数学选修23知识点总结

合集下载

高三知识点大全总结

高三知识点大全总结

高三知识点大全总结一、选修课知识点总结选修课是高三学生学习的一个重要组成部分,以下是高三常见的选修课知识点总结:1. 数学选修知识点- 高三数学选修一:概率与数理统计、数学专题研究- 高三数学选修二:向量与立体几何、数学专题研究- 高三数学选修三:数值方程与数学模型、数学专题研究2. 物理选修知识点- 高三物理选修一:波动光学、电磁感应- 高三物理选修二:现代物理、原子核与粒子物理- 高三物理选修三:天体物理、电磁波与信息技术3. 化学选修知识点- 高三化学选修一:化学动力学、化学计量学- 高三化学选修二:有机化学、无机化学- 高三化学选修三:化学实验研究、化学与社会二、主课知识点总结除了选修课,高三学生还需要掌握主课的知识点,以下是主课常见的知识点总结:1. 语文知识点- 高三语文必修一:古代文学、现代文学、作文写作技巧 - 高三语文必修二:文言文阅读、鲁迅研究、现代作文- 高三语文必修三:诗歌鉴赏、小说阅读、议论文写作2. 数学知识点- 高三数学必修一:函数与方程、三角函数、数列与数学归纳法- 高三数学必修二:空间几何与立体几何、导数与微分、不等式与极限- 高三数学必修三:统计与概率、矩阵与变换、逻辑与集合3. 英语知识点- 高三英语必修一:阅读理解、写作技巧、听力训练- 高三英语必修二:完形填空、文言文阅读、口语表达- 高三英语必修三:词汇运用、听力训练、写作指导4. 物理知识点- 高三物理必修一:力学、电学、光学- 高三物理必修二:热学、声学、电磁学- 高三物理必修三:相对论、原子物理、现代物理5. 化学知识点- 高三化学必修一:化学方程与化学计算、酸碱与盐、氧化还原- 高三化学必修二:有机化学基础、无机化学基础、化学实验- 高三化学必修三:化学与能源、环境化学、化学与现代科技三、总结高三知识点大全总结了选修课和主课的知识点,帮助学生更好地了解高三学习的内容。

通过系统地掌握这些知识点,学生能够提高学习效率,为高考做好充分准备。

人教版高中 数学选修二 全册知识点 归纳总结3篇

人教版高中 数学选修二 全册知识点 归纳总结3篇

人教版高中数学选修二全册知识点归纳总结第一篇:数学选修二必修内容详解第一章函数及其应用1.函数及其概念:定义域、值域、图象、单调性、奇偶性、周期性、对称性等2.函数的运算:加法、减法、乘法、除法、复合函数、反函数等3.函数的应用:函数模型、函数方程、函数关系、函数表示、函数求值等第二章三角函数1.三角函数的基本概念:正弦、余弦、正切、余切、正割、余割2.三角函数的相互关系:借助单位圆解释正弦、余弦函数,借助正切函数解释余割、正割函数3.三角函数的简单运算:倍角公式、半角公式、和差公式、化简公式、合并公式、差积定理等4.三角函数的应用:角度关系、角度测量、三角函数图像、三角函数方程、三角函数求解等第三章解析几何1.二维平面直角坐标系的基本概念:点、直线、圆等2.二维坐标系中的直线方程:斜截式、截距式、一般式、交点式等3.圆的相关概念:圆的标准方程、圆的一般方程、圆心、半径、切线等4.解析几何的应用:确定方程、矢量运算、空间几何、曲线分析等第四章微积分1.导数及其基本概念:导数定义、导数运算、高阶导数、柯西—罗尔定理等2.微积分基本定理:牛顿—莱布尼茨公式、区分反函数、定积分、不定积分等3.微积分应用:函数极值、函数图像分析、相关变化率、微分方程、微积分定理等以上是数学选修二的必修内容,掌握这些知识点,能够帮助学生扎实掌握高中数学基本概念和方法,为进一步发展数学能力打下基础。

第二篇:数学选修二选修内容详解第五章数列及其应用1.数列的概念:等差数列、等比数列等2.数列的性质:通项公式、求和公式、收敛性、发散性等3.数列的应用:数学归纳法、数列问题的解答、计算器计算数列等第六章概率论与数理统计1.随机事件及其概率:基本概念、事件关系、样本空间等2.概率分布及其函数:二项分布、泊松分布、正态分布、指数分布等3.抽样分布及其统计推论:抽样中心极限定理、参数估计、假设检验等4.应用:概率模型、统计图表、数据分析、随机模拟等第七章矩阵论与线性代数1.基本知识:矩阵基本运算、行列式、逆矩阵、秩等2.线性方程组:高斯消元法、矩阵表示、特解、齐次线性方程组、基础解系等3.特征值和特征向量:特征方程、特征值、特征向量、对角化、相似变换等4.应用:向量分析、投影、方程求解、几何变换、矩阵算法等以上是数学选修二的选修内容,掌握这些知识点,能够帮助学生进一步拓展数学领域,学会使用不同的数学方法解决实际问题。

高二数学选修2-3排列组合知识点

高二数学选修2-3排列组合知识点

高二数学排列组合知识点高二数学排列组合易错知识点1.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合。

解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法。

2.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。

二项式系数最大项与展开式中系数最大项易混。

二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r.3.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式。

)4.求分布列的解答题你能把步骤写全吗?5.如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义。

)6.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)高二数学学习方法(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。

记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

(2)建立数学纠错本。

把平时容易出现错误的知识或推理记载下来,以防再犯。

争取做到:找错、析错、改错、防错。

达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

高中排列组合知识点 高二数学选修2-3排列组合易错知识点总结

高中排列组合知识点 高二数学选修2-3排列组合易错知识点总结

《高中排列组合知识点高二数学选修2-3排列组合易错知识点总结》摘要:()()()(+)!()!(规定0!),()()!!(()!!);()();,()(+);!()!(!是阶乘);(两分别上标和下标)!;0!;(下标上标)排列组合是高二数学选修3教学重要容了助高二学生掌握排列组合容下面编给带高二数学选修3排列组合易错知识希望对你有助高二数学排列组合错知识排列组合问题依据是分类相加分步相乘有序排列无序组合排列组合问题规律是相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排排法;至多至少问题接法二项式系数与展开式某项系数易混r+项二项式系数二项式系数项与展开式系数项易混二项式系数项项或两项;展开式系数项法要用不等式组确定r3你掌握了三种常见概率公式吗?(①等可能事件概率公式;②斥事件有发生概率公式;③相独立事件发生概率公式)分布列答题你能把步骤写全吗?5如何对总体分布进行估计?(用样估计总体是研究统计问题基思想方法般地样容量越这种估计就越精确要能画出频率分布表和频率分布直方图;理频率分布直方图矩形面积几何义)6你还记得般正态总体如何化标准正态总体吗?(对任正态总体说取值x概率其表示标准正态总体取值概率)高二数学选修3知识排列及计算公式从不元素任取()元素按照定顺序排成列叫做从不元素取出元素排列;从不元素取出()元素所有排列数叫做从不元素取出元素排列数用()表示()()()(+)!()!(规定0!)组合及计算公式从不元素任取()元素并成组叫做从不元素取出元素组合;从不元素取出()元素所有组合数叫做从不元素取出元素组合数用()表示()()!!(()!!);()();3其他排列与组合公式从元素取出r元素循环排列数(r)r!r(r)!元素被分成k类每类数分别是k这元素全排列数!(!!k!)k类元素每类数无限从取出元素组合数(+k)排列((下标上标))()(+);!()!(!是阶乘);(两分别上标和下标)!;0!;(下标上标)组合((下标上标));!!()!;(两分别上标和下标);(下标上标);公式是指排列从元素取R进行排列公式是指组合从元素取R不进行排列元素总数R参与选择元素数!阶乘如9!987653从倒数r表达式应该()()(r+);因从到(r+)数(r+)r高二数学学习方法()记数学笔记特别是对概念理不侧面和数学规律教师课堂拓展课外知识记录下你觉得有价值思想方法或例题以及你还存问题以便今将其补上()建立数学纠错把平容易出现错误知识或推理记下以防再犯争取做到错、析错、改错、防错达到能从反面入手深入理正确东西;能由朔因把错误原因弄水落石出、以便对症下药;答问题完整、推理严密(3)熟记些数学规律和数学结论使己平运算技能达到了动化或半动化熟练程()常对知识结构进行梳理形成板块结构实行整体集装如表格化使知识结构目了然;常对习题进行类化由例到类由类到多类由多类到统;使几类问题归纳知识方法(5)数学课外籍与报刊参加数学学科课外活动与讲座多做数学课外题加学力拓展己知识面(6)及复习强化对基概念知识体系理与记忆进行适当反复巩固消灭前学忘(7)学会从多角、多层次地进行总结归类如①从数学思想分类②从题方法归类③从知识应用上分类等使所学知识系统化、条理化、专题化、络化(8)常做题进行定反思思考下题所用基础知识数学思想方法是什么什么要这样想是否还有别想法和法题分析方法与法其它问题是否也用到(9)无论是作业还是测验都应把准确性放位通法放位而不是味地追速或技巧这是学数学重要问题猜你感兴趣高二数学排列与组合知识总结高二数学选修知识总结3高二上学期数学复习知识归纳高二数学排列组合题技巧5高二上数学知识总结607高二数学排列组合公式知识总结。

人教版高中数学选修2-3知识点汇总

人教版高中数学选修2-3知识点汇总

人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。

分类要做到“不重不漏”。

分步乘法计数原理:完成一件事需要两个步骤。

做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。

分步要做到“步骤完整”。

n元集合A={a1,a2⋯,a n}的不同子集有2n个。

1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。

从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。

排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。

从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。

组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。

1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。

(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。

高中数学选修2-2,2-3知识点、考点、典型例题

高中数学选修2-2,2-3知识点、考点、典型例题

高中数学选修2-2,2-3知识点、考点、典型例题高中数学选修2-2,2-3知识点、考点、典型例题一、2-2数列的概念、数列的通项公式及递推公式1. 数列的概念数列是按照一定规律排列的一系列数,一般用字母 an 表示第n 个数。

2. 数列的通项公式数列的通项公式是指通过数列的位置 n,直接求出该位置上的数 an 的公式。

通项公式可以是一个数学式子,也可以是一个算法。

3. 数列的递推公式数列的递推公式是指通过数列前一项或前几项的值,推导出数列下一项的公式。

递推公式是数列中相邻两项之间的关系式。

4. 常见数列的通项公式和递推公式- 等差数列:an = a1 + (n-1)d (通项公式),an = an-1 + d (递推公式)- 等比数列:an = a1 * q^(n-1) (通项公式),an = an-1 * q (递推公式)- 斐波那契数列:an = an-1 + an-2 (递推公式)二、2-3数列的求和、数列的性质及应用1. 数列的求和- 等差数列的前 n 项和:Sn = (a1 + an) * n / 2- 等比数列的前 n 项和(q ≠ 1):Sn = a1 * (1 - q^n) / (1 - q) - 斐波那契数列的前 n 项和:Sn = Fn+2 - 12. 数列的性质- 常数列:数列中的每一项都是一个常数。

- 奇数列:数列中的每一项都是奇数。

- 偶数列:数列中的每一项都是偶数。

- 单调递增数列:数列中的每一项都比前一项大。

- 单调递减数列:数列中的每一项都比前一项小。

- 正项数列:数列中的每一项都是正数。

- 负项数列:数列中的每一项都是负数。

3. 数列的应用- 利用数列的递推关系,求解实际问题中的特定数值。

- 利用数列的性质,进行数学推理和证明。

- 利用数列的规律,设计算法解决问题。

典型例题:1. 已知等差数列的前三项分别为 1,5,9,求数列的通项公式和第 n 项的值。

解:设数列的首项为 a,公差为 d,则有以下等差数列的递推公式:a2 = a1 + d = 1 + da3 = a2 + d = (1 + d) + d = 1 + 2d将 a1,a2,a3 分别代入等差数列的通项公式,可得:a1 = a = 1a2 = a + d = 1 + d = 5 --> d = 4a3 = a1 + 2d = 1 + 2(4) = 9所以该等差数列的通项公式为 an = a + (n-1)d = 1 + 4(n-1) = 4n - 3第 n 项的值为:an = 4n - 32. 求等差数列 3,6,9,...,101 的前 n 项和。

数学高二选修三知识点归纳

数学高二选修三知识点归纳

数学高二选修三知识点归纳高二数学选修三是数学学科中的一门重要课程,它包含了多个知识点,本文将对这些知识点进行归纳和总结,以期帮助同学们更好地理解和掌握这门课程。

一、向量与空间解析几何1. 向量的定义与运算:向量的基本性质、数量积、矢量积等。

2. 平面与空间直线的方程:点法式、两点式、参数方程等表示方法。

3. 空间图形的方程:球面方程、直线与平面的位置关系等。

二、概率与数理统计1. 随机事件及其概率:随机事件、样本空间、事件的概率等基本概念。

2. 随机变量及其分布:离散型随机变量、连续型随机变量、分布函数等。

3. 样本与抽样调查:样本调查的方法、抽样误差与样本容量的关系等。

三、数学函数与导数应用1. 函数的概念与性质:函数的定义、函数的性质与分类等。

2. 导数与函数的变化率:导数的概念、导数的计算、导数与函数变化率的关系等。

3. 函数的应用:函数极限、函数的最值、函数的图像等。

在高二数学选修三的学习过程中,我们需要重点掌握以下几个知识点。

第一,向量与空间解析几何。

向量运算是向量与向量之间的基本运算,包括向量的加减、数量积和矢量积等。

学习了向量运算后,我们需要了解平面与空间直线的方程表示方法,掌握点法式、两点式和参数方程。

第二,概率与数理统计。

在概率与数理统计这一部分,我们需要熟悉随机事件及其概率的定义,了解随机变量及其分布的特性,以及样本与抽样调查的相关知识。

第三,数学函数与导数应用。

数学函数与导数应用是数学选修三中的重要内容,我们需要理解函数的定义与性质,掌握导数的概念和计算方法,并能将导数应用于函数的变化率、最值等问题。

通过对数学高二选修三的知识点归纳和总结,我们可以更好地把握该学科的重点,有助于我们在学习过程中更加高效地掌握相关知识,提高数学水平。

希望同学们在学习数学选修三的过程中,能够认真对待每个知识点,进行系统性的学习和复习,努力取得优异的成绩。

这样不仅可以为高考打下良好的数学基础,还能够为将来从事与数学相关的学科或职业打下坚实的基础。

选修2-3离散型随机变量及其分布知识点

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布知识点一:离散型随机变量的相关概念;随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。

若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ⋅⋅⋅⋅⋅⋅、ξ取每一个值()1,2,i x i =⋅⋅⋅的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质;任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质:(1) 01,2,i p i ≥=⋅⋅⋅,;12(2) 1P P ++=特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+知识点二:两点分布:若随机变量X 的分布列: 则称X 的分布列为两点分布列.特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1)为成功率.(2)两点分布又称为0-1分布或伯努利分布(3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究.知识点三:超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则(),0,1,,min{,},,,.k n kM N MnNC C P X k k m m M n n N M N C --===⋅⋅⋅=≤≤其中称超几何分布列.为超几何分布列,知识点四:离散型随机变量的二项分布;在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是kn k k n n q p C k P -==)(ξ,(0,1,2,3,k =…, p q -=1)于是得到随机变量ξ的概率分布如下:由于k k n knC p q -恰好是二项式展开式: 00111()n n n k k n kn n n n n n p q C p q C p q C p q C p q --+=+++++中的各项的值,所以称这样的随机变量ξ服从二项分布,记作(,)B n p ξ,其中n ,p 为参数,并记(,,)k k n kn C p q b k n p -=知识点五:离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =,(), (1)k p A q q p ==-,那么112311231()()()()()()()k k k k k P k P A A A A A P A P A P A P A P A q p ξ---====(0,1,2,k =…,p q -=1)于是得到随机变量ξ的概率分布如下:称这样的随机变量ξ服从几何分布, 记作1(,),0,1,2,,1.k g k p q p k q p -===-其中知识点六:求离散型随机变量分布列的步骤;(1)要确定随机变量ξ的可能取值有哪些.明确取每个值所表示的意义;(2)分清概率类型,计算ξ取得每一个值时的概率(取球、抽取产品等问题还要注意是放回抽样还是不放回抽样;(3)列表对应,给出分布列,并用分布列的性质验证. 几种常见的分布列的求法:(1)取球、投骰子、抽取产品等问题的概率分布,关键是概率的计算.所用方法主要有划归法、数形结合法、对应法等对于取球、抽取产品等问题,还要注意是放回抽样还是不放回抽样.(2)射击问题:若是一人连续射击,且限制在n 次射击中发生k 次,则往往与二项分布联系起来;若是首次命中所需射击的次数,则它服从几何分布,若是多人射击问题,一般利用相互独立事件同时发生的概率进行计算.(3)对于有些问题,它的随机变量的选取与所问问题的关系不是很清楚,此时要仔细审题,明确题中的含义,恰当地选取随机变量,构造模型,进行求解. 知识点六:期望数学期望:则称=ξE +11p x 22p x n n 数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平。

高中数学选修2-3知识点

高中数学选修2-3知识点

高中数学选修2-3知识点高中数学选修2-3知识点第一章:计数原理1.分类加法计数原理:完成一件事情,有N类方法,第一类方法有M1种不同的方法,第二类方法有M2种不同的方法,以此类推,第N类方法有MN种不同的方法。

那么完成这件事情共有M1+M2+。

+MN种不同的方法。

2.分步乘法计数原理:完成一件事情需要分成N个步骤,第一步有m1种不同的方法,第二步有M2种不同的方法,以此类推,第N步有MN种不同的方法。

那么完成这件事情共有XXX种不同的方法。

3.排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

4.排列数:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的m个排列。

从n个不同元素中取出m个元素的一个排列数,用符号An表示。

An=m!/(n-m)!(m≤n,n,m∈N)。

5.公式:A(n+m)=An+Am*m!(m≤n,n,m∈N);An=m*(m-1)*。

*(n-m+1)=n!/(n-m)。

6.组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。

7.公式:C(m,n)=C(n,n-m)=m!/[(n-m)!*m!];C(m,n)=C(n-1,m-1)+C(n-1,m);C(n,m)=C(n-1,m-1)*(n-m+1)/m。

8.二项式定理:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+。

+C(n,n)*a^0*b^n。

9.二项式通项公式展开式的通项公式:T=C(n,r)*a^(n-r)*b^r (r=0,1.n),其中C(n,r)为二项式系数。

10.二项式系数Cn:C(n,r)=C(n,n-r)=n!/(r!(n-r)!),其中r为从n个元素中取出的元素个数。

11.杨辉三角:杨辉三角是一种数学图形,由二项式系数构成,XXX的数为C(n,0),C(n,1)。

高中数学选修2-2-2-3知识点

高中数学选修2-2-2-3知识点

高中数学选修2----2知识点第一章 导数及其应用 知识点:一.导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim()n x n f x f x k f x x x ∆→-'==-3. '4.导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:无 知识点:二.导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=;2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=,4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln xf x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•<3. 2()()()()()[]()[()]f x f x g x f x g x g x g x ''•-•'=3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算★1、已知()22sin f x x x π=+-,则()'0f =★2、若()sin x f x e x =,则()'f x =★3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )~319.316.313.310.D C B A ★★4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() ° ° ° ° ★★5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =三.导数在研究函数中的应用知识点:1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:!在某个区间(,)a b内,如果()0f x'>,那么函数()y f x=在这个区间单调递增;如果()0f x'<,那么函数()y f x=在这个区间单调递减.2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()y f x=的极值的方法是:(1)如果在x附近的左侧()0f x'>,右侧()0f x'<,那么()f x是极大值;(2)如果在x附近的左侧()0f x'<,右侧()0f x'>,那么()f x是极小值;4.函数的最大(小)值与导数`函数极大值与最大值之间的关系.求函数()y f x=在[,]a b上的最大值与最小值的步骤(1)求函数()y f x=在(,)a b内的极值;(2)将函数()y f x=的各极值与端点处的函数值()f a,()f b比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用<3、导数在极值、最值中的应用4、导数在恒成立问题中的应用一、题型一:导数在切线方程中的运用★1.曲线3xy=在P点处的切线斜率为k,若k=3,则P点为()A.(-2,-8)B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)★2.曲线53123+-=xxy,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为()A.6πB.4πC.3πD.π43*二、题型二:导数在单调性中的运用★1.(05广东卷)函数32()31f x x x=-+是减函数的区间为( )A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)★2.关于函数762)(23+-=xxxf,下列说法不正确的是()A.在区间(∞-,0)内,)(xf为增函数B.在区间(0,2)内,)(xf为减函数C.在区间(2,∞+)内,)(xf为增函数D.在区间(∞-,0)),2(+∞⋃内,)(xf为增函数★★3.(05江西)已知函数()y xf x'=的图象如右图所示(其中'()f x是函数()f x的导函数),下面四个图象中()y f x=的图象大致是()(★★★4、(2010年山东21)(本小题满分12分)已知函数).(111)(Raxaaxnxxf∈--+-={(Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1fxfya=-=(Ⅱ)当12a≤时,讨论()f x的单调性.A B C D三、导数在最值、极值中的运用:★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) , - 15 , 4 4 , - 15 , - 16★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.、(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bx ax e x x f x ++=-,已知12=-=x x 和为)(x f 的极值点。

选修数学2-3知识点总结

选修数学2-3知识点总结

选修数学2-3知识点总结本文将对选修数学2-3中的几个重要知识点进行总结和介绍。

选修数学2-3是高中数学课程中的一部分,主要涉及到高中数学中的几个重要概念和方法。

在本文中,我将按照以下顺序进行介绍:函数的定义和性质、指数函数和对数函数、三角函数。

一、函数的定义和性质在选修数学2-3中,我们首先学习了函数的定义和性质。

函数是一种关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

函数可以用图像、表格或公式来表示。

函数的性质包括定义域、值域、单调性、奇偶性等。

我们学会了如何通过观察图像和计算来分析函数的性质,并解决与函数相关的问题。

二、指数函数和对数函数在选修数学2-3中,我们还学习了指数函数和对数函数。

指数函数是形如y=a^x的函数,其中a是一个正实数。

对数函数是指数函数的逆运算,由y=loga(x)表示,其中a是一个大于1且不等于1的实数。

我们学习了指数函数和对数函数的基本性质,如指数函数的增长特性和对数函数的性质。

这些函数在实际问题中有广泛的应用,如利息计算和指数增长问题等。

三、三角函数在选修数学2-3中,我们还学习了三角函数。

三角函数是以圆上的点坐标为基础定义的函数。

我们学习了正弦函数、余弦函数和正切函数的定义和性质。

我们了解了三角函数的周期性、奇偶性、对称性等性质,并学会了通过图像和计算来分析三角函数的特性。

三角函数在物理、工程和计算机图形学等领域有广泛的应用。

以上就是选修数学2-3中的几个重要知识点的总结和介绍。

通过学习这些知识点,我们可以更好地理解数学的基本概念和方法,并在实际问题中应用数学知识解决问题。

希望本文对你在学习选修数学2-3时有所帮助。

【强烈推荐】高中数学知识点总结-选修2-3

【强烈推荐】高中数学知识点总结-选修2-3

第一章 计数原理1.1 分类加法计数与分步乘法计数分类加法计数原理: 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有 N=m+n 种不同的方法。

分类要做到“不重不漏”。

分步乘法计数原理:完成一件事需要两个步骤。

做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N=m ×n 种不同的方法。

分步要做到“步骤完整”。

n 元集合A={a 1,a 2⋯,a n }的不同子集有2n 个。

1.2 排列与组合 1.2.1 排列一般地,从n 个不同元素中取出m(m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列(arrangement)。

从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号A n m 表示。

排列数公式:n 个元素的全排列数规定:0!=11.2.2 组合一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合(combination)。

从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C n m 或(n m )表示。

组合数公式:∵ A n m =C n m ∙A m m∴规定:C n 0组合数的性质:1.3 二项式定理1.3.1 二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。

1.3.2 “杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律! (1) 对称性(2) 当n 是偶数时,共有奇数项,中间的一项C n n 2+1取得最大值;当n 是奇数时,共有偶数项,中间的两项C n n−12,C n n+12同时取得最大值。

高中数学选修2-3知识点总结

高中数学选修2-3知识点总结

高中数学选修2-3知识点总结Mathematics Elective 2-3 Chapter 1 Counting Principles Must-Know1.What is the principle of n n counting?Answer: To do something。

there are n ways to complete it。

In the first way。

there are m1 different methods。

in the second way。

there are m2 different methods。

in the nth way。

there are mn different methods。

Then there are N=m1+m2+。

+mn different ways to XXX.2.What is the principle of step-by-step n counting?Answer: To do something。

it requires n steps。

There are m1 different methods for the first step。

m2 different methods for the second step。

and mn different methods for the nth step。

Then there are N=m1×m2×。

×mn different ways to XXX.3.What is the n of n?Answer: Generally。

taking m (m≤n) different elements from n different elements。

XXX order。

is called a n of taking m elements from n different XXX.4.What is the n of n?Answer: Generally。

高中选修2-3第一章计数原理知识点总结与训练

高中选修2-3第一章计数原理知识点总结与训练

第一章:计数原理一、两个计数原理3、两个计数原理的区别二、排列与组合1、排列:一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数。

用符号 表示.3、排列数公式: 其中4、组合:一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

5、组合数:从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。

用符号 表示。

6、组合数公式:其中注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”.7、性质: mn A m n A ()()()()!!121m n n m n n n n A mn -=+---= .,,*n m N m n ≤∈并且m n C ()()()()!!!!121m n m n m m n n n n C mn -=+---=.,,*n m N m n ≤∈并且mn nm n C C -=mn m n m n C C C 11+-=+三、二项式定理如果在二项式定理中,设a=1,b=x ,则可以得到公式:2、性质:02413512n n n nn n nC C C C C C -=+++=+++=奇数项二项式系数和偶数项二项式系数和:注意事项:相邻问题,常用“捆绑法”不相邻问题,常用“插空法”巩固训练:1、有4个男生和3个女生排成一排,按下列要求各有多少种不同排法:(1)男甲排在正中间;(2)男甲不在排头,女乙不在排尾;(3)三个女生排在一起;(4)三个女生两两都不相邻;2、某城新建的一条道路上有12只路灯,为了节省用电而不影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有()3、(1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多少种分法?(2) 今有10件不同奖品,从中选6件分给甲乙丙三人,每人二件有多少种分法?4、从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?5、将8个学生干部的培训指标分配给5个不同的班级,每班至少分到1个名额,共有多少种不同的分配方法?6、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?7、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士,不同的分配方法共有多少种?8、如图,要给地图A 、B 、C 、D 四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?9、求值与化简:1055845635425215222221)1(⋅+⋅+⋅+⋅+⋅+C C C C C 求值:。

高中数学选修2-3知识点、考点、附典型例题

高中数学选修2-3知识点、考点、附典型例题

111--++=⋅+=m nm n m n m m m n m n mA A C A A A 高中数学 选修2-3知识点总结第一章 计数原理 知识点:1、分类加法计数原理:做一件事情,完成它有N 类办法,在第一类办法中有M 1种不同的方法,在第二类办法中有M 2种不同的方法,……,在第N 类办法中有M N 种不同的方法,那么完成这件事情共有M 1+M 2+……+M N 种不同的方法。

2、分步乘法计数原理:做一件事,完成它需要分成N 个步骤,做第一 步有m1种不同的方法,做第二步有M 2不同的方法,……,做第N 步有M N 不同的方法.那么完成这件事共有 N=M 1M 2...M N 种不同的方法。

3、排列:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4、排列数:从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示。

),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=Λ5、公式:,11--=m n m n nA A6、组合:从n 个不同的元素中任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

7、公式:)!(!!!)1()1(m n m n C m m n n n A A C m nm mm n mn-=+--==Λ )!(!!!)1()1(m n m n C m m n n n A A C m n m m m n m n -=+--==Λ;m n n m n C C -=m n m n m n C C C 11+-=+8、二项式定理:()a b C a C a b C a b C a b C b n n n n n n n n r n r r n n n+=++++++---011222…… 9、二项式通项公式展开式的通项公式:,……T C a b r n r nr n r r+-==101() 考点:1、排列组合的运用2、二项式定理的应用★★1.我省高中学校自实施素质教育以来,学生社团得到迅猛发展。

数学选修二三知识点总结

数学选修二三知识点总结

数学选修二三知识点总结第一章函数的概念与性质1.1 函数的基本概念1.2 函数的图像1.3 函数的运算与初等函数的性质1.4 基本初等函数及其图像第一章主要介绍了函数及其相关概念,如定义域、值域、对应关系等。

初步掌握了一些函数的图像特征及其性质,了解了常见初等函数的特点及其图像。

第二章三角函数及其应用2.1 角度制与弧度制2.2 三角函数的定义2.3 三角函数的性质与图像2.4 三角函数的运算公式2.5 函数y=A sin(Bx-C)+D和y=Acos(Bx-C)+D的性质与图像第二章主要介绍了三角函数的定义、性质与图像特征,并学习了三角函数的运算公式,初步掌握了一些含有三角函数的函数图像对应的特点。

第三章幂函数、指数函数与对数函数3.1 幂函数的定义与性质3.2 指数函数的定义与性质3.3 对数函数的定义与性质3.4 指数方程与对数方程第三章主要介绍了幂函数、指数函数和对数函数的定义、性质及其应用,学习了指数方程与对数方程的求解方法,初步掌握了这些函数的性质与特点。

第四章一元二次函数及其应用4.1 一元二次函数的定义4.2 一元二次函数的图像及性质4.3 一元二次不等式4.4 一元二次方程的求解第四章主要介绍了一元二次函数的定义、性质、图像特征及其应用,学习了一元二次不等式和方程的求解方法,初步掌握了一元二次函数的相关概念。

第五章二次函数和二次函数方程组5.1 二次函数的图像及性质5.2 一元二次不等式组5.3 一元二次方程组的求解第五章主要介绍了二次函数的图像特征和性质,及其与一元二次不等式组和方程组的相关知识,初步掌握了这些函数的性质与特点。

第六章统计与概率6.1 统计的基本概念6.2 统计图的绘制6.3 概率的基本概念6.4 事件的组合与概率的计算6.5 条件概率及其应用第六章主要介绍了统计学的基本概念,学习了统计图的绘制方法,了解了概率的基本概念及其计算方法,初步掌握了条件概率的相关知识。

高二数学选修2-3二项式知识点

高二数学选修2-3二项式知识点

高二数学选修2-3二项式知识点二项式是数学中一个重要的概念,广泛应用于代数、概率等领域。

在高二数学选修2-3中,学生将会学习有关二项式的重要知识点。

本文将介绍二项式的定义、展开、性质以及应用等内容。

1. 二项式的定义二项式是由两个代数项相加(或相减)而成的表达式,一般形式为:(a+b)^n,其中a和b为实数或变量,n为非负整数。

其中,a和b被称为二项式的项,n被称为二项式的指数。

2. 二项式的展开二项式展开是指将一个二项式表达式展开为多项式的过程。

根据二项式定理,当n为非负整数时,二项式(a+b)^n可以展开为多项式的形式。

二项式定理的表达式为:(a+b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1) b^1 + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a^1 b^(n-1) + C(n,n)a^0 b^n其中,C(n,r)表示从n个元素中取r个元素的组合数,计算公式为:C(n,r) = n! / [(n-r)!r!]3. 二项式的性质- 二项式展开后的多项式的项数为n+1,其中n为二项式的指数。

- 二项式展开后的多项式的各项系数由组合数C(n,r)决定。

- 二项式展开后的多项式中的各项次数之和为n。

4. 二项式的应用二项式在数学中有广泛的应用。

以下是一些常见的应用场景:- 概率计算:二项式系数可以用于计算二项分布的概率。

- 代数运算:二项式的展开可以应用于多项式的乘法运算。

- 公式推导:二项式展开后的多项式可以推导出各种数学公式,如二次方程的求根公式等。

- 组合数学:二项式系数在组合数学中有着重要的地位,用于解决组合问题。

总结:高二数学选修2-3中的二项式知识点包括了二项式的定义、展开、性质以及应用等内容。

掌握了这些知识,可以为学生在数学或其他相关领域的学习中提供帮助,并广泛应用于实际问题的解决中。

高中数学选修2-3(人教B版)第一章计数原理1.4知识点总结含同步练习题及答案

高中数学选修2-3(人教B版)第一章计数原理1.4知识点总结含同步练习题及答案

描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第一章 计数原理 1.3计数模型(补充)一、学习任务掌握计数的几种模型,并能处理一些简单的实际问题.二、知识清单数字组成模型 条件排列模型 分组分配模型染色模型计数杂题三、知识讲解1.数字组成模型与顺序相关的数字问题,通常是计算满足某些特征的数字的个数.常见特征比如各个数位的数字不同、四位数、奇数、比某数大的数、某个数位满足某种条件的数等等,其中各个数位数字可以相同的问题通常借助乘法原理分步解决,各个数位数字不相同通常是与排列相关的问题.由 、、、、 这五个数字可组成多少个无重复数字的五位数?解:首位不能是 ,有 种,后四位数有 种排列,所以这五个数可以组成 个无重复的五位数.012340C 14A 44=96C 14A 44用数字 、 组成四位数,且数字 、 至少都出现一次,这样的四位数共有______个(用数字作答).解:因为四位数的每个数位上都有两种可能性,其中四个数字全是 或 的情况不合题意,所以符合题意的四位数有 个.23231423−2=1424从 , 中选一个数字,从 、、 中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A. B. C. D.解:B当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,剩余 个数字排在首位,共有 种方法;当选 时,先从 、、 中选 个数字有 种方法,然后从选中的 个数字中选 个排在末位有 种方法,其余 个数字全排列,共有 种方法.依分类加法计数原理知共有 个奇数.02135241812601352C 2321C 121=6C 23C 1221352C 2321C 122=12C 23C 12A 226+12=18用 , ,, , , 这 个数字,可以组成______个大于 且小于 的012345630005421描述:例题:2.条件排列模型计算满足某些限制条件的排列的个数,常见的如相邻问题、不相邻问题、某位置不能排某人、某人只能或不能排在某些位置的问题等等.不重复的四位数.解:分四类:①千位数字为 , 之一时,百十个位数只要不重复即可,有 (个);②千位数字为 ,百位数字为 ,,, 之一时,共有 (个);③千位数字是 ,百位数字是 ,十位数字是 , 之一时,共有 (个);④最后还有 也满足条件.所以,所求四位数共有 (个).175342=120A 3550123=48A 14A 245401=6A 12A 135420120+48+6+1=175 名男生, 名女生,按照不同的要求排队,求不同的排队方案的方法种数.(1)全体站成一排,其中甲只能在中间或两端;(2)全体站成一排,男生必须排在一起;(3)全体站成一排,甲、乙不能相邻.解:(1)先考虑甲的位置,有 种方法,再考虑其余 人的位置,有 种方法.故有种方法;(2)(捆绑法)男生必须站在一起,即把 名男生进行全排列,有 种排法,与 名女生组成 个元素全排列,故有 种不同的排法;(3)(插空法)甲、乙不能相邻,先把剩余的 名同学全排列,有 种排法,然后将甲、乙分别插到 个空中,有 种排法,故有 种不同的排法.34A 136A 66=2160A 13A 663A 3345=720A 33A 555A 556A 26=3600A 55A 26有甲、乙、丙在内的 个人排成一排照相,其中甲和乙必须相邻,丙不排在两头,则这样的排法共有______种.解:甲和乙必须相邻,可将甲、乙捆绑,看成一个元素,与丙除外的另三个元素构成四个元素,自由排列,有 种方法;丙不排在两头,可对丙插空,插四个元素生成的中间的三个空中的任何一个,有 种方法;最后甲、乙两人的排法有 种方法.综上,总共有 种排法.6144A 44A 13A 22=144A 44A 13A 22 把椅子摆成一排, 人随机就座,任何两人不相邻的坐法种数为( )A. B. C. D.解:D“不相邻”应该用“插空法”,三个空椅子,形成 个空,三个坐人的椅子插入空中,因为人不同,所以需排序,所以有 种不同坐法.6314412072244=24A 34某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同课程的排法?解:法一: 门课程总的排法是 种,其中不符合要求的可分为:体育排在第一节有 种排法,数学排在最后一节有 种排法,但这两种方法,都包括体育在第一节,数学排在最后一节,这种情况有 种排法,因此符合条件的排法应是: 种.法二:① 体育、数学即不排在第一节也不排在最后一节,这种情况有 种排法;② 数学6A 66A 55A 55A 44−2+=504A 66A 55A 44⋅A 24A 44⋅144种颜色可供选择,则不同的着色方法共有______种.(以数字作答)72种花,且相邻的96高考不提分,赔付1万元,关注快乐学了解详情。

数学选修二知识点总结

数学选修二知识点总结

数学选修二知识点总结一、数列1、等差数列:通项公式为An = A1 + (n-1)d,前n项和公式为Sn = n/2 (A1 + An)。

2、等比数列:通项公式为An = A1 * q^(n-1),前n项和为Sn = A1 * (1 - q^n) / (1 - q)。

3、数列的概念和性质,常见数列的求和公式。

4、通项公式、公差、首项、末项、项数等数列的相关概念。

二、数学归纳法1、数学归纳法的原理和使用方法。

2、证明方法,归纳前提,归纳步骤等。

3、常见的数学归纳法证明题目。

三、数学中的排列组合1、排列的概念和性质。

2、组合的概念和性质。

3、排列组合在实际问题中的应用。

4、二项式定理以及它的应用。

四、数学中的概率1、基本概率概念,样本空间、事件等。

2、概率的计算方法,经典概率法、几何概率法以及统计概率法。

3、概率的加法和乘法规则。

4、概率分布、期望、方差等概念和计算方法。

5、概率在现实生活中的应用。

五、数学中的数理统计1、频数和频率的概念和计算方法。

2、统计图表的绘制和解读。

3、集中趋势的度量,均值、中位数和众数。

4、离散程度的度量,方差、标准差等。

5、正态分布及其性质。

六、数学中的函数概念和性质1、函数的概念和性质,例如定义域、值域、单调性、奇偶性等。

2、函数的运算,求导、求导数等。

3、函数的图像和性质。

4、常见函数的特征和性质,如一次函数、二次函数、指数函数、对数函数等。

5、函数在实际问题中的应用。

七、数学中的三角函数1、三角函数的概念和性质,周期性、奇偶性等。

2、常见三角函数的图像和性质,如正弦函数、余弦函数、正切函数等。

3、三角函数的运算,反三角函数的概念和性质等。

4、三角函数在实际问题中的应用。

八、数学中的数列与级数1、数列和级数的概念和性质。

2、常见数列和级数的求和方法和公式。

3、级数的概念和收敛性。

4、级数在实际问题中的应用。

以上是数学选修二知识点的总结,希望对大家的学习有所帮助。

数学选修2知识点总结

数学选修2知识点总结

数学选修2知识点总结数学选修2是高中数学课程中的一门重要课程,内容涵盖了许多重要的数学知识。

今天我们将对数学选修2的知识点进行总结,希望对您的数学学习有所帮助。

一、函数与导数1.1 函数的概念在数学中,函数是一种特殊的映射关系,它将一个自变量映射到一个因变量。

函数可以用数学表达式、图像或者数据集来描述。

1.2 导数的概念导数表示函数在某一点的瞬时变化率,也可以理解为函数曲线在某一点的切线斜率。

导数可以帮助我们求解各种函数的极值、凹凸性以及函数的图像性质。

1.3 常见函数的导数常见函数的导数包括多项式函数、指数函数、对数函数、三角函数等。

不同函数的导数具有不同的性质和计算方法。

1.4 导数的运算法则导数的运算法则包括和差积商法则、复合函数的导数、反函数的导数等。

1.5 函数的极值与最值利用导数的方法可以求解函数的极值和最值,从而帮助我们分析函数的性质和图像。

1.6 函数的应用函数的应用包括最优化问题、生物学问题、经济学问题等。

通过导数的方法,我们可以解决许多实际问题。

二、三角函数2.1 基本概念三角函数是描述角度与边的关系的函数,包括正弦函数、余弦函数、正切函数等。

2.2 三角函数的图像与性质三角函数的图像具有周期性、对称性和单调性等特点,通过这些性质我们可以分析三角函数的图像。

2.3 三角函数的运算三角函数的运算包括角度的加减、倍角、半角及其余弦和正弦的关系等。

2.4 三角函数的应用三角函数的应用包括三角测量、振动问题、电路问题等,通过三角函数可以解决这些实际问题。

三、数列与数学归纳法3.1 数列的概念数列是按一定规律排列的一组数字,其中每一个数字称为数列的项。

数列可以是等差数列、等比数列、递推数列等。

3.2 数学归纳法数学归纳法是一种证明数学命题的重要方法,通过证明当n=k时命题成立,并证明当n=k+1时命题也成立,从而得出结论当n为任意正整数时,命题均成立。

3.3 递推数列的通项公式递推数列的通项公式是指可以用一个数学表达式来表示数列的第n项的公式,它可以帮助我们快速计算数列中任意一项的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 概率 总结一、知识结构二、知识点1.随机试验的特点:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个 ③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.2.分类 随机变量(如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。

)离散型随机变量在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.连续型随机变量对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.连续型随机变量的结果不可以一一列出.随机变量 条件概率 事件的独立性正态分布 超几何分布二项分布 数学期望 方差离散型随机变量的数字特征离散型随机变量连续性随机变量3.离散型随机变量的分布列一般的,设离散型随机变量X可能取的值为x1,x2, ,x i , ,x nX取每一个值xi(i=1,2,)的概率P(ξ=x i)=P i,则称表为离散型随机变量X 的概率分布,简称分布列性质:①pi≥0, i =1,2,…;②p1 + p2 +…+p n= 1.③一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。

4.求离散型随机变量分布列的解题步骤例题:篮球运动员在比赛中每次罚球命中得1分,不中得0分,已知某运动员罚球命中的概率为0.7,求他罚球一次的得分的分布列.解:用随机变量X表示“每次罚球得的分值”,依题可知,X可能的取值为:1,0且P(X=1)=0.7,P(X=0)=0.3因此所求分布列为:引出二点分布如果随机变量X的分布列为:其中0<p<1,q=1-p,则称离散型随机变量X服从参数p的二点分布二点分布的应用:如抽取彩票是否中奖问题、新生婴儿的性别问题等.超几何分布一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为()(0,1,2,,)k n k M N MnNC C P X k k m C --===,其中{}min,m M n =,且*,,,,n N M N n M N N ∈≤≤ 则称随机变量X 的分布列为超几何分布列,且称随机变量X 服从参数N 、M 、n 的超几何分布注意:(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N 、M 、n ,其意义分别是总体中的个体总数、N 中一类的总数、样本容量解题步骤:例题、在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.游戏者一次从中摸出5个球.至少摸到3个红球就中奖,求中奖的概率解:设摸出红球的个数为X,则X 服从超几何分布,其中30,10,5N M n === X 可能的取值为0,1,2,3,4, 5. 由题目可知,至少摸到3个红球的概率为(3)(3)(4)(5)P X P X P X P X ==+=+=≥324150102010201020555303030C C C C C C C C C =++ ≈0.191答:中奖概率为0.191.nNn MN MCC C -0nNn MN MCC C 11--nNm n MN m MCC C --条件概率1.定义:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率P(B|A),读作A 发生的条件下B 的概率2.事件的交(积):由事件A 和事件B 同时发生所构成的事件D ,称为事件A 与事件B 的交(或积作D=A ∩B 或D=AB3.条件概率计算公式:P(B|A)相当于把A 看作新的基本事件空间,求A∩B发生的概率:解题步骤:例题、10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二取到次品的概率.解:设 A = {第一个取到次品}, B = {第二个取到次品},所以,P(B|A) = P(AB) / P(A)= 2/9 答:第二个又取到次品的概率为2/9..0)(,)()()|(>=A P A P AB P A B P 发生的条件下样本点数在包含的样本点数发生的条件下在A B A )A |B (=P 包含的样本点数包含的样本点数A AB =总数包含的样本点数总数包含的样本点数//AB A =)(P(AB)A P =公式推导过程.1)|(0)()|()(0)A (P ≤≤⋅=>A B P A P A B P AB P (乘法公式);,则若.151)(21023==⇒C C AB P .103)(=A P相互独立事件1.定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立2.相互独立事件同时发生的概率公式两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

则有如果事件A1,A2,…An 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。

即:P (A1·A2·…·An )=P (A1)·P (A2)·…·P(An)3.两事件是否互为独立事件的判断与证明4.解题步骤例题、一袋中有2个白球,2个黑球,做一次不放回抽样试验,从袋中连取2个球,观察球的颜色情况,记“第一个取出的是白球”为事件A ,“第二个取出的是白球”为事件B ,试问A 与B 是不是相互独立事件?答:不是,因为件A 发生时(即第一个取到白球),事件B 的概率P (B )=1/3,而当事件A 不发 生时(即第一个取到的是黑球),事件B 发生的概率P (B )=2/3,也就是说,事件A 发生与否影响到事件B 发生的概率,所以A 与B 不是相互独立事件。

证明:由题可知, P(B|A) =1/3,P(B|A 的补集)=2/3因为 P(B|A)≠P(B|A 的补集) 所以 A 与B 不是相互独立事件说明(1)判断两事件A 、B 是否为相互独立事件,关键是看A (或B )发生与否对B (或A )发生的概率是否影响,若两种状况下概率不变,则为相互独立.(2)互斥事件是指不可能同时发生的两个事件;相互独立事件是指一事件的发生与否对另一事件发生的概率没影响.(3)如果A 、B 是相互独立事件,则A 的补集与B 的补集、A 与B 的补集、A 的补集与也都相互独立. 则称A ,B 相互独立 )()()(B P A P AB P =)()()(B P A P B A P ⋅=⋅说明(1)使用时,使用的前提条件; (2)此公式可作为事件是否相互独立论依据,P(A·B)=P(A) · P(B)是B 相互独立的充要条独立重复试验1.定义:在同等条件下进行的,各次之间相互独立的一种试验2.说明:①这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中的概率都是一样的②每次试验是在同样条件下进行;③每次试验间又是相互独立的,互不影响.前提二项分布1.引入:一般地,如果在1次实验中某事件A 发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是P(A )Pn(k)是[(1-P)+P]n 的通项公式,所以也把上式叫做二项分布公式.2.二项分布定义:设在n 次独立重复试验中某个事件A 发生的次数,A 发生次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是p ,事件A 不发生的概率为q=1-p ,那么在n 次独立重复试验中)(k P =ξkn k k n q p C -=(其中 k=0,1, ,n ,q=1-p )于是可得随机变量ξ的概率分布如下:由于k n k k n qp C -恰好是二项展开式b C b a C b a C a C b a nn nrrn rnn n nn n+++++=--+ 111)(中的第 k+1 项,所以,称这样的随机变量ξ服从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数, 并记:kn k k n q p C -),;(p n k B =k n k k n n p p C k P --=)1()(n n qp C 00111-n n qp Ckn k k n qp C -qp C n n n3.解题步骤例题、某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布. 解:依题意,随机变量ξ~B(2,5%). ∴P(ξ=0)=(95%)2=0.9025, P(ξ=1)= (5%)(95%)=0.095,P(ξ=2)= (5%)2=0.0025.因此,次品数ξ的概率分布是几何分布1.定义:在独立重复试验中,某事件A 第一次发生时所作的试验次数ξ也是一个取值为正整数的随机变量。

“ξ =k ”表示在第k 次独立重复试验时事件A 第一次发生。

如果把第k 次实验时事件A 发生记为Ak , p( Ak)=p ,事件A 不发生记为 ,P( )=q(q=1-p),那么p q p p A P A P A P A P A P A A A A A P k P k k k K k K ⋅=⋅-=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅==----1113211321)1()()()()()()()(ξ(k=0,1,2…,q=1-p.)于是得到随机变量ξ的概率分布如下:称ξ服从几何分布,并记g(k,p)=p ·qk-112C22C2Cξ 0 1 2 P0.90250.0950.0025k A k A ξ 1 2 3 … k …P p pqpq2 … pqk-1 …离散型随机变量的期望和方差一般地,若离散型随机变量ξ的概率分布为则称 E ξ=x1p1+x2p2+…+xnpn +… 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量 说明:(1)数学期望的一个特征数,它反映了离散型随机变量取值的平均水平(2)一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=pn ,则有p1=p2=…=pn = ,E ξ=(x1+x2+…+xn) ,所以ξ的数学期望又称为平均数、均值(3)随机变量的数学期望与样本的平均值的关系:前者是常数,不依赖样本抽取;后者是一个随机变量.D ξ=(x 1-E ξ)2·P 1+ (x 2-E ξ)2·P 2 + … + (x n -E ξ)2·Pn + … 叫随机变量ξ的均方差,简称方差。

相关文档
最新文档