2018年上海市闵行区高考数学一模试卷

合集下载

精选上海市闵行区2018学年度第一学期高三数学(一模)期末质量监控试题(精品解析)

精选上海市闵行区2018学年度第一学期高三数学(一模)期末质量监控试题(精品解析)

上海市闵行区2018学年度第一学期高三数学(一模)期末质量监控试卷一、选择题(本大题共4小题,共12.0分)1.若a,b为实数,则“”是“”的A. 充要条件B. 充分非必要条件C. 必要非充分条件D. 既非充分必要条件【答案】B【解析】【分析】根据充分条件和必要条件的概念,即可判断出结果.【详解】解不等式得或;所以由“”能推出“或”,反之不成立,所以“”是“”的充分不必要条件.故选B【点睛】本题主要考查充分条件与必要条件的概念,熟记概念即可,属于基础题型.2.已知a,b为两条不同的直线,,为两个不同的平面,,,则下面结论不可能成立的是A. ,且B.C. ,且D. b与,都相交【答案】D【解析】【分析】由点线面的位置关系,结合题中条件,即可分析出结果.【详解】因为a,b为两条不同的直线,,为两个不同的平面,,,所以有以下三种情况:(1)若,则;(2)若,则;(3)若且,则且;因此不可能b与,都相交.故选D【点睛】本题主要考查空间中线面位置关系,由线线平行,分类讨论线面关系即可,属于基础题型.3.已知函数,与其反函数有交点,则下列结论正确的是A. B.C. D.a与b的大小关系不确定【答案】B【解析】【分析】由函数与其反函数有交点,可得函数与直线有交点,进而可得出结果.【详解】因为函数,与其反函数有交点,所以函数与直线有交点,即方程有实根,整理得,所以,又,所以.故选B【点睛】本题主要考查反函数的概念,原函数与反函数有交点,必然与直线有交点,由此即可求解,属于基础题型.4.在平面直角坐标系中,已知向量,O是坐标原点,M是曲线上的动点,则的取值范围A. B. C. D.【答案】A【解析】【分析】先设,由M是曲线上的动点,得到,再由向量数量积运算的坐标表示,即可求出结果.【详解】设,则,因为M是曲线上的动点,所以,又,所以;因为,所以的取值范围是.故选A【点睛】本题主要考查向量数量积的坐标运算,熟记公式即可,属于常考题型.二、填空题(本大题共12小题,共36.0分)5.已知全集,集合,则______.【答案】【解析】【分析】解不等式得到集合,进而可求出结果.【详解】解不等式得或,所以集合或,因为,所以.故答案为【点睛】本题主要考查补集的运算,熟记概念即可,属于基础题型.6.______.【答案】【解析】【分析】在原式的基础上,分子分母同除以,进而可求出结果.【详解】因为.故答案为【点睛】本题主要考查型极限,只需分子分母同除以即可得出结果,属于基础题型.7.若复数z满足是虚数单位,则______.【答案】【解析】【分析】由先得到,再由复数的除法运算即可得出结果.【详解】因为,所以.故答案为【点睛】本题主要考查复数的运算,熟记除法运算法则即可,属于基础题型.8.方程的解为______.【答案】【解析】【分析】方程可化为,求解即可.【详解】由得即,解得.故答案为【点睛】本题主要考查矩阵,由矩阵的运算转化为含指数的方程,即可求解,属于基础题型. 9.等比数列中,,,则______.【答案】256【解析】【分析】先设等比数列的公比为,根据题中条件求出,进而可求出结果.【详解】设等比数列的公比为,因为,,所以,因此,所以.故答案为256【点睛】本题主要考查等比数列的性质,熟记等比数列性质即可,属于基础题型.10.的展开式中项的系数为___.(用数字表示)【答案】【解析】试题分析:由得:项的系数为.考点:二项展开式定理求特定项11.已知两条直线:,:,则与的距离为______.【答案】【解析】【分析】将:化为,再由平行线间的距离公式即可求出结果.【详解】因为:可化为,所以与的距离为.故答案为【点睛】本题主要考查两条平行线间的距离公式,熟记公式即可,属于基础题型.12.已知函数,的值域为,则的取值范围是______.【答案】【解析】【分析】由作出其图像,由值域为,即可求出结果.【详解】因为,作出其图像如下:因为函数,的值域为,所以由图像可得,;所以.故答案为【点睛】本题主要考查函数的性质,根据函数的值域求参数范围,通常需要作出函数图像,由数形结合的思想来处理,属于常考题型.13.如图,在过正方体的任意两个顶点的所有直线中,与直线异面的直线的条数为______.【答案】12【解析】【分析】由异面直线的概念,一一列举出与异面的直线即可.【详解】由题中正方体可得与异面的直线有:,,,,,;,,,,,,共12条.故答案为12【点睛】本题主要考查异面直线,熟记概念即可,属于基础题型.14.在中,角A,B,C的对边分别为a,b,c,面积为S,且,则______.【答案】0【解析】【分析】由三角形面积公式和余弦定理可将化为,进而可求出结果.【详解】因为,余弦定理,又,所以有,即,所以,因此或,所以或,因为C三角形内角,所以,故.故答案为0【点睛】本题主要考查解三角形,熟记余弦定理和三角形面积公式即可求出结果,属于常考题型.15.已知向量,,且,若向量满足,则的最大值为______.【答案】【解析】【分析】先由题中条件求出,再由即可求出结果.【详解】因为,,且所以,所以,因此.故的最大值为【点睛】本题主要考查向量的模的最值问题,根据向量模的几何意义,即可求解,属于常考题型.16.若无穷数列满足:,当,时.其中表示,,,中的最大项,有以下结论:若数列是常数列,则若数列是公差的等差数列,则;若数列是公比为q的等比数列,则则其中正确的结论是______写出所有正确结论的序号【答案】【解析】【分析】根据题中条件,逐项判断即可.【详解】若数列是常数列,则有,所以,又,所以,故,又,所以,即.故正确;若数列是公差的等差数列,若,则数列是递增数列,则,则,,不能满足数列为公差的等差数列;若,则数列是递减数列,则,所以满足题意;故正确;若数列是公比为q的等比数列,若q>1,由可知数列是递增数列,所以,所以,即q=2满足题意;若0<q<1,由可知数列是递减数列,所以,所以,故,因为0<q<1,所以显然不成立,故0<q<1不满足题意;若q<0,则数列是摆动数列,不能满足题意;综上q>1,故正确.故答案为【点睛】本题主要考查数列的应用,灵活运用数列的性质是解题的关键,难度较大.三、解答题(本大题共5小题,共60.0分)17.如图,正三棱柱的各棱长均为2,D为棱BC的中点.求该三棱柱的表面积;求异面直线AB与所成角的大小.【答案】(1);(2).【解析】【分析】根据棱柱的表面积公式直接求解即可;先取AC中点E,连结DE,,根据题意可得是异面直线AB与所成角,解三角形即可. 【详解】解:正三棱柱的各棱长均为2,该三棱柱的表面积:.取AC中点E,连结DE,,为棱BC的中点,,,是异面直线AB与所成角或所成角的补角,,,,异面直线AB与所成角的大小为.【点睛】本题主要考查几何体的表面积公式以及异面直线所成的角,在几何体中作出异面直线所成的角即可,属于基础题型.18.已知抛物线C:.若C上一点到其焦点的距离为3,求C的方程;若,斜率为2的直线l交C于两点,交x轴的正半轴于点M,O为坐标原点,求点M的坐标.【答案】(1);(2).【解析】【分析】根据抛物线的定义,由C上一点到其焦点的距离为3,可求出,进而可求出抛物线方程;由先求出抛物线方程,再设直线l:,代入抛物线方程,设,,结合韦达定理和判别式,根据求出的值即可.【详解】解:由抛物线的定义得:,解得:,所以抛物线C的方程为:;时,抛物线C:,设直线l:,并代入抛物线C:得:,,解得设,,则,,,解得或当时,不在x轴正半轴上,舍去;当时,故点M的坐标为【点睛】本题主要考查抛物线的方程与简单性质,通常需要联立直线与抛物线方程,结合韦达定理和题中条件求解,属于常考题型.19.在股票市场上,投资者常根据股价每股的价格走势图来操作,股民老张在研究某只股票时,发现其在平面直角坐标系内的走势图有如下特点:每日股价元与时间天的关系在ABC段可近似地用函数的图象从最高点A到最低点C的一段来描述如图,并且从C 点到今天的D点在底部横盘整理,今天也出现了明显的底部结束信号.老张预测这只股票未来一段时间的走势图会如图中虚线DEF段所示,且DEF段与ABC段关于直线l:对称,点B,D的坐标分别是.请你帮老张确定a,,的值,并写出ABC段的函数解析式;如果老张预测准确,且今天买入该只股票,那么买入多少天后股价至少是买入价的两倍?【答案】(1),,,,;(2)16.【解析】【分析】由B,D的坐标确定的值,和C的坐标,进而确定周期,求出,再由C的坐标,求出,即可得出函数解析式;(2)由(1)线求出DEF的解析式,令,求出即可.【详解】解:因为B,D的坐标分别是,且DEF段与ABC段关于直线l:对称,所以,所以,,,,由可得,,.由题意得DEF的解析式为:,由,得,故买入天后股价至少是买入价的两倍.【点睛】本题主要考查三角函数的应用,熟记三角函数的图像和性质即可,属于常考题型.20.对于函数,若函数是增函数,则称函数具有性质A.若,求的解析式,并判断是否具有性质A;判断命题“减函数不具有性质A”是否真命题,并说明理由;若函数具有性质A,求实数k的取值范围,并讨论此时函数在区间上零点的个数.【答案】(1),具有性质A;(2)假命题;(3)详见解析.【解析】【分析】由,结合即可得出解析式,和单调性,进而可得出结果;判断命题“减函数不具有性质A”,为假命题,举出反例即可,如;若函数具有性质A,可知在为增函数,进而可求出实数k的取值范围;再令,则在区间上零点的个数,即是的根的个数,结合k 的取值范围,即可求出结果.【详解】解:,,在R上递增,可知具有性质A;命题“减函数不具有性质A”,为假命题,比如:,在R上递增,具有性质A;若函数具有性质A,可得在递增,可得,解得;由,可得,即,可得,时显然成立;时,,由在递减,且值域为,时,或1,有三解,3个零点;当时,,即,可得,1个零点;当时,,t有一解,x两解,即两个零点;当,且时,无解,即x无解,无零点.【点睛】本题主要考查函数的解析式与函数的单调性,以及函数零点问题,按照题中条件结合函数的性质分析即可,属于常考题型.21.对于数列,若存在正数p,使得对任意都成立,则称数列为“拟等比数列”.已知,且,若数列和满足:,且,.若,求的取值范围;求证:数列是“拟等比数列”;已知等差数列的首项为,公差为d,前n项和为,若,,,且是“拟等比数列”,求p的取值范围请用,d表示.【答案】(1)详见解析;(2).【解析】【分析】由即可求出结果;根据题中“拟等比数列”的定义,由,结合条件推出存在正数,使得有成立即可;由题中条件,,,先求出的范围;再根据是“拟等比数列”,分类讨论和,即可得出结果.【详解】解:,,且,,,.由题意得,当且时,,对任意,都有,即存在,使得有,数列数列是“拟等比数列”;,,,,,,由得,从而解得,又是“拟等比数列”,故存在,使得成立,当时,,,由得,由图象可知在时递减,故,当时,,,由得,由图象可知在时递减,故,由得p的取值范围是.【点睛】本题主要考查数列的应用,根据题中的新定义,结合条件,分类讨论即可求出结果,过程较繁琐,难度较大.。

上海市闵行区2018—2019学年高一上学期质量调研考试数学试题(含精品解析)

上海市闵行区2018—2019学年高一上学期质量调研考试数学试题(含精品解析)

2018—2019学年上海市闵行区高一年级上学期质量调研考试数学试卷一、填空题:(本大题共12题,满分54分;第1-6题每题4分,第7-12每题5分)1.已知全集,集合,则____________【答案】【解析】【分析】由A,B结合补集的定义,求解即可.【详解】结合集合补集计算方法,得到【点睛】本道题考查了补集计算方法,难度较容易.2.函数的定义域是__________.【答案】【解析】分析:先根据偶次根式下被开方数非负列不等式,再解指数不等式得结果.详解:要使函数有意义,则,解得,故函数的定义域是.点睛:具体函数定义域主要考虑:(1)分式函数中分母不等于零. (2)偶次根式函数的被开方式大于或等于0.(3)对数中真数大于零.(4)零次幂得底不为零.3.函数的反函数是____________【答案】【解析】【分析】反函数,即利用y表示x,即可。

【详解】由,解得,交换x,y得到反函数【点睛】本道题考查了反函数的计算方法,抓住用y表示x,即可,属于较容易题。

4.不等式的解集为____________【答案】【解析】【分析】结合不等式的性质,移项,计算x的范围,即可。

【详解】结合不等式,可知,对不等式移项,得到,所以x的范围为【点睛】本道题考查了分式不等式计算方法,属于较容易的题。

5.用“二分法”求函数在区间内的零点时,取的中点,则的下一个有零点的区间是____________【答案】【解析】【分析】如果则说明零点在之间,即可。

【详解】,故下一个有零点的区间为【点睛】本道题考查了零点判定规则,抓住如果则说明零点在之间,属于较容易的题。

6.命题“若,则”,能说明该命题为假命题的一组的值依次为________【答案】(不唯一)【解析】【分析】代入特殊值,计算,分析,即可。

【详解】代入特殊值,当,发现,为假命题。

【点睛】本道题考查了命题真假判断,难度较容易。

7.已知,则____________(用表示)【答案】【解析】【分析】本道题结合以及,不断转化,即可。

2018年上海市高考数学一模试卷(解析卷)

2018年上海市高考数学一模试卷(解析卷)

2018年上海市高考数学试卷一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.(4分)设全集U=Z,集合M={1,2},P={﹣2,﹣1,0,1,2},则P∩C U M {﹣2,﹣1,0} .【解答】解:C U M={﹣2,﹣1,0},故P∩C U M={﹣2,﹣1,0}故答案为:{﹣2,﹣1,0}2.(4分)已知复数(i为虚数单位),则=.【解答】解:复数==,∴=,∴=•==,故答案为.3.(4分)不等式2>()3(x﹣1)的解集为(﹣∞,﹣2)∪(3,+∞).【解答】解:不等式2>()3(x﹣1)化为2>23﹣3x,即x2﹣4x﹣3>3﹣3x,∴x2﹣x﹣6>0,解得x<﹣2或x>3,∴原不等式的解集为(﹣∞,﹣2)∪(3,+∞).故答案为:(﹣∞,﹣2)∪(3,+∞).4.(4分)函数f(x)=sinxcosx+cos2x的最大值为.【解答】解:函数f(x)=sinxcosx+cos2x=sin2x+cos2x+=sin(2x+)+,当2x+=2kπ+,k∈Z,即x=kπ+,k∈Z,函数取得最大值1+=,故答案为:.5.(4分)在平面直角坐标系xOy中,以直线y=±2x为渐近线,且经过椭圆x2+=1右顶点的双曲线的方程是x2﹣=1.【解答】解:设以直线y=±2x为渐近线的双曲线的方程为x2﹣=λ(λ≠0),∵双曲线椭圆x2+=1右顶点(1,0),∴1=λ,∴双曲线方程为:x2﹣=1.故答案为:x2﹣=1.6.(4分)将圆锥的侧面展开后得到一个半径为2的半圆,则此圆锥的体积为.【解答】解:设圆锥的底面半径为r,则2πr=2π,∴r=1.∴圆锥的高h=.∴圆锥的体积V==.故答案为:.7.(5分)设等差数列{a n}的公差d不为0,a1=9d.若a k是a1与a2k的等比中项,则k=4.【解答】解:因为a k是a1与a2k的等比中项,则a k2=a1a2k,[9d+(k﹣1)d]2=9d•[9d+(2k﹣1)d],又d≠0,则k2﹣2k﹣8=0,k=4或k=﹣2(舍去).故答案为:4.8.(5分)已知(1+2x)6展开式的二项式系数的最大值为a,系数的最大值为b,则=12.【解答】解:由题意可得a==20,再根据,解得,即≤r≤,∴r=4,此时b=×24=240;∴==12.故答案为:12.9.(5分)同时掷两枚质地均匀的骰子,则两个点数之积不小于4的概率为.【解答】解:同时掷两枚质地均匀的骰子,基本事件总数n=6×6=36,两个点数之积小于4包含的基本事件(a,b)有:(1,1),(1,2),(2,1),(1,3),(3,1),共5个,∴两个点数之积不小于4的概率为p=1﹣=.故答案为:.10.(5分)已知函数f(x)=有三个不同的零点,则实数a的取值范围是[1,+∞).【解答】解:由题意可知:函数图象的左半部分为单调递增对数函数的部分,函数图象的右半部分为开口向上的抛物线,对称轴为x=,最多两个零点,如上图,要满足题意,必须指数函数的部分向下平移到与x轴相交,由对数函数过点(1,0),故需左移至少1个单位,故a≥1,还需保证抛物线与x轴由两个交点,故最低点<0,解得a<0或a>,综合可得:a≥1,故答案为:[1,+∞).11.(5分)已知S n为数列{a n}的前n项和,a1=a2=1,平面内三个不共线的向量,,,满足=(a n﹣1+a n+1)+(1﹣a n),n≥2,n∈N*,若A,B,C在同一直线上,则S2018=2.【解答】解:若A,B,C三点共线,则=x+(1﹣x),∴根据条件“平面内三个不共线的向量,,,满足=(a n﹣1+a n+1)+(1﹣a n),n≥2,n∈N*,A,B,C在同一直线上,”得出a n﹣1+a n+1+1﹣a n=1,∴a n﹣1+a n+1=a n,∵S n为数列{a n}的前n项和,a1=a2=1,∴数列{a n}为:1,1,0,﹣1,﹣1,0,1,1,0,﹣1,﹣1,0,…即数列{a n}是以6为周期的周期数列,前6项为1,1,0,﹣1,﹣1,0,∵2018=6×336+2,∴S2018=336×(1+1+0﹣1﹣1+0)+1+1=2.故答案为:2.12.(5分)已知函数f(x)=m(x﹣m)(x+m+2)和g(x)=3x﹣3同时满足以下两个条件:①对任意实数x都有f(x)<0或g(x)<0;②总存在x0∈(﹣∞,﹣2),使f(x0)g(x0)<0成立.则m的取值范围是(﹣3,﹣2).【解答】解:对于①∵g(x)=3x﹣3,当x<1时,g(x)<0,又∵①∀x∈R,f(x)<0或g(x)<0∴f(x)=m(x﹣m)(x+m+2)<0在x≥1时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面,即,可得﹣3<m<0又∵②x∈(﹣∞,﹣2),f(x)g(x)<0∴此时g(x)=3x﹣3<0恒成立∴f(x)=m(x﹣m)(x+m+2)>0在x∈(﹣∞,﹣2)有成立的可能,则只要﹣2比x1,x2中的较小的根大即可,(i)当﹣1<m<0时,较小的根为﹣m﹣2,﹣m﹣2>﹣2不成立,(ii)当m=﹣1时,两个根同为﹣1>﹣3,不成立,(iii)当﹣3<m<﹣1时,较小的根为m,即m<﹣2成立.综上可得①②成立时﹣3<m<﹣2.故答案为:(﹣3,﹣2).二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)“a>b”是“()2>ab”成立的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件【解答】解:由()2>ab得>ab,即a2+2ab+b2>4ab,则a2﹣2ab+b2>0,即(a﹣b)2>0,则a≠b,则“a>b”是“()2>ab”成立的充分不必要条件,故选:A.14.(5分)已知函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f (x)≤f(x2),则|x2﹣x1|的最小值是()A.πB.2πC.2 D.4【解答】解:对于函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x2﹣x1|的最小值为函数f(x)的半个周期,即===2,故选:C.15.(5分)已知和是互相垂直的单位向量,向量满足:,,n∈N*,设θn为和的夹角,则()A.θn随着n的增大而增大B.θn随着n的增大而减小C.随着n的增大,θn先增大后减小D.随着n的增大,θn先减小后增大【解答】解:分别以和所在的直线为x轴,y轴建立坐标系,则=(1,0),=(0,1),设=(x n,y n),∵,,n∈N*,∴x n=n,y n=2n+1,n∈N*,∴=(n,2n+1),n∈N*,∵θn为和的夹角,∴tanθn===2+∴y=tanθn为减函数,∴θn随着n的增大而减小.故选:B.16.(5分)在平面直角坐标系xOy中,已知两圆C1:x2+y2=12和C2:x2+y2=14,又点A坐标为(3,﹣1),M、N是C1上的动点,Q为C2上的动点,则四边形AMQN能构成矩形的个数为()A.0个 B.2个 C.4个 D.无数个【解答】解:如图所示,任取圆C2上一点Q,以AQ为直径画圆,交圆C1与M、N两点,则四边形AMQN能构成矩形,由作图知,四边形AMQN能构成矩形的个数为无数个.故选:D.三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2AB=2,E是PB的中点.(1)求三棱锥P﹣ABC的体积;(2)求异面直线EC和AD所成的角(结果用反三角函数值表示).【解答】解:(1)∵PA⊥平面ABCD,底面ABCD是矩形,高PA=2,BC=AD=2,AB=1,==1.∴S△ABC故V P==.﹣ABC(2)∵BC∥AD,∴∠ECB或其补角为异面直线EC和AD所成的角θ,又∵PA⊥平面ABCD,∴PA⊥BC,又BC⊥AB,∴BC⊥平面PAB,∴BC⊥PB,于是在Rt△CEB中,BC=2,BE=PB=,tanθ==,∴异面直线EC和AD所成的角是arctan.18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.【解答】解:(1)∵y2=2px过点P(1,1),∴1=2p,解得p=,∴y2=x,∴焦点坐标为(,0),准线为x=﹣,(2)证明:设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),∴直线OP为y=x,直线ON为:y=x,由题意知A(x1,x1),B(x1,),由,可得k2x2+(k﹣1)x+=0,∴x1+x2=,x1x2=∴y1+=kx1++=2kx1+=2kx1+=2kx1+(1﹣k)•2x1=2x1,∴A为线段BM的中点.19.(14分)如图,某大型厂区有三个值班室A、B、C.值班室A在值班室B的正北方向2千米处,值班室C在值班室B的正东方向2千米处.(1)保安甲沿CA从值班室出发行至点P处,此时PC=1,求PB的距离;(2)保安甲沿CA从值班室C出发前往值班室A,保安乙沿AB从值班室A出发前往值班室B,甲乙同时出发,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?【解答】解:(1)在Rt△ABC中,AB=2,BC=2,所以∠C=30°,在△PBC中PC=1,BC=2,由余弦定理可得BP2=BC2+PC2﹣2BC•PCcos30°=(2)2+1﹣2×2×1×=7,即BP=;(2)在Rt△ABC中,BA=2,BC=2,AC==4,设甲出发后的时间为t小时,则由题意可知0≤t≤4,设甲在线段CA上的位置为点M,则AM=4﹣t,①当0≤t≤1时,设乙在线段AB上的位置为点Q,则AQ=2t,如图所示,在△AMQ中,由余弦定理得MQ2=(4﹣t)2+(2t)2﹣2•2t•(4﹣t)cos60°=7t2﹣16t+7>9,解得t<或t>,所以0≤t≤;②当1≤t≤4时,乙在值班室B处,在△ABM中,由余弦定理得MB2=(4﹣t)2+4﹣2•2t•(4﹣t)cos60°=t2﹣6t+12>9,解得t<3﹣或t>3+,又1≤t≤4,不合题意舍去.综上所述0≤t≤时,甲乙间的距离大于3千米,所以两人不能通话的时间为小时.20.(16分)设集合A,B均为实数集R的子集,记A+B={a+b|a∈A,b∈B}.(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*且n≥2时,曲线+=的焦距为a n,如果A={a1,a2,…,a n},B={﹣,﹣,﹣},设A+B中的所有元素之和为S n,求S n的值;(3)在(2)的条件下,对于满足m+n=3k,且m≠n的任意正整数m,n,k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值.【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线+=,即﹣=,在n≥2时表示双曲线,故a n=2=n,∴a1+a2+a3+…+a n=∵B={﹣,﹣,﹣},∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n(﹣﹣﹣)=3•+n (﹣﹣﹣)=n2,(3)∵∴S m+S n﹣λS k>0恒成立⇔λ<=恒成立,∵m+n=3k,且m≠n,∴==>,∴λ≤,故实数λ的最大值为21.(18分)对于定义在[0,+∞)上的函数f(x),若函数y=f(x)﹣(ax+b)满足:①在区间[0,+∞)上单调递减,②存在常数p,使其值域为(0,p],则称函数g(x)=ax+b是函数f(x)的“逼进函数”.(1)判断函数g(x)=2x+5是不是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)求证:函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”(3)若g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,求a 的值.【解答】解:(1)f(x)﹣g(x)=﹣(2x+5)=,可得y=f(x)﹣g(x)在[0,+∞)递减,且x+2≥2,0<≤,可得存在p=,函数y的值域为(0,],则函数g(x)=2x+5是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)证明:f(x)﹣g(x)=()x﹣x,由y=()x,y=﹣x在[0,+∞)递减,则函数y=f(x)﹣g(x)在[0,+∞)递减,则函数y=f(x)﹣g(x)在[0,+∞)的最大值为1;由x=1时,y=﹣=0,x=2时,y=﹣1=﹣<0,则函数y=f(x)﹣g(x)在[0,+∞)的值域为(﹣∞,1],即有函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”;(3)g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,可得y=x+﹣ax为[0,+∞)的减函数,可得导数y′=1﹣a+≤0在[0,+∞)恒成立,可得a﹣1≥,由x>0时,=≤1,则a﹣1≥1,即a≥2;又y=x+﹣ax在[0,+∞)的值域为(0,1],则>(a﹣1)x,x=0时,显然成立;x>0时,a﹣1<,可得a﹣1≤1,即a≤2.则a=2.。

2018年上海市各区高考数学一模试卷及答案解析(全集)

2018年上海市各区高考数学一模试卷及答案解析(全集)

2018年上海市普陀区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)设全集U={1,2,3,4,5},若集合A={3,4,5},则∁U A=.2.(4分)若,则=.3.(4分)方程log2(2﹣x)+log2(3﹣x)=log212的解x=.4.(4分)的二项展开式中的常数项的值为.5.(4分)不等式的解集为.6.(4分)函数的值域为.7.(5分)已知i是虚数单位,是复数z的共轭复数,若,则在复平面内所对应的点所在的象限为第象限.8.(5分)若数列{a n}的前n项和(n∈N*),则=.9.(5分)若直线l:x+y=5与曲线C:x2+y2=16交于两点A(x1,y1)、B(x2,y2),则x1y2+x2y1的值为.10.(5分)设a1、a2、a3、a4是1,2,3,4的一个排列,若至少有一个i(i=1,2,3,4)使得a i=i成立,则满足此条件的不同排列的个数为.11.(5分)已知正三角形ABC的边长为,点M是△ABC所在平面内的任一动点,若,则的取值范围为.12.(5分)双曲线绕坐标原点O旋转适当角度可以成为函数f(x)的图象,关于此函数f(x)有如下四个命题:①f(x)是奇函数;②f(x)的图象过点或;③f(x)的值域是;④函数y=f(x)﹣x有两个零点;则其中所有真命题的序号为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若数列{a n}(n∈N*)是等比数列,则矩阵所表示方程组的解的个数是()A.0个B.1个C.无数个D.不确定14.(5分)“m>0”是“函数f(x)=|x(mx+2)|在区间(0,+∞)上为增函数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件15.(5分)用长度分别为2、3、5、6、9(单位:cm)的五根木棒连接(只允许连接,不允许折断),组成共顶点的长方体的三条棱,则能够得到的长方体的最大表面积为()A.258cm2B.414cm2C.416cm2D.418cm216.(5分)定义在R上的函数f(x)满足,且f(x﹣1)=f(x+1),则函数在区间[﹣1,5]上的所有零点之和为()A.4B.5C.7D.8三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示的圆锥的体积为,底面直径AB=2,点C是弧的中点,点D是母线PA的中点.(1)求该圆锥的侧面积;(2)求异面直线PB与CD所成角的大小.18.(14分)某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本p(x)=+x+150万元.(1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣(如图),经实验知,每台机器人的日平均分拣量q(m)=(单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少百分之几?19.(14分)设函数f(x)=sin(ωx+φ)(ω>0,),已知角φ的终边经过点,点M(x1,y1)、N(x2,y2)是函数f(x)图象上的任意两点,当|f(x1)﹣f(x2)|=2时,|x1﹣x2|的最小值是.(1)求函数y=f(x)的解析式;(2)已知△ABC面积为,角C所对的边,,求△ABC的周长.20.(16分)设点F1、F2分别是椭圆(t>0)的左、右焦点,且椭圆C上的点到点F2的距离的最小值为,点M、N是椭圆C上位于x轴上方的两点,且向量与向量平行.(1)求椭圆C的方程;(2)当时,求△F1MN的面积;(3)当时,求直线F2N的方程.21.(18分)设d为等差数列{a n}的公差,数列{b n}的前n项和T n,满足(n∈N*),且d=a5=b2,若实数m∈P k={x|a k﹣2<x<a k+3}(k∈N*,k≥3),则称m具有性质P k.(1)请判断b1、b2是否具有性质P6,并说明理由;(2)设S n为数列{a n}的前n项和,若{S n﹣2λa n}是单调递增数列,求证:对任意的k(k∈N*,k≥3),实数λ都不具有性质P k;(3)设H n是数列{T n}的前n项和,若对任意的n∈N*,H2n﹣1都具有性质P k,求所有满足条件的k的值.2018年上海市普陀区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)设全集U={1,2,3,4,5},若集合A={3,4,5},则∁U A={1,2} .【解答】解:∵全集U={1,2,3,4,5},集合A={3,4,5},∴∁U A={1,2}.故答案为:{1,2}.2.(4分)若,则=.【解答】解:,∴=.故答案为:.3.(4分)方程log2(2﹣x)+log2(3﹣x)=log212的解x=﹣1.【解答】解:∵方程log2(2﹣x)+log2(3﹣x)=log212,∴,即,解得x=﹣1.故答案为:﹣1.4.(4分)的二项展开式中的常数项的值为﹣84.【解答】解:二项展开式的通项=,由,得r=3.∴的二项展开式中的常数项为.故答案为:﹣84.5.(4分)不等式的解集为[0,1)∪(1,2] .【解答】解:由题意得:,解得:0≤x<1或1<x≤2,故答案为:[0,1)∪(1,2].6.(4分)函数的值域为[﹣1,3] .【解答】解:∵=sinx+cosx+1=2sin(x+)+1,∵sin(x+)∈[﹣1,1],∴f(x)=2sin(x+)+1∈[﹣1,3].故答案为:[﹣1,3].7.(5分)已知i是虚数单位,是复数z的共轭复数,若,则在复平面内所对应的点所在的象限为第一象限.【解答】解:,设z=a+bi,则z×2i﹣(1+i)=0,即(a+bi)×2i﹣1﹣i=0,则2ai﹣2b﹣1﹣i=0,∴﹣2b﹣1+(2a﹣1)i=0,则,则,∴z=﹣i,则=+i,∴则在复平面内所对应的点位于第一象限,故答案为:一.8.(5分)若数列{a n}的前n项和(n∈N*),则=﹣2.【解答】解:数列{a n}的前n项和(n∈N*),可得n=1时,a1=S1=﹣3+2+1=0;当n≥2时,a n=S n﹣S n﹣1=﹣3n2+2n+1+3(n﹣1)2﹣2n+2﹣1=﹣6n+5,则==(﹣2+)=﹣2+0=﹣2.故答案为:﹣2.9.(5分)若直线l:x+y=5与曲线C:x2+y2=16交于两点A(x1,y1)、B(x2,y2),则x1y2+x2y1的值为16.【解答】解:直线l:x+y=5与曲线C:x2+y2=16交于两点A(x1,y1)、B(x2,y2),则:,所以:2x2﹣10x+9=0,则:x1+x2=5,,则:x1y2+x2y1=x1(5﹣x2)+x2(5﹣x1),=5(x1+x2)﹣2x1x2,=25﹣9,=16.故答案为:16.10.(5分)设a1、a2、a3、a4是1,2,3,4的一个排列,若至少有一个i(i=1,2,3,4)使得a i=i成立,则满足此条件的不同排列的个数为15.【解答】解:根据题意,a1、a2、a3、a4是1,2,3,4的一个排列,则所有的排列有A44=24个,假设不存在i(i=1,2,3,4)使得a i=i成立,则a1可以在第2、3、4位置,有3种情况,假设a1在第二个位置,则a1可以在第1、3、4位置,也有3种情况,此时a3、a4只有1种排法,剩余的两个数在其余两个位置,有1种情况,则不存在i(i=1,2,3,4)使得a i=i成立的情况有3×3=9种,则至少有一个i(i=1,2,3,4)使得a i=i成立排列数有24﹣9=15个;故答案为:15.11.(5分)已知正三角形ABC的边长为,点M是△ABC所在平面内的任一动点,若,则的取值范围为[0,6] .【解答】解:以A点为原点,建立如图所示的平面直角坐标系,则A(0,0),B(,0),C(,),∵,不妨设M(cosθ,sinθ),∴++=(﹣cosθ,﹣sinθ)+(﹣cosθ,﹣sinθ)+(﹣cosθ,﹣sinθ)=(﹣3cosθ,﹣3sinθ),∴|++|2=(﹣3cosθ)2+(﹣3sinθ)2=9(2﹣cosθ﹣sinθ)=18﹣18sin(θ+),∵﹣1≤sin(θ+)≤1,∴0≤18﹣18sin(θ+)≤36,∴的取值范围为[0,6],故答案为:[0,6]12.(5分)双曲线绕坐标原点O旋转适当角度可以成为函数f(x)的图象,关于此函数f(x)有如下四个命题:①f(x)是奇函数;②f(x)的图象过点或;③f(x)的值域是;④函数y=f(x)﹣x有两个零点;则其中所有真命题的序号为①②.【解答】解:双曲线关于坐标原点对称,可得旋转后得到的函数f(x)的图象关于原点对称,即有f(x)为奇函数,故①对;由双曲线的顶点为(±,0),渐近线方程为y=±x,可得f(x)的图象的渐近线为x=0和y=±x,图象关于直线y=x对称,可得f(x)的图象过点,或,由对称性可得f(x)的图象按逆时针60°旋转位于一三象限;按顺时针旋转60°位于二四象限;故②对;f(x)的图象按逆时针旋转60°位于一三象限,由图象可得顶点为点,或,不是极值点,则f(x)的值域不是;f(x)的图象按顺时针旋转60°位于二四象限,由对称性可得f(x)的值域也不是.故③不对;当f(x)的图象位于一三象限时,f(x)的图象与直线y=x有两个交点,函数y=f(x)﹣x有两个零点;当f(x)的图象位于二四象限时,f(x)的图象与直线y=x没有交点,函数y=f(x)﹣x没有零点.故④错.故答案为:①②.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若数列{a n}(n∈N*)是等比数列,则矩阵所表示方程组的解的个数是()A.0个B.1个C.无数个D.不确定【解答】解:根据题意,矩阵所表示方程组为,又由数列{a n}(n∈N*)是等比数列,则有===,则方程组的解有无数个;故选:C.14.(5分)“m>0”是“函数f(x)=|x(mx+2)|在区间(0,+∞)上为增函数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【解答】解:∵m>0,∴函数f(x)=|x(mx+2)|=|mx2+2x|,∵f(0)=0,∴f(x)在区间(0,+∞)上为增函数”;∵函数f(x)=|x(mx+2)|=|mx2+2x|在区间(0,+∞)上为增函数,f(0)=0,∴m∈R,∴“m>0”是“函数f(x)=|x(mx+2)|在区间(0,+∞)上为增函数”的充分非必要条件.故选:A.15.(5分)用长度分别为2、3、5、6、9(单位:cm)的五根木棒连接(只允许连接,不允许折断),组成共顶点的长方体的三条棱,则能够得到的长方体的最大表面积为()A.258cm2B.414cm2C.416cm2D.418cm2【解答】解:设长方体的三条棱分别为a,b,c,则长方体的表面积S=2(ab+bc+ac)≤(a+b)2+(b+c)2+(a+c)2,当且仅当a=b=c时上式“=”成立.由题意可知,a,b,c不可能相等,故考虑当a,b,c三边长最接近时面积最大,此时三边长为8,8,9,用2、6连接,3、5连接各为一条棱,第三条棱为9组成长方体,此时能够得到的长方体的最大表面积为2(8×8+8×9+8×9)=416(cm2).故选:C.16.(5分)定义在R上的函数f(x)满足,且f(x﹣1)=f(x+1),则函数在区间[﹣1,5]上的所有零点之和为()A.4B.5C.7D.8【解答】解:∵函数,且f(x﹣1)=f(x+1),函数的周期为2,函数,的零点,就是y=f(x)与y=图象的交点的横坐标,∴y=f(x)关于点(0,3)中心对称,将函数两次向右平移2个单位,得到函数y=f(x)在[﹣1,5]上的图象,每段曲线不包含右端点(如下图),去掉端点后关于(2,3)中心对称.又∵y==3+关于(2,3)中心对称,故方程f(x)=g(x)在区间[﹣1,5]上的根就是函数y=f(x)和y=g(x)的交点横坐标,共有三个交点,自左向右横坐标分别为x1,x2,x3,其中x1和x3关于(2,3)中心对称,∴x1+x3=4,x2=1,故x1+x2+x3=5.故选:B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示的圆锥的体积为,底面直径AB=2,点C是弧的中点,点D是母线PA的中点.(1)求该圆锥的侧面积;(2)求异面直线PB与CD所成角的大小.【解答】解:(1)∵圆锥的体积为,底面直径AB=2,∴,解得PO=,∴PA==2,∴该圆锥的侧面积S=πrl=π×1×2=2π.(2)∵圆锥的体积为,底面直径AB=2,点C是弧的中点,点D是母线PA的中点.∴PO⊥平面ABC,OC⊥AB,∴以O为原点,OC为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,则A(0,﹣1,0),P(0,0,),D(0,﹣,),B(0,1,0),C(1,0,0),=(0,1,﹣),=(﹣1,﹣,),设异面直线PB与CD所成角为θ,则cosθ===,∴θ=.∴异面直线PB与CD所成角为.18.(14分)某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本p(x)=+x+150万元.(1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣(如图),经实验知,每台机器人的日平均分拣量q(m)=(单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少百分之几?【解答】解:(1)由总成本p(x)=+x+150万元,可得每台机器人的平均成本y==2.当且仅当,即x=300时,上式等号成立.∴若使每台机器人的平均成本最低,应买300台;(2)引进机器人后,每台机器人的日平均分拣量q(m)=,当1≤m≤30时,300台机器人的日平均分拣量为160m(60﹣m)=﹣160m2+9600m,∴当m=30时,日平均分拣量有最大值144000.当m>30时,日平均分拣量为480×300=144000.∴300台机器人的日平均分拣量的最大值为144000件.若传统人工分拣144000件,则需要人数为人.∴日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少=75%.19.(14分)设函数f(x)=sin(ωx+φ)(ω>0,),已知角φ的终边经过点,点M(x1,y1)、N(x2,y2)是函数f(x)图象上的任意两点,当|f(x1)﹣f(x2)|=2时,|x1﹣x2|的最小值是.(1)求函数y=f(x)的解析式;(2)已知△ABC面积为,角C所对的边,,求△ABC的周长.【解答】解:(1)已知角φ的终边经过点,且,则:φ=﹣,点M(x1,y1)、N(x2,y2)是函数f(x)图象上的任意两点,当|f(x1)﹣f(x2)|=2时,|x1﹣x2|的最小值是.则:T=π,所以:ω=,所以:;(2)由于:=sin()=,且0<C<π,解得:C=,△ABC面积为,所以:,解得:ab=20.由于:c2=a2+b2﹣2abcosC,c=2,所以:20=(a+b)2﹣3ab,解得:a+b=4,所以:.20.(16分)设点F1、F2分别是椭圆(t>0)的左、右焦点,且椭圆C上的点到点F2的距离的最小值为,点M、N是椭圆C上位于x轴上方的两点,且向量与向量平行.(1)求椭圆C的方程;(2)当时,求△F1MN的面积;(3)当时,求直线F2N的方程.【解答】解:(1)点F1、F2分别是椭圆(t>0)的左、右焦点,∴a=t,c=t,∵椭圆C上的点到点F2的距离的最小值为,∴a﹣c=t﹣t=2﹣2,解得t=2,∴椭圆的方程为+=1,(2)由(1)可得F1(﹣2,0),F2(2,0),点M、N是椭圆C上位于x轴上方的两点,可设N(2cosθ,2sinθ),∴=(2cosθ+2,2sinθ),=(2cosθ﹣2,2sinθ),∵,∴(2cosθ+2)(2cosθ﹣2)+4sin2θ=0,解得cosθ=0,sinθ=1,∴N(0,2),∴=(﹣2,2),∴k==﹣1,∵向量与向量平行,∴直线F1M的斜率为﹣1,∴直线方程为y=﹣x﹣2,联立方程组,解得x=0,y=﹣2(舍去),或x=﹣,y=,∴M(﹣,),∴|F1M|==,点N到直线直线y=﹣x﹣2的距离为d==2,∴△F1MN的面积=|F1M|•d=××2=,(3)∵向量与向量平行,∴λ=,∴,∴(λ﹣1)||=,即λ>1,设M(x1,y1),N(x2,y2),∴λ(x1+2)=x2﹣2,y2=λy1,∴x2=λx1+2(λ+1)∵+=1,∴x22+2y22=8,∴[λx1+2(λ+1)]2+2λ2y12=12λ2+8λ+4+4λ(λ+1)x1=8,∴4λ(λ+1)x1=(1﹣3λ)(λ+1),∴x1==﹣3,∴y12=4﹣,∴||2=(x1+2)2+y12=(﹣3+2)2+4﹣=,∴||=,∴(λ﹣1)•=,∴λ2﹣2λ﹣1=0解得λ=2+,或λ=2﹣(舍去)∴x1=﹣3=﹣3=﹣1﹣,∴y12=4﹣=2﹣==,∴y1=,∴k==﹣,∴直线F2N的方程为y﹣0=﹣(x﹣2),即为x+y﹣2=021.(18分)设d为等差数列{a n}的公差,数列{b n}的前n项和T n,满足(n∈N*),且d=a5=b2,若实数m∈P k={x|a k﹣2<x<a k+3}(k∈N*,k≥3),则称m具有性质P k.(1)请判断b1、b2是否具有性质P6,并说明理由;(2)设S n为数列{a n}的前n项和,若{S n﹣2λa n}是单调递增数列,求证:对任意的k(k∈N*,k≥3),实数λ都不具有性质P k;(3)设H n是数列{T n}的前n项和,若对任意的n∈N*,H2n﹣1都具有性质P k,求所有满足条件的k的值.【解答】解:(1)(n∈N*),可得n=1时,T1+=﹣b1=﹣T1,解得b1=﹣,T2+=b2=﹣+b2+=b2,T3+=﹣b3=﹣+b2+b3+,即b2+2b3=,T4+=b4=﹣+b2+b3+b4+,即b2+b3=,解得b2=,b3=﹣,同理可得b4=,b5=﹣,b6=,b7=﹣,…,b2n﹣1=﹣,d=a5=b2,可得d=a1+4d=,解得a1=﹣,d=,a n=,P6={x|a4<x<a9}(k∈N*,k≥3)={x|0<x<},则b1不具有性质P6,b2具有性质P6;(2)证明:设S n为数列{a n}的前n项和,若{S n﹣2λa n}是单调递增数列,﹣2λa n+1≥S n﹣2λa n,可得S n+1即为≥,化为4λ+6≤2n对n为一切自然数成立,即有4λ+6≤2,可得λ≤﹣1,又P k={x|a k﹣2<x<a k+3}(k∈N*,k≥3),且a1=﹣,d>0,可得P k中的元素大于﹣1,则对任意的k(k∈N*,k≥3),实数λ都不具有性质P k;(3)设H n是数列{T n}的前n项和,若对任意的n∈N*,H2n﹣1都具有性质P k,由于H1=T1=b1=﹣,H3=T1+T2+T3=﹣,H5=T1+T2+T3+T4+T5=﹣,H7=﹣+0﹣=﹣,…,H2n﹣1=H2n﹣3+b2n﹣1,(n≥2),当k=3时,P3={x|a1<x<a6}={x|﹣<x<},当k=4时,P4={x|a2<x<a7}={x|﹣<x<},当k=5时,P5={x|a3<x<a8}={x|﹣<x<1},当k=6时,P3={x|a4<x<a9}={x|0<x<},显然k=5,6不成立,故所有满足条件的k的值为3,4.2018年上海市浦东新区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)集合A={1,2,3,4},B={1,3,5,7},则A∩B=.2.(4分)不等式<1的解集为.3.(4分)已知函数f(x)=2x﹣1的反函数是f﹣1(x),则f﹣1(5)=.4.(4分)已知向量,,则向量在向量的方向上的投影为.5.(4分)已知i是虚数单位,复数z满足,则|z|=.6.(4分)在(2x+1)5的二项展开式中,x3的系数是.7.(5分)某企业生产的12个产品中有10个一等品,2个二等品,现从中抽取4个产品,其中恰好有1个二等品的概率为.8.(5分)已知函数y=f(x)是定义在R上的偶函数,且在[0,+∞)上增函数,若f(a+1)≤f(4),则实数a的取值范围是.9.(5分)已知等比数列前n项和为S n,则使得S n>2018的n的最小值为.10.(5分)圆锥的底面半径为3,其侧面展开图是一个圆心角为的扇形,则此圆锥的表面积为.11.(5分)已知函数f(x)=sinωx(ω>0),将f(x)的图象向左平移个单位得到函数g(x)的图象,令h(x)=f(x)+g(x),如果存在实数m,使得对任意的实数x,都有h(m)≤h(x)≤h(m+1)成立,则ω的最小值为.12.(5分)在平面直角坐标系中,O为坐标原点,M、N是双曲线上的两个动点,动点P满足,直线OM与直线ON斜率之积为2,已知平面内存在两定点F1、F2,使得||PF1|﹣|PF2||为定值,则该定值为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若实数x,y∈R,则命题甲“”是命题乙“”的()条件.A.充分非必要B.必要非充分C.充要D.既非充分又非必要14.(5分)已知△ABC中,,AB=AC=1,点P是AB边上的动点,点Q是AC边上的动点,则的最小值为()A.﹣4B.﹣2C.﹣1D.015.(5分)某食品的保鲜时间y(单位:小时)与储存温度x(单位:°C)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数),若该食品在0°C 的保鲜时间是192小时,在22°C的保鲜时间是48小时,则该食品在33°C的保鲜时间是()小时.A.22B.23C.24D.3316.(5分)关于x的方程x2+arcsin(cosx)+a=0恰有3个实数根x1、x2、x3,则x12+x22+x32=()A.1B.2C.D.2π2三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,A1A=1.(1)求异面直线BC1与CD1所成的角;(2)求三棱锥B﹣D1AC的体积.18.(14分)在△ABC中,角A、B、C所对的边分别为a、b、c,已知,,且.(1)求C;(2)若c2=7b2,且,求b的值.19.(14分)已知等差数列{a n}的公差为2,其前n项和(n∈N*,p∈R).(1)求p的值及{a n}的通项公式;(2)在等比数列{b n}中,b2=a1,b3=a2+4,令(k∈N*),求数列{c n}的前n项和T n.20.(16分)已知椭圆(a>b>0)的左、右焦点分别为F1、F2,设点A(0,b),在△AF1F2中,,周长为.(1)求椭圆Γ的方程;(2)设不经过点A的直线l与椭圆Γ相交于B、C两点,若直线AB与AC的斜率之和为﹣1,求证:直线l过定点,并求出该定点的坐标;(3)记第(2)问所求的定点为E,点P为椭圆Γ上的一个动点,试根据△AEP 面积S的不同取值范围,讨论△AEP存在的个数,并说明理由.21.(18分)已知函数f(x)的定义域为D,值域为f(D),即f(D)={y|y=f(x),x∈D},若f(D)⊆D,则称f(x)在D上封闭.(1)分别判断函数f(x)=2017x+log2017x,在(0,1)上是否封闭,说明理由;(2)函数的定义域为D=[a,b],且存在反函数y=f﹣1(x),若函数f(x)在D上封闭,且函数f﹣1(x)在f(D)上也封闭,求实数k的取值范围;(3)已知函数f(x)的定义域为D,对任意x,y∈D,若x≠y,有f(x)≠f(y)恒成立,则称f(x)在D上是单射,已知函数f(x)在D上封闭且单射,并且满足f x(D)⊊D,其中f n+1(x)=f(f n(x))(n∈N*),f1(x)=f(x),证明:存在D的真子集,D n⊊D n﹣1⊊…⊊D3⊊D2⊊D1⊊D,使得f(x)在所有D i(i=1,2,3,…,n)上封闭.2018年上海市浦东新区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)集合A={1,2,3,4},B={1,3,5,7},则A∩B={1,3} .【解答】解:∵集合A={1,2,3,4},B={1,3,5,7},∴A∩B={1,3}.故答案为:{1,3}.2.(4分)不等式<1的解集为(1,+∞)∪(﹣∞,0).【解答】解:原不等式等价于,即x(x﹣1)>0,所以不等式的解集为(1,+∞)∪(﹣∞,0);故答案为:(1,+∞)∪(﹣∞,0)3.(4分)已知函数f(x)=2x﹣1的反函数是f﹣1(x),则f﹣1(5)=3.【解答】解:令f﹣1(5)=a,则f(a)=2a﹣1=5,解得:a=3,故答案为:3.4.(4分)已知向量,,则向量在向量的方向上的投影为﹣1.【解答】解:向量=(1,﹣2),=(3,4),则向量在向量方向上的投影为:||cos<,>===﹣1.故答案为:﹣15.(4分)已知i是虚数单位,复数z满足,则|z|=.【解答】解:∵复数z满足,∴z=,化为4z=,即z=,∴|z|==.故答案为:.6.(4分)在(2x+1)5的二项展开式中,x3的系数是80.=C5r(2x)5﹣r,【解答】解:设求的项为T r+1今r=2,∴T3=23C52x3=80x3.∴x3的系数是80.故答案为:807.(5分)某企业生产的12个产品中有10个一等品,2个二等品,现从中抽取4个产品,其中恰好有1个二等品的概率为.【解答】解:某企业生产的12个产品中有10个一等品,2个二等品,现从中抽取4个产品,基本事件总数n==495,其中恰好有1个二等品包含的基本事件个数m==240,∴其中恰好有1个二等品的概率为p===.故答案为:.8.(5分)已知函数y=f(x)是定义在R上的偶函数,且在[0,+∞)上增函数,若f(a+1)≤f(4),则实数a的取值范围是[﹣5,3] .【解答】解:函数y=f(x)是定义在R上的偶函数,且在[0,+∞)上增函数,可得f(x)=f(|x|),则f(a+1)≤f(4),即为f(|a+1|)≤f(4),可得|a+1|≤4,即﹣4≤a+1≤4,解得﹣5≤a≤3,则实数a的取值范围是[﹣5,3].故答案为:[﹣5,3].9.(5分)已知等比数列前n项和为S n,则使得S n>2018的n的最小值为10.【解答】解:根据题意,等比数列为{a n},其首项a1=,公比q==3,其前n项和S n==(3n﹣1),若S n>2018,即3n﹣1>18×2018又由n∈N*,则n≥10,故答案为:10.10.(5分)圆锥的底面半径为3,其侧面展开图是一个圆心角为的扇形,则此圆锥的表面积为36π.【解答】解:设此圆锥的母线长为l,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2π×3=×l,解得l=9,∴此圆锥的表面积为S=πrl+πr2=π×3×9+π×9=36π.故答案为:36π.11.(5分)已知函数f(x)=sinωx(ω>0),将f(x)的图象向左平移个单位得到函数g(x)的图象,令h(x)=f(x)+g(x),如果存在实数m,使得对任意的实数x,都有h(m)≤h(x)≤h(m+1)成立,则ω的最小值为π.【解答】解:函数f(x)=sinωx(ω>0),将f(x)的图象向左平移个单位得到函数g(x)=sin(ωx+)=cosωx的图象,令h(x)=f(x)+g(x)=sinωx+cosωx=sin(ωx+),如果存在实数m,使得对任意的实数x,都有h(m)≤h(x)≤h(m+1)成立,∴•≤1,∴ω≥π,则ω的最小值为π,故答案为:π.12.(5分)在平面直角坐标系中,O为坐标原点,M、N是双曲线上的两个动点,动点P满足,直线OM与直线ON斜率之积为2,已知平面内存在两定点F1、F2,使得||PF1|﹣|PF2||为定值,则该定值为2.【解答】解:设动点P(x,y),M(x1,y1)、N(x2,y2),∵直线OM与ON的斜率之积为2,∴•=2,所以2x1x2﹣y1y2=0,①,∵动点P满足,∴(x,y)=(2x1﹣x2,2y1﹣y2),则x=2x1﹣x2,y=2y1﹣y2,∵M、N是双曲线上的点,∴2x12﹣y12=4,2x22﹣y22=4.∴2x2﹣y2=2(2x1﹣x2)2﹣(2y1﹣y2)2=4(2x12﹣y12)﹣(2x22﹣y22)﹣4(2x1x2﹣y1y2)=4×4﹣4﹣4(2x1x2﹣y1y2)=12﹣4(2x1x2﹣y1y2),把①代入上式得:2x2﹣y2=12,即﹣=1,所以点P是双曲线﹣=1上的点,因为即﹣=1的两个焦点为:F1(﹣3,0)、F2(3,0),所以||PF1|﹣|PF2||为定值2.故答案为:2.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若实数x,y∈R,则命题甲“”是命题乙“”的()条件.A.充分非必要B.必要非充分C.充要D.既非充分又非必要【解答】解:由甲推不出乙,比如x=1,y=7,故不是充分条件,由乙可推出甲,是必要条件,故选:B.14.(5分)已知△ABC中,,AB=AC=1,点P是AB边上的动点,点Q 是AC边上的动点,则的最小值为()A.﹣4B.﹣2C.﹣1D.0【解答】解:∵△ABC中,,AB=AC=1,以A为原点,以AB所在对的直线为x轴,以AC所在的直线为y轴,建立如图所示的平面直角坐标系,则B(1,0),C(0,1)设P的坐标为(m,0)0≤m≤1,Q的坐标为(0,n),0≤n≤1,∴=(﹣1,n),=(m,﹣1),∴=﹣m﹣n=﹣(m+n)≥﹣2,当且仅当m=n=1时取等号,故的最小值为﹣2,故选:B.15.(5分)某食品的保鲜时间y(单位:小时)与储存温度x(单位:°C)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数),若该食品在0°C 的保鲜时间是192小时,在22°C的保鲜时间是48小时,则该食品在33°C的保鲜时间是()小时.A.22B.23C.24D.33【解答】解:某食品的保鲜时间y(单位:小时)与储存温度x(单位:°C)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数),该食品在0°C的保鲜时间是192小时,在22°C的保鲜时间是48小时,∴,解得e11k=,∴该食品在33°C的保鲜时间:y=e33k+b=(e11k)3×e b=()3×192=24(小时).故选:C.16.(5分)关于x的方程x2+arcsin(cosx)+a=0恰有3个实数根x1、x2、x3,则x12+x22+x32=()A.1B.2C.D.2π2【解答】解:令f(x)=x2+arcsin(cosx)+a,可得f(﹣x)=(﹣x)2+arcsin(cos(﹣x))+a=f(x),则f(x)为偶函数,∵f(x)=0有三个实数根,∴f(0)=0,即0++a=0,故有a=﹣,关于x的方程即x2+arcsin(cosx)﹣=0,∴x2 =0,且+arcsin(cosx1)﹣=0,x32+arcsin(cosx3)﹣=0,x1=﹣x3,由y=x2和y=﹣arcsin(cosx),当x>0,且0<x<π时,y=﹣arcsin(cosx)=﹣arcsin(sin(﹣x))=﹣(﹣x))=x,则﹣π<x<0时,y=﹣arcsin(cosx)=﹣x,由y=x2和y=﹣arcsin(cosx)的图象可得:它们有三个交点,且为(0,0),(﹣1,1),(1,1),则x12+x22+x32=0+1+1=2.故选:B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,A1A=1.(1)求异面直线BC1与CD1所成的角;(2)求三棱锥B﹣D1AC的体积.【解答】解:(1)∵在长方体ABCD﹣A1B1C1D1中,AD1∥BC1,∴∠AD1C是异面直线BC1与CD1所成的角或其补角.(2分)∵AB=2,AD=1,A1A=1.∴在等腰△ACD1中,∴cos∠CD1A===,…(4分)∴异面直线BC1与CD1所成的角.…(1分)(2)…(4分)==.…(3分)18.(14分)在△ABC中,角A、B、C所对的边分别为a、b、c,已知,,且.(1)求C;(2)若c2=7b2,且,求b的值.【解答】解:(1)由,∴2ccosC+acosB+bcosA=0,由正弦定理得:2sinCcosC+sinAcosB+sinBcosA=0,∴2sinCcosC+sin(A+B)=0;2sinCcosC+sinC=0;由sinC≠0,∴,∴;(2)由c2=a2+b2﹣2abcosC,∴7b2=a2+b2﹣2abcosC,∴a2+ab﹣6b2=0,∴a=2b;由知,,∴,∴b=2.19.(14分)已知等差数列{a n}的公差为2,其前n项和(n∈N*,p ∈R).(1)求p的值及{a n}的通项公式;(2)在等比数列{b n}中,b2=a1,b3=a2+4,令(k∈N*),求数列{c n}的前n项和T n.【解答】解:(1)根据题意,等差数列{a n}中,当n≥2时,有a n=S n﹣S n﹣1=pn2+2n﹣[p(n﹣1)2+2(n﹣1)]=2pn﹣p+2,=2p(n+1)﹣p+2,则a n+1∴a n﹣a n=2p=2,+1∴p=1,a n=3+(n﹣1)2=2n+1,(2)∵b2=a1=3,b3=a2+4=9,∴q=3,,当n=2k,k∈N*时,T n=a1+b2+a3+b4+…+a2k﹣1+b2k=(a1+a3+…+a2k﹣1)+(b2+b4+…+b2k)=(3+7+…+4k﹣1)+(3+27+…+32k﹣1)==;当n=2k﹣1,k∈N*时,n+1是偶数,=,∴.20.(16分)已知椭圆(a>b>0)的左、右焦点分别为F1、F2,设点A(0,b),在△AF1F2中,,周长为.(1)求椭圆Γ的方程;(2)设不经过点A的直线l与椭圆Γ相交于B、C两点,若直线AB与AC的斜率之和为﹣1,求证:直线l过定点,并求出该定点的坐标;(3)记第(2)问所求的定点为E,点P为椭圆Γ上的一个动点,试根据△AEP 面积S的不同取值范围,讨论△AEP存在的个数,并说明理由.【解答】(1)解:由,得,∴…①又△AF1F2周长为,∴…②联立①②,解得.∴椭圆方程为;(2)证明:设直线l方程:y=kx+m,交点B(x1,y1),C(x2,y2)由,得(1+4k2)x2+8kmx+4(m2﹣1)=0.,,依题:k AB+k AC=﹣1,即:,∵y1=kx1+m,y2=kx2+m,∴,得,则m=﹣2k﹣1.∴y=kx+m=kx﹣2k﹣1过定点(2,﹣1);(3)解:l AE:x+y﹣1=0,.设直线l:y=﹣x+t与椭圆相切,由,得.由△=4t2﹣5(t2﹣1)=0,得t=.得两切线到l AE:x+y﹣1=0的距离分别为,∴,.当时,△AEP个数为0个;当时,△AEP个数为1个;当时,△AEP个数为2个;当时,△AEP个数为3个;当时,△AEP个数为4个.21.(18分)已知函数f(x)的定义域为D,值域为f(D),即f(D)={y|y=f(x),x∈D},若f(D)⊆D,则称f(x)在D上封闭.(1)分别判断函数f(x)=2017x+log2017x,在(0,1)上是否封闭,说明理由;(2)函数的定义域为D=[a,b],且存在反函数y=f﹣1(x),若函数f(x)在D上封闭,且函数f﹣1(x)在f(D)上也封闭,求实数k的取值范围;(3)已知函数f(x)的定义域为D,对任意x,y∈D,若x≠y,有f(x)≠f(y)恒成立,则称f(x)在D上是单射,已知函数f(x)在D上封闭且单射,并且满足f x(D)⊊D,其中f n+1(x)=f(f n(x))(n∈N*),f1(x)=f(x),证明:存在D的真子集,D n⊊D n﹣1⊊…⊊D3⊊D2⊊D1⊊D,使得f(x)在所有D i(i=1,2,3,…,n)上封闭.【解答】解:(1)因为函数f(x)的定义域为(0,+∞),值域为(﹣∞,+∞),(取一个具体例子也可),所以f(x)在(0,1)上不封闭.…(结论和理由各1分)t=x+1∈(1,2),g(x)在(0,1)上封闭…(结论和理由各1分)(2)函数f(x)在D上封闭,则f(D)⊆D.函数f﹣1(x)在f(D)上封闭,则D⊆f(D),得到:D=f(D).…(2分)在D=[a,b]单调递增.则f(a)=a,f(b)=b在[﹣1,+∞)两不等实根.,故,解得.另解:在[﹣1,+∞)两不等实根.令k+1=t2﹣t在t∈[0,+∞)有两个不等根,故解得.(3)如果f(D)=D,则f n(D)=D,与题干矛盾.因此f(D)⊊D,取D1=f(D),则D1=f(D),则D1⊊D.接下来证明f(D1)⊊D1,因为f(x)是单射,因此取一个p∈D{D1,则p是唯一的使得f(x)=f(p)的根,换句话说f(p)∉f(D1).考虑到p∈D\D1,即,因为f(x)是单射,则f(D1)⊊f(D\{p})=f(D)\{f(p)}=D1\{f(p)}⊊D1这样就有了f(D1)⊊D1.接着令D n=f(D n),并重复上述论证证明D n+1⊊D n.+12018年上海市闵行区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)集合P={x|0≤x<3,x∈Z},M={x|x2≤9},则P∩M=.2.(4分)计算=.3.(4分)方程的根是.4.(4分)已知是纯虚数(i是虚数单位),则=.5.(4分)已知直线l的一个法向量是,则l的倾斜角的大小是.6.(4分)从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是(用数字作答)7.(5分)在(1+2x)5的展开式中,x2项系数为(用数字作答)8.(5分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=4,BC=3,AB=BB1,则异面直线A1B与B1C1所成角的大小是(结果用反三角函数表示)9.(5分)已知数列{a n}、{b n}满足b n=lna n,n∈N*,其中{b n}是等差数列,且,则b1+b2+…+b1009=.10.(5分)如图,向量与的夹角为120°,,,P是以O为圆心,为半径的弧上的动点,若,则λμ的最大值是.11.(5分)已知F1、F2分别是双曲线(a>0,b>0)的左右焦点,过F1且倾斜角为30°的直线交双曲线的右支于P,若PF2⊥F1F2,则该双曲线的渐近线方程是.12.(5分)如图,在折线ABCD中,AB=BC=CD=4,∠ABC=∠BCD=120°,E、F分别是AB、CD的中点,若折线上满足条件的点P至少有4个,则实数k 的取值范围是.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若空间中三条不同的直线l1、l2、l3,满足l1⊥l2,l2∥l3,则下列结论一定正确的是()A.l1⊥l3B.l1∥l3C.l1、l3既不平行也不垂直D.l1、l3相交且垂直14.(5分)若a>b>0,c<d<0,则一定有()A.ad>bc B.ad<bc C.ac>bd D.ac<bd15.(5分)无穷等差数列{a n}的首项为a1,公差为d,前n项和为S n(n∈N*),则“a1+d>0”是“{S n}为递增数列”的()条件.A.充分非必要B.必要非充分C.充要D.既非充分也非必要16.(5分)已知函数(n<m)的值域是[﹣1,1],有下列结论:①当n=0时,m∈(0,2];②当时,;③当时,m∈[1,2];④当时,m∈(n,2];其中结论正确的所有的序号是()A.①②B.③④C.②③D.②④三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知函数(其中ω>0).(1)若函数f(x)的最小正周期为3π,求ω的值,并求函数f(x)的单调递增区间;(2)若ω=2,0<α<π,且,求α的值.18.(14分)如图,已知AB是圆锥SO的底面直径,O是底面圆心,,AB=4,P是母线SA的中点,C是底面圆周上一点,∠AOC=60°.(1)求圆锥的侧面积;(2)求直线PC与底面所成的角的大小.19.(14分)某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童,此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益,据测算,首日参与活动人数为10000人,以后每天人数比前一天都增加15%,30天后捐步人数稳定在第30天的水平,假设此项活动的启动资金为30万元,每位捐步者每天可以使公司收益0.05元(以下人数精确到1人,收益精确到1元).(1)求活动开始后第5天的捐步人数,及前5天公司的捐步总收益;(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?20.(16分)已知椭圆的右焦点是抛物线Γ:y2=2px的焦点,直线l与Γ相交于不同的两点A(x1,y1)、B(x2,y2).(1)求Γ的方程;(2)若直线l经过点P(2,0),求△OAB的面积的最小值(O为坐标原点);(3)已知点C(1,2),直线l经过点Q(5,﹣2),D为线段AB的中点,求证:|AB|=2|CD|.21.(18分)对于函数y=f(x)(x∈D),如果存在实数a、b(a≠0,且a=1,b=0不同时成立),使得f(x)=f(ax+b)对x∈D恒成立,则称函数f(x)为“(a,b)映像函数”.(1)判断函数f(x)=x2﹣2是否是“(a,b)映像函数”,如果是,请求出相应的a、b的值,若不是,请说明理由;(2)已知函数y=f(x)是定义在[0,+∞)上的“(2,1)映像函数”,且当x∈[0,1)时,f(x)=2x,求函数y=f(x)(x∈[3,7))的反函数;(3)在(2)的条件下,试构造一个数列{a n},使得当x∈[a n,a n+1)(n∈N*)时,2x+1∈[a n,a n+2),并求x∈[a n,a n+1)(n∈N*)时,函数y=f(x)的解析+1式,及y=f(x)(x∈[0,+∞))的值域.2018年上海市闵行区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)集合P={x|0≤x<3,x∈Z},M={x|x2≤9},则P∩M={0,1,2} .【解答】解:∵集合P={x|0≤x<3,x∈Z}={0,1,2},M={x|x2≤9}={x|﹣3≤x≤3},∴P∩M={0,1,2}.故答案为:{0,1,2}.2.(4分)计算=.【解答】解:===,故答案为:.3.(4分)方程的根是10.【解答】解:∵,即1+lgx﹣3+lgx=0,∴lgx=1,∴x=10.故答案为:10.4.(4分)已知是纯虚数(i是虚数单位),则=.【解答】解:∵是纯虚数,。

年上海市闵行区高考数学一模试卷

年上海市闵行区高考数学一模试卷

2018年上海市闵行区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)集合P={x|0≤x<3,x∈Z},M={x|x2≤9},则P∩M=. 2.(4分)计算=.3.(4分)方程的根是.4.(4分)已知是纯虚数(i是虚数单位),则= .(4分)已知直线l的一个法向量是,则l的倾斜角的大小是.5.6.(4分)从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是(用数字作答)7.(5分)在(1+2x)5的展开式中,x2项系数为(用数字作答)8.(5分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=4,BC=3,AB=BB1,则异面直线A1B与B1C1所成角的大小是(结果用反三角函数表示)9.(5分)已知数列{an}、{b n}满足b n=lna n,n∈N*,其中{b n}是等差数列,且,则b1+b2+…+b1009= .10.(5分)如图,向量与的夹角为120°,,,P是以O为圆心,为半径的弧上的动点,若,则λμ的最大值是.11.(5分)已知F1、F2分别是双曲线(a>0,b>0)的左右焦点,过F1且倾斜角为30°的直线交双曲线的右支于P,若PF2⊥F1F2,则该双曲线的渐近线方程是.12.(5分)如图,在折线ABCD中,AB=BC=CD=4,∠ABC=∠BCD=120°,E、F分别是AB、CD的中点,若折线上满足条件的点P至少有4个,则实数k 的取值范围是.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若空间中三条不同的直线l1、l2、l3,满足l1⊥l2,l2∥l3,则下列结论一定正确的是( )A.l1⊥l3ﻩB.l1∥l3C.l1、l3既不平行也不垂直 D.l1、l3相交且垂直14.(5分)若a>b>0,c<d<0,则一定有()A.ad>bc B.ad<bcﻩC.ac>bdD.ac<bd15.(5分)无穷等差数列{an}的首项为a1,公差为d,前n项和为S n(n∈N*),则“a1+d>0”是“{Sn}为递增数列”的( )条件.A.充分非必要B.必要非充分C.充要D.既非充分也非必要16.(5分)已知函数(n<m)的值域是[﹣1,1],有下列结论:①当n=0时,m∈(0,2];②当时,;③当时,m∈[1,2];④当时,m∈(n,2];其中结论正确的所有的序号是()A.①②ﻩB.③④C.②③ D.②④三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知函数(其中ω>0).(1)若函数f(x)的最小正周期为3π,求ω的值,并求函数f(x)的单调递增区间;(2)若ω=2,0<α<π,且,求α的值.18.(14分)如图,已知AB是圆锥SO的底面直径,O是底面圆心,,AB=4,P是母线SA的中点,C是底面圆周上一点,∠AOC=60°.(1)求圆锥的侧面积;(2)求直线PC与底面所成的角的大小.19.(14分)某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童,此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益,据测算,首日参与活动人数为10000人,以后每天人数比前一天都增加15%,30天后捐步人数稳定在第30天的水平,假设此项活动的启动资金为30万元,每位捐步者每天可以使公司收益0.05元(以下人数精确到1人,收益精确到1元).(1)求活动开始后第5天的捐步人数,及前5天公司的捐步总收益;(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?20.(16分)已知椭圆的右焦点是抛物线Γ:y2=2px的焦点,直线l与Γ相交于不同的两点A(x1,y1)、B(x2,y2).(1)求Γ的方程;(2)若直线l经过点P(2,0),求△OAB的面积的最小值(O为坐标原点);(3)已知点C(1,2),直线l经过点Q(5,﹣2),D为线段AB的中点,求证:|AB|=2|CD|.21.(18分)对于函数y=f(x)(x∈D),如果存在实数a、b(a≠0,且a=1,b=0不同时成立),使得f(x)=f(ax+b)对x∈D恒成立,则称函数f(x)为“(a,b)映像函数”.(1)判断函数f(x)=x2﹣2是否是“(a,b)映像函数”,如果是,请求出相应的a、b 的值,若不是,请说明理由;(2)已知函数y=f(x)是定义在[0,+∞)上的“(2,1)映像函数”,且当x∈[0,1)时,f(x)=2x,求函数y=f(x)(x∈[3,7))的反函数;},使得当x∈[a n,an+1)(n∈N*)时,2(3)在(2)的条件下,试构造一个数列{anx+1∈[an,an+2),并求x∈[a n,a n+1)(n∈N*)时,函数y=f(x)的解析式,及y+1=f(x)(x∈[0,+∞))的值域.ﻬ2018年上海市闵行区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)集合P={x|0≤x<3,x∈Z},M={x|x2≤9},则P∩M={0,1,2} .【解答】解:∵集合P={x|0≤x<3,x∈Z}={0,1,2},M={x|x2≤9}={x|﹣3≤x≤3},∴P∩M={0,1,2}.故答案为:{0,1,2}.2.(4分)计算=.【解答】解:===,故答案为:.3.(4分)方程的根是10 .【解答】解:∵,即1+lgx﹣3+lgx=0,∴lgx=1,∴x=10.故答案为:10.4.(4分)已知是纯虚数(i是虚数单位),则=.【解答】解:∵是纯虚数,∴,得sin且cos,∴α为第二象限角,则cos.∴=sinαcos+cosαsin=.故答案为:﹣.5.(4分)已知直线l的一个法向量是,则l的倾斜角的大小是.【解答】解:设直线l的倾斜角为θ,θ∈[0,π).设直线的方向向量为=(x,y),则=x﹣y=0,∴tanθ==,解得θ=.故答案为:.6.(4分)从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是96 (用数字作答)【解答】解:根据题意,在4名男同学和6名女同学共10名学生中任取3人,有C103=120种,其中只有男生的选法有C43=4种,只有女生的选法有C63=20种则选出的3人中男女同学都有的不同选法有120﹣4﹣20=96种;故答案为:96.7.(5分)在(1+2x)5的展开式中,x2项系数为40(用数字作答)【解答】解:设求的项为T r+1=C5r(2x)r,今r=2,∴T3=22C52x2=40x2.∴x2的系数是408.(5分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=4,BC=3,AB=BB1,则异面直线A1B与B1C1所成角的大小是arccos(结果用反三角函数表示)【解答】解:∵在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=4,BC=3,AB=BB1, BC∥B1C1,∴∠ABC是异面直线A1B与B1C1所成角,1∵A1B===5,A1C===,∴cos∠A1BC===.∴∠A1BC=arccos.∴异面直线A1B与B1C1所成角的大小是arccos.故答案为:arccos.9.(5分)已知数列{an}、{bn}满足b n=lna n,n∈N*,其中{b n}是等差数列,且,则b1+b2+…+b1009=2018.【解答】解:数列{a n}、{bn}满足bn=lnan,n∈N*,其中{b n}是等差数列,∴b n+1﹣bn=lnan+1﹣lna n=ln=常数t.∴=常数e t=q>0,}为等比数列.因此数列{an且,∴a1a1009=a2a1008==….则b1+b2+…+b1009=ln(a1a2…a1009)==lne2018=2018.故答案为:2018.10.(5分)如图,向量与的夹角为120°,,,P是以O为圆心,为半径的弧上的动点,若,则λμ的最大值是.【解答】解:如图建立平面直角坐标系,设P(cosθ,sinθ),,,.∵,∴,sinθ=.∴,∴λμ=﹣+=+,故答案为:11.(5分)已知F1、F2分别是双曲线(a>0,b>0)的左右焦点,过F1且倾斜角为30°的直线交双曲线的右支于P,若PF2⊥F1F2,则该双曲线的渐近线方程是y=±x .|=m,|PF2|=n,|F1F2|=2c,【解答】解:设|PF1在直角△PF1F2中,∠PF1F2=30°,可得m=2n,则m﹣n=2a=n,即a=n,2c=n,即c=n,b==n,可得双曲线的渐近线方程为y=±x,即为y=±x,故答案为:y=±x.12.(5分)如图,在折线ABCD中,AB=BC=CD=4,∠ABC=∠BCD=120°,E、F 分别是AB、CD的中点,若折线上满足条件的点P至少有4个,则实数k 的取值范围是(﹣,﹣2) .【解答】解:以BC的垂直平分线为y轴,以BC为x轴,建立如图所示的平面直角坐标系,∵AB=BC=CD=4,∠ABC=∠BCD=120°,∴B(﹣2.0),C(2,0),A(﹣4,2),D(4,2),∵E、F分别是AB、CD的中点,∴E(﹣3,),F(3,),设P(x,y),﹣4≤x≤4,0≤y≤2,∵,∴(﹣3﹣x,﹣y)(3﹣x,﹣y)=x2+(y﹣)+9=k,即x2+(y﹣)﹣9=k+9,当k+9>0时,点P的轨迹为以(0,)为圆心,以为半径的圆,当圆与直线DC相切时,此时圆的半径r=,此时点有2个,当圆经过点C时,此时圆的半径为r==,此时点P有4个,∵满足条件的点P至少有4个,结合图象可得,∴<k+9<7,解得﹣<k<﹣2,故实数k的取值范围为(﹣,﹣2),故答案为:(﹣,﹣2)二.选择题(本大题共4题,每题5分,共20分)13.(5分)若空间中三条不同的直线l1、l2、l3,满足l1⊥l2,l2∥l3,则下列结论一定正确的是()A.l1⊥l3ﻩB.l1∥l3C.l1、l3既不平行也不垂直ﻩD.l1、l3相交且垂直【解答】解:∵空间中三条不同的直线l、l2、l3,满足l1⊥l2,l2∥l3,1∴l1⊥l3,故选:A.14.(5分)若a>b>0,c<d<0,则一定有()A.ad>bcﻩB.ad<bcﻩC.ac>bdD.ac<bd【解答】解:∵c<d<0,∴﹣c>﹣d>0.又a>b>0,则一定有﹣ac>﹣bd,可得ac<bd.故选:D.15.(5分)无穷等差数列{an}的首项为a1,公差为d,前n项和为Sn(n∈N*),则“a1+d>0”是“{Sn}为递增数列”的()条件.A.充分非必要ﻩB.必要非充分C.充要 D.既非充分也非必要【解答】解:等差数列{an}的首项为a1,公差为d,前n项和为Sn=na1+d,则Sn+1=(n+1)a1+,则S n+1﹣S n=(n+1)a1+﹣na1﹣d=a1+nd,若{Sn}为递增数列,a1+nd>0,∵S2﹣S1=a1+d>0,∴a1+nd>0不能推出a1+d>0但a1+d能推出a1+nd,故a1+d>0”是“{Sn}为递增数列必要非充分,故选:B16.(5分)已知函数(n<m)的值域是[﹣1,1],有下列结论:①当n=0时,m∈(0,2];②当时,;③当时,m∈[1,2];④当时,m∈(n,2];其中结论正确的所有的序号是( )A.①②B.③④C.②③D.②④【解答】解:当x>1时,x﹣1>0,f(x)=22﹣x+1﹣3=23﹣x﹣3,单调递减,当﹣1<x<1时,f(x)=22+x﹣1﹣3=21+x﹣3,单调递增,∴f(x)=22﹣|x﹣1|﹣3在(﹣1,1)单调递增,在(1,+∞)单调递减,∴当x=1时,取最大值为1,∴绘出f(x)的图象,如图:①当n=0时,f(x)=,由函数图象可知:要使f(x)的值域是[﹣1,1],则m∈(1,2];故①错误;②当时,f(x)=,f(x)在[﹣1,]单调递增,f(x)的最大值为1,最小值为﹣1,∴;故②正确;③当时,m∈[1,2];故③正确,④错误,故选C.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知函数(其中ω>0).(1)若函数f(x)的最小正周期为3π,求ω的值,并求函数f(x)的单调递增区间;(2)若ω=2,0<α<π,且,求α的值.【解答】解:(1)函数=sin(ωx),∵函数f(x)的最小正周期为3π,即T=3π=∴ω=那么:,由,k∈Z,得:∴函数f(x)的单调递增区间为,k∈Z;(2)函数=sin(ωx),∵ω=2∴f(x)=sin(2x),,可得sin(2α)=∵0<α<π,∴≤(2α)≤2α=或解得:α=或α=.18.(14分)如图,已知AB是圆锥SO的底面直径,O是底面圆心,,AB=4,P是母线SA的中点,C是底面圆周上一点,∠AOC=60°.(1)求圆锥的侧面积;(2)求直线PC与底面所成的角的大小.【解答】解:(1)∵AB是圆锥SO的底面直径,O是底面圆心,,AB=4, P是母线SA的中点,C是底面圆周上一点,∠AOC=60°.∴r==2,l===4,∴圆锥的侧面积S=πrl=π×2×4=8π.(2)过点P作PE⊥圆O,交AO于E,连结CE,则E是AO中点,∴PE=PO=,CE==,∴∠PCE是直线PC与底面所成角,∵PE=CE,PE⊥CE,∴,∴直线PC与底面所成的角为.19.(14分)某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童,此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益,据测算,首日参与活动人数为10000人,以后每天人数比前一天都增加15%,30天后捐步人数稳定在第30天的水平,假设此项活动的启动资金为30万元,每位捐步者每天可以使公司收益0.05元(以下人数精确到1人,收益精确到1元).(1)求活动开始后第5天的捐步人数,及前5天公司的捐步总收益;(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?【解答】解:(1)设第x天的捐步人数为x,则f(x)=.∴第5天的捐步人数为f(5)=10000•(1+15%)4=17490.由题意可知前5天的捐步人数成等比数列,其中首项为10000,公比为1.15,∴前5天的捐步总收益为×0.05=3371;(2)设活动第x天后公司捐步总收益可以回收并有盈余,①若1≤x≤30,则×0.05>300000,91≈32.3(舍).解得x>log1.15②若x>30,则[+10000•1.1529•(x﹣30)]•0.05>300000,解得x>32.87.∴活动开始后第33天公司的捐步总收益可以收回启动资金并有盈余. 20.(16分)已知椭圆的右焦点是抛物线Γ:y2=2px的焦点,直线l与Γ相交于不同的两点A(x1,y1)、B(x2,y2).(1)求Γ的方程;(2)若直线l经过点P(2,0),求△OAB的面积的最小值(O为坐标原点);(3)已知点C(1,2),直线l经过点Q(5,﹣2),D为线段AB的中点,求证:|AB|=2|C D|.【解答】(1)解:由椭圆,得a2=10,b2=9,则c=1.∴椭圆的右焦点,即抛物线Γ:y2=2px的焦点为(1,0),则,p=2,∴Γ的方程为y2=4x;(2)解:设直线l:x=my+2,联立,得y2﹣4my﹣8=0.则y1+y2=4m,y1y2=﹣8.∴==,即△OAB的面积的最小值为;(3)证明:当AB所在直线斜率存在时,设直线方程为y+2=k(x﹣5),即y=kx﹣5k ﹣2.联立,可得ky2﹣4y﹣20k﹣8=0.,.=.===.∵C(1,2),∴,,则=(x1﹣1)(x2﹣1)+(y1﹣2)(y2﹣2)=x1x2﹣(x1+x2)+1+y1y2﹣2(y1+y2)+4=,当AB所在直线斜率不存在时,直线方程为x=5,联立,可得A(5,﹣),B(5,2),,,有,∴CA⊥CB,又D为线段AB的中点,∴|AB|=2|CD|.21.(18分)对于函数y=f(x)(x∈D),如果存在实数a、b(a≠0,且a=1,b=0不同时成立),使得f(x)=f(ax+b)对x∈D恒成立,则称函数f(x)为“(a,b)映像函数”.(1)判断函数f(x)=x2﹣2是否是“(a,b)映像函数”,如果是,请求出相应的a、b的值,若不是,请说明理由;(2)已知函数y=f(x)是定义在[0,+∞)上的“(2,1)映像函数”,且当x∈[0,1)时,f(x)=2x,求函数y=f(x)(x∈[3,7))的反函数;(3)在(2)的条件下,试构造一个数列{an},使得当x∈[a n,a n+1)(n∈N*)时,2x+1∈[a n+1,a n+2),并求x∈[an,a n+1)(n∈N*)时,函数y=f(x)的解析式,及y=f(x)(x∈[0,+∞))的值域.【解答】解:(1)由f(x)=x2﹣2,可得f(ax+b)=(ax+b)2﹣2=a2x2+2abx+b2﹣2,由f(x)=f(ax+b),得x2﹣2=a2x2+2abx+b2﹣2,则,∵a≠0,且a=1,b=0不同时成立,∴a=﹣1,b=0.∴函数f(x)=x2﹣2是“(﹣1,0)映像函数”;(2)∵函数y=f(x)是定义在[0,+∞)上的“(2,1)映像函数”,∴f(x)=f(2x+1),则f(0)=f(1)=f(3),f(1)=f(3)=f(7),∴f(0)=f(3),f(1)=f(7),而当x∈[0,1)时,f(x)=2x,∴x∈[3,7)时,设f(x)=2sx+t,由,解得s=,t=﹣.∴x∈[3,7)时,f(x)=.令y=(3≤x<7),得,∴x=(1≤y<2),∴函数y=f(x)(x∈[3,7))的反函数为y=(1≤x<2);(3)由(2)可知,构造数列{an},满足a1=0,a n+1=2an+1,+1=2(an+1),则an+1∴数列{an+1}是以1为首项,以2为公比的等比数列,则,即.当x∈[a n,an+1)=[2n﹣1﹣1,2n﹣1).令,解得s=21﹣n,t=21﹣n﹣1.∴x∈[a n,a n+1)(n∈N*)时,函数y=f(x)的解析式为f(x)=.当x∈[0,+∞)时,函数f(x)的值域为[1,2).。

2018——2019年上海各区高中数学高三数学一模试卷试题汇总

2018——2019年上海各区高中数学高三数学一模试卷试题汇总

第一学期教学质量检测高三数学试卷一、填空题(本大题共有12题,满分54分)只要求直接填写结果,1-6题每个空格填对得4分,7-12题每个空格填对得5分,否则一律得零分. 1. 已知全集R U =,集合(][)12,,=-∞+∞A ,则U=A ______________.()12,2. 抛物线24=y x 的焦点坐标为_________.()10, 3. 不等式2log 1021>x 的解为____________.4(,)+∞4. 已知复数z 满足(1i)4i z +⋅=(i 为虚数单位),则z 的模为_________. 225. 若函数()=y f x 的图像恒过点01(,),则函数13()-=+y fx 的图像一定经过定点____.()13,6. 已知数列{}n a 为等差数列,其前n 项和为n S .若936=S ,则348++=a a a ________.127. 在△ABC 中,内角,,A B C 的对边是,,a b c .若22)32(b a ⋅+=,c b =,则=A ___.56π 8. 已知圆锥的体积为π33,母线与底面所成角为3π,则该圆锥的表面积为 .π3 9.已知二项式n的展开式中,前三项的二项式系数之和为37,则展开式中的第五项为________.358x 10. 已知函数()2||1=+-f x x x a 有三个不同的零点,则实数a 的取值范围为_____.(,-∞11. 已知数列{}n a 满足:211007(1)2018(1)++=-++n n n na n a n a *()∈n N , 且121,2,a a ==若1lim,+→∞=n n na A a 则=A ___________. 100912. 已知函数()2,24161,22-⎧≥⎪+⎪=⎨⎛⎫⎪< ⎪⎪⎝⎭⎩x ax x x f x x ,若对任意的[)12,∈+∞x ,都存在唯一的()2,2∈-∞x ,满足()()12=f x f x ,则实数a 的取值范围为_________. [)2,6∈-a解:当[)12,∈+∞x 时,1211041616x x ⎛⎤∈ ⎥+⎝⎦,.当()2,2∈-∞x 时,(1)若2a ≥,则()11=22x aa xf x --⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭在(),2-∞上是单调递增函数,所以()2210,2a f x -⎛⎫⎛⎫∈ ⎪ ⎪ ⎪⎝⎭⎝⎭.若满足题目要求,则21100,162a -⎛⎫⎛⎤⎛⎫⊆ ⎪ ⎪⎥ ⎪⎝⎦⎝⎭⎝⎭,,所以24111,24,62162a a a -⎛⎫⎛⎫>=∴-<< ⎪⎪⎝⎭⎝⎭.又2a ≥,所以[)2,6a ∈. (2)若2a <,则()1,,21=21, 2.2a xx ax ax a f x a x ---⎧⎛⎫<⎪ ⎪⎪⎝⎭⎛⎫=⎨ ⎪⎝⎭⎛⎫⎪≤< ⎪⎪⎝⎭⎩,()f x 在(),a -∞上是单调递增函数,此时()()0,1f x ∈;()f x 在[),2a 上是单调递减函数,此时()21,12a f x -⎛⎤⎛⎫∈ ⎥ ⎪ ⎝⎭⎥⎝⎦.若满足题目要求,则211,2162aa -⎛⎫≤∴≥- ⎪⎝⎭,又2a <,所以[)2,2a ∈-.综上,[)2,6a ∈-.二、选择题(本大题共有4题,满分20分) 每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 5分,否则一律得零分. 13. “14<a ”是“一元二次方程20-+=x x a 有实数解”的( A ) (A )充分非必要条件 (B )充分必要条件(C )必要非充分条件 (D )非充分非必要条件 14. 下列命题正确的是( D )(A )如果两条直线垂直于同一条直线,那么这两条直线平行(B )如果一条直线垂直于一个平面内的两条直线,那么这条直线垂直于这个平面 (C )如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面 (D )如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行15. 将4位志愿者分配到进博会的3个不同场馆服务,每个场馆至少1人,不同的分配方案有( B )种.(A )72 (B )36 ( (D )81 16. 已知点()()1,2,2,0-A B ,P ⋅AP AB 的取值范围为( A )(A )[]1,7 (B )[]1,7- (C)1,3⎡+⎣ (D)1,3⎡-+⎣三、解答题(本大题共有5题,满分76分)解答下列各题必须写出必要的步骤. 17.(本小题满分14分,第1小题满分7分,第2小题满分7分 已知直三棱柱ABC C B A -111中,︒=∠===9011BAC ,AA AC AB .(1)求异面直线B A 1与11C B 所成角; (2)求点1B 到平面BC A 1的距离.解:(1)在直三棱柱ABC C B A -111中,AB AA ⊥1,AC AA ⊥1,︒=∠===9011BAC ,AA AC AB所以,211===BC C A B A .…………………………2分因为,11C B //BC ,所以,BC A 1∠为异面直线B A 1与11C B 所成的角或补角.……4分 在BC A 1∆中,因为,211===BC C A B A ,所以,异面直线B A 1与11C B 所成角为3π.…………………………7分 (2)设点1B 到平面BC A 1的距离为h , 由(1)得23322211=π⋅⨯⨯=∆sin S BC A ,…………………………9分 21112111=⨯⨯=∆B B A S ,…………………………11分 因为,B B A C BC A B V V 1111--=,…………………………12分所以,CA S h S B B A BC A ⋅=⋅∆∆1113131,解得,33=h . 所以,点1B 到平面BC A 1的距离为33.…………………………14分 或者用空间向量:(1) 设异面直线B A 1与11C B 所成角为θ,如图建系,则()1011-=,,A ,()01111,,C B -=,…………4分A1C CB1B 1A因为,321221π=θ⇒=⋅-==θcos 所以,异面直线B A 1与11C B 所成角为3π.…………7分 (2)设平面BC A 1的法向量为()w ,v ,u n =,则B A n ,BC n 1⊥⊥. 又()011,,-=,()1011-=,,A ,……………9分所以,由⎩⎨⎧=-=+-⇒⎪⎩⎪⎨⎧=⋅=⋅00001w u v u A ,得()111,,n =.…………12分所以,点1B 到平面BC A 1的距离33==d .…………………………14分 18.(本小题满分14分,第1小题满分7分,第2小题满分7分)已知函数2()cos 2sin f x x x x =-.(1)若角α的终边与单位圆交于点3455(,)P ,求()f α的值; (2)当[,]63ππ∈-x 时,求()f x 的单调递增区间和值域.解:(1)∵角α的终边与单位圆交于点3455(,)P ,∴43sin =,cos =55αα ……2分2243432()cos 2sin 2()55525αααα=-=⨯-⨯=f …4分(2)2()cos 2sin f x x x x =-2cos21x x =+- …………………6分2sin(2)16x π=+- …………………………8分由222262k x k πππππ-≤+≤+得,36k x k ππππ-≤≤+又[,]63x ππ∈-,所以()f x 的单调递增区间是[,]66x ππ∈-; ………………10分∵[,]63x ππ∈-,∴52666x πππ-≤+≤…………………………12分 ∴1sin(2)126x π-≤+≤,()f x 的值域是[2,1]-. ………………14分19.(本小题满分14分,第1小题满分6分,第2小题满分8分) 某游戏厂商对新出品的一款游戏设定了“防沉迷系统”,规则如下:①3小时以内(含3小时)为健康时间,玩家在这段时间内获得的累积经验值.....E (单位:exp )与游玩时间t (小时)满足关系式:22016E t t a =++;②3到5小时(含5小时)为疲劳时间,玩家在这段时间内获得的经验值为0(即累积经验....值.不变); ③超过5小时为不健康时间,累积经验值.....开始损失,损失的经验值与不健康时间成正比例关系,比例系数为50.(1)当1a =时,写出累积经验值.....E 与游玩时间t 的函数关系式()E f t =,并求出游玩6小时的累积经验值.....; (2)该游戏厂商把累积经验值.....E 与游玩时间t 的比值称为“玩家愉悦指数”,记作()H t ;若0a >,且该游戏厂商希望在健康时间内,这款游戏的“玩家愉悦指数”不低于24,求实数a的取值范围.解:(1)22016,03()85,3533550,5t t t E f t t t t ⎧++<≤⎪==<≤⎨⎪->⎩ (写对一段得1分,共3分)6t =时,(6)35E =    (6分)(2)03t <≤时,16()=20aH t t t++  (8分) 16()244≥⇒+≥aH t t t①0319[,]4164a ⎧<≤⎪⇒∈⎨⎪⎩     (10分) ②39(,)1616343a a⎧>⎪⇒∈+∞⎨+≥⎪⎩    (12分) 综上,1[,)4a ∈+∞        (14分)20.(本小题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知双曲线Γ: 22221(0,0)x y a b a b-=>>的左、右焦点分别是 1F 、2F ,左、右两顶点分别是 1A 、2A ,弦 AB 和CD 所在直线分别平行于x 轴与 y 轴,线段BA 的延长线与线段CD 相交于点 P (如图).(1)若(2,3)d =是Γ的一条渐近线的一个方向向量,试求Γ的两渐近线的夹角θ;(2)若1PA =,5PB = ,2PC =,4PD =,试求双曲线Γ的方程;(3)在(..1.)的条件下.....,且124A A =,点C 与双曲线的顶点不重合,直线1CA 和直线2CA 与直线:1l x =分别相交于点M 和N ,试问:以线段MN 为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.解:(1)双曲线22221x y a b-=的渐近线方程为:即0bx ay ±=,所以3b a =,…………2分 从而3tan2θ=22tan 2tan 431tan2θθθ==-, 所以arctan 3θ=………………………………………………..4分(2)设 (,)P P P x y ,则由条件知:11()()322P x PB PA PA PB PA =-+=+=,11()()122P y PC PD PC PD PC =+-=-=,即(3,1)P .…………6分所以(2,1)A ,(3,3)C ,………………………………………………………..…………7分代入双曲线方程知:2751,2781199114222222==⇒⎪⎩⎪⎨⎧=-=-b a ba b a ……9分 127527822=-y x ………………………………………………………………….. 10分 (3)因为124A A =,所以2a =,由(1)知,3b =Γ的方程为: 22143x y -=, 令00(,)C x y ,所以2200143x y -=,010:(2)2y CA y x x =++,令1x =,所以003(1,)2y M x +, 020:(2)2y CA y x x =--,令1x =,所以00(1,2y N x --, …………12分故以MN 为直径的圆的方程为:200003(1)()()022y y x y y x x --+--=+-, 即222000200033(1)()0224y y y x y y x x x -++--=-+-,即22000039(1)()0224y y x y y x x -++--=-+,…………………………………………….14分 若以MN 为直径的圆恒经过定点),(y x于是⎪⎩⎪⎨⎧=±=⇒⎪⎩⎪⎨⎧=-+-=0231049)1(022y x y x y 所以圆过x 轴上两个定点5(,0)2和1(,0)2-……………………………………………16分21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 已知平面直角坐标系xOy ,在x 轴的正半轴上,依次取点123,,,n A A A A (*n N ∈),并在第一象限内的抛物线232y x =上依次取点123,,,,n B B B B (*n N ∈),使得1k k kA B A -∆*()k N ∈都为等边三角形,其中0A 为坐标原点,设第n 个三角形的边长为()f n .(1)求(1),(2)f f ,并猜想()f n (不要求证明); (2)令9()8n a f n =-,记m t 为数列{}n a 中落在区间2(9,9)mm内的项的个数,设数列{}m t 的前m 项和为m S ,试问是否存在实数λ,使得2λ≤m S 对任意*m N ∈恒成立?若存在,求出λ的取值范围;若不存在,说明理由; (3)已知数列{}n b满足:11,2n b b +==数列{}n c 满足:111,n nc c +==求证:1()2n n n b f c π+<<.解:(1)(1)1f =,(2)2f =  (2分) 猜想()f n n =  (2分) (2)98n a n =-  (5分)由21218899899999m mm m n n --<-<⇒+<<+112191,92,,9---∴=++⋅⋅⋅⋅⋅⋅m m m n  (6分)21199m m m t --∴=-  (7分) 352211(91)(99)(99)(99)m m m S --∴=-+-+-+⋅⋅⋅+- 352121(9999)(1999)m m --=+++⋅⋅⋅+-+++⋅⋅⋅+22129(19)(19)91091191980m m m m +---⋅+=-=-- (9分) 2λ≤m S 对任意*m N ∈恒成立min 12()83λλ⇒≤==⇒≤m S S (10分).(3)1sin,4b π=记1sin ,4n n b πθθ==,则1sin sin 2n n θθ+== *1()2n n n N πθ+⇒=∈  (12分) 1tan ,4c π=记1tan ,4n n c πϕϕ==,则1sec 1tan tan tan 2n n n n ϕϕϕϕ+-==*1()2n n n N πϕ+⇒=∈  (14分) 11sin,tan ,22n n n n b c ππ++∴==当(0,)2x π∈时,sin tan x x x <<可知: 1111sin()tan ,2222n n n n n n b f c ππππ++++=<=<=  (18分)杨浦区2018学年度第一学期高三年级模拟质量调研数学学科试卷 2018.12.18一、填空题(本大题有12题,满分54分,第1——6题每题4分,第7—12题每题5分) 1、设全集{}1,2,3,4,5U =,若集合{}3,4,5A =,则____u=2、已知扇形的半径为6,圆心角为3π,则扇形的面积为_____ 3、已知双曲线221x y -=,则其两条渐近线的夹角为_____ 4、若()na b +展开式的二项式系数之和为8,则____n = 5、若实数,x y 满足221x y +=,则xy 的取值范围是_____6、若圆锥的母线长()5l cm =,高()4h cm =,则这个圆锥的体积等于_______7、在无穷等比数列{}n a 中,()121lim ,2n n a a a →+∞+++=则1a 的取值范围是____8、若函数()1ln 1xf x x+=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆,则实数a 的取值范围__9、在行列式274434651xx--中,第3行第2列的元素的代数余子式记作()f x ,则()1y f x =+的零点是____10、已知复数())12cos 2,cos z x f x i z x x i =+=++,(,x R i ∈虚数单位)在复平面上,设复数12,z z 对应的点分别为12,Z Z ,若1290Z OZ ∠=,其中是坐标原点,则函数()f x 的最小正周期______ 11、当0x a <<时,不等式()22112x a x +≥-恒成立,则实数a 的最大值为______ 12、设d 为等差数列{}n a 的公差,数列{}n b 的前项和n T ,满足()()112nn n n T b n N *+=-∈, 且52d a b ==,若实数{}()23,3k k k m P x a x a k N k *-+∈=<<∈≥,则称m 具有性质k P ,若是n H 数列{}n T 的前n 项和,对任意的n N *∈,21n H -都具有性质k P ,则所有满足条件的k 的值为_____二、选题题(本题共有4题,满分20分,每题5分)13、下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( )(A )()arcsin f x x= (B )lg y x= (C )()f x x=-(D )()cos f x x =14、某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为 ( )(A )310 (B ) 35 (C ) 25 (D )2315、已知()sin log ,0,2f x x θπθ⎛⎫=∈ ⎪⎝⎭,设sin cos sin ,,2sin cos a f b f c f θθθθθ+⎛⎫⎛⎫===⎪⎪+⎝⎭⎝⎭,则,,a b c 的大小关系是 (A )a b c ≤≤ (B )b c a ≤≤ (C )c b a ≤≤(D )a b c ≤≤16、已知函数()22x f x m x nx =⋅++,记集合(){}0,A x f x x R ==∈,集合(){}0,B x f x x R ==∈,若A B =,且都不是空集,则m n +的取值范围是( ) ( A )[]0,4 (B )[]1,4- (C )[]3,5- (D )[]0,7三、解答题(本大题共有5题,满分76分) 17、(本题满分14分,第1题满分6分,第2小题满分8分)如图,,PA ABCD ⊥平面四边形ABCD 为矩形,1PA PB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动。

(2021年整理)2018年上海高三一模真题汇编——函数专题(教师版)

(2021年整理)2018年上海高三一模真题汇编——函数专题(教师版)

2018年上海高三一模真题汇编——函数专题(教师版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年上海高三一模真题汇编——函数专题(教师版))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年上海高三一模真题汇编——函数专题(教师版)的全部内容。

2018年一模汇编—-函数专题一、知识梳理【知识点1】函数的概念与函数三要素【例1】 设函数2log ,0()4,0x x x f x x >⎧=⎨≤⎩,则((1))f f -= 。

【答案】2-。

【解析】()11144f --==,()()1124f f f ⎛⎫-==- ⎪⎝⎭。

【点评】考察函数的概念。

【例2】函数11,02()1,0x x f x x x⎧-≥⎪⎪=⎨⎪<⎪⎩,若()f a a >,则实数a 的取值范围是 .【答案】()1a ,∈-∞-. 【解析】①当0a ≥时,112a a ->,2a <-(舍);② 当0a <时,1a a>,1a >(舍)或1a <-;综上,所以()1a ,∈-∞-.【点评】考察分段函数的概念.【知识点2】函数的奇偶性【例1】已知()f x 、g()x 分别是定义在R 上的偶函数和奇函数,且()g()2x f x x x -=+,则(1)g(1)f += .【答案】12-。

【解析】()()()2x f x g x x ----=+-,根据奇偶性可得,()()2x f x g x x -+=-,所以()()1111212f g -+=-=-.【点评】考察函数的奇偶性,利用奇偶性求解析式。

2018年上海市15区高考高三一模数学试卷合集 带答案

2018年上海市15区高考高三一模数学试卷合集 带答案

8
第 2 卷 2018 年崇明区一模
一、填空题(本大题共有 12 题,满分 54 分,其中 1-6 题每题 4 分,7-12 题每题 5 分)
1、已知集合 A {1, 2, 5}, B {2, a} ,若 A B {1, 2, 3, 5} ,则 a

2、抛物线 y2 4x 的焦点坐标是
Sn ,首项 a1
1,公比为
a
3 2
,且
lim
n
S
n
a
,则
a ________.
11.从 5 男 3 女共 8 名学生中选出队长 1 人,副队长 1 人,普通队员 2 人组成 4 人志愿者服
务,要求服务队中至少有 1 名女生,共有
种不同的选法.(用数字作答)
12.在 ABC 中, BC 边上的中垂线分别交 BC, AC 于点 D, E .若 AE BC 6 , AB 2 ,
f (C) 1 ,求 ABC 面积的最大值,并指出此时 ABC 为何种类型的三角形. 2
19. 设数列{an} ,{bn} 及函数 f (x) ( x R ), bn f (an ) ( n N * ). (1)若等比数列{an} 满足 a1 1, a2 3 , f (x) 2x ,求数列{bnbn1} 的前 n ( n N * ) 项和; (2)已知等差数列{an} 满足 a1 2 , a2 4 , f (x) (q x 1) ( 、 q 均为常数, q 0 且 q 1), cn 3 n (b1 b2 bn ) ( n N * ),试求实数对 (, q) ,使得{cn} 成等比 数列.
x 1 5. 若 z 2 3i (其中 i 为虚数单位),则 Im z
i 6. 若从五个数 1 ,0,1,2,3 中任选一个数 m ,则使得函数 f (x) (m2 1)x 1 在 R 上

2018届闵行区高考数学一模

2018届闵行区高考数学一模

C1CABA 1B 1闵行区2017学年第一学期高三年级质量调研考试数 学 试 卷考生注意:1.本场考试时间120分钟.试卷共4页,满分150分.2.作答前,在试卷与答题纸正面填写学校、班级、考生号、姓名等.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分. 4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.集合{}03P x x x =≤<∈,Z ,{}29M x x =≤,则P M =I .2.计算22C lim 1n n n →∞=+ .3.方程1lg 3lg 011x x +-=的根是 .4.已知34sin (cos )i 55αα-+-()是纯虚数(i 是虚数单位),则sin()4απ+= . 5.已知直线l 的一个法向量是1)n =-r,则l 的倾斜角的大小是 . 6.从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是 (用数字作答).7.在()512x +的展开式中,2x 项系数为 .(用数字作答)8.如图,在直三棱柱111ABC A B C -中,=90ACB ∠o,4AC =,3BC =,1AB BB =,则异面直线1A B 与11B C所成角的大小是 (结果用反三角函数表示). 9.已知数列{}{}n n a b 、满足ln n n b a =,*n ∈N ,其中{}n b 是等差数列,且431007e a a ⋅=,则121009b b b +++=L .10.如图,向量OA u u u r 与OB u u u r 的夹角为120o,2OA =u u u r ,1OB =u u u r,P 是以O 为圆心、||OB uuu r 为半径的弧»BC 上的 动点,若OP OA OB λμ=+u u u r u u u r u u u r,则λμ11.已知12 F F 、分别是双曲线22221(0 0)x y a b a b-=>>,的左右焦点,过1F 且倾斜角为30o 的直线交双曲线的右支于P ,若212PF F F ⊥,则该双曲线的渐近线方程是 .12.如图,在折线ABCD 中,4AB BC CD ===,120ABC BCD ∠=∠=o,E F 、 PE PF k⋅=u u u r u u u r 分别是AB CD 、的中点,若折线上满足条件的点P 至少有4个,则实数k 的取值范围是 .二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.若空间中三条不同的直线1l 、2l 、3l ,满足12l l ⊥错误!未找到引用源。

2018年上海市高三一模数学试题完整解析

2018年上海市高三一模数学试题完整解析

2018年高三一模数学试题解析目录2018年杨浦区高三一模试题分析 (1)2018年松江区高三一模试题分析 (10)2018年青浦区高三一模试题分析 (20)2018年虹口区高三一模试题分析 (31)2018年普陀区高三一模试题分析 (42)2018年徐汇区高三一模试题分析 (56)2018年长宁、嘉定区高三一模试题分析 (67)2018年浦东新区高三一模试题分析 (77)2018年崇明区高三一模试题分析 (87)2018年静安区高三一模试题分析 (96)2018年闵行区高三一模试题分析 (105)2018年黄浦区高三一模试题分析 (117)2018年三区高三一模填选难题试题分析 (127)2018年杨浦区高三一模试题分析一、填空题的结果是 1 .1.计算∞【考点】极限及其运算.=1.【分析】由n→+∞,→0,即可求得∞=1,故答案为:1.【解答】解:当n→+∞,→0,∴∞【点评】本题考查极限的运算,考查计算能力,属于基础题.2.已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m= 3 .【考点】交集及其运算.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2,m},B={3,4},A∩B={3},∴实数m=3.故答案为:3.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.3.已知,则= ﹣.【考点】三角函数的恒等变换及化简求值.【分析】由已知利用诱导公式即可化简求值得解.【解答】解:∵θ,∴θπ=θ.故答案为:﹣.【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.4.若行列式,则x= 2 .【考点】二阶矩阵.【分析】先根据行列式的计算公式进行化简,然后解指数方程即可求出x的值.【解答】解:∵,∴2×2x﹣1﹣4=0即x﹣1=1,∴x=2,故答案为:2【点评】本题主要考查了行列式的基本运算,同时考查了指数方程,属于基础题.5.已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y= 6 .【考点】增广矩阵的概念.【分析】由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,由此能求出x+y.【解答】解:∵一个关于x、y的二元一次方程组的增广矩阵是,∴由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,解得 x=4,y=2,∴x+y=6.故答案为:6.【点评】本题考查两数和的求法,是基础题,解题时要认真审题,注意增广矩阵的合理运用.6.在的二项展开式中,常数项等于﹣160 .【考点】二项式定理.【分析】研究常数项只需研究二项式的展开式的通项,使得x的指数为0,得到相应r,从而可求出常数项.【解答】解:展开式的通项为T r+1=x6﹣r(﹣)r=(﹣2)r x6﹣2r ,令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160,故答案为:﹣160【点评】本题主要考查了利用二项展开式的通项求解指定项,同时考查了计算能力,属于基础题.7.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.【考点】古典概型及其概率计算公式.【分析】分别求出基本事件数,“点数和为4”的种数,再根据概率公式解答即可.【解答】解:基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故P==.故答案为:.【点评】本题考查的知识点是古典概型概率计算公式,难度不大,属于基础题.8.数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n= 2n﹣1.【考点】反函数.【分析】先利用点(n,S n)都在f(x)的反函数图象上即点(S n,n)都在f(x)的原函数图象上,得到关于S n的表达式;再利用已知前n项和为S n求数列{a n}的通项公式的方法即可求数列{a n}的通项公式;【解答】解:由题意得n=log2(S n+1)⇒s n=2n﹣1.n≥2时,a n=s n﹣s n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=s1=21﹣1=1也适合上式,∴数列{a n}的通项公式为a n=2n﹣1;故答案为:2n﹣1【点评】本小题主要考查反函数、利用已知前n项和为S n求数列{a n}的通项公式的方法等基础知识,考查运算求解能力,属于基础题.9.在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.【考点】余弦定理.【分析】由sinA、sinB、sinC依次成等比数列,利用等比数列的性质列出关系式,利用正弦定理化简,再利用余弦定理表示出cosB,把得出关系式代入并利用基本不等式求出cosB的范围,利用余弦函数的性质可求B的最大值.【解答】解:∵在△ABC 中,sinA 、sinB 、sinC 依次成等比数列,∴sin 2B=sinAsinC , 利用正弦定理化简得:b 2=ac ,由余弦定理得:cosB==≥=(当且仅当a=c 时取等号),则B 的范围为(0,π],即角B 的最大值为π.故答案为:π.【点评】此题考查了正弦、余弦定理,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键,属于基础题.10.抛物线y 2=﹣8x 的焦点与双曲线﹣y 2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.【考点】双曲线的性质.【分析】由已知条件推导出a 2+1=4,从而得到双曲线的渐近线方程为y=,由此能求出这条双曲线的两条渐近线的夹角.【解答】解:∵抛物线y 2=﹣8x 的焦点F (﹣2,0)与双曲线﹣y 2=1的左焦点重合,∴a 2+1=4,解得a= ,∴双曲线的渐近线方程为y=,∴这条双曲线的两条渐近线的夹角为π ,故答案为:π. 【点评】本题考查双曲线的两条渐近线的夹角的求法,是基础题,解题时要认真审题,注意抛物线性质的合理运用.11.已知函数,x ∈R ,设a >0,若函数g (x )=f (x+α)为奇函数,则α的值为2k πα=【考点】三角函数中的恒等变换应用.【分析】首先通过三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质求出结果.【解答】()cos (sin )sin(2)3f x x x x x π=+,()sin(22)3g x x πα=++为奇函数,且0α>,∴23k παπ+=,26k ππα=-,k ∈*N .【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用.12.已知点C 、D 是椭圆上的两个动点,且点M (0,2),若,则实数λ的取值范围为1[,3]3λ∈.【考点】椭圆的性质.【分析】数形结合,取极端情况,考查椭圆的性质,直线与椭圆的位置关系. 【解答】数形结合,取极端情况. 作CE ⊥y 轴,DF ⊥y 轴,3MD MF MB MC ME MA λ==≤=,同理13λ≥ 当D 点位于(0,1)-,C 点位于(0,1)时,λ等于3; 当D 点位于(0,1),C 点位于(0,1)-时,λ等于13,∴1[,3]3λ∈.【点评】本题考查椭圆的性质,直线与椭圆的位置关系,考查计算能力,属于中档题. 二、选择题13.在复平面内,复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数的代数表示法及其几何意义. 【分析】直接由复数的除法运算化简,求出复数对应的点的坐标,则答案可求.【解答】解:∵=,∴复数对应的点的坐标为(﹣1,﹣2),位于第三象限.故选:C .【点评】本题考查了复数代数形式的除法运算,考查了复数的代数表示法及其几何意义,是基础题. 14.给出下列函数:①y=log 2x;②y=x 2;③y=2|x|;④y=arcsinx .其中图象关于y 轴对称的函数的序号是( ) A.①②B.②③C.①③D.②④【考点】函数奇偶性的性质与判断.【分析】根据函数奇偶性的定义进行判断即可.【解答】解:①y=log 2x 的定义域为(0,+∞),定义域关于原点不对称,则函数为非奇非偶函数; ②y=x 2;是偶函数,图象关于y 轴对称,满足条件.③y=2|x|是偶函数,图象关于y 轴对称,满足条件. ④y=arcsinx 是奇函数,图象关于y 轴不对称,不满足条件,故选:B .【点评】本题主要考查函数奇偶性的判断,利用函数奇偶性的定义和性质是解决本题的关键 15.“t ≥0”是“函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分也非必要条件 【考点】充分条件、必要条件、充要条件.【分析】t ≥0⇒△=t 2+4t ≥0⇒函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点,函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点⇒△=t 2+4t ≥0⇒t ≥0或t ≤﹣4.由此能求出结果. 【解答】解:t ≥0⇒△=t 2+4t ≥0⇒函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点, 函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点⇒△=t 2+4t ≥0⇒t ≥0或t ≤﹣4.∴“t ≥0”是“函数f (x )=x 2+tx ﹣t 在(﹣∞,+∞)内存在零点”的充分非必要条件.故选:A . 【点评】本题考查充分条件、充要条件、必要条件的判断,考查函数的零点等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.16.设A 、B 、C 、D 是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S 1、S 2、S 3分别表示△ABC 、△ACD 、△ABD 的面积,则S 1+S 2+S 3的最大值是( )A.B.2C.4D.8【考点】平面向量数量积的性质及其运算;棱柱、棱锥的体积.【分析】由题意可知,三棱锥的顶点的三条直线AB ,AC ,AD 两两垂直,可以扩展为长方体,对角线为球的直径,设出三边,表示出面积关系式,然后利用基本不等式,求出最大值.【解答】解:设AB=a ,AC=b ,AD=c ,因为AB ,AC ,AD 两两互相垂直,扩展为长方体,它的对角线为球的直径,所以a 2+b 2+c 2=4R 2=4 所以S △ABC +S △ACD +S △ADB =(ab+ac+bc )≤(a 2+b 2+c 2)=2即最大值为:2故选:B .【点评】本题是基础题,考查球的内接多面体,基本不等式求最值问题,能够把几何体扩展为长方体,推知多面体的外接球是同一个球,是解题的关键. 三、解答题17.如图所示,用总长为定值l 的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开. (1)设场地面积为y ,垂直于墙的边长为x ,试用解析式将y 表示成x 的函数,并确定这个函数的定义域; (2)怎样围才能使得场地的面积最大?最大面积是多少?【考点】基本不等式及其应用.【分析】(1)由题意设长方形场地的宽为x ,则长为l ﹣3x ,表示出面积y ;由x >0,且l ﹣3x >0,可得函数的定义域;(2)对其运用基本不等式求出函数的最值即场地的面积最大值,从而求解. 【解答】解:(1)设平行于墙的边长为a ,则篱笆总长3l x a =+,即3a l x =-,所以场地面积(3)y x l x =-,(0,)3lx ∈(2)222(3)33()612ll y x l x x lx x =-=-+=--+,(0,)3l x ∈,所以当且仅当6l x =时,2max 12l y = 综上,当场地垂直于墙的边长x 为6l 时,最大面积为212l【点评】此题是一道实际应用题,考查函数的最值问题,解决此类问题要运用基本不等式,这也是高考常考的方法.18.如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与PA所成角的大小.(结果用反三角函数值表示)【考点】旋转体(圆柱、圆锥);异面直线及其所成的角.【分析】(1)推导出BS=5,从而SO=4,由此能求出圆锥的体积.(2)取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与PA所成角,由此能求出异面直线SO与PA所成角.解:(1)由题意,π•OA•SB=15π,解得BS=5,故从而体积πππ.(2)如图,取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与PA所成角.∵SO⊥平面OAB,∴PH⊥平面OAB,∴PH⊥AH.在△OAH中,由OA⊥OB,得,在Rt△APH中,∠AHP=90 O,,…则∠,∴异面直线SO与PA所成角的大小.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.19.已知函数的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.【考点】集合的包含关系判断及应用;函数奇偶性的性质与判断.【分析】(1)由对数的真数大于0,可得集合A,再由集合的包含关系,可得a的不等式组,解不等式即可得到所求范围;(2)求得f(x)的定义域,计算f(﹣x)与f(x)比较,即可得到所求结论.【解答】解:(1)令>,解得﹣1<x<1,所以A=(﹣1,1),因为B⊆A,所以,解得﹣1≤a≤0,即实数a的取值范围是[﹣1,0];(2)证明:函数f(x)的定义域A=(﹣1,1),定义域关于原点对称,f(﹣x)=ln=ln()﹣1=﹣ln=﹣f(x),而,,所以,所以函数f(x)是奇函数但不是偶函数.【点评】本题考查函数的定义域和集合的包含关系,考查函数的奇偶性的判断,注意运用定义法,考查运算能力,属于基础题.20.设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.【考点】直线与抛物线的综合.【分析】(1)根据题意,由抛物线的方程分析可得p的值,即可得答案;(2)根据题意,设直线的方程为x=my+b,分m=0与m≠0两种情况讨论,分析m的取值,综合可得m可取的值,将m的值代入直线的方程即可得答案;(3)设直线AB:x=my+b,将直线的方程与抛物线方程联立,结合OQ⊥AB,由根与系数的关系分析可得答案.【解答】解:(1)根据题意,抛物线Ω的方程为y2=4x,则p=2,故抛物线Ω的焦点到准线的距离为2;(2)设直线l:x=my+b,当m=0时,x=1和x=9符合题意;当m≠0时,A(x1,y1)、B(x2,y2)的坐标满足方程组,所以y2﹣4my﹣4b=0的两根为y1、y2.△=16(m2+b)>0,y1+y2=4m,所以,所以线段AB的中点M(2m2+b,2m),因为k AB•k CM=﹣1,,所以,得b=3﹣2m2 ,所以△=16(m2+b)=16(3﹣m2)>0,得0<m2<3因为,所以m2=3(舍去)综上所述,直线l的方程为:x=1,x=9(3)设直线AB:x=my+b,A(x1,y1)、B(x2,y2)的坐标满足方程组,所以y2﹣4my﹣4b=0的两根为y1、y2,△=16(m2+b)>0,y1+y2=4m,y1y2=﹣4b所以,得b=0或b=4b=0时,直线AB过原点,所以Q(0,0);b=4时,直线AB过定点P(4,0)设Q(x,y),因为OQ⊥AB,所以,,(x≠0),综上,点Q的轨迹方程为x2﹣4x+y2=0【点评】本题考查直线与抛物线的位置关系,(2)中注意设出直线的方程,并讨论m的值.21.若数列A:a1,a2,…,a n(n≥3)中(1≤i≤n)且对任意的2≤k≤n﹣1,a k+1+a k﹣1>2a k恒成立,则称数列A为“U﹣数列”.(1)若数列1,x,y,7为“U﹣数列”,写出所有可能的x、y;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,a n=2017,求n的最大值;(3)设n0为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,,,,其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数,求M的最小值.【考点】数列与不等式的综合.【分析】(1)根据“U﹣数列”的定义可得:x=1时,>>;x=2时,>>;x≥3时,>>,解出即可得出.(2)n的最大值为65,理由如下:一方面,注意到:a k+1+a k﹣1>2a k⇔a k+1﹣a k>a k﹣a k﹣1.对任意的1≤i≤n ﹣1,令b i=a i+1﹣a i,可得b i∈Z且b k>b k﹣1(2≤k≤n﹣1),故b k≥b k﹣1+1对任意的2≤k≤n﹣1恒成立.当a1=1,a n=2017时,注意到b1=a2﹣a1≥1﹣1=0,利用裂项求和方法可得b i≥i﹣1.(2≤i≤n﹣1).即b i≥i ﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)=b n﹣1+b n﹣2+…+b1≥,即,解得n≤65.另一方面,取b i=i﹣1(1≤i≤64),可得对任意的2≤k≤64,b k>b k﹣1,故数列{a n}为“U﹣数列”,进而得出.(3)M的最小值为,分析如下:当n0=2m(m≥2,m∈N*)时,一方面:由(*)式,b k+1﹣b k≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(b m+k﹣1﹣b m+k﹣2)+…+(b k+1﹣b k)≥m.此时有:a1+a2m﹣(a m+a m+1)≥m(m﹣1),即(a1+a2m)≥(a m+a m+1)+m(m﹣1)可得M≥.又,可得,另一方面,当b1=1﹣m,b2=2﹣m,…,b m﹣1=﹣1,b m=0,b m+1=1,b2m﹣1=m﹣1时,a k+1+a k﹣1﹣2a k=(a k+1﹣a k)﹣(a k﹣a k﹣1)=b k﹣b k﹣1=1>0,取a m=1,则a m+1=1,a1>a2>a3>…>a m,a m+1<a m+2<…<a2m,且a1=a m﹣(b1+b2+…+b m﹣1)=m(m﹣1)+1.此时.即可得出.【解答】解:(1)x=1时,>>,所以y=2或3;x=2时,>>,所以y=4;x≥3时,>>,无整数解;所以所有可能的x,y为,或.(2)n的最大值为65,理由如下:一方面,注意到:a k+1+a k﹣1>2a k⇔a k+1﹣a k>a k﹣a k﹣1.对任意的1≤i≤n﹣1,令b i=a i+1﹣a i,则b i∈Z且b k>b k﹣1(2≤k≤n﹣1),故b k≥b k﹣1+1对任意的2≤k≤n﹣1恒成立.(*)当a1=1,a n=2017时,注意到b1=a2﹣a1≥1﹣1=0,得︸个(2≤i≤n﹣1)即b i≥i﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)=b n﹣1+b n﹣2+…+b1≥0+1+2+…+(n﹣2)=,(**)即,解得:﹣62≤n≤65,故n≤65.另一方面,为使(**)取到等号,所以取b i=i﹣1(1≤i≤64),则对任意的2≤k≤64,b k>b k﹣1,故数列{a n}为“U﹣数列”,此时由(**)式得,所以a65=2017,即n=65符合题意.综上,n的最大值为65.(3)M的最小值为,证明如下:当n0=2m(m≥2,m∈N*)时,一方面:由(*)式,b k+1﹣b k≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(b m+k﹣1﹣b m+k﹣2)+…+(b k+1﹣b k)≥m.此时有:(a1+a2m)﹣(a m+a m+1)=(a2m﹣a m+1)﹣(a m﹣a1)=(b m+1+b m+2+…+b2m﹣1)﹣(b1+b2+…+b m﹣1)=(b m+1﹣b1)+(b m+2﹣b2)+…+(b2m+1﹣b m﹣1)≥m+m+…+m=m(m﹣1).即(a1+a2m)≥(a m+a m+1)+m(m﹣1)故,因为,所以,另一方面,当b1=1﹣m,b2=2﹣m,…,b m﹣1=﹣1,b m=0,b m+1=1,b2m﹣1=m﹣1时,a k+1+a k﹣1﹣2a k=(a k+1﹣a k)﹣(a k﹣a k﹣1)=b k﹣b k﹣1=1>0,取a m=1,则a m+1=1,a1>a2>a3>…>a m,a m+1<a m+2<…<a2m,,此时.综上,M的最小值为.【点评】本题考查了新定义、等差数列的通项公式与求和公式、裂项求和方法、不等式的性质,考查了推理能力与计算能力,属于难题2018年松江区高三一模试题分析一、填空题1.计算:∞= .【考点】极限及其运算.【分析】∞=∞,当n→∞,→0,即可求得∞=.【解答】解:∞=∞=,故答案为:【点评】本题考查极限的运算,考查计算转化思想,属于基础题.2.已知集合A={x|0<x<3},B={x|x2≥4},则A∩B= {x|2≤x<3} .【考点】交集及其运算.【分析】根据题意,B为一元二次不等式的解集,解不等式可得集合B;又由交集的性质,计算可得答案.【解答】解:由已知得:B={x|x≤﹣2或x≥2},∵A={ x|0<x<3},∴A∩B={x|0<x<3}∩{ x|x≤﹣2或x≥2}={x|2≤x<3}为所求.故答案为:{x|2≤x<3}.【点评】本题考查交集的运算,解题的关键在于认清集合的意义,正确求解不等式.3.已知{a n}为等差数列,S n为其前n项和.若a1+a9=18,a4=7,则S10= 100 .【考点】等差数列的前n项和.【分析】利用等差数列的通项公式及其前n项和公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a1+a9=18,a4=7,∴,解得d=2,a1=1.则S10=10+=100.故答案为:100.【点评】本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.4.已知函数f(x)=log2(x+a)的反函数为y=f﹣1(x),且f﹣1(2)=1,则实数a= 3 .【考点】反函数.【分析】直接利用反函数值域和定义域的关系求出结果.【解答】解:函数f(x)=log2(x+a)的反函数为y=f﹣1(x),且f﹣1(2)=1,解得:a=3.故答案为:3.【点评】本题考查的知识要点:反函数的应用.5.已知角α的终边与单位圆x2+y2=1交于,,则cos2α等于﹣.【考点】二倍角的三角函数.【分析】由角α的终边与单位圆x2+y2=1交于,,可得:r=1,cosα=,从而可求cos2α=2cos2α﹣1=2×﹣1=﹣.【解答】解:∵角α的终边与单位圆x2+y2=1交于,,∴可得:r=1,cosα=,∴cos2α=2cos2α﹣1=2×﹣1=﹣.故答案为:﹣.【点评】本题主要考察了三角函数的定义,二倍角的余弦公式的应用,属于基本知识的考查.6.如图是一个算法的程序框图,当输入的值x为8时,则其输出的结果是 2 .【考点】循环结构.【分析】x=8>0,不满足条件x≤0,则执行循环体,依此类推,当x=﹣1<0,满足条件,退出循环体,从而求出最后的y值即可.【解答】解:x=8>0,执行循环体,x=x﹣3=5﹣3=2>0,继续执行循环体,x=x﹣3=2﹣3=﹣1<0,满足条件,退出循环体,故输出y=0.5﹣1=2.故答案为:2【点评】本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.7.函数y=sin2x的图象与y=cosx的图象在区间[0,2π]上交点的个数是 4 .【考点】正弦函数的图象;余弦函数的图象.【分析】直接利用三角方程求出结果.【解答】解:由于函数y=sin2x与y=cosx有交点,则:sin2x=cosx,整理得:sinx=或cosx=0所以:在[0,2π]范围内,x=π,π,π,π,故答案为:4.【点评】本题考查的知识要点:正弦函数的图象和余弦图象的应用.8.设直线ax﹣y+3=0与圆(x﹣1)2+(y﹣2)2=4相交于A、B两点,且弦AB的长为2,则a= 0 .【考点】直线与圆的位置关系.【分析】由弦长公式可得圆心到直线的距离为,再由点到直线的距离公式可得=1,由此求得a的值.【解答】解:由于圆(x﹣1)2+(y﹣2)2=4的圆心C(1,2),半径等于2,且圆截直线所得的弦AB的长为2ax﹣y+3=0的距离为,即=1,解得a=0,故答案为 0.【点评】本题主要考查直线和圆的位置关系,弦长公式、点到直线的距离公式的应用,属于中档题. 9.在△ABC 中,∠A=90°,△ABC 的面积为1,若=,=4,则的最小值为.【考点】平面向量数量积的性质及其运算.【分析】通过建系设出B ,C 坐标,化简的表达式,利用三角形面积求解表达式的最小值. 【解答】解:如图,建立直角坐标系,设B (10x ,0),C (0,10y ),若 = , =4, 则M (5x ,5y ),N (2x ,8y ),由题意△ABC 的面积为1,可得50xy=1,=10x 2+40y 2≥2 xy=,当且仅当x=2y=时取等号.故答案为:.【点评】本题考查向量的数量积的应用,考查转化思想以及计算能力.10.已知函数f (x )=x|2x ﹣a|﹣1有三个零点,则实数a 的取值范围为 (2 ,+∞) . 【考点】函数的零点与方程根的关系;研究曲线上某点切线方程. 【分析】转化方程的根为两个函数的图象的交点,利用数形结合. 【解答】分类讨论,设()|2|g x x x a =-,可以看作()g x 与1y =有三个交点,当0a <,()g x 图像如图所示,易知与1y =只有1个交点,不符;当0a>,()g x 图像如图所示,要与1y =有3个交点,需满足()14af >,即a >解法二:根据题意,可以看作()|2|g x x a =-与1()h x x=有三个交点,结合图像可知,当2ax >时,()g x 与()h x恒有一个交点,∴当2ax <时,()g x 与()h x 有两个不同交点,即12a xx-=在(0,)x∈+∞有两个解,2210x ax-+=,280a∆=->,且0a>,∴a>【点评】本题考查函数的零点的判断,考查数形结合的应用,是中档题.11.定义,>,已知函数f(x)、g(x)的定义域都是R,则下列四个命题中为真命题的是②③④(写出所有真命题的序号)①若f(x)、g(x)都是奇函数,则函数F(f(x),g(x))为奇函数;②若f(x)、g(x)都是偶函数,则函数F(f(x),g(x))为偶函数;③若f(x)、g(x)都是增函数,则函数F(f(x),g(x))为增函数;④若f(x)、g(x)都是减函数,则函数F(f(x),g(x))为减函数.【考点】函数单调性的性质与判断;函数奇偶性的性质与判断.【分析】由已知中:,>,结合具有奇偶性及单调性的图象特征,可得答案.【解答】解:,>,若f(x)、g(x)都是奇函数,则函数F(f(x),g(x))不一定是奇函数,如y=x与y=x3,故①是假命题;若f(x)、g(x)都是偶函数,则函数F(f(x),g(x))为偶函数,故②是真命题;若f(x)、g(x)都是增函数,则函数F(f(x),g(x))为增函数,故③是真命题;若f(x)、g(x)都是减函数,则函数F(f(x),g(x))为减函数,故④是真命题.故答案为:②③④.【点评】本题考查的知识点是函数奇偶性的性质,函数单调性的判断与证明,难度中档.12.已知数列{a n}的通项公式为a n=2q n+q(q<0,n∈N*),若对任意m,n∈N*都有,,则实数q的取值范围为(﹣,0).【考点】数列递推式.【分析】由a n=2q n+q,a1=3q<0,由,,则a n<0,由指数函数的单调性知,{a n}的最大值为a2=2q2+q,最小值为a1=3q,由题意,的最大值及最小值分别为和,即可求q的取值范围.【解答】解:由a n=2q n+q(q<0,n∈N*),因为a1=3q<0,且对任意n∈N*,∈(,6)故a n<0,特别地2q2+q<0,于是q∈(﹣,0),此时对任意n∈N*,a n≠0.当﹣<q<0时,a2n=2|q|2n+q>q,a2n﹣1=﹣2|q|2n﹣1+q<q,由指数函数的单调性知,{a n}的最大值为a2=2q2+q,最小值为a1=3q,由题意,的最小值及最大值分别为=和=.由>及<6,解得﹣<q<0.综上所述,q的取值范围为(﹣,0),故答案为:(﹣,0).【点评】本题考查等差数列以及等比数列的综合应用,数列与函数关系,考查计算能力、转化思想,属于中档题.二、选择题13.若2﹣i是关于x的方程x2+px+q=0的一个根(其中i为虚数单位,p,q∈R),则q的值为( )A.﹣5B.5C.﹣3D.3【考点】复数的运算.【分析】直接利用实系数一元二次方程的虚根成对原理及根与系数的关系求解.【解答】解:∵2﹣i是关于x的实系数方程x2+px+q=0的一个根,∴2+i是关于x的实系数方程x2+px+q=0的另一个根,则q=(2﹣i)(2+i)=|2﹣i|2=5.故选:B.【点评】本题考查实系数一元二次方程的虚根成对原理,考查复数模的求法,是基础题.14.已知f(x)是R上的偶函数,则“x1+x2=0”是“f(x1)﹣f(x2)=0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】充分条件、必要条件、充要条件.【分析】“x1+x2=0”⇒“f(x1)﹣f(x2)=0”,“f(x1)﹣f(x2)=0”⇒“x1+x2=0”或“x1=x2”,由此能求出结果.【解答】解:∵f(x)是R上的偶函数,∴“x1+x2=0”⇒“f(x1)﹣f(x2)=0”,“f(x1)﹣f(x2)=0”⇒“x1+x2=0”或“x1=x2”或者其他情况,∴“x1+x2=0”是“f(x1)﹣f(x2)=0”的充分而不必要条件.故选:A.【点评】本题考查充分条件、充要条件、必要条件的判断,考查函数的奇偶性等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.15.若存在x∈[0,+∞)使<成立,则实数m的取值范围是( )A.(﹣∞,1)B.(﹣1,+∞)C.(﹣∞,﹣1]D.[1,+∞)【考点】存在量词和特称命题.【分析】推导出2x•m>2x•x﹣1,从而m>x﹣,再由x∈[0,+∞),能求出实数m的取值范围.【解答】解:存在x∈[0,+∞)使<成立,∴2x•x﹣2x•m<1,∴2x•m>2x•x﹣1,∴m>x﹣,∵x∈[0,+∞),∴2x≥1,∴m>x﹣≥﹣1.∴实数m的取值范围是(﹣1,+∞).故选:B.【点评】本题考查实数值的取值范围的求法,考查二阶行列式、不等式、指数性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.16.已知曲线C1:|y|﹣x=2与曲线C2:λx2+y2=4恰好有两个不同的公共点,则实数λ的取值范围是( )A .(﹣∞,﹣1]∪[0,1)B .(﹣1,1]C .[﹣1,1)D .[﹣1,0]∪(1,+∞) 【考点】双曲线的性质.【分析】利用绝对值的几何意义,由x=|y|﹣2可得,y ≥0时,x=y ﹣2;y <0时,x=﹣y ﹣2,函数x=|y|﹣2的图象与方程y 2+λx 2=4的曲线必相交于(0,±2),为了使曲线C 1:|y|﹣x=2与曲线C 2:λx 2+y 2=4恰好有两个不同的公共点,则两曲线无其它交点.x=y ﹣2代入方程y 2+λx 2=4,整理可得(1+λ)y 2﹣4λy+4λ﹣4=0,分类讨论,可得结论,根据对称性,同理可得y <0时的情形. 【解答】解:由x=|y|﹣2可得,y ≥0时,x=y ﹣2;y <0时,x=﹣y ﹣2, ∴函数x=|y|﹣2的图象与方程y 2+λx 2=4的曲线必相交于(0,±2), 所以为了使曲线C 1:|y|﹣x=2与曲线C 2:λx 2+y 2=4恰好有两个不同的公共点, 则将x=y ﹣2代入方程y 2+λx 2=4,整理可得(1+λ)y 2﹣4λy+4λ﹣4=0,当λ=﹣1时,y=2满足题意,∵曲线C 1:|y|﹣x=2与曲线C 2:λx 2+y 2=4恰好有两个不同的公共点, ∴△>0,2是方程的根,∴λ λ<0,即﹣1<λ<1时,方程两根异号,满足题意;综上知,实数λ的取值范围是[﹣1,1).故选:C .【点评】本题考查曲线的交点,考查学生分析解决问题的能力,考查分类讨论的数学思想,属于中档题. 三、解答题17.在△ABC 中,AB=6,AC=3 ,=﹣18. (1)求BC 边的长;(2)求△ABC 的面积. 【考点】三角形中的几何计算.【分析】(1)直接利用向量的数量积和余弦定理求出BC 的长. (2)进一步利用余弦定理和三角形的面积公式求出结果.【解答】解:(1)=﹣18,由于:AB=6,AC=3 , 所以:BC 2=AB 2+AC 2﹣2AB •ACcosA ,解得:BC=3 (2)在△ABC 中,BA=6,AC=3 ,BC=3 ,则:cosA==﹣,所以:sinA=,则:11sin 6922ABCSAB AC A ∆=⋅⋅=⋅⋅【点评】本题考查的知识要点:向量的数量积的应用,余弦定理的应用,三角形面积公式的应用. 18.已知函数(x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)当a >0时,研究函数f (x )在x ∈(0,+∞)内的单调性. 【考点】函数单调性的性质与判断;函数奇偶性的性质与判断.【分析】(1)根据函数奇偶性定义,可得当a=0时,函数f (x )为偶函数;当a ≠0时,函数f (x )为非奇非偶函数;(2)当a >0时,f (x )在(0,a )上为减函数,在(a ,+∞)上为增函数; 【解答】解:(1)当a=0时,函数f (x )=1(x ≠0),满足f (﹣x )=f (x ), 此时f (x )为偶函数;当a ≠0时,函数f (a )=0,f (﹣a )=2,不满足f (﹣x )=f (x ),也不满足f (﹣x )=﹣f (x ),此时f (x )为非奇非偶函数;(2)当a >0时,若x ∈(0,a ),则> ,为减函数;若x ∈[a ,+∞],则< ,为增函数;故f (x )在(0,a )上为减函数,在[a ,+∞)上为增函数;【点评】本题考查的知识点是函数的奇偶性,函数的单调性,是函数图象和性质的综合应用,难度中档. 19.松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t (单位:分钟)满足2≤t ≤20,经市场调研测算,电车载客量与发车时间间隔t 相关,当10≤t ≤20时电车为满载状态,载客量为400人,当2≤t <10时,载客量会减少,减少的人数与(10﹣t )的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p (t ). (1)求p (t )的表达式,并求当发车时间间隔为6分钟时,电车的载客量; (2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?【考点】根据实际问题选择函数类型.【分析】(1)由题意知,p (t )= , < , (k 为常数),结合p (2)=272求得k=2,则p (t )的表达式可求,进一步求得p (6);(2)写出分段函数Q=, <,,利用基本不等式及函数的单调性分段求出最大值,取两者中的最大者得答案.【解答】解:(1)由题意知,p (t )= , < , (k 为常数),∵p(2)=400﹣k(10﹣2)2=272,∴k=2.∴24002(10)210()4001020t t p t t ⎧--≤<=⎨≤≤⎩. ∴p(6)=400﹣2(10﹣6)2=368(人);(2)由,可得Q=, <,,当2≤t <10时,Q=180﹣(12t+),当且仅当t=5时等号成立;当10≤t ≤20时,Q=﹣60+≤﹣60+90=30,当t=10时等号成立.∴当发车时间间隔为5分钟时,该线路每分钟的净收益最大,最大为60元.【点评】本题考查函数模型的性质及应用,考查简单的数学建模思想方法,是中档题.20.已知椭圆E:=1(a>b>0)经过点,,其左焦点为,,过F点的直线l交椭圆于A、B两点,交y轴的正半轴于点M.(1)求椭圆E的方程;(2)过点F且与l垂直的直线交椭圆于C、D两点,若四边形ACBD的面积为,求直线l的方程;(3)设,,求证:λ1+λ2为定值.【考点】椭圆的性质.【分析】(1)由c=,由a2=b2+c2=b2+3,将点代入椭圆方程,即可求得a和b的值,即可求得椭圆方程;(2)设直线l的方程,代入椭圆方程,利用韦达定理及弦长公式求得|AB|及|CD|,则四边形ACBD的面积S=×|AB||CD|=,即可求得k的值,求得直线l的方程;(3)由向量的坐标运算,表示出λ1和λ2,有(2)即可求得λ1+λ2为定值.【解答】解:(1)由题意可得:c=,则a2=b2+c2=b2+3,将,代入椭圆方程:,解得:b2=1,a2=4,∴椭圆的E的方程:;(2)设直线l:y=k(x+),A(x1,y1),B(x2,y2),C(x0,y0),则D(x1,﹣y1),联立,整理得:(1+4k2)x2+8k2x+12k2﹣4=0,∴x1+x2=﹣,x1x2=,|AB|==,由直线CD的斜率为﹣,将k转化成﹣,同理|CD|=,∴四边形ACBD的面积S=×|AB||CD|==,∴2k4﹣5k2+2=0,解得:k2=2,k2=,∴k=±或k=±,由k>0,∴k=或k=,∴直线AB的方程为x﹣y+=0或x﹣y+=0;(3)λ,λ,得x1=λ1(﹣﹣x1),x2=λ2(﹣﹣x2),∴λ1=,λ2=,λ1+λ2=﹣(+)=﹣=﹣8,λ1+λ2为定值,定值为﹣8.。

上海市闵行区2018届高考一模数学试卷(答案+解析)

上海市闵行区2018届高考一模数学试卷(答案+解析)

上海市闵行区2018届高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)集合P={x|0≤x<3,x∈Z},M={x|x2≤9},则P∩M=.2.(4分)计算=.3.(4分)方程的根是.4.(4分)已知是纯虚数(i是虚数单位),则=.5.(4分)已知直线l的一个法向量是,则l的倾斜角的大小是.6.(4分)从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是(用数字作答)7.(5分)在(1+2x)5的展开式中,x2项系数为(用数字作答)8.(5分)如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=4,BC=3,AB=BB1,则异面直线A1B与B1C1所成角的大小是(结果用反三角函数表示)9.(5分)已知数列{a n}、{b n}满足b n=ln a n,n∈N*,其中{b n}是等差数列,且,则b1+b2+…+b1009=.10.(5分)如图,向量与的夹角为120°,,,P是以O为圆心,为半径的弧上的动点,若,则λμ的最大值是.11.(5分)已知F1、F2分别是双曲线(a>0,b>0)的左右焦点,过F1且倾斜角为30°的直线交双曲线的右支于P,若PF2⊥F1F2,则该双曲线的渐近线方程是.12.(5分)如图,在折线ABCD中,AB=BC=CD=4,∠ABC=∠BCD=120°,E、F分别是AB、CD的中点,若折线上满足条件的点P至少有4个,则实数k的取值范围是.二.选择题(本大题共4题,每题5分,共20分)13.(5分)若空间中三条不同的直线l1、l2、l3,满足l1⊥l2,l2∥l3,则下列结论一定正确的是()A.l1⊥l3B.l1∥l3C.l1、l3既不平行也不垂直D.l1、l3相交且垂直14.(5分)若a>b>0,c<d<0,则一定有()A.ad>bc B.ad<bc C.ac>bd D.ac<bd15.(5分)无穷等差数列{a n}的首项为a1,公差为d,前n项和为S n(n∈N*),则“a1+d>0”是“{S n}为递增数列”的()条件.A.充分非必要B.必要非充分C.充要D.既非充分也非必要16.(5分)已知函数(n<m)的值域是[﹣1,1],有下列结论:①当n=0时,m∈(0,2];②当时,;③当时,m∈[1,2];④当时,m∈(n,2];其中结论正确的所有的序号是()A.①②B.③④C.②③D.②④三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)已知函数(其中ω>0).(1)若函数f(x)的最小正周期为3π,求ω的值,并求函数f(x)的单调递增区间;(2)若ω=2,0<α<π,且,求α的值.18.(14分)如图,已知AB是圆锥SO的底面直径,O是底面圆心,,AB=4,P 是母线SA的中点,C是底面圆周上一点,∠AOC=60°.(1)求圆锥的侧面积;(2)求直线PC与底面所成的角的大小.19.(14分)某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童,此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益,据测算,首日参与活动人数为10000人,以后每天人数比前一天都增加15%,30天后捐步人数稳定在第30天的水平,假设此项活动的启动资金为30万元,每位捐步者每天可以使公司收益0.05元(以下人数精确到1人,收益精确到1元).(1)求活动开始后第5天的捐步人数,及前5天公司的捐步总收益;(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?20.(16分)已知椭圆的右焦点是抛物线Γ:y2=2px的焦点,直线l与Γ相交于不同的两点A(x1,y1)、B(x2,y2).(1)求Γ的方程;(2)若直线l经过点P(2,0),求△OAB的面积的最小值(O为坐标原点);(3)已知点C(1,2),直线l经过点Q(5,﹣2),D为线段AB的中点,求证:|AB|=2|CD|.21.(18分)对于函数y=f(x)(x∈D),如果存在实数a、b(a≠0,且a=1,b=0不同时成立),使得f(x)=f(ax+b)对x∈D恒成立,则称函数f(x)为“(a,b)映像函数”.(1)判断函数f(x)=x2﹣2是否是“(a,b)映像函数”,如果是,请求出相应的a、b的值,若不是,请说明理由;(2)已知函数y=f(x)是定义在[0,+∞)上的“(2,1)映像函数”,且当x∈[0,1)时,f(x)=2x,求函数y=f(x)(x∈[3,7))的反函数;(3)在(2)的条件下,试构造一个数列{a n},使得当x∈[a n,a n+1)(n∈N*)时,2x+1∈[a n+1,a n+2),并求x∈[a n,a n+1)(n∈N*)时,函数y=f(x)的解析式,及y=f(x)(x∈[0,+∞))的值域.【参考答案】一.填空题1.{0,1,2}【解析】∵集合P={x|0≤x<3,x∈Z}={0,1,2},M={x|x2≤9}={x|﹣3≤x≤3},∴P∩M={0,1,2}.故答案为:{0,1,2}.2.【解析】===,故答案为:.3.10【解析】∵,即1+lg x﹣3+lg x=0,∴lg x=1,∴x=10.故答案为:10.4.【解析】∵是纯虚数,∴,得sin且cos,∴α为第二象限角,则cos.∴=sinαcos+cosαsin=.故答案为:﹣.5.【解析】设直线l的倾斜角为θ,θ∈[0,π).设直线的方向向量为=(x,y),则=x﹣y=0,∴tanθ==,解得θ=.故答案为:.6.96【解析】根据题意,在4名男同学和6名女同学共10名学生中任取3人,有C103=120种,其中只有男生的选法有C43=4种,只有女生的选法有C63=20种则选出的3人中男女同学都有的不同选法有120﹣4﹣20=96种;故答案为:96.7.40【解析】设求的项为T r+1=C5r(2x)r,今r=2,∴T3=22C52x2=40x2.∴x2的系数是408.arccos【解析】∵在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=4,BC=3,AB=BB1,BC∥B1C1,∴∠A1BC是异面直线A1B与B1C1所成角,∵A1B===5,A1C===,∴cos∠A1BC===.∴∠A1BC=arccos.∴异面直线A1B与B1C1所成角的大小是arccos.故答案为:arccos.9.2018【解析】数列{a n}、{b n}满足b n=ln a n,n∈N*,其中{b n}是等差数列,∴b n+1﹣b n=ln a n+1﹣ln a n=ln=常数t.∴=常数e t=q>0,因此数列{a n}为等比数列.且,∴a1a1009=a2a1008==….则b1+b2+…+b1009=ln(a1a2…a1009)==lne2018=2018.故答案为:2018.10.0【解析】如图建立平面直角坐标系,设P(cosθ,sinθ),,,.∵,∴,sinθ=.∴,∴λμ=+﹣=﹣,故答案为:011.y=±x【解析】设|PF1|=m,|PF2|=n,|F1F2|=2c,在直角△PF1F2中,∠PF1F2=30°,可得m=2n,则m﹣n=2a=n,即a=n,2c=n,即c=n,b==n,可得双曲线的渐近线方程为y=±x,即为y=±x,故答案为:y=±x.12.(﹣,﹣2)【解析】以BC的垂直平分线为y轴,以BC为x轴,建立如图所示的平面直角坐标系,∵AB=BC=CD=4,∠ABC=∠BCD=120°,∴B(﹣2.0),C(2,0),A(﹣4,2),D(4,2),∵E、F分别是AB、CD的中点,∴E(﹣3,),F(3,),设P(x,y),﹣4≤x≤4,0≤y≤2,∵,∴(﹣3﹣x,﹣y)(3﹣x,﹣y)=x2+(y﹣)+9=k,即x2+(y﹣)﹣9=k+9,当k+9>0时,点P的轨迹为以(0,)为圆心,以为半径的圆,当圆与直线DC相切时,此时圆的半径r=,此时点有2个,当圆经过点C时,此时圆的半径为r==,此时点P有4个,∵满足条件的点P至少有4个,结合图象可得,∴<k+9<7,解得﹣<k<﹣2,故实数k的取值范围为(﹣,﹣2),故答案为:(﹣,﹣2)二.选择题13.A【解析】∵空间中三条不同的直线l1、l2、l3,满足l1⊥l2,l2∥l3,∴l1⊥l3,故选:A.14.D【解析】∵c<d<0,∴﹣c>﹣d>0.又a>b>0,则一定有﹣ac>﹣bd,可得ac<bd.故选:D.15.B【解析】等差数列{a n}的首项为a1,公差为d,前n项和为S n=na1+d,则S n+1=(n+1)a1+,则S n+1﹣S n=(n+1)a1+﹣na1﹣d=a1+nd,若{S n}为递增数列,a1+nd>0,∵S2﹣S1=a1+d>0,∴a1+nd>0不能推出a1+d>0但a1+d能推出a1+nd,故a1+d>0”是“{S n}为递增数列必要非充分,故选:B16.C【解析】当x>1时,x﹣1>0,f(x)=22﹣x+1﹣3=23﹣x﹣3,单调递减,当﹣1<x<1时,f(x)=22+x﹣1﹣3=21+x﹣3,单调递增,∴f(x)=22﹣|x﹣1|﹣3在(﹣1,1)单调递增,在(1,+∞)单调递减,∴当x=1时,取最大值为1,∴绘出f(x)的图象,如图:①当n=0时,f(x)=,由函数图象可知:要使f(x)的值域是[﹣1,1],则m∈(1,2];故①错误;②当时,f(x)=,f(x)在[﹣1,]单调递增,f(x)的最大值为1,最小值为﹣1,∴;故②正确;③当时,m∈[1,2];故③正确,④错误,故选C.三.解答题17.解:(1)函数=sin(ωx),∵函数f(x)的最小正周期为3π,即T=3π=∴ω=那么:,由,k∈Z,得:∴函数f(x)的单调递增区间为,k∈Z;(2)函数=sin(ωx),∵ω=2∴f(x)=sin(2x),,可得sin(2α)=∵0<α<π,∴≤(2α)≤2α=或解得:α=或α=.18.解:(1)∵AB是圆锥SO的底面直径,O是底面圆心,,AB=4,P是母线SA的中点,C是底面圆周上一点,∠AOC=60°.∴r==2,l===4,∴圆锥的侧面积S=πrl=π×2×4=8π.(2)过点P作PE⊥圆O,交AO于E,连结CE,则E是AO中点,∴PE=PO=,CE==,∴∠PCE是直线PC与底面所成角,∵PE=CE,PE⊥CE,∴,∴直线PC与底面所成的角为.19.解:(1)设第x天的捐步人数为x,则f(x)=.∴第5天的捐步人数为f(5)=10000•(1+15%)4=17490.由题意可知前5天的捐步人数成等比数列,其中首项为10000,公比为1.15,∴前5天的捐步总收益为×0.05=3371;(2)设活动第x天后公司捐步总收益可以回收并有盈余,①若1≤x≤30,则×0.05>300000,解得x>log1.1591≈32.3(舍).②若x>30,则[+10000•1.1529•(x﹣30)]•0.05>300000,解得x>32.87.∴活动开始后第33天公司的捐步总收益可以收回启动资金并有盈余.20.(1)解:由椭圆,得a2=10,b2=9,则c=1.∴椭圆的右焦点,即抛物线Γ:y2=2px的焦点为(1,0),则,p=2,∴Γ的方程为y2=4x;(2)解:设直线l:x=my+2,联立,得y2﹣4my﹣8=0.则y1+y2=4m,y1y2=﹣8.∴==,即△OAB的面积的最小值为;(3)证明:当AB所在直线斜率存在时,设直线方程为y+2=k(x﹣5),即y=kx﹣5k﹣2.联立,可得ky2﹣4y﹣20k﹣8=0.,.=.===.∵C(1,2),∴,,则=(x1﹣1)(x2﹣1)+(y1﹣2)(y2﹣2)=x1x2﹣(x1+x2)+1+y1y2﹣2(y1+y2)+4=,当AB所在直线斜率不存在时,直线方程为x=5,联立,可得A(5,﹣),B(5,2),,,有,∴CA⊥CB,又D为线段AB的中点,∴|AB|=2|CD|.21.解:(1)由f(x)=x2﹣2,可得f(ax+b)=(ax+b)2﹣2=a2x2+2abx+b2﹣2,由f(x)=f(ax+b),得x2﹣2=a2x2+2abx+b2﹣2,则,∵a≠0,且a=1,b=0不同时成立,∴a=﹣1,b=0.∴函数f(x)=x2﹣2是“(﹣1,0)映像函数”;(2)∵函数y=f(x)是定义在[0,+∞)上的“(2,1)映像函数”,∴f(x)=f(2x+1),则f(0)=f(1)=f(3),f(1)=f(3)=f(7),∴f(0)=f(3),f(1)=f(7),而当x∈[0,1)时,f(x)=2x,∴x∈[3,7)时,设f(x)=2sx+t,由,解得s=,t=﹣.∴x∈[3,7)时,f(x)=.令y=(3≤x<7),得,∴x=(1≤y<2),∴函数y=f(x)(x∈[3,7))的反函数为y=(1≤x<2);(3)由(2)可知,构造数列{a n},满足a1=0,a n+1=2a n+1,则a n+1+1=2(a n+1),∴数列{a n+1}是以1为首项,以2为公比的等比数列,则,即.当x∈[a n,a n+1)=[2n﹣1﹣1,2n﹣1).令,解得s=21﹣n,t=21﹣n﹣1.∴x∈[a n,a n+1)(n∈N*)时,函数y=f(x)的解析式为f(x)=.当x∈[0,+∞)时,函数f(x)的值域为[1,2).。

上海市闵行区2018学年度第一学期高三数学(一模)期末质量监控试题(解析版)

上海市闵行区2018学年度第一学期高三数学(一模)期末质量监控试题(解析版)

上海市闵行区2018学年度第一学期高三数学(一模)期末质量监控试卷一、选择题(本大题共4小题,共12.0分)1.若a,b为实数,则“”是“”的A. 充要条件B. 充分非必要条件C. 必要非充分条件D. 既非充分必要条件【答案】B【解析】【分析】根据充分条件和必要条件的概念,即可判断出结果.【详解】解不等式得或;所以由“”能推出“或”,反之不成立,所以“”是“”的充分不必要条件.故选B【点睛】本题主要考查充分条件与必要条件的概念,熟记概念即可,属于基础题型.2.已知a,b为两条不同的直线,,为两个不同的平面,,,则下面结论不可能成立的是A.,且 B.C. ,且D. b与,都相交【答案】D【解析】【分析】由点线面的位置关系,结合题中条件,即可分析出结果.【详解】因为a,b为两条不同的直线,,为两个不同的平面,,,所以有以下三种情况:(1)若,则;(2)若,则;(3)若且,则且;因此不可能b与,都相交.故选D【点睛】本题主要考查空间中线面位置关系,由线线平行,分类讨论线面关系即可,属于基础题型.3.已知函数,与其反函数有交点,则下列结论正确的是A. B.C. D. a与b的大小关系不确定【答案】B【解析】【分析】由函数与其反函数有交点,可得函数与直线有交点,进而可得出结果.【详解】因为函数,与其反函数有交点,所以函数与直线有交点,即方程有实根,整理得,所以,又,所以.故选B【点睛】本题主要考查反函数的概念,原函数与反函数有交点,必然与直线有交点,由此即可求解,属于基础题型.4.在平面直角坐标系中,已知向量,O是坐标原点,M是曲线上的动点,则的取值范围A. B. C. D.【答案】A【解析】【分析】先设,由M是曲线上的动点,得到,再由向量数量积运算的坐标表示,即可求出结果.【详解】设,则,因为M是曲线上的动点,所以,又,所以;因为,所以的取值范围是.故选A【点睛】本题主要考查向量数量积的坐标运算,熟记公式即可,属于常考题型.二、填空题(本大题共12小题,共36.0分)5.已知全集,集合,则______.【答案】【解析】【分析】解不等式得到集合,进而可求出结果.【详解】解不等式得或,所以集合或,因为,所以.故答案为【点睛】本题主要考查补集的运算,熟记概念即可,属于基础题型.6.______.【答案】【解析】【分析】在原式的基础上,分子分母同除以,进而可求出结果.【详解】因为.故答案为【点睛】本题主要考查型极限,只需分子分母同除以即可得出结果,属于基础题型.7.若复数z满足是虚数单位,则______.【答案】【解析】【分析】由先得到,再由复数的除法运算即可得出结果.【详解】因为,所以.故答案为【点睛】本题主要考查复数的运算,熟记除法运算法则即可,属于基础题型.8.方程的解为______.【答案】【解析】【分析】方程可化为,求解即可.【详解】由得即,解得.故答案为【点睛】本题主要考查矩阵,由矩阵的运算转化为含指数的方程,即可求解,属于基础题型. 9.等比数列中,,,则______.【答案】256【解析】【分析】先设等比数列的公比为,根据题中条件求出,进而可求出结果.【详解】设等比数列的公比为,因为,,所以,因此,所以.故答案为256【点睛】本题主要考查等比数列的性质,熟记等比数列性质即可,属于基础题型.10.的展开式中项的系数为___.(用数字表示)【答案】【解析】试题分析:由得:项的系数为.考点:二项展开式定理求特定项11.已知两条直线:,:,则与的距离为______.【答案】【解析】【分析】将:化为,再由平行线间的距离公式即可求出结果.【详解】因为:可化为,所以与的距离为.故答案为【点睛】本题主要考查两条平行线间的距离公式,熟记公式即可,属于基础题型.12.已知函数,的值域为,则的取值范围是______.【答案】【解析】【分析】由作出其图像,由值域为,即可求出结果.【详解】因为,作出其图像如下:因为函数,的值域为,所以由图像可得,;所以.故答案为【点睛】本题主要考查函数的性质,根据函数的值域求参数范围,通常需要作出函数图像,由数形结合的思想来处理,属于常考题型.13.如图,在过正方体的任意两个顶点的所有直线中,与直线异面的直线的条数为______.【答案】12【解析】【分析】由异面直线的概念,一一列举出与异面的直线即可.【详解】由题中正方体可得与异面的直线有:,,,,,;,,,,,,共12条.故答案为12【点睛】本题主要考查异面直线,熟记概念即可,属于基础题型.14.在中,角A,B,C的对边分别为a,b,c,面积为S,且,则______.【答案】0【解析】【分析】由三角形面积公式和余弦定理可将化为,进而可求出结果.【详解】因为,余弦定理,又,所以有,即,所以,因此或,所以或,因为C三角形内角,所以,故.故答案为0【点睛】本题主要考查解三角形,熟记余弦定理和三角形面积公式即可求出结果,属于常考题型.15.已知向量,,且,若向量满足,则的最大值为______.【答案】【解析】【分析】先由题中条件求出,再由即可求出结果.【详解】因为,,且所以,所以,因此.故的最大值为【点睛】本题主要考查向量的模的最值问题,根据向量模的几何意义,即可求解,属于常考题型.16.若无穷数列满足:,当,时.其中表示,,,中的最大项,有以下结论:若数列是常数列,则若数列是公差的等差数列,则;若数列是公比为q的等比数列,则则其中正确的结论是______写出所有正确结论的序号【答案】【解析】【分析】根据题中条件,逐项判断即可.【详解】若数列是常数列,则有,所以,又,所以,故,又,所以,即.故正确;若数列是公差的等差数列,若,则数列是递增数列,则,则,,不能满足数列为公差的等差数列;若,则数列是递减数列,则,所以满足题意;故正确;若数列是公比为q的等比数列,若q>1,由可知数列是递增数列,所以,所以,即q=2满足题意;若0<q<1,由可知数列是递减数列,所以,所以,故,因为0<q<1,所以显然不成立,故0<q<1不满足题意;若q<0,则数列是摆动数列,不能满足题意;综上q>1,故正确.故答案为【点睛】本题主要考查数列的应用,灵活运用数列的性质是解题的关键,难度较大.三、解答题(本大题共5小题,共60.0分)17.如图,正三棱柱的各棱长均为2,D为棱BC的中点.求该三棱柱的表面积;求异面直线AB与所成角的大小.【答案】(1);(2).【解析】【分析】根据棱柱的表面积公式直接求解即可;先取AC中点E,连结DE,,根据题意可得是异面直线AB与所成角,解三角形即可.【详解】解:正三棱柱的各棱长均为2,该三棱柱的表面积:.取AC中点E,连结DE,,为棱BC的中点,,,是异面直线AB与所成角或所成角的补角,,,,异面直线AB与所成角的大小为.【点睛】本题主要考查几何体的表面积公式以及异面直线所成的角,在几何体中作出异面直线所成的角即可,属于基础题型.18.已知抛物线C:.若C上一点到其焦点的距离为3,求C的方程;若,斜率为2的直线l交C于两点,交x轴的正半轴于点M,O为坐标原点,求点M的坐标.【答案】(1);(2).【解析】【分析】根据抛物线的定义,由C上一点到其焦点的距离为3,可求出,进而可求出抛物线方程;由先求出抛物线方程,再设直线l:,代入抛物线方程,设,,结合韦达定理和判别式,根据求出的值即可.【详解】解:由抛物线的定义得:,解得:,所以抛物线C的方程为:;时,抛物线C:,设直线l:,并代入抛物线C:得:,,解得设,,则,,,解得或当时,不在x轴正半轴上,舍去;当时,故点M的坐标为【点睛】本题主要考查抛物线的方程与简单性质,通常需要联立直线与抛物线方程,结合韦达定理和题中条件求解,属于常考题型.19.在股票市场上,投资者常根据股价每股的价格走势图来操作,股民老张在研究某只股票时,发现其在平面直角坐标系内的走势图有如下特点:每日股价元与时间天的关系在ABC段可近似地用函数的图象从最高点A到最低点C的一段来描述如图,并且从C点到今天的D点在底部横盘整理,今天也出现了明显的底部结束信号.老张预测这只股票未来一段时间的走势图会如图中虚线DEF 段所示,且DEF段与ABC段关于直线l:对称,点B,D的坐标分别是.请你帮老张确定a,,的值,并写出ABC段的函数解析式;如果老张预测准确,且今天买入该只股票,那么买入多少天后股价至少是买入价的两倍?【答案】(1),,,,;(2)16.【解析】【分析】由B,D的坐标确定的值,和C的坐标,进而确定周期,求出,再由C的坐标,求出,即可得出函数解析式;(2)由(1)线求出DEF的解析式,令,求出即可.【详解】解:因为B,D的坐标分别是,且DEF段与ABC段关于直线l:对称,所以,所以,,,,由可得,,.由题意得DEF的解析式为:,由,得,故买入天后股价至少是买入价的两倍.【点睛】本题主要考查三角函数的应用,熟记三角函数的图像和性质即可,属于常考题型.20.对于函数,若函数是增函数,则称函数具有性质A.若,求的解析式,并判断是否具有性质A;判断命题“减函数不具有性质A”是否真命题,并说明理由;若函数具有性质A,求实数k的取值范围,并讨论此时函数在区间上零点的个数.【答案】(1),具有性质A;(2)假命题;(3)详见解析.【解析】【分析】由,结合即可得出解析式,和单调性,进而可得出结果;判断命题“减函数不具有性质A”,为假命题,举出反例即可,如;若函数具有性质A,可知在为增函数,进而可求出实数k的取值范围;再令,则在区间上零点的个数,即是的根的个数,结合k的取值范围,即可求出结果.【详解】解:,,在R上递增,可知具有性质A;命题“减函数不具有性质A”,为假命题,比如:,在R上递增,具有性质A;若函数具有性质A,可得在递增,可得,解得;由,可得,即,可得,时显然成立;时,,由在递减,且值域为,时,或1,有三解,3个零点;当时,,即,可得,1个零点;当时,,t有一解,x两解,即两个零点;当,且时,无解,即x无解,无零点.【点睛】本题主要考查函数的解析式与函数的单调性,以及函数零点问题,按照题中条件结合函数的性质分析即可,属于常考题型.21.对于数列,若存在正数p,使得对任意都成立,则称数列为“拟等比数列”.已知,且,若数列和满足:,且,.若,求的取值范围;求证:数列是“拟等比数列”;已知等差数列的首项为,公差为d,前n项和为,若,,,且是“拟等比数列”,求p的取值范围请用,d表示.【答案】(1)详见解析;(2).【解析】【分析】由即可求出结果;根据题中“拟等比数列”的定义,由,结合条件推出存在正数,使得有成立即可;由题中条件,,,先求出的范围;再根据是“拟等比数列”,分类讨论和,即可得出结果.【详解】解:,,且,,,.由题意得,当且时,,对任意,都有,即存在,使得有,数列数列是“拟等比数列”;,,,,,,由得,从而解得,又是“拟等比数列”,故存在,使得成立,当时,,,由得,由图象可知在时递减,故,当时,,,由得,由图象可知在时递减,故,由得p的取值范围是.【点睛】本题主要考查数列的应用,根据题中的新定义,结合条件,分类讨论即可求出结果,过程较繁琐,难度较大.。

【名师推荐】上海市闵行区2018学年度第一学期高三数学(一模)期末质量监控试题(精品解析)

【名师推荐】上海市闵行区2018学年度第一学期高三数学(一模)期末质量监控试题(精品解析)

上海市闵行区2018学年度第一学期高三数学(一模)期末质量监控试卷一、选择题(本大题共4小题,共12.0分)1.若a,b为实数,则“”是“”的 A. 充要条件B. 充分非必要条件C. 必要非充分条件D. 既非充分必要条件【答案】B【解析】【分析】根据充分条件和必要条件的概念,即可判断出结果.【详解】解不等式得或;所以由“”能推出“或”,反之不成立,所以“”是“”的充分不必要条件.故选B【点睛】本题主要考查充分条件与必要条件的概念,熟记概念即可,属于基础题型.2.已知a,b为两条不同的直线,,为两个不同的平面,,,则下面结论不可能成立的是 A. ,且B.C. ,且D. b与,都相交【答案】D【解析】【分析】由点线面的位置关系,结合题中条件,即可分析出结果.【详解】因为a,b为两条不同的直线,,为两个不同的平面,,,所以有以下三种情况:(1)若,则;(2)若,则;(3)若且,则且;因此不可能b与,都相交.故选D【点睛】本题主要考查空间中线面位置关系,由线线平行,分类讨论线面关系即可,属于基础题型.3.已知函数,与其反函数有交点,则下列结论正确的是 A. B.C. D. a与b的大小关系不确定【答案】B【解析】【分析】由函数与其反函数有交点,可得函数与直线有交点,进而可得出结果.【详解】因为函数,与其反函数有交点,所以函数与直线有交点,即方程有实根,整理得,所以,又,所以.故选B【点睛】本题主要考查反函数的概念,原函数与反函数有交点,必然与直线有交点,由此即可求解,属于基础题型.4.在平面直角坐标系中,已知向量,O是坐标原点,M是曲线上的动点,则的取值范围 A. B. C. D.【答案】A【解析】【分析】先设,由M是曲线上的动点,得到,再由向量数量积运算的坐标表示,即可求出结果.【详解】设,则,因为M是曲线上的动点,所以,又,所以;因为,所以的取值范围是.故选A【点睛】本题主要考查向量数量积的坐标运算,熟记公式即可,属于常考题型.二、填空题(本大题共12小题,共36.0分)5.已知全集,集合,则______.【答案】【解析】【分析】解不等式得到集合,进而可求出结果.【详解】解不等式得或,所以集合或,因为,所以.故答案为【点睛】本题主要考查补集的运算,熟记概念即可,属于基础题型.6.______.【答案】【解析】【分析】在原式的基础上,分子分母同除以,进而可求出结果.【详解】因为.故答案为【点睛】本题主要考查型极限,只需分子分母同除以即可得出结果,属于基础题型.7.若复数z满足是虚数单位,则______.【答案】【解析】【分析】由先得到,再由复数的除法运算即可得出结果.【详解】因为,所以.故答案为【点睛】本题主要考查复数的运算,熟记除法运算法则即可,属于基础题型.8.方程的解为______.【答案】【解析】【分析】方程可化为,求解即可.【详解】由得即,解得.故答案为【点睛】本题主要考查矩阵,由矩阵的运算转化为含指数的方程,即可求解,属于基础题型. 9.等比数列中,,,则______.【答案】256【解析】【分析】先设等比数列的公比为,根据题中条件求出,进而可求出结果.【详解】设等比数列的公比为,因为,,所以,因此,所以.故答案为256【点睛】本题主要考查等比数列的性质,熟记等比数列性质即可,属于基础题型.10.的展开式中项的系数为___.(用数字表示)【答案】【解析】试题分析:由得:项的系数为.考点:二项展开式定理求特定项11.已知两条直线:,:,则与的距离为______.【答案】【解析】【分析】将:化为,再由平行线间的距离公式即可求出结果.【详解】因为:可化为,所以与的距离为.故答案为【点睛】本题主要考查两条平行线间的距离公式,熟记公式即可,属于基础题型.12.已知函数,的值域为,则的取值范围是______.【答案】【解析】【分析】由作出其图像,由值域为,即可求出结果.【详解】因为,作出其图像如下:因为函数,的值域为,所以由图像可得,;所以.故答案为【点睛】本题主要考查函数的性质,根据函数的值域求参数范围,通常需要作出函数图像,由数形结合的思想来处理,属于常考题型.13.如图,在过正方体的任意两个顶点的所有直线中,与直线异面的直线的条数为______.【答案】12【解析】【分析】由异面直线的概念,一一列举出与异面的直线即可.【详解】由题中正方体可得与异面的直线有:,,,,,;,,,,,,共12条.故答案为12【点睛】本题主要考查异面直线,熟记概念即可,属于基础题型.14.在中,角A,B,C的对边分别为a,b,c,面积为S,且,则______.【答案】0【解析】【分析】由三角形面积公式和余弦定理可将化为,进而可求出结果.【详解】因为,余弦定理,又,所以有,即,所以,因此或,所以或,因为C三角形内角,所以,故.故答案为0【点睛】本题主要考查解三角形,熟记余弦定理和三角形面积公式即可求出结果,属于常考题型.15.已知向量,,且,若向量满足,则的最大值为______.【答案】【解析】【分析】先由题中条件求出,再由即可求出结果.【详解】因为,,且所以,所以,因此.故的最大值为【点睛】本题主要考查向量的模的最值问题,根据向量模的几何意义,即可求解,属于常考题型.16.若无穷数列满足:,当,时.其中表示,,,中的最大项,有以下结论:若数列是常数列,则若数列是公差的等差数列,则;若数列是公比为q的等比数列,则则其中正确的结论是______写出所有正确结论的序号【答案】【解析】【分析】根据题中条件,逐项判断即可.【详解】若数列是常数列,则有,所以,又,所以,故,又,所以,即.故正确;若数列是公差的等差数列,若,则数列是递增数列,则,则,,不能满足数列为公差的等差数列;若,则数列是递减数列,则,所以满足题意;故正确;若数列是公比为q的等比数列,若q>1,由可知数列是递增数列,所以,所以,即q=2满足题意;若0<q<1,由可知数列是递减数列,所以,所以,故,因为0<q<1,所以显然不成立,故0<q<1不满足题意;若q<0,则数列是摆动数列,不能满足题意;综上q>1,故正确.故答案为【点睛】本题主要考查数列的应用,灵活运用数列的性质是解题的关键,难度较大.三、解答题(本大题共5小题,共60.0分)17.如图,正三棱柱的各棱长均为2,D为棱BC的中点.求该三棱柱的表面积;求异面直线AB与所成角的大小.【答案】(1);(2).【解析】【分析】根据棱柱的表面积公式直接求解即可;先取AC中点E,连结DE,,根据题意可得是异面直线AB与所成角,解三角形即可.【详解】解:正三棱柱的各棱长均为2,该三棱柱的表面积:.取AC中点E,连结DE,,为棱BC的中点,,,是异面直线AB与所成角或所成角的补角,,,,异面直线AB与所成角的大小为.【点睛】本题主要考查几何体的表面积公式以及异面直线所成的角,在几何体中作出异面直线所成的角即可,属于基础题型.18.已知抛物线C:.若C上一点到其焦点的距离为3,求C的方程;若,斜率为2的直线l交C于两点,交x轴的正半轴于点M,O为坐标原点,求点M的坐标.【答案】(1);(2).【解析】【分析】根据抛物线的定义,由C上一点到其焦点的距离为3,可求出,进而可求出抛物线方程;由先求出抛物线方程,再设直线l:,代入抛物线方程,设,,结合韦达定理和判别式,根据求出的值即可.【详解】解:由抛物线的定义得:,解得:,所以抛物线C的方程为:;时,抛物线C:,设直线l:,并代入抛物线C:得:,,解得设,,则,,,解得或当时,不在x轴正半轴上,舍去;当时,故点M的坐标为【点睛】本题主要考查抛物线的方程与简单性质,通常需要联立直线与抛物线方程,结合韦达定理和题中条件求解,属于常考题型.19.在股票市场上,投资者常根据股价每股的价格走势图来操作,股民老张在研究某只股票时,发现其在平面直角坐标系内的走势图有如下特点:每日股价元与时间天的关系在ABC段可近似地用函数的图象从最高点A到最低点C的一段来描述如图,并且从C 点到今天的D点在底部横盘整理,今天也出现了明显的底部结束信号.老张预测这只股票未来一段时间的走势图会如图中虚线DEF段所示,且DEF段与ABC段关于直线l:对称,点B,D的坐标分别是.请你帮老张确定a,,的值,并写出ABC段的函数解析式;如果老张预测准确,且今天买入该只股票,那么买入多少天后股价至少是买入价的两倍?【答案】(1),,,,;(2)16.【解析】【分析】由B,D的坐标确定的值,和C的坐标,进而确定周期,求出,再由C的坐标,求出,即可得出函数解析式;(2)由(1)线求出DEF的解析式,令,求出即可.【详解】解:因为B,D的坐标分别是,且DEF段与ABC段关于直线l:对称,所以,所以,,,,由可得,,.由题意得DEF的解析式为:,由,得,故买入天后股价至少是买入价的两倍.【点睛】本题主要考查三角函数的应用,熟记三角函数的图像和性质即可,属于常考题型.20.对于函数,若函数是增函数,则称函数具有性质A.若,求的解析式,并判断是否具有性质A;判断命题“减函数不具有性质A”是否真命题,并说明理由;若函数具有性质A,求实数k的取值范围,并讨论此时函数在区间上零点的个数.【答案】(1),具有性质A;(2)假命题;(3)详见解析.【解析】【分析】由,结合即可得出解析式,和单调性,进而可得出结果;判断命题“减函数不具有性质A”,为假命题,举出反例即可,如;若函数具有性质A,可知在为增函数,进而可求出实数k的取值范围;再令,则在区间上零点的个数,即是的根的个数,结合k的取值范围,即可求出结果.【详解】解:,,在R上递增,可知具有性质A;命题“减函数不具有性质A”,为假命题,比如:,在R上递增,具有性质A;若函数具有性质A,可得在递增,可得,解得;由,可得,即,可得,时显然成立;时,,由在递减,且值域为,时,或1,有三解,3个零点;当时,,即,可得,1个零点;当时,,t有一解,x两解,即两个零点;当,且时,无解,即x无解,无零点.【点睛】本题主要考查函数的解析式与函数的单调性,以及函数零点问题,按照题中条件结合函数的性质分析即可,属于常考题型.21.对于数列,若存在正数p,使得对任意都成立,则称数列为“拟等比数列”.已知,且,若数列和满足:,且,.若,求的取值范围;求证:数列是“拟等比数列”;已知等差数列的首项为,公差为d,前n项和为,若,,,且是“拟等比数列”,求p的取值范围请用,d表示.【答案】(1)详见解析;(2).【解析】【分析】由即可求出结果;根据题中“拟等比数列”的定义,由,结合条件推出存在正数,使得有成立即可;由题中条件,,,先求出的范围;再根据是“拟等比数列”,分类讨论和,即可得出结果.【详解】解:,,且,,,.由题意得,当且时,,对任意,都有,即存在,使得有,数列数列是“拟等比数列”;,,,,,,由得,从而解得,又是“拟等比数列”,故存在,使得成立,当时,,,由得,由图象可知在时递减,故,当时,,,由得,由图象可知在时递减,故,由得p的取值范围是.【点睛】本题主要考查数列的应用,根据题中的新定义,结合条件,分类讨论即可求出结果,过程较繁琐,难度较大.。

2018年上海市闵行区七宝中学高考数学模拟试卷(J)

2018年上海市闵行区七宝中学高考数学模拟试卷(J)

2018年上海市闵行区七宝中学高考数学模拟试卷(J)副标题一、选择题(本大题共4小题,共4.0分)1.若椭圆C的方程为,则是曲线C的焦点在x轴上的A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件【答案】C【解析】解:椭圆C的方程为,若曲线C的焦点在x轴上,,故椭圆C的方程为,则是曲线C的焦点在x轴上的充要条件,故选:C.根据椭圆的性质即可得到曲线C的焦点在x轴上则再根据充要条件的定义即可判断.本题考查充要条件的判断与应用,椭圆的简单性质,基本知识的考查.2.方程的解的个数有A. 0B. 1C. 2D. 3【答案】A【解析】解:由于,所以,由此得到方程无解.故选:A.利用反三角函数,判断等式两侧表达式的范围,即可推出结果.本题考查反三角函数的应用,基本知识的考查.3.已知实数x,y满足,则的取值范围是A. B. C. D.【答案】B【解析】解:设为圆上的任意一点,则P到直线的距离,P到原点的距离,.设圆与直线相切,则,解得,的最小值为,最大值为,,.故选:B.构造直线,过圆上一点P作直线的垂线PM,则,求出的范围即可得出答案.本题考查了直线与圆的位置关系,距离公式的应用,属于中档题.4.实数a,b满足,,则的取值范围是A. B. C. D.【答案】B【解析】解:实数a,b满足,,可得,,令,,可得,它的可行域如图:A在与的交点,,,是双曲线关于对称,显然在A处取得最大值:,在B处取得最小值:.则的取值范围是:.故选:B.求出a,b的范围,利用换元法画出可行域,利用目标函数的几何意义求解范围即可.本题考查线性规划的简单应用,画出可行域,利用换元法同时考查转化思想,数形结合思想的应用.二、填空题(本大题共12小题,共12.0分)5.若,则______.【答案】2【解析】解:,.故答案为:2.利用对数的性质直接求解.本题考查实数值的求法,考查对数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.6.已知直线l垂直于直角坐标系中的y轴,则l的倾斜角为______.【答案】0【解析】解:由直线倾斜角的定义可得,垂直于直角坐标系中的y轴的直线l的倾斜角为0.故答案为:0.直接由直线的倾斜角的定义得答案.本题考查直线倾斜角的定义,是基础题.7.在复平面内,点对应的复数z,则______.【答案】【解析】解:在复平面内,点对应的复数z,则.故答案为:.求出复数,然后求解复数的模.本题考查复数的代数形式混合运算,复数的模的求法,考查计算能力.8.若角的终边经过点,则的值为______【答案】【解析】解:角的终边经过点,可得.则.故答案为:.利用角的终边经过点,求出,然后求解即可.本题考查三角函数的定义,反三角函数的化简求值,是基本知识的考查.9.若不等式的解集为,则实数t等于______【答案】1【解析】解:因为不等式的解集为,即是方程的根,所以,不等式化为,解得.所以.故答案为:1.由题目给出的绝对值不等式的解解为,可知为不等式所对应方程的两个根,求出a,然后求解实数t即可.本题考查了绝对值不等式的解法,考查了数学转化思想方法,若该题采用去绝对值的办法,去绝对值后需要分类讨论,解法变得复杂,该题属基本知识的考查.10.由参数方程为参数,,所表示的曲线的右焦点的坐标为______【答案】【解析】解:根据题意,参数方程变形为普通方程为,为双曲线,其中,,且其焦点在x轴上,则所表示的曲线的右焦点的坐标为;故答案为:.根据题意,将参数方程变形为普通方程,分析其表示的曲线为双曲线,由双曲线的几何性质分析可得答案.本题考查参数方程与普通方程的互化,关键是将参数方程变形为普通方程.11.直角坐标系xOy内有点,,,,将四边形ABCD绕直线旋转一周,所得到的几何体的体积为______.【答案】【解析】解:直角坐标系xOy中,点,,,,如图所示,由图形知四边形ABCD是矩形,将矩形ABCD绕直线旋转一周,所得几何体为底面半径为1,高为2的圆柱,该圆柱的体积为.故答案为:.由题意知四边形ABCD是矩形,矩形ABCD绕直线旋转一周得圆柱,求出圆柱的体积即可.本题考查了矩形旋转后是圆柱体的应用问题,是基础题.12.A,B二校各推荐两篇课题放在一起评比,则四篇课文在排序中没有A校命题相邻的概率为______.【答案】【解析】解:A,B二校各推荐两篇课题放在一起评比,基本事件总数,四篇课文在排序中没有A校命题相邻包含的基本事件个数,四篇课文在排序中没有A校命题相邻的概率为.故答案为:.基本事件总数,四篇课文在排序中没有A校命题相邻包含的基本事件个数,由此能求出四篇课文在排序中没有A校命题相邻的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.13.已知平面直角坐标系中的两点,,O原点,有,设:,,是平面曲线上任意三点,则的最大值为______.【答案】【解析】解:由,得.该曲线表示以为圆心,以为半径的圆.如图,圆内接三角形面积最大时三角形为正三角形,且最大面积为..故答案为:.化圆的方程为标准方程,求出圆的半径,结合已知及圆内接正三角形面积最大求解.本题考查曲线与方程,明确圆内接正三角形面积最大是关键,是中档题.14.设点O在的内部,点D,E分别为边AC,BC的中点,且,则______.【答案】2【解析】解:点D,E分别为边AC,BC的中点,,,,故答案为:2.根据向量的几何意义即可求出.本题考查了平面向量加法的几何意义,是基础题.15.设函数,数列的首项,且,若数列不是单调递增数列,则的取值范围______.【答案】【解析】解:;假设,则.若,则,由此可证得是单调递增数列,这矛盾.所以.故答案为:.通过数列与函数的关系式,结合不等式,转化求解的取值范围.本题考查数列与函数的综合应用,反证法的应用,考查转化思想以及计算能力.16.给定曲线,为参数,则这些曲线在直线上所截得得弦长的最大值是______.【答案】【解析】解:将代入曲线方程得,.令,则,,弦长.故弦长的最大值是,故答案为:.联立直线与曲线方程可求交点的横坐标,,要使曲线族在直线上所截得的弦长的最大,则只要最大即可,即t最大即可,根据函数的性质即可求出.本题主要考查了直线与曲线相交求解交点、弦长,解题的关键是灵活利用三角函数的性质及弦长公式,属于中档题三、解答题(本大题共5小题,共5.0分)17.已知圆柱的底面半径为r,上底面圆心为O,正六边形ABCDEF内接于下底面圆P,OA与母线所成角为,试用r表示圆柱的表面积S;若圆柱体积为,求点C到平面OEF的距离.【答案】解:连接AP,由题意可知:OA与母线所成角为,,所以:,---2分,---4分,---6分,,---10分---14分【解析】利用已知条件,通过求解三角形推出圆柱的高,然后求解圆柱的表面积S.利用圆柱的体积,求出底面半径,通过,求解点C到平面OEF的距离.本题考查空间点线面的距离的求法,几何体的体积的求法,考查了直角三角形的解法,是基础题.18.已知向量和向量,且.求函数的最小正周期和最大值;已知的三个内角分别为A,B,C,若有,,,求AC的长度.【答案】解:,,化为.函数的周期为,最大值为2.得,即,由正弦定理得,又,,则.【解析】利用向量共线定理、两角和差的正弦公式、三角函数的性质即可得出;利用正弦定理即可得出.本题考查了向量共线定理、两角和差的正弦公式、三角函数的性质、正弦定理,属于中档题.19.业界称“中国芯”迎来发展和投资元年,某芯片企业准备研发一款产品,研发启动时投入资金为为常数元,之后每年会投入一笔研发资金,n年后总投入资金记为,经计算发现当时,近似地满足,其中为常数,已知3年后总投入资金为研发启动时投入资金的3倍问研发启动多少年后,总投入资金是研发启动时投入资金的8倍;研发启动后第几年的投入资金的最多.【答案】解:由题意知,.所以解得所以.令,得,解得,即,所以.所以研发启动9年后,总投入资金是研发启动时投入资金的8倍.由知第n年的投入资金,当且仅当,即等号,此时.所以研发启动后第5年的投入资金增长的最多.【解析】由题意知,,代入求出p,q的值,即可得到函数的解析式,再代值计算即可求出n的值,利用作差法,求出第n年的投入资金,利用基本不等式即可求出答案.本题考查了函数模型在实际生活中的应用,以及基本不等式的应用,考查了分析问题,解决问题的能力,属于中档题.20.平面直角坐标系xOy中,抛物线:的焦点为F,过F的直线l交曲线于B,C两点.若l垂直于x轴,且线段BC的长为1,求曲线方程;若l的斜率为k,求;设抛物线上异于B,C的点A满足若的重心在x轴上,求得重心的坐标.【答案】解:联立方程,所以BC长,从而的方程为分设,,l:.由、,得到分,所以分若l垂直于x轴,则由,此时重心坐标为.以下设l:,,.设线段BC中点,则,,所以直线AD的斜率,分此时,从而直线AD:与x轴的交点即为的重心.综合有,的重心为或者分【解析】若l垂直于x轴,联立直线与抛物线方程,通过线段BC的长为1,求曲线方程即可;若l的斜率为k,设,,写出l:通过联立直线与抛物线方程,结合韦达定理转化求解;若l垂直于x轴,则由,此时重心坐标为设l:,,设线段BC中点,求出D的坐标,AD的斜率,求出直线系方程,得到定点坐标即为的重心.本题考查抛物线与直线的位置关系的应用,考查转化思想以及计算能力.21.设函数在上有定义,实数a,b满足若在区间上不存在最小值,则称在区间上具有性质p.当,且在区间上具有性质p时,求常数C的取值范围;已知,且当时,,判别在区间上是否具有性质p;若对于满足的任意实数a,b;在区间上具有性质p,且对于任意,当时,有:,证明:当时,.【答案】解:当时,在上存在最小值;当时,在上存在最小值;当时,在上单调递增,所以不存在最小值.所以.因为时,,所以在区间上如果有最小值,则最小值必在区间上取到另一方面,在区间上不存在最小值,所以在区间上具有性质P.首先证明对于任意,.当时,由可知介于和之间若,则在区间上存在最小值,矛盾.利用归纳法和上面结论可得:对于任意k,,当时,.其次证明当且时,;当且时,.任取,设正整数k满足,则.若存在使得,则,即由于当时,,所以在区间有最小值,矛盾.类似可证,当且时,.最后证明:当时,.当时,成立当时,由可知,存在使得,所以.当时,有:若,则,所以在上存在最小值,故不具有性质p,故不成立.若,则假设,则在上存在最小值,故不具有性质p,故假设不成立.所以当时,对于任意都成立.又,故当、,所以,即.所以当时,则存在正整数m使得,则所以当时,,同理可证得当时,.所以当时,必然存在正整数n,使得,所以;当时,显然成立;所以综上所述:当时,.【解析】分别讨论图象的对称轴与1和2的关系,即可得出是否存在最小值,从而求出C的取值范围;由题目条件可得出在区间上如果有最小值,则最小值必在区间上取到,又在区间上不存在最小值,所以在区间上具有性质P;首先证明对于任意,;其次证明当且时,;当且时,;最后证明:当时,.本题考查了函数与方程的综合运用,需要对题目的条件充分理解和利用,证明用到了数学归纳法,属于难题.。

(11套)2018年上海市 含所有区 高考数学一模试卷 汇总(打包下载)

(11套)2018年上海市 含所有区 高考数学一模试卷 汇总(打包下载)

(11套)2018年上海市含所有区高考数学一模试卷汇总2018年上海市崇明区高考数学一模试卷一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a},若A∪B={1,2,3,5},则a=.2.(4分)抛物线y2=4x的焦点坐标为.3.(4分)不等式<0的解是.4.(4分)若复数z满足iz=1+i(i为虚数单位),则z=.5.(4分)在代数式(x﹣)7的展开式中,一次项的系数是.(用数字作答)6.(4分)若函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是π,则ω=.7.(5分)若函数f(x)=x a的反函数的图象经过点(,),则a=.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm3,则该几何体的侧面积为cm2.9.(5分)已知函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,且f(2)=2,则a=.10.(5分)若无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,且=a,则a=.S11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有 1 名女生,共有种不同的选法.(用数字作答)12.(5分)在ABC中,BC边上的中垂线分别交BC,AC于点D,E.若•=6,||=2,则AC=.二、选择题(本大题共有4题,满分20分)13.(5分)展开式为ad﹣bc的行列式是()A.B.C.D.14.(5分)设a,b∈R,若a>b,则()A.<B.lga>lgb C.sin a>sin b D.2a>2b15.(5分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件16.(5分)直线x=2与双曲线﹣y2=1的渐近线交于A,B两点,设P为双曲线上任一点,若=a+b(a,b∈R,O为坐标原点),则下列不等式恒成立的是()A.a2+b2≥1 B.|ab|≥1 C.|a+b|≥1 D.|a﹣b|≥2三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.18.(14分)已知f(x)=2sinxcosx+2cos2x﹣1.(1)求f(x)的最大值及该函数取得最大值时x的值;(2)在△ABC 中,a,b,c分别是角A,B,C所对的边,若a=,b=,且f()=,求边c的值.19.(14分)2016 年崇明区政府投资8 千万元启动休闲体育新乡村旅游项目.规划从2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记2016 年为第 1 年,f (n)为第 1 年至此后第n (n∈N*)年的累计利润(注:含第n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n)为正值时,认为该项目赢利.(1)试求 f (n)的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.20.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.21.(18分)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,则称函数f(x)在其定义域D上是“k﹣利普希兹条件函数”.(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,求常数k的最小值;(2)判断函数f(x)=log2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f(x)(x∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x1,x2,都有|f(x1)﹣f(x2)|≤1.2018年上海市崇明区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,其中1-6题每题4分,7-12题每题5分)1.(4分)已知集合A={1,2,5},B={2,a},若A∪B={1,2,3,5},则a=3.【解答】解:∵集合A={1,2,5},B={2,a},A∪B={1,2,3,5},∴a=3.故答案为:3.2.(4分)抛物线y2=4x的焦点坐标为(1,0).【解答】解:∵抛物线y2=4x是焦点在x轴正半轴的标准方程,p=2∴焦点坐标为:(1,0)故答案为:(1,0)3.(4分)不等式<0的解是(﹣1,0).【解答】解:不等式<0,即x(x+1)<0,求得﹣1<x<0,故答案为:(﹣1,0).4.(4分)若复数z满足iz=1+i(i为虚数单位),则z=1﹣i.【解答】解:由iz=1+i,得z==1﹣i故答案为:1﹣i.5.(4分)在代数式(x﹣)7的展开式中,一次项的系数是21.(用数字作答)【解答】解:(x﹣)7的展开式的通项为=,由7﹣3r=1,得r=2,∴一次项的系数是.故答案为:21.6.(4分)若函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是π,则ω=2.【解答】解:根据正弦函数的图象与性质,知函数y=2sin(ωx﹣)+1(ω>0)的最小正周期是T==π,解得ω=2.故答案为:2.7.(5分)若函数f(x)=x a的反函数的图象经过点(,),则a=.【解答】解:若函数f(x)=x a的反函数的图象经过点(,),则:(,)满足f(x)=xα,所以:,解得:,故答案为:.8.(5分)将一个正方形绕着它的一边所在的直线旋转一周,所得几何体的体积为27πcm3,则该几何体的侧面积为18πcm2.【解答】解:将一个正方形绕着它的一边所在的直线旋转一周,所得几何体是圆柱体,设正方形的边长为acm,则圆柱体的体积为V=πa2•a=27π,解得a=3cm;∴该圆柱的侧面积为S=2π×3×3=18πcm2.故答案为:18π.9.(5分)已知函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,且f(2)=2,则a=﹣.【解答】解:∵函数y=f(x)是奇函数,当x<0 时,f(x)=2x﹣ax,∴x>0时,﹣f(x)=2﹣x﹣a(﹣x),∴f(x)=﹣2﹣x﹣ax,∵f(2)=2,∴f(2)=﹣2﹣2﹣2a=2,解得a=﹣.故答案为:﹣.10.(5分)若无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,且=a,则a=2.S【解答】解:无穷等比数列{a n}的各项和为S n,首项a1=1,公比为a﹣,=a,且S可得=a,即有=a,即为2a2﹣5a+2=0,解得a=2或,由题意可得0<|q|<1,即有0<|a﹣|<1,检验a=2成立;a=不成立.故答案为:2.11.(5分)从5男3女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人志愿者服务队,要求服务队中至少有 1 名女生,共有780种不同的选法.(用数字作答)【解答】解:根据题意,要求服务队中至少有 1 名女生,则分3种情况讨论:①、选出志愿者服务队的4人中有1名女生,有C53C31=30种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,②、选出志愿者服务队的4人中有2名女生,有C52C32=30种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有30×12=360种不同的选法,③、选出志愿者服务队的4人中有3名女生,有C51C33=5种选法,这4人选2人作为队长和副队有A42=12种,其余2人为普通队员,有1种情况,此时有5×12=60种不同的选法,则一共有360+360+60=780;故答案为:780.12.(5分)在ABC中,BC边上的中垂线分别交BC,AC于点D,E.若•=6,||=2,则AC=4.【解答】解:建立平面直角坐标系如图所示,设B(﹣a,0),C(a,0),E(0,b),∠ABC=α,由||=2,知A(﹣a+2cosα,2sinα),∴=(a﹣2cosα,b﹣2sinα),=(2a,0),∴•=2a(a﹣2cosα)+0=2a2﹣4acosα=6,∴a2﹣2acosα=3;又=(2a﹣2cosα,﹣2sinα),∴=(2a﹣2cosα)2+(﹣2sinα)2=4a2﹣8acosα+4=4(a2﹣2acosα)+4=4×3+4=16,∴||=4,即AC=4.故答案为:4.二、选择题(本大题共有4题,满分20分)13.(5分)展开式为ad﹣bc的行列式是()A.B.C.D.【解答】解:根据叫做二阶行列式,它的算法是:ad﹣bc,由题意得,=ad﹣bc.故选B.14.(5分)设a,b∈R,若a>b,则()A.<B.lga>lgb C.sin a>sin b D.2a>2b【解答】解:由a>b,利用指数函数的单调性可得:2a>2b.再利用不等式的性质、对数函数的定义域与单调性、三角函数的单调性即可判断出A,B,C不正确.故选:D.15.(5分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C16.(5分)直线x=2与双曲线﹣y2=1的渐近线交于A,B两点,设P为双曲线上任一点,若=a+b(a,b∈R,O为坐标原点),则下列不等式恒成立的是()A.a2+b2≥1 B.|ab|≥1 C.|a+b|≥1 D.|a﹣b|≥2【解答】解:双曲线﹣y2=1的渐近线为:y=±x.把x=2代入上述方程可得:y=±1.不妨取A(2,1),B(2,﹣1).=a+b=(2a+2b,a﹣b).代入双曲线方程可得:﹣(a﹣b)2=1,化为ab=.∴=ab,化为:|a+b|≥1.故选:C.三、解答题(本大题共有5题,满分76分)17.(14分)如图,长方体ABCD﹣A1B1C1D1中,AB=BC=2,A1C与底面ABCD所成的角为60°,(1)求四棱锥A1﹣ABCD的体积;(2)求异面直线A1B与B1D1所成角的大小.【解答】解:(1)∵长方体ABCD﹣A1B1C1D1中,AB=BC=2,∴AA1⊥平面ABCD,AC==2,∴∠A1CA是A1C与底面ABCD所成的角,∵A1C与底面ABCD所成的角为60°,∴∠A1CA=60°,∴AA1=AC•tan60°=2•=2,=AB×BC=2×2=4,∵S正方形ABCD∴四棱锥A1﹣ABCD的体积:V===.(2)∵BD∥B1D1,∴∠A1BD是异面直线A1B与B1D1所成角(或所成角的补角).∵BD=,A1D=A1B==2,∴cos∠A1BD===.∴∠A1BD=arccos.∴异面直线A1B与B1D1所成角是arccos.18.(14分)已知f(x)=2sinxcosx+2cos2x﹣1.(1)求f(x)的最大值及该函数取得最大值时x的值;(2)在△ABC 中,a,b,c分别是角A,B,C所对的边,若a=,b=,且f()=,求边c的值.【解答】解:f(x)=2sinxcosx+2cos2x﹣1=sin2x+cos2x=2sin(2x+)(1)当2x+=时,即x=(k∈Z),f(x)取得最大值为2;(2)由f()=,即2sin(A+)=可得sin(A+)=∵0<A<π∴<A<∴A=或∴A=或当A=时,cosA==∵a=,b=,解得:c=4当A=时,cosA==0∵a=,b=,解得:c=2.19.(14分)2016 年崇明区政府投资8 千万元启动休闲体育新乡村旅游项目.规划从2017 年起,在今后的若干年内,每年继续投资 2 千万元用于此项目.2016 年该项目的净收入为 5 百万元,并预测在相当长的年份里,每年的净收入均为上一年的基础上增长50%.记2016 年为第 1 年,f (n)为第 1 年至此后第n (n∈N*)年的累计利润(注:含第n 年,累计利润=累计净收入﹣累计投入,单位:千万元),且当 f (n)为正值时,认为该项目赢利.(1)试求 f (n)的表达式;(2)根据预测,该项目将从哪一年开始并持续赢利?请说明理由.【解答】解:(1)由题意知,第1年至此后第n(n∈N*)年的累计投入为8+2(n﹣1)=2n+6(千万元),第1年至此后第n(n∈N*)年的累计净收入为+×+×+…+×=(千万元).∴f(n)=﹣(2n+6)=﹣2n﹣7(千万元).(2)方法一:∵f(n+1)﹣f(n)=[﹣2(n+1)﹣7]﹣[﹣2n﹣7]=[﹣4],∴当n≤3时,f(n+1)﹣f(n)<0,故当n≤4时,f(n)递减;当n≥4时,f(n+1)﹣f(n)>0,故当n≥4时,f(n)递增.又f(1)=﹣<0,f(7)=≈5×﹣21=﹣<0,f(8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利;方法二:设f(x)=﹣2x﹣7(x≥1),则f′(x)=,令f'(x)=0,得=≈=5,∴x≈4.从而当x∈[1,4)时,f'(x)<0,f(x)递减;当x∈(4,+∞)时,f'(x)>0,f(x)递增.又f(1)=﹣<0,f(7)=≈5×﹣21=﹣<0,f(8)=﹣23≈25﹣23=2>0.∴该项目将从第8年开始并持续赢利.答:该项目将从2023年开始并持续赢利.20.(16分)在平面直角坐标系中,已知椭圆C:+y2=1 (a>0,a≠1)的两个焦点分别是F1,F2,直线l:y=kx+m(k,m∈R)与椭圆交于A,B两点.(1)若M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,求a的值;(2)若k=1,且△OAB是以O为直角顶点的直角三角形,求a与m满足的关系;(3)若a=2,且k OA•k OB=﹣,求证:△OAB的面积为定值.【解答】解:(1)∵M为椭圆短轴上的一个顶点,且△MF1F2是直角三角形,∴△MF1F2为等腰直角三角形,∴OF1=OM,当a>1时,=1,解得a=,当0<a<1时,=a,解得a=,(2)当k=1时,y=x+m,设A(x1,y1),(x2,y2),由,即(1+a2)x2+2a2mx+a2m2﹣a2=0,∴x1+x2=﹣,x1x2=,∴y1y2=(x1+m)(x2+m)=x1x2+m(x1+x2)+m2=,∵△OAB是以O为直角顶点的直角三角形,∴•=0,∴x1x2+y1y2=0,∴+=0,∴a2m2﹣a2+m2﹣a2=0∴m2(a2+1)=2a2,(3)证明:当a=2时,x2+4y2=4,设A(x1,y1),(x2,y2),∵k OA•k OB=﹣,∴•=﹣,∴x1x2=﹣4y1y2,由,整理得,(1+4k2)x2+8kmx+4m2﹣4=0.∴x1+x2=,x1x2=,∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=++m2=,∴=﹣4×,∴2m2﹣4k2=1,∴|AB|=•=•=2•=∵O到直线y=kx+m的距离d==,=|AB|d==•==1∴S△OAB21.(18分)若存在常数k(k>0),使得对定义域D内的任意x1,x2(x1≠x2),都有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,则称函数f(x)在其定义域D上是“k﹣利普希兹条件函数”.(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,求常数k的最小值;(2)判断函数f(x)=log2x 是否是“2﹣利普希兹条件函数”,若是,请证明,若不是,请说明理由;(3)若y=f(x)(x∈R )是周期为2的“1﹣利普希兹条件函数”,证明:对任意的实数x1,x2,都有|f(x1)﹣f(x2)|≤1.【解答】解:(1)若函数f(x)=,(1≤x≤4)是“k﹣利普希兹条件函数”,则对于定义域[1,4]上任意两个x1,x2(x1≠x2),均有|f(x1)﹣f(x2)|≤k|x1﹣x2|成立,不妨设x1>x2,则k≥=恒成立.∵1≤x2<x1≤4,∴<<,∴k的最小值为.(2)f(x)=log2x的定义域为(0,+∞),令x1=,x2=,则f()﹣f()=log2﹣log2=﹣1﹣(﹣2)=1,而2|x1﹣x2|=,∴f(x1)﹣f(x2)>2|x1﹣x2|,∴函数f(x)=log2x 不是“2﹣利普希兹条件函数”.证明:(3)设f(x)的最大值为M,最小值为m,在一个周期[0,2]内f(a)=M,f(b)=m,则|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b)≤|a﹣b|.若|a﹣b|≤1,显然有|f(x1)﹣f(x2)|≤|a﹣b|≤1.若|a﹣b|>1,不妨设a>b,则0<b+2﹣a<1,∴|f(x1)﹣f(x2)|≤M﹣m=f(a)﹣f(b+2)≤|a﹣b﹣2|<1.综上,|f(x1)﹣f(x2)|≤1.2018年上海市虹口区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)函数f(x)=lg(2﹣x)定义域为.2.(4分)已知f(x)是定义在R上的奇函数,则f(﹣1)+f(0)+f(1)=.3.(4分)首项和公比均为的等比数列{a n},S n是它的前n项和,则=.4.(4分)在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c,如果a:b:c=2:3:4,那么cosC=.5.(4分)已知复数z=a+bi(a,b∈R)满足|z|=1,则a•b的范围是.6.(4分)某学生要从物理、化学、生物、政治、历史、地理这六门学科中选三门参加等级考,要求是物理、化学、生物这三门至少要选一门,政治、历史、地理这三门也至少要选一门,则该生的可能选法总数是.7.(5分)已知M、N是三棱锥P﹣ABC的棱AB、PC的中点,记三棱锥P﹣ABC 的体积为V1,三棱锥N﹣MBC的体积为V2,则等于.8.(5分)在平面直角坐标系中,双曲线的一个顶点与抛物线y2=12x的焦点重合,则双曲线的两条渐近线的方程为.9.(5分)已知y=sinx和y=cosx的图象的连续的三个交点A、B、C构成三角形△ABC,则△ABC的面积等于.10.(5分)设椭圆的左、右焦点分别为F1、F2,过焦点F1的直线交椭圆于M、N两点,若△MNF 2的内切圆的面积为π,则=.11.(5分)在△ABC中,D是BC的中点,点列P n(n∈N*)在线段AC上,且满足,若a1=1,则数列{a n}的通项公式a n=.12.(5分)设f(x)=x2+2a•x+b•2x,其中a,b∈N,x∈R,如果函数y=f(x)与函数y=f(f(x))都有零点且它们的零点完全相同,则(a,b)为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)异面直线a和b所成的角为θ,则θ的范围是()A.B.(0,π) C.D.(0,π]14.(5分)命题:“若x2=1,则x=1”的逆否命题为()A.若x≠1,则x≠1或x≠﹣1 B.若x=1,则x=1或x=﹣1C.若x≠1,则x≠1且x≠﹣1 D.若x=1,则x=1且x=﹣115.(5分)已知函数,则f(1)+f(2)+f(3)+…+f(2017)=()A.2017 B.1513 C.D.16.(5分)已知Rt△ABC中,∠A=90°,AB=4,AC=6,在三角形所在的平面内有两个动点M和N,满足,,则的取值范围是()A.B.[4,6]C.D.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在三棱锥P﹣ABC中,PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点.(1)求证:PM⊥平面ABC;(2)求直线PB和平面ABC所成的角的大小.18.(14分)已知函数,其中x∈R,ω>0,且此函数的最小正周期等于π.(1)求ω的值,并写出此函数的单调递增区间;(2)求此函数在的最大值和最小值.19.(14分)如图,阴影部分为古建筑群所在地,其形状是一个长为2km,宽为1km的矩形,矩形两边AB、AD紧靠两条互相垂直的路上,现要过点C修一条直线的路l,这条路不能穿过古建筑群,且与另两条路交于点P和Q.(1)设AQ=x(km),将△APQ的面积S表示为x的函数;(2)求△APQ的面积S(km)的最小值.20.(16分)已知平面内的定点F到定直线l的距离等于p(p>0),动圆M过点F且与直线l相切,记圆心M的轨迹为曲线C,在曲线C上任取一点A,过A 作l的垂线,垂足为E.(1)求曲线C的轨迹方程;(2)记点A到直线l的距离为d,且,求∠EAF的取值范围;(3)判断∠EAF的平分线所在的直线与曲线的交点个数,并说明理由.21.(18分)已知无穷数列{a n}的各项均为正数,其前n项和为S n,a1=4.(1)如果a2=2,且对于一切正整数n,均有,求S n;(2)如果对于一切正整数n,均有a n•a n+1=S n,求S n;(3)如果对于一切正整数n,均有a n+a n=3S n,证明:a3n﹣1能被8整除.+12018年上海市虹口区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)函数f(x)=lg(2﹣x)定义域为(﹣∞,2).【解答】解:要使函数有意义,可得2﹣x>0,即x<2.函数f(x)=lg(2﹣x)定义域为:(﹣∞,2).故答案为:(﹣∞,2).2.(4分)已知f(x)是定义在R上的奇函数,则f(﹣1)+f(0)+f(1)=0.【解答】解:∵f(x)是定义在R上的奇函数,∴f(﹣1)=﹣f(1),f(0)=0,即f(﹣1)+f(0)+f(1)=0,故答案为:0.3.(4分)首项和公比均为的等比数列{a n},S n是它的前n项和,则= 1.【解答】解:根据题意,等比数列{a n}的首项和公比均为,则其前n项和S n==1﹣()n,则=1;故答案为:1.4.(4分)在△ABC中,∠A,∠B,∠C所对的边分别是a,b,c,如果a:b:c=2:3:4,那么cosC=﹣.【解答】解:因为a:b:c=2:3:4,所以设a=2k,b=3k,c=4k,则根据余弦定理得:cosC===﹣.故答案为:﹣5.(4分)已知复数z=a+bi(a,b∈R)满足|z|=1,则a•b的范围是[,] .【解答】解:∵z=a+bi(a,b∈R),且|z|=1,∴,即a2+b2=1,令a=cosθ,b=sinθ,则ab=cosθ•sinθ=,∴ab∈[,].故答案为:.6.(4分)某学生要从物理、化学、生物、政治、历史、地理这六门学科中选三门参加等级考,要求是物理、化学、生物这三门至少要选一门,政治、历史、地理这三门也至少要选一门,则该生的可能选法总数是18.【解答】解:根据题意,要求是物理、化学、生物这三门至少要选一门,政治、历史、地理这三门也至少要选一门,分2种情况讨论:①、从物理、化学、生物这三门中选1门,政治、历史、地理这三门选2门,有C31C32=9种选法,②、从物理、化学、生物这三门中选2门,政治、历史、地理这三门选1门,有C31C32=9种选法,则一共有9+9=18种选法;故答案为:187.(5分)已知M、N是三棱锥P﹣ABC的棱AB、PC的中点,记三棱锥P﹣ABC的体积为V1,三棱锥N﹣MBC的体积为V2,则等于.【解答】解:如图,设三棱锥P﹣ABC的底面积为S,高为h,∵M是AB的中点,∴,∵N是PC的中点,∴三棱锥N﹣MBC的高为,则,,∴=.故答案为:.8.(5分)在平面直角坐标系中,双曲线的一个顶点与抛物线y2=12x的焦点重合,则双曲线的两条渐近线的方程为.【解答】解:根据题意,抛物线y2=12x的焦点为(3,0),若双曲线的一个顶点与抛物线y2=12x的焦点重合,则双曲线的顶点坐标为(±3,0),则有a2=9,则双曲线的方程为:﹣y2=1,双曲线的焦点在x轴上,则其渐近线方程为故答案为:9.(5分)已知y=sinx和y=cosx的图象的连续的三个交点A、B、C构成三角形△ABC,则△ABC的面积等于.【解答】解:由题意正余弦函数的图象可得:y=sinx和y=cosx的图象的连续的三个交点A、B、C构成三角形△ABC是等腰三角形,∵底边长为一个周期T=2π,高为,∴△ABC的面积=2=,故答案为:.10.(5分)设椭圆的左、右焦点分别为F1、F2,过焦点F1的直线交椭圆于M、N两点,若△MNF 2的内切圆的面积为π,则=4.【解答】解:∵椭圆+的左右焦点分别为F1,F2,a=2,过焦点F1的直线交椭圆于M(x1,y1),N(x2,y2)两点,△MNF2的内切圆的面积为π,∴△MNF2内切圆半径r=1.∴△MNF2面积S=×1×(MN+MF2+MF2)=2a=4,故答案为:411.(5分)在△ABC中,D是BC的中点,点列P n(n∈N*)在线段AC上,且满足,若a1=1,则数列{a n}的通项公式a n=.【解答】解:如图所示,∵D是BC的中点,∴=+=+,又=+,,∴+=+a n(+),)+,化为:=(1﹣a n﹣a n+1∵点列P n(n∈N*)在线段AC上,+=1,∴1﹣a n﹣a n+1化为:a n=﹣,又a1=1,+1则数列{a n}是等比数列,首项为1,公比为﹣.∴a n=.故答案为:.12.(5分)设f(x)=x2+2a•x+b•2x,其中a,b∈N,x∈R,如果函数y=f(x)与函数y=f(f(x))都有零点且它们的零点完全相同,则(a,b)为(0,0)或(1,0).【解答】解:根据题意,函数y=f(x)的零点为方程x2+2a•x+b•2x=0的根,如果函数y=f(x)与函数y=f(f(x))的零点完全相同,则有f(x)=x,即x2+2a•x+b•2x=x,方程x2+2a•x+b•2x=x的根就是函数y=f(x)与函数y=f(f(x))的零点,则有,解可得x=0,即x2+2a•x+b•2x=0的1个根为x=0,分析可得b=0,则f(x)=x2+2a•x,解可得x1=0或x2=﹣2a,f(f(x))=(x2+2a•x)2+2a(x2+2a•x),若函数y=f(x)与函数y=f(f(x))的零点完全相同,分析可得a=0或a=1,则(a,b)为(0,0)或(1,0);故答案为(0,0)或(1,0).二.选择题(本大题共4题,每题5分,共20分)13.(5分)异面直线a和b所成的角为θ,则θ的范围是()A.B.(0,π) C.D.(0,π]【解答】解:∵异面直线a和b所成的角为θ,∴θ的范围是(0,].故选:C.14.(5分)命题:“若x2=1,则x=1”的逆否命题为()A.若x≠1,则x≠1或x≠﹣1 B.若x=1,则x=1或x=﹣1C.若x≠1,则x≠1且x≠﹣1 D.若x=1,则x=1且x=﹣1【解答】解:命题:“若x2=1,则x=1”的逆否命题为“若x≠1,则x2≠1”;即“若x≠1,则x≠1且x≠﹣1”.故选:C.15.(5分)已知函数,则f(1)+f(2)+f(3)+…+f(2017)=()A.2017 B.1513 C.D.【解答】解:∵函数,∴f(1)+f(2)+f(3)+…+f(2017)=1009×f(﹣1)+1008×f(0)=1009×2﹣1+1008×20=.故选:D.16.(5分)已知Rt△ABC中,∠A=90°,AB=4,AC=6,在三角形所在的平面内有两个动点M和N,满足,,则的取值范围是()A.B.[4,6]C.D.【解答】解:以AB,AC为坐标轴建立坐标系,则B(4,0),C(0,6),∵||=2,∴M的轨迹是以A为圆心,以2为半径的圆.∵,∴N是MC的中点.设M(2cosα,2sinα),则N(cosα,sinα+3),∴=(cosα﹣4,sinα+3),∴||2=(cosα﹣4)2+(sinα+3)2=6sinα﹣8cosα+26=10sin(α﹣φ)+26,∴当sin(α﹣φ)=﹣1时,||取得最小值=4,当sin(α﹣φ)=1时,||取得最大值=6.故选B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在三棱锥P﹣ABC中,PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点.(1)求证:PM⊥平面ABC;(2)求直线PB和平面ABC所成的角的大小.【解答】证明:(1)在三棱锥P﹣ABC中,∵PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点.∴PM⊥AC,AB⊥平面PAC,∴PM⊥AB,∵AB∩AC=A,∴PM⊥平面ABC.解:(2)连结BM,∵PM⊥平面ABC,∴∠PBM是直线PB和平面ABC所成的角,∵PA=AC=PC=AB=a,PA⊥AB,AC⊥AB,M为AC的中点,∴PM==,BM===,∴tan∠PBM===,∴.∴直线PB和平面ABC所成的角为arctan.18.(14分)已知函数,其中x∈R,ω>0,且此函数的最小正周期等于π.(1)求ω的值,并写出此函数的单调递增区间;(2)求此函数在的最大值和最小值.【解答】解:函数=sinωx+cosωx=2sin (ωx),(1)∵函数的最小正周期等于π.即∴ω=2.可得f(x)=2sin(2x),由2x,k∈Z得:≤x≤故得函数的单调递增区间为[,],k∈Z(2)∵f(x)=2sin(2x),当,(2x)∈[]∴当2x=时,函数f(x)取得最大值为2.当2x=时,函数f(x)取得最小值为﹣1.19.(14分)如图,阴影部分为古建筑群所在地,其形状是一个长为2km,宽为1km的矩形,矩形两边AB、AD紧靠两条互相垂直的路上,现要过点C修一条直线的路l,这条路不能穿过古建筑群,且与另两条路交于点P和Q.(1)设AQ=x(km),将△APQ的面积S表示为x的函数;(2)求△APQ的面积S(km)的最小值.【解答】解:(1)设AQ=x,则由得:即AP=故S==(x>1);(2)由(1)得:S′=(x>1);当x∈(1,2)时,S′<0,当x∈(2,+∞)时,S′>0,故x=2时,S min=4.20.(16分)已知平面内的定点F到定直线l的距离等于p(p>0),动圆M过点F且与直线l相切,记圆心M的轨迹为曲线C,在曲线C上任取一点A,过A 作l的垂线,垂足为E.(1)求曲线C的轨迹方程;(2)记点A到直线l的距离为d,且,求∠EAF的取值范围;(3)判断∠EAF的平分线所在的直线与曲线的交点个数,并说明理由.【解答】解:(1)如图,以FK的中点为坐标原点O,FK所在的直线为x轴,过O的垂线为y轴建立直角坐标系,即有F(,0),直线l:x=﹣,动圆M过点F且与直线l相切,可得|AE|=|AF|,由抛物线的定义可得曲线C的轨迹为F为焦点、直线l为准线的抛物线,可得方程为y2=2px;(2)点A到直线l的距离为d,可得|AE|=|AF|=d,且,设A(x0,y0),可得y02=2px0,即有d=x0+,则x0=d﹣,即有|EF|2=p2+y02=p2+2p(d﹣)=2pd,在△EAF中,cos∠EAF==1﹣,可得﹣≤cos∠EAF≤,可得arccos≤π﹣arccos,则∠EAF的取值范围是[arccos];(3)∠EAF的平分线所在的直线与曲线的交点个数为1.设A(x0,y0),可得y02=2px0,当A与O重合时,显然一个交点;当A不与O重合,由∠EAF的平分线交x轴于M,连接EM,可得∠AMF=∠MAF,即有|MF|=|AF|=d,四边形AEMF为菱形,EF垂直平分AM,可得∠AMF+∠EFM=90°,tan∠AMF=cot∠EFM==,可设y0>0,则直线AM的方程为y﹣y0=(x﹣x0),则y0y﹣y02=px﹣px0,化为y0y=px+px0,代入抛物线的方程y2=2px,消去x可得,y2﹣2y0y+2px0=0,即为(y﹣y0)2=0,可得y=y0,x=x0,即∠EAF的平分线所在的直线与曲线的交点个数为1.21.(18分)已知无穷数列{a n}的各项均为正数,其前n项和为S n,a1=4.(1)如果a2=2,且对于一切正整数n,均有,求S n;(2)如果对于一切正整数n,均有a n•a n+1=S n,求S n;(3)如果对于一切正整数n,均有a n+a n=3S n,证明:a3n﹣1能被8整除.+1【解答】解:(1)∵无穷数列{a n}的各项均为正数,其前n项和为S n,a1=4.a2=2,且对于一切正整数n,均有,∴==1,=,由此猜想=23﹣n.再利用数学归纳法证明:①当n=1时,=4,成立.②假设n=k时,成立,即,则a k+1====2(6﹣2k)﹣(4﹣k)=22﹣k=23﹣(k+1).由①②得,∴{a n}是首项为4,公比为的等比数列,∴S n==8(1﹣).(2)∵对于一切正整数n,均有a n•a n+1=S n,∴S n=a n a n+1,S n﹣1=a n﹣1a n,∴a n=a n(a n+1﹣a n﹣1),∴a n+1﹣a n﹣1=1.a1=4,由a n•a n+1=S n,得a2=1,a3=5,a4=3,…∴当n为偶数时,+===.当n为奇数时,S n=++==.证明:(3)∵对于一切正整数n,均有a n+a n+1=3S n,∴a n+a n+1=3S n,a n﹣1+a n=3S n﹣1,∴a n+1﹣a n﹣1=3a n,a1+a2=3a1,a2=2a1=8,能被8整除,a3﹣a1=3a2,a3=28,假设a3k﹣1=8m,m∈N*.=3a2k+1+a3k=3(3a3k+a3k﹣1)+a3k则a3k+2=10a3k+a3k﹣1=40p+24q,p,q∈N*能被8整除,综上,a3n能被8整除.﹣12018年上海市黄浦区高考数学一模试卷一、填空题(本大题共有12题,满分36分.其中第1~6题每题满分36分,第7~12题每题满分36分)1.(3分)已知全集U=R,集合,则(∁U B)∩A=.2.(3分)函数的定义域是.3.(3分)若复数z满足(i为虚数单位),则z=.4.(3分)已知sin(α+)=,α∈(﹣,0),则tanα=.5.(3分)若无穷等比数列中任意一项均等于其之后所有项的和,则其公比为.6.(3分)若函数y=a+sinx在区间[π,2π]上有且只有一个零点,则a=.7.(3分)已知向量=(x,y)(x,y∈R),=(1,2),若x2+y2=1,则|﹣|的最小值为.8.(3分)已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g(x)是y=f(x)的反函数,则g(﹣3)=.9.(3分)已知m,n,α,β∈R,m<n,α<β,若α,β是函数f(x)=2(x﹣m)(x﹣n)﹣7的零点,则m,n,α,β四个数按从小到大的顺序是(用符号“<“连接起来).10.(3分)已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.11.(3分)已知x∈R,定义:A(x)表示不小于x的最小整数.如,A(﹣1.1)=﹣1.若A(2x•A(x))=5,则正实数x的取值范围是.12.(3分)已知点M(m,0),m>0和抛物线C:y2=4x.过C的焦点F的直线与C交于A,B两点,若=2,且||=||,则m=.二、选择题(本大题共有4题,满分12分.)13.(3分)若x∈R,则“x>1”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分也非必要条件14.(3分)已知向量,则下列能使成立的一组向量是()A.B.C.D.15.(3分)一个算法的程序框图如图所示,则该程序运行后输出的值是()A.4 B.5 C.6 D.716.(3分)已知a1,a2,a3,a4是各项均为正数的等差数列,其公差d大于零,若线段l1,l2,l3,l4的长分别为a1,a2,a3,a4,则()A.对任意的d,均存在以l1,l2,l3为三边的三角形B.对任意的d,均不存在以为l1,l2,l3三边的三角形C.对任意的d,均存在以l2,l3,l4为三边的三角形D.对任意的d,均不存在以l2,l3,l4为三边的三角形三、解答题(本大题共有5题,满分74分.)17.(12分)在长方体ABCD﹣A1B1C1D1中,AB=AA1=4,BC=3,E,F分别是所在棱AB,BC的中点,点P是棱A1B1上的动点,联结EF,AC1.如图所示.(1)求异面直线EF,AC1所成角的大小(用反三角函数值表示);(2)求以E,F,A,P为顶点的三棱锥的体积.18.(12分)如图,已知点A是单位圆上一点,且位于第一象限,以x轴的正半轴为始边,OA为终边的角设为α,将OA绕坐标原点逆时针旋转至OB.(1)用α表示A,B两点的坐标;(2)M为x轴上异于O的点,若MA⊥MB,求点M横坐标的取值范围.19.(14分)已知函数g(x)=,x∈R,函数y=f(x)是函数y=g(x)的反函数.(1)求函数y=f(x)的解析式,并写出定义域D;(2)设h(x)=,若函数y=h(x)在区间(0,1)内的图象是不间断的光滑曲线,求证:函数y=h(x)在区间(﹣1,0)内必有唯一的零点(假设为t),且﹣1.20.(18分)(理科)定义:若各项为正实数的数列{a n}满足,则称数列{a n}为“算术平方根递推数列”.,x n)在二次函数f(x)=2x2+2x 已知数列{x n}满足,且,点(x n+1的图象上.(1)试判断数列{2x n+1}(n∈N*)是否为算术平方根递推数列?若是,请说明你的理由;(2)记y n=lg(2x n+1)(n∈N*),求证:数列{y n}是等比数列,并求出通项公式y n;}中依据某种顺序自左至右取出其中的项,(3)从数列{y把这些项重新组成一个新数列{z n}:.若数列{z n}是首项为、公比为的无穷等比数列,且数列{z n}各项的和为,求正整数k、m的值.21.(18分)已知椭圆Γ:+=1(a>b>0),过原点的两条直线l1和l2分别与Γ交于点A、B和C、D,得到平行四边形ACBD.(1)当ACBD为正方形时,求该正方形的面积S;(2)若直线l1和l2关于y轴对称,Γ上任意一点P到l1和l2的距离分别为d1和d2,当d12+d22为定值时,求此时直线l1和l2的斜率及该定值.(3)当ACBD为菱形,且圆x2+y2=1内切于菱形ACBD时,求a,b满足的关系式.2018年上海市黄浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题共有12题,满分36分.其中第1~6题每题满分36分,第7~12题每题满分36分)1.(3分)已知全集U=R,集合,则(∁U B)∩A= {x|﹣1<x≤} .【解答】解:A={x|﹣1<x<1},∁U B={x|x≤},则(∁U B)∩A={x|﹣1<x≤},故答案为:{x|﹣1<x≤},2.(3分)函数的定义域是(1,+∞).【解答】解:要使函数有意义,需满足解得x>1故答案为:(1,+∞)3.(3分)若复数z满足(i为虚数单位),则z=1+2i.【解答】解:由,得z=1+2i.故答案为:1+2i.4.(3分)已知sin(α+)=,α∈(﹣,0),则tanα=﹣2.【解答】解:∵sin(α+)=cosα,sin(α+)=,∴cosα=,又α∈(﹣,0),∴sinα=﹣,∴tanα==﹣2.故答案为:﹣2.5.(3分)若无穷等比数列中任意一项均等于其之后所有项的和,则其公比为.【解答】解:设数列中的任意一项为a,由无穷等比数列中的每一项都等于它后面所有各项的和,得a=,即1﹣q=q∴q=.故答案为:.6.(3分)若函数y=a+sinx在区间[π,2π]上有且只有一个零点,则a=1.【解答】解:作函数y=sinx在区间[π,2π]上的图象如下,,结合图象可知,若函数y=a+sinx在区间[π,2π]上有且只有一个零点,则a﹣1=0,故a=1;故答案为:1.7.(3分)已知向量=(x,y)(x,y∈R),=(1,2),若x2+y2=1,则|﹣|的最小值为﹣1.【解答】解:设O(0,0),P(1,2),∴|﹣|=≥||﹣1=﹣1=﹣1,∴|﹣|的最小值为﹣18.(3分)已知函数y=f(x)是奇函数,且当x≥0时,f(x)=log2(x+1).若函数y=g(x)是y=f(x)的反函数,则g(﹣3)=﹣7.【解答】解:∵反函数与原函数具有相同的奇偶性.∴g(﹣3)=﹣g(3),∵反函数的定义域是原函数的值域,∴log2(x+1)=3,解得:x=7,即g(3)=7,故得g(﹣3)=﹣7.故答案为:﹣7.9.(3分)已知m,n,α,β∈R,m<n,α<β,若α,β是函数f(x)=2(x﹣m)(x﹣n)﹣7的零点,则m,n,α,β四个数按从小到大的顺序是α<m<n <β(用符号“<“连接起来).【解答】解:∵α、β是函数f(x)=2(x﹣m)(x﹣n)﹣7的零点,∴α、β是函数y=2(x﹣m)(x﹣n)与函数y=7的交点的横坐标,且m、n是函数y=2(x﹣m)(x﹣n)与x轴的交点的横坐标,故由二次函数的图象可知,α<m<n<β;故答案为:α<m<n<β.10.(3分)已知点O,A,B,F分别为椭圆的中心、左顶点、上顶点、右焦点,过点F作OB的平行线,它与椭圆C在第一象限部分交于点P,若,则实数λ的值为.【解答】解:如图,A(﹣a,0),B(0,b),F(c,0),则P(c,),∴,,由,得,即b=c,∴a2=b2+c2=2b2,.则.故答案为:.11.(3分)已知x∈R,定义:A(x)表示不小于x的最小整数.如,A(﹣1.1)=﹣1.若A(2x•A(x))=5,则正实数x的取值范围是(1,] .【解答】解:当A(x)=1时,0<x≤1,可得4<2x≤5,得2<x≤,矛盾,故A(x)≠1,当A(x)=2时,1<x≤2,可得4<4x≤5,得1<x≤,符合题意,故A(x)=2,当A(x)=3时,2<x≤3,可得4<6x≤5,得<x≤,矛盾,故A(x)≠3,由此可知,当A(x)≥4时也不合题意,故A(x)=2∴正实数x的取值范围是(1,]故答案为:(1,]12.(3分)已知点M(m,0),m>0和抛物线C:y2=4x.过C的焦点F的直线与C交于A,B两点,若=2,且||=||,则m=.【解答】解:由题意可知:F(1,0),由抛物线定义可知A(x1,y1),可知B(x2,y2),∵=2,可得:2(x2﹣1,y2)=(1﹣x1,﹣y1),可得y2=﹣,x2=,,解得x1=2,y1=±2.||=||,。

上海市闵行区2018届高三上学期期末质量调研数学试卷

上海市闵行区2018届高三上学期期末质量调研数学试卷

闵行区2017-2018学年第一学期高三年级质量调研考试 数 学 试 卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1.集合{}03P x x x =≤<∈,Z ,{}29M x x =≤,则PM = .2.计算22C lim 1n n n →∞=+ .3.方程1lg 3lg 011xx+-=的根是 .4.已知34sin (c o s )i55αα-+-()是纯虚数(i 是虚数单位),则sin ()4απ+=.5.已知直线l的一个法向量是1)n =-r,则l 的倾斜角的大小是 . 6.从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是 (用数字作答).7.在()512x +错误!未找到引用源。

的展开式中,2x 项系数为 .(用数字作答)8.如图,在直三棱柱111A B C A B C -中,=90A C B ∠,4A C =,3B C =,1A B B B =,则异面直线1A B 与11B C所成角的大小是 (结果用反三角函数表示).9.已知数列{}{}n n a b 、满足ln n n b a =,*n ∈N ,其中{}n b是等差数列,且431007e a a ⋅=,则121009b b b +++= .10.如图,向量OA 与OB 的夹角为120,2O A =,1O B =,P 是以O 为圆心、||O B 为半径的弧B C 上的动点,若O P O AO B λμ=+,则λμ的最大值是 .11.已知12 F F 、分别是双曲线22221(0 0)x y a b ab-=>>,的左右焦点,过1F 且倾斜角为30的直线交双曲线的右支于P ,若212P F F F ⊥,则该双曲线的渐近线方程是 . 12.如图,在折线A B C D 中,4A B B C C D ===,120A B C B C D ∠=∠=,E F 、分别是A B C D、的中点,若折线上满足条件P E P F k ⋅=的点P 至少有4个,则实数k 的取值范围是 .二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑. 13.若空间中三条不同的直线1l 、2l 、3l ,满足12l l ⊥错误!未找到引用源。

2018届上海市闵行区高三第二学期质量调研考试理科数学试题 及答案

2018届上海市闵行区高三第二学期质量调研考试理科数学试题 及答案

闵行区2018学年第二学期高三年级质量调研考试数 学 试 卷(理科) (满分150分,时间120分钟)考生注意:1.答卷前,考生务必在答题纸上将学校、班级、准考证号、姓名等填写清楚.2.请按照题号在答题纸各题答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效. 3.本试卷共有23道试题.一.填空题(本大题满分56分)本大题共有14小题,考生必须在答题纸的相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得0分. 1.已知集合35|22A x x ⎧⎫=->⎨⎬⎩⎭,U =R ,则U A =ð . 2.若复数z 满足(2)(1)2z i i ++=(i 为虚数单位),则z = .3.函数()cos f x x x =,若1()2f a =,则()f a -= .4.计算 22lim 2nn C n n→∞=+ . 5.设)0(24)(1≥-=+x x f x x ,则=-)0(1f .6.已知2πθπ⎛⎫∈ ⎪⎝⎭,,sin cos 22θθ-=,则cos θ= .7. 若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为 .学校_______________________ 班级__________ 准考证号_________ 姓名______________ …………………………密○………………………………………封○………………………………………○线…………………………8.已知集合{1,3}M =,在M 中可重复的依次取出三个数,,a b c,则“以,,a b c 为边长恰好构成三角形”的概率是 .9.已知等边ABC △的边长为3,M 是ABC △的外接圆上的动点,则AB AM ⋅的最大值为 .10.函数1122log log y =+取最小值时x 的取值范围是 . 11.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,12()log g x x=,记函数(),()()()(),()()g x f x g x h x f x f x g x ≤⎧=⎨>⎩,则函数()()5F x h x x =+-所有零点的和为 .12.已知12F F 、是椭圆22122:14x y m m Γ+=-和双曲线22222:14x y n n Γ-=-的公共焦点,P 是它们的一个公共点,且123F PF π∠=,则mn的最大值为 .13.在ABC △中,记角A 、B 、C 所对边的边长分别为a 、b 、c ,设S 是ABC △ 的面积,若2sin ()sin S A BA BC B <⋅,则下列结论中:①222a b c <+; ②222c a b >+; ③cos cos sin sin B C B C >; ④ABC △是钝角三角形.其中正确..结论的序号是 . 14.已知数列{}n a 满足:对任意n *∈N 均有133n n a pa p +=+-(p 为常数,0p ≠且1p ≠),若{}2345,,,19,7,3,5,10,29a a a a ∈---,则1a 所有可能值的集合为 .二.选择题(本大题满分20分)本大题共有4小题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格用铅笔涂黑,选对得5分,否则一律得0分.15.已知圆22:1O x y +=和直线:l y kx =,则1k =是圆O 与直线l 相切的( )(A)充要条件. (B)充分不必要条件.(C)必要不充分条件. (D)既不充分也不必要条件. 16.8(2展开式中各项系数的和为( )(A) 1-. (B)1. (C)256. (D)256-. 17.已知)(x f y =是定义在R 上的函数,下列命题正确的是( )(A)若()f x 在[],a b 上的图像是一条连续不断的曲线,且在(),a b 内有零点,则有()()0f a f b ⋅<.(B)若()f x 在[],a b 上的图像是一条连续不断的曲线,且有()()0f a f b ⋅>,则其在(),a b 内没有零点.(C)若()f x 在(),a b 上的图像是一条连续不断的曲线,且有()()0f a f b ⋅<,则其在(),a b 内有零点.(D)若()f x 在[],a b 上的图像是一条连续不断的曲线且单调,又()()0f a f b ⋅<成立,则其在(),a b 内有且只有一个零点. 18.数列{}n a 是公差不为零的等差数列,其前n 项和为n S ,若记数据1232015,,,,a a a a ⋅⋅⋅的方差为1λ,数据3201512,,,,1232015S S S S ⋅⋅⋅的方差为2λ,12k λλ=.则 ( )(A) 4k =. (B) 2k =. (C) 1k =. (D) k 的值与公差d 的大小有关.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,在直三棱柱111C B A ABC -中,90,2ACB AC BC ∠=== ,直线B A 1与平面C C BB 11所成角的大小1C 1B1A为55arctan .求三棱锥11C A BC -的体积.20.(本题满分14分)本题共有2个小题,第(1)小题满分6分,第(2)小题满分8分.某公司生产电饭煲,每年需投入固定成本40万元,每生产1万件还需另投入16万元的变动成本.设该公司一年内共生产电饭煲x 万件并全部销售完,每一万件的销售收入为()R x 万元,且2440040000()10100R x x xx=-<<,,该公司在电饭煲的生产中所获年利润为W (万元). (注:利润=销售收入-成本)(1)写出年利润W (万元)关于年产量x (万件)的函数解析式;(2)为了让年利润W 不低于2760万元,求年产量x 的取值范围.21.(本题满分14分)本题共有2个小题,每小题满分各7分.椭圆2222:1(0)x y a b a bΓ+=>>的左右焦点分别为12F F 、,上顶点为A ,已知椭圆Γ过点4(,)33bP ,且220F A F P ⋅= .(1)求椭圆Γ的方程;(2)若椭圆上两点C D 、关于点1(1,)2M 对称,求||CD .22.(本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3) 小题满分6分.已知函数22π()cos 2sin cos 3f x x x x ⎛⎫=-+- ⎪⎝⎭.(1)求函数()f x 的最小正周期;(2)若存在,123t ππ⎡⎤∈⎢⎥⎣⎦满足2[()]()0f t t m -->,求实数m 的取值范围;(3)对任意的1,63x ππ⎡⎤∈-⎢⎥⎣⎦,是否存在唯一的2,63x ππ⎡⎤∈-⎢⎥⎣⎦,使12()()1f x f x ⋅=成立,请说明理由.23.(本题满分18分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分8分.已知数列{}n a 为等差数列,12a =,其前n 和为n S ,数列{}n b 为等比数列,且2112233(1)24n n n a b a b a b a b n ++++⋅⋅⋅+=-⋅+对任意的n *∈N 恒成立. (1)求数列{}n a 、{}n b 的通项公式;(2)是否存在,p q *∈N ,使得222()2020p q a b +-=成立,若存在,求出所有满足条件的,p q ;若不存在,说明理由. (3)是否存在非零整数λ,使不等式112111(1)(1)(1)cos 2n na a a a πλ+--⋅⋅⋅⋅⋅⋅-<对一切n *∈N 都成立?若存在,求出λ的值;若不存在,说明理由.闵行区2018学年第二学期高三年级质量调研考试数学试卷参考答案与评分标准一. 填空题 1.[]1,4-;2.1i -+; 3.12-; 4.14; 5. 1; 6.54-; 7.33π;8. 58;9.,; 10. 1,12⎡⎤⎢⎥⎣⎦,; 11. 5;12.13. ④;14. {}1,3,67---二. 选择题 15. B ; 16. B ; 17.D ; 18. A . 三. 解答题 19. [解]法一: 1111111AC B C AC CC ⊥⊥,,⊥∴11C A 平面C C BB 11,11BC A ∠∴是直线BA 1与平面CC BB 11所成的角.…………………4分 设1CCy =1BC ==11111tan 4AC A BC y BC ∴∠===⇒=, ……………8分 所以11111111*********C A BCA C BC C BC V V S A C BC CC A C --==⋅=⋅⋅⋅⋅=△.…12分法二:如图,建立空间直角坐标系,设1CCy =1(00)C y ,,,1(20)A y ,,. 则1(22)A B y =--,,,平面C C BB 11的法向量为(100)n =,,. 分设直线B A 1与平面C C BB 11所成的角为θ,则11sin46A B nyA B nθ⋅===⇒=⋅,……………8分所以111111111111183323C A BC A C BC C BCV V V S A C BC CC A C--===⋅=⋅⋅⋅⋅=△. (12)分20.[解] (1)40000()(1640)164360W xR x x xx=-+=--+10100x<<,……6分(2) 解400001643602760W xx=--+≥ (12)分得2(50)0x-≤时,所以50x=.答:为了让年利润W不低于2760万元,年产量50x=. …………………14分21.[解] (1)因为椭圆Γ过点4(,)33bP,所以2161199a+=,解得22a=……3分又以AP为直径的圆恰好过右焦点2F,所以220F A F P⋅=又24(,),(,0),(0,)33bP F c A b得2(,)F A c b=-,24(,)33bF P c=-,所以24()033bc c--+=而22222b ac c=-=-,所以2210c c-+=得1c=………………6分故椭圆Γ的方程是2212xy+=.………………………………7分(2)法一:设点C D 、的坐标分别为1122(,)(,)x y x y 、, 则2222112222,22x y x y +=+=,且12122,1x x y y +=+= ………9分 由2222112222,22x y x y +=+=得:12121212()()2()()0x x x x y y y y +-++-=121212122()2()01y y x x y y x x --+-=⇒=-- 所以CD所在直线的方程为32y x =-+………………11分将32y x =-+代入2222x y +=得253602x x -+=12||||CD x x =-=== ………14分法二:设点C D 、的坐标分别为1111(,)(2,1)x y x y --、,………9分则2222111122,(2)2(1)2x y x y +=-+-= 两等式相减得1132y x =-+………………11分 将32y x =-+代入2222x y +=得253602x x -+=12||||CD x x =-===.……14分22.[解](1)221()cos 22sin cos 22f x x x x x =++-1πcos 22cos 2sin 226x x x x ⎛⎫=-=- ⎪⎝⎭2分 函数()f x 的最小正周期T π= ………………………………4分 (2)当,123t ππ⎡⎤∈⎢⎥⎣⎦时,20,62t ππ⎡⎤-∈⎢⎥⎣⎦,π()sin 216f t t ⎛⎫⎤=- ⎪⎦⎝⎭6分[]22()[()]()[()22,1F t f t t f t ⇒=-=--∈-- …………………8分 存在,123t ππ⎡⎤∈⎢⎥⎣⎦满足()0F t m ->的实数m的取值范围为(),1-∞-.……10分(3)存在唯一的2,63x ππ⎡⎤∈-⎢⎥⎣⎦,使12()()1f x f x ⋅=成立. ………………12分当1,63x ππ⎡⎤∈-⎢⎥⎣⎦时,12,622x πππ⎡⎤-∈-⎢⎥⎣⎦,11π()sin 216f x x ⎛⎫⎤=-+ ⎪⎦⎝⎭2211π()sin 21()6f x x f x ⎛⎫⎤==- ⎪⎦⎝⎭[]21π1sin 2=1,16()x f x ⎛⎫⇒--- ⎪⎝⎭ ………………14分设11()a f x =,则[]1,1a ∈-,由2πsin 2=6x a ⎛⎫- ⎪⎝⎭ 得22ππ22arcsin 2=2arcsin ,66x k a x k a k πππ-=+-+-∈Z 或 所以2x 的集合为2221π17π|arcsin +arcsin +,212212x x k a x k a k ππ⎧⎫=+⋅=-⋅∈⎨⎬⎩⎭Z 或 ∵1π17π5arcsin +,arcsin +6212332126a a ππππ-≤⋅≤≤-⋅≤∴2x 在,63ππ⎡⎤-⎢⎥⎣⎦上存在唯一的值21πarcsin 212x a =⋅+使12()()1f x f x ⋅=成立. 16分23. [解] (1)法1:设数列{}n a 的公差为d ,数列{}n b 的公比为q 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年上海市闵行区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 集合P ={x|0≤x <3, x ∈Z},M ={x|x 2≤9},则P ∩M =________. 【答案】 {0, 1, 2} 【考点】 交集及其运算 【解析】求出集合P ,M ,由此能求出P ∩M . 【解答】∵ 集合P ={x|0≤x <3, x ∈Z}={0, 1, 2}, M ={x|x 2≤9}={x|−3≤x ≤3}, ∴ P ∩M ={0, 1, 2}.2. 计算lim n→∞C n2n 2+1=________.【答案】 12【考点】 极限及其运算 【解析】根据组合公式求得C n2=n(n−1)2,根据极限的运算,即可求得答案.【解答】limn→∞C n2n 2+1=limn→∞n(n−1)2(n 2+1)=12limn→∞1−1n1+1n 2=12,3. 方程|1+lgx3−lgx11|=0的根是________.【答案】 10【考点】函数的零点与方程根的关系 【解析】化简方程求出x 的值. 【解答】 ∵ |1+lgx 3−lgx11|=0,即1+lgx −3+lgx =0,∴ lgx =1, ∴ x =10.4. 已知(sinα−35)+(cosα−45)i 是纯虚数(i 是虚数单位),则sin(α+π4)=________.−√2 【考点】虚数单位i 及其性质 复数的运算 复数的模复数的基本概念 【解析】 由题意可得sinα、cosα的值,展开两角和的正弦求得sin(α+π4). 【解答】∵ (sinα−35)+(cosα−45)i 是纯虚数, ∴ {sinα−35=0cosα−45≠0,得sinα=35且cosα≠45, ∴ α为第二象限角,则cosα=−45.∴ sin(α+π4)=sinαcos π4+cosαsin π4=35×√22−45×√22=−√210.5. 已知直线l 的一个法向量是n →=(√3,−1),则l 的倾斜角的大小是________. 【答案】 π3【考点】 平面的法向量 【解析】设直线l 的倾斜角为θ,θ∈[0, π).设直线的方向向量为u →=(x, y),则u →∗n →=0,可得tanθ=yx .【解答】设直线l 的倾斜角为θ,θ∈[0, π).设直线的方向向量为u →=(x, y),则u →∗n →=√3x −y =0, ∴ tanθ=yx =√3,解得θ=π3.6. 从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是________(用数字作答) 【答案】 96【考点】排列、组合及简单计数问题 【解析】根据题意,用间接法分析:首先计算在10名学生中任取3人的选法数目,再分析其中只有男生和只有女生的选法数目,分析即可得答案.根据题意,在4名男同学和6名女同学共10名学生中任取3人,有C103=120种,其中只有男生的选法有C43=4种,只有女生的选法有C63=20种则选出的3人中男女同学都有的不同选法有120−4−20=96种;7. 在(1+2x)5的展开式中,x2项系数为________(用数字作答)【答案】40【考点】二项式定理的应用【解析】利用二项展开式的通项公式写出第r+1项,令x的指数为2求出展开式中x2的系数【解答】设求的项为T r+1=C5r(2x)r,今r=2,∴T3=22C52x2=40x2.∴x2的系数是408. 如图,在直三棱柱ABC−A1B1C1中,∠ACB=90∘,AC=4,BC=3,AB=BB1,则异面直线A1B与B1C1所成角的大小是________(结果用反三角函数表示)【答案】arccos 3√2 10【考点】异面直线及其所成的角【解析】由BC // B1C1,得∠A1BC是异面直线A1B与B1C1所成角,由此利用余弦定理能求出异面直线A1B与B1C1所成角.【解答】∵在直三棱柱ABC−A1B1C1中,∠ACB=90∘,AC=4,BC=3,AB=BB1,BC // B1C1,∴∠A1BC是异面直线A1B与B1C1所成角,∵A1B=√AA12+AB2=√(9+16)+(9+16)=5√2,A1C=√AA12+AC2=√(9+16)+16=√41,∴cos∠A1BC=A1B2+BC2−A1C22×A1B×BC =2×5√2×3=3√210.∴∠A1BC=arccos3√210.9. 已知数列{a n}、{b n}满足b n=lna n,n∈N∗,其中{b n}是等差数列,且a3∗a1007= e4,则b1+b2+...+b1009=________.【答案】2018【考点】数列的求和【解析】数列{a n}、{b n}满足b n=lna n,n∈N∗,其中{b n}是等差数列,可得b n+1−b n=lna n+1−lna n=ln a n+1a n =常数t.a n+1a n=常数e t=q>0,因此数列{an}为等比数列.由a3∗a1007=e4,可得a1a1009=a2a1008=a3∗a1007=e4=….再利用对数运算性质即可得出.【解答】数列{a n}、{b n}满足b n=lna n,n∈N∗,其中{b n}是等差数列,∴b n+1−b n=lna n+1−lna n=ln a n+1a n=常数t.∴a n+1a n=常数e t=q>0,因此数列{a n}为等比数列.且a3∗a1007=e4,∴a1a1009=a2a1008=a3∗a1007=e4=….则b1+b2+...+b1009=ln(a1a2...a1009)=ln√(e4)1009=lne2018=2018.10. 如图,向量OA→与OB→的夹角为120∘,|OA→|=2,|OB→|=1,P是以O为圆心,|OB→|为半径的弧BC^上的动点,若OP→=λOA→+μOB→,则λμ的最大值是________.【答案】12【考点】平面向量的基本定理平面向量的坐标运算【解析】如图建立平面直角坐标系,设P(cosθ, sinθ),OP→=(cosθ,sinθ),OA→=(2,0),OB→=(−12,√32).cosθ=2λ−12μ,sinθ=√32μ,λμ=2√3−16cos2θ+16=13sin(2θ+β)+1 6≤12,如图建立平面直角坐标系,设P(cosθ, sinθ), OP →=(cosθ,sinθ),OA →=(2,0),OB →=(−12,√32). ∵ OP →=λOA →+μOB →,∴ cosθ=2λ−12μ,sinθ=√32μ.∴ {λ=12cosθ2√3μ=√3 , ∴ λμ=23−16cos2θ+16=13sin(2θ+β)+16≤12,11. 已知F 1、F 2分别是双曲线x 2a2−y 2b 2=1(a >0, b >0)的左右焦点,过F 1且倾斜角为30∘的直线交双曲线的右支于P ,若PF 2⊥F 1F 2,则该双曲线的渐近线方程是________. 【答案】 y =±√2x 【考点】 双曲线的特性 【解析】设|PF 1|=m ,|PF 2|=n ,|F 1F 2|=2c ,由双曲线的定义和直角三角形中的性质,可得m ,n 的关系,由a ,b ,c 的关系可得b ,再由双曲线的渐近线方程即可得到所求. 【解答】设|PF 1|=m ,|PF 2|=n ,|F 1F 2|=2c , 在直角△PF 1F 2中,∠PF 1F 2=30∘, 可得m =2n ,则m −n =2a =n ,即a =12n , 2c =√3n ,即c =√32n , b =√c 2−a 2=√22n , 可得双曲线的渐近线方程为y =±ba x ,即为y =±√2x ,12. 如图,在折线ABCD 中,AB =BC =CD =4,∠ABC =∠BCD =120∘,E 、F 分别是AB 、CD 的中点,若折线上满足条件PE →∗PF →=k 的点P 至少有4个,则实数k 的取值范围是________.【答案】 9【考点】平面向量数量积的性质及其运算律【解析】以BC的垂直平分线为y轴,以BC为x轴,建立如图所示的平面直角坐标系,分别表示各个点的坐标,设P(x, y),根据向量的数量积可得当k+9>0时,点P的轨迹为以(0, √3)为圆心,以√k+9为半径的圆,结合图象,即可求出满足条件PE→∗PF→=k的点P至少有4个的k的取值范围.【解答】以BC的垂直平分线为y轴,以BC为x轴,建立如图所示的平面直角坐标系,∵AB=BC=CD=4,∠ABC=∠BCD=120∘,∴B(−2.0),C(2, 0),A(−4, 2√3),D(4, 2√3),∵E、F分别是AB、CD的中点,∴E(−3, √3),F(3, √3),设P(x, y),−4≤x≤4,0≤y≤2√3,∵PE→∗PF→=k,∴(−3−x, √3−y)(3−x, √3−y)=x2+(y−√3)+9=k,即x2+(y−√3)=k+9,当k+9>0时,点P的轨迹为以(0, √3)为圆心,以√k+9为半径的圆,当圆与直线DC相切时,此时圆的半径r=3√3,此时点有2个,2当圆经过点C时,此时圆的半径为r=√22+3=√7,此时点P有4个,∵满足条件PE→∗PF→=k的点P至少有4个,结合图象可得,∴27≤k+9≤7,4≤k≤−2,解得−94, −2],故实数k的取值范围为[−94二.选择题(本大题共4题,每题5分,共20分)若空间中三条不同的直线l1、l2、l3,满足l1⊥l2,l2 // l3,则下列结论一定正确的是()A.l1⊥l3B.l1 // l3C.l1、l3既不平行也不垂直D.l1、l3相交且垂直【答案】A【考点】平面的基本性质及推论【解析】由l1⊥l2,l2 // l3,得到l1⊥l3.【解答】∴l1⊥l3,若a>b>0,c<d<0,则一定有()A.ad>bcB.ad<bcC.ac>bdD.ac<bd【答案】D【考点】不等式的基本性质【解析】利用不等式的基本性质即可得出.【解答】∵c<d<0,∴−c>−d>0.又a>b>0,则一定有−ac>−bd,可得ac<bd.无穷等差数列{a n}的首项为a1,公差为d,前n项和为S n(n∈N∗),则“a1+d>0”是“{S n}为递增数列”的()条件.A.充分非必要B.必要非充分C.充要D.既非充分也非必要【答案】B【考点】必要条件、充分条件与充要条件的判断【解析】根据充分必要条件的定义判断即可【解答】等差数列{a n}的首项为a1,公差为d,前n项和为S n=na1+n(n−1)2d,则S n+1=(n+1)a1+n(n+1)d2,则S n+1−S n=(n+1)a1+n(n+1)d2−na1−n(n−1)2d=a1+nd,若{S n}为递增数列,a1+nd>0,∵S2−S1=a1+d>0,∴a1+nd>0不能推出a1+d>0但a1+d能推出a1+nd,故a1+d>0”是“{S n}为递增数列必要非充分,已知函数f(x)={log12(1−x)−1≤x≤n22−|x−1|−3n<x≤m(n<m)的值域是[−1, 1],有下列结论:①当n=0时,m∈(0, 2];②当n=12时,m∈(12,2];1④当n ∈[0,12)时,m ∈(n, 2];其中结论正确的所有的序号是( ) A.①② B.③④ C.②③ D.②④ 【答案】 C【考点】分段函数的应用 【解析】根据函数函数的单调性及分段函数的定义,画出函数图象,根据图象即可求得答案. 【解答】当x >1时,x −1>0,f(x)=22−x+1−3=23−x −3,单调递减, 当−1<x <1时,f(x)=22+x−1−3=21+x −3,单调递增,∴ f(x)=22−|x−1|−3在(−1, 1)单调递增,在(1, +∞)单调递减, ∴ 当x =1时,取最大值为1,∴ 绘出22−|x−1|−3的图象,如图下方曲线:①当n =0时,f(x)={log 12(1−x)−1≤x ≤022−|x−1|−30<x ≤m,由函数图象可知:要使f(x)的值域是[−1, 1], 则m ∈(1, 2];故①错误;②当n =12时,f(x)=log 12(1−x),f(x)在[−1, 12]单调递增,f(x)的最大值为1,最小值为−1, ∴ m ∈(12,2];故②正确;③当n ∈[0,12)时,m ∈[1, 2];故③正确,④错误, 三.解答题(本大题共5题,共14+14+14+16+18=76分)已知函数f(x)=32sinωx +√32cosωx (其中ω>0).(1)若函数f(x)的最小正周期为3π,求ω的值,并求函数f(x)的单调递增区间;(2)若ω=2,0<α<π,且f(α)=32,求α的值. 【答案】函数f(x)=32sinωx +√32cosωx =√3sin(ωx +π6),∵ 函数f(x)的最小正周期为3π,即T =3π=2πω∴ ω=23那么:f(x)=√3sin(23x +π6),得:3kπ−π≤x≤π2+3kπ∴函数f(x)的单调递增区间为[−π+3kπ,π2+3kπbrack,k∈Z;函数f(x)=32sinωx+√32cosωx=√3sin(ωx+π6),∵ω=2∴f(x)=√3sin(2x+π6),f(α)=32,可得sin(2α+π6)=√32∵0<α<π,∴π6≤(2α+π6)≤13π62α+π6=π3或2π3解得:α=π4或α=π12.【考点】三角函数中的恒等变换应用正弦函数的图象【解析】(1)利用辅助角公式化简,根据函数f(x)的最小正周期为3π,即可求ω的值和单调递增区间;(2)将ω=2,可得f(x)解析式,0<α<π,由f(α)=32,利用三角函数公式即可求α的值.【解答】函数f(x)=32sinωx+√32cosωx=√3sin(ωx+π6),∵函数f(x)的最小正周期为3π,即T=3π=2πω∴ω=23那么:f(x)=√3sin(23x+π6),由2kπ−π2≤23x+π6≤2kπ+π2,k∈Z,得:3kπ−π≤x≤π2+3kπ∴函数f(x)的单调递增区间为[−π+3kπ,π2+3kπbrack,k∈Z;函数f(x)=32sinωx+√32cosωx=√3sin(ωx+π6),∵ω=2πf(α)=32,可得sin(2α+π6)=√32∵0<α<π,∴π6≤(2α+π6)≤13π62α+π6=π3或2π3解得:α=π4或α=π12.如图,已知AB是圆锥SO的底面直径,O是底面圆心,SO=2√3,AB=4,P是母线SA的中点,C是底面圆周上一点,∠AOC=60∘.(1)求圆锥的侧面积;(2)求直线PC与底面所成的角的大小.【答案】∵AB是圆锥SO的底面直径,O是底面圆心,SO=2√3,AB=4,P是母线SA的中点,C是底面圆周上一点,∠AOC=60∘.∴r=AB2=2,l=√AO2+SO2=√4+12=4,∴圆锥的侧面积S=πrl=π×2×4=8π.过点P作PE⊥圆O,交AO于E,连结CE,则E是AO中点,∴PE=12PO=√3,CE=√22−12=√3,∵OE=1,OC=2,∴CE⊥AO,∴∠PCE是直线PC与底面所成角,∵PE=CE,PE⊥CE,∴∠PCE=π4,∴直线PC与底面所成的角为π4.【考点】旋转体(圆柱、圆锥、圆台)【解析】AB(2)过点P 作PE ⊥圆O ,交AO 于E ,连结CE ,则E 是AO 中点,∠PCE 是直线PC 与底面所成角,由此能求出直线PC 与底面所成的角.【解答】∵ AB 是圆锥SO 的底面直径,O 是底面圆心,SO =2√3,AB =4,P 是母线SA 的中点,C 是底面圆周上一点,∠AOC =60∘.∴ r =AB 2=2,l =√AO 2+SO 2=√4+12=4,∴ 圆锥的侧面积S =πrl =π×2×4=8π.过点P 作PE ⊥圆O ,交AO 于E ,连结CE ,则E 是AO 中点,∴ PE =12PO =√3,CE =√22−12=√3,∵ OE =1,OC =2,∴ CE ⊥AO ,∴ ∠PCE 是直线PC 与底面所成角,∵ PE =CE ,PE ⊥CE ,∴ ∠PCE =π4,∴ 直线PC 与底面所成的角为π4.某公司举办捐步公益活动,参与者通过捐赠每天的运动步数获得公司提供的牛奶,再将牛奶捐赠给留守儿童,此活动不但为公益事业作出了较大的贡献,公司还获得了相应的广告效益,据测算,首日参与活动人数为10000人,以后每天人数比前一天都增加15%,30天后捐步人数稳定在第30天的水平,假设此项活动的启动资金为30万元,每位捐步者每天可以使公司收益0.05元(以下人数精确到1人,收益精确到1元). (1)求活动开始后第5天的捐步人数,及前5天公司的捐步总收益;(2)活动开始第几天以后公司的捐步总收益可以收回启动资金并有盈余?【答案】设第x 天的捐步人数为x ,则f(x)={10000(1+15%)x−1,1≤x ≤30f(30),x >30. ∴ 第5天的捐步人数为f(5)=10000⋅(1+15%)4=17490.由题意可知前5天的捐步人数成等比数列,其中首项为10000,公比为1.15,∴ 前5天的捐步总收益为10000(1−1.155)1−1.15×0.05=3371;设活动第x 天后公司捐步总收益可以回收并有盈余,①若1≤x ≤30,则10000(1−1.15x )1−1.15×0.05>300000,解得x >log 1.1591≈32.3(舍).②若x >30,则[10000(1−1.1530)1−1.15+10000⋅1.1529⋅(x −30)]•0.05>300000,解得x >32.87.∴ 活动开始后第33天公司的捐步总收益可以收回启动资金并有盈余.【考点】等比数列的性质根据实际问题选择函数类型【解析】(1)根据等比数列的性质求出;(2)对活动天数x 进行讨论,列出不等式求出x 的范围即可.【解答】设第x 天的捐步人数为x ,则f(x)={10000(1+15%)x−1,1≤x ≤30f(30),x >30. ∴ 第5天的捐步人数为f(5)=10000⋅(1+15%)4=17490.由题意可知前5天的捐步人数成等比数列,其中首项为10000,公比为1.15,∴ 前5天的捐步总收益为10000(1−1.155)1−1.15×0.05=3371;设活动第x 天后公司捐步总收益可以回收并有盈余,①若1≤x ≤30,则10000(1−1.15x )1−1.15×0.05>300000,解得x >log 1.1591≈32.3(舍).②若x >30,则[10000(1−1.1530)1−1.15+10000⋅1.1529⋅(x −30)]•0.05>300000,解得x >32.87.∴ 活动开始后第33天公司的捐步总收益可以收回启动资金并有盈余.已知椭圆x 210+y 29=1的右焦点是抛物线Γ:y 2=2px 的焦点,直线l 与Γ相交于不同的两点A(x 1, y 1)、B(x 2, y 2).(1)求Γ的方程;(2)若直线l 经过点P(2, 0),求△OAB 的面积的最小值(O 为坐标原点);(3)已知点C(1, 2),直线l 经过点Q(5, −2),D 为线段AB 的中点,求证:|AB|=2|CD|.【答案】由椭圆x 210+y 29=1,得a 2=10,b 2=9,则c =1. ∴ 椭圆x 210+y 29=1的右焦点,即抛物线Γ:y 2=2px 的焦点为(1, 0), 则p 2=1,p =2,∴ Γ的方程为y 2=4x ;设直线l:x =my +2,联立{x =my +2y 2=4x,得y 2−4my −8=0. 则y 1+y 2=4m ,y 1y 2=−8.∴ S △OAB =12×2×|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=√16m 2+32=4√m 2+2≥4√2,即△OAB 的面积的最小值为4√2;证明:当AB 所在直线斜率存在时,设直线方程为y +2=k(x −5),即y =kx −5k −2.联立{y =kx −5k −2y 2=4x,可得ky 2−4y −20k −8=0. y 1+y 2=4k,y 1y 2=−20k+8k . x 1+x 2=y 1+y 2+10k+4k =10k 2+4k+4k 2. x 1x 2=(y 1+5k +2)(y 2+5k +2)k 2=y 1y 2+(5k +2)(y 1+y 2)+(5k +2)2k 2 =−20k+8k +(5k+2)∗4k+(5k+2)2k 2=(5k+2)2k 2.∵ C(1, 2),∴ CA →=(x 1−1,y 1−2),CB →=(x 2−1,y 2−2),则CA →∗CB →=(x 1−1)(x 2−1)+(y 1−2)(y 2−2)=x 1x 2−(x 1+x 2)+1+y 1y 2−2(y 1+y 2)+4=(5k+2)2k 2−10k 2+4k+4k 2−20k+8k −8k +4=0, 当AB 所在直线斜率不存在时,直线方程为x =5,联立{x =5y 2=4x,可得A(5, −2√5),B(5, 2√5), CA →=(4,−2√5−2),CB →=(4,2√5−2),有CA →∗CB →=0,∴ CA ⊥CB ,又D 为线段AB 的中点,∴ |AB|=2|CD|.【考点】椭圆的定义【解析】(1)由题意方程求出右焦点坐标,即抛物线焦点坐标,进一步可得抛物线方程; (2)设出直线方程,与抛物线方程联立,化为关于y 的一元二次方程,利用根与系数的关系求得|y 1−y 2|,代入三角形面积公式,利用二次函数求最值;(3)分直线AB 的斜率存在与不存在,证明有CA →∗CB →=0,可得CA ⊥CB ,又D 为线段AB 的中点,则|AB|=2|CD|.【解答】由椭圆x 210+y 29=1,得a 2=10,b 2=9,则c =1. ∴ 椭圆x 210+y 29=1的右焦点,即抛物线Γ:y 2=2px 的焦点为(1, 0),则p 2=1,p =2,∴ Γ的方程为y 2=4x ;设直线l:x =my +2,联立{x =my +2y 2=4x,得y 2−4my −8=0. 则y 1+y 2=4m ,y 1y 2=−8.∴ S △OAB =12×2×|y 1−y 2|=√(y 1+y 2)2−4y 1y 2=√16m 2+32=4√m 2+2≥4√2,即△OAB 的面积的最小值为4√2;证明:当AB 所在直线斜率存在时,设直线方程为y +2=k(x −5),即y =kx −5k −2.联立{y =kx −5k −2y 2=4x,可得ky 2−4y −20k −8=0. y 1+y 2=4k ,y 1y 2=−20k+8k . x 1+x 2=y 1+y 2+10k+4k =10k 2+4k+4k 2. x 1x 2=(y 1+5k +2)(y 2+5k +2)k 2=y 1y 2+(5k +2)(y 1+y 2)+(5k +2)2k 2=−20k+8k +(5k+2)∗4k+(5k+2)2k 2=(5k+2)2k 2.∵ C(1, 2),∴ CA →=(x 1−1,y 1−2),CB →=(x 2−1,y 2−2),则CA →∗CB →=(x 1−1)(x 2−1)+(y 1−2)(y 2−2)=x 1x 2−(x 1+x 2)+1+y 1y 2−2(y 1+y 2)+4=(5k+2)2k 2−10k 2+4k+4k 2−20k+8k −8k +4=0, 当AB 所在直线斜率不存在时,直线方程为x =5,联立{x =5y 2=4x,可得A(5, −2√5),B(5, 2√5), CA →=(4,−2√5−2),CB →=(4,2√5−2),有CA →∗CB →=0,∴ CA ⊥CB ,又D 为线段AB 的中点,∴ |AB|=2|CD|.对于函数y =f(x)(x ∈D),如果存在实数a 、b (a ≠0,且a =1,b =0不同时成立),使得f(x)=f(ax +b)对x ∈D 恒成立,则称函数f(x)为“(a, b)映像函数”. (1)判断函数f(x)=x 2−2是否是“(a, b)映像函数”,如果是,请求出相应的a 、b 的值,若不是,请说明理由;(2)已知函数y =f(x)是定义在[0, +∞)上的“(2, 1)映像函数”,且当x ∈[0, 1)时,f(x)=2x ,求函数y =f(x)(x ∈[3, 7))的反函数;(3)在(2)的条件下,试构造一个数列{a n },使得当x ∈[a n , a n+1)(n ∈N ∗)时,2x +1∈[a n+1, a n+2),并求x ∈[a n , a n+1)(n ∈N ∗)时,函数y =f(x)的解析式,及y =f(x)(x ∈[0, +∞))的值域.【答案】由f(x)=x 2−2,可得f(ax +b)=(ax +b)2−2=a 2x 2+2abx +b 2−2, 由f(x)=f(ax +b),得x 2−2=a 2x 2+2abx +b 2−2,则{a 2=12ab =0b 2−2=−2,∵ a ≠0,且a =1,b =0不同时成立, ∴ a =−1,b =0.∴ 函数f(x)=x 2−2是“(−1, 0)映像函数”;∵ 函数y =f(x)是定义在[0, +∞)上的“(2, 1)映像函数”,∴ f(x)=f(2x +1),则f(0)=f(1)=f(3),f(1)=f(3)=f(7),∴ f(0)=f(3),f(1)=f(7),而当x ∈[0, 1)时,f(x)=2x ,∴ x ∈[3, 7)时,设f(x)=2sx+t ,由{3s +t =07s +t =1,解得s =14,t =−34. ∴ x ∈[3, 7)时,f(x)=214(x−3).令y =214(x−3)(3≤x <7),得14(x −3)=log 2y ,∴ x =log 2y 4+3(1≤y <2),∴ 函数y =f(x)(x ∈[3, 7))的反函数为y =log 2x 4+3(1≤x <2);由(2)可知,构造数列{a n },满足a 1=0,a n+1=2a n +1,则a n+1+1=2(a n +1),∴ 数列{a n +1}是以1为首项,以2为公比的等比数列,则a n +1=2n−1,即a n =2n−1−1.当x ∈[a n , a n+1)=[2n−1−1, 2n −1).令{(2n−1−1)s +t =0(2n −1)s +t =1,解得s =21−n ,t =21−n −1. ∴ x ∈[a n , a n+1)(n ∈N ∗)时,函数y =f(x)的解析式为f(x)=221−n x+21−n −1. 当x ∈[0, +∞)时,函数f(x)的值域为[1, 2).【考点】函数解析式的求解及常用方法【解析】(1)直接由题意列关于a ,b 的方程组,求解得答案;(2)由题意可得f(0)=f(3),f(1)=f(7),而当x ∈[0, 1)时,f(x)=2x ,则x ∈[3, 7)时,设f(x)=2sx+t ,可得{3s +t =07s +t =1,求得s ,t 的值,则函数解析式可求,把x用含有y 的代数式表示,把x ,y 互换可得y =f(x)(x ∈[3, 7))的反函数; (3)由(2)可知,构造数列{a n },满足a 1=0,a n+1=2a n +1,可得数列{a n +1}是以1为首项,以2为公比的等比数列,由此求得a n =2n−1−1.当x ∈[a n , a n+1)=[2n−1−1, 2n−1),令{(2n−1−1)s +t =0(2n −1)s +t =1 ,解得s =21−n ,t =21−n −1,可得x ∈[a n , a n+1)(n ∈N ∗)时,函数y =f(x)的解析式为f(x)=221−n x+21−n −1,并求得x ∈[0, +∞)时,函数f(x)的值域为[1, 2).【解答】 由f(x)=x 2−2,可得f(ax +b)=(ax +b)2−2=a 2x 2+2abx +b 2−2, 由f(x)=f(ax +b),得x 2−2=a 2x 2+2abx +b 2−2,则{a 2=12ab =0b 2−2=−2,∵ a ≠0,且a =1,b =0不同时成立, ∴ a =−1,b =0.∴ 函数f(x)=x 2−2是“(−1, 0)映像函数”;∵ 函数y =f(x)是定义在[0, +∞)上的“(2, 1)映像函数”,∴ f(x)=f(2x +1),则f(0)=f(1)=f(3),f(1)=f(3)=f(7), ∴ f(0)=f(3),f(1)=f(7),而当x ∈[0, 1)时,f(x)=2x ,∴ x ∈[3, 7)时,设f(x)=2sx+t ,由{3s +t =07s +t =1,解得s =14,t =−34. ∴ x ∈[3, 7)时,f(x)=214(x−3).令y =214(x−3)(3≤x <7),得14(x −3)=log 2y ,∴ x =log 2y 4+3(1≤y <2),∴ 函数y =f(x)(x ∈[3, 7))的反函数为y =log 2x 4+3(1≤x <2); 由(2)可知,构造数列{a n },满足a 1=0,a n+1=2a n +1,则a n+1+1=2(a n +1),∴ 数列{a n +1}是以1为首项,以2为公比的等比数列,则a n +1=2n−1,即a n =2n−1−1.当x ∈[a n , a n+1)=[2n−1−1, 2n −1).令{(2n−1−1)s +t =0(2n −1)s +t =1,解得s =21−n ,t =21−n −1. ∴ x ∈[a n , a n+1)(n ∈N ∗)时,函数y =f(x)的解析式为f(x)=221−n x+21−n −1.当x ∈[0, +∞)时,函数f(x)的值域为[1, 2).。

相关文档
最新文档