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积等于()(A)12(B)14(C)16(D)181998年全国数学联赛试卷答案: C详解: 连ED,则又因为DE是△ABC两边中点连线,所以故选C.7.一个凸n边形的内角和小于1999°,那么n的最大值是().A.11 B.12 C.13 D.141999年全国初中数学竞赛答案: C8.在三角形ABC 中,D 是边BC 上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC 的面积是( ).A .30B .36C .72D .1251999年全国初中数学竞赛答案: B9.在正五边形ABCDE 所在的平面内能找到点P ,使得△PCD 与△BCD 的面积相等,并且△ABP 为等腰三角形,这样的不同的点P 的个数为( ).A .2B .3C .4D .51999年全国初中数学竞赛答案: D10. 设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A 、∠B 的关系是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2000年全国初中数学竞赛试题解答
一、选择题(只有一个结论正确)
1、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若a >b >c ,则M 与P 的大小关系是( )。
(A )M =P ;(B )M >P ;(C )M <P ;(D )不确定。
答:(B )。
∵M=3c b a ++,N =2b a +,P =222c b a c N ++=+,M -P =12
2c
b a -+, ∵a >b >
c ,∴
12
2c b a -+>0122=-+c c c ,即M -P >0,即M >P 。
2、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(b ﹤
a ),再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是( )。
答:(C )。
因为图(A )中没有反映休息所消耗的时间;图(B )虽表明折返后S 的变化,但没有表示消耗的时间;图(D )中没有反映沿原始返回的一段路程,唯图(C )正确地表述了题意。
3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( )。
(A )甲比乙大5岁;(B )甲比乙大10岁;(C )乙比甲大10岁;(D )乙比甲大5岁。
答:(A )。
由题意知3×(甲-乙)=25-10,∴甲-乙=5。
4、一个一次函数图象与直线y=
4
95
45+x 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有( )。
(A )4个;(B )5个;(C )6个;(D )7个。
答:(B )。
在直线AB 上,横、纵坐标都是整数的点的坐标是x =-1+4N ,y =-25+5N ,
(N 是整数).在线段AB 上这样的点应满足-1+4N >0,且-25+5N≤0,∴4
1
≤N≤5,即
N =1,2,3,4,5。
5、设a ,b ,c 分别是△ABC 的三边的长,且c
b a b
a b a +++=
,则它的内角∠A、∠B 的关系是( )。
(A )∠B>2∠A;(B )∠B=2∠A;(C )∠B<2∠A;(D )不确定。
答:(B )。
由
c b a b a b a +++=
得c
a b
b a +=,延长CB 至D ,使BD =AB ,于是CD =a+
c ,在△ABC 与△DAC 中,∠C 为公共角,且BC:AC =AC:DC ,∴△ABC∽△DAC,∠BAC=∠D,∵∠BAD=∠D,∴∠ABC=∠D+∠BAD=2∠D=2∠BAC。
6、已知△ABC 的三边长分别为a ,b ,c ,面积为S ,△A 1B 1C 1的三边长分别为a 1,b 1,C 1面积为S 1,且a >a 1,b >b 1,c >c 1则S 与S 1的大小关系一定是( )。
(A )S >S 1;(B )S <S 1;(C )S =S 1;(D )不确定。
答:(D )。
分别构造△ABC 与△A 1B 1C 1如下:①作△ABC∽△A 1B 1C 1,显然,
即S >S 1;②设
,则
,S =10,
,则S 1=
×100>10,即S <S 1;③设
,则,S =10,
,则
,S 1=10,即S =S 1;因此,S 与S 1的大小关系不确
定。
二、填空题
7、已知:,那么=________。
答:1。
∵,即。
∴。
8、如图,在梯形ABCD 中,AB∥DC,AB =8,BC =6,∠BCD=45°,∠BAD=120°,则
梯形ABCD 的面积等于________。
答:66+6(平方单位)。
作AE、BF垂直于DC,垂足分别为E、F,由BC=6,
∠BCD=45°,得AE=BF=FC=6。
由∠BAD=120°,得∠DA E=30°,因为AE=6得DE=
2,AB=EF=8,DC=2+8+6=14+2,
∴。
9、已知关于的方程的根都是整数,那么符合条件的整数有________个。
答:5。
①当时,;②当时,易知是方程的一个整数根,再由
且是整数,知,∴;由①、②得符合条
件的整数有5个。
10、如图,工地上竖立着两根电线杆AB、CD,它们相距15米,分别自两杆上高出地面4米、6米的A、C处,向两侧地面上的E、D;B、F点处,用钢丝绳拉紧,以固定电线杆。
那么钢丝绳AD与BC的交点P离地面的高度为________米。
答:2.4米。
作PQ⊥BD于Q,设BQ=米,QD=米,PQ=米,由AB∥PQ∥CD,得
及,两式相加得,由此得米。
即点P离地面的高度为2.4米。
(注:由上述解法知,AB、CD之间相距多远,与题目结论无关。
)
11、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线恰好将矩形OABC分成面积相等的两部分,那么=________。
答:。
直线通过点D(15,5),故BD=1。
当时,直线通
过,两点,则它恰好将矩形OABC分成面积相等的两部分。
12、某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是________。
(注:×100%)
答:17%。
设原进价为元,销售价为元,那么按原进价销售的利润率为
×100%,原进价降低6.4%后,在销售时的利润率为×100%,依题意得:
×100%+8%=×100%,解得=1.17,故这种商品原来的利润
率为×100%=17%。
三、解答题
13、设是不小于的实数,使得关于的方程有
两个不相等的实数根。
(1)若,求的值。
(2)求的最大值。
解:因为方程有两个不相等的实数根,所以
,∴。
根据题设,有。
(1)因为
,即。
由于,故。
(2)。
设上是递
减的,所以当时,取最大值10。
故的最大值为10。
14、如上图:已知四边形ABCD外接圆O的半径为2,对角线AC与BD的交点为E,AE=EC,AB=2AE,且BD=23,求四边形ABCD的面积。
解:由题设得AB2=2AE2=AE·AC,∴AB:AC=AE:AB,又∠EAB=∠BAC,∴△ABE∽△ACB,∴∠ABE=∠ACB,从而AB=AD。
连结AD,交BD于H,则BH=HD=3。
∴OH==1,AH=OA-OH=2-1=1。
∴,∵E是AC的中点,∴,
,∴,∴。
15、一幢33层的大楼有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中的某一层停一次。
对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意。
现在有32个人在第一层,并且他们分别住在第2至第33层的
每一层,问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯而直接从楼梯上楼)
解:易知,这32个人恰好是第2至第33层各住1人。
对于每个乘电梯上、下楼的人,他所住的层数一定大于直接走楼梯上楼的人所住的层数。
事实上,设住第s层的人乘电梯,而住第t层的人直接走楼梯上楼,。
交换两人上楼方式,其余的人不变,则不满意总分不增,现分别考虑如下:
设电梯停在第层。
①当时,若住第s层的人乘电梯,而住第t层的人直接走楼梯上楼,则这两者不
满意总分为;交换两人上楼方式,则这两者不满意总分也为。
②当时,若住第s层的人乘电梯,而住第t层的人直接走楼梯上楼,则这两者不
满意总分为;交换两人上楼方式,则这两者不满意总分也为。
③当时,若住第s层的人乘电梯,而住第t层的人直接走楼梯上楼,则这两者不
满意总分为;交换两人上楼方式,则这两者不满意总分为
,前者比后者多。
④当时,若住第层的人乘电梯,而住第层的人直接走楼梯上楼,则这两者不满
意总分为;交换两人上楼方式,则这两者不满意总分为,前者比后者多。
⑤当时,若住第层的人乘电梯,而住第层的人直接走楼梯上楼,则这两者不满
意总分为;交换两人上楼方式,则这两者不满意总分为,前
者比后者多。
今设电梯停在第层,在第一层有人直接走楼梯上楼,那么不满意总分为:
当x=27,y=6时,s=316。
所以,当电梯停在第27层时,这32个人不满意的总分达到最小,最小值为316分。