早期的细胞分裂素反应蛋白和磷酸化蛋白的研究Early cytokinin response proteins and phosphoproteins of

合集下载

第四节细胞分裂素(共10张PPT)

第四节细胞分裂素(共10张PPT)
细胞分裂素促进细胞分裂
的器官(主要是根尖) 豌豆rms4( ramosus)
细胞分裂素促延进缓细叶胞片分衰裂老 细Le胞tha分m裂, 1素9促63进,细未胞成分熟裂玉米胚,玉米素
Miller, 1956, 鲱鱼一精般子降认解为物,—激细动胞素分裂素在根尖、萌发着的种子和发育着的果实、种子处合成, 细根一Mi胞系般lle分 C认r, T1裂为K95素,合6延细成, 鲱但缓胞和鱼叶分运随精片裂输着子衰素受降研老在地解根上究物尖部—的、控激萌制深动发入素着,的种发子现和茎发育端着也的能果实合、成种细子处胞合分成裂,但素随。着研细究胞的分深入裂,素发生现茎物端合也成能合是成在细细胞分裂素。 细胞分裂素抑生胞制物叶合的片成微衰是粒老在细体胞中的微进粒行体的中进。行的。
拟延南缓芥 植半物胱衰氨老酸延蛋缓白衰酶老基是因细启胞动分子裂和素特ipt有基的因效整应合后导入烟草 ,显著延迟叶片的衰老
细细分胞胞布分 分 :裂裂素素主促生生要进物物分细合合布胞成成于分是是进裂在在行细细细胞胞胞的的分微微裂粒粒的体体主部中中位要进进,行行分如的的茎。。布尖、于根进尖、行未成细熟胞的种分子裂、萌的发的部种位子、,生如长着茎的果尖实、。 根尖、未 韩分碧布文 :,1主95要9成,分根布熟系于的伤进流行种液细中子胞的分、促裂进的萌细部发胞位分,的裂如的种茎物尖子质、根、尖生、未长成着熟的的种子果、实萌发。的种子、生长着的果实。
▪ 细胞分裂素促进细胞分裂
▪ 细胞分裂素抑制叶片衰老
细胞分裂素的应用
▪ 细胞分裂素可用于蔬菜保鲜,在组织培 养工作中细胞分裂素是分化培养基中不 可缺少的附加激素。细胞分裂素还可用 于果树和蔬菜上,主要作用用于促进细 胞扩大,提高坐果率,延缓叶片衰老。
细胞分裂素延缓 叶片衰老

新发现的植物激素 简介

新发现的植物激素 简介

新发现的植物激素简介新发现的植物激素-简介《新发现的植物激素》由南京农业大学植物激素研究室周燮教授主编,主要读者为生物学、农学、园艺学和林业的教研人员以及研究生和本科生;关注植物激素的生理功能;联系工厂生产生活实际;材料新颖,国内外文献收集到2022年10月,反映了前沿,共约460000字和8页的彩色图片。

上世纪末,美国科学院院士hanskende和janzeevaart将早期发现的生长素类、赤霉素类、细胞分裂素类、脱落酸和乙烯统称为五大类“经典”植物激素(“classical”planthormones)。

1998年,在国际植物生长物质学会(ipgsa)第16届大会上,油菜素甾醇类、茉莉酸类和水杨酸类被加入植物激素名单。

随后,多胺类和一部分肽类也被接纳为植物激素。

最近独脚金内酯和一氧化氮亦被提名为植物激素。

这些继“经典”植物激素之后发现的被统称为非“经典”植物激素(non-classicalplanthormones)。

可是,迄今国内学术界尚未对后面七类激素进行过全面而系统的介绍。

该书不仅填补了这方面的空白,而且还概述了两类候选的植物激素??成花素(florigen)和壳梭孢素类(fusicoccins,fcs)。

一、油菜素甾醇此类激素具有四个环的5-α-胆甾烷的基本结构,是植物体内一类与昆虫的蜕皮激素以及哺乳动物中的甾体类激素结构相似的植物生长调节物。

其中最有代表性的是油菜素内酯(brassinolide,bl)。

油菜素甾醇类激素促进细胞的伸长和分裂,但与其它激素不同的是,它在很低浓度(1×10-10mol/l)就可表现出很强的生物活性。

油菜素甾醇类激素参与植物的光形态建成,而且在植物的抗逆过程中起调节作用。

一个富含亮氨酸重复片断(leucine-richrepeat,lrr)的丝氨酸/苏氨酸型受体激酶??bri1已被鉴定为油菜素内酯的受体。

二、茉莉酸盐茉莉酸及其挥发性衍生物茉莉酸甲酯(methyljasmonate,meja)和氨基酸衍生物统称为茉莉酸类物质。

细胞分裂素合成基因ipt研究进展(综述)

细胞分裂素合成基因ipt研究进展(综述)

2005,34(2):66-69.Subtropical Plant Science 王再花李 玲 广东省植物发育生物工程重点实验室摘 要也是限速酶运用生物信息学方法推测这些基因可能存在特殊时空表达来调控细胞分裂素的合成途径关键词异戊烯基转移酶Q946.885+.4; Q789 文献标识码1009-7791(2005)02-0066-04A Review of the Advances in Cytokinin Biosynthesis ipt GeneWU Ji-lin, WANG Zai-hua, YE Qing-sheng, LI Ling(Guangdong Key Lab of Biotechnology for Plant Development, College of life science, South China Normal University, Guangzhou 510631, Guangdong China)Abstract:Isopentenyl-transferases catalyze the first and rate-limiting steps of cytokininbiosynthesis, and the corresponding genes have been cloned. A family of genes from Arabidopsiscoding for cytokinin biosynthesis enzymes have been identified by a bioinformatic approach. It isspeculated that these genes might be expressed in distinct spatial and temporal patterns toregulate cytokinin biosynthesis. This review specially introduced the functions and advances ofipt in cytokinin biosynthesis.Key words: cytokinin; isopentenyl-transferases; ipt细胞分裂素在植物生长发育的许多方面行使重要功能光合作用自从20世纪60年代初期首次分离获得天然细胞分裂素——反式-玉米素以来天然细胞分裂素N6-取代基腺嘌呤衍生物一般包含一个类异戊二烯基或芳香环衍生物侧链已研究了几种与细胞分裂素生物合成有关的酶的特性编码细胞分裂素生物合成限速步骤合成酶异戊烯基转移酶的基因首先在根癌农杆菌中得到鉴定后来称为ipt2000年Arabidopsis为ipt的研究提供了新机遇拟南芥的异戊烯基转移酶是被一个小的多基因家族编码进行基因产物的生化分析还揭示了ADP和ATP是反应的优先底物[5]本文简要介绍细胞分裂素合成基因ipt编码酶的特性及其与细胞分裂素合成的关系一类修饰腺嘌呤的tRNA EC.2.5.1.8修饰的核收稿日期吴吉林湖南涟源人从事植物发育与分子生物学研究叶庆生为通讯作者第2期吴吉林,等影响转录的保真度及其效率dimethylallyl diphosphate的异戊烯基转移到前体tRNA分子的腺嘌呤残基上另一类催化形成iPMP IPT其结构与tRNA-IPT相似多年来人们推测细胞分裂素可能来源于tRNA分子顺式-玉米素核苷异戊烯基腺苷顺式-甲硫基-ZR 及反式-甲硫基-ZR因此推测它源于tRNA的降解发现tRNA降解不是细胞分裂素的主要来源主要是由于顺-反异构酶参与互变过程[2]Akiyoshi等鉴定了根癌农杆菌中的ipt/tmr基因产生根状肿瘤在一些细菌中也发现ipt基因在拟南芥中已经证实编码该酶的基因家族有9个成员进化系统树分析表明AtIPT2和AtIPT9与tRNA-IPT更相似其编码基因与细菌ipt/tmr基因同源性更大[10]其余7种AtIPT基因的重组蛋白除皆能使E.coli产生具活性的细胞分裂素[6]这与根癌农杆菌ipt过表达的结果一致[9]AtIPT1和AtIPT3iP t-Z从而证实了IPT的活力并鉴定出它们具有催化合成细胞分裂素的活性[6,9]此基因在酵母中的表达能弥补MOD5缺失突变体的抗抑制因子表型[5]随后转化到酵母突变菌株MT-8中表达表明拟南芥IPT cDNA编码的蛋白可替代MOD5蛋白的功能说明植物IPT蛋白识别酵母tRNA前体的效率低于MOD5说明植物IPT对底物的要求有所不同了解细胞分裂素从头合成至少存在3条途径运用快速的IPT 测试法测定放射性元素标记从AMP融合到了iPA中[4]细菌IPT酶催化DMAPP上的异戊烯基侧链转移到AMP的N6位点[9]第34卷 ﹒68﹒3.2 ATP/ADP 途径生化分析揭示了AtIPT4重组酶优先利用ATP 和ADP 这与细菌IPT 不同[9]随后通过羟化作用形成玉米素类型的细胞分裂素[9]该基因活性显著抑制可能是由于放射性标记的AMP 和未标记的ATP 和ADP 之间存在底物竞争[9]这可能为细胞分裂素的产生部位提供新的见解[6]alternative pathway iPMP在内源羟化酶活性促进下也能转化成ZMP [12]后来证实ZMP 的主要前体不是胞质中的iPMP直接通过IPT 从AMP 合成ZMP 目前不知如何识别侧链前体 目前对植物中细胞分裂素生物合成的认识大部分来源于对根癌农杆菌模拟系统的研究在转基因植物中ipt 过表达导致细胞分裂素水平的增加因此推测植物细胞细胞分裂素合成机制与根癌农杆菌细胞分裂素合成机制相似大麦Takei 等报道N 首先刺激玉米中iPMP 的积累在拟南芥中观察到重新提供硝酸盐时这表明N-诱导细胞分裂素的合成是高等植物的普遍特性除了N 例如外源细胞分裂素反作用于根这些发现提示细胞分裂素合成可能受许多大量元素的有效性变化的调节受到具生物活性的细胞分裂素降解速率和互变途径的影响[18]从矮牵牛和拟南芥中获得影响细胞分裂素合成的突变体SHO(shooting)和PGA22(plant growth acticator)[19,20]可观察到SHO 和PGA22突变体表型PGA22类似AtIPT8具IPT 活性[21]但hoc 以隐性突变出现可能对细胞分裂素合成进行反向调节[20]从而导致一系列反常的发育延缓叶片衰老在地塞米松诱导的启动子调控下但构建的ipt转化株很第2期吴吉林,等从而可能导致植物在遗传上可传递的畸变[26]在太阳花茎块再生期间从而促使茎块再生效率与茎中标记基因表达恢复的效率同时得到提高[27]因此作为标记基因对建立和优化转化方案是非常重要的发现ipt基因的过表达有利于转化植物的再生表明有可能凭此策略得到转基因植株Endo等运用GST-M A T载体系统而GST-II启动子作为特异位点重组系统的R基因的启动子ipt和iaaM/H基因能导致转化组织中生长素和细胞分裂素的产生结果表明充当选择标记时iaaM/H比单独使用ipt效果更好iaaM/H和ipt基因的联合更有效地产生转基因植株和无标记的转基因植株[30]﹒80﹒第34卷 [9] 牛俊玲,等. 果园生草对果树光合特性影响的研究[J]. 山西农业大学学报, 2000,20(4): 353-355.[10] 李国怀,等. 生草栽培对桔园环境和柑桔产量的影响[J]. 中国农业气象, 1997, 18(4): 18-21.[11] 韩素英,等. 山地丘陵旱地苹果园覆草技术经济效益评价[J]. 农业技术经济, 1995,(1): 55-58.[12] 肖润林,等. 红壤旱坡地桔园覆盖的生态效应及经济效益评价[J]. 生态学杂志, 1996,15(5): 16-22.[13] 巩传银,等. 沙地梨园生草模式及效应试验[J]. 河北果树, 2002,(5): 10-11.[14] 丁玉川,等. 山楂园的百脉根生草覆盖效应研究[J]. 河北林果研究, 1996,11(增): 181-184.[15] 严毓华,等. 苹果园种植覆盖作物对于树上捕食性天敌群落的影响[J]. 植物保护学报, 1988,15(1): 23-26.[16] 杜相革,等. 苹果园混合覆盖植物对害螨和东亚小花蝽的影响[J]. 生物防治通报, 1994,10(3): 114-117.[17] 于毅,等. 东亚小花蝽的发生和扩散与苹果园和邻近农田植被的关系[J]. 中国生物防治, 1998,14(4): 148-151.[18] 陈川,等. 生草苹果园主要害虫和天敌的生态位研究[J]. 西北农业学报, 2002,11(3): 78-82.[19] 左华清,等. 柑橘根际土壤微生物种群动态及根际效应的研究[J]. 生态农业研究, 1995,3(1): 39-47.[20] 黄韶华,等. 土壤微生物与土壤肥力的关系研究初报[J]. 新疆农垦科技, 1995,(3): 6-7.[21] 姚政,等. 施用不同有机物后土壤微生物量的动态变化[J]. 上海农业学报, 1997,13(l): 47-48.[22] 洪坚平,等. 不同施肥条件下土壤微生物生物量的研究[J]. 山西农业大学学报, 1996,16(1): 19-21.[23] 张丹,等. 四川紫色土微生物数量与土壤肥力相关性初步研究[J]. 四川农业大学学报, 2000,18(2): 173-175.[24] 马玉珍,等. 旱地秋季深施肥对土壤微生物的影响[J]. 土壤, 1997,29(6): 311-314.[25] 张成娥,等. 黄土源区果园套种对土壤微生物及酶活性的影响[J]. 土壤与环境, 2001,10(2): 121-123.[26] 高美英,等. 秸秆覆盖对苹果园土壤固氮菌数量年变化的影响[J]. 果树科学, 2000,17(3): 185 -187.[27] 高美英,等. 覆盖对果园土壤氨化细菌数量年变化的影响[J]. 土壤通报, 2000,31(6): 273-274.[28] 曾明,等. 桔园生草对丛枝菌根形成及果实品质的影响[J]. 西南农业大学学报, 2004,26(2): 105-107.[29] 李国怀,等. 果园生草栽培应注意的若干问题[J]. 浙江柑桔, 1997,14(4): 5-6.(上接第69页)[18] Horgan R. Cytokinins[A]. In: Wilkins M B (ed) . Advanced plant physiology[M]. Longmans, London, 1984: 89-101.[19] Zubko E, et al. Activation tagging identifies a gene from Petunia hybrida responsible for the production of activecytokinins in plants[J]. Plant J, 2002,29: 797-808.[20] Catterou M, et al. An Arabidopsis mutant overproducing cytokinins and expressing in vitro organogenic capacity[J]. PlantCell, 2002,10: 1 009-1 019.[21] Jiaqiang S, et al. The Arabidopsis AtIPT8/PGA22 gene encodes an isopentenyl-transferase that is involved in the novocytokinin biosynthesis[J]. Plant Physiology, 2003,131: 167-176.[22] Smigocki A C, et al. Cytokinin gene fuses with a strong promoter enhances shoot organogenesis and zeatin level intransformed plant cells[J]. Proc Natl Sci USA, 1988,85: 5 131-5 135.[23] Schmlling T, et al. Construction of a heat-inducible chimeric gene to increase the cytokinin content in transgenic planttissue[J]. FEBS Lett., 1989,249: 401-406.[24] Smigocki A C. Cytokinin content and tissue distribution it plants transformed by a reconstructed isopentenyl transferasegene[J]. Plant Mol Biol, 1991,16: 105-115.[25] Gan S, et al. Inhibition of leaf senescence by autoregulated production of cytokinin[J]. Science, 1995,270: 1986-1988.[26]Kunkel T, et.al. Inducible isopentenyl transferase as a high efficiency marker for plant transformation[J]. Nat Biotech.,1999,17: 916-919.[27] Molinier J, et al. Transient expression of ipt gene enhances regeneration and transformation rates of sunflower shoot apices(Helianthus annuus L.) [J]. Plant Cell Rep., 2002,21: 251-256.[28] Gatz C, et al. Promoters that respond to chemical inducers[J]. Trends in plant Sci., 1998,9: 352-358.[29] Endo S, et al. The isopentenl-transferase gene is effective as a selectable marker gene for plant transformation in tobacco(Nicotiana tabacum cv. Petite Havana SRI) [J]. Plant Cell Reports, 2001,20: 60-66.[30] Endo S, et al. A new GST-MAT vector containing both ipt and iaaM/H genes can produce marker-free transgenic tobaccoplants with high frequency[J]. Plant Cell Reports, 2002,20: 923-928.。

细胞分裂素对植物基因表达的调节_王兆龙

细胞分裂素对植物基因表达的调节_王兆龙

植物生理与分子生物学Plant Physiology and Molecular Biology收稿 1998-10-16 修定 1999-02-09 1 国家杰出青年科学基金项目资助。

细胞分裂素对植物基因表达的调节1王兆龙 曹卫星(南京农业大学农业部作物生长调控重点开放实验室,南京210095)Regulation of Plant Gene Expression by CytokininsWANG Zhao -Lon g ,CAO Wei -Xing (Key Laborato ry of Crop G r owth Regulatio n ,M inis try of A griculture ,Nanjing Agricul -tu ral Univers ity ,Nanjing 210095) 提要 细胞分裂素能显著改变植物基因转录的水平,在转录水平上或转录后水平上调控植物基因的表达。

蛋白质磷酸化在细胞分裂素的信号转导过程中起着重要的作用,但迄今为止细胞分裂素的顺式作用元件和反式作用因子尚未有报道。

文章最后就细胞分裂素对植物基因表达调节研究作了展望。

关键词 细胞分裂素 基因表达 转录 调节 细胞分裂素是一类较活跃的植物激素,它不仅能促进植物细胞的分裂和扩大,而且在芽分化的诱导、叶绿体的发育、养分的运输和分配、细胞衰老的抑制等方面都表现显著的效果。

近年来的研究表明,细胞分裂素对植物基因的表达有显著的调节作用[1~4]。

植物发育的调节基因常受到不同激素的共同调节,例如高的CTK /IAA 比例能诱导离体培养茎尖的再生;细胞分裂素能增加硝酸还原酶mR NA 转录的水平,而ABA 则能抑制这种作用[5]。

植物衰老也与I AA 、CTK 、ETH 、AB A 的相互作用有关[6]。

近年来,由于分子生物学和基因工程实验手段的应用,从分子水平上揭示植物激素的作用机理势在必行。

IAA 和AB A 的结合蛋白已有了不少的研究,特别是已克隆出了ABA 的顺式作用元件和反式作用因子。

thermotogamartima嗜热木聚糖酶化学修饰与其结构特性关系

thermotogamartima嗜热木聚糖酶化学修饰与其结构特性关系

Thermotoga martima嗜热木聚糖酶化学修饰与其结构特性关系苏樨州,蔡萍,严明*(南京工业大学制药与生命科学学院,材料化学工程国家重点实验室,江苏南京 210009)摘要:应用化学修饰的实验方法,结合蛋白质结构信息的计算来研究酶蛋白中氨基酸残基化学修饰与结构信息之间的关系。

以Thermotoga maritima嗜热木聚糖酶为对象,采用PDB数据库中的1VBR为模板计算其序列中色氨酸、谷氨酸、天冬氨酸的溶剂可及性、氢键、盐桥数等结构特性,并与该酶化学修饰的实验结果相对比。

结果表明酶活性中心3个色氨酸中,可及性大的Trp802与Trp602两个残基对酶的活性影响较大;序列中谷氨酸与天冬氨酸的氢键、盐桥数较多,修饰其对酶的热稳定性有很大影响。

此结果有助于深入了解蛋白质中与化学修饰有关的结构特性,并为基于蛋白质结构的酶蛋白改性奠定了基础。

关键词:嗜热木聚糖酶;化学修饰;结构特性Relationship between structural characteristics and chemical modification to Thermo-stable Xylanase from Thermotoga maritimaSU Xizhou, CAI Ping, YAN Ming(State Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, Jiangsu, China)Abstract: Chemical modification and protein structure calculation methods were used to investigate the relationship between the chemical modification of amino-acid residues and their structure informations in protein. Choose thermo-stable xylanase from Thermotoga maritima as research object and 1VBR from PDB as template, computing the structural characteristics of 1VBR such as accessibility, hydrogen bonding network, and salt bridges. Then compare these structural characteristics with experimental data of chemical modification to xylanase. Results show that two tryptophans,Trp802 and Trp602, which near the active site of xylanase are essential for enzyme activity, as they have higher accessibility; glutamates and aspartates have more hydrogen bonding network and salt bridges in the structure, so they are important to the thermal stability of xylanase. These results were helpful for farther study on the structural characteristics of protein which have relationship with their chemical modification, also provide references for protein reshaping based on protein structure.Keywords:thermo-stable xylanase; chemical modification; structural characteristics引言木聚糖酶(EC 3.2.1.8;1,4-b-D-endoxylanase)是木聚糖降解酶系中最关键的酶,在食品、饲料、纺织、造纸工业等方面都有重要的应用价值。

拟南芥论文:拟南芥细胞分裂素糖基转移酶O-糖基化修饰突变体过表达体基因表达模式亚细胞定位

拟南芥论文:拟南芥细胞分裂素糖基转移酶O-糖基化修饰突变体过表达体基因表达模式亚细胞定位

拟南芥论文:拟南芥细胞分裂素糖基转移酶 O-糖基化修饰突变体过表达体基因表达模式亚细胞定位【中文摘要】细胞分裂素是一类较活跃的植物激素,具有广泛的生物学活性,不仅在调节细胞增殖和分裂中起着至关紧要的作用,并且控制着植物生长发育的各个阶段,如延缓衰老,控制芽/根平衡,营养信号转导,农作物增产等。

细胞分裂素的糖基化是细胞分裂素的重要修饰方式,细胞分裂素的糖基化主要有O-糖基化和N-糖基化两种形式。

一般来说,细胞分裂素的N-糖基化使该激素永久失活,激素的活性无法逆转;而O-糖基化使激素暂时失活,在一定条件下可通过去糖基化而恢复细胞分裂素活性。

细胞分裂素的两种糖基化修饰对细胞分裂素在植物体内的动态平衡起着重要作用。

细胞分裂素的糖基转移酶是催化其发生糖基化反应的酶。

在以前的研究中,通过体外生化实验从拟南芥中已经鉴定细胞分裂素的2个N-糖基转移酶基因和3个O-糖基转移酶基因,但这些糖基转移酶在植物体内的作用和生理学意义仍不清楚。

本论文选取一个活性较强的O-糖基转移酶基因UGT85A1,以模式植物拟南芥和烟草为实验材料,分析了该基因的突变体和过表达体在植株形态、生理等方面的特征,同时利用GUS报告系统分析了UGT85A1基因表达的组织特异性、发育阶段特异性,利用GFP报告系统分析了糖基转移酶UGT85A1在细胞内的定位。

研究结果为进一步了解细胞分裂素O-糖基化修饰的生理学意义奠定了一定的基础。

本论文的主要研究结果有以下几个方面:1.鉴定了拟南芥突变体纯合体,并与野生型拟南芥进行比较。

正常生长条件下,拟南芥突变体与野生型无明显表型差异。

在添加外源细胞分裂素的培养基上,突变体在根长、侧根数目、叶绿素含量、细胞分裂素及糖苷含量等形态和生理指标上与野生型相比也未出现显著差异。

2.构建了植物过表达载体35Spro::UGT85A1,并通过农杆菌介导的基因转化方法在烟草和拟南芥中过表达,比较了过表达体与野生型植株的形态与生理学特征。

植物激素的概念高中生物

植物激素的概念高中生物

植物激素的概念植物激素是一类在植物体内合成,能够在极低浓度下调节植物生长发育和生理过程的有机化合物。

植物激素在植物的各个阶段,从种子萌发、芽分化、茎伸长、叶展开、开花结果、果实成熟,到衰老脱落,都发挥着重要的作用。

植物激素的种类、结构、合成、运输、信号转导和功能,是植物生理学和分子生物学的热点研究领域之一。

本文将从以下几个方面介绍植物激素的基本概念:植物激素的特性植物激素的分类植物激素的合成和运输植物激素的信号转导植物激素的主要功能植物激素的应用植物激素的特性与动物激素相比,植物激素具有以下几个特点:植物激素多为简单的小分子化合物,而动物激素多为多肽或蛋白质。

植物激素不由专门的腺体合成和分泌,而是由多种细胞或组织产生。

动物激素则由特定的内分泌腺制造并通过血液循环运输。

植物激素不受中枢神经系统的调控,而是根据内外环境变化自主调节。

动物激素则受到下丘脑和垂体等中枢神经系统的控制。

植物激素不通过循环系统运输,而是通过细胞间扩散、维管组织输送或气态挥发等方式移动。

动物激素则主要通过血液循环运输。

植物激素对目标细胞或组织的作用浓度非常低,一般为10^-6 ~ 10^-5 mol/L。

动物激素则需要较高的浓度才能发挥作用。

植物激素之间存在协同作用或拮抗作用,使得多种激素的相对比例能够调节细胞或组织的生理反应。

动物激素则通常有特定的受体和效应器。

植物激素的分类根据结构和功能的相似性,目前公认的主要有五类植物激素,分别是生长素、细胞分裂素、赤霉素、脱落酸和乙烯。

此外,还有一些其他类型的化合物,如油菜素内酯、茉莉酸、水杨酸、开花素等,也具有类似于植物激素的作用,但尚未被完全确认为真正意义上的植物激素。

下面简要介绍这五类主要的植物激素:生长素生长素(auxin)是最早被发现和研究最多的一类植物激素。

它主要参与细胞伸长、分裂和分化,调节茎、根、叶和花的形态建成,以及影响光向性、重力性、伤害性等生长运动。

生长素的主要代表物质是吲哚乙酸(indole-3-acetic acid, IAA),它是由色氨酸经过几步酶促反应合成的。

栽培部分专业术语

栽培部分专业术语

栽培部分专业词汇metabolism: 代谢1.macronutrient: 大量元素include: calcium (Ca),magnesium(Mg),potassium(K), sulphur(S),phosphorus(P)micronutrient: 微量元素include: copper(Cu), iron(Fe), manganese(Mn), zine(Zn)2.nutrient:nutrient deficiency 营养不足nutrient enrichment 营养物富集nutrient distribution 养分分配dry matter distribution 干物质分配4. concentration : content 含量protein concentrationnutrient concentration5. an experiment…..was performed (carried out) under field conditions6. spike: 穗spikelet: 小穗apical spikelet 顶小穗7. cultivar: variety, 品种genotype: 基因型8. hexaploid: 六倍体(本文指硬粒小麦与节节麦杂交而获得的)9. sowing date: sowing time: 播种期sowing rate: 播量sowing width: 播幅10. dynamic: 动态11. grain filling period/stage: 籽粒灌浆期Seedling stage 幼苗期wintering (winter-surviving) period/stage 越冬期re-growth stage 返青期jointing 拔节booting 孕穗heading 抽穗anthesis post-anthesis /pro-anthesisstage of full bloom 盛花期maturity (ripeness) 成熟stage of maturity 成熟期stage of ripeness 成熟阶段stage of milky ripeness 乳熟期stage of waxy ripeness 蜡熟期stage of complete (dead)ripeness 完熟期winter habit 冬性winter hardiness 抗寒性,耐寒性winter resistancewinter survival (植物)越冬性,越冬存活率12. rachis: 花序轴, 穗轴13. reduction: decrease, drop,decline下降Increase, enhance, improve,add14. malnutrition: 营养缺乏15. staple: 主要作物, 主要成分staple crop: 主要作物staple vegetables: 主要蔬菜, 大宗蔬菜staple food: 主要食物16. bioavailability: 生物利用率, 生物有效度17. calorie: 能量calorieintake18. biomass:生物量19. dilution: 稀释20. distal: 远端的,末稍的proximal: 近端的21. impact(on): 影响influence (on)affect(on)effect (on)22. dwarf: 矮秆semidwarf 半矮秆23. isogenic: 同基因的isogenic line: 同(等)基因品系24. floret: 小花25. association: 关系be associated with26. release: 释放, 发布27. linear relationship between..and …线性相关be closely relatedwit h………与…密切相关28. partition: subdivide,distribute29. T. aestivum: 普通小麦T. durum: 硬粒小麦,杜伦小麦T. tauschii: 节节麦30. factorial combination: 因子结合的(复因子)31. phenology: 物侯学32. split-plot design: 裂区设计main plot: 主区subplot: 副区33. replication: 重复34. powdery mildew: 白粉病35. aphid: 蚜虫36. main-shoot spike: 主茎穗37. tag: 挂牌label38. analyses of variance: 方差分析39. fertile spikelet: 可孕小穗abortive spikelet 败孕小穗40. interaction: 互作41. symmetrical: balanced, even,uniform 均匀的42. magnitude: 大小,数量43. kinetics: 动力学44. deposition: 沉积45. unload: 卸载46. crop cycle: growing period作物生长期47. criteria: 判断标准48. vertical, horizontal49. rachilla: 小穗轴, 小花轴50. two-rowed barley: 二棱大麦51. high yielding wheatcultivars: 高产小麦品种52. phloem: 韧皮部53. xylem: 木质部54. implication: 暗示55. grain set: 结实状况, fruit1set 座果56. inherent: 内在的, 固有的57. Consequence: consequence is the result of something you do.For example: Everything good and bad has consequence.58. positive, negative 正/负Positive /negative association (correlation) between … and ………be positively/negatively correlated with…..Influence of Genotype, Environment, and Nitrogen Management on Spring Wheat Quality基因型,环境及氮素管理对春小麦品质的影响Ⅰ. Words, Phrases and Their Expressions1. influence (on): 影响affect(on):impact(on):effect (n.)2. genotype: 基因型,品种cultivar: 品种variety: 品种3. nitrogen: 氮nitrogen application: 氮肥施用nitrogen fertilizer: 氮素肥料nitrogen status: 氮素状况nitrogen excess: 氮(素)过量nitrogen deficiency: 缺氮,氮缺乏4. quality: 品质,quality traits/characteristics 品质性状Include: grain/flour protein concentrationgluten strength: 面筋强度flour ash: 面粉灰份test weight: 容重hardness: 硬度loaf volume: 面包体积noodle color: 面条颜色water absorption: 吸水率viscosity: 粘度peakviscosity, final viscosity,breakdown, setbackstarchamyloseamylopectin5. spring wheat, winter wheat:春小麦.冬小麦hard (spring) wheat: :硬粒小麦soft (spring) wheat: 软小麦6. end-use: include bread,Chinese bread, pan, cake,noodle, et al7. gluten: 面筋gluten strength: 面筋强度strong-gluten wheat cultivars:强筋小麦品种moderate gluten wheatcultivars: 中筋小麦品种weak-gluten wheat cultivars:弱筋小麦品种8. semiarid: 半(干)旱的arid region /area: area withless rainfall expectationarid farming: 旱作farmed without any irrigationarid land: 旱地9. diversification: with differentkinds of10. starch granule: 淀粉粒11. deployment: spread out12. pigment: pigmentation 着色13. manipulate: 管理manage, handle, operatesuperior noodle traits14. be negatively/positivelycorrelated/associated withbe negatively/positivelyassociated withbe related to15. be attributed to:16. assess: evaluate17. null: 无效的, 等于零的18. allele 等位基因19. locus: 地点, 所在地20. amylase: 直链淀粉21. split-plotdesign/arrangement: 裂区设计main-plotsubplotrandomizedcomplete-block design 完全随机区组设计22. analysis of variance: 方差分析correlation analysis: 相关分析independent variable: 独立变量(自变量)dependent variable:依变量regression analysis:回归分析linear correlationcoefficient:线性相关系数linear regressioncoefficient :线性回归系数statistical analysis:统计分析test of significance:显著性检验mill optimal: 最佳的23. row spacing: 行距between-row spacingseeding rate: 种植密度24. subsample:25. determine: measure,calculate26. near-infrared analyzer: 近红外分析仪27. calibrate: 校准28. combustion: burning29. protocol: method,agreement 草约,调查书30. mixograph: [miksou] 面粉调混性自动记录仪31. texture profile:结构特征noodle texture characteristics :2such as springiness(弹性), cohesiveness(粘结性), adhesiveness(粘附性), hardness(硬度), and chewiness(咀嚼性)32. suspension: 悬浮33. gelatinzation: 凝胶34. rain-fed: moisture limited, no irrigated,35. be pronounced: be significant1. row spacingdistance between rows 行距, 垄宽seed spacing: average distance between rows within a row 株距2. seeding rate 种植密度seed rate 播种率seed sowing 播种seed spacing 株距3. kernel 籽粒part of seed, inner part of a nut of fruit-stonegrain spike4. tillering tiller 分蘖,新芽tillering ability 分蘖力tillering node 分蘖节tillering stage 分蘖期文中: to stimulate fall and spring tillering5. additional index words:key words6. yield components产量构成因素, include grain number per spike, spike number and 1000-grain wt7. plant densityplanting density 种植密度seeding density8. interplant v. 实行套种,在…间套种interplanting n. 间作9. review1)consider or examineagain, go over again inthe mind2)inspect formally3)write an account of …for …为…写评论10. rectangularity矩形,长方形11. uniform 均匀的12. planting pattern 种植方式planting area 种植面积planting bed 种植床/带planting depth 播种深度planting in narrow andwide rows alternately 宽窄行种植planting scheme 种植计划planting season 种植期planting system 种植制度13. root zone root region根区,根系分布区root extension 根系伸展root hair 根毛root absorption 根系吸收root crop 块根作物root system 根系root tip 根尖root-top ratio 根冠比primary root 初生根secondary root 次生根14. overlappartly cover by extendingbeyond one edge15. morphologicalmorphologyphysiology/physiological16. mutual shared,exchanged eaually17. upright-leaf 上举叶upright-leaved 叶片上举的18. lax-leaf 披垂叶19. plasticity 可塑性, 适应性20. erraticuncertain in movement,irrigular21. aggregation 集合体,聚合22. multi-culm 多秆uniculm 空心秆23. check 对照check cultivar checkplantcheck plot checksamplecheck experiment24. mask25. silt 淤泥,淤沙silty adj.26. sod 草地27. mesic28. disc,disk29. preceding oat 前茬30. drill n. 播种机v. 条播31. top-dress 表施32. factorial 因子的,阶乘的333. randomized complete-block design完全随机区组设计34. advanced breeding line35 versuserect versus spreading habit 36. thresh 打麦beat the grain out of wheat37. trim38. seedling/plant establishment39. pool …into the error40. cloddy41. multi-floret42. at the 0.05 probability: 0.05的水平上43. tiller survival44. optimum45. be detrimentalto46. progeny1. heat stress 热胁迫,高温胁迫high-temperature stressheat shock2. maize 玉米corn3. endosperm 胚乳embryo 胚, 子房4. be detrimental to/for 对…有害,不利于…5. dry matter accumulation 干物质积累6. cell division 细胞分裂disruption of cell division 破坏细胞分裂cell wall 细胞壁, cell nucleus 细胞核cell membrane 细胞膜cell multiplication 细胞增殖7. metabolism 代谢sugar metabolism 糖代谢8. starch biosynthesis 淀粉生物合成9. mechanism 机制10. alter 改变11. maize ear 玉米12.pollination 受精,受粉5 d after pollination 受粉(精) 5天之后13. solubility 溶液, 溶解性14. zein 玉米醇溶蛋白,玉米蛋白Glutelin 谷蛋白Albumin清蛋白Globulin球蛋白Prolamin醇溶蛋白15. methionine 蛋氨酸,甲硫氨酸16. degradation 降解synthesis 合成17. fluctuation 波动18. lag phase 滞留期,停滞期lag phase of growth 延迟生长期19. cytokinin 玉米素,细胞分裂素20. ADPG glucosepyrophosphorylaseADPG 葡萄糖焦磷酸化酶21. soluble starch synthase可溶性淀粉合成酶22. at later developmental stage发育后期at early developmental stage发育早期23 enzyme 酶24. be susceptible to 易受影响的,易得病的be susceptible to damage 易受伤害She is susceptible to cold.她易感冒.He is susceptible tosuggestions. 他没有主见be sensitive to 25.cereal 谷类include wheat, maize, rice,barley et al.26. desiccation 干燥27. category 种类, 类别28. molecular 分子molecular weight 分子量kDa 千道尔顿(Dalton)29. amino acid 氨基酸30. extract 提取31. aleurone layer 糊粉层32. scutellum 盾片,角质鳞片33. incorporation 结合Materials and methods34. silt loam soil 淤积肥土35. inbred 近交(自交)系hybrid 杂交种36. amenable 顺从的,服从的,可接受的, 可处理的,可解决的37. in vitro culture/ in vitro:体外的,人工的study)in vivo:体内的, 自然的38. regime 体制temperature regime 温度模式irrigation regimes 灌溉模式/制度39. photoperiod 光周期40. ear shoot 41. silkemergence 吐丝期42. self-pollination 自交sib-pollination 近亲杂交43. three- to four-leaf stage 3到4叶期44. pericarp 果皮45. pedicel花梗, 茎46. pulverize 研磨成粉47.meal 粗粉48. defatted 脱脂的49 acetone 丙酮ethanol 乙醇50. solvent 溶剂51. microcentrifuge 微量(型)离心机4centrifugation 离心过滤52. buffer 缓冲液53. radiolabeled 放射标记的,用…示踪的radioactivity 放射强度/活性54. equilibration 平衡55. analogous 类似的, 相似的, 可比拟的56. growth chamber-grown 生长箱(室)种植的57. maternal 似母亲的,母亲的58. fraction 片段,小部分59. protein composition 蛋白质组分60. encode 编码encoded by one or severalgenes 由一个或多个基因所编码61. assay 化验62.vitro assay63. radioactivity 放射能/活性64. phenotype 显型65.ovary 子房66. cavity 腔,穴67.transcript 转录68. localization 定位69. proteinase 蛋白酶proteinase inhibitor 蛋白酶抑制剂70. proteolytic 蛋白质水解的, 解蛋白71. messager RNAs 信息RNA72. cysteine 半胱氨酸73. predispose 预先安排,使倾向于74. concomitant 伴随的75. exacerbate 恶化,增剧5。

脑源性神经营养因子诱发癫痫机制的研究进展

脑源性神经营养因子诱发癫痫机制的研究进展

脑源性神经营养因子诱发癫痫机制的研究进展肖秋杰1综述,黄灵2审校1.右江民族医学院,广西百色533000;2.右江民族医学院附属医院神经内科,广西百色533000【摘要】癫痫是常见的神经系统疾病之一,目前关于其发病机制尚未完全明确。

近年来,大量的研究表明脑源性神经营养因子(BDNF)在癫痫的发生和发展过程中发挥了重要作用。

BDNF 通过激活酪氨酸蛋白激酶B (TrkB)及p75神经营养因子受体(p75NTR)从而促进神经元细胞死亡、改变神经元兴奋性/抑制性平衡(E/I balance)、调节MicroRNA 的表达、诱导海马体内苔藓纤维的异常发芽和突触重构等来进一步诱导癫痫发生。

本文通过综述有关对癫痫动物模型及癫痫患者的研究文献,从而揭示BDNF 参与介导癫痫的可能机制,为癫痫治疗新靶点提供参考依据。

【关键词】脑源性神经营养因子;癫痫;机制;研究进展【中图分类号】R742.1【文献标识码】A【文章编号】1003—6350(2023)03—0435—05Research progress on the mechanism of epilepsy induced by brain-derived neurotrophic factor.XIAO Qiu-jie 1,HUANG Ling 2.1.Youjiang Medical University for Nationalities,Baise 533000,Guangxi,CHINA;2.Department of Neurology,Affiliated Hospital of Youjiang Medical University for Nationalities,Baise 533000,Guangxi,CHINA【Abstract 】Epilepsy is one of the common neurological diseases.At present,its pathogenesis is not completely clear.Recent studies have shown that brain-derived neurotrophic factor (BDNF)plays an important role in the occur-rence and development of epilepsy.BDNF can further induce epilepsy by promoting neuronal cell death [activating tyro-sine protein kinase B (TrkB)and P75neurotrophic factor receptor (p75NTR)],changing neuronal excitability/inhibitory balance (E/I balance),regulating the expression of microRNA,inducing abnormal sprouting of mossy fibers in hippo-campus and synaptic remodeling.By summarizing the research literature on animal models of epilepsy and patients with epilepsy,this paper reveals the possible mechanism of BDNF in mediating epilepsy and provides a reference basis for new targets for epilepsy treatment.【Key words 】Brain-derived neurotrophic factor;Epilepsy;Machinism;Research progress ·综述·doi:10.3969/j.issn.1003-6350.2023.03.033基金项目:广西高校中青年教师基础能力提升项目(编号:2018KY0439)。

拟南芥侧根——精选推荐

拟南芥侧根——精选推荐

拟南芥侧根的形成和生长受细胞分裂素代谢和信号基因的调控摘要植物根系吸收水分和养分和植物在土壤中的锚定是十分重要的。

横向根(LRs) 在根系统中相当重要。

他们胚胎后期的形成是受激素和环境因素的调控。

拟南芥中细胞分裂素在不同层面上通过干扰细胞分裂和模式形成来影响侧根的形成和生长。

这包括抑制中柱鞘细胞第一分裂和抑制幼小侧根的分支。

突变体分析揭示了细胞分裂素的合成基因IPT3和IPT5和所有的三个细胞分裂素受体基因(AHK3 AHK2,,CRE1 / AHK4)在侧根萌生中是多余的(无用的)。

AHK3 AHK2的突变增加了侧根形成中对生长素的敏感性,证实了生长素、细胞分裂素在侧根形成中的功能相关性。

相反,细胞分裂素受体突变体在侧根生长中对其他激素的应答类似于野生型,它是符合独立应答通路的。

一个显著的例外就是ahk2 ahk3突变体在侧根伸长中对油菜素内酯很敏感,表明细胞分裂素和油菜素内酯的拮抗作用。

调控侧根形成中多级丰余的细胞分裂素系统反映出它在调控环境因素中的作用。

介绍双子叶开花植物的根系统包括主根和侧根(LRs)。

侧根在根系统发展中起到相当大的作用,在锚定植物和摄取微量和大量元素过程中的作用更加大。

与起源于胚胎的主根不同,侧根的形成贯穿于植物的一生。

他们是由毗邻木质部顶端的中柱鞘细胞形成,称为拟南芥中柱鞘细胞。

这些细胞经历了一个清晰的过程,导向细胞分裂和长大形成一个侧根原基。

LRPs通过细胞分裂和生长,然后通过细胞扩张在老根上显现出来。

一旦出现, 侧根原基就会经历了一个激活过程形成一个功能完整的侧根分生组织来指导侧根的生长。

侧根的生长由植物激素和环境信号同时调控。

大量研究表明,生长素在侧根生长中起着主要的作用。

生长素调节侧根生长的几个阶段,最初是使中柱鞘细胞快速分裂建立起庞大的数量,然后使侧根生成。

据报道,为适应侧根的萌发于侧根原基的生长,在最大值处建立了生长素梯度。

在侧根的萌发中,分生细胞中生长素的积累激活了生长素受体SOLITARY ROOT (SLR)/ INDOLE-3-ACETIC ACID (IAA)14, AUXIN RESPONSE FACTOR (ARF)7–ARF19, and BODENLOS/IAA12–MONOPTEROS/ARF5,开始细胞分裂,引发器官形成。

生长素和细胞分裂素调控马铃薯离体块茎发育蛋白质组研究

生长素和细胞分裂素调控马铃薯离体块茎发育蛋白质组研究

生长素和细胞分裂素调控马铃薯离体块茎发育蛋白质组研究生长素和细胞分裂素调控马铃薯离体块茎发育蛋白质组研究摘要:马铃薯(Solanum tuberosum)是一种重要的食用作物,其中块茎是主要的经济部位。

生长素和细胞分裂素是两种重要的植物激素,它们在植物生长和发育过程中发挥关键作用。

为了研究生长素和细胞分裂素对马铃薯离体块茎发育的调控机制,本研究利用蛋白质组学方法对不同处理下的马铃薯离体块茎进行了蛋白质组分析。

在实验设计中,我们分别以生长素和细胞分裂素单独处理离体块茎,以及将两者结合起来处理。

通过2D蛋白质电泳和质谱分析,我们成功鉴定出了不同处理组的蛋白质差异表达。

研究结果显示,生长素处理组相比对照组有大量的蛋白质差异表达。

其中,一些与植物生长和块茎发育相关的蛋白质表达显著增加,如类黄酮合酶(flavonoid synthase)和BRI1(Brassinosteroid Insensitive 1)。

另外,生长素还能够调控一些与碳代谢、光合作用和光合产物运输等相关的蛋白质表达。

这表明生长素在马铃薯块茎发育中发挥了积极的调控作用。

细胞分裂素处理组中,大量的细胞分裂素合成酶(cytokinin synthase)和细胞分裂素受体(cytokinin receptor)的表达被上调。

同时还有一些具有抗氧化功能的蛋白质表达显著提高,如响应吲哚乙酸(IAA)信号的蛋白质和响应过氧化氢信号的蛋白质。

这些结果表明细胞分裂素在调控马铃薯离体块茎发育过程中具有重要的作用。

当生长素和细胞分裂素被联合处理时,我们发现一些蛋白质表达显著改变。

其中,大量与细胞分裂、细胞壁合成和膜转运相关的蛋白质表达显著增加。

这些结果表明生长素和细胞分裂素之间可能存在协同作用,共同调控马铃薯块茎的发育。

综上所述,生长素和细胞分裂素通过不同的信号传导途径参与了马铃薯离体块茎的发育调控。

生长素通过调控植物生长和发育相关基因的表达,促进块茎的膨大生长。

2022北京高三一模生物汇编:基因突变及其他变异

2022北京高三一模生物汇编:基因突变及其他变异

2022北京高三一模生物汇编基因突变及其他变异一、单选题1.(2022·北京延庆·一模)家族性高胆固醇血症是一种单基因遗传病(由A、a控制),该病在人群中的发病率没有明显的性别差异。

如图为某家族部分系谱图,其中已故男女的基因型及表现型无法获知,Ⅱ6不携带该病的致病基因。

下列分析错误..的是()A.该病属于常染色体上的显性遗传病B.Ⅱ5个体的基因型为AA或AaC.Ⅲ8和Ⅲ9再生的孩子一定患病D.Ⅱ4和Ⅲ10个体一定为杂合子2.(2022·北京延庆·一模)皱粒豌豆形成的分子机理如下图所示,相关分析正确的是()A.皱粒豌豆的形成是因为DNA中插入了一段外来DNA序列引发了染色体变异B.r基因转录的mRNA可能提前出现终止密码子,形成无活性的SBEI蛋白C.RR的植株与rr的植株杂交,F1表现为圆粒是由于r基因无法表达D.该图可以说明基因通过控制蛋白质的结构直接控制生物的性状3.(2022·北京延庆·一模)将相关内容依次填入下图各框中,其中包含关系错误..的选项是()A.A B.B C.C D.D4.(2022·北京海淀·一模)栽培品种香蕉染色体组成为AAA(字母代表染色体组),易患黄叶病。

野生蕉染色体组成为BB,含有纯合的抗黄叶病基因。

经过杂交、筛选,获得染色体组成为AAB的抗黄叶病香蕉新品种。

下列有关叙述,不正确...的是()A.栽培品种高度不育B.新品种含有三个染色体组C.新品种细胞中无同源染色体D.栽培品种减数分裂时联会紊乱5.(2022·北京丰台·一模)人类Y染色体末端的SRY基因能激活睾酮合成相关基因的表达睾酮在5α-还原酶的作用下转化为二氢睾酮,促使未分化的性腺发育成睾丸。

下列叙述不正确的是()A.SRY基因所在染色体片段缺失,后代可能出现XY的女性B.SRY基因所在染色体片段移接,后代可能出现XX的男性C.5α-还原酶基因缺陷的XY个体,雄性生殖器官发育不良D.XYY男性染色体异常是母亲减数分裂产生异常卵细胞所致6.(2022·北京丰台·一模)研究发现肿瘤细胞中谷氨酰胺合成酶(GS)高表达,GS通过推动有丝分裂中期到后期的转化促进细胞增殖。

【课外阅读】历届诺贝尔医学及生理学奖

【课外阅读】历届诺贝尔医学及生理学奖

历届诺贝尔医学及生理学奖1901 贝林格和欧利命:制成白喉抗毒素1905年现代微生物学的鼻祖Robert(Heinrich Hermann)Koch1915维尔斯太特:发明了植物染料1924荷兰病理学空爱因托芬:发现心电特性1929英国生物学家&霍普金斯荷兰科学家艾克曼:发现维生素1932英国病理学家艾德里安&谢林顿:发现神经细胞的功能1939 多马克:发现磺胺1945英国细菌学家弗莱明&牛津大学的弗洛雷&钱恩:青霉素的发现1949葡萄牙医学家莫尼斯:开创精神外科学1955瑞典生物化学家泰奥雷尔:发现机体在有氧条件下利用营养素以产生机体可利用能量的方式1962美国生物学家沃森&克里克:揭示了DNA双螺旋结构1976美国病毒学家Daniel Carleton Gajdusek:证实了Kuru系由slow virus infection致病1977美国医学物理学家耶洛&生理学家吉耶曼&内分泌学家沙利:发展放射性免疫检验术1982约翰·费:研究抗炎药物1985麦克·布朗&约瑟夫·哥斯丁:研究胆固醇代谢1991德国生理学家Erwin Neher&Bert Sakmann:发明了「单离子通道记录法」1992艾德蒙费雪&柯瑞伯:研究肝醣代谢1993Philip Sharp(美国麻省理工学院)&Richard Roberts(美国冷泉港实验室):发现分裂基因1995Edward Lewis&Christiane Nusslein-Volhard&Eric Wieschaus:揭开了胚胎如何由一个细胞发育成完美的特化器官1996杜赫提&瑞士的辛克纳吉:研究组织相容抗原1997美国加州大学史坦利·布鲁希纳:研究疯牛症病毒1998美国药理学家罗伯·佛契哥特&费瑞·慕拉德&路伊格纳洛:发现氧化氮在人体循环系统中扮演传递讯号的角色1955瑞典生物化学家泰奥雷尔:发现机体在有氧条件下利用营养素以产生机体可利用能量的方式瑞典生物化学家泰奥雷尔(H.Theorell)通过对酶的研究,发现机体在有氧条件下利用营养素以产生机体可利用能量的方式,并因此而获1955年诺贝尔生理学或医学奖。

小鼠中的基因修饰_2007年度诺贝尔生理或医学奖介绍

小鼠中的基因修饰_2007年度诺贝尔生理或医学奖介绍
Evans 用 Stevens 提供的 129sv 品系小鼠的肿 瘤细胞建立了一个细胞系,在体外培养的条件下对 这些细胞进行了鉴定[8,9]。用射线照射成纤维细胞, 可以形成滋养层,供胚性癌细胞生长。去掉滋养层 细胞后,继续培养这些细胞,它们就会发生分化。 分化的过程起始于原内胚层,然后形成团块的胚状 体。这些细胞在生长过程中一旦接触到固体的表 面,就开始分化,形成各种类型的细胞,如皮肤、 神经、心肌等。这显示了胚胎干细胞与小鼠胚胎的 内细胞团的分化方式是一样的[8,9]。Evans 从中看到 了胚胎干细胞用于研究的潜质:不仅可用于细胞体 外培养,还可以进一步用于产生嵌合体小鼠。为了 实 现 这 个 设 想 , 他 开 始 与 牛 津 大 学 Richard Gardner 进行合作。Richard Gardner 曾做过实验, 将小鼠胚胎干细胞注射到囊胚中,再将整个囊胚移 植到代孕母鼠的体内,这样产生的后代是嵌合体, 它们体内几乎所有的组织中都有来自于人工注射的 胚胎干细胞的成分[10]。与此同时,其他好几个实验 室也得到了类似的结果[11,12]。然而,由此产生的嵌 合体小鼠体内往往会长出多种肿瘤,并且因为染色 体核型异常而不能产生同样的后代。
图 1 2007 年度诺贝尔生理或医学奖获得者
1 他们的发明
Martin Evans 成功鉴定并从早期胚胎中分离出 了胚胎干细胞,这是成体中所有器官细胞的来源。 他首先建立了胚胎干细胞系,并对其进行了基因操 作,之后再将这些细胞注入另一只代孕母鼠中,以 期产生携带有改造过的基因的后代。Mario Capec- chi 和 Oliver Smithies 则是分别独立地发现了利用 两段 DNA 片段的同源重组来对哺乳动物基因组进 行改造,并产生基因敲除小鼠的方法。这种小鼠现

10 第十二章 CTK1

10 第十二章 CTK1
H
玉米素(Z )
异戊烯基腺嘌呤( i P )
细胞分裂素氧化酶 NH 2 N N H N N OHC H C CH 3 CH 3
细胞分裂素-7葡糖苷转移酶
CH 2 OH CH 3
细 丙 胞分 氨 裂 酸 素 转 移 酶
H OH HO HO H
H O H OH N N H N H HN N [7G]Z CH 2 H C
OH CH 3 N N HO O H H OH H H H N HN N CH 2
H C
CH 3 CH 3
双氢玉米素核苷(D H Z R )
玉米素核苷(Z R )
异戊烯基腺嘌呤核苷( i P A )
H2 C HN N N H N H OH HO HO H H C HN N N H N HN N N CH 3 H2N CH C O N N N CH 2 N CH 2
伤流液从茎部切口处流出
大量水分 无机盐 有机物 植物激素
伤 流 液
细胞分裂素的代谢 CTK与糖、氨基酸等结合转化 为结合态形式。
细胞分裂素氧化酶,氧化降解, 控制CTK水平。
细胞分裂素的代谢
细胞分裂素结合物的合成和水解、以及细 胞分裂素的降解 游离CTK配基可以转化为相应的核苷和葡糖苷。 除了与糖结合外,CTK还可以与氨基酸结合
CH 2 OH CH 3 N N H N H C HN CH 2 N
CH 2 OH CH 3 HN N N H N N CH 2
H C
CH 3 CH 3
双氢玉米素(D H Z )
H O H OH CH 2 CH 3 [OG]Z H C CH 2 O
-O裂素 酶 分 移 细胞 苷转 糖 葡 苷酶 葡糖
第四节

磷酸化蛋白质及多肽相关研究的技术进展

磷酸化蛋白质及多肽相关研究的技术进展

磷酸化蛋白质及多肽相关研究的技术进展
邓新宇;姜颖;贺福初
【期刊名称】《遗传》
【年(卷),期】2007(29)10
【摘要】磷酸化修饰是一种重要的蛋白质化学修饰,对蛋白质功能的完成或改变起到重要作用.该领域的研究存在很多技术难点,对该领域研究形成了挑战.近年来相关技术有了很多突破,磷酸化研究也取得了很多新的成就.文章将从磷酸化蛋白的检出、磷酸化蛋白质和肽段的富集、生物质谱技术的改进以及磷酸化蛋白和多肽的定量与比较几个方面介绍该研究领域的技术进展.
【总页数】4页(P1163-1166)
【作者】邓新宇;姜颖;贺福初
【作者单位】蛋白质组学国家重点实验室,北京蛋白质组研究中心,北京放射医学研
究所,北京,102206;中国协和医科大学基础医学研究所遗传系,北京,100730;蛋白质
组学国家重点实验室,北京蛋白质组研究中心,北京放射医学研究所,北京,102206;蛋白质组学国家重点实验室,北京蛋白质组研究中心,北京放射医学研究所,北
京,102206
【正文语种】中文
【中图分类】Q5
【相关文献】
1.磷酸化蛋白质的检测技术进展 [J], 张丽君;刘银坤;朱运松
2.多肽、蛋白质药物的载体相关研究 [J], 张纲;谭颖徽
3.磷酸化蛋白质组学研究技术进展 [J], 李丽梅;王文礼
4.寄生虫蛋白质磷酸化修饰及磷酸化蛋白质组学研究进展 [J], 赵彬;洪炀;唐亚兰;陆珂;曹晓丹;韩倩;吕超;王涛;傅志强;林矫矫
5.磷酸化多肽的富集原理及相关富集方法的研究进展 [J], 罗垠健;张启伟;肖琛;郑琦
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Journal of Experimental Botany,Vol.62,No.3,pp.921–937,2011 doi:10.1093/jxb/erq322Advance Access publication25October,2010This paper is available online free of all access charges(see /open_access.html for further details)RESEARCH PAPEREarly cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profilingMartin Cˇerny´1,Filip Dycˇka2,Janette Boba´l’ova´2and Brˇetislav Brzobohaty´1,*1Laboratory of Plant Molecular Biology,Mendel University in Brno,Zemeˇdeˇlska´1,CZ-61300Brno and Institute of Biophysics AS CR, v.v.i.,Kra´lovopolska´135,CZ-61265Brno,Czech Republic2Institute of Analytical Chemistry AS CR,v.v.i.,Veverˇı´97,CZ-60200Brno,Czech Republic*To whom correspondence should be addressed.E-mail:brzoboha@ibp.czReceived12June2010;Revised24August2010;Accepted21September2010AbstractCytokinins are plant hormones involved in regulation of diverse developmental and physiological processes in plants whose molecular mechanisms of action are being intensely researched.However,most rapid responses to cytokinin signals at the proteomic and phosphoproteomic levels are unknown.Early cytokinin responses were investigated through proteome-wide expression profiling based on image and mass spectrometric analysis of two-dimensionally separated proteins and phosphoproteins.The effects of15min treatments of7-day-old Arabidopsis thaliana seedlings with four main cytokinins representing hydroxyisopentenyl,isopentenyl,aromatic,and urea-derived type cytokinins were compared to help elucidate their common and specific function(s)in regulating plant development. In proteome and phosphoproteome maps,significant differences were reproducibly observed for53and31protein spots,respectively.In these spots,96proteins were identified by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry(MALDI-TOF/TOF MS),providing a snapshot of early links in cytokinin-regulated signalling circuits and cellular processes,including light signalling and photosynthesis,nitrogen metabolism,the CLAVATA pathway,and protein and gene expression regulation,in accordance with previously described cytokinin functions.Furthermore,they indicate novel links between temperature and cytokinin signalling, and an involvement of calcium ions in cytokinin signalling.Most of the differentially regulated proteins and phosphoproteins are located in chloroplasts,suggesting an as yet uncharacterized direct signalling chain responsible for cytokinin action in chloroplasts.Finally,first insights into the degree of specificity of cytokinin receptors on phosphoproteomic effects were obtained from analyses of cytokinin action in a set of cytokinin receptor double mutants.Key words:Arabidopsis thaliana,cytokinin,phosphoproteome,proteome.IntroductionCytokinins werefirst identified by their ability to promote division in cultured plant cells(Miller et al.,1955).They have since been shown to play roles in diverse aspects of plant growth and development including cell division,shoot initiation,apical meristem function,and vascular formation (Mok and Mok,2001).Naturally occurring cytokinins are adenine derivatives substituted at the N6position with an isoprenoid or aromatic side chain.Isoprenoid cytokinins are the most abundant cytokinins,while aromatic cytokinins,including N6-benzyladenine(BA),are minor components of the cytokinin pool(Strnad,1997).Isoprenoid cytokinins are either of the isopentenyl(iP)type,with an isopentenyl N6 side chain,or of the zeatin(Z)type,with a hydroxylated isopentenyl N6side chain in either trans(t-Z)or cis(c-Z) configuration.Reduction of the double bond in the sideª2010The Author(s).This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(/licenses/by-nc/2.5),which permits unrestricted non-commercial use,distribution,and reproduction in any medium,provided the original work is properly cited. by guest on May 26, 2015 / Downloaded fromchain results in dihydrozeatin (DZ)(Brzobohaty´et al.,1994;Mok and Mok,2001).In addition,structurally unrelated (synthetic)phenylurea-type cytokinins,for exam-ple thidiazuron (TDZ),show high activity in most cytokinin bioassays (Mok and Mok,2001).The diversity of compounds exerting cytokinin activity might underlie the molecular fine tuning of their numerous functions.Indeed,differences in biological activities of specific cytokinins have long been recognized,for instance in growth and morphogenic responses (e.g.Mok et al.,1978;Sujatha and Reddy,1998;Lexa et al.,2003),but molecular mechanisms underlying between-cytokinin differences in activity are just emerging.Between-cytokinin differences in activity can be at least partially explained by differences in the receptors that perceive them and trigger biological responses.Cytokinin perception and signalling apparently evolved from bacterial two-component phosphorelays (Ferreira and Kieber,2005).Binding of cytokinins to the Arabidopsis sensor hybrid histidine kinases AHK2,AHK3,and AHK4/CRE1/WOL1initiates a phosphorelay in which Arabidopsis histidine-containing phosphotransfer proteins (AHPs)are phosphor-ylated then translocated into the nucleus,where they transfer the phosphate to Arabidopsis type-B response regulators (ARRs)(Kakimoto,2003;Rashotte et al.,2003;Kiba et al.,2005;Choi and Hwang,2007).The latter play roles in mediating transcriptional responses to cytokinin,including rapid induction of another class of response regulators,type-A ARRs (Rashotte et al.,2003),which act as negative regulators of the primary signal transduction pathway (Argueso et al.,2009).The first evidence for differential ligand specificity of cytokinin receptors has been obtained from their characterization in bacterial expressionsystems (Spı´chal et al.,2004;Yonekura-Sakakibara et al.,2004;Romanov et al.,2006).Global genome expression profiling of cytokinin action in Arabidopsis has yielded a genome-wide view of changes in abundance of cytokinin-responsive transcripts that might be relevant for the many biological processes governed by cytokinins (Hoth et al.,2003;Rashotte et al.,2003;Brenner et al.,2005).However,since changes in transcript abun-dance are not necessarily linearly related to changes in levels and/or activities of corresponding proteins,proteome pro-filing can provide valuable complementary information regarding molecular mechanisms linking cytokinin signals and their diverse effects in plants.In addition to protein abundance,post-translational modifications (PTMs)of proteins are crucial determinants of protein activity and subcellular location.Phosphorylation is a key PTM;at least 5%of the Arabidopsis thaliana genome is involved in regulating protein phosphorylation (Laugesen et al.,2004),indicating that nearly all aspects of cell function may involve reversible phosphorylation.A set of proteins involved in cytokinin-induced photo-morphogenesis has been identified by proteomic analysis(Lochmanova´et al.,2008).In addition,rapid alterations of the phosphoproteome following cytokinin treatment have been examined in the moss Physcomitrella patens(Heintz et al.,2006),although comprehensive interpretation of the data was hindered by gaps in knowledge of its genome sequence.Nevertheless,our understanding of early cytokinin-responsive proteins and protein PTMs is still rudimentary.Hence,further analysis of proteome and phosphoproteome alterations caused by cytokinins before proteins encoded by the immediate cytokinin response genes (Brenner et al.,2006)accumulate significantly is needed to elucidate aspects of cytokinin signalling and action net-works that cannot be deduced solely from transcriptome profiling.Therefore,proteomic analysis was applied to identify early cytokinin response proteins and phos-phoproteins in Arabidopsis seedlings treated with four main cytokinins—t -zeatin (t -Z),isopentenyladenine (i-P),6-benzylaminopurine (BA),and thidiazuron (TDZ).Detection of proteins involved in processes known to be regulated by cytokinins validated the experimental approach,and un-expected cytokinin targets were identified.Contributions of specific cytokinin receptors to the phosphoproteome alter-ations were assessed by examining effects of the cytokinins in ahk2ahk3,ahk2cre1,and ahk3cre1mutants.Materials and methodsPlant material,growth conditions,and cytokinin treatmentSeeds of A.thaliana ecotype Columbia (Col-0),and ahk2ahk3,ahk2cre1,and ahk3cre1double mutants (provided by Professor Thomas Schmu ¨lling,Free University of Berlin)were surface-sterilized and sown on Uhelon 120T (Silk &Progress,Czech Republic)mesh placed on 1%(w/v)agar containing Murashige and Skoog (MS)medium (pH 5.7)supplemented with 5310À4%(v/v)dimethylsulphoxide (DMSO),stratified at 4°C for 3d,and cultivated at 21°C/19°C day/night temperatures,with a 16h photoperiod (90l mol m À2s À1light intensity)for 7d.On the seventh day (after the first 2h of the day period),the Uhelon mesh with the seedlings was transferred onto liquid MS medium supplemented with (i)5310À4%(v/v)DMSO (mock buffer);(ii)5l M individual cytokinins (BA,TDZ,iP,and t -Z;Duchefa)in DMSO (final concentration,as for the mock);(iii)30l M D600and 60l M LaCl 3(Sigma);or (iv)30l M D600,60l M LaCl 3(Sigma),and 5l M t -Z,and incubated for 15min.The concentrations of the calcium signalling inhibitors (D600and LaCl 3)followed Saunders and Hepler (1983)who observed disruption of cytokinin-induced bud formation in the moss Funaria in response to them.Seedlings were rapidly harvested,dried,then frozen and ground in liquid nitrogen.Protein extractionTotal protein was extracted from frozen seedlings (250–300mg)by acetone/trichloroacetic acid (TCA)extraction (Damerval et al.,1986).Dried protein was solubilized for 2h at 30°C in SOL buffer:7M urea,2M thiourea,2%(w/v)CHAPS,90mM dithiothreitol (DTT).Insoluble matter was removed by centrifuga-tion (15000g for 10min)and the protein concentration was determined (Bradford,1976)(Sigma-Aldrich,/)after diluting 1l l of the total protein extract in 1ml of reaction mix to prevent the SOL buffer interfering with the Bradford assay.Solubilized protein was then diluted 1:1with rehydration solution [SOL supplemented with 1%(v/v)ampholytes pH 3–10,0.2%(w/v)bromophenol blue]and loaded onto IPG strips (Bio-Rad,/).For phosphoproteome analysis,an isolation procedure was established using a PhosphoProtein Purification Kit (Qiagen,922|Cˇerny ´et al. by guest on May 26, 2015/Downloaded from/).Briefly,350–400mg of seedlings ground in liquid nitrogen were extracted with4ml of lysis buffer supplemented with protease inhibitors and benzonase(Qiagen kit).Each sample was then diluted to25ml with lysis buffer, applied to an affinity column and processed according to the supplier’s manual(Qiagen).Protein concentration was determined by the Bradford assay.Desalted phosphoproteins in TRIS-HCl buffer(pH7.0)were diluted with rehydration solution:SOL(1:1) and loaded onto IPG strips.2D gel electrophoresisProteins were separated essentially as previously described (Lochmanova´et al.,2008).Briefly,portions containing500l g of protein or150l g of phosphoprotein were applied to18cm and 7cm IPG strips,respectively,with a linear pH gradient(4–7),the strips were rehydrated for16h at room temperature in buffer containing the extracts,then the proteins were isoelectrically focused at22°C in six steps in a PROTEAN IEF Cell unit(Bio-Rad):150V(30min),300V(60min),600V(60min),1500V (180min),3500V(300min),and10000V to80000Vh for long strips;150V(20min),300V(20min),600V(20min),1500V (20min),3000V(20min),and4000V up to12000Vh for short strips.The strips were then treated with buffers containing DTT and iodoacetamide(Sigma-Aldrich)to reduce and alkylate the proteins,which were then separated by11%polyacrylamide SDS–PAGE with the following settings:50V(120min)followed by100V(16h)for large gels(proteome analysis),and100V (10min)followed by150V(50min)for small gels(phosphopro-teome analysis),using a PROTEAN Plus Dodeca Cell,and a Mini-PROTEAN3Dodeca Cell(Bio-Rad),respectively. Protein staining and image analysisGels were stained with colloidal Bio-Safe Coomassie G-250(Bio-Rad)and scanned with a Bio-Rad GS-800Calibrated Densitome-ter(400dpi and700dpi for large and small gels,respectively). Acquired images were analysed using Decodon Delta2D software ().Three,six,three,and four biological replicates were used in the2-DE total proteome comparisons of the wild type,phosphoproteome comparisons of the wild type, phosphoproteome comparisons of the ahk double mutant,and phosphoproteome comparisons of wild-type samples in the pres-ence of calcium signalling inhibitors,respectively.Cytokinin responses of proteins corresponding to detected spots were deemed significant if there was a cytokinin/mock,BA/TDZ,BA/iP,or BA/ t-Z spot volume ratio of61.4or more(for at least one variant), with t-test values>95%and similar profiles in(i)>2biological replicates for total protein comparisons(with three parallel SDS–PAGE analyses for each treatment,i.e.15parallel SDS–PAGE analyses for each biological replicate);(ii)>3biological replicates for phosphoproteome comparisons(with two parallel SDS–PAGE analyses per treatment,i.e.10parallel SDS–PAGE analyses for each biological replicate);(iii)three biological replicates for phosphoproteome comparisons in the ahk double mutants(with two parallel SDS–PAGE analyses per treatment, i.e.8parallel SDS–PAGE analyses for each biological replicate); or(iv)>2biological replicates for phosphoproteome compar-isons in the wild type in the presence of calcium signalling inhibitors.Only spots with significant and reproducible changes were considered for mass spectroscopic identification.The experimental design is outlined schematically in Supplementary Fig.S1available at JXB onluine.Protein identificationProteins were identified as previously described(Hradilova´et al., 2010)with minor modifications.Briefly,selected protein spots were digested with trypsin.The dried tryptic peptides were each dissolved in10l l of0.1%trifluoroacetic acid and purified using ZipTip C18tips.The eluate was mixed with1vol.of10mg mlÀ1a-cyano-4-hydroxycinnamic acid(CHCA)in50%(v/v)acetonitrileand0.1%trifluoroacetic acid for spotting onto sample plates,anddried for matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry(MALDI-TOF/TOF MS)analy-sis.To demonstrate phosphorylation of selected peptides,phos-phopeptides werefirst enriched from tryptic peptides dissolved in10%acetonitrile and0.1%acetic acid using IMAC tips(Millipore) containing iron ions.After loading,the tips were washed with10%acetonitrile and0.1%acetic acid,then rinsed with water. Phosphopeptides were eluted by0.3N ammonium hydroxideand measured using15mg mlÀ12,5-dihydroxybenzoic acid in50%(v/v)acetonitrile and6%phosphoric acid solution as a matrix.Alkaline phosphatase treatment was used to confirm the phosphorylation of the phosphopeptides according to Larsenet al.(2001).Briefly,IMAC-purified phosphopeptides were in-cubated with0.05U l lÀ1alkaline phosphatase in50mMNH4HCO3,pH7.8at37°C for30min then acidified with2.5l lof5%trifluoroacetic acid.Phosphopeptides were identifiedby single or multiple80Da(HPO3)losses in MALDI-TOF-MS following alkaline phosphatase treatment,for mono-and multiphosphorylated peptides,respectively.MALDI-TOF/TOF measurements were performed with an Applied Biosystems4700Proteomic Analyzer(Applied Biosys-tems,/)equipped with anNd:YAG laser(355nm)operated with3–7ns pulses and200Hzfiring rate in positive reflectron mode for both MS and MS/MS analyses.The accelerating voltage in the ion source for MS andMS/MS analyses was set at20kV and8kV,respectively. Acquired sequences were searched against the NCBInr sequence database(version09/2009)using Mascot(http://www. /),and peaks generated from the acquired mass spectra by the Peak-to-Mascot function incorporated in the software.In the MS analyses,peaks in the900–4000m/z rangewith signal to noise(S/N)ratios>4were sought.In the MS/MS analyses,peaks with S/N ratios>4in the m/z range from68m/zup to20m/z units lower than their precursors’m/z values wereused.The resulting peak lists contained information from both MSand MS/MS runs concerning fragmentation patterns of selected precursors.Parameters for both MS and MS/MS data searches in Mascot were:taxonomy,Arabidopsis thaliana;enzyme,trypsin; allowed missed cleavages,1[except for the peptide VGKDSKDKELKEAFK of endoplasmin homologue(SHD),where allowed missed cleavages were set to4];fixed modification, carbamidomethyl(C);variable modifications,none or Phospho(ST)and Phospho(Y)(for searching phosphopeptides);peptide tolerance,0.5Da;MS/MS tolerance,0.5Da;peptide charge,(+1); instrument,MALDI-TOF/TOF.Protein matches in MS/MSidentification were considered valid if there was at least one peptide with a Mascot score corresponding to identity or extensive homology(P<0.05).Protein scores were derived from ion scoresas a non-probabilistic basis for ranking protein hits by Mascot.Similar parameters were set for peptide massfingerprint analysi-s—only protein matches with Mascot scores indicating extensive homology were accepted.Gene ontologyGene ontology was evaluated by BiNGO2.3in Cytoscape2.6.2,with data from the NCBI()andTAIR()databases.ResultsIdentification of early cytokinin response proteinsTo identify early cytokinin response proteins,7-day-old Arabidopsis seedlings were treated(separately)with fourmain cytokinins(BA,iP,TDZ,and t-Z)at a concentrationCˇerny´et al.|923by guest on May 26, 2015/Downloaded fromFig.1.Effects of cytokinin treatment on the proteome and phosphoproteome of Arabidopsis seedlings.(A)Average two-dimensional gelelectrophoresis proteome map of 7-day-old Arabidopsis seedlings treated with cytokinin/mock buffer for 15min.Differentially regulated protein spots are indicated.See Table 1,and Supplementary Table S1at JXB online,for detailed information on the corresponding identified proteins.Proteins (500l g)were separated in the first and second dimensions by IPG (18cm strips,pH 4–7)followed by 11%SDS–PAGE then visualized by Bio-Safe Coomassie G250staining.Isoelectric points (pI)and migrating positions of molecular mass (kDa)markers are marked.(B)Examples of spots corresponding to the differentially regulated proteins in Arabidopsis seedlings treated with 5l M cytokinin (BA,iP,TDZ,or t -Z)or mock buffer for 15min.For details see Materials and methods.(C)Average 2-DEphosphoproteome map of 7-day-old Arabidopsis seedlings treated with cytokinin/mock buffer for 15min.Differentially regulated protein spots are indicated.See Table 2,and Supplementary Table S2,for detailed information on the corresponding identified proteins.Phosphoprotein fractions were obtained using a PhosphoProtein Purification Kit.Phosphoproteins (150l g)were separated in the first924|Cˇerny ´et al. by guest on May 26, 2015/Downloaded fromof 5l M for 15min.Total proteins were then extracted andsubjected to 2-DE (Fig.1A,B ).Image analysis of the resulting proteome maps revealed >850reproducibly re-solved spots in gels over pI and molecular mass ranges of 4–7and 10–120kDa,respectively,then proteome patterns of seedlings treated with the individual cytokinins were com-pared separately with the proteome patterns of seedlings treated with mock buffer.Significant differences (P <0.05)in all biological replicates were found for 160resolved spots,but only 53spots were reproducibly significant in two or more independent experiments and were then subjected to protein identification.Altogether,67proteins were identified in the 53spots,including 10protein mixtures and a non-dissociated heterodimer consisting of small and large Rubisco subunits (T13),by MALDI-TOF/TOF MS analysis followed by Mascot database searches of the full NCBI Arabidopsis protein database (Table 1;Supplementary Table S1at JXB online).The ratio of numbers of up-regulated to down-regulated proteins was ;1:2.Identified protein spots are marked in protein maps shown in Fig.1A ,and corresponding partial amino acid sequences are listed in Supplementary Table S3.Protein identifications and relative fold changes based on mean percentage volumes of each of these spots are presented in Table 1.The apparent strength of effects of the cytokinins on expression of the early cytokinin response proteins decreased in the order BA ¼TDZ>t -Z ¼iP.Previously,cytokinin early response transcripts were identi-fied following 15min treatment of 7-day-old Arabidopsis seedlings with 5l M BA.Here it was confirmed that levels of type-A ARR genes (ARR3and ARR5)increased following BA treatment in the experimental set-up employed usingquantitative RT-PCR (P.Soucˇek,unpublished data)as outlined in Soucˇek et al.(2007).Identification of early cytokinin response phosphoproteinsA fraction of phosphoproteins phosphorylated at serine and threonine residues was isolated from seedlings treated with cytokinins using a Quiagen Phosphoprotein enrichment kit with an optimized procedure,as outlined above.In addition,cytokinin receptor double mutants (ahk2ahk3,ahk2cre1,and ahk3cre1)treated with 5l M t -Z for 15min were analysed to assess how much the individual cytokinin receptors contribute to phosphoproteome regulation.Phos-phoprotein fractions were subjected to 2-DE,and image analysis was used to reveal phosphoproteins differentially regulated by cytokinins (Fig.1C,D ),essentially as de-scribed above for early cytokinin response proteins.Of 450reproducibly resolved spots in phosphoproteome maps from wild-type samples,significant differences (P <0.05)in all10independent experiments (including the four pilotexperiments using only one cytokinin each)were found for 90resolved spots (for a schematic representation of the experimental design see Supplementary Fig.S1at JXB online).Reproducible significant changes in at least three biological replicates were found for 31spots.Subsequently,>90%of them were reproducibly resolved in phosphopro-teome maps displaying phosphoproteins from each of the three cytokinin receptor double mutants (Table 3).In total,29proteins were identified in these spots,including two protein mixtures,by MALDI-TOF/TOF MS followed by Mascot database searches of the full NCBI protein database (Table 2;Supplementary Table S2at JXB online).Phosphorylation has been previously reported for 22of these proteins (Table 2;PhosPhAt 3.0,http://phosphat.mpimp-golm.mpg.de ).Here,phosphorylation was confirmed for 60S acidic ribosomal protein P0-2(P22)and endoplasmin homologue (SHD;P2)by comparing MS spectra of their IMAC-purified peptides VEEKEESDEE-DYGGDFGLFDEE and VGKDSKDKELKEAFK,re-spectively,before and after alkaline phosphatase treatment (Supplementary Fig.S2).Serine was previously shown to be a phosphorylation site on the peptide of 60S acidic ribosomal protein P0-2(Laugesen et al.,2006),but phos-phorylation of endoplasmin homologue (SHD)has not been previously reported.In addition,29of the 31spots were stained by the phosphoprotein-specific stain Phos-tag ä(Supplementary Fig.S3).The ratio of numbers of up-regulated to down-regulated phosphoproteins was ;1:1.Alterations in levels of individual phosphoproteins may result from phosphorylation/dephosphorylation events and/or modulation of turnover rates of the phosphoproteins.Identified protein spots are marked in protein maps shown in Fig.1C ,and examples of spots containing phosphopro-teins differentially regulated by the individual cytokinins in Fig.1D .The corresponding partial amino acid sequences are listed in Supplementary Table S4.Protein identifications and relative fold changes based on mean percentage volumes of these spots are presented in Tables 2and 3for phosphoproteins of the wild type and cytokinin receptor double mutants,respectively.Apparent strength of effects of the cytokinins on expression of the early cytokinin response phosphoproteins decreased in the order BA>TDZ>t -Z ¼iP.Responses specific for a single receptor were found in 15spots,while seven spots were regulated by two individual receptors (Table 3).The remaining spots were either non-significantly or inconsistently (down-,up-,and non-regulated in the individual biological replicas)regulated.Interestingly,regulation was apparent in the mutants for four spots (P19,P24,P25,and P26)that remained below cut-off limits in wild-type seedlings.The opposite regulation was found for spots P13,P26(ahk2ahk3and second dimensions by IPG (7cm strips,pH 4–7)followed by 11%SDS–PAGE then visualized by Bio-Safe Coomassie G250staining.Isoelectric points (pI)and relative migrating positions of molecular mass (kDa)markers are marked.(D)Examples of spotscorresponding to the differentially regulated phosphoproteins in Arabidopsis seedlings treated with 5l M cytokinin (BA,iP,TDZ,or t -Z)or mock buffer for 15min.For details see Materials and methods.Cˇerny ´et al.|925 by guest on May 26, 2015/Downloaded fromand ahk2cre1),and P24(ahk2cre1and ahk3cre1),suggesting receptor interactions in response regulation.Further,loss of consistent regulation in the double mutants for two spots regulated by t -Z in the wild type (P16,P20)was observed,implying that simultaneous activity of at least two receptors may be needed for correct regulation of the corresponding proteins.In addition,responses of a fraction of the 15spots primarily regulated by a single receptor to cytokinin treatment were lower in all three double mutants than in wild-type plants,suggesting they may require simultaneous activity of one or more other receptor(s)for a full response.The highest numbers of regulated spots were found in the ahk2cre1(14)mutant,followed by ahk2ahk3(11)and ahk3cre1(four).Calcium signalling in regulation of early cytokinin response phosphoproteinsRecognition of ERD14(P10,P26)and COR47(P23),in which phosphorylation status and Ca 2+binding are re-portedly interlinked,as early cytokinin response phospho-proteins suggested a molecular link between cytokinin action and calcium signalling.To test the involvement of calcium signalling in early phosphoproteome regulation by cytokinin,7-day-old Arabidopsis seedlings were treated with 5l M t -Z in the presence and absence of a calcium channel blocker (30l M D600)and a competitive inhibitor of calcium uptake (60l M LaCl 3)for 15min,and phospho-proteome alterations were analysed as outlined above.ThisTable 3.Regulation of the early cytokinin response phosphoproteins by t -Z in the cytokinin receptor double mutants ahk2cre1,ahk3cre1,and ahk2ahk3Spot/protein no.AGI codeProtein nameRelative fold change ahk2ahk3ahk2cre1ahk3cre1Wild type Significant response apparently mediated by a single cytokinin receptor P1At1g22530Patellin-2(PATL-2)–1.160.131.560.25 1.160.04 1.960.06P2At4g24190Endoplasmin homologue (SHD) 1.260.30 1.460.10 1.060.30 1.760.20P3At5g56030Heat shock protein 81-2 1.560.08 1.060.05 1.360.322.060.15P4At5g11170DEAD-box ATP-dependent RNA helicase 15 1.460.06 1.060.03 1.060.18 1.560.15P7X X 1.060.26 1.560.07 1.060.26 2.560.13P9At1g09640Probable elongation factor 1-c 1 1.560.05 1.060.12 1.060.15 1.560.05P11At5g60640Protein disulphide isomerase-like protein 1.060.28–1.460.10–1.160.15–1.860.09P12AtCg00120ATP synthase subunit a ,chloroplastic –1.560.19–1.360.09–1.260.11–1.560.06P14At2g39990eIF2(eukaryotic translation initiation factor) 1.060.25–1.160.17–1.560.30–2.060.12P18At5g56030Heat shock protein 81-2/3/4 1.260.35–1.460.01–1.060.15–1.560.05P21At3g51880HMGB1–1.560.15–1.360.01 1.060.20–1.660.14P27At1g26630eIF5A-2(eukaryotic translation initiation factor) 1.560.08–1.160.14–1.260.29 1.560.05P28At1g20010Tubulin b -5chain 1.760.23 1.060.26 1.060.05 1.660.07P29X X 1.060.08 1.660.24 1.260.11 1.760.05P31At3g0920060S Acidic ribosomal protein P0-2–1.160.11–1.460.02–1.260.16–1.660.10Significant response apparently mediated by two cytokinin receptors P13AtCg00490Rubisco large chain1.660.21–1.660.57+/––2.060.23At1g67090Rubisco small chain 1A,chloroplasticP15At5g14740b -Carbonic anhydrase 2 1.060.18–1.460.14–1.560.34–1.460.10P19At3g16420PBP1–1.260.16–1.560.21–1.460.13–1.360.20P24AtCg00490Rubisco large subunit +/––1.560.26 2.060.14 1.360.15P25AtCg00490Rubisco large subunit 1.460.12 1.460.21 1.060.17 1.360.15P26At1g76180Dehydrin ERD14 1.560.15–1.460.32–1.360.27–1.360.16P30At5g44340Tubulin b -4chain 1.460.201.460.071.360.111.460.15Non-significant response to t -Z in wild type and/or mutants P10At1g76180Dehydrin ERD14+/––1.360.33+/–1.360.07P16At5g43830GATase like protein 1.160.20 1.060.20–1.160.22–1.560.10P17At5g56030Heat shock protein 81-2 1.060.16 1.060.18 1.060.05 1.060.30P20At5g42790Proteasome subunit a type-1-A 1.260.08 1.060.01 1.260.14–1.560.08P22At3g0920060S Acidic ribosomal protein P0-2 1.060.16 1.060.30 1.060.19–1.260.20P23At1g20440Dehydrin COR471.060.02–1.260.34 1.060.22 1.160.18At4g26110NAP1Spot no.,spot number (as given in Fig.1C );AGI code,accession number in the TAIR database;Protein name,entry name according to the NCBI database;Relative fold change,fold change relative to the mock control (calculated by DECODON DELTA 2D software)6SE;+/–,inconsistent regulation in three biological replicas (down-,up-,and non-regulated in the individual biological replicas).Full information on the phosphoproteins including their classification,peptide sequences,and peak list is given in Supplementary Tables S2and S4at JXB online.Cˇerny ´et al.|929 by guest on May 26, 2015/Downloaded from。

相关文档
最新文档